National Library of Energy BETA

Sample records for big explosives experimental

  1. Big Explosives Experimental Facility - BEEF

    ScienceCinema (OSTI)

    None

    2015-01-07

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  2. Big Explosives Experimental Facility - BEEF

    SciTech Connect (OSTI)

    2014-10-31

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  3. A different Big Bang theory: Los Alamos unveils explosives detection...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    unveils explosives detection expertise A different Big Bang theory: Los Alamos unveils explosives detection expertise A team of scientists is now rolling out a collaborative...

  4. A different Big Bang theory: Los Alamos unveils explosives detection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    expertise unveils explosives detection expertise A different Big Bang theory: Los Alamos unveils explosives detection expertise A team of scientists is now rolling out a collaborative project to defeat explosives threats through enhanced detection technologies. February 11, 2015 Instructors discuss the production of aluminum based explosives, part of an advanced course in worldwide threats from homemade explosives created by the Los Alamos Collaboration for Explosives Detection (LACED).

  5. Explosives Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives Center Explosives Center at Los Alamos National Laboratory A world leader in energetic materials research, development and applications, the Explosives Center's unique capabilities enable a dynamic, flexible response to address multiple evolving mission needs. explosives experiment Comprehensive energetic materials development, characterization and testing are key strengths at Los Alamos National Laboratory. An experimental explosive is shown igniting during small-scale impact

  6. A different Big Bang theory: Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    different Big Bang theory: Los Alamos unveils explosives detection expertise February 11, 2015 Collaboration project defeats explosives threats through enhanced detection...

  7. Experimental study of the nonlinear diffusion of a magnetic field and skin explosion of cylindrical conductors

    SciTech Connect (OSTI)

    Chaikovsky, S. A.; Datsko, I. M.; Labetskaya, N. A.; Rybka, D. V.; Ratakhin, N. A.; Oreshkin, V. I.

    2015-11-15

    The paper presents the results of an experimental study of the skin explosion of cylindrical conductors of diameter 1–3 mm (copper, aluminum, titanium, steel 3, and stainless steel) at a peak magnetic field of 200–600 T. The experiments were carried out on the MIG pulsed power generator at a current of up to 2.5 MA and a current rise time of 100 ns. The surface explosion of a conductor was identified by the appearance of a flash of extreme ultraviolet radiation. A minimum magnetic induction has been determined below which no plasma is generated at the conductor surface. For copper, aluminum, steel 3, titanium, and stainless steel, the minimum magnetic induction has been estimated to be (to within 10%) 375, 270, 280, 220, and 245 T, respectively.

  8. A Computing Environment to Support Repeatable Scientific Big Data Experimentation of World-Wide Scientific Literature

    SciTech Connect (OSTI)

    Schlicher, Bob G; Kulesz, James J; Abercrombie, Robert K; Kruse, Kara L

    2015-01-01

    A principal tenant of the scientific method is that experiments must be repeatable and relies on ceteris paribus (i.e., all other things being equal). As a scientific community, involved in data sciences, we must investigate ways to establish an environment where experiments can be repeated. We can no longer allude to where the data comes from, we must add rigor to the data collection and management process from which our analysis is conducted. This paper describes a computing environment to support repeatable scientific big data experimentation of world-wide scientific literature, and recommends a system that is housed at the Oak Ridge National Laboratory in order to provide value to investigators from government agencies, academic institutions, and industry entities. The described computing environment also adheres to the recently instituted digital data management plan mandated by multiple US government agencies, which involves all stages of the digital data life cycle including capture, analysis, sharing, and preservation. It particularly focuses on the sharing and preservation of digital research data. The details of this computing environment are explained within the context of cloud services by the three layer classification of Software as a Service , Platform as a Service , and Infrastructure as a Service .

  9. Experimental investigation on the energy deposition and expansion rate under the electrical explosion of aluminum wire in vacuum

    SciTech Connect (OSTI)

    Shi, Zongqian; Wang, Kun; Shi, Yuanjie; Wu, Jian; Han, Ruoyu

    2015-12-28

    Experimental investigations on the electrical explosion of aluminum wire using negative polarity current in vacuum are presented. Current pulses with rise rates of 40 A/ns, 80 A/ns, and 120 A/ns are generated for investigating the influence of current rise rate on energy deposition. Experimental results show a significant increase of energy deposition into the wire before the voltage breakdown with the increase of current rise rate. The influence of wire dimension on energy deposition is investigated as well. Decreasing the wire length allows more energy to be deposited into the wire. The energy deposition of a 0.5 cm-long wire explosion is ∼2.5 times higher than the energy deposition of a 2 cm-long wire explosion. The dependence of the energy deposition on wire diameter demonstrates a maximum energy deposition of 2.7 eV/atom with a diameter of ∼18 μm. Substantial increase in energy deposition is observed in the electrical explosion of aluminum wire with polyimide coating. A laser probe is applied to construct the shadowgraphy, schlieren, and interferometry diagnostics. The morphology and expansion trajectory of exploding products are analyzed based on the shadowgram. The interference phase shift is reconstructed from the interferogram. Parallel dual wires are exploded to estimate the expansion velocity of the plasma shell.

  10. Big Science

    ScienceCinema (OSTI)

    Dr. Thomas Zacharia

    2010-01-08

    Big science seeks big solutions for the most urgent problems of our times. Video courtesy Cray, Inc.

  11. Explosives Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives Science Explosives Science Current efforts in explosives science cover many areas critical to national security. One particular area is the need for countermeasures against explosive threats. v Comprehensive explosives process Los Alamos National Laboratory offers a comprehensive explosives process. This process leverages entire technical divisions dedicated to explosives science. Los Alamos scientists combine advanced expertise and capabilities with modern facilities. These assets

  12. Explosives Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-06-27

    The Standard provides the basic technical requirements for an explosives safety program necessary for operations involving explosives, explosives assemblies, pyrotechnics and propellants, and assemblies containing these materials.

  13. A different Big Bang theory: Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    different Big Bang theory: Los Alamos unveils explosives detection expertise February 11, 2015 Collaboration project defeats explosives threats through enhanced detection technologies LOS ALAMOS, N.M., Feb. 11, 2015-Having long kept details of its explosives capabilities under wraps, a team of Los Alamos National Laboratory scientists is now rolling out a collaborative project to defeat explosives threats through enhanced detection technologies. "We're aiming to create a collaboration of

  14. Explosives tester

    DOE Patents [OSTI]

    Haas, Jeffrey S.; Howard, Douglas E.; Eckels, Joel D.; Nunes, Peter J.

    2011-01-11

    An explosives tester that can be used anywhere as a screening tool by non-technical personnel to determine whether a surface contains explosives. First and second explosives detecting reagent holders and dispensers are provided. A heater is provided for receiving the first and second explosives detecting reagent holders and dispensers.

  15. Specific heat and thermal conductivity of explosives, mixtures...

    Office of Scientific and Technical Information (OSTI)

    Specific heat and thermal conductivity of explosives, mixtures, and plastic-bonded explosives determined experimentally Baytos, J.F. 45 MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL...

  16. Explosive Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosive National Security Science Latest Issue:April 2016 past issues All Issues » submit Explosive Results Scientists at Los Alamos are solving national security challenges, from the threat of toothpaste-tube bombs on airliners to ensuring the safety of our nuclear stockpile. April 1, 2016 Explosive Results To test whether a travel-toothpaste-tube-sized bomb could bring down an airliner, Los Alamos scientists tried to blow a hole through half-inch-thick aircraft-grade aluminum using an

  17. Big Data Hits the Beamline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big Data Hits the Beamline Big Data Hits the Beamline A Data Explosion is Driving a New Era of Computational Science at DOE Light Sources November 26, 2013 By Jacob Berkowitz for DEIXIS Magazine Deixis2013-2.jpg This three-dimensional rendering from computed microtomography data shows matrix cracks and individual fiber breaks in a ceramic matrix composite specimen tested at 1,750 C. Each of numerous ceramic samples is imaged with powerful X-ray scattering techniques over time to track crack

  18. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-03-29

    This Manual describes DOE's explosives safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives.

  19. Explosive laser

    DOE Patents [OSTI]

    Robinson, C.P.; Jensen, R.J.; Davis, W.C.; Sullivan, J.A.

    1975-09-01

    This patent relates to a laser system wherein reaction products from the detonation of a condensed explosive expand to form a gaseous medium with low translational temperature but high vibration population. Thermal pumping of the upper laser level and de-excitation of the lower laser level occur during the expansion, resulting in a population inversion. The expansion may be free or through a nozzle as in a gas-dynamic configuration. In one preferred embodiment, the explosive is such that its reaction products are CO$sub 2$ and other species that are beneficial or at least benign to CO$sub 2$ lasing. (auth)

  20. Explosive complexes

    DOE Patents [OSTI]

    Huynh, My Hang V.

    2009-09-22

    Lead-free primary explosives of the formula [M.sup.II(A).sub.R(B.sup.X).sub.S](C.sup.Y).sub.T, where A is 1,5-diaminotetrazole, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  1. Explosive complexes

    DOE Patents [OSTI]

    Huynh, My Hang V.

    2011-08-16

    Lead-free primary explosives of the formula [M.sup.II(A).sub.R(B.sup.X).sub.S](C.sup.Y).sub.T, where A is 1,5-diaminotetrazole, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  2. Explosive simulants for testing explosive detection systems

    DOE Patents [OSTI]

    Kury, John W.; Anderson, Brian L.

    1999-09-28

    Explosives simulants that include non-explosive components are disclosed that facilitate testing of equipment designed to remotely detect explosives. The simulants are non-explosive, non-hazardous materials that can be safely handled without any significant precautions. The simulants imitate real explosives in terms of mass density, effective atomic number, x-ray transmission properties, and physical form, including moldable plastics and emulsions/gels.

  3. DOE - NNSA/NFO -- National Security Template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big Explosives Experimental Facility NNSANFO Language Options U.S. DOENNSA - Nevada Field Office Big Explosives Experimental Facility (BEEF) Photograph of BEEF Facility The Big ...

  4. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-07-10

    The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

  5. Dust cluster explosion

    SciTech Connect (OSTI)

    Saxena, Vikrant [School of Mathematics and Physics, Queen's University Belfast, Belfast, Northern Ireland (United Kingdom); Institute for Plasma Research, Bhat, Gandhinagar (India); Avinash, K. [Department of Physics and Astrophysics, University of Delhi, New Delhi (India); Sen, A. [Institute for Plasma Research, Bhat, Gandhinagar (India)

    2012-09-15

    A model for the dust cluster explosion where micron/sub-micron sized particles are accelerated at the expense of plasma thermal energy, in the afterglow phase of a complex plasma discharge is proposed. The model is tested by molecular dynamics simulations of dust particles in a confining potential. The nature of the explosion (caused by switching off the discharge) and the concomitant dust acceleration is found to depend critically on the pressure of the background neutral gas. At low gas pressure, the explosion is due to unshielded Coulomb repulsion between dust particles and yields maximum acceleration, while in the high pressure regime it is due to shielded Yukawa repulsion and yields much feebler acceleration. These results are in agreement with experimental findings. Our simulations also confirm a recently proposed electrostatic (ES) isothermal scaling relation, P{sub E}{proportional_to}V{sub d}{sup -2} (where P{sub E} is the ES pressure of the dust particles and V{sub d} is the confining volume).

  6. Big Iron for Big Data: An Unnatural Alliance?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big Iron for Big Data: An Unnatural Alliance? Steve Plimpton Sandia National Labs Salishan Conference on High-Speed Computing April 2012 Big data analytics (BD) versus scientific...

  7. Extrusion cast explosive

    DOE Patents [OSTI]

    Scribner, Kenneth J.

    1985-01-01

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants.

  8. Big Sky Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    (Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

  9. Taking advantage of Big Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Taking advantage of Big Data Taking advantage of Big Data The darling of Big Data, Hadoop, having its 10th birthday on January 28th, 2016. February 15, 2016 big data illustration ...

  10. EA-1993: Proposed High Explosive Science & Engineering Project...

    Office of Environmental Management (EM)

    The proposed action would be to design, construct, and operate a High Explosive Science ... scientific staff and supporting computational and experimental capabilities as well ...

  11. UCID-20974 Spherical Explosions

    Office of Scientific and Technical Information (OSTI)

    UCID-20974 Spherical Explosions and the Equation of State of Water D. J. Steinberg ... Explosions and the Equation of State of Water D. J. Steinberg February 1987 r This is an ...

  12. Inspection tester for explosives

    DOE Patents [OSTI]

    Haas, Jeffrey S.; Simpson, Randall L.; Satcher, Joe H.

    2007-11-13

    An inspection tester that can be used anywhere as a primary screening tool by non-technical personnel to determine whether a surface contains explosives. It includes a body with a sample pad. First and second explosives detecting reagent holders and dispensers are operatively connected to the body and the sample pad. The first and second explosives detecting reagent holders and dispensers are positioned to deliver the explosives detecting reagents to the sample pad. A is heater operatively connected to the sample pad.

  13. Inspection tester for explosives

    DOE Patents [OSTI]

    Haas, Jeffrey S.; Simpson, Randall L.; Satcher, Joe H.

    2010-10-05

    An inspection tester that can be used anywhere as a primary screening tool by non-technical personnel to determine whether a surface contains explosives. It includes a body with a sample pad. First and second explosives detecting reagent holders and dispensers are operatively connected to the body and the sample pad. The first and second explosives detecting reagent holders and dispensers are positioned to deliver the explosives detecting reagents to the sample pad. A is heater operatively connected to the sample pad.

  14. Nuclear Explosive Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Manual provides supplemental details to support the requirements of DOE O 452.2D, Nuclear Explosive Safety.

  15. High Explosives Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration | (NNSA) High Explosives Application Facility A Livermore scientist uses a laser spectroscopic method with a diamond anvil DOE/NNSA has identified LLNL's High Explosives Applications Facility (HEAF) as the complex-wide "Center of Excellence" for High-Explosives Research and Development. In this capacity, HEAF is a source of subject matter expertise for high explosives and other energetic materials. Its mission is to provide this expertise to serve multiple government

  16. Extrusion cast explosive

    DOE Patents [OSTI]

    Scribner, K.J.

    1985-11-26

    Disclosed is an improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  17. Extrusion cast explosive

    DOE Patents [OSTI]

    Scribner, K.J.

    1985-01-29

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  18. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs). Cancels DOE O 452.2C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.2D.

  19. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Order establishes requirements to implement the nuclear explosive safety elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations. Cancels DOE O 452.2C. Admin Chg 1, 7-10-13

  20. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs). Supersedes DOE O 452.2D and DOE M 452.2-1A.

  1. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-01-09

    The Manual describes the Departments explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. Cancels DOE M 440.1-1. Canceled by DOE O 440.1B Chg 1.

  2. Weapons Experiments Division Explosives Operations Overview

    SciTech Connect (OSTI)

    Laintz, Kenneth E.

    2012-06-19

    Presentation covers WX Division programmatic operations with a focus on JOWOG-9 interests. A brief look at DARHT is followed by a high level overview of explosives research activities currently being conducted within in the experimental groups of WX-Division. Presentation covers more emphasis of activities and facilities at TA-9 as these efforts have been more traditionally aligned with ongoing collaborative explosive exchanges covered under JOWOG-9.

  3. Taking advantage of Big Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Taking advantage of Big Data Taking advantage of Big Data The darling of Big Data, Hadoop, having its 10th birthday on January 28th, 2016. February 15, 2016 big data illustration The darling of Big Data, Hadoop, is having its 10th birthday on January 28th, 2016. Any Company Can Study User Behavior With A Data Lake The darling of Big Data, Hadoop, is having its 10th birthday on January 28th, 2016. Forbes.com

  4. Free radical explosive composition

    DOE Patents [OSTI]

    Walker, Franklin E.; Wasley, Richard J.

    1979-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a getter additive comprising a compound or mixture of compounds capable of capturing or deactivating free radicals or ions under mechanical or electrical shock conditions and which is not an explosive. Exemplary getter additives are isocyanates, olefins and iodine.

  5. Explosives tester with heater

    DOE Patents [OSTI]

    Del Eckels, Joel; Nunes, Peter J.; Simpson, Randall L.; Whipple, Richard E.; Carter, J. Chance; Reynolds, John G.

    2010-08-10

    An inspection tester system for testing for explosives. The tester includes a body and a swab unit adapted to be removeably connected to the body. At least one reagent holder and dispenser is operatively connected to the body. The reagent holder and dispenser contains an explosives detecting reagent and is positioned to deliver the explosives detecting reagent to the swab unit. A heater is operatively connected to the body and the swab unit is adapted to be operatively connected to the heater.

  6. One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ

    SciTech Connect (OSTI)

    Hsu, P.; Hust, G.; McClelland, M.; Gresshoff, M.

    2014-11-12

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the recent ODTX experimental data and modeling results for 2,6-diamino-3,5-dintropyrazine (ANPZ).

  7. Elasticity of crystalline molecular explosives

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hooks, Daniel E.; Ramos, Kyle J.; Bolme, C. A.; Cawkwell, Marc J.

    2015-04-14

    Crystalline molecular explosives are key components of engineered explosive formulations. In precision applications a high degree of consistency and predictability is desired under a range of conditions to a variety of stimuli. Prediction of behaviors from mechanical response and failure to detonation initiation and detonation performance of the material is linked to accurate knowledge of the material structure and first stage of deformation: elasticity. The elastic response of pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and cyclotetramethylene tetranitramine (HMX), including aspects of material and measurement variability, and computational methods are described in detail. Experimental determinations of elastic tensors are compared, andmore » an evaluation of sources of error is presented. Furthermore, computed elastic constants are also compared for these materials and for triaminotrinitrobenzene (TATB), for which there are no measurements.« less

  8. Elasticity of crystalline molecular explosives

    SciTech Connect (OSTI)

    Hooks, Daniel E.; Ramos, Kyle J.; Bolme, C. A.; Cawkwell, Marc J.

    2015-04-14

    Crystalline molecular explosives are key components of engineered explosive formulations. In precision applications a high degree of consistency and predictability is desired under a range of conditions to a variety of stimuli. Prediction of behaviors from mechanical response and failure to detonation initiation and detonation performance of the material is linked to accurate knowledge of the material structure and first stage of deformation: elasticity. The elastic response of pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and cyclotetramethylene tetranitramine (HMX), including aspects of material and measurement variability, and computational methods are described in detail. Experimental determinations of elastic tensors are compared, and an evaluation of sources of error is presented. Furthermore, computed elastic constants are also compared for these materials and for triaminotrinitrobenzene (TATB), for which there are no measurements.

  9. The Big Bang Theory

    SciTech Connect (OSTI)

    Lincoln, Don

    2014-09-30

    The Big Bang is the name of the most respected theory of the creation of the universe. Basically, the theory says that the universe was once smaller and denser and has been expending for eons. One common misconception is that the Big Bang theory says something about the instant that set the expansion into motion, however this isn’t true. In this video, Fermilab’s Dr. Don Lincoln tells about the Big Bang theory and sketches some speculative ideas about what caused the universe to come into existence.

  10. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12

    The directive establishes specific nuclear explosive safety (NES) program requirements to implement the DOE NES standards and other NES criteria for routine and planned nuclear explosive operations. Cancels DOE O 452.2B. Canceled by DOE O 452.2D.

  11. Explosively pumped laser light

    DOE Patents [OSTI]

    Piltch, Martin S.; Michelotti, Roy A.

    1991-01-01

    A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  12. Interim explosives detection alternatives

    SciTech Connect (OSTI)

    Syler, R.P. )

    1991-01-01

    There is a general concern with insiders smuggling bomb quantities of explosives into sensitive facilities such as nuclear facilities. At this time, there is no single explosives detection device that is suitable for monitoring personnel and their packages for explosives in an operational facility environment. However, there are techniques combining available commercial technologies with procedures and threat analysis that can significantly increase the insiders risk and reduce the population of adversaries. This paper describes the available applicable explosives detection technologies and discusses the techniques that could be implemented on an interim basis. It is important that these techniques be considered, so that some interim level of security against the explosives threat can be established until more sophisticated equipment that is under development becomes available.

  13. Non-detonable explosive simulators

    DOE Patents [OSTI]

    Simpson, Randall L.; Pruneda, Cesar O.

    1994-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

  14. Non-detonable explosive simulators

    DOE Patents [OSTI]

    Simpson, R.L.; Pruneda, C.O.

    1994-11-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  15. Small Particles, Big Impact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Particles, Big Impact Small Particles, Big Impact Small-scale effects of Aerosols Add up Over Time August 24, 2011 Linda Vu, lvu@lbl.gov, +1 510 495 2402 High-resolution simulation for Mexico City (top), shows a more detailed and accurate picture of aerosol pollution compared to representations of a global climate model (bottom). The deep red to light green colors represent concentrations of aerosol pollution with red being highest, light green lowest. Using systems at the National Energy

  16. Lithium niobate explosion monitor

    SciTech Connect (OSTI)

    Bundy, Charles H.; Graham, Robert A.; Kuehn, Stephen F.; Precit, Richard R.; Rogers, Michael S.

    1990-01-01

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier.

  17. Lithium niobate explosion monitor

    DOE Patents [OSTI]

    Bundy, C.H.; Graham, R.A.; Kuehn, S.F.; Precit, R.R.; Rogers, M.S.

    1990-01-09

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier. 8 figs.

  18. Explosive Detection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-10-26

    To standardize and accelerate implementation of the Department of Energy (DOE) explosive detection program. DOE N 251.40, dated 5/3/01, extends this directive until 12/31/01.

  19. Parametric Explosion Spectral Model

    SciTech Connect (OSTI)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  20. Explosion suppression system

    DOE Patents [OSTI]

    Sapko, Michael J. (Finleyville, PA); Cortese, Robert A. (Pittsburgh, PA)

    1992-01-01

    An explosion suppression system and triggering apparatus therefor are provided for quenching gas and dust explosions. An electrically actuated suppression mechanism which dispenses an extinguishing agent into the path ahead of the propagating flame is actuated by a triggering device which is light powered. This triggering device is located upstream of the propagating flame and converts light from the flame to an electrical actuation signal. A pressure arming device electrically connects the triggering device to the suppression device only when the explosion is sensed by a further characteristic thereof beside the flame such as the pioneer pressure wave. The light powered triggering device includes a solar panel which is disposed in the path of the explosion and oriented between horizontally downward and vertical. Testing mechanisms are also preferably provided to test the operation of the solar panel and detonator as well as the pressure arming mechanism.

  1. Idaho Explosive Detection System

    SciTech Connect (OSTI)

    Klinger, Jeff

    2011-01-01

    Learn how INL researchers are making the world safer by developing an explosives detection system that can inspect cargo. For more information about INL security research, visit http://www.facebook.com/idahonationallaboratory

  2. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12

    The directive provides supplemental details to support the requirements of DOE O 452.2C, Nuclear Explosive Safety, dated 6-12-06. Canceled by DOE M 452.2-1A.

  3. Idaho Explosive Detection System

    ScienceCinema (OSTI)

    Klinger, Jeff

    2013-05-28

    Learn how INL researchers are making the world safer by developing an explosives detection system that can inspect cargo. For more information about INL security research, visit http://www.facebook.com/idahonationallaboratory

  4. Big Questions: Missing Antimatter

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-07

    Einstein's equation E = mc2 is often said to mean that energy can be converted into matter. More accurately, energy can be converted to matter and antimatter. During the first moments of the Big Bang, the universe was smaller, hotter and energy was everywhere. As the universe expanded and cooled, the energy converted into matter and antimatter. According to our best understanding, these two substances should have been created in equal quantities. However when we look out into the cosmos we see only matter and no antimatter. The absence of antimatter is one of the Big Mysteries of modern physics. In this video, Fermilab's Dr. Don Lincoln explains the problem, although doesn't answer it. The answer, as in all Big Mysteries, is still unknown and one of the leading research topics of contemporary science.

  5. Nuclear explosive safety study process

    SciTech Connect (OSTI)

    1997-01-01

    Nuclear explosives by their design and intended use require collocation of high explosives and fissile material. The design agencies are responsible for designing safety into the nuclear explosive and processes involving the nuclear explosive. The methodology for ensuring safety consists of independent review processes that include the national laboratories, Operations Offices, Headquarters, and responsible Area Offices and operating contractors with expertise in nuclear explosive safety. A NES Study is an evaluation of the adequacy of positive measures to minimize the possibility of an inadvertent or deliberate unauthorized nuclear detonation, high explosive detonation or deflagration, fire, or fissile material dispersal from the pit. The Nuclear Explosive Safety Study Group (NESSG) evaluates nuclear explosive operations against the Nuclear Explosive Safety Standards specified in DOE O 452.2 using systematic evaluation techniques. These Safety Standards must be satisfied for nuclear explosive operations.

  6. Experimental Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experimental highlights Experimental Highlights A Big Week for NIF Discovery Science During the week of July 31 to Aug. 4, five groups of NIF users worked with LLNL researchers to carry out a successful NIF Discovery Science shot week. The teams conducted 13 experiments in five separate basic high energy density (HED) science experimental campaigns in five days. The campaigns are studying collisionless astrophysical shocks, charged particle stopping power, ionization balance at extreme density,

  7. Experimental

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scaling of fluctuations and confinement with Lundquist number in the reversed-field pinch M. R. Stoneking, a) J. T. Chapman, D. J. Den Hartog, S. C. Prager, and J. S. Sarff Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 ͑Received 18 September 1997; accepted 12 January 1998͒ The scaling of the magnetic and velocity fluctuations with Lundquist number (S) is examined experimentally over a range of values from 7ϫ10 4 to 10 6 in a reversed-field pinch ͑RFP͒

  8. Non-detonable and non-explosive explosive simulators

    DOE Patents [OSTI]

    Simpson, R.L.; Pruneda, C.O.

    1997-07-15

    A simulator which is chemically equivalent to an explosive, but is not detonable or explodable is disclosed. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive. 11 figs.

  9. Non-detonable and non-explosive explosive simulators

    DOE Patents [OSTI]

    Simpson, Randall L.; Pruneda, Cesar O.

    1997-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable or explodable. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive.

  10. Detonation Reaction Zones in Condensed Explosives

    SciTech Connect (OSTI)

    Tarver, C M

    2005-07-14

    Experimental measurements using nanosecond time resolved embedded gauges and laser interferometric techniques, combined with Non-Equilibrium Zeldovich--von Neumann--Doring (NEZND) theory and Ignition and Growth reactive flow hydrodynamic modeling, have revealed the average pressure/particle velocity states attained in reaction zones of self-sustaining detonation waves in several solid and liquid explosives. The time durations of these reaction zone processes is discussed for explosives based on pentaerythritol tetranitrate (PETN), nitromethane, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), triaminitrinitrobenzene(TATB) and trinitrotoluene (TNT).

  11. Explosive shaped charge penetration into tuff rock

    SciTech Connect (OSTI)

    Vigil, M.G.

    1988-10-01

    Analysis and data for the use of Explosive Shaped Charges (ESC) to generate holes in tuff rock formation is presented. The ESCs evaluated include Conical Shaped Charges (CSC) and Explosive Formed Projectiles (EFP). The CSCs vary in size from 0.158 to 9.1 inches inside cone diameter. The EFPs were 5.0 inches in diameter. Data for projectile impact angles of 30 and 90 degrees are presented. Analytically predicted depth of penetration data generally compared favorably with experimental data. Predicted depth of penetration versus ESC standoff data and hole profile dimensions in tuff are also presented. 24 refs., 45 figs., 6 tabs.

  12. Fun with Big Sky Learning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fun with Big Sky Learning Fun with Big Sky Learning WHEN: Mar 21, 2015 11:00 AM - 2:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, New Mexico, USA CONTACT:...

  13. Manhattan Project: The "Big House"

    Office of Scientific and Technical Information (OSTI)

    The "Big House" was the dormitory for the Los Alamos Boys Ranch School. Students slept year-round on its unheated porches. During the Manhattan Project, the Big House contained, ...

  14. Explosion containment device

    DOE Patents [OSTI]

    Benedick, William B.; Daniel, Charles J.

    1977-01-01

    The disclosure relates to an explosives storage container for absorbing and containing the blast, fragments and detonation products from a possible detonation of a contained explosive. The container comprises a layer of distended material having sufficient thickness to convert a portion of the kinetic energy of the explosion into thermal energy therein. A continuous wall of steel sufficiently thick to absorb most of the remaining kinetic energy by stretching and expanding, thereby reducing the momentum of detonation products and high velocity fragments, surrounds the layer of distended material. A crushable layer surrounds the continuous steel wall and accommodates the stretching and expanding thereof, transmitting a moderate load to the outer enclosure. These layers reduce the forces of the explosion and the momentum of the products thereof to zero. The outer enclosure comprises a continuous pressure wall enclosing all of the layers. In one embodiment, detonation of the contained explosive causes the outer enclosure to expand which indicates to a visual observer that a detonation has occurred.

  15. Explosively separable casing

    DOE Patents [OSTI]

    Jacobson, Albin K. (Albuquerque, NM); Rychnovsky, Raymond E. (Livermore, CA); Visbeck, Cornelius N. (Livermore, CA)

    1985-01-01

    An explosively separable casing including a cylindrical afterbody and a circular cover for one end of the afterbody is disclosed. The afterbody has a cylindrical tongue extending longitudinally from one end which is matingly received in a corresponding groove in the cover. The groove is sized to provide a pocket between the end of the tongue and the remainder of the groove so that an explosive can be located therein. A seal is also provided between the tongue and the groove for sealing the pocket from the atmosphere. A frangible holding device is utilized to hold the cover to the afterbody. When the explosive is ignited, the increase in pressure in the pocket causes the cover to be accelerated away from the afterbody. Preferably, the inner wall of the afterbody is in the same plane as the inner wall of the tongue to provide a maximum space for storage in the afterbody and the side wall of the cover is thicker than the side wall of the afterbody so as to provide a sufficiently strong surrounding portion for the pocket in which the explosion takes place. The detonator for the explosive is also located on the cover and is carried away with the cover during separation. The seal is preferably located at the longitudinal end of the tongue and has a chevron cross section.

  16. Securing Infrastructure from High Explosive Threats

    SciTech Connect (OSTI)

    Glascoe, L; Noble, C; Reynolds, J; Kuhl, A; Morris, J

    2009-03-20

    Lawrence Livermore National Laboratory (LLNL) is working with the Department of Homeland Security's Science and Technology Directorate, the Transportation Security Administration, and several infrastructure partners to characterize and help mitigate principal structural vulnerabilities to explosive threats. Given the importance of infrastructure to the nation's security and economy, there is a clear need for applied research and analyses (1) to improve understanding of the vulnerabilities of these systems to explosive threats and (2) to provide decision makers with time-critical technical assistance concerning countermeasure and mitigation options. Fully-coupled high performance calculations of structural response to ideal and non-ideal explosives help bound and quantify specific critical vulnerabilities, and help identify possible corrective schemes. Experimental validation of modeling approaches and methodologies builds confidence in the prediction, while advanced stochastic techniques allow for optimal use of scarce computational resources to efficiently provide infrastructure owners and decision makers with timely analyses.

  17. Novel high explosive compositions

    DOE Patents [OSTI]

    Perry, D.D.; Fein, M.M.; Schoenfelder, C.W.

    1968-04-16

    This is a technique of preparing explosive compositions by the in-situ reaction of polynitroaliphatic compounds with one or more carboranes or carborane derivatives. One or more polynitroaliphatic reactants are combined with one or more carborane reactants in a suitable container and mixed to a homogeneous reaction mixture using a stream of inert gas or conventional mixing means. Ordinarily the container is a fissure, crack, or crevice in which the explosive is to be implanted. The ratio of reactants will determine not only the stoichiometry of the system, but will effect the quality and quantity of combustion products, the explosive force obtained as well as the impact sensitivity. The test values can shift with even relatively slight changes or modifications in the reaction conditions. Eighteen illustrative examples accompany the disclosure. (46 claims)

  18. High-nitrogen explosives

    SciTech Connect (OSTI)

    Naud, D.; Hiskey, M. A.; Kramer, J. F.; Bishop, R. L.; Harry, H. H.; Son, S. F.; Sullivan, G. K.

    2002-01-01

    The syntheses and characterization of various tetrazine and furazan compounds offer a different approach to explosives development. Traditional explosives - such as TNT or RDX - rely on the oxidation of the carbon and hydrogen atoms by the oxygen carrying nitro group to produce the explosive energy. High-nitrogen compounds rely instead on large positive heats of formation for that energy. Some of these high-nitrogen compounds have been shown to be less sensitive to initiation (e.g. by impact) when compared to traditional nitro-containing explosives of similar performances. Using the precursor, 3,6-bis-(3,5-dimethylpyrazol-1-yl)-s-tetrazine (BDT), several useful energetic compounds based on the s-tetrazine system have been synthesized and studied. The compound, 3,3{prime}-azobis(6-amino-s-tetrazine) or DAAT, detonates as a half inch rate stick despite having no oxygen in the molecule. Using perfluoroacetic acid, DAAT can be oxidized to give mixtures of N-oxide isomers (DAAT03.5) with an average oxygen content of about 3.5. This energetic mixture burns at extremely high rates and with low dependency on pressure. Another tetrazine compound of interest is 3,6-diguanidino-s-tetrazine(DGT) and its dinitrate and diperchlorate salts. DGT is easily synthesized by reacting BDT with guanidine in methanol. Using Caro's acid, DGT can be further oxidized to give 3,6-diguanidino-s-tetrazine-1,4-di-N-oxide (DGT-DO). Like DGT, the di-N-oxide can react with nitric acid or perchloric acid to give the dinitrate and the diperchlorate salts. The compounds, 4,4{prime}-diamino-3,3{prime}-azoxyfurazan (DAAF) and 4,4{prime}-diamino-3,3{prime}-azofurazan (DAAzF), may have important future roles in insensitive explosive applications. Neither DAAF nor DAAzF can be initiated by laboratory impact drop tests, yet both have in some aspects better explosive performances than 1,3,5-triamino-2,4,6-trinitrobenzene TATB - the standard of insensitive high explosives. The thermal stability of DAAzF is

  19. Microcantilever detector for explosives

    DOE Patents [OSTI]

    Thundat, Thomas G.

    1999-01-01

    Methods and apparatus for detecting the presence of explosives by analyzing a vapor sample from the suspect vicinity utilize at least one microcantilever. Explosive gas molecules which have been adsorbed onto the microcantilever are subsequently heated to cause combustion. Heat, along with momentum transfer from combustion, causes bending and a transient resonance response of the microcantilever which may be detected by a laser diode which is focused on the microcantilever and a photodetector which detects deflection of the reflected laser beam caused by heat-induced deflection and resonance response of the microcantilever.

  20. Microcantilever detector for explosives

    DOE Patents [OSTI]

    Thundat, T.G.

    1999-06-29

    Methods and apparatus for detecting the presence of explosives by analyzing a vapor sample from the suspect vicinity utilize at least one microcantilever. Explosive gas molecules which have been adsorbed onto the microcantilever are subsequently heated to cause combustion. Heat, along with momentum transfer from combustion, causes bending and a transient resonance response of the microcantilever which may be detected by a laser diode which is focused on the microcantilever and a photodetector which detects deflection of the reflected laser beam caused by heat-induced deflection and resonance response of the microcantilever. 2 figs.

  1. Nuclear Explosive Safety Evaluation Processes

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Manual provides supplemental details to support the nuclear explosive safety evaluation requirement of DOE O 452.2D, Nuclear Explosive Safety. Does not cancel other directives. Admin Chg 1, 7-10-13.

  2. Big Sky Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Big Sky Carbon Atlas is an online geoportal designed for you to discover, interpret, and access geospatial data and maps relevant to decision support and education on carbon sequestration in the Big Sky Region. In serving as the public face of the Partnership's spatial Data Libraries, the Atlas provides a gateway to geographic information characterizing CO2 sources, potential geologic sinks, terrestrial carbon fluxes, civil and energy infrastructure, energy use, and related themes. In addition to directly serving the BSCSP and its stakeholders, the Atlas feeds regional data to the NatCarb Portal, contributing to a national perspective on carbon sequestration. Established components of the Atlas include a gallery of thematic maps and an interactive map that allows you to: • Navigate and explore regional characterization data through a user-friendly interface • Print your map views or publish them as PDFs • Identify technical references relevant to specific areas of interest • Calculate straight-line or pipeline-constrained distances from point sources of CO2 to potential geologic sink features • Download regional data layers (feature under development) (Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

  3. Nuclear Explosive Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Department of Energy (DOE) Manual provides supplemental details on selected topics to support the requirements of DOE O 452.2D, Nuclear Explosive Safety, dated 4/14/09. Cancels DOE M 452.2-1. Admin Chg 1, dated 7-10-13, cancels DOE M 452.2-1A.

  4. explosives | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    explosives Meet a Machine: Explosive science is booming at Livermore Lab's Contained Firing Facility A key mission of the National Nuclear Security Administration is to maintain the safety, security, and effectiveness of the U.S. nuclear weapons stockpile without nuclear explosive testing. Data gathered from experiments at the Contained Firing Facility (CFF) help validate computer... NNSA Conducts Fifth Experiment aimed to Improve U.S. Ability to Detect Foreign Nuclear Explosions WASHINGTON,

  5. Hand held explosives detection system

    DOE Patents [OSTI]

    Conrad, Frank J.

    1992-01-01

    The present invention is directed to a sensitive hand-held explosives detection device capable of detecting the presence of extremely low quantities of high explosives molecules, and which is applicable to sampling vapors from personnel, baggage, cargo, etc., as part of an explosives detection system.

  6. Thermoelectric Bulk Materials from the Explosive Consolidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Bulk Materials from the Explosive Consolidation of Nanopowders Describes technique of explosively consolidating nanopowders to yield fully dense, consolidated, ...

  7. Explosive bulk charge

    SciTech Connect (OSTI)

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  8. Fun with Big Sky Learning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fun with Big Sky Learning Fun with Big Sky Learning WHEN: Mar 21, 2015 11:00 AM - 2:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, New Mexico, USA CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Big Sky Learning Event Description Bring your kids and teens to the museum for an afternoon of "maker-space" activities with Big Sky Learning. Participants will be able to: Build their own Shake Bot-a small simple robot that shakes-and take

  9. Radiography used to image thermal explosions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October » Radiography used to image thermal explosions Radiography used to image thermal explosions Researchers have gained an understanding of the mechanism of thermal explosions and have created a model capturing the stages of the explosion. October 9, 2012 Tabletop X-ray radiography of a thermal explosion. Tabletop X-ray radiography of a thermal explosion. Researchers have gained an understanding of the mechanism of thermal explosions and have created a model capturing the stages of the

  10. Boosting Big National Lab Data

    SciTech Connect (OSTI)

    Kleese van Dam, Kerstin

    2013-02-21

    Introduction: Big data. Love it or hate it, solving the worlds most intractable problems requires the ability to make sense of huge and complex sets of data and do it quickly. Speeding up the process from hours to minutes or from weeks to days is key to our success. One major source of such big data are physical experiments. As many will know, these physical experiments are commonly used to solve challenges in fields such as energy security, manufacturing, medicine, pharmacology, environmental protection and national security. Experiments use different instruments and sensor types to research for example the validity of new drugs, the base cause for diseases, more efficient energy sources, new materials for every day goods, effective methods for environmental cleanup, the optimal ingredients composition for chocolate or determine how to preserve valuable antics. This is done by experimentally determining the structure, properties and processes that govern biological systems, chemical processes and materials. The speed and quality at which we can acquire new insights from experiments directly influences the rate of scientific progress, industrial innovation and competitiveness. And gaining new groundbreaking insights, faster, is key to the economic success of our nations. Recent years have seen incredible advances in sensor technologies, from house size detector systems in large experiments such as the Large Hadron Collider and the Eye of Gaia billion pixel camera detector to high throughput genome sequencing. These developments have led to an exponential increase in data volumes, rates and variety produced by instruments used for experimental work. This increase is coinciding with a need to analyze the experimental results at the time they are collected. This speed is required to optimize the data taking and quality, and also to enable new adaptive experiments, where the sample is manipulated as it is observed, e.g. a substance is injected into a tissue

  11. Big Geysers Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Facility General Information Name Big Geysers Geothermal Facility Facility Big Geysers Sector Geothermal energy Location Information Location Clear Lake, California...

  12. Big Horn 2 | Open Energy Information

    Open Energy Info (EERE)

    2 Jump to: navigation, search Name Big Horn 2 Facility Big Horn 2 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables...

  13. Big Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel LLC Jump to: navigation, search Name: Big Biodiesel LLC Place: Pulaski, Tennessee Zip: 38478 Product: Biodiesel plant developer in Pulaski, Tennessee. References: Big...

  14. Big Data | OpenEI Community

    Open Energy Info (EERE)

    and Energy Efficiency. Links: Big Clean Data group on linkedin Big Data Concentrated Solar Power DataAnalysis energy efficiency energy storage expert systems machine learning...

  15. Tagging explosives with sulfur hexafluoride

    DOE Patents [OSTI]

    Dietz, Russell N.; Cote, Edgar A.; Vogel, William; Dempsey, John C.

    1976-11-16

    Method and apparatus for tagging explosives with a source of SF.sub.6 permitting the detection of their presence utilizing sensitive sniffing apparatus.

  16. Zirconium hydride containing explosive composition

    DOE Patents [OSTI]

    Walker, Franklin E.; Wasley, Richard J.

    1981-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising a non-explosive compound or mixture of non-explosive compounds which when subjected to an energy fluence of 1000 calories/cm.sup.2 or less is capable of releasing free radicals each having a molecular weight between 1 and 120. Exemplary donor additives are dibasic acids, polyamines and metal hydrides.

  17. Explosive scabbling of structural materials

    DOE Patents [OSTI]

    Bickes, Jr., Robert W.; Bonzon, Lloyd L.

    2002-01-01

    A new approach to scabbling of surfaces of structural materials is disclosed. A layer of mildly energetic explosive composition is applied to the surface to be scabbled. The explosive composition is then detonated, rubbleizing the surface. Explosive compositions used must sustain a detonation front along the surface to which it is applied and conform closely to the surface being scabbled. Suitable explosive compositions exist which are stable under handling, easy to apply, easy to transport, have limited toxicity, and can be reliably detonated using conventional techniques.

  18. Low voltage nonprimary explosive detonator

    DOE Patents [OSTI]

    Dinegar, Robert H.; Kirkham, John

    1982-01-01

    A low voltage, electrically actuated, nonprimary explosive detonator is disclosed wherein said detonation is achieved by means of an explosive train in which a deflagration-to-detonation transition is made to occur. The explosive train is confined within a cylindrical body and positioned adjacent to low voltage ignition means have electrical leads extending outwardly from the cylindrical confining body. Application of a low voltage current to the electrical leads ignites a self-sustained deflagration in a donor portion of the explosive train which then is made to undergo a transition to detonation further down the train.

  19. Internal Detonation Velocity Measurements Inside High Explosives

    SciTech Connect (OSTI)

    Benterou, J; Bennett, C V; Cole, G; Hare, D E; May, C; Udd, E

    2009-01-16

    In order to fully calibrate hydrocodes and dynamic chemistry burn models, initiation models and detonation models of high explosives, the ability to continuously measure the detonation velocity within an explosive is required. Progress on an embedded velocity diagnostic using a 125 micron diameter optical fiber containing a chirped fiber Bragg grating is reported. As the chirped fiber Bragg grating is consumed by the moving detonation wave, the physical length of the unconsumed Bragg grating is monitored with a fast InGaAs photodiode. Experimental details of the associated equipment and data in the form of continuous detonation velocity records within PBX-9502 are presented. This small diameter fiber sensor has the potential to measure internal detonation velocities on the order of 10 mm/{micro}sec along path lengths tens of millimeters long.

  20. Laser machining of explosives

    DOE Patents [OSTI]

    Perry, Michael D.; Stuart, Brent C.; Banks, Paul S.; Myers, Booth R.; Sefcik, Joseph A.

    2000-01-01

    The invention consists of a method for machining (cutting, drilling, sculpting) of explosives (e.g., TNT, TATB, PETN, RDX, etc.). By using pulses of a duration in the range of 5 femtoseconds to 50 picoseconds, extremely precise and rapid machining can be achieved with essentially no heat or shock affected zone. In this method, material is removed by a nonthermal mechanism. A combination of multiphoton and collisional ionization creates a critical density plasma in a time scale much shorter than electron kinetic energy is transferred to the lattice. The resulting plasma is far from thermal equilibrium. The material is in essence converted from its initial solid-state directly into a fully ionized plasma on a time scale too short for thermal equilibrium to be established with the lattice. As a result, there is negligible heat conduction beyond the region removed resulting in negligible thermal stress or shock to the material beyond a few microns from the laser machined surface. Hydrodynamic expansion of the plasma eliminates the need for any ancillary techniques to remove material and produces extremely high quality machined surfaces. There is no detonation or deflagration of the explosive in the process and the material which is removed is rendered inert.

  1. Big Bang or Big Bounce? Professor Paul J. Steinhardt Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bang or Big Bounce? Professor Paul J. Steinhardt Princeton University Wednesday, Oct 30, 2013 - 4:15PM MBG AUDITORIUM Refreshments at 4:00PM The PrinceTon Plasma Physics laboraTory...

  2. Nuclear Explosive Safety Evaluation Processes

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Manual provides supplemental details to support the nuclear explosive safety (NES) evaluation requirement of Department of Energy (DOE) Order (O) 452.2D, Nuclear Explosive Safety, dated 4/14/09. Admin Chg 1, dated 7-10-13, cancels DOE M 452.2-2.

  3. An Experimental Study Of Hydromagmatic Fragmentation Through...

    Open Energy Info (EERE)

    Experimental Study Of Hydromagmatic Fragmentation Through Energetic, Non-Explosive Magma-Water Mixing Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  4. The BigBOSS Experiment

    SciTech Connect (OSTI)

    Schelgel, D.; Abdalla, F.; Abraham, T.; Ahn, C.; Allende Prieto, C.; Annis, J.; Aubourg, E.; Azzaro, M.; Bailey, S.; Baltay, C.; Baugh, C.; ,

    2011-01-01

    BigBOSS will obtain observational constraints that will bear on three of the four 'science frontier' questions identified by the Astro2010 Cosmology and Fundamental Phyics Panel of the Decadal Survey: Why is the universe accelerating; what is dark matter and what are the properties of neutrinos? Indeed, the BigBOSS project was recommended for substantial immediate R and D support the PASAG report. The second highest ground-based priority from the Astro2010 Decadal Survey was the creation of a funding line within the NSF to support a 'Mid-Scale Innovations' program, and it used BigBOSS as a 'compelling' example for support. This choice was the result of the Decadal Survey's Program Priorization panels reviewing 29 mid-scale projects and recommending BigBOSS 'very highly'.

  5. Big Sol - Facilities - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big Savings on Outdoor Lighting Big Savings on Outdoor Lighting July 14, 2014 - 5:47pm Addthis Outdoor solar lights provide attractive lighting around your home's exterior and require little maintenance. | Photo courtesy of ©iStockphoto.com/ndejan Outdoor solar lights provide attractive lighting around your home's exterior and require little maintenance. | Photo courtesy of ©iStockphoto.com/ndejan Christina Stowers Communications Specialist in the Weatherization and Intergovernmental

  6. Supernova neutrinos and explosive nucleosynthesis

    SciTech Connect (OSTI)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J.; Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Mathews, G. J. [Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nakamura, K. [Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-05-09

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and ?{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on ?{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  7. Project: Modeling Relativistic Electrons from Nuclear Explosions...

    Office of Scientific and Technical Information (OSTI)

    Electrons from Nuclear Explosions in the Magnetosphere Citation Details In-Document Search Title: Project: Modeling Relativistic Electrons from Nuclear Explosions in the ...

  8. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-08-05

    The Order defines the Nuclear Explosive and Weapon Surety (NEWS) Program, which was established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

  9. Nuclear Explosion Monitoring Research and Engineering Program...

    Office of Scientific and Technical Information (OSTI)

    Program Document: Nuclear Explosion Monitoring Research and Engineering Program - Strategic Plan Citation Details In-Document Search Title: Nuclear Explosion Monitoring Research ...

  10. Detection of explosives in soils

    DOE Patents [OSTI]

    Chambers, William B.; Rodacy, Philip J.; Phelan, James M.; Woodfin, Ronald L.

    2002-01-01

    An apparatus and method for detecting explosive-indicating compounds in subsurface soil. The apparatus has a probe with an adsorbent material on some portion of its surface that can be placed into soil beneath the ground surface, where the adsorbent material can adsorb at least one explosive-indicating compound. The apparatus additional has the capability to desorb the explosive-indicating compound through heating or solvent extraction. A diagnostic instrument attached to the probe detects the desorbed explosive-indicating compound. In the method for detecting explosive-indicating compounds in soil, the sampling probe with an adsorbent material on at least some portion of a surface of the sampling probe is inserted into the soil to contact the adsorbent material with the soil. The explosive-indicating compounds are then desorbed and transferred as either a liquid or gas sample to a diagnostic tool for analysis. The resulting gas or liquid sample is analyzed using at least one diagnostic tool selected from the group consisting of an ion-mobility spectrometer, a gas chromatograph, a high performance liquid chromatograph, a capillary electrophoresis chromatograph, a mass spectrometer, a Fourier-transform infrared spectrometer and a Raman spectrometer to detect the presence of explosive-indicating compounds.

  11. Donor free radical explosive composition

    DOE Patents [OSTI]

    Walker, Franklin E. [15 Way Points Rd., Danville, CA 94526; Wasley, Richard J. [4290 Colgate Way, Livermore, CA 94550

    1980-04-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising an organic compound or mixture of organic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and which is not an explosive, or an inorganic compound or mixture of inorganic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and selected from ammonium or alkali metal persulfates.

  12. Light metal explosives and propellants

    DOE Patents [OSTI]

    Wood, Lowell L.; Ishikawa, Muriel Y.; Nuckolls, John H.; Pagoria, Phillip F.; Viecelli, James A.

    2005-04-05

    Disclosed herein are light metal explosives, pyrotechnics and propellants (LME&Ps) comprising a light metal component such as Li, B, Be or their hydrides or intermetallic compounds and alloys containing them and an oxidizer component containing a classic explosive, such as CL-20, or a non-explosive oxidizer, such as lithium perchlorate, or combinations thereof. LME&P formulations may have light metal particles and oxidizer particles ranging in size from 0.01 .mu.m to 1000 .mu.m.

  13. Explosive actuated valve

    DOE Patents [OSTI]

    Byrne, Kenneth G.

    1983-01-01

    1. A device of the character described comprising the combination of a housing having an elongate bore and including a shoulder extending inwardly into said bore, a single elongate movable plunger disposed in said bore including an outwardly extending flange adjacent one end thereof overlying said shoulder, normally open conduit means having an inlet and an outlet perpendicularly piercing said housing intermediate said shoulder and said flange and including an intermediate portion intersecting and normally openly communicating with said bore at said shoulder, normally closed conduit means piercing said housing and intersecting said bore at a location spaced from said normally open conduit means, said elongate plunger including a shearing edge adjacent the other end thereof normally disposed intermediate both of said conduit means and overlying a portion of said normally closed conduit means, a deformable member carried by said plunger intermediate said flange and said shoulder and normally spaced from and overlying the intermediate portion of said normally open conduit means, and means on the housing communicating with the bore to retain an explosive actuator for moving said plunger to force the deformable member against the shoulder and extrude a portion of the deformable member out of said bore into portions of the normally open conduit means for plugging the same and to effect the opening of said normally closed conduit means by the plunger shearing edge substantially concomitantly with the plugging of the normally open conduit means.

  14. Furball Explosive Breakout Test

    SciTech Connect (OSTI)

    Carroll, Joshua David

    2015-08-05

    For more than 30 years the Onionskin test has been the primary way to study the surface breakout of a detonation wave. Currently the Onionskin test allows for only a small, one dimensional, slice of the explosive in question to be observed. Asymmetrical features are not observable with the Onionskin test and its one dimensional view. As a result, in 2011, preliminary designs for the Hairball and Furball were developed then tested. The Hairball used shorting pins connected to an oscilloscope to determine the arrival time at 24 discrete points. This limited number of data points, caused by the limited number of oscilloscope channels, ultimately led to the Hairball’s demise. Following this, the Furball was developed to increase the number of data points collected. Instead of shorting pins the Furball uses fiber optics imaged by a streak camera to determine the detonation wave arrival time for each point. The original design was able to capture the detonation wave’s arrival time at 205 discrete points with the ability to increase the number of data points if necessary.

  15. Explosive plane-wave lens

    DOE Patents [OSTI]

    Marsh, S.P.

    1988-03-08

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.

  16. Explosive plane-wave lens

    DOE Patents [OSTI]

    Marsh, S.P.

    1987-03-12

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.

  17. The challenge of improvised explosives

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maienschein, Jon L.

    2012-06-14

    Energetic materials have been developed for decades, and indeed centuries, with a common set of goals in mind. Performance (as a detonating explosive, a propellant, or a pyrotechnic) has always been key, equally important have been the attributes of safety, stability, and reproducibility. Research and development with those goals has led to the set of energetic materials commonly used today. In the past few decades, the adoption and use of improvised explosives in attacks by terrorists or third-world parties has led to many questions about these materials, e.g., how they may be made, what threat they pose to the intendedmore » target, how to handle them safely, and how to detect them. The unfortunate advent of improvised explosives has opened the door for research into these materials, and there are active programs in many countries. I will discuss issues and opportunities facing research into improvised explosives.« less

  18. Explosive plane-wave lens

    DOE Patents [OSTI]

    Marsh, Stanley P. (Los Alamos, NM)

    1988-01-01

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive.

  19. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26

    All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Supersedes DOE O 452.1D.

  20. System for analysis of explosives

    DOE Patents [OSTI]

    Haas, Jeffrey S.

    2010-06-29

    A system for analysis of explosives. Samples are spotted on a thin layer chromatography plate. Multi-component explosives standards are spotted on the thin layer chromatography plate. The thin layer chromatography plate is dipped in a solvent mixture and chromatography is allowed to proceed. The thin layer chromatography plate is dipped in reagent 1. The thin layer chromatography plate is heated. The thin layer chromatography plate is dipped in reagent 2.

  1. Containment of explosions in spherical vessels

    SciTech Connect (OSTI)

    Duffey, T.A.; Greene, J.M. ); Baker, W.E. . Dept. of Mechanical Engineering); Lewis, B.B. )

    1992-01-01

    A correlation of the experimentally recorded dynamic response of a spherical containment vessel with theoretical finite element calculations is presented. Three experiments were performed on the 6-ft-diameter steel vessel using centrally located 12-lb. and 40-lb. high explosive charges. Pressure-time loading on the inner wall of the vessel was recorded for each test using pressure transducers. Resulting dynamic response of the vessel was recorded for each test using strain gages mounted at selected locations on the outer surface of the vessel. Response of the vessel was primarily elastic. A finite element model of the vessel was run using DYNA3D, a dynamic structural analysis code. Pressure loading for the finite element model was based on results from a one-dimensional reactive hydrodynamics code. Correlations between experiments and analysis were generally good for the tests for frequency and strain magnitude at most locations. Comparisons of experimental and calculated pressure-time histories were less satisfactory.

  2. Containment of explosions in spherical vessels

    SciTech Connect (OSTI)

    Duffey, T.A.; Greene, J.M.; Baker, W.E.; Lewis, B.B.

    1992-12-31

    A correlation of the experimentally recorded dynamic response of a spherical containment vessel with theoretical finite element calculations is presented. Three experiments were performed on the 6-ft-diameter steel vessel using centrally located 12-lb. and 40-lb. high explosive charges. Pressure-time loading on the inner wall of the vessel was recorded for each test using pressure transducers. Resulting dynamic response of the vessel was recorded for each test using strain gages mounted at selected locations on the outer surface of the vessel. Response of the vessel was primarily elastic. A finite element model of the vessel was run using DYNA3D, a dynamic structural analysis code. Pressure loading for the finite element model was based on results from a one-dimensional reactive hydrodynamics code. Correlations between experiments and analysis were generally good for the tests for frequency and strain magnitude at most locations. Comparisons of experimental and calculated pressure-time histories were less satisfactory.

  3. Big Brothers needed in Northern New Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big Brothers Big Sisters seeks to identify children who need the most support, including those living in single-parent homes, growing up in poverty or coping with parental ...

  4. big data | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    big data big-data.jpg Since the 1980s, the world's capacity to store information has roughly doubled every 40 months. Putting all that information to use through effective ...

  5. Big Things from Small Beginnings

    Broader source: Energy.gov [DOE]

    Slide Presentation given by D. Bullen on behalf of Peter S. Winokur, Ph.D., Chairman Defense Nuclear Facilities Safety Board; prepared by D. Bullen, D. Owen, J. MacSleyne, and D. Minnema. Big Things from Small Beginnings. How seemingly unimportant situations can lead to significant, undesirable events.

  6. Neutrinos' Instant Identity Changes Could Mean Big Things for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Neutrinos' Instant Identity Changes Could Mean Big Things for the Big Bang Neutrinos' Instant Identity Changes Could Mean Big Things for the Big Bang July 11, 2011 - 12:23pm ...

  7. Thermodynamic States in Explosion Fields

    SciTech Connect (OSTI)

    Kuhl, A L

    2009-10-16

    Here we investigate the thermodynamic states occurring in explosion fields from the detonation of condensed explosives in air. In typical applications, the pressure of expanded detonation products gases is modeled by a Jones-Wilkins-Lee (JWL) function: P{sub JWL} = f(v,s{sub CJ}); constants in that function are fit to cylinder test data. This function provides a specification of pressure as a function of specific volume, v, along the expansion isentrope (s = constant = s{sub CJ}) starting at the Chapman-Jouguet (CJ) state. However, the JWL function is not a fundamental equation of thermodynamics, and therefore gives an incomplete specification of states. For example, explosions inherently involve shock reflections from surfaces; this changes the entropy of the products, and in such situations the JWL function provides no information on the products states. In addition, most explosives are not oxygen balanced, so if hot detonation products mix with air, they after-burn, releasing the heat of reaction via a turbulent combustion process. This raises the temperature of explosion products cloud to the adiabatic flame temperature ({approx}3,000K). Again, the JWL function provides no information on the combustion products states.

  8. The BigBoss Experiment

    SciTech Connect (OSTI)

    Schelgel, D.; Abdalla, F.; Abraham, T.; Ahn, C.; Allende Prieto, C.; Annis, J.; Aubourg, E.; Azzaro, M.; Bailey, S.; Baltay, C.; Baugh, C.; Bebek, C.; Becerril, S.; Blanton, M.; Bolton, A.; Bromley, B.; Cahn, R.; Carton, P.-H.; Cervanted-Cota, J.L.; Chu, Y.; Cortes, M.; /APC, Paris /Brookhaven /IRFU, Saclay /Marseille, CPPM /Marseille, CPT /Durham U. / /IEU, Seoul /Fermilab /IAA, Granada /IAC, La Laguna / /IAC, Mexico / / /Madrid, IFT /Marseille, Lab. Astrophys. / / /New York U. /Valencia U.

    2012-06-07

    BigBOSS is a Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with a wide-area galaxy and quasar redshift survey over 14,000 square degrees. It has been conditionally accepted by NOAO in response to a call for major new instrumentation and a high-impact science program for the 4-m Mayall telescope at Kitt Peak. The BigBOSS instrument is a robotically-actuated, fiber-fed spectrograph capable of taking 5000 simultaneous spectra over a wavelength range from 340 nm to 1060 nm, with a resolution R = {lambda}/{Delta}{lambda} = 3000-4800. Using data from imaging surveys that are already underway, spectroscopic targets are selected that trace the underlying dark matter distribution. In particular, targets include luminous red galaxies (LRGs) up to z = 1.0, extending the BOSS LRG survey in both redshift and survey area. To probe the universe out to even higher redshift, BigBOSS will target bright [OII] emission line galaxies (ELGs) up to z = 1.7. In total, 20 million galaxy redshifts are obtained to measure the BAO feature, trace the matter power spectrum at smaller scales, and detect redshift space distortions. BigBOSS will provide additional constraints on early dark energy and on the curvature of the universe by measuring the Ly-alpha forest in the spectra of over 600,000 2.2 < z < 3.5 quasars. BigBOSS galaxy BAO measurements combined with an analysis of the broadband power, including the Ly-alpha forest in BigBOSS quasar spectra, achieves a FOM of 395 with Planck plus Stage III priors. This FOM is based on conservative assumptions for the analysis of broad band power (k{sub max} = 0.15), and could grow to over 600 if current work allows us to push the analysis to higher wave numbers (k{sub max} = 0.3). BigBOSS will also place constraints on theories of modified gravity and inflation, and will measure the sum of neutrino masses to 0.024 eV accuracy.

  9. The vapor pressures of explosives

    SciTech Connect (OSTI)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 C.

  10. Insensitive fuze train for high explosives

    DOE Patents [OSTI]

    Cutting, Jack L.; Lee, Ronald S.; Von Holle, William G.

    1994-01-01

    A generic insensitive fuze train to initiate insensitive high explosives, such as PBXW-124. The insensitive fuze train uses a slapper foil to initiate sub-gram quantities of an explosive, such as HNS-IV or PETN. This small amount of explosive drives a larger metal slapper onto a booster charge of an insensitive explosive, such as UF-TATB. The booster charge initiates a larger charge of an explosive, such as LX-17, which in turn, initiates the insensitive high explosive, such as PBXW-124.

  11. Insensitive fuze train for high explosives

    DOE Patents [OSTI]

    Cutting, J.L.; Lee, R.S.; Von Holle, W.G.

    1994-01-04

    A generic insensitive fuze train to initiate insensitive high explosives, such as PBXW-124 is described. The insensitive fuze train uses a slapper foil to initiate sub-gram quantities of an explosive, such as HNS-IV or PETN. This small amount of explosive drives a larger metal slapper onto a booster charge of an insensitive explosive, such as UF-TATB. The booster charge initiates a larger charge of an explosive, such as LX-17, which in turn, initiates the insensitive high explosive, such as PBXW-124. 3 figures.

  12. Big Bang Day : The Great Big Particle Adventure - 3. Origins

    ScienceCinema (OSTI)

    None

    2011-04-25

    In this series, comedian and physicist Ben Miller asks the CERN scientists what they hope to find. If the LHC is successful, it will explain the nature of the Universe around us in terms of a few simple ingredients and a few simple rules. But the Universe now was forged in a Big Bang where conditions were very different, and the rules were very different, and those early moments were crucial to determining how things turned out later. At the LHC they can recreate conditions as they were billionths of a second after the Big Bang, before atoms and nuclei existed. They can find out why matter and antimatter didn't mutually annihilate each other to leave behind a Universe of pure, brilliant light. And they can look into the very structure of space and time - the fabric of the Universe

  13. Sandia Explosive Inventory and Information System

    SciTech Connect (OSTI)

    Clements, D.A.

    1994-08-01

    The Explosive Inventory and Information System (EIS) is being developed and implemented by Sandia National Laboratories (SNL) to incorporate a cradle to grave structure for all explosives and explosive containing devices and assemblies at SNL from acquisition through use, storage, reapplication, transfer or disposal. The system does more than track all material inventories. It provides information on material composition, characteristics, shipping requirements; life cycle cost information, plan of use; and duration of ownership. The system also provides for following the processes of explosive development; storage review; justification for retention; Resource, Recovery and Disposition Account (RRDA); disassembly and assembly; and job description, hazard analysis and training requirements for all locations and employees involved with explosive operations. In addition, other information systems will be provided through the system such as the Department of Energy (DOE) and SNL Explosive Safety manuals, the Navy`s Department of Defense (DoD) Explosive information system, and the Lawrence Livermore National Laboratories (LLNL) Handbook of Explosives.

  14. Prompt detonation of secondary explosives by laser

    SciTech Connect (OSTI)

    Paisley, D.L.

    1989-01-01

    Secondary high explosives have been promptly detonated by directing a laser beam of various wavelengths from 266 nanometers to 1.06 micron on the surface of the explosives. For this paper ''prompt'' means the excess transit time through an explosive charge is /approximately/250 nanoseconds (or less) less than the accepted full detonation velocity time. Timing between laser pulse, explosive initiation and detonation velocity and function time have been recorded. The laser parameters studied include: wavelength, pulse length, energy and power density, and beam diameter (spot size). Explosives evaluated include: PETN, HNS, HMX, and graphited PETN, HNS, and HMX. Explosive parameters that have been correlated with optical parameters include: density, surface area, critical diameter (spot size), spectral characteristics and enhance absorption. Some explosives have been promptly detonated over the entire range of wavelengths, possibly by two competing initiating mechanisms. Other explosives could not be detonated at any of the wavelengths or power densities tested. 8 refs., 12 figs., 1 tab.

  15. Measuring explosive non-ideality

    SciTech Connect (OSTI)

    Souers, P C

    1999-02-17

    The sonic reaction zone length may be measured by four methods: (1) size effect, (2) detonation front curvature, (3) crystal interface velocity and (4) in-situ gauges. The amount of data decreases exponentially from (1) to (4) with there being almost no gauge data for prompt detonation at steady state. The ease and clarity of obtaining the reaction zone length increases from (1) to (4). The method of getting the reaction zone length, , is described for the four methods. A measure of non-ideality is proposed: the reaction zone length divided by the cylinder radius. N = /R{sub o}. N = 0 for true ideality. It also decreases with increasing radius as it should. For N < 0.10, an equilibrium EOS like the JWL may be used. For N > 0.10, a time-dependent description is essential. The crystal experiment, which measures the particle velocity of an explosive-transparent material interface, is presently rising in importance. We examine the data from three experiments and apply: (1) an impedance correction that transfers the explosive C-J particle velocity to the corresponding value for the interface, and (2) multiplies the interface time by 3/4 to simulate the explosive speed of sound. The result is a reaction zone length comparable to those obtained by other means. A few explosives have reaction zones so small that the change of slope in the particle velocity is easily seen.

  16. Turbulent Combustion in SDF Explosions

    SciTech Connect (OSTI)

    Kuhl, A L; Bell, J B; Beckner, V E

    2009-11-12

    A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the C-4 booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a an unconfined height-of-burst explosion. Computed pressure histories are compared with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.

  17. Lead-free primary explosives

    DOE Patents [OSTI]

    Huynh, My Hang V.

    2010-06-22

    Lead-free primary explosives of the formula (cat).sub.Y[M.sup.II(T).sub.X(H.sub.2O).sub.6-X].sub.Z, where T is 5-nitrotetrazolate, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  18. Removing High Explosives from Groundwater

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. – In an initiative supported by EM, Los Alamos National Laboratory’s Corrective Actions Program is addressing high explosive contamination in surface water and groundwater at a location this summer in the forests surrounding the laboratory.

  19. Safety of Nuclear Explosive Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-08-07

    This directive establishes responsibilities and requirements to ensure the safety of routine and planned nuclear explosive operations and associated activities and facilities. Cancels DOE O 452.2A and DOE G 452.2A-1A. Canceled by DOE O 452.2C.

  20. COLLOQUIUM: Seeing the Big Bang More Clearly: The Evolution of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observational Techniques in CMB Studies | Princeton Plasma Physics Lab October 28, 2015, 4:00pm to 5:30pm Colloquia MBG AUDITORIUM COLLOQUIUM: Seeing the Big Bang More Clearly: The Evolution of Observational Techniques in CMB Studies Professor Bruce Partridge Haverford College Since 2015 marks the fiftieth anniversary of the discovery of the cosmic microwave background (CMB), I will begin by analyzing the very early experiments that established the properties of the CMB. What experimental

  1. High Explosives Application Facility | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) High Explosives Application Facility A Livermore scientist uses a laser spectroscopic method with a diamond anvil DOE/NNSA has identified LLNL's High Explosives Applications Facility (HEAF) as the complex-wide "Center of Excellence" for High-Explosives Research and Development. In this capacity, HEAF is a source of subject matter expertise for high explosives and other energetic materials. Its mission is to provide this expertise to serve multiple government

  2. Investigation on the Interface Morphologies of Explosive Welding of Inconel 625 to Steel A516 Plates

    SciTech Connect (OSTI)

    Mousavi, S. A. A. Akbari; Zareie, H. R.

    2011-01-17

    The purpose of this study is to produce composite plates by explosive cladding process. This is a process in which the controlled energy of explosives is used to create a metallic bond between two similar or dissimilar materials. The welding conditions were tailored through parallel geometry route with different operational parameters. In this investigation, a two-pronged study was adopted to establish the conditions required for producing successful solid state welding: (a) Analytical calculations to determine the weldability domain or welding window; (b) Metallurgical investigations of explosive welding experiments carried out under different explosive ratios to produce both wavy and straight interfaces. The analytical calculations confirm the experimental results. Optical microscopy studies show that a transition from a smooth to wavy interface occurs with an increase in explosive ratio. SEM studies show that the interface was outlined by characteristic sharp transition between two materials.

  3. Thermally stable, plastic-bonded explosives

    DOE Patents [OSTI]

    Benziger, Theodore M.

    1979-01-01

    By use of an appropriate thermoplastic rubber as the binder, the thermal stability and thermal stress characteristics of plastic-bonded explosives may be greatly improved. In particular, an HMX-based explosive composition using an oil-extended styrene-ethylenebutylene-styrene block copolymer as the binder exhibits high explosive energy and thermal stability and good handling safety and physical properties.

  4. high explosives | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    high explosives NNSA honors Pantex explosives experts A group of explosives experts have been honored with a Defense Programs Award of Excellence for their help in securing supply of a critical material for the Departments of Energy and Defense. The four Pantexans, Tod Botcher, Tony Dutton, Ken Franklin and Kathy Mitchell, played a leadership role in

  5. The use of MAVIS II to integrate the modeling and analysis of explosive valve interactions

    SciTech Connect (OSTI)

    Ng, R.; Kwon, D.M.

    1998-12-31

    The MAVIS II computer program provides for the modeling and analysis of explosive valve interactions. This report describes the individual components of the program and how MAVIS II is used with other available tools to integrate the design and understanding of explosive valves. The rationale and model used for each valve interaction is described. Comparisons of the calculated results with available data have demonstrated the feasibility and accuracy of using MAVIS II for analytical studies of explosive valve interactions. The model used for the explosive or pyrotechnic used as the driving force in explosive valves is the most critical to be understood and modeled. MAVIS II is an advanced version that incorporates a plastic, as well as elastic, modeling of the deformations experienced when plungers are forced into a bore. The inclusion of a plastic model has greatly expanded the use of MAVIS for all categories (opening, closure, or combined) of valves, especially for the closure valves in which the sealing operation requires the plastic deformation of either a plunger or bore over a relatively large area. In order to increase its effectiveness, the use of MAVIS II should be integrated with the results from available experimental hardware. Test hardware such as the Velocity Interferometer System for Any Reflector (VISAR) and Velocity Generator test provide experimental data for accurate comparison of the actual valve functions. Variable Explosive Chamber (VEC) and Constant Explosive Volume (CEV) tests are used to provide the proper explosive equation-of-state for the MAVIS calculations of the explosive driving forces. The rationale and logistics of this integration is demonstrated through an example. A recent valve design is used to demonstrate how MAVIS II can be integrated with experimental tools to provide an understanding of the interactions in this valve.

  6. Spot test kit for explosives detection

    DOE Patents [OSTI]

    Pagoria, Philip F; Whipple, Richard E; Nunes, Peter J; Eckels, Joel Del; Reynolds, John G; Miles, Robin R; Chiarappa-Zucca, Marina L

    2014-03-11

    An explosion tester system comprising a body, a lateral flow membrane swab unit adapted to be removeably connected to the body, a first explosives detecting reagent, a first reagent holder and dispenser operatively connected to the body, the first reagent holder and dispenser containing the first explosives detecting reagent and positioned to deliver the first explosives detecting reagent to the lateral flow membrane swab unit when the lateral flow membrane swab unit is connected to the body, a second explosives detecting reagent, and a second reagent holder and dispenser operatively connected to the body, the second reagent holder and dispenser containing the second explosives detecting reagent and positioned to deliver the second explosives detecting reagent to the lateral flow membrane swab unit when the lateral flow membrane swab unit is connected to the body.

  7. Hazards of explosives dusts: Particle size effects

    SciTech Connect (OSTI)

    Cashdollar, K L; Hertzberg, M; Green, G M

    1992-02-01

    At the request of the Department of Energy, the Bureau of Mines has investigated the hazards of military explosives dispersed as dust clouds in a 20-L test chamber. In this report, the effect of particle size for HMX, HNS, RDX, TATB, and TNT explosives dusts is studied in detail. The explosibility data for these dusts are also compared to those for pure fuel dusts. The data show that all of the sizes of the explosives dusts that were studied were capable of sustaining explosions as dust clouds dispersed in air. The finest sizes (<10 [mu]m) of explosives dusts were less reactive than the intermediate sizes (20 to 60 [mu]m); this is opposite to the particle size effect observed previously for the pure fuel dusts. At the largest sizes studied, the explosives dusts become somewhat less reactive as dispersed dust clouds. The six sizes of the HMX dust were also studied as dust clouds dispersed in nitrogen.

  8. Stellar explosions, instabilities, and turbulence

    SciTech Connect (OSTI)

    Drake, R. P.; Kuranz, C. C.; Miles, A. R.; Muthsam, H. J.; Plewa, T.

    2009-04-15

    It has become very clear that the evolution of structure during supernovae is centrally dependent on the pre-existing structure in the star. Modeling of the pre-existing structure has advanced significantly, leading to improved understanding and to a physically based assessment of the structure that will be present when a star explodes. It remains an open question whether low-mode asymmetries in the explosion process can produce the observed effects or whether the explosion mechanism somehow produces jets of material. In any event, the workhorse processes that produce structure in an exploding star are blast-wave driven instabilities. Laboratory experiments have explored these blast-wave-driven instabilities and specifically their dependence on initial conditions. Theoretical work has shown that the relative importance of Richtmyer-Meshkov and Rayleigh-Taylor instabilities varies with the initial conditions and does so in ways that can make sense of a range of astrophysical observations.

  9. Printable sensors for explosive detonation

    SciTech Connect (OSTI)

    Griffith, Matthew J. Cooling, Nathan A.; Elkington, Daniel C.; Belcher, Warwick J.; Dastoor, Paul C.; Muller, Elmar

    2014-10-06

    Here, we report the development of an organic thin film transistor (OTFT) based on printable solution processed polymers and employing a quantum tunnelling composite material as a sensor to convert the pressure wave output from detonation transmission tubing (shock tube) into an inherently amplified electronic signal for explosives initiation. The organic electronic detector allows detection of the signal in a low voltage operating range, an essential feature for sites employing live ordinances that is not provided by conventional electronic devices. We show that a 30-fold change in detector response is possible using the presented detector assembly. Degradation of the OTFT response with both time and repeated voltage scans was characterised, and device lifetime is shown to be consistent with the requirements for on-site printing and usage. The integration of a low cost organic electronic detector with inexpensive shock tube transmission fuse presents attractive avenues for the development of cheap and simple assemblies for precisely timed initiation of explosive chains.

  10. Explosives detection system and method

    DOE Patents [OSTI]

    Reber, Edward L.; Jewell, James K.; Rohde, Kenneth W.; Seabury, Edward H.; Blackwood, Larry G.; Edwards, Andrew J.; Derr, Kurt W.

    2007-12-11

    A method of detecting explosives in a vehicle includes providing a first rack on one side of the vehicle, the rack including a neutron generator and a plurality of gamma ray detectors; providing a second rack on another side of the vehicle, the second rack including a neutron generator and a plurality of gamma ray detectors; providing a control system, remote from the first and second racks, coupled to the neutron generators and gamma ray detectors; using the control system, causing the neutron generators to generate neutrons; and performing gamma ray spectroscopy on spectra read by the gamma ray detectors to look for a signature indicative of presence of an explosive. Various apparatus and other methods are also provided.

  11. Big Machines and Big Science: 80 Years of Accelerators at Stanford

    SciTech Connect (OSTI)

    Loew, Gregory

    2008-12-16

    Longtime SLAC physicist Greg Loew will present a trip through SLAC's origins, highlighting its scientific achievements, and provide a glimpse of the lab's future in 'Big Machines and Big Science: 80 Years of Accelerators at Stanford.'

  12. Explosive Formulation Code Naming SOP

    SciTech Connect (OSTI)

    Martz, H. E.

    2014-09-19

    The purpose of this SOP is to provide a procedure for giving individual HME formulations code names. A code name for an individual HME formulation consists of an explosive family code, given by the classified guide, followed by a dash, -, and a number. If the formulation requires preparation such as packing or aging, these add additional groups of symbols to the X-ray specimen name.

  13. Yushu Yao Big Data @ NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yao Big Data @ NERSC - Data sharing and analytic Services Yushu Y ao --- 2 --- Uses of Data at NERSC Experiment Computer S imula6on Store Analyze Share * Data c omes t o ( or g enerated a t) N ERSC f rom A pparatus o r Computer S imula;ons * Three T hings P eople D o: Store/Share/Analyze Data At NERSC --- 3 --- Yushu Y ao Store/Share/Analyze Data At NERSC --- 4 --- Yushu Y ao Science Gateway GPFS HPSS Science Gateway Services --- 5 --- Yushu Y ao * Publish d ata o n t he w eb - Create a w ww d

  14. Thermodynamic States in Explosion Fields

    SciTech Connect (OSTI)

    Kuhl, A L

    2010-03-12

    We investigate the thermodynamic states occurring in explosion fields from condensed explosive charges. These states are often modeled with a Jones-Wilkins-Lee (JWL) function. However, the JWL function is not a Fundamental Equation of Thermodynamics, and therefore cannot give a complete specification of such states. We use the Cheetah code of Fried to study the loci of states of the expanded detonation products gases from C-4 charges, and their combustion products air. In the Le Chatelier Plane of specific-internal-energy versus temperature, these loci are fit with a Quadratic Model function u(T), which has been shown to be valid for T < 3,000 K and p < 1k-bar. This model is used to derive a Fundamental Equation u(v,s) for C-4. Given u(v,s), one can use Maxwell's Relations to derive all other thermodynamic functions, such as temperature: T(v,s), pressure: p(v,s), enthalpy: h(v,s), Gibbs free energy: g(v,s) and Helmholz free energy: f(v,s); these loci are displayed in figures for C-4. Such complete equations of state are needed for numerical simulations of blast waves from explosive charges, and their reflections from surfaces.

  15. Big Rivers Electric Corp | Open Energy Information

    Open Energy Info (EERE)

    (270) 827-2561 Website: www.bigrivers.com Facebook: https:www.facebook.compagesBig-Rivers-Electric-Corporation142180855818082?rf154289971250771 Outage Hotline: (270)...

  16. Big River Resources LLC | Open Energy Information

    Open Energy Info (EERE)

    Resources LLC Jump to: navigation, search Name: Big River Resources LLC Place: West Burlington, Iowa Zip: 52655 Product: Dry-mill bioethanol producer with a cooperative structure....

  17. Big Tree Climate Fund | Open Energy Information

    Open Energy Info (EERE)

    Big Tree Climate Fund Place: Boulder, Colorado Zip: 80307 Sector: Carbon Product: Finances clean energy and carbon reduction projects through customers who buy RECs and VERs...

  18. Traffic information computing platform for big data

    SciTech Connect (OSTI)

    Duan, Zongtao Li, Ying Zheng, Xibin Liu, Yan Dai, Jiting Kang, Jun

    2014-10-06

    Big data environment create data conditions for improving the quality of traffic information service. The target of this article is to construct a traffic information computing platform for big data environment. Through in-depth analysis the connotation and technology characteristics of big data and traffic information service, a distributed traffic atomic information computing platform architecture is proposed. Under the big data environment, this type of traffic atomic information computing architecture helps to guarantee the traffic safety and efficient operation, more intelligent and personalized traffic information service can be used for the traffic information users.

  19. OpenEI Community - Big Data

    Open Energy Info (EERE)

    groupbig-clean-data" target"blank">read more

    Big Data Concentrated Solar Power DataAnalysis energy efficiency energy storage expert systems machine learning...

  20. GeorgeBIG.jpg | OSTI, US Dept of Energy Office of Scientific and Technical

    Office of Scientific and Technical Information (OSTI)

    Information GeorgeBIG

  1. Electromagnetic Effects in SDF Explosions

    SciTech Connect (OSTI)

    Reichenbach, H; Neuwald, P; Kuhl, A L

    2010-02-12

    The notion of high ion and electron concentrations in the detonation of aluminized explosive mixtures has aroused some interest in electro-magnetic effects that the SDF charges might generate when detonated. Motivated by this interest we have started to investigate whether significant electro-magnetic effects show up in our small-scale experiments. However, the design of instrumentation for this purpose is far from straightforward, since there are a number of open questions. Thus the main aim of the feasibility tests is to find - if possible - a simple and reliable method that can be used as a diagnostic tool for electro-magnetic effects. SDF charges with a 0.5-g PETN booster and a filling of 1 g aluminum flakes have been investigated in three barometric bomb calorimeters with volumes ranging from 6.3 l to of 6.6 l. Though similar in volume, the barometric bombs differed in the length-to-diameter ratio. The tests were carried out with the bombs filled with either air or nitrogen at ambient pressure. The comparison of the test in air to those in nitrogen shows that the combustion of TNT detonation products or aluminum generates a substantial increase of the quasi-steady overpressure in the bombs. Repeated tests in the same configuration resulted in some scatter of the experimental results. The most likely reason is that the aluminum combustion in most or all cases is incomplete and that the amount of aluminum actually burned varies from test to test. The mass fraction burned apparently decreases with increasing aspect ratio L/D. Thus an L/D-ratio of about 1 is optimal for the performance of shock-dispersed-fuel combustion. However, at an L/D-ratio of about 5 the combustion still yields appreciable overpressure in excess of the detonation. For a multi-burst scenario in a tunnel environment with a number of SDF charges distributed along a tunnel section a spacing of 5 tunnel diameter and a fuel-specific volume of around 7 l/g might provide an acceptable compromise

  2. Data base of chemical explosions in Kazakhstan

    SciTech Connect (OSTI)

    Demin, V.N.; Malahova, M.N.; Martysevich, P.N.; Mihaylova, N.N.; Nurmagambetov, A.; Kopnichev, Yu.F. D.; Edomin, V.I.

    1996-12-01

    Within the bounds of this report, the following works were done: (1) Information about explosion quarries, located in Southern, Eastern and Northern Kasakstan was summarized. (2) The general information about seismicity of areas of location of explosion quarries was adduced. (3) The system of observation and seismic apparatus, recording the local earthquakes and quarry explosions at the territory of Kazakstan were described. (4) Data base of quarry explosions, that were carried out in Southern, Eastern and Northern Kazakstan during 1995 and first half of 1996 year was adduced. (5) Upon the data of registration of explosions in Southern Kazakstan the correlative dependences between power class of explosions and summary weight of charge were constructed. (6) Seismic records of quarry explosions were adduced. It is necessary to note, that the collection of data about quarry explosions in Kazakstan in present time is very difficult task. Organizations, that makes these explosions, are always suffering reorganizations and sometimes it is actually impossible to receive all the necessary information. Some quarries are situated in remote, almost inaccessible regions, and within the bounds of supplier financing not the every quarry was in success to visit. So the present data base upon the chemical explosions for 1995 is not full and in further it`s expansion is possible.

  3. Uncovering the mysteries of cosmic explosions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for scarce resources such as observing time on large telescopes. We are developing new machine learning technology that will allow us to tackle these big data challenges."...

  4. Prototype explosives-detection system based on nuclear-resonance absorption in nitrogen

    SciTech Connect (OSTI)

    Morgado, R.E.; Arnone, G.; Cappiello, C.C.; Gardner, S.D.; Hollas, C.L.; Ussery, L.E.; White, J.M.; Zahrt, J.D.; Krauss, R.A.

    1994-06-01

    A prototype explosives-detection system (EDS) that was developed for experimental evaluation of a nuclear-resonance absorption technique is described. The major subsystems are a proton accelerator and beam transport, high-temperature proton target, an airline-luggage tomographic inspection station, and an image-processing/detection-alarm subsystem. The detection system performance, based on a limited experimental test, is reported.

  5. In Defense of the National Labs and Big-Budget Science

    SciTech Connect (OSTI)

    Goodwin, J R

    2008-07-29

    (LHC) at CERN, and the International Tokamak Experimental Reactor (ITER) in Cadarache, France, a magnetic-confinement fusion research project. The postWWII histories of particle and fusion physics contain remarkable examples of both international competition, with an emphasis on secrecy, and international cooperation, with an emphasis on shared knowledge and resources. Initiatives to share sometimes came from surprising directions. Most large-scale scientific projects have potential defense applications. NIF certainly does; it is primarily designed to create small-scale fusion explosions. Blue Gene/L operates in part in service to NIF, and in part to various defense projects. The most important defense projects include stewardship of the national nuclear weapons stockpile, and the proposed redesign and replacement of those weapons with fewer, safer, more reliable, longer-lived, and less apocalyptic warheads. Many well-meaning people will consider the optimal lifetime of a nuclear weapon to be zero, but most thoughtful people, when asked how much longer they think this nation will require them, will ask for some time to think. NIF is also designed to create exothermic small-scale fusion explosions. The malapropos 'exothermic' here is a convenience to cover a profusion of complexities, but the basic idea is that the explosions will create more recoverable energy than was used to create them. One can hope that the primary future benefits of success for NIF will be in cost-effective generation of electrical power through controlled small-scale fusion reactions, rather than in improved large-scale fusion explosions. Blue Gene/L also services climate research, genomic research, materials research, and a myriad of other computational problems that become more feasible, reliable, and precise the larger the number of computational nodes employed. Blue Gene/L has to be sited within a security complex for obvious reasons, but its value extends to the nation and the world. There

  6. Shock Initiation of Damaged Explosives

    SciTech Connect (OSTI)

    Chidester, S K; Vandersall, K S; Tarver, C M

    2009-10-22

    Explosive and propellant charges are subjected to various mechanical and thermal insults that can increase their sensitivity over the course of their lifetimes. To quantify this effect, shock initiation experiments were performed on mechanically and thermally damaged LX-04 (85% HMX, 15% Viton by weight) and PBX 9502 (95% TATB, 5% Kel-F by weight) to obtain in-situ manganin pressure gauge data and run distances to detonation at various shock pressures. We report the behavior of the HMX-based explosive LX-04 that was damaged mechanically by applying a compressive load of 600 psi for 20,000 cycles, thus creating many small narrow cracks, or by cutting wedge shaped parts that were then loosely reassembled, thus creating a few large cracks. The thermally damaged LX-04 charges were heated to 190 C for long enough for the beta to delta solid - solid phase transition to occur, and then cooled to ambient temperature. Mechanically damaged LX-04 exhibited only slightly increased shock sensitivity, while thermally damaged LX-04 was much more shock sensitive. Similarly, the insensitive explosive PBX 9502 was mechanically damaged using the same two techniques. Since PBX 9502 does not undergo a solid - solid phase transition but does undergo irreversible or 'rachet' growth when thermally cycled, thermal damage to PBX 9502 was induced by this procedure. As for LX-04, the thermally damaged PBX 9502 demonstrated a greater shock sensitivity than mechanically damaged PBX 9502. The Ignition and Growth reactive flow model calculated the increased sensitivities by igniting more damaged LX-04 and PBX 9502 near the shock front based on the measured densities (porosities) of the damaged charges.

  7. Explosives performance key to stockpile stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives performance key to stockpile stewardship Explosives performance key to stockpile stewardship A new video shows how researchers use scientific guns to induce shock waves into explosive materials to study their performance and properties. November 3, 2014 Adam Pacheco of shock and detonation physics presses the "fire" button during an experiment at the two-stage gas gun facility. Adam Pacheco of shock and detonation physics presses the "fire" button during an

  8. Air Activation Following an Atmospheric Explosion

    SciTech Connect (OSTI)

    Lowrey, Justin D.; McIntyre, Justin I.; Prichard, Andrew W.; Gesh, Christopher J.

    2013-03-13

    In addition to thermal radiation and fission products, nuclear explosions result in a very high flux of unfissioned neutrons. Within an atmospheric nuclear explosion, these neutrons can activate the various elemental components of natural air, potentially adding to the radioactive signature of the event as a whole. The goal of this work is to make an order-of-magnitude estimate of the total amount of air activation products that can result from an atmospheric nuclear explosion.

  9. Explosives performance key to stockpile stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives performance key to stockpile stewardship Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Explosives performance key to stockpile stewardship A new video shows how researchers use scientific guns to induce shock waves into explosive materials to study their performance and properties January 1, 2015 Adam Pacheco of shock and detonation physics presses the "fire" button during an experiment at the

  10. Wireless sensor for detecting explosive material

    DOE Patents [OSTI]

    Lamberti, Vincent E; Howell, Jr., Layton N; Mee, David K; Sepaniak, Michael J

    2014-10-28

    Disclosed is a sensor for detecting explosive devices. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon absorption of vapor from an explosive material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The explosive device is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.

  11. Nuclear Explosive Safety Study Process

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3015-2001 February 2001 Superseding DOE-STD-3015-97 January 1997 DOE STANDARD NUCLEAR EXPLOSIVE SAFETY STUDY PROCESS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from

  12. The Explosives Center at Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    goals are to integrate and advance the Laboratory's explosives capabilities for the modern nuclear weapons mission and a range of national security challenges. Since its...

  13. high explosives pressing facility | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    pressing facility high explosives pressing facility Thornberry hosts House Majority Leader at Pantex visit Rep. Mac Thornberry, R-Texas, hosted Majority Leader Kevin McCarthy,...

  14. Method and apparatus for detecting explosives

    DOE Patents [OSTI]

    Moore, David Steven

    2011-05-10

    A method and apparatus is provided for detecting explosives by thermal imaging. The explosive material is subjected to a high energy wave which can be either a sound wave or an electromagnetic wave which will initiate a chemical reaction in the explosive material which chemical reaction will produce heat. The heat is then sensed by a thermal imaging device which will provide a signal to a computing device which will alert a user of the apparatus to the possibility of an explosive device being present.

  15. Big Mysteries: The Higgs Mass

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-06-03

    With the discovery of what looks to be the Higgs boson, LHC researchers are turning their attention to the next big question, which is the predicted mass of the newly discovered particles. When the effects of quantum mechanics is taken into account, the mass of the Higgs boson should be incredibly high...perhaps upwards of a quadrillion times higher than what was observed. In this video, Fermilab's Dr. Don Lincoln explains how it is that the theory predicts that the mass is so large and gives at least one possible theoretical idea that might solve the problem. Whether the proposed idea is the answer or not, this question must be answered by experiments at the LHC or today's entire theoretical paradigm could be in jeopardy.

  16. Big Mysteries: The Higgs Mass

    SciTech Connect (OSTI)

    Lincoln, Don

    2014-04-28

    With the discovery of what looks to be the Higgs boson, LHC researchers are turning their attention to the next big question, which is the predicted mass of the newly discovered particles. When the effects of quantum mechanics is taken into account, the mass of the Higgs boson should be incredibly high...perhaps upwards of a quadrillion times higher than what was observed. In this video, Fermilab's Dr. Don Lincoln explains how it is that the theory predicts that the mass is so large and gives at least one possible theoretical idea that might solve the problem. Whether the proposed idea is the answer or not, this question must be answered by experiments at the LHC or today's entire theoretical paradigm could be in jeopardy.

  17. Astrophysical S-factor for destructive reactions of lithium-7 in big bang nucleosynthesis

    SciTech Connect (OSTI)

    Komatsubara, Tetsuro; Kwon, YoungKwan; Moon, JunYoung; Kim, Yong-Kyun; Moon, Chang-Bum; Ozawa, Akira; Sasa, Kimikazu; Onishi, Takahiro; Yuasa, Toshiaki; Okada, Shunsuke; Saito, Yuta; Hayakawa, Takehito; Shizuma, Toshiyuki; Kubono, Shigeru; Kusakabe, Motohiko; Kajino, Toshitaka

    2014-05-02

    One of the most prominent success with the Big Bang models is the precise reproduction of mass abundance ratio for {sup 4}He. In spite of the success, abundances of lithium isotopes are still inconsistent between observations and their calculated results, which is known as lithium abundance problem. Since the calculations were based on the experimental reaction data together with theoretical estimations, more precise experimental measurements may improve the knowledge of the Big Bang nucleosynthesis. As one of the destruction process of lithium-7, we have performed measurements for the reaction cross sections of the {sup 7}L({sup 3}He,p){sup 9}Be reaction.

  18. Theoretical and computer models of detonation in solid explosives

    SciTech Connect (OSTI)

    Tarver, C.M.; Urtiew, P.A.

    1997-10-01

    Recent experimental and theoretical advances in understanding energy transfer and chemical kinetics have led to improved models of detonation waves in solid explosives. The Nonequilibrium Zeldovich - von Neumann - Doring (NEZND) model is supported by picosecond laser experiments and molecular dynamics simulations of the multiphonon up-pumping and internal vibrational energy redistribution (IVR) processes by which the unreacted explosive molecules are excited to the transition state(s) preceding reaction behind the leading shock front(s). High temperature, high density transition state theory calculates the induction times measured by laser interferometric techniques. Exothermic chain reactions form product gases in highly excited vibrational states, which have been demonstrated to rapidly equilibrate via supercollisions. Embedded gauge and Fabry-Perot techniques measure the rates of reaction product expansion as thermal and chemical equilibrium is approached. Detonation reaction zone lengths in carbon-rich condensed phase explosives depend on the relatively slow formation of solid graphite or diamond. The Ignition and Growth reactive flow model based on pressure dependent reaction rates and Jones-Wilkins-Lee (JWL) equations of state has reproduced this nanosecond time resolved experimental data and thus has yielded accurate average reaction zone descriptions in one-, two- and three- dimensional hydrodynamic code calculations. The next generation reactive flow model requires improved equations of state and temperature dependent chemical kinetics. Such a model is being developed for the ALE3D hydrodynamic code, in which heat transfer and Arrhenius kinetics are intimately linked to the hydrodynamics.

  19. Quark mass variation constraints from Big Bang nucleosynthesis...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Quark mass variation constraints from Big Bang nucleosynthesis Citation Details In-Document Search Title: Quark mass variation constraints from Big Bang ...

  20. Big Sky Carbon Sequestration Partnership | Open Energy Information

    Open Energy Info (EERE)

    Carbon Sequestration Partnership Jump to: navigation, search Logo: Big Sky Carbon Sequestration Partnership Name: Big Sky Carbon Sequestration Partnership Address: 2327 University...

  1. Big Daddy s Biodiesel Inc | Open Energy Information

    Open Energy Info (EERE)

    Daddy s Biodiesel Inc Jump to: navigation, search Name: Big Daddy's Biodiesel Inc Place: Hereford, Texas Zip: 79045 Product: Biodiesel producer in Hereford, Texas. References: Big...

  2. Big Bend Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Big Bend Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Big Bend Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  3. Big Bend Preventorium Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Big Bend Preventorium Greenhouse Low Temperature Geothermal Facility Facility Big Bend...

  4. Big Creek Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Big Creek Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Big Creek Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  5. Biomass Investment Group Inc BIG | Open Energy Information

    Open Energy Info (EERE)

    Investment Group Inc BIG Jump to: navigation, search Name: Biomass Investment Group Inc (BIG) Place: Asheville, North Carolina Zip: 28806 Sector: Biomass Product: Developing...

  6. LANL Deliverable to the Big Sky Carbon Sequestration Partnership...

    Office of Scientific and Technical Information (OSTI)

    to the Big Sky Carbon Sequestration Partnership: Preliminary CO2-PENS model Citation Details In-Document Search Title: LANL Deliverable to the Big Sky Carbon Sequestration ...

  7. Nuclear Explosive Safety Study Functional Area Qualification Standard

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-27

    A Nuclear Explosive Safety Study (NESS) is performed on all DOE Nuclear Explosive Operations (NEOs) in accordance with DOE O 452.1D, Nuclear Explosive and Weapon Surety Program; DOE O 452.2D, Nuclear Explosive Safety; and DOE M 452.2-2, Nuclear Explosive Safety Evaluation Processes.

  8. High temperature two component explosive

    DOE Patents [OSTI]

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  9. Explosive double salts and preparation

    DOE Patents [OSTI]

    Cady, Howard H.; Lee, Kien-yin

    1984-01-01

    Applicants have discovered a new composition of matter which is an explosive addition compound of ammonium nitrate (AN) and diethylenetriamine trinitrate (DETN) in a 50:50 molar ratio. The compound is stable over extended periods of time only at temperatures higher than 46.degree. C., decomposing to a fine-grained eutectic mixture (which is also believed to be new) of AN and DETN at temperatures lower than 46.degree. C. The compound of the invention has an x-ray density of 1.61 g/cm.sup.3, explodes to form essentially only gaseous products, has higher detonation properties (i.e., detonation velocity and pressure) than those of any mechanical mixture having the same density and composition as the compound of the invention, is a quite insensitive explosive material, can be cast at temperatures attainable by high pressure steam, and is prepared from inexpensive ingredients. Methods of preparing the compound of the invention and the fine-grained eutectic composition of the invention are given.

  10. Thermal Decomposition of Trinitrotoluene (TNT) with a New One-Dimensional Time to Explosion (ODTX) Apparatus

    SciTech Connect (OSTI)

    Tran, T D; Simpson, R L; Maienschein, J; Tarver, C

    2001-03-23

    The thermal explosion of trinitrotoluene (TNT) is used as a basis for evaluating the performance of a new One-Dimensional-Time-to-Explosion (ODTX) apparatus. The ODTX experiment involves holding a 12.7 mm-diameter spherical explosive sample under confinement (150 MPa) at a constant elevated temperature until the confining pressure is exceeded by the evolution of gases during chemical decomposition. The resulting time to explosion as a function of temperature provides valuable decomposition kinetic information. A comparative analysis of the measurements obtained from the new unit and an older system is presented. Discussion on selected performance aspects of the new unit will also be presented. The thermal explosion of TNT is highly dependent on the material. Analysis of the time to explosion is complicated by historical and experimental factors such as material variability, sample preparation, temperature measurement and system errors. Many of these factors will be addressed. Finally, a kinetic model using a coupled thermal and heat transport code (chemical TOPAZ) was used to match the experimental data.

  11. Characterization Of High Explosives Detonations Via Laser-Induced Plasmas

    SciTech Connect (OSTI)

    Villa-Aleman, E.

    2015-10-08

    One objective of the Department of Energy’s National Security Administration is to develop technologies that can help the United States government to detect foreign nuclear weapons development activities. The realm of high explosive (HE) experiments is one of the key areas to assess the nuclear ambitions of a country. SRNL has participated in the collection of particulates from HE experiments and characterized the material with the purpose to correlate particulate matter with HE. Since these field campaigns are expensive, on-demand simulated laboratory-scale explosion experiments are needed to further our knowledge of the chemistry and particle formation in the process. Our goal is to develop an experimental test bed in the laboratory to test measurement concepts and correlate particle formation processes with the observables from the detonation fireball. The final objective is to use this knowledge to tailor our experimental setups in future field campaigns. The test bed uses pulsed laser-induced plasmas to simulate micro-explosions, with the intent to study the temporal behavior of the fireball observed in field tests. During FY15, a plan was prepared and executed which assembled two laser ablation systems, procured materials for study, and tested a Step-Scan Fourier Transform Infrared Spectrometer (SS-FTIR). Designs for a shadowgraph system for shock wave analysis, design for a micro-particulate collector from ablated pulse were accomplished. A novel spectroscopic system was conceived and a prototype system built for acquisition of spectral/temporal characterization of a high speed event such as from a high explosive detonation. Experiments and analyses will continue into FY16.

  12. Advancing Explosives Detection Capabilities: Vapor Detection

    SciTech Connect (OSTI)

    Atkinson, David

    2012-10-15

    A new, PNNL-developed method provides direct, real-time detection of trace amounts of explosives such as RDX, PETN and C-4. The method selectively ionizes a sample before passing the sample through a mass spectrometer to detect explosive vapors. The method could be used at airports to improve aviation security.

  13. Method for laser machining explosives and ordnance

    DOE Patents [OSTI]

    Muenchausen, Ross E.; Rivera, Thomas; Sanchez, John A.

    2003-05-06

    Method for laser machining explosives and related articles. A laser beam is directed at a surface portion of a mass of high explosive to melt and/or vaporize the surface portion while directing a flow of gas at the melted and/or vaporized surface portion. The gas flow sends the melted and/or vaporized explosive away from the charge of explosive that remains. The method also involves splitting the casing of a munition having an encased explosive. The method includes rotating a munition while directing a laser beam to a surface portion of the casing of an article of ordnance. While the beam melts and/or vaporizes the surface portion, a flow of gas directed at the melted and/or vaporized surface portion sends it away from the remaining portion of ordnance. After cutting through the casing, the beam then melts and/or vaporizes portions of the encased explosive and the gas stream sends the melted/vaporized explosive away from the ordnance. The beam is continued until it splits the article, after which the encased explosive, now accessible, can be removed safely for recycle or disposal.

  14. Fire and explosion hazards of oil shale

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

  15. Advancing Explosives Detection Capabilities: Vapor Detection

    ScienceCinema (OSTI)

    Atkinson, David

    2014-07-24

    A new, PNNL-developed method provides direct, real-time detection of trace amounts of explosives such as RDX, PETN and C-4. The method selectively ionizes a sample before passing the sample through a mass spectrometer to detect explosive vapors. The method could be used at airports to improve aviation security.

  16. Explosive laser light initiation of propellants

    DOE Patents [OSTI]

    Piltch, M.S.

    1993-05-18

    A improved initiator for artillery shell using an explosively generated laser light to uniformly initiate the propellent. A small quantity of a high explosive, when detonated, creates a high pressure and temperature, causing the surrounding noble gas to fluoresce. This fluorescence is directed into a lasing material, which lases, and directs laser light into a cavity in the propellant, uniformly initiating the propellant.

  17. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-01-04

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the first performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first Partnership meeting the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Complementary to the efforts on evaluation of sources and sinks is the development of the Big Sky Partnership Carbon Cyberinfrastructure (BSP-CC) and a GIS Road Map for the Partnership. These efforts will put in place a map-based integrated information management system for our Partnership, with transferability to the national carbon sequestration effort. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but other policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best

  18. NEW - DOE O 452.2E, Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs).

  19. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2005-01-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is

  20. Method for fabricating non-detonable explosive simulants

    DOE Patents [OSTI]

    Simpson, Randall L.; Pruneda, Cesar O.

    1995-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

  1. Method for fabricating non-detonable explosive simulants

    DOE Patents [OSTI]

    Simpson, R.L.; Pruneda, C.O.

    1995-05-09

    A simulator is disclosed which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  2. Ignition dynamics of high explosives

    SciTech Connect (OSTI)

    Ali, A.N.; Son, S.F.; Sander, R.K.; Asay, B.W.; Brewster, M.Q.

    1999-04-01

    The laser ignition of the explosives HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, C{sub 4}H{sub 8}N{sub 8}O{sub 8}), {delta}-phase HMX, PBX 9501 (95% HMX, 2.5% Estane, 2.5% BDNPA/BDNPF), TATB (1,3,5-triamino-2,4,6-trinitrobenzene, C{sub 6}H{sub 6}N{sub 6}O{sub 6}), and PBX 9502 (95% TATB, 5% Kel-F) and aged PBX 9502 has been conducted with the intent to compare the relative sensitivities of those explosives and to investigate the effect of beam profile, binder addition, and porosity. It has been found that there was little difference between a gaussian beam and a top hat profile on the laser ignition of HMX. The authors observe that the addition of binder in the amounts present in PBX 9501 resulted in longer ignition delays than that of HMX. In contrast to HMX, the addition of binder to TATB in PBX 9502 shows no measurable effect. Porosity effects were considered by comparing the ignition of granular HMX and pressed HMX pellets. Porosity appears to increase ignition delay due to an increased effective absorption scale and increased convective heat loss. This porosity effect also resulted in longer ignition delays for {delta}-phase HMX than for {beta}-phase HMX. In order to simulate ignition in voids or cracks, the standard ignition experiment was modified to include a NaCl window placed at variable distances above the sample surface. When ignition experiments were performed at 29 W/cm{sup 2} and 38 W/cm{sup 2} a critical gap distance was observed of 6 {+-} 0.4 mm below which ignition was severely inhibited. This result underscores the importance of gas phase processes in ignition and illustrates that conditions can exist where simple ignition criteria such as surface temperature is inadequate.

  3. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-06-01

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for

  4. Big Sky Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated

  5. Big Clean Data | OpenEI Community

    Open Energy Info (EERE)

    Question Keywords Author Apply There is no matching content in the group. Group links Big Clean Data group on linkedin Groups Menu You must login in order to post into this...

  6. Recovery Act Changes Hanford Skyline with Explosive Demolitions

    Broader source: Energy.gov [DOE]

    American Recovery and Reinvestment Act workers at the Hanford Site recently used explosives to demolish industrial structures that supported plutonium processing for national defense. The explosive...

  7. First in-situ images of void collapse in explosives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First in-situ images of void collapse in explosives Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect explosives under...

  8. Picture of the Week: Training the explosives experts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Training the explosives experts Lab scientists use their expertise to teach EOD techs ... April 10, 2016 Training the explosives experts Lab scientists use their expertise to teach ...

  9. Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions...

    National Nuclear Security Administration (NNSA)

    Explosions Nevada Test Site, NV As part of the Plowshare program seeking to develop peaceful uses for nuclear explosives, the Atomic Energy Commission conducts the Sedan test ...

  10. Title Preactivity Survey Report for Five Tonopah Test Range Explosive...

    National Nuclear Security Administration (NNSA)

    Preactivity Survey Report for Five Tonopah Test Range Explosive Ordnance Disposal Sites ... PREACTIVITY AND RECLAMATION SURVEY REPORTS FOR FIVE TONOPAH TEST RANGE EXPLOSIVE ORDNANCE ...

  11. Simulation of Explosion Ground Motions Using a Hydrodynamic-to...

    Office of Scientific and Technical Information (OSTI)

    Simulation of Explosion Ground Motions Using a Hydrodynamic-to-Elastic Coupling Approach in Three-Dimensions Citation Details In-Document Search Title: Simulation of Explosion ...

  12. 2012 Monitoring Research Review: Ground-Based Nuclear Explosion...

    Office of Scientific and Technical Information (OSTI)

    Review: Ground-Based Nuclear Explosion Monitoring Technologies Citation Details In-Document Search Title: 2012 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring ...

  13. THE ENVIRONMENT CREATED BY A NUCLEAR EXPLOSION IN SALT. Project...

    Office of Scientific and Technical Information (OSTI)

    THE ENVIRONMENT CREATED BY A NUCLEAR EXPLOSION IN SALT. Project GNOME Citation Details In-Document Search Title: THE ENVIRONMENT CREATED BY A NUCLEAR EXPLOSION IN SALT. Project ...

  14. Proceedings of the 24th Seismic Research Review: Nuclear Explosion...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Explosion Monitoring: Innovation and Integration Citation Details In-Document Search Title: Proceedings of the 24th Seismic Research Review: Nuclear Explosion ...

  15. Proceedings of the 25th Seismic Research Review -- Nuclear Explosion...

    Office of Scientific and Technical Information (OSTI)

    -- Nuclear Explosion Monitoring: Building the Knowledge Base Citation Details In-Document Search Title: Proceedings of the 25th Seismic Research Review -- Nuclear Explosion ...

  16. The Soviet program for peaceful uses of nuclear explosions (Technical...

    Office of Scientific and Technical Information (OSTI)

    The Soviet program for peaceful uses of nuclear explosions Citation Details In-Document Search Title: The Soviet program for peaceful uses of nuclear explosions You are ...

  17. LANL highlights explosives work | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    leader in explosives applications. It will feature LANL's work with explosives, from synthesis of new molecules to waste treatment. The exhibit also examines a variety of...

  18. Enterprise Assessments Review of Explosives Safety Program Implementat...

    Energy Savers [EERE]

    Explosives Safety Program Implementation at the Pantex Plant - November 2015 Enterprise Assessments Review of Explosives Safety Program Implementation at the Pantex Plant - ...

  19. Chemical analysis kit for the presence of explosives

    DOE Patents [OSTI]

    Eckels, Joel Del; Nunes; Peter J.; Alcaraz, Armando; Whipple, Richard E.

    2011-05-10

    A tester for testing for explosives associated with a test location comprising a first explosives detecting reagent; a first reagent holder, the first reagent holder containing the first explosives detecting reagent; a second explosives detecting reagent; a second reagent holder, the second reagent holder containing the second explosives detecting reagent; a sample collection unit for exposure to the test location, exposure to the first explosives detecting reagent, and exposure to the second explosives detecting reagent; and a body unit containing a heater for heating the sample collection unit for testing the test location for the explosives.

  20. Tackling Big Data Together | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Big Data Together Tackling Big Data Together February 21, 2013 - 5:43pm Addthis PNNL's Olympus supercomputer is one of the computational resources that will be used by members of the Northwest Institute for Advanced Computing. Other resources include the University of Washington's Hyak supercomputer and cloud computing. PNNL's Olympus supercomputer is one of the computational resources that will be used by members of the Northwest Institute for Advanced Computing. Other resources include the

  1. Cincinnati Big Area Additive Manufacturing (BAAM)

    SciTech Connect (OSTI)

    Duty, Chad E.; Love, Lonnie J.

    2015-03-04

    Oak Ridge National Laboratory (ORNL) worked with Cincinnati Incorporated (CI) to demonstrate Big Area Additive Manufacturing which increases the speed of the additive manufacturing (AM) process by over 1000X, increases the size of parts by over 10X and shows a cost reduction of over 100X. ORNL worked with CI to transition the Big Area Additive Manufacturing (BAAM) technology from a proof-of-principle (TRL 2-3) demonstration to a prototype product stage (TRL 7-8).

  2. Protein Dynamics Hit the Big Screen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Dynamics Hit the Big Screen Protein Dynamics Hit the Big Screen Now playing at a supercomputer near you: proteins in action June 29, 2005 Contact: Dan Krotz, dakrotz@lbl.gov 06tyrosinekinasechanging.jpg This simulation of a tyrosine kinase reveals how the protein changes shape. Scientists from Berkeley Lab and UC Berkeley are using one the world's most powerful computers to simulate how protein molecules move, rotate, and fold as they carry out life's most fundamental tasks.Although they

  3. Quality of Big Data in Healthcare

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sukumar, Sreenivas R.; Ramachandran, Natarajan; Ferrell, Regina Kay

    2015-01-01

    The current trend in Big Data Analytics and in particular Health information technology is towards building sophisticated models, methods and tools for business, operational and clinical intelligence, but the critical issue of data quality required for these models is not getting the attention it deserves. The objective of the paper is to highlight the issues of data quality in the context of Big Data Healthcare Analytics.

  4. Data Confidentiality Challenges in Big Data Applications

    SciTech Connect (OSTI)

    Yin, Jian; Zhao, Dongfang

    2015-12-15

    In this paper, we address the problem of data confidentiality in big data analytics. In many fields, much useful patterns can be extracted by applying machine learning techniques to big data. However, data confidentiality must be protected. In many scenarios, data confidentiality could well be a prerequisite for data to be shared. We present a scheme to provide provable secure data confidentiality and discuss various techniques to optimize performance of such a system.

  5. Explosively driven air blast in a conical shock tube

    SciTech Connect (OSTI)

    Stewart, Joel B. Pecora, Collin

    2015-03-15

    Explosively driven shock tubes present challenges in terms of safety concerns and expensive upkeep of test facilities but provide more realistic approximations to the air blast resulting from free-field detonations than those provided by gas-driven shock tubes. Likewise, the geometry of conical shock tubes can naturally approximate a sector cut from a spherically symmetric blast, leading to a better agreement with the blast profiles of free-field detonations when compared to those provided by shock tubes employing constant cross sections. The work presented in this article documents the design, fabrication, and testing of an explosively driven conical shock tube whose goal was to closely replicate the blast profile seen from a larger, free-field detonation. By constraining the blast through a finite area, large blasts (which can add significant damage and safety constraints) can be simulated using smaller explosive charges. The experimental data presented herein show that a close approximation to the free-field air blast profile due to a 1.5 lb charge of C4 at 76 in. can be achieved by using a 0.032 lb charge in a 76-in.-long conical shock tube (which translates to an amplification factor of nearly 50). Modeling and simulation tools were used extensively in designing this shock tube to minimize expensive fabrication costs.

  6. Explosive-array performance measurement using TDR

    SciTech Connect (OSTI)

    McKown, T.O.; Eilers, D.D.

    1994-04-01

    The system known as CORRTEX was developed for determining the yield of a nuclear explosion by measuring the position of its shock front as a function of time. The CORRTEX system is a compact, fast sampling TDR based system where only a length of 50 ohm coaxial cable (the sensing element) is expended in the detonation. In 1979, the application of the CORRTEX system to measure the explosive bum of columns of conventional explosive in one or more drill holes was demonstrated. Subsequently, the CORRTEX system was used to diagnose complicated multiple hole high explosive oilshale, rock quarry and strip mining shots. The diagnostic timing and explosive characterization data from large array or large mass detonations provide a basis for performance improvement and comparison with calculational models. A summary of the CORRTEX capabilities and analysis techniques will be presented. Experiment designs and data from large array detonations will be presented, results from a confined large mass ANFO explosion will be summarized and other possible non-explosive applications may be presented.

  7. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    SciTech Connect (OSTI)

    Short, B J; Carter, J C; Gunter, D; Hovland, P; Jagode, H; Karavanic, K; Marin, G; Mellor-Crummey, J; Moore, S; Norris, B; Oliker, L; Olschanowsky, C; Roth, P C; Schulz, M; Shende, S; Snavely, A; Spear, W

    2009-06-03

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided {approx}2000-fold enhancement at 244 nm and {approx}800-fold improvement at 229 nm while PETN showed a maximum of {approx}25-fold at 244 nm and {approx}190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman

  8. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-06-30

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop (see attached agenda). The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement

  9. Big Sky Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the

  10. Trinity Site- World's First Nuclear Explosion

    Office of Energy Efficiency and Renewable Energy (EERE)

    The world's first nuclear explosion occurred on July 16, 1945, when a plutonium implosion device was tested at a site located 210 miles south of Los Alamos on the barren plains of the Alamogordo...

  11. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-08-06

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1A. Canceled by DOE O 452.1C.

  12. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-09-20

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1B. Canceled by DOE O 452.1D

  13. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1C. Canceled by DOE O 452.1D Admin Chg 1.

  14. CRAD, NNSA- Nuclear Explosive Safety (NES)

    Broader source: Energy.gov [DOE]

    CRAD for Nuclear Explosive Safety (NES). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs.

  15. Explosive Safety Manual, to a New Order

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-12-02

    This memorandum provides justification for the conversion of Department of Energy (DOE) Manual (M) 440.1-1A, DOE Explosives Safety Manual, dated 1-9-06, into a new DOE Order.

  16. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-01-17

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1. Canceled by DOE O 452.1B.

  17. Uncovering the mysteries of cosmic explosions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uncovering the mysteries of cosmic explosions Uncovering the mysteries of cosmic explosions An automated software system developed at Los Alamos National Laboratory played a key role in the discovery of supernova iPTF 14atg and could provide insight, a virtual Rosetta stone, into future supernovae and their underlying physics. May 20, 2015 A Los Alamos simulation of an exploding white dwarf, in which the supernova drives an expanding shock wave that collides with a torus of material accreted

  18. Explosive parcel containment and blast mitigation container

    DOE Patents [OSTI]

    Sparks, Michael H.

    2001-06-12

    The present invention relates to a containment structure for containing and mitigating explosions. The containment structure is installed in the wall of the building and has interior and exterior doors for placing suspicious packages into the containment structure and retrieving them from the exterior of the building. The containment structure has a blast deflection chute and a blowout panel to direct over pressure from explosions away from the building, surrounding structures and people.

  19. Projectile-generating explosive access tool

    DOE Patents [OSTI]

    Jakaboski, Juan-Carlos; Todd, Steven N.

    2011-10-18

    An explosive device that can generate a projectile from the opposite side of a wall from the side where the explosive device is detonated. The projectile can be generated without breaching the wall of the structure or container. The device can optionally open an aperture in a solid wall of a structure or a container and form a high-kinetic-energy projectile from the portion of the wall removed to create the aperture.

  20. Projectile-generating explosive access tool

    DOE Patents [OSTI]

    Jakaboski, Juan-Carlos; Hughs, Chance G; Todd, Steven N

    2013-06-11

    A method for generating a projectile using an explosive device that can generate a projectile from the opposite side of a wall from the side where the explosive device is detonated. The projectile can be generated without breaching the wall of the structure or container. The device can optionally open an aperture in a solid wall of a structure or a container and form a high-kinetic-energy projectile from the portion of the wall removed to create the aperture.

  1. Vapor generation methods for explosives detection research

    SciTech Connect (OSTI)

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  2. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-10-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification

  3. Explosives exhibit opens at the Bradbury Science Museum Sept. 18

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives exhibit opens at the Bradbury Science Museum Explosives exhibit opens at the Bradbury Science Museum Sept. 18 To highlight the Laboratory's work in the field of explosives, the museum is opening a new exhibit titled "The Science of Explosives." September 12, 2013 A typical explosives experiment fired in front of the PHERMEX bunker produces a brilliant fireball long after the hydrodynamics measurements have been recorded. PHERMEX was the location for more than 1,000

  4. Questing for the Holy Grail of High Explosives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Holy Grail National Security Science Latest Issue:April 2016 past issues All Issues » submit Questing for the Holy Grail of High Explosives A molecule invented by Los Alamos scientist David E. Chavez might herald the arrival of a new class of insensitive high explosives. March 22, 2016 Questing for the Holy Grail of High Explosives Explosives chemist David Chavez has developed new explosives molecules that offer high energy with enhanced safety-they cannot be detonated by spark, friction, or

  5. Studies of the laser-induced fluorescence of explosives and explosive compositions.

    SciTech Connect (OSTI)

    Hargis, Philip Joseph, Jr.; Thorne, Lawrence R.; Phifer, Carol Celeste; Parmeter, John Ethan; Schmitt, Randal L.

    2006-10-01

    Continuing use of explosives by terrorists throughout the world has led to great interest in explosives detection technology, especially in technologies that have potential for standoff detection. This LDRD was undertaken in order to investigate the possible detection of explosive particulates at safe standoff distances in an attempt to identify vehicles that might contain large vehicle bombs (LVBs). The explosives investigated have included the common homogeneous or molecular explosives, 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), cyclonite or hexogen (RDX), octogen (HMX), and the heterogeneous explosive, ammonium nitrate/fuel oil (ANFO), and its components. We have investigated standard excited/dispersed fluorescence, laser-excited prompt and delayed dispersed fluorescence using excitation wavelengths of 266 and 355 nm, the effects of polarization of the laser excitation light, and fluorescence imaging microscopy using 365- and 470-nm excitation. The four nitro-based, homogeneous explosives (TNT, PETN, RDX, and HMX) exhibit virtually no native fluorescence, but do exhibit quenching effects of varying magnitude when adsorbed on fluorescing surfaces. Ammonium nitrate and fuel oil mixtures fluoresce primarily due to the fuel oil, and, in some cases, due to the presence of hydrophobic coatings on ammonium nitrate prill or impurities in the ammonium nitrate itself. Pure ammonium nitrate shows no detectable fluorescence. These results are of scientific interest, but they provide little hope for the use of UV-excited fluorescence as a technique to perform safe standoff detection of adsorbed explosive particulates under real-world conditions with a useful degree of reliability.

  6. Influence of insulating coating on aluminum wire explosions

    SciTech Connect (OSTI)

    Li, Yang; Wu, Jian; Sheng, Liang; Zhao, Jizhen; Zhang, Mei; Yuan, Yuan; Peng, Bodong; Li, Xingwen

    2014-10-15

    Single wire explosions are widely used in understanding the early stages of z-pinch experiments. This paper presents a serial of experiments conducted on the pulse power generator with ?1?kA peak current and ?10?ns rising time in Xi'an Jiao Tong University. Polyimide coated aluminum wires and uncoated ones were tested under three different voltages to analyze the effect of insulating coating. Experimental results showed that insulating coating can increase the energy deposition 10%?30% in aluminum wires by delaying the voltage collapse and raising the maximum load resistance. The substantial energy deposition resulted in about 20% faster expansion rates for coated wires. Experimental evidence that plasma channel shunts the current from the wire core was observed by streak camera and schlieren graphs. This paper also briefly discussed the influence of nonuniform coating on the morphology of wire expansion.

  7. Report on the treatability study for inerting small quantities of radioactive explosives and explosive components

    SciTech Connect (OSTI)

    Loyola, V.M.; Reber, S.D.

    1996-02-01

    As a result of Sandia`s radiation hardening testing on a variety of its explosive components, radioactive waste streams were generated and have to be disposed of as radioactive waste. Due to the combined hazards of explosives and radioactivity, Sandia`s Radioactive and Mixed Waste Management organization did not have a mechanism for disposal of these waste streams. This report documents the study done to provide a method for the removal of the explosive hazard from those waste streams. The report includes the design of the equipment used, procedures followed, results from waste stream analog tests and the results from the actual explosive inerting tests on radioactive samples. As a result of the inerting treatment, the waste streams were rendered non-explosive and, thus, manageable through normal radioactive waste disposal channels.

  8. Models from Big Molecules Captured in a Flash

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Models from Big Molecules Captured in a Flash Models from Big Molecules Captured in a Flash Print Sunday, 26 May 2013 00:00 The structures of most of the two million proteins in...

  9. SCIENCE ON SATURDAY- "The Large Hadron Collider: big science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 5, 2013, 9:30am Science On Saturday MBG Auditorium SCIENCE ON SATURDAY- "The Large Hadron Collider: big science for big questions" Professor James Olsen Department of ...

  10. Big China Solar Energy Group | Open Energy Information

    Open Energy Info (EERE)

    China Solar Energy Group Jump to: navigation, search Logo: Big China Solar Energy Group Name: Big China Solar Energy Group Address: 8-306, Dingtaifenghua Community,Qianhai Road,...

  11. BigNeuron: Unlocking the Secrets of the Human Brain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BigNeuron: Unlocking the Secrets of the Human Brain BigNeuron: Unlocking the Secrets of the Human Brain Berkeley Researchers and Supercomputers to Help Create a Standard 3D Neuron ...

  12. DOE - NNSA/NFO -- Photo Library Big Hole Drilling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big Hole Drilling NNSANFO Language Options U.S. DOENNSA - Nevada Field Office Photo Library - Big Hole Drilling The need to drill large-diameter holes at the Nevada National ...

  13. Method of digesting an explosive nitro compound

    DOE Patents [OSTI]

    Shah, Manish M.

    2000-01-01

    The present invention is a process wherein bleaching oxidants are used to digest explosive nitro compounds. The process has an excellent reaction rate for digesting explosives and operates under multivariate conditions. Reaction solutions may be aqueous, non-aqueous or a combination thereof, and can also be any pH, but preferably have a pH between 2 and 9. The temperature may be ambient as well as any temperature above which freezing of the solution would occur and below which any degradation of the bleaching oxidant would occur or below which any explosive reaction would be initiated. The pressure may be any pressure, but is preferably ambient or atmospheric, or a pressure above a vapor pressure of the aqueous solution to avoid boiling of the solution. Because the bleaching oxidant molecules are small, much smaller than an enzyme molecule for example, they can penetrate the microstructure of plastic explosives faster. The bleaching oxidants generate reactive hydroxyl radicals, which can destroy other organic contaminants, if necessary, along with digesting the explosive nitro compound.

  14. Big Island Demonstration Project - Black Liquor

    SciTech Connect (OSTI)

    2006-08-01

    Black liquor is a papermaking byproduct that also serves as a fuel for pulp and paper mills. This project involves the design, construction, and operation of a black liquor gasifier that will be integrated into Georgia-Pacific's Big Island facility in Virginia, a mill that has been in operation for more than 100 years.

  15. Uses of Fabry-Perot velocimeters in studies of high explosives detonation

    SciTech Connect (OSTI)

    Breithaupt, R.D.; Tarver, C.M.

    1990-08-27

    The Fabry Perot has become an important and valuable tool by which explosive performance information can be obtained relatively easily and inexpensively. Principle uses of the Fabry Perot have been free surface, and particle velocity measurements in one dimensional studies of explosive performance. In the cylinder test, it has been very useful to resolve early wall motions. We have refined methods of characterizing new explosives i.e. equation of state, C-J pressure, via the cylinder shot, flat plate, and particle velocity techniques. All of these use Fabry Perot as one of the principle diagnostics. Each of these experimental techniques are discussed briefly and some of the results obtained. Modeling developed to fit Fabry-Perot results are described along with future testing.

  16. Prediction of explosive cylinder tests using equations of state from the PANDA code

    SciTech Connect (OSTI)

    Kerley, G.I.; Christian-Frear, T.L.

    1993-09-28

    The PANDA code is used to construct tabular equations of state (EOS) for the detonation products of 24 explosives having CHNO compositions. These EOS, together with a reactive burn model, are used in numerical hydrocode calculations of cylinder tests. The predicted detonation properties and cylinder wall velocities are found to give very good agreement with experimental data. Calculations of flat plate acceleration tests for the HMX-based explosive LX14 are also made and shown to agree well with the measurements. The effects of the reaction zone on both the cylinder and flat plate tests are discussed. For TATB-based explosives, the differences between experiment and theory are consistently larger than for other compositions and may be due to nonideal (finite dimameter) behavior.

  17. EIS-0315-S1: SEIS on Caithness Big Sandy Project

    Broader source: Energy.gov [DOE]

    In June 2001, the Bureau of Land Management (BLM) and Western Area Power Administration (Western) issued the Big Sandy Energy Project Draft Environmental Impact Statement (EIS) (BLM and Western 2001). After June 2001, Caithness Big Sandy, L.L.C. (Caithness), revised aspects of the Big Sandy Energy Project (Project) described as the Proposed Action in the Draft EIS.

  18. SCIENCE ON SATURDAY- "The Large Hadron Collider: big science for big

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    questions" | Princeton Plasma Physics Lab January 5, 2013, 9:30am Science On Saturday MBG Auditorium SCIENCE ON SATURDAY- "The Large Hadron Collider: big science for big questions" Professor James Olsen Department of Physics, Princeton University Science on Saturday is a series of lectures given by scientists, mathematicians, and other professionals involved in cutting-edge research. Held on Saturday mornings throughout winter, the lectures are geared toward high school

  19. Visualizing Distributed Data with BigWig and BigBed at UCSC (2010 JGI/ANL HPC Workshop)

    ScienceCinema (OSTI)

    Kent, Jim [UCSC

    2011-06-08

    Jim Kent from University of California, Santa Cruz presents on "Visualizing Distributed Data with BigWig and BigBed at UCSC" at the JGI/Argonne HPC Workshop on January 26, 2010.

  20. Underwater vapor phase burning of aluminum particles and on aluminum ignition during steam explosions

    SciTech Connect (OSTI)

    Epstein, M. )

    1991-09-01

    Recently reported experimental studies on aluminum-water steam explosions indicate that there may be a critical metal temperature at which the process changes over from a physical explosion to one which is very violent and involves the rapid liberation of chemical energy. In this report we examine the hypothesis that vapor-phase burning of aluminum is a necessary condition for the occurrence of such ignition-type'' steam explosions. An available two-phase stagnation flow film-boiling model is used to calculate the steam flux to the vaporizing aluminum surface. Combining this calculation with the notion that there is an upper limit to the magnitude of the metal vaporization rate at which the reaction regime must change from vapor phase to surface burning, leads to prediction of the critical metal surface temperature below which vapor phase burning is impossible. The critical temperature is predicted for both the aluminum-water pre-mixture configuration in which coarse drops of aluminum are falling freely through water and for the finely-fragmented aluminum drops in the wake of the pressure shock that triggers'' the explosion. Vapor phase burning is predicted to be possible during the pre-mixture phase but not very likely during the trigger phase of a steam explosion. The implications of these findings in terms of the validity of the hypothesis that ignition may begin with the vapor phase burning of aluminum is discussed. Recently postulated, alternative mechanisms of underwater aluminum ignition are also discussed.

  1. Underwater vapor phase burning of aluminum particles and on aluminum ignition during steam explosions

    SciTech Connect (OSTI)

    Epstein, M.

    1991-09-01

    Recently reported experimental studies on aluminum-water steam explosions indicate that there may be a critical metal temperature at which the process changes over from a physical explosion to one which is very violent and involves the rapid liberation of chemical energy. In this report we examine the hypothesis that vapor-phase burning of aluminum is a necessary condition for the occurrence of such ``ignition-type`` steam explosions. An available two-phase stagnation flow film-boiling model is used to calculate the steam flux to the vaporizing aluminum surface. Combining this calculation with the notion that there is an upper limit to the magnitude of the metal vaporization rate at which the reaction regime must change from vapor phase to surface burning, leads to prediction of the critical metal surface temperature below which vapor phase burning is impossible. The critical temperature is predicted for both the aluminum-water pre-mixture configuration in which coarse drops of aluminum are falling freely through water and for the finely-fragmented aluminum drops in the wake of the pressure shock that ``triggers`` the explosion. Vapor phase burning is predicted to be possible during the pre-mixture phase but not very likely during the trigger phase of a steam explosion. The implications of these findings in terms of the validity of the hypothesis that ignition may begin with the vapor phase burning of aluminum is discussed. Recently postulated, alternative mechanisms of underwater aluminum ignition are also discussed.

  2. Local magnitudes of small contained explosions.

    SciTech Connect (OSTI)

    Chael, Eric Paul

    2009-12-01

    The relationship between explosive yield and seismic magnitude has been extensively studied for underground nuclear tests larger than about 1 kt. For monitoring smaller tests over local ranges (within 200 km), we need to know whether the available formulas can be extrapolated to much lower yields. Here, we review published information on amplitude decay with distance, and on the seismic magnitudes of industrial blasts and refraction explosions in the western U. S. Next we measure the magnitudes of some similar shots in the northeast. We find that local magnitudes ML of small, contained explosions are reasonably consistent with the magnitude-yield formulas developed for nuclear tests. These results are useful for estimating the detection performance of proposed local seismic networks.

  3. PINS Testing and Modification for Explosive Identification

    SciTech Connect (OSTI)

    E.H. Seabury; A.J. Caffrey

    2011-09-01

    The INL's Portable Isotopic Neutron Spectroscopy System (PINS)1 non-intrusively identifies the chemical fill of munitions and sealed containers. PINS is used routinely by the U.S. Army, the Defense Threat Reduction Agency, and foreign military units to determine the contents of munitions and other containers suspected to contain explosives, smoke-generating chemicals, and chemical warfare agents such as mustard and nerve gas. The objects assayed with PINS range from softball-sized M139 chemical bomblets to 200 gallon DOT 500X ton containers. INL had previously examined2 the feasibility of using a similar system for the identification of explosives, and based on this proof-of-principle test, the development of a dedicated system for the identification of explosives in an improvised nuclear device appears entirely feasible. INL has been tasked by NNSA NA-42 Render Safe Research and Development with the development of such a system.

  4. Gasdynamic Model of Turbulent Combustion in TNT Explosions

    SciTech Connect (OSTI)

    Kuhl, A L; Bell, J B; Beckner, V E

    2010-01-08

    A model is proposed to simulate turbulent combustion in confined TNT explosions. It is based on: (i) the multi-component gasdynamic conservation laws, (ii) a fast-chemistry model for TNT-air combustion, (iii) a thermodynamic model for frozen reactants and equilibrium products, (iv) a high-order Godunov scheme providing a non-diffusive solution of the governing equations, and (v) an ILES approach whereby adaptive mesh refinement is used to capture the energy bearing scales of the turbulence on the grid. Three-dimensional numerical simulations of explosion fields from 1.5-g PETN/TNT charges were performed. Explosions in six different chambers were studied: three calorimeters (volumes of 6.6-l, 21.2-l and 40.5-l with L/D = 1), and three tunnels (L/D = 3.8, 4.65 and 12.5 with volumes of 6.3-l) - to investigate the influence of chamber volume and geometry on the combustion process. Predicted pressures histories were quite similar to measured pressure histories for all cases studied. Experimentally, mass fraction of products, Y{sub p}{sup exp}, reached a peak value of 88% at an excess air ratio of twice stoichiometric, and then decayed with increasing air dilution; mass fractions Y{sub p}{sup calc} computed from the numerical simulations followed similar trends. Based on this agreement, we conclude that the dominant effect that controls the rate of TNT combustion with air is the turbulent mixing rate; the ILES approach along with the fast-chemistry model used here adequately captures this effect.

  5. Explosive-driven, high speed, arcless switch

    DOE Patents [OSTI]

    Skogmo, Phillip J.; Tucker, Tillman J.

    1987-01-01

    An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed.

  6. Explosive-driven, high speed, arcless switch

    DOE Patents [OSTI]

    Skogmo, P.J.; Tucker, T.J.

    1987-07-14

    An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed. 7 figs.

  7. Explosive-driven, high speed, arcless switch

    DOE Patents [OSTI]

    Skogmo, P.J.; Tucker, T.J.

    1986-05-02

    An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed.

  8. Using fly ash to mitigate explosions

    SciTech Connect (OSTI)

    Taulbee, D.

    2008-07-01

    In 2005 the University of Kentucky's Center for Applied Energy Research was given funding to evaluate the use of coal combustion by-products (CCBs) to reduce the explosive potential of ammonium nitrate (AN) fertilizers. Fly ash C (FAC), fly ash F (FAF) and flue gas desulfurization by-product (FGD) were evaluated. It was found that applying a CCB coating to the AN particles at concentrations of 5 wt% or greater prevented the AN explosion from propagating. The article reports on results so far and outlines further work to be done. 6 figs.

  9. Lessons learned from a hydrogen explosion

    SciTech Connect (OSTI)

    Neville, A.

    2009-05-15

    On January 8, 2007 a hydrogen explosion at the Msukingum River Power plant's 585-MW coal-fired supercritical unit 5 caused one fatality, injuries to 10 other people and significant damage to several buildings. The explosion occurred during a routine delivery of hydrogen, used to cool generating units, when a hydrogen relief device failed, which allowed the contents of the hydrogen tank to escape and be ignited by an unknown source. This article covers the findings of the incident investigation and the actions the plant has taken to prevent a reoccurrence. 4 photos.

  10. Moderate Velocity Ball Impact of a Mock High-Explosive

    SciTech Connect (OSTI)

    Furmanski, Jevan; Rae, Philip; Clements, Bradford E.

    2012-06-05

    Modeling of thermal and mechanical events in high-explosive materials is complicated by the composite nature of the material, which experiences viscoelastic and plastic deformations and sustains damage in the form of microcracks that can dominate its overall behavior. A mechanical event of interest is projectile interaction with the material, which leads to extreme local deformation and adiabatic heating, which can potentially lead to adverse outcomes in an energetic material. Simulations of such an event predicted large local temperature rises near the path of a spherical projectile, but these were experimentally unconfirmed and hence potentially non-physical. This work concerns the experimental verification of local temperatures both at the surface and in the wake of a spherical projectile penetrating a mock (unreactive) high-explosive at {approx}700 m/s. Fast response thermocouples were embedded radially in a mid-plane of a cylindrical target, which was bonded around the thermocouples with epoxy and recorded by an oscilloscope through a low-pass filter with a bandwidth of 500 Hz. A peak temperature rise of 70 K was measured both at the equator of the projectile and in its wake, in good agreement with the temperature predicted in the minimally distorted elements at those locations by a finite element model in ABAQUS employing the ViscoSCRAM constitutive model. Further work is needed to elucidate the extreme temperature rises in material undergoing crushing or fragmentation, which is difficult to predict with meshed finite element methods due to element distortion, and also challenging to quantify experimentally.

  11. Picture of the Week: Making the (reactive) case for explosives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a lab View on Flickr An explosion of 3D printing technology An explosion of 3D printing technology View on Flickr Hot cells for isotopes Hot cells for isotopes View on Flickr...

  12. Security and Use Control of Nuclear Explosives and Nuclear Weapons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O 452.4C, Security and Use Control of Nuclear Explosives and Nuclear Weapons by LtCol Karl Basham Functional areas: Nuclear Explosives, Nuclear Weapons, Security, Safety, Weapon...

  13. Low flammability cap-sensitive flexible explosive composition

    DOE Patents [OSTI]

    Wagner, Martin G.

    1992-01-14

    A cap-sensitive flexible explosive composition of reduced flammability is provided by incorporating a finely divided, cap-sensitive explosive in a flame resistant polymeric binder system which contains a compatible flame retardant material.

  14. Explosion proof vehicle for tank inspection

    DOE Patents [OSTI]

    Zollinger, William T.; Klingler, Kerry M.; Bauer, Scott G.

    2012-02-28

    An Explosion Proof Vehicle (EPV) having an interior substantially filled with an inert fluid creating an interior pressure greater than the exterior pressure. One or more flexible tubes provide the inert fluid and one or more electrical conductors from a control system to the vehicle. The vehicle is preferably used in subsurface tank inspection, whereby the vehicle is submerged in a volatile fluid.

  15. Glass ceramics for explosive device headers

    SciTech Connect (OSTI)

    Ballard, C. P.; Eagan, R. J.; Kjeldgaard, E. A.

    1980-01-01

    The desired features of a header for our advanced explosive devices include small size; 700 Mpa static burst strength; corrosion resistant alloys for electrodes, bridgewire, and housing; integral charge holder; high thermal conductivity (approaching that of alumina ceramic); no braze around the electrodes; design flexibility and quick turnaround time for fabrication of development prototypes; and low cost.

  16. Continuous wave laser irradiation of explosives

    SciTech Connect (OSTI)

    McGrane, Shawn D.; Moore, David S.

    2010-12-01

    Quantitative measurements of the levels of continuous wave (CW) laser light that can be safely applied to bare explosives during contact operations were obtained at 532 nm, 785 nm, and 1550 nm wavelengths. A thermal camera was used to record the temperature of explosive pressed pellets and single crystals while they were irradiated using a measured laser power and laser spot size. A visible light image of the sample surface was obtained before and after the laser irradiation. Laser irradiation thresholds were obtained for the onset of any visible change to the explosive sample and for the onset of any visible chemical reaction. Deflagration to detonation transitions were not observed using any of these CW laser wavelengths on single crystals or pressed pellets in the unconfined geometry tested. Except for the photochemistry of DAAF, TATB and PBX 9502, all reactions appeared to be thermal using a 532 nm wavelength laser. For a 1550 nm wavelength laser, no photochemistry was evident, but the laser power thresholds for thermal damage in some of the materials were significantly lower than for the 532 nm laser wavelength. No reactions were observed in any of the studied explosives using the available 300 mW laser at 785 nm wavelength. Tables of laser irradiance damage and reaction thresholds are presented for pressed pellets of PBX9501, PBX9502, Composition B, HMX, TATB, RDX, DAAF, PETN, and TNT and single crystals of RDX, HMX, and PETN for each of the laser wavelengths.

  17. Scaled experiments of explosions in cavities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grun, J.; Cranch, G. A.; Lunsford, R.; Compton, S.; Walton, O. R.; Weaver, J.; Dunlop, W.; Fournier, K. B.

    2016-05-11

    Consequences of an explosion inside an air-filled cavity under the earth's surface are partly duplicated in a laboratory experiment on spatial scales 1000 smaller. The experiment measures shock pressures coupled into a block of material by an explosion inside a gas-filled cavity therein. The explosion is generated by suddenly heating a thin foil that is located near the cavity center with a short laser pulse, which turns the foil into expanding plasma, most of whose energy drives a blast wave in the cavity gas. Variables in the experiment are the cavity radius and explosion energy. Measurements and GEODYN code simulationsmore » show that shock pressuresmeasured in the block exhibit a weak dependence on scaled cavity radius up to ~25 m/kt1/3, above which they decrease rapidly. Possible mechanisms giving rise to this behavior are described. As a result, the applicability of this work to validating codes used to simulate full-scale cavityexplosions is discussed.« less

  18. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.1D.

  19. Picture of the Week: Tickling the dragon for explosives science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Tickling the dragon for explosives science Los Alamos scientists perform the first 3D simulation of electromagnetic radiation interacting with explosives. May 26, 2016 3D simulation of electromagnetic radiation interacting with explosives For obvious reasons, detecting explosives without blowing them up is a prime goal in law enforcement, anti-terror operations, and combat. But avoiding detonation requires a deep understanding of the complex interplay of chemistry and heat transport in

  20. Explosive composition with group VIII metal nitroso halide getter

    DOE Patents [OSTI]

    Walker, Franklin E.; Wasley, Richard J.

    1982-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1,500 and 10,000 meters per second and a minor amount of a getter additive comprising a non-explosive compound or mixture of non-explosive compounds capable of chemically reacting with free radicals or ions under shock initiation conditions of 2,000 calories/cm.sup.2 or less of energy fluence.

  1. Explosive composition with group VIII metal nitroso halide getter

    DOE Patents [OSTI]

    Walker, F.E.; Wasley, R.J.

    1982-06-22

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1,500 and 10,000 meters per second and a minor amount of a getter additive comprising a non-explosive compound or mixture of non-explosive compounds capable of chemically reacting with free radicals or ions under shock initiation conditions of 2,000 calories/cm[sup 2] or less of energy fluence.

  2. Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Explores Peaceful Uses of Nuclear Explosions Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions Nevada Test Site, NV As part of the Plowshare program seeking to develop peaceful uses for nuclear explosives, the Atomic Energy Commission conducts the Sedan test at the Nevada Test Site

  3. Colorimetric chemical analysis sampler for the presence of explosives

    DOE Patents [OSTI]

    Nunes, Peter J.; Eckels, Joel Del; Reynolds, John G.; Pagoria, Philip F.; Simpson, Randall L.

    2014-07-01

    A tester for testing for explosives comprising a body, a lateral flow swab unit operably connected to the body, a explosives detecting reagent contained in the body, and a dispenser operatively connected to the body and the lateral flow swab unit. The dispenser selectively allows the explosives detecting reagent to be delivered to the lateral flow swab unit.

  4. Colorimetric chemical analysis sampler for the presence of explosives

    DOE Patents [OSTI]

    Nunes, Peter J.; Del Eckels, Joel; Reynolds, John G.; Pagoria, Philip F.; Simpson, Randall L.

    2011-09-27

    A tester for testing for explosives comprising a body, a lateral flow swab unit operably connected to the body, a explosives detecting reagent contained in the body, and a dispenser operatively connected to the body and the lateral flow swab unit. The dispenser selectively allows the explosives detecting reagent to be delivered to the lateral flow swab unit.

  5. Big Canyon Creek Ecological Restoration Strategy.

    SciTech Connect (OSTI)

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe

  6. First in-situ images of void collapse in explosives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First in-situ images of void collapse in explosives First in-situ images of void collapse in explosives Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect explosives under shock loading. July 24, 2014 Dynamic x-ray image of void collapse in shocked explosive. The void (bright spot in the center) collapses as the shock wave passes through it. Dynamic x-ray image of void collapse in shocked explosive. The void (bright spot in the center)

  7. DOE TMD transportation training module 14 transportation of explosives

    SciTech Connect (OSTI)

    Griffith, R.L. Jr.

    1994-07-01

    The Department of Energy Transportation Management Division has developed training module 14, entitled {open_quotes}Transportation of Explosives{close_quotes} to compliment the basic {open_quotes}core ten{close_quotes} training modules of the Hazardous Materials Modular Training Program. The purpose of this training module is to increase awareness of the Department of Transportation (DOT) requirements concerning the packaging and transportation of explosives. Topics covered in module 14 include the classification of explosives, approval and registration of explosives, packaging requirements, hazard communication requirements, separation and segregation compatibility requirements, loading and unloading operations, as well as safety measures required in the event of a vehicle accident involving explosives.

  8. Inelastic processes in seismic wave generation by underground explosions

    SciTech Connect (OSTI)

    Rodean, H.C.

    1980-08-01

    Theories, computer calculations, and measurements of spherical stress waves from explosions are described and compared, with emphasis on the transition from inelastic to almost-elastic relations between stress and strain. Two aspects of nonspherical explosion geometry are considered: tectonic strain release and surface spall. Tectonic strain release affects the generation of surface waves; spall closure may also. The reduced-displacement potential is a common solution (the equivalent elastic source) of the forward and inverse problems, assuming a spherical source. Measured reduced-displacement potentials are compared with potentials calculated as solutions of the direct and inverse problems; there are significant differences between the results of the two types of calculations and between calculations and measurements. The simple spherical model of an explosion is not sufficient to account for observations of explosions over wide ranges of depth and yield. The explosion environment can have a large effect on explosion detection and yield estimation. The best sets of seismic observations for use in developing discrimination techniques are for high-magnitude high-yield explosions; the identification problem is most difficult for low-magnitude low-yield explosions. Most of the presently available explosion data (time, medium, depth, yield, etc.) are for explosions in a few media at the Nevada Test Site; some key questions concerning magnitude vs yield and m/sub b/ vs M/sub s/ relations can be answered only by data for explosions in other media at other locations.

  9. Insensitive detonator apparatus for initiating large failure diameter explosives

    SciTech Connect (OSTI)

    Perry, III, William Leroy

    2015-07-28

    A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.

  10. Method and system for detecting explosives

    DOE Patents [OSTI]

    Reber, Edward L.; Jewell, James K.; Rohde, Kenneth W.; Seabury, Edward H.; Blackwood, Larry G.; Edwards, Andrew J.; Derr, Kurt W.

    2009-03-10

    A method of detecting explosives in a vehicle includes providing a first rack on one side of the vehicle, the rack including a neutron generator and a plurality of gamma ray detectors; providing a second rack on another side of the vehicle, the second rack including a neutron generator and a plurality of gamma ray detectors; providing a control system, remote from the first and second racks, coupled to the neutron generators and gamma ray detectors; using the control system, causing the neutron generators to generate neutrons; and performing gamma ray spectroscopy on spectra read by the gamma ray detectors to look for a signature indicative of presence of an explosive. Various apparatus and other methods are also provided.

  11. Combined dispersion & explosion modeling in process safety

    SciTech Connect (OSTI)

    Fry, M.A.

    1996-08-01

    Computer modeling of explosions within process facilities is usually a multistep process. A procedure might be: First, accidental releases of gases are postulated and then modeled with a dispersion code. Flammable materials are analyzed to find the contours within the flammability limits. Next, the amount of material and physical extent is fed to a explosion code, which outputs the overpressure and impulse. Then the damage must be related to pressure and impulse through P-1 diagrams, which are empirically derived. A separate calculation for thermal output is also required to analyze damage from direct radiation and secondary fires. We present a modular computer architecture that can be used to determine the sensitivity of not only the input scenario, but the accuracy of each of the models used in the process. For example, we have combined computer models, which can assess damage from toxic only clouds and/or flammable clouds. The PCBLAST{sup {reg_sign}}methodology and DEGADIS have been combined into an integrated computer architecture that allows the user the ability to see damage levels for any scenario. This approach can be used with any set of dispersion and explosion models. Furthermore, at each step of the procedure, error bars are placed on the model output. These errors propagate and affect the final answer, the damage. In this way a probabilistic assessment of damage can be ascertained either from scenario variation or model inaccuracy. The accuracy of the models, both dispersion and explosion, is of importance. However, the uncertainties in the scenarios may diminish the need for highly accurate models. For example, the PCBLAST{sup {reg_sign}}computer module is based on first principles physics, and as a result is highly accurate. Combining the modeling process into a linked and interactive computer code allows one to quantitatively assess the source of the uncertainties; in the models and/or in the definition of scenarios.

  12. Waveforms Measured in Confined Thermobaric Explosion

    SciTech Connect (OSTI)

    Reichenbach, H; Neuwald, P; Kuhl, A L

    2007-05-04

    Experiments with 1.5-g Shock-Dispersed-Fuel (SDF) charges have been conducted in six different chambers. Both flake Aluminum and TNT were used as the fuel. Static pressure gauges on the chamber wall were the main diagnostic. Waveforms for explosions in air were significantly larger than those in nitrogen - thereby demonstrating a strong thermobaric (combustion) effect. This effect increases as the confinement volume decreases and the mixture richness approaches 1.

  13. The Full Function Test Explosive Generator

    SciTech Connect (OSTI)

    Reisman, D B; Javedani, J B; Griffith, L V; Ellsworth, G F; Kuklo, R M; Goerz, D A; White, A D; Tallerico, L J; Gidding, D A; Murphy, M J; Chase, J B

    2009-12-13

    We have conducted three tests of a new pulsed power device called the Full Function Test (FFT). These tests represented the culmination of an effort to establish a high energy pulsed power capability based on high explosive pulsed power (HEPP) technology. This involved an extensive computational modeling, engineering, fabrication, and fielding effort. The experiments were highly successful and a new US record for magnetic energy was obtained.

  14. Energetic Material - Explosives - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL has invented a process for creating energetic materials, including trinitrotoluene (TNT). By using a carbon dioxide environment, which reduces the amount of acid generated from the nitration reaction (orthonitrotoluene, ONT and dinitrotoluene, DNT). The process uses a surfactant, a nitrating agent, and a source of organic material to be nitrated. Description The method makes trinitrotoluene by

  15. DOE explosives safety manual. Revision 7

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This manual prescribes the Department of Energy (DOE) safety rules used to implement the DOE safety policy for operations involving explosives. This manual is applicable to all DOE facilities engaged in operations of development, manufacturing, handling, storage, transportation, processing, or testing of explosives, pyrotechnics and propellants, or assemblies containing these materials. The standards of this manual deal with the operations involving explosives, pyrotechnics and propellants, and the safe management of such operations. The design of all new explosives facilities shall conform to the requirements established in this manual and implemented in DOE 6430.1A, ``General Design Criteria Manual.`` It is not intended that existing physical facilities be changed arbitrarily to comply with these provisions, except as required by law. Existing facilities that do not comply with these standards may continue to be used for the balance of their functional life, as long as the current operation presents no significantly greater risk than that assumed when the facility was originally designed and it can be demonstrated clearly that a modification to bring the facility into compliance is not feasible. However, in the case of a major renovation, the facility must be brought into compliance with current standards. The standards are presented as either mandatory or advisory. Mandatory standards, denoted by the words ``shall,`` ``must,`` or ``will,`` are requirements that must be followed unless written authority for deviation is granted as an exemption by the DOE. Advisory standards denoted by ``should`` or ``may`` are standards that may be deviated from with a waiver granted by facility management.

  16. Dynamic Fracture Simulations of Explosively Loaded Cylinders

    SciTech Connect (OSTI)

    Arthur, Carly W.; Goto, D. M.

    2015-11-30

    This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.

  17. MAESTRO HELPS SMALL MISSOURI FARMS SAVE BIG | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MAESTRO HELPS SMALL MISSOURI FARMS SAVE BIG MAESTRO HELPS SMALL MISSOURI FARMS SAVE BIG MAESTRO HELPS SMALL MISSOURI FARMS SAVE BIG Given the rising cost of operating a farm in today's economy, many small farmers in Missouri feel the challenging economic times more than other residents. To help farmers in the state save resources and money, the Missouri Department of Agriculture (MDA), along with a number of partners, created a program known as MAESTRO, or Missouri Agricultural Energy Saving

  18. Quark mass variation constraints from Big Bang nucleosynthesis (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: Quark mass variation constraints from Big Bang nucleosynthesis Citation Details In-Document Search Title: Quark mass variation constraints from Big Bang nucleosynthesis We study the impact on the primordial abundances of light elements created of a variation of the quark masses at the time of Big Bang nucleosynthesis (BBN). In order to navigate through the particle and nuclear physics required to connect quark masses to binding energies and

  19. The Big Picture on Process Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Big Picture on Process Heating The Big Picture on Process Heating This brief provides an overview of process heating system components, energy consumption, and potential for savings. The Big Picture on Process Heating (January 2001) (71.34 KB) More Documents & Publications Install Waste Heat Recovery Systems for Fuel-Fired Furnaces Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Save Energy Now in Your Process Heating Systems

  20. Explosive Detection in Aviation Applications Using CT

    SciTech Connect (OSTI)

    Martz, H E; Crawford, C R

    2011-02-15

    CT scanners are deployed world-wide to detect explosives in checked and carry-on baggage. Though very similar to single- and dual-energy multi-slice CT scanners used today in medical imaging, some recently developed explosives detection scanners employ multiple sources and detector arrays to eliminate mechanical rotation of a gantry, photon counting detectors for spectral imaging, and limited number of views to reduce cost. For each bag scanned, the resulting reconstructed images are first processed by automated threat recognition algorithms to screen for explosives and other threats. Human operators review the images only when these automated algorithms report the presence of possible threats. The US Department of Homeland Security (DHS) has requirements for future scanners that include dealing with a larger number of threats, higher probability of detection, lower false alarm rates and lower operating costs. One tactic that DHS is pursuing to achieve these requirements is to augment the capabilities of the established security vendors with third-party algorithm developers. A third-party in this context refers to academics and companies other than the established vendors. DHS is particularly interested in exploring the model that has been used very successfully by the medical imaging industry, in which university researchers develop algorithms that are eventually deployed in commercial medical imaging equipment. The purpose of this paper is to discuss opportunities for third-parties to develop advanced reconstruction and threat detection algorithms.

  1. High pressure-resistant nonincendive emulsion explosive

    DOE Patents [OSTI]

    Ruhe, Thomas C.; Rao, Pilaka P.

    1994-01-01

    An improved emulsion explosive composition including hollow microspheres/bulking agents having high density and high strength. The hollow microspheres/bulking agents have true particle densities of about 0.2 grams per cubic centimeter or greater and include glass, siliceous, ceramic and synthetic resin microspheres, expanded minerals, and mixtures thereof. The preferred weight percentage of hollow microspheres/bulking agents in the composition ranges from 3.0 to 10.0 A chlorinated paraffin oil, also present in the improved emulsion explosive composition, imparts a higher film strength to the oil phase in the emulsion. The emulsion is rendered nonincendive by the production of sodium chloride in situ via the decomposition of sodium nitrate, a chlorinated paraffin oil, and sodium perchlorate. The air-gap sensitivity is improved by the in situ formation of monomethylamine perchlorate from dissolved monomethylamine nitrate and sodium perchlorate. The emulsion explosive composition can withstand static pressures to 139 bars and dynamic pressure loads on the order of 567 bars.

  2. Scientists train honeybees to detect explosives

    ScienceCinema (OSTI)

    None

    2014-07-24

    Members of the Los Alamos National Laboratory Stealthy Insect Sensor Project team have been able to harness the honeybee's exceptional olfactory sense by using the bees' natural reaction to nectar, a proboscis extension reflex (sticking out their tongue) to record an unmistakable response to a scent. Using Pavlovian techniques, researchers were able to train the bees to give a positive detection response via the PER when exposed to vapors from TNT, C4, and TATP explosives. The Stealthy Insect Sensor Project was born out of a global threat from the growing use of improvised explosive devices or IEDs, especially those that present a critical vulnerability for American military troops in Iraq and Afghanistan, and as an emerging danger for civilians worldwide. Current strategies to detect explosives are expensive and, in the case of trained detection dogs, too obtrusive to be used very discreetly. With bees however, they are small and discreet, offering the element of surprise. They're also are inexpensive to maintain and even easier to train than dogs. As a result of this need, initial funding for the work was provided by a development grant from the Defense Advanced Research Projects Agency.

  3. Scientists train honeybees to detect explosives

    SciTech Connect (OSTI)

    2008-03-21

    Members of the Los Alamos National Laboratory Stealthy Insect Sensor Project team have been able to harness the honeybee's exceptional olfactory sense by using the bees' natural reaction to nectar, a proboscis extension reflex (sticking out their tongue) to record an unmistakable response to a scent. Using Pavlovian techniques, researchers were able to train the bees to give a positive detection response via the PER when exposed to vapors from TNT, C4, and TATP explosives. The Stealthy Insect Sensor Project was born out of a global threat from the growing use of improvised explosive devices or IEDs, especially those that present a critical vulnerability for American military troops in Iraq and Afghanistan, and as an emerging danger for civilians worldwide. Current strategies to detect explosives are expensive and, in the case of trained detection dogs, too obtrusive to be used very discreetly. With bees however, they are small and discreet, offering the element of surprise. They're also are inexpensive to maintain and even easier to train than dogs. As a result of this need, initial funding for the work was provided by a development grant from the Defense Advanced Research Projects Agency.

  4. Sandia National Laboratories: Sandia Big Shots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CYGNUS Facebook Twitter YouTube Flickr RSS News Sandia Big Shots By Sue Major Holmes Photography By Randy Montoya Thursday, November 12, 2015 Sandia X-ray radiography workhorses reach milestones Cygnus Milestone CYGNUS MILESTONE - In this photo from 2004, now-former Sandian Isidro Molina, left, and Gene Ormond (1656-1) check over Cygnus. The dual-axis flash X-ray radiography system, which was designed by Sandia and is located at the Nevada National Security Site, has fired its 3,000th shot.

  5. Starting Small, Thinking Big - Continuum Magazine | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo of two long cabins with a view of one roof, which is covered with solar panels. In the background are forest-covered mountains. New rules for interconnecting solar power systems to the grid in the U.S. Virgin Islands have led to a significant growth in installed solar power in the territory. Photo by Don Buchanan, VIEO Starting Small, Thinking Big NREL helps communities of all sizes and types-from islands and tribes to rural villages and cities-transition to clean energy. NREL is fostering

  6. The Next Big Thing - Eric Haseltine

    ScienceCinema (OSTI)

    Eric Haseltine

    2010-01-08

    Eric Haseltine, Haseltine Partners president and former chief of Walt Disney Imagineering, presented "The Next Big Thing," on Sept. 11, at the ORNL. He described the four "early warning signs" that a scientific breakthrough is imminent, and then suggested practical ways to turn these insights into breakthrough innovations. Haseltine is former director of research at the National Security Agency and associate director for science and technology for the director of National Intelligence, former executive vice president of Walt Disney Imagineering and director of engineering for Hughes Aircraft. He has 15 patents in optics, special effects and electronic media, and more than 100 publications in science and technical journals, the web and Discover Magazine.

  7. Systematic approach to verification and validation: High explosive burn models

    SciTech Connect (OSTI)

    Menikoff, Ralph; Scovel, Christina A.

    2012-04-16

    Most material models used in numerical simulations are based on heuristics and empirically calibrated to experimental data. For a specific model, key questions are determining its domain of applicability and assessing its relative merits compared to other models. Answering these questions should be a part of model verification and validation (V and V). Here, we focus on V and V of high explosive models. Typically, model developers implemented their model in their own hydro code and use different sets of experiments to calibrate model parameters. Rarely can one find in the literature simulation results for different models of the same experiment. Consequently, it is difficult to assess objectively the relative merits of different models. This situation results in part from the fact that experimental data is scattered through the literature (articles in journals and conference proceedings) and that the printed literature does not allow the reader to obtain data from a figure in electronic form needed to make detailed comparisons among experiments and simulations. In addition, it is very time consuming to set up and run simulations to compare different models over sufficiently many experiments to cover the range of phenomena of interest. The first difficulty could be overcome if the research community were to support an online web based database. The second difficulty can be greatly reduced by automating procedures to set up and run simulations of similar types of experiments. Moreover, automated testing would be greatly facilitated if the data files obtained from a database were in a standard format that contained key experimental parameters as meta-data in a header to the data file. To illustrate our approach to V and V, we have developed a high explosive database (HED) at LANL. It now contains a large number of shock initiation experiments. Utilizing the header information in a data file from HED, we have written scripts to generate an input file for a hydro code

  8. ORNL researchers aim to make big vehicles more efficient

    ScienceCinema (OSTI)

    None

    2010-01-08

    Researchers have partnered with Knoxville Area Transit and HT Hackney trucking to make buses and big rigs more fuel-efficient.

  9. Big Flat Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Electric Coop Inc Jump to: navigation, search Name: Big Flat Electric Coop Inc Place: Montana Phone Number: 406-654-2040 Website: bigflatelectric.comindex.htm Outage Hotline:...

  10. Big Country Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    1-888-662-2232 Website: www.bigcountry.coop Facebook: https:www.facebook.compagesBig-Country-Electric-Cooperative217964055028487 Outage Hotline: 1-888-662-2232...

  11. Joint NSRC Workshop 2015: Big, Deep, and Smart Data Analytics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSRC Workshop 2015 Joint NSRC Workshop 2015: Big, Deep, and Smart Data Analytics in Materials Imaging Home Announcement Meeting REGISTRATION Call for Abstracts Abstract Submission...

  12. Big Sandy Rural Elec Coop Corp | Open Energy Information

    Open Energy Info (EERE)

    www.bigsandyrecc.com Twitter: @bigsandycoop Facebook: https:www.facebook.compagesBig-Sandy-RECC142216049157162 Outage Hotline: 888-789-7322 Outage Map:...

  13. Big Flats, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Big Flats, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.111913, -89.8079032 Show Map Loading map... "minzoom":false,"mappingse...

  14. Tiny Particles with Big Magnetic Power | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tiny Particles with Big Magnetic Power "Magnetic nanofibers" are special not only for their inherent properties as individual magnets, but also for their ability to be manipulated...

  15. Big, Deep, and Smart Data in Energy Materials Research: Atomic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big, Deep, and Smart Data in Energy Materials Research: Atomic View on Materials Functionalities Event Sponsor: Computing, Environment, and Life Sciences Seminar Start Date: Sep 22...

  16. LDRD symposium focuses on materials in extremes, big data, and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LDRD symposium focuses on materials in extremes, big data, and energy use impacts | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission...

  17. Big Data Projects on Solar Technology Evolution and Diffusion...

    Energy Savers [EERE]

    Soft Costs Big Data Projects on Solar Technology Evolution and Diffusion: Kickoff Meeting ... Graphic showing a web of people with energy bolts connecting them. Through the SEEDS ...

  18. Big Horn County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Subtype B. Places in Big Horn County, Montana Busby, Montana Crow Agency, Montana Fort Smith, Montana Hardin, Montana Lodge Grass, Montana Muddy, Montana Pryor, Montana St....

  19. BIG SUN Energy Technology Incorporation | Open Energy Information

    Open Energy Info (EERE)

    Technology Incorporation Place: Taiwan Zip: 303 Sector: Solar Product: Taiwan-based solar cell manufacturer. References: BIG SUN Energy Technology Incorporation1 This...

  20. Data, Feedback, & Awareness Lead to Big Energy Savings

    Broader source: Energy.gov (indexed) [DOE]

    Data, Feedback, & Awareness Lead to Big Energy Savings The Navy Region Southwest Metro San ... organized energy awareness program centered on energy data gathering and distribution. ...

  1. Prompt laser ignition and transition to detonation in a secondary explosive

    SciTech Connect (OSTI)

    Setchell, R.E.; Trott, W.M.

    1995-05-01

    A two-stage approach to achieving detonation in a secondary explosive was developed in previous studies in which ignition resulted from low-energy hot wires or from laser diodes. In the current study, this approach was examined in some detail for the case of ignition by a pulsed, solid-state (rod) laser. An initial series of experiments used Nd/glass, Nd/YAG, and Ti/sapphire lasers to investigate the ignition of graphite-doped HMX in highly confined optical fixtures that incorporated a fast piezoelectric pressure transducer. Experimental parameters included the laser power history and the explosive column length. The results of these experiments guided a second series of experiments in which the ignition column explosive was terminated by a thin rupture disc in contact with a transition column of low-density HMX or some other material. The transition column was terminated with a piezoelectric time-of-arrival detector for determining overall function times. Parameters investigated included different laser sources, rupture disc thicknesses, and the transition column explosive characteristics. Overall function times less than 50 microseconds were obtained, and trends established by the various parameter studies indicate that further reductions in function time can be achieved.

  2. Prompt laser ignition and transition to detonation in a secondary explosive

    SciTech Connect (OSTI)

    Setchell, R.E.; Trott, W.M.

    1994-05-01

    A two-stage approach to achieving detonation in a secondary explosive was developed in previous studies in which ignition resulted from low-energy hot wires or from laser diodes. In the current study, this approach was examined in some detail for the case of ignition by a pulsed, solid-state (rod) laser. An initial series of experiments used Nd/glass, ND/YAG, and Ti/sapphire lasers to investigate the ignition of graphite-doped HMX in highly confined optical fixtures that incorporated a fast piezoelectric pressure transducer. Experimental parameters included the laser power history and the explosive column length. The results of these experiments guided a second series of experiments in which the ignition column explosive was terminated by a thin rupture disc in contact with a transition column of low density HMX or some other material. The transition column was terminated with a piezoelectric time-of-arrival detector for determining overall function times. Parameters investigated included different laser sources, rupture disc thicknesses, and the transition column explosive characteristics. Overall function times less than 50 microseconds were obtained, and trends established by the various parameter studies indicate that further reductions in function time can be achieved.

  3. Explosive performance measurements on large, multiple-hole arrays and large masses of conventional explosive

    SciTech Connect (OSTI)

    McKown, T.O.; Eilers, D.D.; Williams, P.E.

    1994-11-01

    The COntinuous Reflectometry for Radius vs. Time EXperiment (CORRTEX) system was developed by the Los Alamos National Laboratory for determining the energy released in a nuclear explosion by measuring the position of its shock front as a function of time. The CORRTEX system, fielding techniques, and the methods and software for data reduction and analysis were developed over a 15 year period with hundreds of measurements made on nuclear tests and high explosive experiments. CORRTEX is a compact, portable, fast-sampling, microprocessor-controlled system, based on time domain reflectometry, requiring only a 24 volt power source and a sensing element. Only the sensing element (a length of 50 ohm coaxial cable) is expended during the detonation. In 1979, the CORRTEX system was shown to be ideally suited for chemical explosive performance measurements. Its utility for diagnosing chemical explosives was further demonstrated with successful measurements on large multiple-hole chemical shots in rock quarries and strip mines. Accurate timing of the detonation of sequenced or ripple fired arrays, as well as data characterizing the initiation, explosive performance and detonation anomalies are obtained. This information can serve as the basis for empirical or modeled improvements to blasting operations. A summary of the special CORRTEX features and well developed analysis techniques together with the experiment designs, data, and conclusions regarding the measurements and explosive performance from several array detonations and the Chemical Kiloton Experiment, 2.9 million pounds of an ammonium nitrate-fuel oil (ANFO) and emulsion blend conducted on the Nevada Test Site in 1993, are presented.

  4. A new 40 MA ranchero explosive pulsed power system

    SciTech Connect (OSTI)

    Goforth, James; Herrera, Dennis; Oona, Hank; Torres, David; Atchison, W L; Colgate, S A; Griego, J R; Guzik, J; Holtkamp, D B; Idzorek, G; Kaul, A; Kirkpatrick, R C; Menikoff, R; Reardon, P T; Reinovsky, R E; Rousculp, C L; Sgro, A G; Tabaka, L J; Tierney, T E; Watt, R G

    2009-01-01

    We are developing a new high explosive pulsed power (HEPP) system based on the 1.4 m long Ranchero generator which was developed in 1999 for driving solid density z-pinch loads. The new application requires approximately 40 MA to implode similar liners, but the liners cannot tolerate the 65 {micro}s, 3 MA current pulse associated with delivering the initial magnetic flux to the 200 nH generator. To circumvent this problem, we have designed a system with an internal start switch and four explosively formed fuse (EFF) opening switches. The integral start switch is installed between the output glide plane and the armature. It functions in the same manner as a standard input crowbar switch when armature motion begins, but initially isolates the load. The circuit is completed during the flux loading phase using post hole convolutes. Each convolute attaches the inner (coaxial) output transmission line to the outside of the outer coax through a penetration of the outer coaxial line. The attachment is made with the conductor of an EFF at each location. The EFFs conduct 0.75 MA each, and are actuated just after the internal start switch connects to the load. EFFs operating at these parameters have been tested in the past. The post hole convolutes must withstand as much as 80 kV at peak dl/dt during the Ranchero load current pulse. We describe the design of this new HEPP system in detail, and give the experimental results available at conference time. In addition, we discuss the work we are doing to test the upper current limits of a single standard size Ranchero module. Calculations have suggested that the generator could function at up to {approx}120 MA, the rule of thumb we follow (1 MA/cm) suggests 90 MA, and simple flux compression calculations, along with the {approx}4 MA seed current available from our capacitor bank, suggests 118 MA is the currently available upper limit.

  5. Argonne OutLoud: Computation, Big Data, and the Future of Cities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computation, Big Data, and the Future of Cities Argonne OutLoud: Computation, Big Data, and the Future of Cities 1 of 10 Argonne OutLoud: Computation, Big Data, and the Future of...

  6. 2015 Was a Big Year for Secretary Moniz | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15 Was a Big Year for Secretary Moniz 2015 Was a Big Year for Secretary Moniz December 23, 2015 - 10:00am Addthis 2015 Was a Big Year for Secretary Moniz Pat Adams Pat Adams ...

  7. Examination of phase transformations and decomposition chemistry in thermally aged thin-film explosives

    SciTech Connect (OSTI)

    Erickson, K.L.; Trott, W.M.; Renlund, A.M.

    1993-09-01

    To develop predictive models for the response of weapon systems to abnormal thermal environments, such as cookoff, an improved understanding of temperature-dependent thermophysical phenomena (such as phase transformations) and decomposition chemistry in totally confined explosive samples is needed. It is particularly important to examine the effects of maintaining-intimate contact between the decomposition products and the remaining condensed-phase explosive during slow reaction at elevated temperatures since confinement of the decomposition products may significantly affect thermophysical phenomena and decomposition reaction rates. The purpose of this work has been to examine experimentally the effects on condensed-phase chemistry which result when decomposition products remain in intimate contact with the reacting explosive during isothermal aging experiments at temperatures below those of the DTA exotherm for the explosive. To provide confinement, minimize vapor space, and permit condensed-phase chemical analysis, experiments were done using thin-film samples of the explosive, which were pressed and sealed between two infrared-transmitting windows, so that condensed-phase chemistry could be monitored using infrared spectroscopy. Experiments were done with NC, HMX, HMX-NC composite, and RDX samples. Results from the experiments with NC showed that for some decomposition mechanisms, the reaction rates for confined samples compared favorably with published reaction rates from unconfined samples. However, the results also demonstrated that for other mechanisms, the reaction rates were significantly affected by confinement of the decomposition products. The experiments with HMX and RDX indicated that some decomposition occurred at temperatures well below the temperatures of the respective DTA exotherms, and the experiments with HMX-NC composite samples showed some interaction between NC and HMX at temperatures as low as 150{degrees}C.

  8. New model more accurately tracks gases for underground nuclear explosion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    detection Model tracks gases for underground nuclear explosion detection New model more accurately tracks gases for underground nuclear explosion detection Scientists have developed a new, more thorough method for detecting underground nuclear explosions by coupling two fundamental elements-seismic models with gas-flow models. December 17, 2015 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and

  9. Quadractic Model of Thermodynamic States in SDF Explosions

    SciTech Connect (OSTI)

    Kuhl, A L; Khasainov, B

    2007-05-04

    We study the thermodynamic states encountered during Shock-Dispersed-Fuel (SDF) explosions. Such explosions contain up to six components: three fuels (PETN, TNT and Aluminum) and their products corresponding to stoichiometric combustion with air. We establish the loci in thermodynamic state space that correctly describes the behavior of the components. Results are fit with quadratic functions that serve as fast equations of state suitable for 3D numerical simulations of SDF explosions.

  10. Compacting Plastic-Bonded Explosive Molding Powders to Dense Solids

    SciTech Connect (OSTI)

    B. Olinger

    2005-04-15

    Dense solid high explosives are made by compacting plastic-bonded explosive molding powders with high pressures and temperatures for extended periods of time. The density is influenced by manufacturing processes of the powders, compaction temperature, the magnitude of compaction pressure, pressure duration, and number of repeated applications of pressure. The internal density variation of compacted explosives depends on method of compaction and the material being compacted.

  11. NNSA honors Pantex explosives experts | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) honors Pantex explosives experts Wednesday, March 12, 2014 - 1:00pm A group of explosives experts have been honored with a Defense Programs Award of Excellence for their help in securing supply of a critical material for the Departments of Energy and Defense. The four Pantexans, Tod Botcher, Tony Dutton, Ken Franklin and Kathy Mitchell, played a leadership role in a Defense Logistics Agency team that was tasked with developing a supply of a type of high explosives

  12. Mesoscale modeling of metal-loaded high explosives

    SciTech Connect (OSTI)

    Bdzil, John Bohdan [Los Alamos National Laboratory; Lieberthal, Brandon [UNIV OF ILLINOIS; Srewart, Donald S [UNIV OF ILLINOIS

    2010-01-01

    We describe a 3D approach to modeling multi-phase blast explosive, which is primarily condensed explosive by volume with inert embedded particles. These embedded particles are uniform in size and placed on the array of a regular lattice. The asymptotic theory of detonation shock dynamics governs the detonation shock propagation in the explosive. Mesoscale hydrodynamic simulations are used to show how the particles are compressed, deformed, and accelerated by the high-speed detonation products flow.

  13. Upscaling Laws in Premixed Explosions | Argonne Leadership Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Isosurface of temperature showing the flame wrinkling and acceleration after its interaction with obstacles during the simulation on an explosion Isosurface of temperature showing the flame wrinkling and acceleration after its interaction with obstacles during the simulation on an explosion. Projection of 2D cut planes of velocity field (bottom) and heat release (right). Upscaling Laws in Premixed Explosions PI Name: Thierry Poinsot PI Email: poinsot@cerfacs.fr Institution: CERFACS

  14. Enterprise Assessments Review of Explosives Safety Program Implementation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at the Pantex Plant - November 2015 | Department of Energy Explosives Safety Program Implementation at the Pantex Plant - November 2015 Enterprise Assessments Review of Explosives Safety Program Implementation at the Pantex Plant - November 2015 November 2015 Review of the Explosives Safety Program Implementation at the Pantex Plant The U.S. Department of Energy (DOE) Office of Enterprise Assessments (EA), Office of Environment, Safety and Health Assessments, conducted an independent review

  15. Method and system for detecting an explosive

    DOE Patents [OSTI]

    Reber, Edward L.; Rohde, Kenneth W.; Blackwood, Larry G.

    2010-12-07

    A method and system for detecting at least one explosive in a vehicle using a neutron generator and a plurality of NaI detectors. Spectra read from the detectors is calibrated by performing Gaussian peak fitting to define peak regions, locating a Na peak and an annihilation peak doublet, assigning a predetermined energy level to one peak in the doublet, and predicting a hydrogen peak location based on a location of at least one peak of the doublet. The spectra are gain shifted to a common calibration, summed for respective groups of NaI detectors, and nitrogen detection analysis performed on the summed spectra for each group.

  16. Design Principles for Effective Knowledge Discovery from Big Data

    SciTech Connect (OSTI)

    Begoli, Edmon; Horey, James L

    2012-01-01

    Big data phenomenon refers to the practice of collection and processing of very large data sets and associated systems and algorithms used to analyze these massive datasets. Architectures for big data usually range across multiple machines and clusters, and they commonly consist of multiple special purpose sub-systems. Coupled with the knowledge discovery process, big data movement offers many unique opportunities for organizations to benefit (with respect to new insights, business optimizations, etc.). However, due to the difficulty of analyzing such large datasets, big data presents unique systems engineering and architectural challenges. In this paper, we present three sys- tem design principles that can inform organizations on effective analytic and data collection processes, system organization, and data dissemination practices. The principles presented derive from our own research and development experiences with big data problems from various federal agencies, and we illustrate each principle with our own experiences and recommendations.

  17. Method for digesting a nitro-bearing explosive compound

    DOE Patents [OSTI]

    Shah, Manish M.

    2000-01-01

    The present invention is a process wherein superoxide radicals from superoxide salt are used to break down the explosive compounds. The process has an excellent reaction rate for degrading explosives, and operates at ambient temperature and atmospheric pressure in aqueous or non-aqueous conditions. Because the superoxide molecules are small, much smaller than an enzyme molecule for example, they can penetrate the microstructure of plastic explosives faster. The superoxide salt generates reactive hydroxyl radicals, which can destroy other organic contaminants, if necessary, along with digesting the explosive nitro-bearing compound.

  18. On-site Analysis of Explosives in Various Matrices (Conference...

    Office of Scientific and Technical Information (OSTI)

    States) Atmospheric System Research Bartlesville ... Atmospheric Radiation Measurement (ARM) Program (United ... SciTech Connect Conference: On-site Analysis of Explosives ...

  19. Construction on Pantex High Explosives Pressing Facility Reaches...

    National Nuclear Security Administration (NNSA)

    Construction on Pantex High Explosives Pressing Facility Reaches 85% Mark January 03, 2014 ... passed the 85 percent construction completion mark and is on schedule and under budget. ...

  20. Draft Environmental Assessment for the High Explosive Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 18 4.1 Water Resources ... Explosive Science and Engineering Facility Pantex Plant ... unit: 12 ft. wide 2 ft. deep 6 ft. high. Second ...

  1. United States Marks 20 Years without Underground Nuclear Explosive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    United States Marks 20 Years without Underground Nuclear Explosive Testing September 21, 2012 WASHINGTON, DC -- Twenty years ago, on September 23, 1992, the United States conducted ...

  2. NNSA, Pantex Break Ground on High Explosives Pressing Facility...

    National Nuclear Security Administration (NNSA)

    ... The Pantex Plant has a long history with high explosives. HE capabilities developed ... U.S. nuclear weapons stockpile without nuclear testing; reduces the global danger from weapons ...

  3. An electromagnetic and thermodynamic lumped parameter model of an explosively driven regenerative magnetohydrodynamic generator

    SciTech Connect (OSTI)

    Morrison, J.L.

    1992-12-01

    The objective of this research is to develop a simple, yet accurate, lumped parameter mathematical model for an explosively driven magnetohydrodynamic generator that can predict the pulse power variables of voltage and current from startup through regenerative operation. The inputs to the model will be the plasma properties entering the generator as predicted by the explosive shock model of Reference [1]. The strategy used was to simplify electromagnetic and thermodynamic three dimensional effects into a zero dimensional model. The model will provide a convenient tool for researchers to optimize designs to be used in pulse power applications. The model is validated using experimental data of Reference [1]. An overview of the operation of the explosively driven generator is first presented. Then a simplified electrical circuit model that describes basic performance of the device is developed. Then a lumped parameter model that incorporates the coupled electromagnetic and thermodynamic effects that govern generator performance is described and developed. The model is based on fundamental physical principles and parameters that were either obtained directly from design data or estimated from experimental data. The model was used to obtain parameter sensitivities and predict beyond the limits observed in the experiments to the levels desired by the potential Department of Defense sponsors. The model identifies process limitations that provide direction for future research.

  4. The Economics of Big Area Addtiive Manufacturing

    SciTech Connect (OSTI)

    Post, Brian; Lloyd, Peter D; Lindahl, John; Lind, Randall F; Love, Lonnie J; Kunc, Vlastimil

    2016-01-01

    Case studies on the economics of Additive Manufacturing (AM) suggest that processing time is the dominant cost in manufacturing. Most additive processes have similar performance metrics: small part sizes, low production rates and expensive feedstocks. Big Area Additive Manufacturing is based on transitioning polymer extrusion technology from a wire to a pellet feedstock. Utilizing pellets significantly increases deposition speed and lowers material cost by utilizing low cost injection molding feedstock. The use of carbon fiber reinforced polymers eliminates the need for a heated chamber, significantly reducing machine power requirements and size constraints. We hypothesize that the increase in productivity coupled with decrease in feedstock and energy costs will enable AM to become more competitive with conventional manufacturing processes for many applications. As a test case, we compare the cost of using traditional fused deposition modeling (FDM) with BAAM for additively manufacturing composite tooling.

  5. #MySmallAct: Everyday People Making a Big Difference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    #MySmallAct: Everyday People Making a Big Difference #MySmallAct: Everyday People Making a Big Difference Addthis Topic Renewables Science & Innovation Science Education

  6. Laser-driven miniature flyer plates for shock initiation of secondary explosives

    SciTech Connect (OSTI)

    Paisley, D.L.

    1989-01-01

    Miniature flyer plates (<1-mm diameter X <5-micron thick) of aluminum and other materials are accelerated by a 10-ns pulsed Nd:YAG laser to velocities >5 km/s. Velocity profiles are recorded by velocity interferometry (VISAR) techniques and impact planarity by electronic streak photography. Techniques for improving energy coupling from laser to flyer plate will be discussed. Flyer plate performance parameters will be compared with material properties. The P/sup n/t criteria for shock initiation of explosives will be compared for various flyer materials, pressure, and pulse duration. Performance of secondary explosives (PETN, HNS, HMX, various PBX, others) will be reported. These data will detail the experimental effect of t (in P/sup n/t) approaching values of a few nanoseconds. 9 refs., 5 figs.

  7. SHOCK INITIATION EXPERIMENTS ON THE TATB BASED EXPLOSIVE RX-03-GO WITH IGNITION AND GROWTH MODELING

    SciTech Connect (OSTI)

    Vandersall, K S; Garcia, F; Tarver, C M

    2009-06-23

    Shock initiation experiments on the TATB based explosive RX-03-GO (92.5% TATB, 7.5% Cytop A by weight) were performed to obtain in-situ pressure gauge data, characterize the run-distance-to-detonation behavior, and calculate Ignition and Growth modeling parameters. A 101 mm diameter propellant driven gas gun was utilized to initiate the explosive sample with manganin piezoresistive pressure gauge packages placed between sample slices. The RX-03-GO formulation utilized is similar to that of LX-17 (92.5% TATB, 7.5% Kel-f by weight) with the notable differences of a new binder material and TATB that has been dissolved and recrystallized in order to improve the purity and morphology. The shock sensitivity will be compared with that of prior data on LX-17 and other TATB formulations. Ignition and Growth modeling parameters were obtained with a reasonable fit to the experimental data.

  8. Explosive Release Atmospheric Dispersal 3.2

    Energy Science and Technology Software Center (OSTI)

    2001-06-26

    ERAD (Explosive Release Atmospheric Dispersal) is a 3D numerical transport and diffusion model, used to model the consequences associated with the buoyant (or nonbuoyant) dispersal of radioactive material It incorporates an integral plume rise model to simulate the buoyant rise of heated gases following an explosive detonation. treating buoyancy effects from time zero onward, eliminating the need for the stabilized doud assumption, and enabling the penetration of inversions. Modeling of the atmospheric boundary layer usesmore » contemporary parameterization based on scaling theories derived from observational, laboratory and numerical studies. A Monte Carlo stochastic process simulates particle dispersion. Results were validated for both dose and deposition against measurements taken during Operation Roller Coaster (a joint US-UK test performed at NTS). Meteorology is defined using a single vertical sounding containing wind speed and direction and temperature as a function of height. Post processing applies 50-year CEDE DCFs (either ICRP 26 or 60) to determine the contribution of the relevant dose pathways (inhalation, submersion, and ground shine) as well as the total dose received. Dose and deposition contours are overlaid on a fully integrated worldwide GIS and tabulates hearth effects (fatalities and casualties) to resident population. The software runs on a laptop and takes less than 2 minutes to process. The Municipal version of ERAD does not include the ability to model the mitigation effects of aqueous foam.« less

  9. Delayed signatures of underground nuclear explosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; Ruddle, David G.; Wagoner, Jeffrey L.; Myers, Katherine B. L.; Emer, Dudley F.; Drellack, Sigmund L.; Chipman, Veraun D.

    2016-03-16

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. Here, we observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be anmore » indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). In conclusion, our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.« less

  10. Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-01-22

    This Order establishes requirements to implement the nuclear explosive security and use control elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts/deliberate unauthorized use. Cancels DOE O 452.4A. Canceled by DOE O 452.4C.

  11. Multi-megampere current interruption from explosive deformation of conductors

    SciTech Connect (OSTI)

    Goforth, J.H.; Williams, A.H.; Marsh, S.P.

    1985-01-01

    Two approaches for using explosives to interrupt current flowing in solid conductors are described. One concept uses explosives to extrude the switch conductor into thin regions that fuse due to current in the switch. A preliminary scaling law is presented. The second approach employs dielectric jets to sever current carrying conductors. A feasibility experiment and an improved design are described.

  12. Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-11-19

    The Order establishes requirements to implement the nuclear explosive security and use control (UC) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts (DUAs), deliberate unauthorized use (DUU), and denial of authorized use (DAU).

  13. Electrofuels: Tiny Organisms Making a Big Impact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrofuels: Tiny Organisms Making a Big Impact Electrofuels: Tiny Organisms Making a Big Impact February 16, 2012 - 12:30pm Addthis Electrofuels: Tiny Organisms Making a Big Impact Alexa McClanahan Communications Support Contractor to ARPA-E They say a picture is worth a thousand words - but what happens when what you want to look at is impossible to see? That's where the Advanced Research Projects Agency-Energy's Electrofuels program comes in. The 13 projects that make up the program seek to

  14. Research Activities at Fermilab for Big Data Movement

    SciTech Connect (OSTI)

    Mhashilkar, Parag; Wu, Wenji; Kim, Hyun W; Garzoglio, Gabriele; Dykstra, Dave; Slyz, Marko; DeMar, Phil

    2013-01-01

    Adaptation of 100GE Networking Infrastructure is the next step towards management of Big Data. Being the US Tier-1 Center for the Large Hadron Collider's (LHC) Compact Muon Solenoid (CMS) experiment and the central data center for several other large-scale research collaborations, Fermilab has to constantly deal with the scaling and wide-area distribution challenges of the big data. In this paper, we will describe some of the challenges involved in the movement of big data over 100GE infrastructure and the research activities at Fermilab to address these challenges.

  15. Investigation of Explosively Driven Fragmentation of Metals - Two Dimensional Fracture and Fragmentation of Metal Shells: Progress Report II

    SciTech Connect (OSTI)

    Grady, D

    2003-02-01

    High explosive enclosed by a metal case qualitatively describes an essential component of high energy systems of importance to the Department of Energy. Detonation of the high explosive causes intense transient pressure loading of the metal following arrival of normal or obliquely incident explosive detonation wave. Subsequent expansion and deformation of the metal case leads to eventual rupture and the opening of fractures and fissures. Details of the rupture process are critical to performance of the system. Consequently, it is essential that the material and kinematic issues governing the processes of dynamic loading and subsequent failure of an explosive-metal case component within a functioning system be adequately understood. Among the reasons are to quantify existing performance, characterize potential degradation of performance resulting from system aging, and optimizing or maintaining system performance through implementation of structural or material changes. The physical and engineering issues underlying this dynamic response and failure phenomena are not adequately understood. The purpose of the present program is to identify the key issues and develop theoretical, computational and experimental models needed to achieve a satisfactory theoretical and analysis framework for analysis of metal case failure in the explosive environment. Specific tasks within the present program include: (1) Models and theories currently being pursued based on physical principles of both the statistical fragmentation concepts of Mott and the energy-based concept of others show promise of providing the analytic and computational methodology capable of predicting explosion-induced fracture and fragmentation of metal components. Experimental studies initiated in the earlier effort offer promise to provide critical test data for validation. The present task shall involve the further refinement and development of the dynamic failure and fragmentation models and theories, and the

  16. Burn propagation in a PBX 9501 thermal explosion

    SciTech Connect (OSTI)

    Henson, B. F.; Smilowitz, L.; Romero, J. J.; Sandstrom, M. M.; Asay, B. W.; Schwartz, C.; Saunders, A.; Merrill, F.; Morris, C.; Murray, M. M.; McNeil, W. V.; Marr-Lyon, M.; Rightley, P. M.

    2007-12-12

    We have applied proton radiography to study the conversion of solid density to gaseous combustion products subsequent to ignition of a thermal explosion in PBX 9501. We apply a thermal boundary condition to the cylindrical walls of the case, ending with an induction period at 205 C. We then introduce a laser pulse that accelerates the thermal ignition and synchronizes the explosion with the proton accelerator. We then obtain fast, synchronized images of the evolution of density loss with few microsecond resolution during the approximately 100 microsecond duration of the explosion. We present images of the solid explosive during the explosion and discuss measured rates and assumed mechanisms of burning the role of pressure in this internal burning.

  17. HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS

    SciTech Connect (OSTI)

    Leishear, R

    2010-05-02

    Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

  18. Trace Explosive Detection using Photothermal Deflection Spectroscopy

    SciTech Connect (OSTI)

    Krause, Adam R; Van Neste, Charles W; Senesac, Larry R; Thundat, Thomas George; Finot, Eric

    2008-01-01

    Satisfying the conditions of high sensitivity and high selectivity using portable sensors that are also reversible is a challenge. Miniature sensors such as microcantilevers offer high sensitivity but suffer from poor selectivity due to the lack of sufficiently selective receptors. Although many of the mass deployable spectroscopic techniques provide high selectivity, they do not have high sensitivity. Here, we show that this challenge can be overcome by combining photothermal spectroscopy on a bimaterial microcantilever with the mass induced change in the cantilever's resonance frequency. Detection using adsorption-induced resonant frequency shift together with photothermal deflection spectroscopy shows extremely high selectivity with a subnanogram limit of detection for vapor phase adsorbed explosives, such as pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and trinitrotoluene (TNT).

  19. Multistage reaction pathways in detonating high explosives

    SciTech Connect (OSTI)

    Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Nomura, Ken-ichi; Vashishta, Priya

    2014-11-17

    Atomistic mechanisms underlying the reaction time and intermediate reaction products of detonating high explosives far from equilibrium have been elusive. This is because detonation is one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. Here, large spatiotemporal-scale reactive molecular dynamics simulations validated by quantum molecular dynamics simulations reveal a two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine crystal. Rapid production of N{sub 2} and H{sub 2}O within ?10 ps is followed by delayed production of CO molecules beyond ns. We found that further decomposition towards the final products is inhibited by the formation of large metastable carbon- and oxygen-rich clusters with fractal geometry. In addition, we found distinct unimolecular and intermolecular reaction pathways, respectively, for the rapid N{sub 2} and H{sub 2}O productions.

  20. CRAD, Explosives Safety- February 19, 2015 (EA CRAD 32-01, Rev. 0)

    Broader source: Energy.gov [DOE]

    CRAD, Explosives Safety – February 19, 2015 (EA CRAD 32-01, Rev. 0) Explosives Safety Criteria Review and Approach Document (EA CRAD 32-01, Rev. 0)

  1. Big Horn Rural Electric Co | Open Energy Information

    Open Energy Info (EERE)

    307-568-2419 Website: www.bighornrea.com Facebook: https:www.facebook.compagesBig-Horn-Rural-Electric Outage Hotline: 1-800-564-2419 References: EIA Form EIA-861 Final...

  2. Big Horn County Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    County Elec Coop, Inc Jump to: navigation, search Name: Big Horn County Elec Coop, Inc Place: Montana Phone Number: (406) 665-2830 Website: www.bhcec.com Outage Hotline: (406)...

  3. Big Bend Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Electric Coop, Inc Jump to: navigation, search Name: Big Bend Electric Coop, Inc Place: Washington Phone Number: 509-659-1700; 866-844-2363 -- After Hours: 509-659-0487;...

  4. City of Big Stone City, South Dakota (Utility Company) | Open...

    Open Energy Info (EERE)

    City, South Dakota (Utility Company) Jump to: navigation, search Name: City of Big Stone City Place: South Dakota Phone Number: (605) 862-8121 Website: www.bigstonecitysd.govoffice...

  5. Next Big Idea coming September 14-15

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Big Idea Coming September 14-15 Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec. 2015-Jan. 2016 all issues All...

  6. Big Bear City, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Big Bear City is a census-designated place in San Bernardino County, California.1...

  7. Big River, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Big River is a census-designated place in San Bernardino County, California.1 References...

  8. Big Bend, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Big Bend is a village in Waukesha County, Wisconsin. It falls under Wisconsin's 1st...

  9. Big Horn County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Big Horn County is a county in Wyoming. Its FIPS County Code is 003. It is classified as...

  10. Big Rock, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Big Rock is a village in Kane County, Illinois.1 References US Census Bureau...

  11. Big Bear Lake, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Big Bear Lake is a city in San Bernardino County, California. It falls under California's...

  12. Big performance gains at NERSC hack-a-thon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization hack-a-thon Big performance gains at NERSC hack-a-thon February 27, 2015 by Jack Deslippe & Richard Gerber At this year's NERSC user group meeting we tried something...

  13. Building-Integrated Solar Panels at BigHorn

    Broader source: Energy.gov [DOE]

    This photograph features the building-integrated photovoltaic (PV) panels at BigHorn Home Improvement Center, installed on the south-facing roof. The silicon PV modules were wired into three arrays...

  14. At Princeton Plasma Physics Laboratory, buying small is a big...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    At Princeton Plasma Physics Laboratory, buying small is a big win By Gale Scott May 23, ... When scientists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory ...

  15. The Big Thaw: 1663 Science and Technology Magazine | Los National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THE BIG THAW Frozen soil is thawing all over the arctic, with consequences that are potentially destructive and difficult to predict. But predictability is key to any plan of...

  16. Eliot Feibush leads new Princeton consortium to visualize Big...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eliot Feibush leads new Princeton consortium to visualize Big Data By John Greenwald April 22, 2015 Tweet Widget Google Plus One Share on Facebook Eliot Feibush (Photo by Elle ...

  17. Eliot Feibush leads new Princeton consortium to visualize Big...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eliot Feibush leads new Princeton consortium to visualize Big Data By John Greenwald April 20, 2015 Tweet Widget Google Plus One Share on Facebook Eliot Feibush (Photo by Elle ...

  18. SC08HPC1_Big Picture.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... called "global scratch," that allow users to access nearly all their data regardless of the Big-picture Storage Approach Re-thinking data strategies is critical to keeping ...

  19. ALCF's new data science program targets "big data" problems ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALCF's new data science program targets "big data" problems Author: Laura Wolf April 1, 2016 Facebook Twitter LinkedIn Google E-mail Printer-friendly version The Argonne Leadership ...

  20. Big Green Bus: A Vehicle for Change | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The Big Green Bus rolled into Washington, D.C., and parked outside the Department of Energy offices Monday to showcase its clean energy features. | Photo Courtesy of Joshua Delung ...

  1. Big Things from Small Beginnings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Big Things from Small Beginnings May 15, 2013 Presenter: D. Bullen on behalf of Peter Winokur, Ph.D., Chairman Defense Nuclear Facilities Safety Board. 2013 Special ISM Champions ...

  2. New Interactive Map Shows Big Potential for America's Wind Energy...

    Energy Savers [EERE]

    Interactive Map Shows Big Potential for America's Wind Energy Future New Interactive Map ... Our new Wind Vision Report seeks to answer those questions and more, using data from a ...

  3. From MOOC to MIIC: Can Effective Learning Be Big? | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9:30am to 11:00am Science On Saturday MBG Auditorium From MOOC to MIIC: Can Effective Learning Be Big? Mung Chiang, Arthur LeGrand Doty Professor of Electrical Engineering...

  4. EIS-0377: Big Stone II Power Plant and Transmission Project

    Broader source: Energy.gov [DOE]

    A systems study was carried out to identify the most appropriate locations to interconnect the proposed Big Stone II power plant to the regional utility grid. The study also identified transmission...

  5. The Explosion Mechanism of Core-Collapse Supernovae: Progress in Supernova Theory and Experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Foglizzo, Thierry; Kazeroni, Rémi; Guilet, Jérôme; Masset, Frédéric; González, Matthias; Krueger, Brendan K.; Novak, Jérôme; Oertel, Micaela; Margueron, Jérôme; Faure, Julien; et al

    2015-03-17

    The explosion of core-collapse supernova depends on a sequence of events taking place in less than a second in a region of a few hundred kilometers at the center of a supergiant star, after the stellar core approaches the Chandrasekhar mass and collapses into a proto-neutron star, and before a shock wave is launched across the stellar envelope. Theoretical efforts to understand stellar death focus on the mechanism which transforms the collapse into an explosion. Progress in understanding this mechanism is reviewed with particular attention to its asymmetric character. We highlight a series of successful studies connecting observations of supernovamore » remnants and pulsars properties to the theory of core-collapse using numerical simulations. The encouraging results from first principles models in axisymmetric simulations is tempered by new puzzles in 3D. The diversity of explosion paths and the dependence on the pre-collapse stellar structure is stressed, as well as the need to gain a better understanding of hydrodynamical and MHD instabilities such as SASI and neutrino-driven convection. The shallow water analogy of shock dynamics is presented as a comparative system where buoyancy effects are absent. This dynamical system can be studied numerically and also experimentally with a water fountain. Lastly, we analyse the potential of this complementary research tool for supernova theory. We also review its potential for public outreach in science museums.« less

  6. The Explosion Mechanism of Core-Collapse Supernovae: Progress in Supernova Theory and Experiments

    SciTech Connect (OSTI)

    Foglizzo, Thierry; Kazeroni, Rémi; Guilet, Jérôme; Masset, Frédéric; González, Matthias; Krueger, Brendan K.; Novak, Jérôme; Faure, Julien; Martin, Noël; Blottiau, Patrick; Peres, Bruno; Durand, Gilles

    2015-03-17

    The explosion of core-collapse supernova depends on a sequence of events taking place in less than a second in a region of a few hundred kilometers at the center of a supergiant star, after the stellar core approaches the Chandrasekhar mass and collapses into a proto-neutron star, and before a shock wave is launched across the stellar envelope. Theoretical efforts to understand stellar death focus on the mechanism which transforms the collapse into an explosion. Progress in understanding this mechanism is reviewed with particular attention to its asymmetric character. We highlight a series of successful studies connecting observations of supernova remnants and pulsars properties to the theory of core-collapse using numerical simulations. The encouraging results from first principles models in axisymmetric simulations is tempered by new puzzles in 3D. The diversity of explosion paths and the dependence on the pre-collapse stellar structure is stressed, as well as the need to gain a better understanding of hydrodynamical and MHD instabilities such as SASI and neutrino-driven convection. The shallow water analogy of shock dynamics is presented as a comparative system where buoyancy effects are absent. This dynamical system can be studied numerically and also experimentally with a water fountain. Lastly, we analyse the potential of this complementary research tool for supernova theory. We also review its potential for public outreach in science museums.

  7. Influence of emission threshold of explosive emission cathodes on current waveform in foilless diodes

    SciTech Connect (OSTI)

    Wu, P.; Liu, G. Z.; Huo, S. F.; Sun, J.; Chen, C. H.

    2015-08-15

    The emission threshold of explosive emission cathodes (EECs) is an important factor for beam quality. It can affect the explosive emission delay time, the plasma expansion process on the cathode surface, and even the current amplitude when the current is not fully space-charge-limited. This paper researches the influence of the emission threshold of an annular EEC on the current waveform in a foilless diode when the current is measured by a Rogowski coil. The particle-in-cell simulation which is performed under some tolerable and necessary simplifications shows that the long explosive emission delay time of high-threshold cathodes may leave an apparent peak of displacement current on the rise edge of the current waveform, and this will occur only when the electron emission starts after this peak. The experimental researches, which are performed under a diode voltage of 1 MV and a repetitive frequency of 20 Hz, demonstrate that the graphite cathode has a lower emission threshold and a longer lifetime than the stainless steel cathode according to the variation of the peak of displacement current on the rise edge of the current waveform.

  8. C-Safe Image Gallery from the Center for the Simulation of Accidental Fires and Explosions

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The University of Utah created an alliance with the DOE Advanced Simulation and Computing (ASC) program to form the Center for the Simulation of Accidental Fires and Explosions (C-SAFE). The Center focuses specifically on providing state-of-the-art, science-based tools for the numerical simulation of accidental fires and explosions, especially within the context of handling and storage of highly flammable materials. The objective of C-SAFE is to provide a system comprising a problem-solving environment in which fundamental chemistry and engineering physics are fully coupled with non-linear solvers, optimization, computational steering, visualization and experimental data verification. The availability of simulations using this system will help to better evaluate the risks and safety issues associated with fires and explosions. The scientific images at this website provide technical views of various flame types and configurations (http://www.csafe.utah.edu/Information/summary.html). See also the Container Dynamics presentations at http://www.csafe.utah.edu/Teams/ContainerDynamics/cd_presentations.html.

  9. Nanotechnology: Small Materials Making a Big Impact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanotechnology: Small Materials Making a Big Impact Nanotechnology: Small Materials Making a Big Impact December 14, 2010 - 12:35pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs This past Thursday, Secretary Chu delivered remarks to the Nanotechnology Innovation Summit in National Harbor, Maryland on how breakthroughs in nanotechnology are poised to transform the energy landscape. According to the National Nanotechnology Initiative,

  10. Big Data Projects on Solar Technology Evolution and Diffusion: Kickoff

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting | Department of Energy Soft Costs » Big Data Projects on Solar Technology Evolution and Diffusion: Kickoff Meeting Big Data Projects on Solar Technology Evolution and Diffusion: Kickoff Meeting Graphic showing a web of people with energy bolts connecting them. Through the SEEDS program, seven projects are investigating strategies to accelerate the pace of change for solar energy technologies using cutting-edge analytical and computational tools, real-world market data, and pilot

  11. At Vogtle, Big Results with Nuclear Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    At Vogtle, Big Results with Nuclear Power At Vogtle, Big Results with Nuclear Power February 20, 2014 - 1:29pm Addthis Construction work inside the Vogtle 3 and 4 module assembly building. | Photo courtesy of Georgia Power Company. Construction work inside the Vogtle 3 and 4 module assembly building. | Photo courtesy of Georgia Power Company. A look inside the Vogtle Unite 3 containment vessel bottom head. | Photo courtesy of Georgia Power Company. A look inside the Vogtle Unite 3 containment

  12. Win big prizes in new summer reading contest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Win big prizes in new summer reading contest Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Win big prizes in new summer reading contest Author Rudolfo Anaya partners with Los Alamos Lab to launch inaugural program. April 27, 2016 Rudolfo Anaya's first children's book was The Farolitos of Christmas, published in 1995. Put it on your child's summer reading list as part of the Rudolfo

  13. LANL Deliverable to the Big Sky Carbon Sequestration Partnership:

    Office of Scientific and Technical Information (OSTI)

    Preliminary CO2-PENS model (Technical Report) | SciTech Connect LANL Deliverable to the Big Sky Carbon Sequestration Partnership: Preliminary CO2-PENS model Citation Details In-Document Search Title: LANL Deliverable to the Big Sky Carbon Sequestration Partnership: Preliminary CO2-PENS model Authors: Stauffer, Philip H. [1] ; Dai, Zhenxue [1] ; Lu, Zhiming [1] ; Middleton, Richard S. [1] ; Jacobs, John F. [1] ; Carey, James W. [1] + Show Author Affiliations Los Alamos National Laboratory

  14. Photon Speedway Puts Big Data In the Fast Lane

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Speedway Puts Big Data In the Fast Lane Photon Speedway Puts Big Data In the Fast Lane Scientists from Berkeley Lab and SLAC are using NERSC and ESnet to achieve breakthroughs in photosynthesis research August 26, 2014 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov A series of experiments conducted by Lawrence Berkeley National Laboratory (Berkeley Lab) and SLAC National Accelerator Laboratory (SLAC) researchers and collaborators is shedding new light on the photosynthetic

  15. Pennsylvania State University Wins Big In Las Vegas: Energy Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crowns Collegiate Wind Competition Champion | Department of Energy State University Wins Big In Las Vegas: Energy Department Crowns Collegiate Wind Competition Champion Pennsylvania State University Wins Big In Las Vegas: Energy Department Crowns Collegiate Wind Competition Champion May 8, 2014 - 9:30am Addthis Pennsylvania State University was crowned the winner of the Energy Department's inaugural Collegiate Wind Competition. The team designed a small-scale wind turbine that can be easily

  16. Small Towns Achieve Big Savings with Lighting Upgrades | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Towns Achieve Big Savings with Lighting Upgrades Small Towns Achieve Big Savings with Lighting Upgrades August 28, 2014 - 4:16pm Addthis A worker installs energy efficient lights as part of the Smart Lights for Smart Cities program. | Photo courtesy of Mid-America Regional Council. A worker installs energy efficient lights as part of the Smart Lights for Smart Cities program. | Photo courtesy of Mid-America Regional Council. Crystal McDonald Project Officer, Department of Energy.

  17. John C. Mather, the Big Bang, and the COBE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    John C. Mather, the Big Bang, and the COBE Resources with Additional Information * Videos John C. Mather Courtesy of NASA "Dr. John C. Mather of NASA's Goddard Space Flight Center has won the 2006 Nobel Prize for Physics, awarded by the Royal Swedish Academy of Sciences. Mather shares the prize with George F. Smoot of the University of California for their collaborative work on understanding the Big Bang. Mather and Smoot analyzed data from NASA's Cosmic Background Explorer (COBE), which

  18. Seeing the Big Picture in Photosynthetic Light Harvesting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seeing the Big Picture in Photosynthetic Light Harvesting Seeing the Big Picture in Photosynthetic Light Harvesting First Computational Model to Simulate Multiple Antenna Proteins January 19, 2016 Contact: Lynn Yarris, lcyarris@gmail.com Graham Fleming image 1 In this first computational model to simulate multiple antenna proteins, photosystem II (PSII) complexes are shown in teals and the light harvesting complexes (LHC II) are shown in green. To understand what goes on inside a beehive, you

  19. Big Savings on Outdoor Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Big Savings on Outdoor Lighting Big Savings on Outdoor Lighting July 14, 2014 - 5:47pm Addthis Outdoor solar lights provide attractive lighting around your home's exterior and require little maintenance. | Photo courtesy of ©iStockphoto.com/ndejan Outdoor solar lights provide attractive lighting around your home's exterior and require little maintenance. | Photo courtesy of ©iStockphoto.com/ndejan Christina Stowers Communications Specialist in the Weatherization and Intergovernmental

  20. Celebrating Clean Energy Manufacturing in the Big Apple | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Celebrating Clean Energy Manufacturing in the Big Apple Celebrating Clean Energy Manufacturing in the Big Apple June 15, 2016 - 10:51am Addthis Dr. Mark Johnson (left), Director of the Energy Department’s Advanced Manufacturing Office, moderates a panel on shared infrastructure and innovation ecosystems. Dr. Mark Johnson (left), Director of the Energy Department's Advanced Manufacturing Office, moderates a panel on shared infrastructure and innovation ecosystems. Dr. Dave

  1. Process and apparatus for producing ultrafine explosive particles

    DOE Patents [OSTI]

    McGowan, Michael J.

    1992-10-20

    A method and an improved eductor apparatus for producing ultrafine explosive particles is disclosed. The explosive particles, which when incorporated into a binder system, have the ability to propagate in thin sheets, and have very low impact sensitivity and very high propagation sensitivity. A stream of a solution of the explosive dissolved in a solvent is thoroughly mixed with a stream of an inert nonsolvent by obtaining nonlaminar flow of the streams by applying pressure against the flow of the nonsolvent stream, to thereby diverge the stream as it contacts the explosive solution, and violently agitating the combined stream to rapidly precipitate the explosive particles from the solution in the form of generally spheroidal, ultrafine particles. The two streams are injected coaxially through continuous, concentric orifices of a nozzle into a mixing chamber. Preferably, the nonsolvent stream is injected centrally of the explosive solution stream. The explosive solution stream is injected downstream of and surrounds the nonsolvent solution stream for a substantial distance prior to being ejected into the mixing chamber.

  2. Environmental assessment for the Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    1995-11-01

    Lawrence Livermore National Laboratory proposes to build, permit, and operate the Explosive Waste Treatment Facility (EWTF) to treat explosive waste at LLNL`s Experimental Test Site, Site 300. It is also proposed to close the EWTF at the end of its useful life in accordance with the regulations. The facility would replace the existing Building 829 Open Burn Facility (B829) and would treat explosive waste generated at the LLNL Livermore Site and at Site 300 either by open burning or open detonation, depending on the type of waste. The alternatives addressed in the 1992 sitewide EIS/EIR are reexamined in this EA. These alternatives included: (1) the no-action alternative which would continue open burning operations at B829; (2) continuation of only open burning at a new facility (no open detonation); (3) termination of open burning operations with shipment of explosive waste offsite; and (4) the application of alternative treatment technologies. This EA examines the impact of construction, operation, and closure of the EWTF. Construction of the EWTF would result in the clearing of a small amount of previously disturbed ground. No adverse impact is expected to any state or federal special status plant or animal species (special status species are classified as threatened, endangered, or candidate species by either state or federal legislation). Operation of the EWTF is expected to result in a reduced threat to involved workers and the public because the proposed facility would relocate existing open burning operations to a more remote area and would incorporate design features to reduce the amount of potentially harmful emissions. No adverse impacts were identified for activities necessary to close the EWTF at the end of its useful life.

  3. Fatigue of LX-14 and LX-19 plastic bonded explosives

    SciTech Connect (OSTI)

    Hoffman, D. M., LLNL

    1998-04-23

    The DOD uses the plastic bonded explosive (PBX) LX-14 in a wide variety of applications including shaped charges and explosively forged projectiles. LX- 19 is a higher energy explosive, which could be easily substituted for LX-14 because it contains the identical Estane 5703p binder and more energetic CL-20 explosive. Delivery systems for large shaped charges, such as TOW-2, include the Apache helicopter. Loads associated with vibrations and expansion from thermal excursions in field operations may, even at low levels over long time periods, cause flaws, already present in the PBX to grow. Flaws near the explosive/liner interface of a shaped charge can reduce performance. Small flaws in explosives are one mechanism (the hot spot mechanism) proposed for initiation and growth to detonation of PBXs like LX-14, PBXN 5, LX-04 and LX-17 among others. Unlike cast-cured explosives and propellants, PBXs cannot usually be compression molded to full density. Generally, the amount of explosive ignited by a shock wave is approximately equal to the original void volume. Whether or not these flaws or cracks grow during field operations to an extent sufficient to adversely affect the shaped charge performance or increase the vulnerability of the PBX is the ultimate question this effort could address. Currently the fatigue life of LX-14 under controlled conditions is being studied in order to generate its failure stress as a function of the number of fatigue cycles (S- N curve). Proposed future work will address flaw and crack growth and their relationship to hot-spot concentration and explosive vulnerability to shock and/or fragment initiation.

  4. Energy Savings Week: Standards for Kitchen and Laundry Products Create Big

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings | Department of Energy Standards for Kitchen and Laundry Products Create Big Savings Energy Savings Week: Standards for Kitchen and Laundry Products Create Big Savings December 17, 2015 - 1:14pm Addthis Energy Savings Week: Standards for Kitchen and Laundry Products Create Big Savings Energy Savings Week: Standards for Kitchen and Laundry Products Create Big Savings Energy Savings Week: Standards for Kitchen and Laundry Products Create Big Savings Energy Savings Week: Standards for

  5. Thermally stable booster explosive and process for manufacture

    DOE Patents [OSTI]

    Quinlin, William T.; Thorpe, Raymond; Lightfoot, James M.

    2006-03-21

    A thermally stable booster explosive and process for the manufacture of the explosive. The product explosive is 2,4,7,9-tetranitro-10H-benzo[4,5]furo[3,2-b]indole (TNBFI). A reactant/solvent such as n-methylpyrrolidone (NMP) or dimethyl formamide (DMF) is made slightly basic. The solution is heated to reduce the water content. The solution is cooled and hexanitrostilbene is added. The solution is heated to a predetermined temperature for a specific time period, cooled, and the product is collected by filtration.

  6. A simple line wave generator using commercial explosives

    SciTech Connect (OSTI)

    Morris, John S; Jackson, Scott I; Hill, Larry G

    2009-01-01

    We present a simple and inexpensive explosive line wave generator has been designed using commercial sheet explosive and plane wave lens concepts. The line wave generator is constructed using PETN and RDX based sheet explosive for the slow and fast components respectively. The design permits the creation of any desired line width. A series of experiments were performed on a 100 mm design, measuring the detonation arrival time at the output of the generator using a streak camera. An iterative technique was used to adjust the line wave generator's slow and fast components, so as to minimize the arrival time deviation. Designs, test results, and concepts for improvements will be discussed.

  7. The use of combustible metals in explosive incendiary devices

    SciTech Connect (OSTI)

    Fischer, S.H.; Grubelich, M.C.

    1996-08-01

    We have investigated tailoring damage effects of explosive devices by addition of unconventional materials, specifically combustible metals. Initial small-scale as well as full-scale testing has been performed. The explosives functioned to disperse and ignite these materials. Incendiary, enhanced-blast, and fragment-damage effect have been identified. These types of effects can be used to extend the damage done to hardened facilities. In other cases it is desirable to disable the target with minimal collateral damage. Use of unconventional materials allows the capability to tailor the damage and effects of explosive devices for these and other applications. Current work includes testing of an incendiary warhead for a penetrator.

  8. A Combustion Model for the TWA 800 Center-Wing Fuel Tank Explosion

    SciTech Connect (OSTI)

    Baer, M.R.; Gross, R.J.

    1998-10-02

    In support of the National Transportation Safety Board investigation of the TWA Flight 800 accident, a combined experimental/computational effort was conducted that focused on quarter-scale testing and simulation of the fuel-air explosion in the Boeing 747 center wing fuel tank. This report summarizes the modeling approach used at Sandia National Laboratories. In this approach approximations are introduced that capture the essential physics associated with turbulent flame propagation in multiple compartment fuel tanks. This model efficiently defines the pressure loading conditions during a jet-fuel air explosion in a fuel tank confinement. Modeling calculations compare favorably with a variety of experimental quarter-scale tests conducted in rigid confinement. The modeling describes well the overpressure history in several geometry configurations. Upon demonstrating a reasonable comparison to experimental observations, a parametric study of eight possible ignition sources is then discussed. Model calculations demonstrate that different loading conditions arise as the location of the ignition event is varied. By comparing the inferred damage and calculated impulses to that seen in the recovered tank, it maybe possible to reduce the number of likely sources. A possible extension of this work to better define tank damage includes coupling the combustion model as a pressure loading routine for structural failure analysis.

  9. Establishment of data base of regional seismic recordings from earthquakes, chemical explosions and nuclear explosions in the Former Soviet Union

    SciTech Connect (OSTI)

    Ermolenko, N.A.; Kopnichev, Yu.F.; Kunakov, V.G.; Kunakova, O.K.; Rakhmatullin, M.Kh.; Sokolova, I.N.; Vybornyy, Zh.I.

    1995-06-01

    In this report results of work on establishment of a data base of regional seismic recordings from earthquakes, chemical explosions and nuclear explosions in the former Soviet Union are described. This work was carried out in the Complex Seismological Expedition (CSE) of the Joint Institute of Physics of the Earth of the Russian Academy of Sciences and Lawrence Livermore National Laboratory. The recording system, methods of investigations and primary data processing are described in detail. The largest number of digital records was received by the permanent seismic station Talgar, situated in the northern Tien Shan, 20 km to the east of Almaty city. More than half of the records are seismograms of underground nuclear explosions and chemical explosions. The nuclear explosions were recorded mainly from the Semipalatinsk test site. In addition, records of the explosions from the Chinese test site Lop Nor and industrial nuclear explosions from the West Siberia region were obtained. Four records of strong chemical explosions were picked out (two of them have been produced at the Semipalatinsk test site and two -- in Uzbekistan). We also obtained 16 records of crustal earthquakes, mainly from the Altai region, close to the Semipalatinsk test site, and also from the West China region, close to the Lop Nor test site. In addition, a small number of records of earthquakes and underground nuclear explosions, received by arrays of temporary stations, that have been working in the southern Kazakhstan region are included in this report. Parameters of the digital seismograms and file structure are described. Possible directions of future work on the digitizing of unique data archive are discussed.

  10. Method for enhancing stability of high explosives, for purposes of transport or storage, and the stabilized high explosives

    DOE Patents [OSTI]

    Nutt, Gerald L.

    1991-01-01

    The stability of porous solid high explosives, for purposes of transport or storage, is enhanced by reducing the sensitivity to shock initiation of a reaction that leads to detonation. The pores of the explosive down to a certain size are filled under pressure with a stable, low melt temperature material in liquid form, and the combined material is cooled so the pore filling material solidifies. The stability can be increased to progressively higher levels by filling smaller pores. The pore filling material can be removed, at least partially, by reheating above its melt temperature and drained off so that the explosive is once more suitable for detonation.

  11. Novel methods for detecting buried explosive devices

    SciTech Connect (OSTI)

    Kercel, S.W.; Burlage, R.S.; Patek, D.R.; Smith, C.M.; Hibbs, A.D.; Rayner, T.J.

    1997-04-01

    Oak Ridge National Laboratory (ORNL) and Quantum Magnetics, Inc. (QM) are exploring novel landmine detection technologies. Technologies considered here include bioreporter bacteria, swept acoustic resonance, nuclear quadrupole resonance (NQR), and semiotic data fusion. Bioreporter bacteria look promising for third-world humanitarian applications; they are inexpensive, and deployment does not require high-tech methods. Swept acoustic resonance may be a useful adjunct to magnetometers in humanitarian demining. For military demining, NQR is a promising method for detecting explosive substances; of 50,000 substances that have been tested, none has an NQR signature that can be mistaken for RDX or TNT. For both military and commercial demining, sensor fusion entails two daunting tasks, identifying fusible features in both present-day and emerging technologies, and devising a fusion algorithm that runs in real-time on cheap hardware. Preliminary research in these areas is encouraging. A bioreporter bacterium for TNT detection is under development. Investigation has just started in swept acoustic resonance as an approach to a cheap mine detector for humanitarian use. Real-time wavelet processing appears to be a key to extending NQR bomb detection into mine detection, including TNT-based mines. Recent discoveries in semiotics may be the breakthrough that will lead to a robust fused detection scheme.

  12. Simulations aimed at safer transport of explosives | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    click to view larger. Simulations aimed at safer transport of explosives By Jim Collins * January 7, 2015 Tweet EmailPrint In 2005, a semi truck hauling 35,000 pounds of...

  13. Security and Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-12-17

    This directive establishes requirements and responsibilities to prevent the deliberate unauthorized use of U.S. nuclear explosives and U.S. nuclear weapons. Cancels DOE O 452.4.

  14. Enterprise Assessments Review of Explosives Safety Program Implementat...

    Energy Savers [EERE]

    ... for explosives operating locations defined in DOE-STD-1212-2012 and the National Electrical Code as Hazardous (Classified) Locations, Classes I, II, III, Divisions 1 and 2. In ...

  15. Explosives exhibit opens at the Bradbury Science Museum Sept...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exhibit opens at the Bradbury Science Museum Sept. 18 To highlight the Laboratory's work in the field of explosives, the museum is opening a new exhibit titled "The Science of...

  16. Los Alamos Explosives Performance Key to Stockpile Stewardship

    ScienceCinema (OSTI)

    Dattelbaum, Dana

    2015-01-05

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  17. Insensitive explosive composition of halogenated copolymer and triaminotrinitrobenzene

    DOE Patents [OSTI]

    Benziger, Theodore M.

    1976-01-01

    A highly insensitive and heat resistant plastic-bonded explosive containing 90 wt % triaminotrinitrobenzene and 10 wt % of a fully saturated copolymer of chlorotrifluoroethylene and vinylidene fluoride is readily manufactured by the slurry process.

  18. Program to Prevent Accidental or Unauthorized Nuclear Explosive Detonations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1980-12-18

    The order establishes the DOE program to prevent accidental or unauthorized nuclear explosive detonations, and to define responsibilities for DOE participation in the Department of Defense program for nuclear weapon and nuclear weapon system safety. Does not cancel other directives.

  19. Los Alamos Explosives Performance Key to Stockpile Stewardship

    SciTech Connect (OSTI)

    Dattelbaum, Dana

    2014-11-03

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  20. EDS V25 containment vessel explosive qualification test report.

    SciTech Connect (OSTI)

    Rudolphi, John Joseph

    2012-04-01

    The V25 containment vessel was procured by the Project Manager, Non-Stockpile Chemical Materiel (PMNSCM) as a replacement vessel for use on the P2 Explosive Destruction Systems. It is the first EDS vessel to be fabricated under Code Case 2564 of the ASME Boiler and Pressure Vessel Code, which provides rules for the design of impulsively loaded vessels. The explosive rating for the vessel based on the Code Case is nine (9) pounds TNT-equivalent for up to 637 detonations. This limit is an increase from the 4.8 pounds TNT-equivalency rating for previous vessels. This report describes the explosive qualification tests that were performed in the vessel as part of the process for qualifying the vessel for explosive use. The tests consisted of a 11.25 pound TNT equivalent bare charge detonation followed by a 9 pound TNT equivalent detonation.

  1. Advances in explosives analysis-part I. animal, chemical, ion...

    Office of Scientific and Technical Information (OSTI)

    to Explosives Analysis (Moore and Goodpaster, Anal Bioanal Chem 395(2):245-246, 2009). ... Authors: Brown, Kathryn E. 1 ; Greenfield, Margo T. 1 ; McGrane, Shawn D. 1 ; Moore, ...

  2. Ultrafast laser based coherent control methods for explosives detection

    SciTech Connect (OSTI)

    Moore, David Steven

    2010-12-06

    The detection of explosives is a notoriously difficult problem, especially at stand-off, due to their (generally) low vapor pressure, environmental and matrix interferences, and packaging. We are exploring Optimal Dynamic Detection of Explosives (ODD-Ex), which exploits the best capabilities of recent advances in laser technology and recent discoveries in optimal shaping of laser pulses for control of molecular processes to significantly enhance the standoff detection of explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser pulses to simultaneously enhance sensitivity to explosives signatures while dramatically improving specificity, particularly against matrix materials and background interferences. These goals are being addressed by operating in an optimal non-linear fashion, typically with a single shaped laser pulse inherently containing within it coherently locked control and probe subpulses. Recent results will be presented.

  3. Explosive destruction system for disposal of chemical munitions

    DOE Patents [OSTI]

    Tschritter, Kenneth L.; Haroldsen, Brent L.; Shepodd, Timothy J.; Stofleth, Jerome H.; DiBerardo, Raymond A.

    2005-04-19

    An explosive destruction system and method for safely destroying explosively configured chemical munitions. The system comprises a sealable, gas-tight explosive containment vessel, a fragment suppression system positioned in said vessel, and shaped charge means for accessing the interior of the munition when the munition is placed within the vessel and fragment suppression system. Also provided is a means for treatment and neutralization of the munition's chemical fills, and means for heating and agitating the contents of the vessel. The system is portable, rapidly deployable and provides the capability of explosively destroying and detoxifying chemical munitions within a gas-tight enclosure so that there is no venting of toxic or hazardous chemicals during detonation.

  4. Contributed Review: Quantum cascade laser based photoacoustic detection of explosives

    SciTech Connect (OSTI)

    Li, J. S. Yu, B.; Fischer, H.; Chen, W.; Yalin, A. P.

    2015-03-15

    Detecting trace explosives and explosive-related compounds has recently become a topic of utmost importance for increasing public security around the world. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. Optical sensing methods, in particular mid-infrared spectrometry techniques, have a great potential to become a more desirable tools for the detection of explosives. The small size, simplicity, high output power, long-term reliability make external cavity quantum cascade lasers (EC-QCLs) the promising spectroscopic sources for developing analytical instrumentation. This work reviews the current technical progress in EC-QCL-based photoacoustic spectroscopy for explosives detection. The potential for both close-contact and standoff configurations using this technique is completely presented over the course of approximately the last one decade.

  5. NEW - DOE O 452.1E, Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

  6. Construction on Pantex High Explosives Pressing Facility Reaches 85% Mark |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Construction on Pantex High Explosives Pressing Facility Reaches 85% Mark January 03, 2014 Work on the National Nuclear Security Administration's (NNSA) High Explosives Pressing Facility at its Pantex Plant, located near Amarillo, Texas, this month passed the 85 percent construction completion mark and is on schedule and under budget. File 2014-01-03 NPO HEPF.docx NPO Press Releases September 2016 (1) August 2016 (1) May 2016 (1) February

  7. Revised Environmental Assessment Large-Scale, Open-Air Explosive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Assessment Large-Scale, Open-Air Explosive Detonation, DIVINE STRAKE, at the Nevada Test Site May 2006 Prepared by Department of Energy National Nuclear Security Administration Nevada Site Office Environmental Assessment May 2006 Large-Scale, Open-Air Explosive Detonation, DIVINE STRAKE, at the Nevada Test Site TABLE OF CONTENTS 1.0 PURPOSE AND NEED FOR ACTION.....................................................1-1 1.1 Introduction and

  8. Reagent Selection Methodology for a Novel Explosives Detection Platform

    ScienceCinema (OSTI)

    None

    2012-12-31

    This video describes research being conducted by Dr. Marvin Warner, a research scientist at Pacific Northwest National Laboratory, in the individual pieces of antibodies used to set up a chemical reaction that will give off light just by mixing reagents together with a sample that contains an explosive molecule. This technology would help detect if explosives are present with just the use of a handheld system or container.

  9. Development of a non-propagating explosives storage cabinet

    SciTech Connect (OSTI)

    Couch, W.A. ); Schneider, B.A. . Engineering Research Inst.)

    1991-08-01

    Sandia National Laboratories, Albuquerque (SNL) has completed the design of an Explosive Components Facility (ECF). Construction of the ECF is scheduled to begin in 1992 with completion in 1995. An integral part of the ECF will be on-site storage of explosives in six earth-covered service magazines. Each magazine will contain a non-propagating Explosives Storage Cabinet (ESC) system made up to twenty modular units. In addition to the secure storage of explosives, a primary purpose of the cabinet system is to prevent a sympathetic detonation of the explosives stored in the surrounding units as a result of an accidental detonation of up to 5.0 pounds of explosives (TNT equivalent) stored in a donor'' unit in the cabinet. Therefore, the maximum creditable event'' for each service magazine is 5.0 pounds, even though each magazine could contain up to 100 pounds of explosives stored in 5.0 pounds increments. A new material being developed at the New Mexico Engineering Research Institute (NMERI) known as SIFCON (Slurry Infiltrated Fiber CONcrete), had been shown to be highly resistant to back spall from blast loadings, and penetration by high-velocity ballistic projectiles and fragments. These, and other characteristics unique to SIFCON, such as very high strength and ductility, appeared to make it an excellent candidate material for the modular units of the ESC. In 1989 SNL contracted with NMERI to develop a SIFCON modular unit for the ESC. Based upon the success of Phase 1 program, a more extensive Phase 2 program was undertaken in 1990 and has been successfully completed. This paper is a summary of the Phase 1 and Phase 2 work, which includes the design, fabrication, and explosive testing of the modular units.

  10. Direct Real-Time Detection of Vapors from Explosive Compounds

    SciTech Connect (OSTI)

    Ewing, Robert G.; Clowers, Brian H.; Atkinson, David A.

    2013-10-03

    The real-time detection of vapors from low volatility explosives including PETN, tetryl, RDX and nitroglycerine along with various compositions containing these substances is demonstrated. This was accomplished with an atmospheric flow tube (AFT) using a non-radioactive ionization source and coupled to a mass spectrometer. Direct vapor detection was demonstrated in less than 5 seconds at ambient temperature without sample pre-concentration. The several seconds of residence time of analytes in the AFT provides a significant opportunity for reactant ions to interact with analyte vapors to achieve ionization. This extended reaction time, combined with the selective ionization using the nitrate reactant ions (NO3- and NO3-HNO3), enables highly sensitive explosives detection. Observed signals from diluted explosive vapors indicate detection limits below 10 ppqv using selected ion monitoring (SIM) of the explosive-nitrate adduct at m/z 349, 378, 284 and 289 for tetryl, PETN, RDX and NG respectively. Also provided is a demonstration of the vapor detection from 10 different energetic formulations, including double base propellants, plastic explosives and commercial blasting explosives using SIM for the NG, PETN and RDX product ions.

  11. Pollution prevention opportunity assessment for propellants, explosives, and pyrotechnics

    SciTech Connect (OSTI)

    Phillips, N.M.; Torres, H.M.

    1996-04-01

    In 1991, a DOE ``Tiger Team`` audited the SNL/California Explosives Program and cited Sandia for not being in compliance with the DOE Explosives Safety Manual requirements for having an explosives storage review program. At that time, SNL/California did not have a site-wide inventory record of explosives, and no storage review as in place. Sandia corporately owns approximately 1,800,000 lb energetic material, which is located at various sites throughout the country. In 1992, in response to the Tiger Team findings, Sandia formed the Propellants, Explosives, and Pyrotechnics Evaluation and Reapplication Task Force (PEPER) to develop the tools to implement life-cycle management of energetic materials at Sandia. PEPER met the following objectives: (1) create an accurate inventory of all energetic materials owned by Sandia; (2) evaluate the stability of the inventory, and thereby identify and destroy all imminent hazards; (3) draw down the inventory to be consistent with post-Cold War business needs; (4) create a cradle-to-grave ownership process. This pollution prevention opportunity assessment was conducted to document the activities at SNL/California that have involved propellants, explosives, and pyrotechnics; and to outline options for minimizing energetic materials and waste at SNL/California.

  12. DOE - NNSA/NFO -- Photo Library BEEF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BEEF NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Photo Library - Big Explosives Experimental Facility (BEEF) The Big Explosives Experimental Facility (BEEF) is a hydrodynamic testing facility, located at the Nevada National Security Site. BEEF provides data, through explosive experiments, to support the Stockpile Stewardship Program, along with a variety of new experimental programs that expand the nation's non-nuclear experiment capabilities. Instructions: Click the photograph

  13. Optimization of steam explosion pretreatment. Final report

    SciTech Connect (OSTI)

    Foody, P.

    1980-04-01

    Different operating conditions are required to optimize the yield from each of the various fractions in the substrate. Xylose recovery is maximized at short cooking times whereas maximum lignin recovery requires much longer cooking times. Peak glucose yield and rumen digestibility occur at intermediate times. If process conditions are set for maximum glucose yield we have achieved a yield of 68% of the theoretical, based on an average of a dozen substrates tested. Individual results ranged from 46 to 87%. If the process is optimized for maximum total sugars (i.e. glucose plus xylose) we have obtained an average yield of 60%, with a range of 31 to 75%. With rumen microflora, the average value of the in-vitro cellulose digestibility was 82%, with a range of 41 to 90%. The optimum operating conditions for total sugars are a pressure of 500 to 550 psig with a cooking time of 40 to 50 seconds and 35% starting moisture content. Particle size is not a significant factor, nor is pre-steaming or use of a constricting die in the gun nozzle. High quality lignin can be extracted with 80% yield. The Iotech lignin is very soluble, has a low molecular weight and is reactive. The unique properties of the lignin derive from the explosion at the end of the pretreatment. A lignin formaldehyde resin has been successfully formulated and tested. It represents a high value utilization of the lignin byproduct with immediate market potential. A detailed engineering design of the process gives an estimated operating cost of $7.50/OD ton of biomass. At this low cost, the Iotech process achieves many important pretreatment goals in a single step. The substrate has been sterilized; it has been pulverized into a powder; the cellulose has been accessible; and a highly reactive lignin fraction can be recovered and utilized.

  14. 2013 strategic petroleum reserve big hill well integrity grading report.

    SciTech Connect (OSTI)

    Lord, David L.; Roberts, Barry L.; Lord, Anna C. Snider; Bettin, Giorgia; Sobolik, Steven Ronald; Park, Byoung Yoon; Rudeen, David Keith; Eldredge, Lisa; Wynn, Karen; Checkai, Dean; Perry, James Thomas

    2014-02-01

    This report summarizes the work performed in developing a framework for the prioritization of cavern access wells for remediation and monitoring at the Big Hill Strategic Petroleum Reserve site. This framework was then applied to all 28 wells at the Big Hill site with each well receiving a grade for remediation and monitoring. Numerous factors affecting well integrity were incorporated into the grading framework including casing survey results, cavern pressure history, results from geomechanical simulations, and site geologic factors. The framework was developed in a way as to be applicable to all four of the Strategic Petroleum Reserve sites.

  15. Help Solve Solar's Big Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Help Solve Solar's Big Challenge Help Solve Solar's Big Challenge December 2, 2013 - 1:00pm Addthis Soft costs now account for more than 60% of the total price of installing residential solar energy systems. <a href="http://www.energy.gov/eere/articles/infographic-lets-get-work-solar-soft-costs">View the full infographic to learn more</a>. Soft costs now account for more than 60% of the total price of installing residential solar energy systems. View the full infographic to

  16. INFOGRAPHIC: Better Buildings Leading to Big Energy Savings | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Better Buildings Leading to Big Energy Savings INFOGRAPHIC: Better Buildings Leading to Big Energy Savings May 11, 2016 - 12:35pm Addthis Better Buildings partners have saved more than $1.3 billion on energy costs. Our new infographic explains how Better Buildings works and why it’s important. | Graphic by <a href="/node/1332956">Carly Wilkins</a>, Energy Department Better Buildings partners have saved more than $1.3 billion on energy costs. Our new

  17. INFOGRAPHIC: How Appliance Standards Help Consumers Save Big | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Appliance Standards Help Consumers Save Big INFOGRAPHIC: How Appliance Standards Help Consumers Save Big December 14, 2015 - 3:10pm Addthis FACT: Consumers are saving more than $62 billion a year as a result of the Energy Department's Appliance and Equipment Standards Program. | Infographic by <a href="/node/1332956">Carly Wilkins</a>, Energy Department FACT: Consumers are saving more than $62 billion a year as a result of the Energy Department's Appliance and

  18. A Window on Surface Explosions: Tartaric Acid on Cu(110)

    SciTech Connect (OSTI)

    Mhatre, B. S.; Pushkarev, V.; Holsclaw, B.; Lawton, T. J.; Sykes, E. C. H.; Gellman, A. J.

    2013-04-18

    Autocatalytic reaction mechanisms are observed in a range of important chemical processes including catalysis, radical-mediated explosions, and biosynthesis. Because of their complexity, the microscopic details of autocatalytic reaction mechanisms have been difficult to study on surfaces and heterogeneous catalysts. Autocatalytic decomposition reactions of S,S- and R,R-tartaric acid (TA) adsorbed on Cu(110) offer molecular-level insight into aspects of these processes, which until now, were largely a matter of speculation. The decomposition of TA/Cu(110) is initiated by a slow, irreversible process that forms vacancies in the adsorbed TA layer, followed by a vacancy-mediated, explosive decomposition process that yields CO{sub 2} and small hydrocarbon products. Initiation of the explosive decomposition of TA/Cu(110) has been studied by measurement of the reaction kinetics, time-resolved low energy electron diffraction (LEED), and time-resolved scanning tunneling microscopy (STM). Initiation results in a decrease in the local coverage of TA and a concomitant increase in the areal vacancy concentration. Observations of explosive TA decomposition on the Cu(651)S surface suggest that initiation does not occur at structural defects in the surface, as has been suggested in the past. Once the vacancy concentration reaches a critical value, the explosive, autocatalytic decomposition step dominates the TA decomposition rate. The onset of the explosive decomposition of TA on Cu(110) is accompanied by the extraction of Cu atoms from the surface to form a (±6,7; {-+}2,1) overlayer that is readily observable using LEED and STM. The explosive decomposition step is second-order in vacancy concentration and accelerates with increasing extent of reaction.

  19. Sensitivity of once-shocked, weathered high explosives

    SciTech Connect (OSTI)

    Williams, K.L.; Harris, B.W.

    1998-07-01

    Effects caused by stimulating once-shocked, weathered high explosives (OSW-HE) are investigated. The sensitivity of OSW-HE to mechanical stimuli was determined using standard industry tests. Some initial results are given. Pieces of OSW-HE were collected from active and inactive firing sites and from an area surrounding a drop tower at Los Alamos where skid and spigot tests were done. Samples evaluated were cast explosives or plastic bonded explosive (PBX) formulations containing cyclotrimethylenetrinitramine (RDX), cyclotetramethylene tetranitramine (HMX), 2,4,6-trinitrotoluene (TNT), mock or inert HE [tris(beta-chloroethyl)phosphate (CEF)], barium nitrate, cyanuric acid, talc, and Kel-F. Once-shocked, weathered LX-10 Livermore explosive [HMX/Viton A, (95/5 wt %)], PBX 9011 [HMX/Estane, (90/10 wt %)], PBX 9404 [HMX/nitrocellulose, tris(beta-chloroethyl) phosphate, (94/3/3 wt %)], Composition B or cyclotol (TNT/RDX explosives), and PBX 9007 (90% RDX, 9.1% styrene, 0.5% dioctyl phthalate, and 0.45 resin) were subjected to the hammer test, the drop-weight impact sensitivity test, differential thermal analysis (DTA), the spark test, the Henkin`s critical temperature test, and the flame test. Samples were subjected to remote, wet cutting and drilling; remote, liquid-nitrogen-cooled grinding and crushing; and scanning electron microscope (SEM) surface analyses for morphological changes.

  20. Infrared Spectroscopy of Explosives Residues: Measurement Techniques and Spectral Analysis

    SciTech Connect (OSTI)

    Phillips, Mark C.; Bernacki, Bruce E.

    2015-03-11

    Infrared laser spectroscopy of explosives is a promising technique for standoff and non-contact detection applications. However, the interpretation of spectra obtained in typical standoff measurement configurations presents numerous challenges. Understanding the variability in observed spectra from explosives residues and particles is crucial for design and implementation of detection algorithms with high detection confidence and low false alarm probability. We discuss a series of infrared spectroscopic techniques applied toward measuring and interpreting the reflectance spectra obtained from explosives particles and residues. These techniques utilize the high spectral radiance, broad tuning range, rapid wavelength tuning, high scan reproducibility, and low noise of an external cavity quantum cascade laser (ECQCL) system developed at Pacific Northwest National Laboratory. The ECQCL source permits measurements in configurations which would be either impractical or overly time-consuming with broadband, incoherent infrared sources, and enables a combination of rapid measurement speed and high detection sensitivity. The spectroscopic methods employed include standoff hyperspectral reflectance imaging, quantitative measurements of diffuse reflectance spectra, reflection-absorption infrared spectroscopy, microscopic imaging and spectroscopy, and nano-scale imaging and spectroscopy. Measurements of explosives particles and residues reveal important factors affecting observed reflectance spectra, including measurement geometry, substrate on which the explosives are deposited, and morphological effects such as particle shape, size, orientation, and crystal structure.

  1. UNIFYING THE ZOO OF JET-DRIVEN STELLAR EXPLOSIONS

    SciTech Connect (OSTI)

    Lazzati, Davide; Blackwell, Christopher H.; Morsony, Brian J.; Begelman, Mitchell C.

    2012-05-01

    We present a set of numerical simulations of stellar explosions induced by relativistic jets emanating from a central engine sitting at the center of compact, dying stars. We explore a wide range of durations of the central engine activity, two candidate stellar progenitors, and two possible values of the total energy release. We find that even if the jets are narrowly collimated, their interaction with the star unbinds the stellar material, producing a stellar explosion. We also find that the outcome of the explosion can be very different depending on the duration of the engine activity. Only the longest-lasting engines result in successful gamma-ray bursts. Engines that power jets only for a short time result in relativistic supernova (SN) explosions, akin to observed engine-driven SNe such as SN2009bb. Engines with intermediate durations produce weak gamma-ray bursts, with properties similar to nearby bursts such as GRB 980425. Finally, we find that the engines with the shortest durations, if they exist in nature, produce stellar explosions that lack sizable amounts of relativistic ejecta and are therefore dynamically indistinguishable from ordinary core-collapse SNe.

  2. G-Zero Experiment Proves Strange Quark Effects Not That Big ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    G-Zero Experiment Proves Strange Quark Effects Not That Big G-Zero Experiment Proves Strange Quark Effects Not That Big Strange Wheel - This ferris wheel is part of a system that ...

  3. OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big Datasets OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big Datasets August 27, 2013 Contact: Linda Vu, +1 ...

  4. First-Ever Energy Open Data Roundtable Catalyzes Value of Big...

    Energy Savers [EERE]

    First-Ever Energy Open Data Roundtable Catalyzes Value of Big Data Revolution for Energy Sector First-Ever Energy Open Data Roundtable Catalyzes Value of Big Data Revolution for ...

  5. BR UFF BIG PINEY WILD ROSE BLU E GAP BR UFF UNIT WAMSUT TER

    U.S. Energy Information Administration (EIA) Indexed Site

    BIG PINEY TIP TOP BIR D CANYON SWAN FONTEN ELL E LABARGE HOGSBACK CHIMNEY BUT TE BIG PINEY AREA TIP TOP UNI T LINCOLN ROAD BLU E FOREST DEER HILL FOGART Y CREEK GREEN RIVER BEND ...

  6. BR UFF BIG PINEY WILD ROSE BLU E GAP BR UFF UNIT WAMSUT TER

    U.S. Energy Information Administration (EIA) Indexed Site

    BIG PINEY TIP TOP BIR D CANYON SWAN FONTEN ELL E LABARGE HOGSBACK CHIMNEY BUT TE BIG PINEY AREA TIP TOP UNI T LINCOLN ROAD BLU E FOREST SWAN DEER HILL FOGART Y CREEK GREEN RIVER ...

  7. Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential...

    Office of Environmental Management (EM)

    Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential August 21, 2013 - 12:00am Addthis Utilizing a 1...

  8. Data-aware distributed scientific computing for big-data problems...

    Office of Scientific and Technical Information (OSTI)

    big-data problems in bio-surveillance Citation Details In-Document Search Title: Data-aware distributed scientific computing for big-data problems in bio-surveillance You are ...

  9. Small Buildings = Big Opportunity for Energy Savings (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01

    Small buildings have a big impact on energy use. In the United States, 44.6 million small buildings consume 44% of the overall energy used in buildings, presenting an enormous opportunity to cut costs, energy use, and greenhouse gas emissions.

  10. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    SciTech Connect (OSTI)

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  11. First Secretarial Visit to the Big Hill SPR Site

    Broader source: Energy.gov [DOE]

    Secretary of Energy Ernest Moniz visited the Office of Fossil Energy’s Strategic Petroleum Reserve’s Big Hill site in Winnie, Texas. The visit is the first Secretarial appearance at an SPR field site in nine years, and it comes after a string of major SPR accomplishments in 2014.

  12. Argonne OutLoud: Computation, Big Data, and the Future of Cities (Oct. 16,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014) | Argonne National Laboratory Computation, Big Data, and the Future of Cities (Oct. 16, 2014) Share Charlie Catlett

  13. AutoGrid - Turning Big Data Into Power with the Energy Data Platform and Apps

    SciTech Connect (OSTI)

    Narayan, Amit; Dresselhuys, Eric; Kulp, Yann; Buseman, Greg; Piette, Mary Ann; Tang, Andrew; Dailey, Karla; Knudsen, Chris

    2014-03-25

    AutoGrid personnel discuss how they are turning big data into power with the energy data platform and apps.

  14. Method for loading explosive laterally from a borehole

    DOE Patents [OSTI]

    Ricketts, Thomas E.

    1981-01-01

    There is provided a method for forming an in situ oil shale retort in a subterranean formation containing oil shale. At least one void is excavated in the formation, leaving zones of unfragmented formation adjacent the void. An array of main blastholes is formed in the zone of unfragmented formation and at least one explosive charge which is shaped for forming a high velocity gas jet is placed into a main blasthole with the axis of the gas jet extending transverse to the blasthole. The shaped charge is detonated for forming an auxiliary blasthole in the unfragmented formation adjacent a side wall of the main blasthole. The auxiliary blasthole extends laterally away from the main blasthole. Explosive is placed into the main blasthole and into the auxiliary blasthole and is detonated for explosively expanding formation towards the free face for forming a fragmented permeable mass of formation particles in the in situ oil shale retort.

  15. Modeling Hot-Spot Contributions in Shocked High Explosives at the Mesoscale

    SciTech Connect (OSTI)

    Harrier, Danielle

    2015-08-12

    When looking at performance of high explosives, the defects within the explosive become very important. Plastic bonded explosives, or PBXs, contain voids of air and bonder between the particles of explosive material that aid in the ignition of the explosive. These voids collapse in high pressure shock conditions, which leads to the formation of hot spots. Hot spots are localized high temperature and high pressure regions that cause significant changes in the way the explosive material detonates. Previously hot spots have been overlooked with modeling, but now scientists are realizing their importance and new modeling systems that can accurately model hot spots are underway.

  16. Method to prevent/mitigate steam explosions in casting pits

    DOE Patents [OSTI]

    Taleyarkhan, R.P.

    1996-12-24

    Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water. 3 figs.

  17. Method to prevent/mitigate steam explosions in casting pits

    DOE Patents [OSTI]

    Taleyarkhan, Rusi P.

    1996-01-01

    Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water.

  18. Steam Explosions in Slurry-fed Ceramic Melters

    SciTech Connect (OSTI)

    Carter, J.T.

    2001-03-28

    This report assesses the potential and consequences of a steam explosion in Slurry Feed Ceramic Melters (SFCM). The principles that determine if an interaction is realistically probable within a SFCM are established. Also considered are the mitigating effects due to dissolved, non-condensable gas(es) and suspended solids within the slurry feed, radiation, high glass viscosity, and the existence of a cold cap. The report finds that, even if any explosion were to occur, however, it would not be large enough to compromise vessel integrity.

  19. HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation

    SciTech Connect (OSTI)

    Reaugh, J E

    2011-11-22

    HERMES (High Explosive Response to MEchanical Stimulus) was developed to fill the need for a model to describe an explosive response of the type described as BVR (Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristically this response leaves a substantial amount of explosive unconsumed, the time to reaction is long, and the peak pressure developed is low. In contrast, detonations characteristically consume all explosive present, the time to reaction is short, and peak pressures are high. However, most of the previous models to describe explosive response were models for detonation. The earliest models to describe the response of explosives to mechanical stimulus in computer simulations were applied to intentional detonation (performance) of nearly ideal explosives. In this case, an ideal explosive is one with a vanishingly small reaction zone. A detonation is supersonic with respect to the undetonated explosive (reactant). The reactant cannot respond to the pressure of the detonation before the detonation front arrives, so the precise compressibility of the reactant does not matter. Further, the mesh sizes that were practical for the computer resources then available were large with respect to the reaction zone. As a result, methods then used to model detonations, known as {beta}-burn or program burn, were not intended to resolve the structure of the reaction zone. Instead, these methods spread the detonation front over a few finite-difference zones, in the same spirit that artificial viscosity is used to spread the shock front in inert materials over a few finite-difference zones. These methods are still widely used when the structure of the reaction zone and the build-up to detonation are unimportant. Later detonation models resolved the reaction zone. These models were applied both to performance, particularly as it is affected by the size of the charge, and to situations in which the stimulus was less than that needed for reliable

  20. Safety and performance enhancement circuit for primary explosive detonators

    DOE Patents [OSTI]

    Davis, Ronald W.

    2006-04-04

    A safety and performance enhancement arrangement for primary explosive detonators. This arrangement involves a circuit containing an energy storage capacitor and preset self-trigger to protect the primary explosive detonator from electrostatic discharge (ESD). The circuit does not discharge into the detonator until a sufficient level of charge is acquired on the capacitor. The circuit parameters are designed so that normal ESD environments cannot charge the protection circuit to a level to achieve discharge. When functioned, the performance of the detonator is also improved because of the close coupling of the stored energy.

  1. Explosive fluid transmitted shock method for mining deeply buried coal

    DOE Patents [OSTI]

    Archibald, Paul B.

    1976-06-22

    A method for recovering coal from deeply buried deposits comprising drilling a hole down into a coal seam, filling the hole with water, and periodically detonating an explosive charge at the bottom of the water-filled hole. The water transmits the explosive shock wave to the face of the coal seam, thereby fracturing and dislodging the coal. The resulting suspension of loose coal in water is then pumped to the surface where the coal is recovered and the water is recycled to the mining operation.

  2. EA-1617: Lovell-Yellowtail and Basin-Lovell Transmission Line Rebuild Project, Big Horn County, Wyoming, and Big Horn and Carbon Counties, Montana

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration prepared this EA and a finding of no significant impact for a proposal to rebuild the Lovell-Yellowtail (LV-YT) No. 1 and No. 2 115-kV transmission lines, located in Big Horn County, Wyoming, and Big Horn and Carbon Counties in Montana, and the Basin-Lovell 115-kV transmission line in Big Horn County, Wyoming.

  3. Honey bees (Apis mellifera) as explosives detectors: exploring proboscis extension reflex conditioned response to trinitrotolulene (TNT)

    SciTech Connect (OSTI)

    Taylor-mccabe, Kirsten J; Wingo, Robert M; Haarmann, Timothy K

    2008-01-01

    We examined honey bee's associative learning response to conditioning with trinitrotolulene (TNT) vapor concentrations generated at three temperatures and their ability to be reconditioned after a 24 h period. We used classical conditioning of the proboscis extension (PER) in honey bees using TNT vapors as the conditioned stimulus and sucrose as the unconditioned stimulus. We conducted fifteen experimental trials with an explosives vapor generator set at 43 C, 25 C and 5 C, producing three concentrations of explosives (1070 ppt, 57 ppt, and 11 ppt). Our objective was to test the honey bee's ability to exhibit a conditioned response to TNT vapors at all three concentrations by comparing the mean percentage of honey bees successfully exhibiting a conditioned response within each temperature group. Furthermore, we conducted eight experimental trials to test the honey bee's ability to retain their ability to exhibit a conditioned response to TNT after 24h period by comparing the mean percentage of honey bees with a conditioned response TNT on the first day compared to the percentage of honey bees with a conditioned response to TNT on the second day. Results indicate that there was no significant difference between the mean percentage of honey bees with a conditioned response to TNT vapors between three temperature groups. There was a significant difference between the percentage of honey bees exhibiting conditioned response on the first day of training compared to the percentage of honey bees exhibiting conditioned response 24 h after training. Our experimental results indicate that honey bees can be trained to exhibit a conditioned response to a range of TNT concentrations via PER However, it appears that the honey bee's ability to retain the conditioned response to TNT vapors after 24h significantly decreases.

  4. Experimental Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experimental capabilities Experimental Capabilities The National Ignition Facility is the premier high energy density science facility in the world, with laser energies 10 times greater than any other high-energy inertial confinement fusion (ICF) laser system. A major focus of NIF is a national effort to demonstrate ignition and thermonuclear burn in the laboratory. NIF also conducts a variety of experiments to study matter at the extremes, including studies of material properties,

  5. Skin explosion of double-layer conductors in fast-rising high magnetic fields

    SciTech Connect (OSTI)

    Chaikovsky, S. A. Datsko, I. M.; Labetskaya, N. A.; Ratakhin, N. A.

    2014-04-15

    An experiment has been performed to study the electrical explosion of thick cylindrical conductors using the MIG pulsed power generator capable of producing a peak current of 2.5 MA within 100?ns rise time. The experimental goal was to compare the skin explosion of a solid conductor with that of a double-layer conductor whose outer layer had a lower conductivity than the inner one. It has been shown that in magnetic fields of peak induction up to 300?T and average induction rise rate 3??10{sup 9}?T/s, the double-layer structure of a conductor makes it possible to achieve higher magnetic induction at the conductor surface before it explodes. This can be accounted for, in particular, by the reduction of the ratio of the Joule heat density to the energy density of the magnetic field at the surface of a double-layer conductor due to redistribution of the current density over the conductor cross section.

  6. Explosive engineering problems from fragmentation tests in oil shale at the Anvil Points Mine, Colorado

    SciTech Connect (OSTI)

    Dick, R.D.; Fourney, W.L.; Young, C.

    1985-01-01

    During 1981 and 1982, an extensive oil shale fragmentation research program was conducted at the Anvil Points Mine near Rifle, Colorado. The primary goals were to investigate factors involved for adequate fragmentation of oil shale and to evaluate the feasibility of using the modified in situ retort (MIS) method for recovery of oil from oil shale. The field test program included single-deck, single-borehole experiments to obtain basic fragmentation data; multiple-deck, multiple-borehole experiments to evaluate some practical aspects for developing an in situ retort; and the development of a variety of instrumentation technique to diagnose the blast event. This paper discusses some explosive engineering problems encountered, such as electric cap performance in complex blasting patterns, explosive and stem performance in a variety of configurations from the simple to the complex, and the difficulties experienced when reversing the direction of throw of the oil shale in a subscale retort configuration. These problems need solutions before an adequate MIS retort can be created in a single-blast event and even before an experimental mini-retort can be formed. 6 references, 7 figures, 3 tables.

  7. Development of ab initio techniques critical for future science-based explosives R&D.

    SciTech Connect (OSTI)

    Wixom, Ryan R.; Mattsson, Ann Elisabet

    2013-10-01

    Density Functional Theory (DFT) has emerged as an indispensable tool in materials research, since it can accurately predict properties of a wide variety of materials at both equilibrium and extreme conditions. However, for organic molecular crystal explosives, successful application of DFT has largely failed due to the inability of current exchange-correlation functionals to correctly describe intermolecular van der Waals' (vdWs) forces. Despite this, we have discovered that even with no treatment of vdWs bonding, the AM05 functional and DFT based molecular dynamics (MD) could be used to study the properties of molecular crystals under compression. We have used DFT-MD to predict the unreacted Hugoniots for PETN and HNS and validated the results by comparison with crystalline and porous experimental data. Since we are also interested in applying DFT methods to study the equilibrium volume properties of explosives, we studied the nature of the vdWs bonding in pursuit of creating a new DFT functional capable of accurately describing equilibrium bonding of molecular crystals. In this report we discuss our results for computing shock Hugoniots of molecular crystals and also what was learned about the nature of bonding in these materials.

  8. Response of a water-filled spherical vessel to an internal explosion

    SciTech Connect (OSTI)

    Lewis, M.W.; Wilson, T.L.

    1997-06-01

    Many problems of interest to the defense community involve fluid-structure interaction (FSI). Such problems include underwater blast loading of structures, bubble dynamics and jetting around structures, and hydrodynamic ram events. These problems may involve gas, fluid, and solid dynamics, nonlinear material behavior, cavitation, reaction kinetics, material failure, and nonlinearity that is due to varying geometry and contact conditions within a structure or between structures. Here, the authors model the response of a water-filled, thick-walled, spherical steel vessel to an internal explosion of 30 grams of C-4 with FSI2D--a two-dimensional coupled finite element and finite volume hydrodynamics code. The gas phase detonation products were modeled with a Becker-Kistiakowsky-Wilson high-explosive equation of state. Predictions from a fully coupled model were compared to experimental results in the form of strain gauge traces. Agreement was reasonably good. Additionally, the calculation was run in an uncoupled mode to understand the importance of fluid-structure interaction in this problem. The uncoupled model results in an accumulation of nonphysical energy in the vessel.

  9. Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-08-28

    The order establishes requirements to implement the nuclear explosive security and use control elements of DOE O 452.1E to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts, deliberate unauthorized use, and denial of authorized use. Supersedes DOE O 452.4B, dated 1-22-10.

  10. NUCLEAR EXPLOSIONS - PEACEFUI APPLICATIONS PROJECT WUL 1 SON

    Office of Legacy Management (LM)

    EXPLOSIONS - PEACEFUI APPLICATIONS PROJECT WUL 1 SON F I N A L OPERATIONAL WAB$OACTIVI TY REPORT PRODUCT1 ON TESTS FEBRUARY 1972 PEACEFUL APPLICATIONS DIVISION NEVADA OPER4TIONS OFFICE This page intentionally left blank TABLE OF CONTENTS Subject Page N o . Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . i i . . . . . . . . . . . . . . . . . . . . . . Acknowledgements i i i . . . . . . . . . . . . . . . . . . . . . . I . Introduction 1 I1 . F i r s t Production Test . . . . . . . . .

  11. Explosive Demolitions To Change Hanford’s Skyline

    Broader source: Energy.gov [DOE]

    RICHLAND, WASH. – U.S. Department of Energy (DOE) contractor CH2M HILL Plateau Remediation Company (CHPRC) will use explosives to demolish several structures near the center of the Hanford Site on two separate days – February 18 and March 4

  12. Safety analysis of optically ignited explosive and pyrotechnic devices

    SciTech Connect (OSTI)

    Merson, J.A.; Salas, F.J.; Holswade, S.

    1994-05-01

    The future of optical ordnance depends on the acceptance, validation and verification of the stated safety enhancement claims of optical ordnance over existing electrical explosive devices (EED`s). Sandia has been pursuing the development of optical ordnance, with the primary motivation of this effort being the enhancement of explosive safety by specifically reducing the potential of premature detonation that can occur with low energy electrically ignited explosive devices. By using semiconductor laser diodes for igniting these devices, safety improvements can be made without being detrimental to current system concerns since the inputs required for these devices are similar to electrical systems. Laser Diode Ignition (LDI) of the energetic material provides the opportunity to remove the bridgewire and electrically conductive pins from the charge cavity, creating a Faraday cage and thus isolating the explosive or pyrotechnic materials from stray electrical ignition sources. Recent results from our continued study of safety enhancements are presented. The areas of investigation which are presented include: (1) unintended optical source analysis, specifically lightning insensitivity, (2) electromagnetic radiation (EMR) and electrostatic discharge (ESD) insensitivity analysis, and (3) powder safety.

  13. Quantum control for initiation and detection of explosives

    SciTech Connect (OSTI)

    Greenfield, Margo T; Mc Grane, Shawn D; Scharff, R. Jason; Moore, David S

    2010-01-01

    We employ quantum control methods towards detection and quantum controlled initiation (QCI) of energetic materials. Ultrafast pulse shaping of broadband Infrared ({approx}750 nm to 850 run) and ultraviolet (266 nm, 400 nm) light is utilized for control. The underlying principals behind optimal control can be utilized to both detect and initiate explosives. In each case, time dependent phase shaped electric fields drive the chemical systems towards a desired state. For optimal dynamic detection of explosives (ODD-Ex) a phase specific broadband infrared pulse is created which increases not only the sensitivity of detection but also the selectivity of an explosive's spectral signatures in a background of interferents. QCI on the other hand, seeks to initiate explosives by employing shaped ultraviolet light. QCI is ideal for use with explosive detonators as it removes the possibility of unintentional initiation from an electrical source while adding an additional safety feature, initiation only with the proper pulse shape. Quantum control experiments require: (1) the ability to phase and amplitude shape the laser pulse and (2) the ability to effectively search for the pulse shape which controls the reaction. In these adaptive experiments we utilize both global and local optimization search routines such as genetic algorithm, differential evolution, and downhill simplex. Pulse shaping the broadband IR light, produced by focusing 800 nm light through a pressurized tube of Argon, is straightforward as commercial pulse shapers are available at and around 800 nm. Pulse shaping in the UV requires a home built shaper. Our system is an acoustic optical modulator (AOM) pulse shaper in which consists of a fused silica AOM crystal placed in the Fourier plane of a 4-f zero dispersion compressor.

  14. Evaluation of EL836 explosive stimulation of Devonian gas shale

    SciTech Connect (OSTI)

    Barbour, T G

    1980-07-01

    This report presents an evaluation of EL836, an explosive developed at E.I. duPont de Nemours and Company Laboratories, in stimulating gas shale. EL836 is a water gel type explosive with a high aluminum content. The computational evaluation of EL836 involved four one-dimensional cyclindrical geometry calculations to assess the influence of two equation-of-state descriptios of EL836, the effect or rock yielding and the effect of internal crack pressurization. Results of a computational evaluation of the EL836 explosive in stimulating Devonian gas shale suggest the following: Extensive plastic yielding will occur in a region immediate to the borehole. Extensive tensile fracture will occur in a region that begins at the outer boundary of plastic deformation and terminates at more than 100 borehole radii. Without a mechanism of ;near-wellbore fracture, such as crushing or pre-cracking during drilling or intentional borehole grooving, the plastic flow that occurs adjacent to the wellbore causes stress redistributions which prohibit early-time (less than a millisecond) tensile fracture immediate to the wellbore and thus prohibits gas penetration from the wellbore into the crack system. The barrier that the near-wellbore plastic zone presents to gas flow from the wellbore is reduced in radial dimension as time increases. Natural fractures in the wellbore wall or cataclysmic deformation and fracture adjacent to the wellbore, as a result of the explosive detonation, will likely assist in breaking down the barrier to gas flow. Very significatn enhancement is achieved in the EL836 stimulation treatment when gases penetrate the stress-wave induced radial cracks. Only minor differences were observed in the EL836 stimulation effects when comparison is made between two different explosive equations-of-state. 33 figures, 2 tables.

  15. Big Bang Day: 5 Particles - 3. The Anti-particle

    ScienceCinema (OSTI)

    None

    2011-04-25

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existence be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.

  16. Big data for ecologists: Highlighting the ORNL DAAC

    SciTech Connect (OSTI)

    Boyer, Alison G; Cook, Robert B; Devarakonda, Ranjeet; Eby, Pete I; Thornton, Michele M; Thornton, Peter E; SanthanaVannan, Suresh K; Virdi, Makhan L; Wei, Yaxing

    2014-01-01

    Ecologists are increasingly confronted by questions that can be addressed only by integrating data from numerous sources, often across large geographic areas and broad time periods. The supply of ecological big data is increasing at a rapid pace as researchers are publishing their data sets and large, public science and data infrastructures (such as NEON, DataONE, LTER, & NCEAS) are producing and curating extensive volumes of complex data and metadata. While supply of, and demand for, ecological data is on the rise, many ecologists now face a new challenge in locating and synthesizing the data relevant for their particular question. Here we highlight selected popular big data products applicable to ecological research available from the NASA Distributed Active Archive Center (DAAC) located at Oak Ridge National Laboratory (ORNL).

  17. Flying-plate detonator using a high-density high explosive

    DOE Patents [OSTI]

    Stroud, John R.; Ornellas, Donald L.

    1988-01-01

    A flying-plate detonator containing a high-density high explosive such as benzotrifuroxan (BTF). The detonator involves the electrical explosion of a thin metal foil which punches out a flyer from a layer overlying the foil, and the flyer striking a high-density explosive pellet of BTF, which is more thermally stable than the conventional detonator using pentaerythritol tetranitrate (PETN).

  18. Eliot Feibush leads new Princeton consortium to visualize Big Data |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Eliot Feibush leads new Princeton consortium to visualize Big Data By John Greenwald April 22, 2015 Tweet Widget Google Plus One Share on Facebook Eliot Feibush (Photo by Elle Starkman/PPPL Office of Communications) Eliot Feibush Gallery: Cross section of a tokamak plasma with red and blue colors showing direction and structure of plasma flow. (Photo by PPPL) Cross section of a tokamak plasma with red and blue colors showing direction and structure of plasma

  19. Norris-lake-big-ridge-tn1_caption.jpg | OSTI, US Dept of Energy Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information Norris-lake-big-ridge-tn1_caption

  20. Generation of ultra-fast cumulative water jets by sub-microsecond underwater electrical explosion of conical wire arrays

    SciTech Connect (OSTI)

    Shafer, D.; Gurovich, V. Tz.; Gleizer, S.; Gruzinsky, K.; Krasik, Ya. E.

    2015-12-15

    The results of experiments with underwater electrical explosion of modified conical arrays of copper and aluminum wires are presented. A pulsed generator producing a 550 kA-amplitude current with a 400 ns rise time was used in the explosion of the arrays. The array explosion generates water flows converging at the axis of the cone. This flow generates a fast-moving water jet with a velocity exceeding 1.8 × 10{sup 5 }cm/s, which was observed being ejected from the surface of the water covering the array. The positions of the water jet were measured by multiple-exposure fast framing imaging. In experiments, the apex angle of the array, the thickness of the water layer above the arrays, or the material of the wires was altered, which changed the resulting velocities and shapes of the emitted jets. A model that considers the converging stationary flow of a slightly compressible fluid is suggested. The velocities and shapes of the jets obtained by this model agree well with the experimentally measured jet velocities.

  1. Big Data Platforms as a Service: Challenges and Approach

    SciTech Connect (OSTI)

    Horey, James L; Gunasekaran, Raghul; Lim, Seung-Hwan; Begoli, Edmon; Nutaro, James J

    2012-01-01

    Infrastructure-as-a-Service has revolutionized the manner in which users commission computing infrastructure. Coupled with Big Data platforms (Hadoop, Cassandra), IaaS has democratized the ability to store and process massive datasets. For users that need to customize or create new Big Data stacks, however, readily available solutions do not yet exist. Users must first acquire the necessary cloud computing infrastructure, and manually install the prerequisite software. For complex distributed services this can be a daunting challenge. To address this issue, we argue that distributed services should be viewed as a single application consisting of virtual machines. Users should no longer be concerned about individual machines or their internal organization. To illustrate this concept, we introduce Cloud-Get, a distributed package manager that enables the simple installation of distributed services in a cloud computing environment. Cloud-Get enables users to instantiate and modify distributed services, including Big Data services, using simple commands. Cloud-Get also simplifies creating new distributed services via standardized package definitions.

  2. Three dimensional simulation for Big Hill Strategic Petroleum Reserve (SPR).

    SciTech Connect (OSTI)

    Ehgartner, Brian L.; Park, Byoung Yoon; Sobolik, Steven Ronald; Lee, Moo Yul

    2005-07-01

    3-D finite element analyses were performed to evaluate the structural integrity of caverns located at the Strategic Petroleum Reserve's Big Hill site. State-of-art analyses simulated the current site configuration and considered additional caverns. The addition of 5 caverns to account for a full site and a full dome containing 31 caverns were modeled. Operations including both normal and cavern workover pressures and cavern enlargement due to leaching were modeled to account for as many as 5 future oil drawdowns. Under the modeled conditions, caverns were placed very close to the edge of the salt dome. The web of salt separating the caverns and the web of salt between the caverns and edge of the salt dome were reduced due to leaching. The impacts on cavern stability, underground creep closure, surface subsidence and infrastructure, and well integrity were quantified. The analyses included recently derived damage criterion obtained from testing of Big Hill salt cores. The results show that from a structural view point, many additional caverns can be safely added to Big Hill.

  3. Afterburning in spherical premixed turbulent explosions

    SciTech Connect (OSTI)

    Bradley, D.; Lawes, M.; Scott, M.J. . Dept. of Mechanical Engineering); Mushi, E.M.J. )

    1994-12-01

    During the early stages of spherical turbulent flame propagation, more than half of the gas behind the visible flame front may be unburned. Previous models of the afterburning of the gas behind the apparent flame front have been extended in the present work, to include the effects of flame quenching, consequent upon localized flame stretch. The predictions of the model cover, the spatial and temporal variations of the fraction burned, the flame propagation rate, and the mass burning rate. They are all in dimensionless form and are well supported by associated experimental measurements in a fan-stirred bomb with controlled turbulence. The proportion of the gas that is unburned decreases with time and increases with the product of the Karlovitz stretch factor and the Lewis number. Simultaneous photographs were taken of the spherical schlieren image and of that due to Mie scattering from small seed particles in a thin laser sheet that sectioned the spherical flame. These clearly showed the amount of unburned gas within the sphere and, along with other evidence suggest laminar flamelet burning across a scale of distance which is close to the Taylor confirm the predictions of the fraction of gas unburned and of the rate at which it is burning.

  4. Theoretical Estimate of Maximum Possible Nuclear Explosion

    DOE R&D Accomplishments [OSTI]

    Bethe, H. A.

    1950-01-31

    The maximum nuclear accident which could occur in a Na-cooled, Be moderated, Pu and power producing reactor is estimated theoretically. (T.R.H.) 2O82 Results of nuclear calculations for a variety of compositions of fast, heterogeneous, sodium-cooled, U-235-fueled, plutonium- and power-producing reactors are reported. Core compositions typical of plate-, pin-, or wire-type fuel elements and with uranium as metal, alloy, and oxide were considered. These compositions included atom ratios in the following range: U-23B to U-235 from 2 to 8; sodium to U-235 from 1.5 to 12; iron to U-235 from 5 to 18; and vanadium to U-235 from 11 to 33. Calculations were performed to determine the effect of lead and iron reflectors between the core and blanket. Both natural and depleted uranium were evaluated as the blanket fertile material. Reactors were compared on a basis of conversion ratio, specific power, and the product of both. The calculated results are in general agreement with the experimental results from fast reactor assemblies. An analysis of the effect of new cross-section values as they became available is included. (auth)

  5. Development of mine explosion ground truth smart sensors

    SciTech Connect (OSTI)

    Taylor, Steven R.; Harben, Phillip E.; Jarpe, Steve; Harris, David B.

    2015-09-14

    Accurate seismo-acoustic source location is one of the fundamental aspects of nuclear explosion monitoring. Critical to improved location is the compilation of ground truth data sets for which origin time and location are accurately known. Substantial effort by the National Laboratories and other seismic monitoring groups have been undertaken to acquire and develop ground truth catalogs that form the basis of location efforts (e.g. Sweeney, 1998; Bergmann et al., 2009; Waldhauser and Richards, 2004). In particular, more GT1 (Ground Truth 1 km) events are required to improve three-dimensional velocity models that are currently under development. Mine seismicity can form the basis of accurate ground truth datasets. Although the location of mining explosions can often be accurately determined using array methods (e.g. Harris, 1991) and from overhead observations (e.g. MacCarthy et al., 2008), accurate origin time estimation can be difficult. Occasionally, mine operators will share shot time, location, explosion size and even shot configuration, but this is rarely done, especially in foreign countries. Additionally, shot times provided by mine operators are often inaccurate. An inexpensive, ground truth event detector that could be mailed to a contact, placed in close proximity (< 5 km) to mining regions or earthquake aftershock regions that automatically transmits back ground-truth parameters, would greatly aid in development of ground truth datasets that could be used to improve nuclear explosion monitoring capabilities. We are developing an inexpensive, compact, lightweight smart sensor unit (or units) that could be used in the development of ground truth datasets for the purpose of improving nuclear explosion monitoring capabilities. The units must be easy to deploy, be able to operate autonomously for a significant period of time (> 6 months) and inexpensive enough to be discarded after useful operations have expired (although this may not be part of our business

  6. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM); McComas, David J. (Los Alamos, NM)

    1999-01-01

    Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the ultraviolet emission produced thereby, is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives.

  7. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM); McComas, David J. (Los Alamos, NM)

    1997-01-01

    Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the optical emission produced thereby is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives.

  8. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOE Patents [OSTI]

    Funsten, H.O.; McComas, D.J.

    1999-06-15

    Apparatus and method are disclosed for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the ultraviolet emission produced thereby, is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives. 4 figs.

  9. Munitions having an insensitive detonator system for initiating large failure diameter explosives

    DOE Patents [OSTI]

    Perry, III, William Leroy

    2015-08-04

    A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.

  10. A HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPING SYSTEMS

    SciTech Connect (OSTI)

    Leishear, R.

    2013-03-28

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  11. In-Situ Monitoring of the Microstructure of TATB-based Explosive Formulations During Temperature Cycling using Ultra-small Angle X-ray Scattering

    SciTech Connect (OSTI)

    Willey, T M; Hoffman, D M; van Buuren, T; Lauderbach, L; Ilavsky, J; Gee, R H; Maiti, A; Overturf, G; Fried, L

    2008-02-06

    TATB (1,3,5 triamino-2,4,6-trinitrobenzene), an extremely insensitive explosive, is used both in plastic-bonded explosives (PBXs) and as an ultra-fine pressed powder (UFTATB). With both PBXs and UFTATB, an irreversible expansion occurs with temperature cycling known as ratchet growth. In TATB-based explosives using Kel-F 800 as binder (LX-17 and PBX-9502), additional voids, sizes hundreds of nanometers to a few microns account for much of the volume expansion caused by temperature cycling. These voids are in the predicted size regime for hot-spot formation during ignition and detonation, and thus an experimental measure of these voids is important feedback for hot-spot theory and for determining the relationship between void size distributions and detonation properties. Also, understanding the mechanism of ratchet growth allows future choice of explosive/binder mixtures to minimize these types of changes to explosives, further extending PBX shelf life. This paper presents the void size distributions of LX-17, UFTATB, and PBXs using commercially available Cytop M, Cytop A, and Hyflon AD60 binders during temperature cycling between -55 C and 70 C. These void size distributions are derived from ultra-small angle x-ray scattering (USAXS), a technique sensitive to structures from about 10 nm to about 2 mm. Structures with these sizes do not appreciably change in UFTATB, indicating voids or cracks larger than a few microns appear in UFTATB during temperature cycling. Compared to Kel-F 800 binders, Cytop M and Cytop A show relatively small increases in void volume from 0.9% to 1.3% and 0.6% to 1.1%, respectively, while Hyflon fails to prevent irreversible volume expansion (1.2% to 4.6%). Computational mesoscale models of ratchet growth and binder wetting and adhesion properties point to mechanisms of ratchet growth, and are discussed in combination with the experimental results.

  12. Relative Infrared (IR) and Terahertz (THz) Signatures of Common Explosives

    SciTech Connect (OSTI)

    Sharpe, Steven W.; Johnson, Timothy J.; Sheen, David M.; Atkinson, David A.

    2006-11-13

    Pacific Northwest National Laboratory (PNNL) has recently recorded the infrared (IR) and far-infrared (sometimes called the terahertz, THz) spectral signatures of four common explosives, in the condensed phase. The signatures of RDX, PETN, TNT and Tetryl were recorded both in the infrared and the THz domains, using Fourier transform infrared (FTIR) spectroscopy. Samples consisted of thin films and were made by depositing and subsequent evaporation of an acetone-explosive mixture. The complete spectrum spanned the range from 4,000 to 8 cm-1 at 2.0 cm-1 spectral resolution. Preliminary results in the infrared agree with those of previous workers, while the THz signatures are one order of magnitude weaker than the strongest IR bands.

  13. Physical properties of conventional explosives deduced from radio frequency emissions

    SciTech Connect (OSTI)

    Harlin, Jeremiah D; Nemzek, Robert

    2008-01-01

    Los Alamos National Laboratory collected broadband radio frequency (RF) electric field change measurements from multiple detonations of high explosives (HE). Three types of HE were used: small cylinders of flake TNT, solid TNT, and PBX-9501. Low frequency signals (<80 MHz) were shot-to-shot repeatable and occurred within the first 100 {mu} s at measured amplitudes of about 2 V m{sup -1} at 35 m distance. High frequency signals (>290 MHz) occurred later, were an order of magnitude lower in signal strength, and were not repeatable. There is a positive correlation between the maximum electric field change and the shock velocity of the HE. The amount of free charge produced in the explosion estimated from the first RF pulse is between 10 and 150 {mu} C. This implies a weakly ionized plasma with temperatures between 2600 and 2900 K.

  14. Nanomaterial-Based Biosensors for Detection of Pesticides and Explosives

    SciTech Connect (OSTI)

    Wang, Jun; Lin, Yuehe

    2009-01-01

    In this chapter, we describe nanomaterial-based biosensors for detecting OP pesticides and explosives. CNTs and functionalized silica nanoparticles have been chosen for this study. The biosensors were combined with the flow-injection system, providing great advantages for onsite, real-time, and continuous detection of environmental pollutants such as OPs and TNT. The sensors take advantage of the electrocatalytic properties of CNTs, which makes it feasible to achieve a sensitive electrochemical detection of the products from enzymatic reactions at low potential. This approach uses a large aspect ratio of silica nanoparticles, which can be used as a carrier for loading a large amount of electroactive species, such as poly(guanine), for amplified detection of explosives. These methods offer a new environmental monitoring tool for rapid, inexpensive, and highly sensitive detection of OPs or TNT compounds.

  15. Characterization of plasma sprayed and explosively consolidated simulated lunar soil

    SciTech Connect (OSTI)

    Powell, S.J.; Inal, O.T.; Smith, M.F.

    1997-06-01

    Two methods for the use of lunar materials for the construction of shelters on the Moon are being proposed: explosive consolidation of the soil into structural components and plasma spraying of the soil to join components. The plasma-sprayed coating would also provide protection from the intense radiation. In this work, a mare simulant was plasma-sprayed onto a stainless steel substrate. Deposition of a 0.020 inch coating using power inputs of 23, 25, 27 and 29 kW were compared. Hardness of the coatings increased with each increase of power to the system, while porosity at the interface decreased. All coatings exhibited good adhesion. Simultaneously, an explosively consolidated sample was similarly characterized to afford a comparison of structural features associated with each mode of proposed use.

  16. Rare Isotopes in Cosmic Explosions and Accelerators on Earth

    ScienceCinema (OSTI)

    Schatz, Hendrick [Michigan State University, East Lansing, Michigan, United States

    2010-01-08

    Rare isotopes are nature?s stepping stones to produce the heavy elements, and they are produced in large quantities in stellar explosions. Despite their fleeting existence, they shape the composition of the universe and the observable features of stellar explosions. The challenge for nuclear science is to produce and study the very same rare isotopes so as to understand the origin of the elements and a range of astronomical observations. I will review the progress that has been made to date in astronomy and nuclear physics, and the prospects of finally addressing many of the outstanding issues with the future Facility for Rare Isotope Beams (FRIB), which DOE will build at Michigan State University.

  17. Sub-sonic thermal explosions investigated by radiography

    SciTech Connect (OSTI)

    Smilowitz, Laura B; Henson, Bryan F; Romero, Jerry J; Asay, Blaine W

    2010-01-01

    This paper reviews the past 5 years of experiments utilizing radiographic techniques to study defiagration in thermal explosions in HMX based formulations. Details of triggering and timing synchronization are given. Radiographic images collected using both protons and x-rays are presented. Comparisons of experiments with varying size, case confinement, binder, and synchronization are presented. Techniques for quantifying the data in the images are presented and a mechanism for post-ignition burn propagation in a thermal explosion is discussed. From these experiments, we have observed a mechanism for sub-sonic defiagration with both gas phase convective and solid phase conductive burning. The convective front velocity is directly measured from the radiographic images and consumes only a small fraction of the HE. It lights the HE as it passes beginning the slower solid state conductive burn process. This mechanism is used to create a model to simulate the radiographic results and a comparison will be shown.

  18. Optical ordance system for use in explosive ordnance disposal activities

    SciTech Connect (OSTI)

    Merson, J.A.; Salas, F.J.; Helsel, F.M.

    1994-01-01

    A portable hand-held solid state rod laser system and an optically-ignited detonator have been developed for use in explosive ordnance disposal (EOD) activities. Laser prototypes from Whittaker Ordnance and Universal Propulsion have been tested and evaluated. The optical detonator contains 2-(5 cyanotetrazolato) pentaamine cobalt III perchlorate (CP) as the DDT column and the explosive Octahydro 1, 3, 5, 7 -- tetranitro -- 1, 3, 5, 7 -- tetrazocine (HMX) as the output charge. The laser is designed to have an output of 150 mJ in a 500 microsecond pulse. This output allows firing through 2000 meters of optical fiber. The detonator can also be ignited with a portable laser diode source through a shorter length of fiber.

  19. Thermal initiation caused by fragment impact on cased explosives

    SciTech Connect (OSTI)

    Schnurr, N.M. )

    1989-01-01

    Numerical calculations have been used to predict the velocity threshold for thermal initiation of a cased explosive caused by fragment impact. A structural analysis code was used to determine temperature profiles and a thermal analysis code was used to calculate reaction rates. Results generated for the United States Air Force MK 82 bomb indicate that the velocity threshold for thermal initiation is slightly higher than that for the shock-to-detonation process. 8 refs., 5 figs., 2 tabs.

  20. Non-lead, environmentally safe projectiles and explosives containers

    DOE Patents [OSTI]

    Lowden, Richard A.; McCoig, Thomas M.; Dooley, Joseph B.; Smith, Cyrus M.

    2001-01-16

    A solid object having controlled frangibility, such as a bullet or a container for explosives, is made by combining two different metals in proportions calculated to achieve a desired density, without using lead. A wetting material is deposited on the base constituent which is made of a relative dense, hard material. The wetting material enhances the wettability of the base constituent with the binder constituent, which is lighter and softer than the base constituent.