Powered by Deep Web Technologies
Note: This page contains sample records for the topic "big explosives experimental" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Big Explosives Experimental Facility - BEEF  

SciTech Connect (OSTI)

The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

None

2014-10-31T23:59:59.000Z

2

Big Explosives Experimental Facility - BEEF  

ScienceCinema (OSTI)

The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

None

2015-01-07T23:59:59.000Z

3

Explosives Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory. An experimental explosive is shown igniting during small-scale impact testing. Nuclear weapons energetic materials science, technology and engineering expertise...

4

Experimental investigation of explosive-driven plasma-compression opening switches  

SciTech Connect (OSTI)

Plasma-compression opening-switch techniques are being developed for use in explosive-driven magnetic-flux-compresssion-generator applications. A new test bed for performing low-cost experimentation is described. Experiments with approx.0.15 MA/cm linear current density in the switch have achieved resistance increases of a factor of 10 in a few hundred nanoseconds. Peak field strengths of 30 kV/cm are generated in these tests. Data are presented from preliminary tests that indicate reduced pressure in the plasma cavity enhanced switch performance.

Goforth, J.H.; Caird, R.S.

1983-01-01T23:59:59.000Z

5

Macroscopic observables experimentally linked to microscopic processes in the explosive fracture and fragmentation of metals  

SciTech Connect (OSTI)

The response of a metal element to explosive loading depends on a broad spectrum of explosive and metal properties, macroscopic geometry plays a crucial role in defining the localized loading history and the resulting gradients of interest, while microscopic effects and defects are generally believed responsible for damage nucleation. Certain experiments reduce the complexity by producing conditions that are uniform in some sense, allowing dynamic measurement of variables that can be correlated with corresponding microscopic effects observed in recovery experiments. Spherical expansion of thin shells, that eventually fragment, and steady wave loading of flat plates are two such experiments. Proton radiography, x-radiography, laser velocimetry, imaging IR, and visible light photography all have produced dynamic measurements in 4340 steel, copper, uranium alloys, tantalum, and titanium. Correlation of the macroscopic measurements with microscopy on recovered samples has been done with a statistical approach.

Hull, Lawrence M [Los Alamos National Laboratory

2010-12-16T23:59:59.000Z

6

Big Science  

ScienceCinema (OSTI)

Big science seeks big solutions for the most urgent problems of our times. Video courtesy Cray, Inc.

Dr. Thomas Zacharia

2010-01-08T23:59:59.000Z

7

Big Science  

SciTech Connect (OSTI)

Big science seeks big solutions for the most urgent problems of our times. Video courtesy Cray, Inc.

Dr. Thomas Zacharia

2008-12-01T23:59:59.000Z

8

Apple Tree, NH Big Tree for May By Anne Krantz, NH Big Tree Team,  

E-Print Network [OSTI]

Apple Tree, NH Big Tree for May By Anne Krantz, NH Big Tree Team, UNH Cooperative Extension The explosion of apple blossoms in May transforms the most gnarled old tree into a delicate cloud of beauty (1817-1862) in his essay "The Wild Apple Tree," described the blossoms perfectly: `The flowers

New Hampshire, University of

9

DOE Explosives Safety Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual describes DOE's explosives safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives.

1996-03-29T23:59:59.000Z

10

Explosive complexes  

DOE Patents [OSTI]

Lead-free primary explosives of the formula [M.sup.II(A).sub.R(B.sup.X).sub.S](C.sup.Y).sub.T, where A is 1,5-diaminotetrazole, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

Huynh, My Hang V. (Los Alamos, NM)

2009-09-22T23:59:59.000Z

11

Explosive complexes  

SciTech Connect (OSTI)

Lead-free primary explosives of the formula [M.sup.II(A).sub.R(B.sup.X).sub.S](C.sup.Y).sub.T, where A is 1,5-diaminotetrazole, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

Huynh, My Hang V. (Los Alamos, NM)

2011-08-16T23:59:59.000Z

12

Explosive simulants for testing explosive detection systems  

DOE Patents [OSTI]

Explosives simulants that include non-explosive components are disclosed that facilitate testing of equipment designed to remotely detect explosives. The simulants are non-explosive, non-hazardous materials that can be safely handled without any significant precautions. The simulants imitate real explosives in terms of mass density, effective atomic number, x-ray transmission properties, and physical form, including moldable plastics and emulsions/gels.

Kury, John W. (Danville, CA); Anderson, Brian L. (Lodi, CA)

1999-09-28T23:59:59.000Z

13

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs).

2015-01-26T23:59:59.000Z

14

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

2014-07-10T23:59:59.000Z

15

Insensitive Extrudable Explosive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

explosives embedded in a polymer matrix. As such, they all rely on weak forces, such as surface tension, for adhesion between the explosive particles and binder material. This...

16

Dust cluster explosion  

SciTech Connect (OSTI)

A model for the dust cluster explosion where micron/sub-micron sized particles are accelerated at the expense of plasma thermal energy, in the afterglow phase of a complex plasma discharge is proposed. The model is tested by molecular dynamics simulations of dust particles in a confining potential. The nature of the explosion (caused by switching off the discharge) and the concomitant dust acceleration is found to depend critically on the pressure of the background neutral gas. At low gas pressure, the explosion is due to unshielded Coulomb repulsion between dust particles and yields maximum acceleration, while in the high pressure regime it is due to shielded Yukawa repulsion and yields much feebler acceleration. These results are in agreement with experimental findings. Our simulations also confirm a recently proposed electrostatic (ES) isothermal scaling relation, P{sub E}{proportional_to}V{sub d}{sup -2} (where P{sub E} is the ES pressure of the dust particles and V{sub d} is the confining volume).

Saxena, Vikrant [School of Mathematics and Physics, Queen's University Belfast, Belfast, Northern Ireland (United Kingdom); Institute for Plasma Research, Bhat, Gandhinagar (India); Avinash, K. [Department of Physics and Astrophysics, University of Delhi, New Delhi (India); Sen, A. [Institute for Plasma Research, Bhat, Gandhinagar (India)

2012-09-15T23:59:59.000Z

17

Complexity in Big History  

E-Print Network [OSTI]

Spier, Fred. “How Big History Works: Energy Flows and RiseSmil, Vaclav. Energy in World History. Boulder, CO: Westviewkg) Energy and complexity Spier: Complexity in Big History.

Spier, Fred

2011-01-01T23:59:59.000Z

18

Supernova bangs as a tool to study big bang  

SciTech Connect (OSTI)

Supernovae and gamma-ray bursts are the most powerful explosions in observed Universe. This educational review tells about supernovae and their applications in cosmology. It is explained how to understand the production of light in the most luminous events with minimum required energy of explosion. These most luminous phenomena can serve as primary cosmological distance indicators. Comparing the observed distance dependence on red shift with theoretical models one can extract information on evolution of the Universe from Big Bang until our epoch.

Blinnikov, S. I., E-mail: Sergei.Blinnikov@itep.ru [Institute for Theoretical and Experimental Physics (Russian Federation)

2012-09-15T23:59:59.000Z

19

Inspection tester for explosives  

DOE Patents [OSTI]

An inspection tester that can be used anywhere as a primary screening tool by non-technical personnel to determine whether a surface contains explosives. It includes a body with a sample pad. First and second explosives detecting reagent holders and dispensers are operatively connected to the body and the sample pad. The first and second explosives detecting reagent holders and dispensers are positioned to deliver the explosives detecting reagents to the sample pad. A is heater operatively connected to the sample pad.

Haas, Jeffrey S. (San Ramon, CA); Simpson, Randall L. (Livermore, CA); Satcher, Joe H. (Patterson, CA)

2007-11-13T23:59:59.000Z

20

Inspection tester for explosives  

DOE Patents [OSTI]

An inspection tester that can be used anywhere as a primary screening tool by non-technical personnel to determine whether a surface contains explosives. It includes a body with a sample pad. First and second explosives detecting reagent holders and dispensers are operatively connected to the body and the sample pad. The first and second explosives detecting reagent holders and dispensers are positioned to deliver the explosives detecting reagents to the sample pad. A is heater operatively connected to the sample pad.

Haas, Jeffrey S. (San Ramon, CA); Simpson, Randall L. (Livermore, CA); Satcher, Joe H. (Patterson, CA)

2010-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "big explosives experimental" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nuclear Explosive Safety Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual provides supplemental details to support the requirements of DOE O 452.2D, Nuclear Explosive Safety.

2009-04-14T23:59:59.000Z

22

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes requirements to implement the nuclear explosive safety elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations. Cancels DOE O 452.2C. Admin Chg 1, 7-10-13

2009-04-14T23:59:59.000Z

23

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs). Cancels DOE O 452.2C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.2D.

2009-04-14T23:59:59.000Z

24

Plastic explosives Mike Hopkins  

E-Print Network [OSTI]

Plastic explosives Mike Hill Mike Hopkins Doug Ravenel What this talk is about The poster The HHRH The reduced E4 -term 1.1 Plastic explosives: A C4 analog of the Kervaire invariant calculation Conference of Virginia Mike Hopkins Harvard University Doug Ravenel University of Rochester #12;Plastic explosives Mike

Ravenel, Douglas

25

DOE Explosives Safety Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Manual describes the Departments explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. Cancels DOE M 440.1-1. Canceled by DOE O 440.1B Chg 1.

2006-01-09T23:59:59.000Z

26

Big Sky Carbon Atlas  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

(Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

27

Weapons Experiments Division Explosives Operations Overview  

SciTech Connect (OSTI)

Presentation covers WX Division programmatic operations with a focus on JOWOG-9 interests. A brief look at DARHT is followed by a high level overview of explosives research activities currently being conducted within in the experimental groups of WX-Division. Presentation covers more emphasis of activities and facilities at TA-9 as these efforts have been more traditionally aligned with ongoing collaborative explosive exchanges covered under JOWOG-9.

Laintz, Kenneth E. [Los Alamos National Laboratory

2012-06-19T23:59:59.000Z

28

Explosives tester with heater  

DOE Patents [OSTI]

An inspection tester system for testing for explosives. The tester includes a body and a swab unit adapted to be removeably connected to the body. At least one reagent holder and dispenser is operatively connected to the body. The reagent holder and dispenser contains an explosives detecting reagent and is positioned to deliver the explosives detecting reagent to the swab unit. A heater is operatively connected to the body and the swab unit is adapted to be operatively connected to the heater.

Del Eckels, Joel (Livermore, CA); Nunes, Peter J. (Danville, CA); Simpson, Randall L. (Livermore, CA); Whipple, Richard E. (Livermore, CA); Carter, J. Chance (Livermore, CA); Reynolds, John G. (San Ramon, CA)

2010-08-10T23:59:59.000Z

29

Modeling of buried explosions  

SciTech Connect (OSTI)

Los Alamos National Laboratory has been and continues developing techniques for modeling buried explosions using a large geotechnical centrifuge. When fully developed, the techniques should permit the accurate modeling of large explosions in complex geometries. Our intentional application is to study the phenomena of explosive cavity formation and collapse. However, the same methods should also be applicable to simulation of bursts shallow enough to produce craters, and perhaps even of airbursts in situations where soil overburden is important. We have placed primary emphasis on test bed construction methods and on accurate measurement of the ground shock produced by the explosions. 8 refs., 7 figs.

Gaffney, E.S.; Wohletz, K.H.; House, J.W.; Brown, J.A.

1987-01-01T23:59:59.000Z

30

A different Big Bang theory: Los Alamos unveils explosives detection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A FirstEMSL ShellACalmodulin

31

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The directive establishes specific nuclear explosive safety (NES) program requirements to implement the DOE NES standards and other NES criteria for routine and planned nuclear explosive operations. Cancels DOE O 452.2B. Canceled by DOE O 452.2D.

2006-06-12T23:59:59.000Z

32

Explosively pumped laser light  

DOE Patents [OSTI]

A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

Piltch, Martin S. (Los Alamos, NM); Michelotti, Roy A. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

33

Non-detonable explosive simulators  

DOE Patents [OSTI]

A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

Simpson, Randall L. (Livermore, CA); Pruneda, Cesar O. (Livermore, CA)

1994-01-01T23:59:59.000Z

34

Non-detonable explosive simulators  

DOE Patents [OSTI]

A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

Simpson, R.L.; Pruneda, C.O.

1994-11-01T23:59:59.000Z

35

Beyond Myopic Inference in Big Data Pipelines Karthik Raman, Adith Swaminathan, Johannes Gehrke, Thorsten Joachims  

E-Print Network [OSTI]

]: Learning General Terms Algorithms, Experimentation, Theory Keywords Big Data Pipelines, Modular Design Detection & Recognition pipeline. creation, model construction, testing, and visualization. In orderBeyond Myopic Inference in Big Data Pipelines Karthik Raman, Adith Swaminathan, Johannes Gehrke

Joachims, Thorsten

36

Experimental Highlights - 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

weapons as they age or are subjected to the immense pressures and temperatures of a thermonuclear explosion. By providing experimental data to compare to computer models of...

37

Lithium niobate explosion monitor  

DOE Patents [OSTI]

Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier. 8 figs.

Bundy, C.H.; Graham, R.A.; Kuehn, S.F.; Precit, R.R.; Rogers, M.S.

1990-01-09T23:59:59.000Z

38

Lithium niobate explosion monitor  

DOE Patents [OSTI]

Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier.

Bundy, Charles H. (Clearwater, FL); Graham, Robert A. (Los Lunas, NM); Kuehn, Stephen F. (Albuquerque, NM); Precit, Richard R. (Albuquerque, NM); Rogers, Michael S. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

39

Explosive Detection Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To standardize and accelerate implementation of the Department of Energy (DOE) explosive detection program. DOE N 251.40, dated 5/3/01, extends this directive until 12/31/01.

2000-10-26T23:59:59.000Z

40

Explosion suppression system  

DOE Patents [OSTI]

An explosion suppression system and triggering apparatus therefor are provided for quenching gas and dust explosions. An electrically actuated suppression mechanism which dispenses an extinguishing agent into the path ahead of the propagating flame is actuated by a triggering device which is light powered. This triggering device is located upstream of the propagating flame and converts light from the flame to an electrical actuation signal. A pressure arming device electrically connects the triggering device to the suppression device only when the explosion is sensed by a further characteristic thereof beside the flame such as the pioneer pressure wave. The light powered triggering device includes a solar panel which is disposed in the path of the explosion and oriented between horizontally downward and vertical. Testing mechanisms are also preferably provided to test the operation of the solar panel and detonator as well as the pressure arming mechanism.

Sapko, Michael J. (Finleyville, PA); Cortese, Robert A. (Pittsburgh, PA)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "big explosives experimental" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Idaho Explosive Detection System  

ScienceCinema (OSTI)

Learn how INL researchers are making the world safer by developing an explosives detection system that can inspect cargo. For more information about INL security research, visit http://www.facebook.com/idahonationallaboratory

Klinger, Jeff

2013-05-28T23:59:59.000Z

42

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The directive provides supplemental details to support the requirements of DOE O 452.2C, Nuclear Explosive Safety, dated 6-12-06. Canceled by DOE M 452.2-1A.

2006-06-12T23:59:59.000Z

43

DOE explosives safety manual  

SciTech Connect (OSTI)

The Department of Energy (DOE) policy requires that all DOE activities be conducted in a manner that protects the safety of the public and provides a safe and healthful workplace for employees. DOE has also prescribed that all personnel be protected in any explosives operation undertaken. The level of safety provided shall be at least equivalent to that of the best industrial practice. The risk of death or serious injury shall be limited to the lowest practicable minimum. DOE and contractors shall continually review their explosives operations with the aim of achieving further refinements and improvements in safety practices and protective features. This manual describes the Department's explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. It is intended to reflect the state-of-the-art in explosives safety. In addition, it is essential that applicable criteria and requirements for implementing this policy be readily available and known to those responsible for conducting DOE programs.

Not Available

1991-10-01T23:59:59.000Z

44

explosion: Role of hydrogen thermonuclear explosion in support of cometary hypothesis  

E-Print Network [OSTI]

comet, compressional heating of the comet was expected to create hydrogen and deuterium plasma. The velocity distribution of protons and deuterons in this plasma is not expected to be the Maxwell-Boltzmann distribution. It is shown that the use of a generalized momentum distribution leads to substantial increases of deuteron fusion rates and that a thermonuclear explosion may compete with a thermo-chemical explosion. Therefore, it may be possible that a thermo-chemical explosion induced a hydrogen thermonuclear explosion and both the thermo-chemical and thermonuclear explosions occurred in the 1908 Tunguska event. Experimental tests of this hypothesis are proposed. The explosion on 30 June 1908 over Tunguska, Central Siberia, released 30 megatons (TNT equivalent) of energy at an altitude of 5 km without creating crater(s) on the Earth’s surface. Many hypotheses (antimatter, a small black hole, carbonaceous asteroids, comets, etc.) have been proposed. Recent measurements of anomalous isotope ratios in the 1908 peat layers at and near the epicenter have ruled out most of the proposed hypotheses, and provide many supporting evidences for the cometary hypothesis [1]. The cometary core consists mostly of frozen ice. Compressional heating explosion of falling cometary bodies in the atmosphere was proposed as early as in 1930, and has been investigated theoretically [1]. A

Y. E. Kim

2008-01-01T23:59:59.000Z

45

Non-detonable and non-explosive explosive simulators  

DOE Patents [OSTI]

A simulator which is chemically equivalent to an explosive, but is not detonable or explodable. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive.

Simpson, Randall L. (Livermore, CA); Pruneda, Cesar O. (Livermore, CA)

1997-01-01T23:59:59.000Z

46

Non-detonable and non-explosive explosive simulators  

DOE Patents [OSTI]

A simulator which is chemically equivalent to an explosive, but is not detonable or explodable is disclosed. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive. 11 figs.

Simpson, R.L.; Pruneda, C.O.

1997-07-15T23:59:59.000Z

47

Explosively separable casing  

DOE Patents [OSTI]

An explosively separable casing including a cylindrical afterbody and a circular cover for one end of the afterbody is disclosed. The afterbody has a cylindrical tongue extending longitudinally from one end which is matingly received in a corresponding groove in the cover. The groove is sized to provide a pocket between the end of the tongue and the remainder of the groove so that an explosive can be located therein. A seal is also provided between the tongue and the groove for sealing the pocket from the atmosphere. A frangible holding device is utilized to hold the cover to the afterbody. When the explosive is ignited, the increase in pressure in the pocket causes the cover to be accelerated away from the afterbody. Preferably, the inner wall of the afterbody is in the same plane as the inner wall of the tongue to provide a maximum space for storage in the afterbody and the side wall of the cover is thicker than the side wall of the afterbody so as to provide a sufficiently strong surrounding portion for the pocket in which the explosion takes place. The detonator for the explosive is also located on the cover and is carried away with the cover during separation. The seal is preferably located at the longitudinal end of the tongue and has a chevron cross section.

Jacobson, Albin K. (Albuquerque, NM); Rychnovsky, Raymond E. (Livermore, CA); Visbeck, Cornelius N. (Livermore, CA)

1985-01-01T23:59:59.000Z

48

Securing Infrastructure from High Explosive Threats  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory (LLNL) is working with the Department of Homeland Security's Science and Technology Directorate, the Transportation Security Administration, and several infrastructure partners to characterize and help mitigate principal structural vulnerabilities to explosive threats. Given the importance of infrastructure to the nation's security and economy, there is a clear need for applied research and analyses (1) to improve understanding of the vulnerabilities of these systems to explosive threats and (2) to provide decision makers with time-critical technical assistance concerning countermeasure and mitigation options. Fully-coupled high performance calculations of structural response to ideal and non-ideal explosives help bound and quantify specific critical vulnerabilities, and help identify possible corrective schemes. Experimental validation of modeling approaches and methodologies builds confidence in the prediction, while advanced stochastic techniques allow for optimal use of scarce computational resources to efficiently provide infrastructure owners and decision makers with timely analyses.

Glascoe, L; Noble, C; Reynolds, J; Kuhl, A; Morris, J

2009-03-20T23:59:59.000Z

49

Explosive Synchronization is Discontinuous  

E-Print Network [OSTI]

Spontaneous explosive is an abrupt transition to collective behavior taking place in heterogeneous networks when the frequencies of the nodes are positively correlated to the node degree. This explosive transition was conjectured to be discontinuous. Indeed, numerical investigations reveal a hysteresis behavior associated with the transition. Here, we analyze explosive synchronization in star graphs. We show that in the thermodynamic limit the transition to (and out) collective behavior is indeed discontinuous. The discontinuous nature of the transition is related to the nonlinear behavior of the order parameter, which in the thermodynamic limit exhibits multiple fixed points. Moreover, we unravel the hysteresis behavior in terms of the graph parameters. Our numerical results show that finite size graphs are well described by our predictions.

Vladimir Vlasov; Yong Zou; Tiago Pereira

2014-11-25T23:59:59.000Z

50

Thermoelectric Bulk Materials from the Explosive Consolidation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bulk Materials from the Explosive Consolidation of Nanopowders Thermoelectric Bulk Materials from the Explosive Consolidation of Nanopowders Describes technique of explosively...

51

Microcantilever detector for explosives  

DOE Patents [OSTI]

Methods and apparatus for detecting the presence of explosives by analyzing a vapor sample from the suspect vicinity utilize at least one microcantilever. Explosive gas molecules which have been adsorbed onto the microcantilever are subsequently heated to cause combustion. Heat, along with momentum transfer from combustion, causes bending and a transient resonance response of the microcantilever which may be detected by a laser diode which is focused on the microcantilever and a photodetector which detects deflection of the reflected laser beam caused by heat-induced deflection and resonance response of the microcantilever. 2 figs.

Thundat, T.G.

1999-06-29T23:59:59.000Z

52

High-nitrogen explosives  

SciTech Connect (OSTI)

The syntheses and characterization of various tetrazine and furazan compounds offer a different approach to explosives development. Traditional explosives - such as TNT or RDX - rely on the oxidation of the carbon and hydrogen atoms by the oxygen carrying nitro group to produce the explosive energy. High-nitrogen compounds rely instead on large positive heats of formation for that energy. Some of these high-nitrogen compounds have been shown to be less sensitive to initiation (e.g. by impact) when compared to traditional nitro-containing explosives of similar performances. Using the precursor, 3,6-bis-(3,5-dimethylpyrazol-1-yl)-s-tetrazine (BDT), several useful energetic compounds based on the s-tetrazine system have been synthesized and studied. The compound, 3,3{prime}-azobis(6-amino-s-tetrazine) or DAAT, detonates as a half inch rate stick despite having no oxygen in the molecule. Using perfluoroacetic acid, DAAT can be oxidized to give mixtures of N-oxide isomers (DAAT03.5) with an average oxygen content of about 3.5. This energetic mixture burns at extremely high rates and with low dependency on pressure. Another tetrazine compound of interest is 3,6-diguanidino-s-tetrazine(DGT) and its dinitrate and diperchlorate salts. DGT is easily synthesized by reacting BDT with guanidine in methanol. Using Caro's acid, DGT can be further oxidized to give 3,6-diguanidino-s-tetrazine-1,4-di-N-oxide (DGT-DO). Like DGT, the di-N-oxide can react with nitric acid or perchloric acid to give the dinitrate and the diperchlorate salts. The compounds, 4,4{prime}-diamino-3,3{prime}-azoxyfurazan (DAAF) and 4,4{prime}-diamino-3,3{prime}-azofurazan (DAAzF), may have important future roles in insensitive explosive applications. Neither DAAF nor DAAzF can be initiated by laboratory impact drop tests, yet both have in some aspects better explosive performances than 1,3,5-triamino-2,4,6-trinitrobenzene TATB - the standard of insensitive high explosives. The thermal stability of DAAzF is equal to that of hexanitrostilbene (HNS), yet it has a greater CJ pressure and detonation velocity. In an effort to reduce the critical diameter of TATB without sacrificing its insensitivity, we have studied the explosive performances of TATB mixed with DAAzlF (X-0561) and TATB mixed with DAAF (X-0563).

Naud, D. (Darren); Hiskey, M. A. (Michael A.); Kramer, J. F. (John F.); Bishop, R. L. (Robert L.); Harry, H. H. (Herbert H.); Son, S. F. (Steven F.); Sullivan, G. K. (Gregg K.)

2002-01-01T23:59:59.000Z

53

explosion: Role of hydrogen thermonuclear explosion in support of cometary hypothesis  

E-Print Network [OSTI]

deuteron fusion rates and that a thermonuclear explosion may compete with a thermo-chemical explosion

Y. E. Kim

2008-01-01T23:59:59.000Z

54

Portable raman explosives detection  

SciTech Connect (OSTI)

Recent advances in portable Raman instruments have dramatically increased their application to emergency response and forensics, as well as homeland defense. This paper reviews the relevant attributes and disadvantages of portable Raman spectroscopy, both essentially and instrumentally, to the task of explosives detection in the field.

Moore, David Steven [Los Alamos National Laboratory; Scharff, Robert J [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

55

Nuclear Explosive Safety Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Department of Energy (DOE) Manual provides supplemental details on selected topics to support the requirements of DOE O 452.2D, Nuclear Explosive Safety, dated 4/14/09. Cancels DOE M 452.2-1. Admin Chg 1, dated 7-10-13, cancels DOE M 452.2-1A.

2009-04-14T23:59:59.000Z

56

Nuclear Explosive Safety Evaluation Processes  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual provides supplemental details to support the nuclear explosive safety evaluation requirement of DOE O 452.2D, Nuclear Explosive Safety. Does not cancel other directives. Admin Chg 1, 7-10-13.

2009-04-14T23:59:59.000Z

57

Big Data, Big Impact: New Possibilities for International Development  

E-Print Network [OSTI]

0 Big Data, Big Impact: New Possibilities for International Development #12;1 Executive Summary for harnessing big data. #12;2 Financial Services Data gleaned from mobile money services can provide deep is able to predict the magnitude of a disease outbreak half way around the world. Similarly, an aid agency

Chen, Keh-Hsun

58

CHARLOTTE: BIG DATA & ANALYTICS  

E-Print Network [OSTI]

. A Staffing Services Co. Lincoln Harris Louis Raphael -- Kizan International, Inc. Moore & Van Allen PLLCFab, Inc. UGL Services Weyco Group #12;charlottechamber.com Charlotte: Big Data & Analytics 3 12/13 330 S applies analytics to design customer services and contact strategies, to gain insights about employees

Raja, Anita

59

Before the Big Bang  

ScienceCinema (OSTI)

The second law of thermodynamics says, in effect, that things get more random as time progresses. Thus, we can deduce that the beginning of the universe - the Big Bang - must have been an extraordinarily precisely organized state. What was the nature of this state? How can such a special state have come about? In Penrose's talk, a novel explanation is suggested.

Roger Penrose

2010-09-01T23:59:59.000Z

60

Evidence of the Big Fix  

E-Print Network [OSTI]

We give an evidence of the Big Fix. The theory of wormholes and multiverse suggests that the parameters of the Standard Model are fixed in such a way that the total entropy at the late stage of the universe is maximized, which we call the maximum entropy principle. In this paper, we discuss how it can be confirmed by the experimental data, and we show that it is indeed true for the Higgs vacuum expectation value $v_{h}$. We assume that the baryon number is produced by the sphaleron process, and that the current quark masses, the gauge couplings and the Higgs self coupling are fixed when we vary $v_{h}$. It turns out that the existence of the atomic nuclei plays a crucial role to maximize the entropy. This is reminiscent of the anthropic principle, however it is required by the fundamental low in our case.

Yuta Hamada; Hikaru Kawai; Kiyoharu Kawana

2014-09-09T23:59:59.000Z

Note: This page contains sample records for the topic "big explosives experimental" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Low voltage nonprimary explosive detonator  

DOE Patents [OSTI]

A low voltage, electrically actuated, nonprimary explosive detonator is disclosed wherein said detonation is achieved by means of an explosive train in which a deflagration-to-detonation transition is made to occur. The explosive train is confined within a cylindrical body and positioned adjacent to low voltage ignition means have electrical leads extending outwardly from the cylindrical confining body. Application of a low voltage current to the electrical leads ignites a self-sustained deflagration in a donor portion of the explosive train which then is made to undergo a transition to detonation further down the train.

Dinegar, Robert H. (Los Alamos, NM); Kirkham, John (Newbury, GB2)

1982-01-01T23:59:59.000Z

62

Aluminum-Enhanced Underwater Electrical Discharges for Steam Explosion Triggering  

SciTech Connect (OSTI)

For a number of years, we have been initiating steam explosions of single drops of molten materials with pressure and flow (bubble growth) transients generated by discharging a capacitor bank through gold bridgewires placed underwater. Recent experimental and theoretical advances in the field of steam explosions, however, have made it important to substantially increase these relatively mild transients in water without using high explosives, if possible. To do this with the same capacitor bank, we have discharged similar energies through tiny strips of aluminum foil submerged in water. By replacing the gold wires with the aluminum strips, we were able to add the energy of the aluminum-water combustion to that normally deposited electrically by the bridgewire explosion in water. The chemical enhancement of the explosive characteristics of the discharges was substantial: when the same electrical energies were discharged through the aluminum strips, peak pressures increased as much as 12-fold and maximum bubble volumes as much as 5-fold above those generated with the gold wires. For given weights of aluminum, the magnitudes of both parameters appeared to exceed those produced by the underwater explosion of equivalent weights of high explosives.

HOGELAND, STEVE R.; NELSON, LLOYD S.; ROTH, THOMAS CHRISTOPHER

1999-07-01T23:59:59.000Z

63

Laser machining of explosives  

DOE Patents [OSTI]

The invention consists of a method for machining (cutting, drilling, sculpting) of explosives (e.g., TNT, TATB, PETN, RDX, etc.). By using pulses of a duration in the range of 5 femtoseconds to 50 picoseconds, extremely precise and rapid machining can be achieved with essentially no heat or shock affected zone. In this method, material is removed by a nonthermal mechanism. A combination of multiphoton and collisional ionization creates a critical density plasma in a time scale much shorter than electron kinetic energy is transferred to the lattice. The resulting plasma is far from thermal equilibrium. The material is in essence converted from its initial solid-state directly into a fully ionized plasma on a time scale too short for thermal equilibrium to be established with the lattice. As a result, there is negligible heat conduction beyond the region removed resulting in negligible thermal stress or shock to the material beyond a few microns from the laser machined surface. Hydrodynamic expansion of the plasma eliminates the need for any ancillary techniques to remove material and produces extremely high quality machined surfaces. There is no detonation or deflagration of the explosive in the process and the material which is removed is rendered inert.

Perry, Michael D. (Livermore, CA); Stuart, Brent C. (Fremont, CA); Banks, Paul S. (Livermore, CA); Myers, Booth R. (Livermore, CA); Sefcik, Joseph A. (Tracy, CA)

2000-01-01T23:59:59.000Z

64

Nuclear Explosive Safety Evaluation Processes  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual provides supplemental details to support the nuclear explosive safety (NES) evaluation requirement of Department of Energy (DOE) Order (O) 452.2D, Nuclear Explosive Safety, dated 4/14/09. Admin Chg 1, dated 7-10-13, cancels DOE M 452.2-2.

2009-04-14T23:59:59.000Z

65

Cotton Gin Dust Explosibility Determinations  

E-Print Network [OSTI]

personnel listed dust found in cotton gins, or gin dust, fueled two explosions in the past. OSHA is required by law to regulate facilities handling explosible dusts to provide a safe working environment for employees. The dust handling facilities must test...

Vanderlick, Francis Jerome

2014-01-06T23:59:59.000Z

66

Gas Explosion Characterization, Wave Propagation  

E-Print Network [OSTI]

s & Dt^boooo^j Risø-R-525 Gas Explosion Characterization, Wave Propagation (Small-Scale Experiments EXPLOSION CHARACTERIZATION, WAVE PROPAGATION (Small-Scale Experiments) G.C. Larsen Abstract. A number characteristics 14 3.5. Characteristics of the primary pressure wave 21 3.6. Pressure propagation over a hard

67

Trace Explosive Detection Using Nanosensors  

SciTech Connect (OSTI)

Selective and sensitive detection of explosives is very important in countering terrorist threats. Detecting trace explosives has become a very complex and expensive endeavor because of a number of factors, such as the wide variety of materials that can be used as explosives, the lack of easily detectable signatures, the vast number of avenues by which these weapons can be deployed, and the lack of inexpensive sensors with high sensitivity and selectivity. High sensitivity and selectivity, combined with the ability to lower the deployment cost of sensors using mass production, is essential in winning the war on explosives-based terrorism. Nanosensors have the potential to satisfy all the requirements for an effective platform for the trace detection of explosives.

Senesac, Larry R [ORNL; Thundat, Thomas George [ORNL

2008-01-01T23:59:59.000Z

68

Solving Big Problems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights SuccessSmartPortalSolving Big

69

Addressing Big Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4T opAddress: ~~. . ~L~ -'7(J'",Big

70

Small Particles, Big Impact  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus Tom Fletcher, Assistant7/2013technicalSmall Particles, Big

71

Supernova neutrinos and explosive nucleosynthesis  

SciTech Connect (OSTI)

Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and ?{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on ?{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J.; Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Mathews, G. J. [Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nakamura, K. [Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

2014-05-09T23:59:59.000Z

72

Big Crunch-based omnidirectional light concentrators  

E-Print Network [OSTI]

Omnidirectional light concentration remains an unsolved problem despite such important practical applications as design of efficient mobile photovoltaic cells. Optical black hole designs developed recently offer partial solution to this problem. However, even these solutions are not truly omnidirectional since they do not exhibit a horizon, and at large enough incidence angles light may be trapped into quasi-stationary orbits around such imperfect optical black holes. Here we propose and realize experimentally another gravity-inspired design of a broadband omnidirectional light concentrator based on the cosmological Big Crunch solutions. By mimicking the Big Crunch spacetime via corresponding effective optical metric we make sure that every photon world line terminates in a single point.

Igor I. Smolyaninov; Yu-Ju Hung

2014-05-16T23:59:59.000Z

73

Nuclear Explosive and Weapon Surety Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order defines the Nuclear Explosive and Weapon Surety (NEWS) Program, which was established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

2014-08-05T23:59:59.000Z

74

Detection of explosives in soils  

DOE Patents [OSTI]

An apparatus and method for detecting explosive-indicating compounds in subsurface soil. The apparatus has a probe with an adsorbent material on some portion of its surface that can be placed into soil beneath the ground surface, where the adsorbent material can adsorb at least one explosive-indicating compound. The apparatus additional has the capability to desorb the explosive-indicating compound through heating or solvent extraction. A diagnostic instrument attached to the probe detects the desorbed explosive-indicating compound. In the method for detecting explosive-indicating compounds in soil, the sampling probe with an adsorbent material on at least some portion of a surface of the sampling probe is inserted into the soil to contact the adsorbent material with the soil. The explosive-indicating compounds are then desorbed and transferred as either a liquid or gas sample to a diagnostic tool for analysis. The resulting gas or liquid sample is analyzed using at least one diagnostic tool selected from the group consisting of an ion-mobility spectrometer, a gas chromatograph, a high performance liquid chromatograph, a capillary electrophoresis chromatograph, a mass spectrometer, a Fourier-transform infrared spectrometer and a Raman spectrometer to detect the presence of explosive-indicating compounds.

Chambers, William B. (Edgewood, NM); Rodacy, Philip J. (Albuquerque, NM); Phelan, James M. (Bosque Farms, NM); Woodfin, Ronald L. (Sandia Park, NM)

2002-01-01T23:59:59.000Z

75

The bigness of things Vaughn Climenhaga  

E-Print Network [OSTI]

is . . . a crowd of people? number weight a fish? #12;How big is it? Meaning of "big" depends on what "it" is, and why we care. How big is . . . a crowd of people? number weight a fish? length weight #12;How big is it weight a fish? length weight a city? #12;How big is it? Meaning of "big" depends on what "it" is, and why

Climenhaga, Vaughn

76

Protein Dynamics Hit the Big Screen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Protein Dynamics Hit the Big Screen Protein Dynamics Hit the Big Screen Now playing at a supercomputer near you: proteins in action June 29, 2005 Contact: Dan Krotz,...

77

Explosive plane-wave lens  

DOE Patents [OSTI]

An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.

Marsh, S.P.

1987-03-12T23:59:59.000Z

78

Explosive plane-wave lens  

DOE Patents [OSTI]

An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.

Marsh, S.P.

1988-03-08T23:59:59.000Z

79

Physically based simulation of explosions  

E-Print Network [OSTI]

PHYSICALLY BASED SIMULATION OF EXPLOSIONS A Thesis by MATTHEW DOUGLAS ROACH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 2005 Major Subject: Visualization Sciences PHYSICALLY BASED SIMULATION OF EXPLOSIONS A Thesis by MATTHEW DOUGLAS ROACH Submitted to Texas A&M University in partial fulfillment of the requirements for the degree...

Roach, Matthew Douglas

2005-08-29T23:59:59.000Z

80

Nuclear Explosive and Weapon Surety Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

2015-01-26T23:59:59.000Z

Note: This page contains sample records for the topic "big explosives experimental" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Design of a hypersonic waterjet apparatus driven by high explosives  

SciTech Connect (OSTI)

The design and construction of a hypersonic waterjet apparatus is described. Jet velocities from 0.5 to 5 km/s have been achieved using a high explosive charge. Images are obtained in situ on various target substrates using a high-speed framing camera. Experimental results are shown for the impact of high velocity waterjets on propellants and high explosive samples. By observing the impact of the waterjet at a wide range of velocities a safety threshold can be determined where no reaction takes place.

Weeks, Brandon L.; Klosterman, John; Worsey, Paul N.

2001-08-01T23:59:59.000Z

82

Big Picture 19912012 other industry  

E-Print Network [OSTI]

% Academic 49% Research 8% Consulting 11% Finance 12% other industry 20% Where are the ORC Ph.D. graduates Semiconductors Lincoln Vale NonAcademic Jobs Small Firms Big Firms ORC Alumni Startups Academic 49% Research 8

83

Big Sky Trust Fund (Montana)  

Broader source: Energy.gov [DOE]

The Big Sky Trust Fund reimburses expenses incurred in the purchase, leasing, or relocation of real assets for direct use of the assisted business or employee training costs. A local or tribal...

84

Thermodynamic States in Explosion Fields  

SciTech Connect (OSTI)

Here we investigate the thermodynamic states occurring in explosion fields from the detonation of condensed explosives in air. In typical applications, the pressure of expanded detonation products gases is modeled by a Jones-Wilkins-Lee (JWL) function: P{sub JWL} = f(v,s{sub CJ}); constants in that function are fit to cylinder test data. This function provides a specification of pressure as a function of specific volume, v, along the expansion isentrope (s = constant = s{sub CJ}) starting at the Chapman-Jouguet (CJ) state. However, the JWL function is not a fundamental equation of thermodynamics, and therefore gives an incomplete specification of states. For example, explosions inherently involve shock reflections from surfaces; this changes the entropy of the products, and in such situations the JWL function provides no information on the products states. In addition, most explosives are not oxygen balanced, so if hot detonation products mix with air, they after-burn, releasing the heat of reaction via a turbulent combustion process. This raises the temperature of explosion products cloud to the adiabatic flame temperature ({approx}3,000K). Again, the JWL function provides no information on the combustion products states.

Kuhl, A L

2009-10-16T23:59:59.000Z

85

Insensitive fuze train for high explosives  

DOE Patents [OSTI]

A generic insensitive fuze train to initiate insensitive high explosives, such as PBXW-124 is described. The insensitive fuze train uses a slapper foil to initiate sub-gram quantities of an explosive, such as HNS-IV or PETN. This small amount of explosive drives a larger metal slapper onto a booster charge of an insensitive explosive, such as UF-TATB. The booster charge initiates a larger charge of an explosive, such as LX-17, which in turn, initiates the insensitive high explosive, such as PBXW-124. 3 figures.

Cutting, J.L.; Lee, R.S.; Von Holle, W.G.

1994-01-04T23:59:59.000Z

86

Insensitive fuze train for high explosives  

DOE Patents [OSTI]

A generic insensitive fuze train to initiate insensitive high explosives, such as PBXW-124. The insensitive fuze train uses a slapper foil to initiate sub-gram quantities of an explosive, such as HNS-IV or PETN. This small amount of explosive drives a larger metal slapper onto a booster charge of an insensitive explosive, such as UF-TATB. The booster charge initiates a larger charge of an explosive, such as LX-17, which in turn, initiates the insensitive high explosive, such as PBXW-124.

Cutting, Jack L. (Livermore, CA); Lee, Ronald S. (Livermore, CA); Von Holle, William G. (Livermore, CA)

1994-01-01T23:59:59.000Z

87

Safety of Nuclear Explosive Operations  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This directive establishes responsibilities and requirements to ensure the safety of routine and planned nuclear explosive operations and associated activities and facilities. Cancels DOE O 452.2A and DOE G 452.2A-1A. Canceled by DOE O 452.2C.

2001-08-07T23:59:59.000Z

88

Numerical Simulations of Thermobaric Explosions  

SciTech Connect (OSTI)

A Model of the energy evolution in thermobaric explosions is presented. It is based on the two-phase formulation: conservation laws for the gas and particle phases along with inter-phase interaction terms. It incorporates a Combustion Model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gas dynamic fields. The Model takes into account both the afterburning of the detonation products of the booster with air, and the combustion of the fuel (Al or TNT detonation products) with air. Numerical simulations were performed for 1.5-g thermobaric explosions in five different chambers (volumes ranging from 6.6 to 40 liters and length-to-diameter ratios from 1 to 12.5). Computed pressure waveforms were very similar to measured waveforms in all cases - thereby proving that the Model correctly predicts the energy evolution in such explosions. The computed global fuel consumption {mu}(t) behaved as an exponential life function. Its derivative {dot {mu}}(t) represents the global rate of fuel consumption. It depends on the rate of turbulent mixing which controls the rate of energy release in thermobaric explosions.

Kuhl, A L; Bell, J B; Beckner, V E; Khasainov, B

2007-05-04T23:59:59.000Z

89

Turbulent Combustion in SDF Explosions  

SciTech Connect (OSTI)

A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the C-4 booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a an unconfined height-of-burst explosion. Computed pressure histories are compared with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.

Kuhl, A L; Bell, J B; Beckner, V E

2009-11-12T23:59:59.000Z

90

Sandia Explosive Inventory and Information System  

SciTech Connect (OSTI)

The Explosive Inventory and Information System (EIS) is being developed and implemented by Sandia National Laboratories (SNL) to incorporate a cradle to grave structure for all explosives and explosive containing devices and assemblies at SNL from acquisition through use, storage, reapplication, transfer or disposal. The system does more than track all material inventories. It provides information on material composition, characteristics, shipping requirements; life cycle cost information, plan of use; and duration of ownership. The system also provides for following the processes of explosive development; storage review; justification for retention; Resource, Recovery and Disposition Account (RRDA); disassembly and assembly; and job description, hazard analysis and training requirements for all locations and employees involved with explosive operations. In addition, other information systems will be provided through the system such as the Department of Energy (DOE) and SNL Explosive Safety manuals, the Navy`s Department of Defense (DoD) Explosive information system, and the Lawrence Livermore National Laboratories (LLNL) Handbook of Explosives.

Clements, D.A.

1994-08-01T23:59:59.000Z

91

Investigation on the Interface Morphologies of Explosive Welding of Inconel 625 to Steel A516 Plates  

SciTech Connect (OSTI)

The purpose of this study is to produce composite plates by explosive cladding process. This is a process in which the controlled energy of explosives is used to create a metallic bond between two similar or dissimilar materials. The welding conditions were tailored through parallel geometry route with different operational parameters. In this investigation, a two-pronged study was adopted to establish the conditions required for producing successful solid state welding: (a) Analytical calculations to determine the weldability domain or welding window; (b) Metallurgical investigations of explosive welding experiments carried out under different explosive ratios to produce both wavy and straight interfaces. The analytical calculations confirm the experimental results. Optical microscopy studies show that a transition from a smooth to wavy interface occurs with an increase in explosive ratio. SEM studies show that the interface was outlined by characteristic sharp transition between two materials.

Mousavi, S. A. A. Akbari; Zareie, H. R. [School of Metallurgy and Materials Engineering, University College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

2011-01-17T23:59:59.000Z

92

Fun with Big Sky Learning  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning Fun with Big Sky Learning WHEN: Mar 21, 2015 11:00 AM -

93

Big Sol - Facilities - Cyclotron Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.ProgramBig Sol Big Sol Super conducting

94

Big data : evolution, components, challenges and opportunities  

E-Print Network [OSTI]

This work reviews the evolution and current state of the "Big Data" industry, and to understand the key components, challenges and opportunities of Big Data and analytics face in today business environment, this is analyzed ...

Zarate Santovena, Alejandro

2013-01-01T23:59:59.000Z

95

The use of MAVIS II to integrate the modeling and analysis of explosive valve interactions  

SciTech Connect (OSTI)

The MAVIS II computer program provides for the modeling and analysis of explosive valve interactions. This report describes the individual components of the program and how MAVIS II is used with other available tools to integrate the design and understanding of explosive valves. The rationale and model used for each valve interaction is described. Comparisons of the calculated results with available data have demonstrated the feasibility and accuracy of using MAVIS II for analytical studies of explosive valve interactions. The model used for the explosive or pyrotechnic used as the driving force in explosive valves is the most critical to be understood and modeled. MAVIS II is an advanced version that incorporates a plastic, as well as elastic, modeling of the deformations experienced when plungers are forced into a bore. The inclusion of a plastic model has greatly expanded the use of MAVIS for all categories (opening, closure, or combined) of valves, especially for the closure valves in which the sealing operation requires the plastic deformation of either a plunger or bore over a relatively large area. In order to increase its effectiveness, the use of MAVIS II should be integrated with the results from available experimental hardware. Test hardware such as the Velocity Interferometer System for Any Reflector (VISAR) and Velocity Generator test provide experimental data for accurate comparison of the actual valve functions. Variable Explosive Chamber (VEC) and Constant Explosive Volume (CEV) tests are used to provide the proper explosive equation-of-state for the MAVIS calculations of the explosive driving forces. The rationale and logistics of this integration is demonstrated through an example. A recent valve design is used to demonstrate how MAVIS II can be integrated with experimental tools to provide an understanding of the interactions in this valve.

Ng, R.; Kwon, D.M.

1998-12-31T23:59:59.000Z

96

Spot test kit for explosives detection  

DOE Patents [OSTI]

An explosion tester system comprising a body, a lateral flow membrane swab unit adapted to be removeably connected to the body, a first explosives detecting reagent, a first reagent holder and dispenser operatively connected to the body, the first reagent holder and dispenser containing the first explosives detecting reagent and positioned to deliver the first explosives detecting reagent to the lateral flow membrane swab unit when the lateral flow membrane swab unit is connected to the body, a second explosives detecting reagent, and a second reagent holder and dispenser operatively connected to the body, the second reagent holder and dispenser containing the second explosives detecting reagent and positioned to deliver the second explosives detecting reagent to the lateral flow membrane swab unit when the lateral flow membrane swab unit is connected to the body.

Pagoria, Philip F; Whipple, Richard E; Nunes, Peter J; Eckels, Joel Del; Reynolds, John G; Miles, Robin R; Chiarappa-Zucca, Marina L

2014-03-11T23:59:59.000Z

97

Explosives detection system and method  

DOE Patents [OSTI]

A method of detecting explosives in a vehicle includes providing a first rack on one side of the vehicle, the rack including a neutron generator and a plurality of gamma ray detectors; providing a second rack on another side of the vehicle, the second rack including a neutron generator and a plurality of gamma ray detectors; providing a control system, remote from the first and second racks, coupled to the neutron generators and gamma ray detectors; using the control system, causing the neutron generators to generate neutrons; and performing gamma ray spectroscopy on spectra read by the gamma ray detectors to look for a signature indicative of presence of an explosive. Various apparatus and other methods are also provided.

Reber, Edward L. (Idaho Falls, ID); Jewell, James K. (Idaho Falls, ID); Rohde, Kenneth W. (Idaho Falls, ID); Seabury, Edward H. (Idaho Falls, ID); Blackwood, Larry G. (Idaho Falls, ID); Edwards, Andrew J. (Idaho Falls, ID); Derr, Kurt W. (Idaho Falls, ID)

2007-12-11T23:59:59.000Z

98

Big Things from Small Beginnings  

Broader source: Energy.gov [DOE]

Slide Presentation given by D. Bullen on behalf of Peter S. Winokur, Ph.D., Chairman Defense Nuclear Facilities Safety Board; prepared by D. Bullen, D. Owen, J. MacSleyne, and D. Minnema. Big Things from Small Beginnings. How seemingly unimportant situations can lead to significant, undesirable events.

99

The BigBoss Experiment  

SciTech Connect (OSTI)

BigBOSS is a Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with a wide-area galaxy and quasar redshift survey over 14,000 square degrees. It has been conditionally accepted by NOAO in response to a call for major new instrumentation and a high-impact science program for the 4-m Mayall telescope at Kitt Peak. The BigBOSS instrument is a robotically-actuated, fiber-fed spectrograph capable of taking 5000 simultaneous spectra over a wavelength range from 340 nm to 1060 nm, with a resolution R = {lambda}/{Delta}{lambda} = 3000-4800. Using data from imaging surveys that are already underway, spectroscopic targets are selected that trace the underlying dark matter distribution. In particular, targets include luminous red galaxies (LRGs) up to z = 1.0, extending the BOSS LRG survey in both redshift and survey area. To probe the universe out to even higher redshift, BigBOSS will target bright [OII] emission line galaxies (ELGs) up to z = 1.7. In total, 20 million galaxy redshifts are obtained to measure the BAO feature, trace the matter power spectrum at smaller scales, and detect redshift space distortions. BigBOSS will provide additional constraints on early dark energy and on the curvature of the universe by measuring the Ly-alpha forest in the spectra of over 600,000 2.2 < z < 3.5 quasars. BigBOSS galaxy BAO measurements combined with an analysis of the broadband power, including the Ly-alpha forest in BigBOSS quasar spectra, achieves a FOM of 395 with Planck plus Stage III priors. This FOM is based on conservative assumptions for the analysis of broad band power (k{sub max} = 0.15), and could grow to over 600 if current work allows us to push the analysis to higher wave numbers (k{sub max} = 0.3). BigBOSS will also place constraints on theories of modified gravity and inflation, and will measure the sum of neutrino masses to 0.024 eV accuracy.

Schelgel, D.; Abdalla, F.; Abraham, T.; Ahn, C.; Allende Prieto, C.; Annis, J.; Aubourg, E.; Azzaro, M.; Bailey, S.; Baltay, C.; Baugh, C.; Bebek, C.; Becerril, S.; Blanton, M.; Bolton, A.; Bromley, B.; Cahn, R.; Carton, P.-H.; Cervanted-Cota, J.L.; Chu, Y.; Cortes, M.; /APC, Paris /Brookhaven /IRFU, Saclay /Marseille, CPPM /Marseille, CPT /Durham U. / /IEU, Seoul /Fermilab /IAA, Granada /IAC, La Laguna / /IAC, Mexico / / /Madrid, IFT /Marseille, Lab. Astrophys. / / /New York U. /Valencia U.

2012-06-07T23:59:59.000Z

100

Thermodynamic States in Explosion Fields  

SciTech Connect (OSTI)

We investigate the thermodynamic states occurring in explosion fields from condensed explosive charges. These states are often modeled with a Jones-Wilkins-Lee (JWL) function. However, the JWL function is not a Fundamental Equation of Thermodynamics, and therefore cannot give a complete specification of such states. We use the Cheetah code of Fried to study the loci of states of the expanded detonation products gases from C-4 charges, and their combustion products air. In the Le Chatelier Plane of specific-internal-energy versus temperature, these loci are fit with a Quadratic Model function u(T), which has been shown to be valid for T < 3,000 K and p < 1k-bar. This model is used to derive a Fundamental Equation u(v,s) for C-4. Given u(v,s), one can use Maxwell's Relations to derive all other thermodynamic functions, such as temperature: T(v,s), pressure: p(v,s), enthalpy: h(v,s), Gibbs free energy: g(v,s) and Helmholz free energy: f(v,s); these loci are displayed in figures for C-4. Such complete equations of state are needed for numerical simulations of blast waves from explosive charges, and their reflections from surfaces.

Kuhl, A L

2010-03-12T23:59:59.000Z

Note: This page contains sample records for the topic "big explosives experimental" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Electromagnetic Effects in SDF Explosions  

SciTech Connect (OSTI)

The notion of high ion and electron concentrations in the detonation of aluminized explosive mixtures has aroused some interest in electro-magnetic effects that the SDF charges might generate when detonated. Motivated by this interest we have started to investigate whether significant electro-magnetic effects show up in our small-scale experiments. However, the design of instrumentation for this purpose is far from straightforward, since there are a number of open questions. Thus the main aim of the feasibility tests is to find - if possible - a simple and reliable method that can be used as a diagnostic tool for electro-magnetic effects. SDF charges with a 0.5-g PETN booster and a filling of 1 g aluminum flakes have been investigated in three barometric bomb calorimeters with volumes ranging from 6.3 l to of 6.6 l. Though similar in volume, the barometric bombs differed in the length-to-diameter ratio. The tests were carried out with the bombs filled with either air or nitrogen at ambient pressure. The comparison of the test in air to those in nitrogen shows that the combustion of TNT detonation products or aluminum generates a substantial increase of the quasi-steady overpressure in the bombs. Repeated tests in the same configuration resulted in some scatter of the experimental results. The most likely reason is that the aluminum combustion in most or all cases is incomplete and that the amount of aluminum actually burned varies from test to test. The mass fraction burned apparently decreases with increasing aspect ratio L/D. Thus an L/D-ratio of about 1 is optimal for the performance of shock-dispersed-fuel combustion. However, at an L/D-ratio of about 5 the combustion still yields appreciable overpressure in excess of the detonation. For a multi-burst scenario in a tunnel environment with a number of SDF charges distributed along a tunnel section a spacing of 5 tunnel diameter and a fuel-specific volume of around 7 l/g might provide an acceptable compromise between optimizing the combustion performance and keeping the number of elementary charges low. Further tests in a barometric bomb calorimeter of 21.2 l volume were performed with four types of aluminum. The mass fraction burned in this case appeared to depend on the morphology of the aluminum particles. Flake aluminum exhibited a better performance than granulated aluminum with particle sizes ranging from below 25 {micro}m to 125 {micro}m for the coarsest material. In addition, a feasibility study on electro-magnetic effects from SDF charges detonated in a tunnel has been performed. A method was developed to measure the local, unsteady electro-conductivity in the detonation/combustion products cloud. This method proved to yield reproducible results. A variety of methods were tested with regard to probing electro-magnetic pulses from the detonation of SDF charges. The results showed little reproducibility and were small compared to the effect from pulsed high voltage discharges of comparatively small energy (around 32 J). Thus either no significant electromagnetic pulse is generated in our small-scale tests or the tested techniques have to be discarded as too insensitive or too limited in bandwidth to detect possibly very high frequency electro-magnetic disturbances.

Reichenbach, H; Neuwald, P; Kuhl, A L

2010-02-12T23:59:59.000Z

102

Big Bang Day : The Great Big Particle Adventure - 3. Origins  

ScienceCinema (OSTI)

In this series, comedian and physicist Ben Miller asks the CERN scientists what they hope to find. If the LHC is successful, it will explain the nature of the Universe around us in terms of a few simple ingredients and a few simple rules. But the Universe now was forged in a Big Bang where conditions were very different, and the rules were very different, and those early moments were crucial to determining how things turned out later. At the LHC they can recreate conditions as they were billionths of a second after the Big Bang, before atoms and nuclei existed. They can find out why matter and antimatter didn't mutually annihilate each other to leave behind a Universe of pure, brilliant light. And they can look into the very structure of space and time - the fabric of the Universe

None

2011-04-25T23:59:59.000Z

103

Data base of chemical explosions in Kazakhstan  

SciTech Connect (OSTI)

Within the bounds of this report, the following works were done: (1) Information about explosion quarries, located in Southern, Eastern and Northern Kasakstan was summarized. (2) The general information about seismicity of areas of location of explosion quarries was adduced. (3) The system of observation and seismic apparatus, recording the local earthquakes and quarry explosions at the territory of Kazakstan were described. (4) Data base of quarry explosions, that were carried out in Southern, Eastern and Northern Kazakstan during 1995 and first half of 1996 year was adduced. (5) Upon the data of registration of explosions in Southern Kazakstan the correlative dependences between power class of explosions and summary weight of charge were constructed. (6) Seismic records of quarry explosions were adduced. It is necessary to note, that the collection of data about quarry explosions in Kazakstan in present time is very difficult task. Organizations, that makes these explosions, are always suffering reorganizations and sometimes it is actually impossible to receive all the necessary information. Some quarries are situated in remote, almost inaccessible regions, and within the bounds of supplier financing not the every quarry was in success to visit. So the present data base upon the chemical explosions for 1995 is not full and in further it`s expansion is possible.

Demin, V.N. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan); Malahova, M.N. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan); Martysevich, P.N. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan); Mihaylova, N.N. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan); Nurmagambetov, A. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan); Kopnichev, Yu.F. D. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan); Edomin, V.I. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan)

1996-12-01T23:59:59.000Z

104

Air Activation Following an Atmospheric Explosion  

SciTech Connect (OSTI)

In addition to thermal radiation and fission products, nuclear explosions result in a very high flux of unfissioned neutrons. Within an atmospheric nuclear explosion, these neutrons can activate the various elemental components of natural air, potentially adding to the radioactive signature of the event as a whole. The goal of this work is to make an order-of-magnitude estimate of the total amount of air activation products that can result from an atmospheric nuclear explosion.

Lowrey, Justin D.; McIntyre, Justin I.; Prichard, Andrew W.; Gesh, Christopher J.

2013-03-13T23:59:59.000Z

105

Wireless sensor for detecting explosive material  

SciTech Connect (OSTI)

Disclosed is a sensor for detecting explosive devices. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon absorption of vapor from an explosive material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The explosive device is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.

Lamberti, Vincent E; Howell, Jr., Layton N; Mee, David K; Sepaniak, Michael J

2014-10-28T23:59:59.000Z

106

Ammonia fiber explosion (AFEX) treatment of grass  

E-Print Network [OSTI]

solution), high-temperature treatment, and freezing in water suspensions at -75 C (Millett, Baker, and Satter, 1975), Chemical pretreatments include alkali and ammonia swelling, dilute acid extraction, NO with alkali, explosive steam decompression, wet... for ruminants. Ammonia explosion pulping has been investigated as an approach to fiber separation in wood chips (O' Connor, 1971). Recent work on pretreatment techniques includes: pretreatment of cedar with peracetic acid and steam explosion to improve...

Ashok, Ganesh

1991-01-01T23:59:59.000Z

107

Method and apparatus for detecting explosives  

DOE Patents [OSTI]

A method and apparatus is provided for detecting explosives by thermal imaging. The explosive material is subjected to a high energy wave which can be either a sound wave or an electromagnetic wave which will initiate a chemical reaction in the explosive material which chemical reaction will produce heat. The heat is then sensed by a thermal imaging device which will provide a signal to a computing device which will alert a user of the apparatus to the possibility of an explosive device being present.

Moore, David Steven (Santa Fe, NM)

2011-05-10T23:59:59.000Z

108

Nuclear Explosive Safety Manual - DOE Directives, Delegations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1A Admin Chg 1, Nuclear Explosive Safety Manual by Carl Sykes Functional areas: Administrative Change, Defense Nuclear Facility Safety and Health Requirement, Nuclear Safety,...

109

Nuclear Explosive Safety Evaluation Processes - DOE Directives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Admin Chg 1, Nuclear Explosive Safety Evaluation Processes by Carl Sykes Functional areas: Administrative Change, Defense Nuclear Facility Safety and Health Requirement, Defense...

110

High Explosives Application Facility | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

at the micron scale in its microdetonics laboratory, and utilizing multiple firing tanks for larger scale explosives experiments. No other facility in the world supports such...

111

THE CHARACTERIZATION OF SEISMIC AND INFRASOUND SIGNALS FROM MINING EXPLOSIONS a) Explosion Source  

E-Print Network [OSTI]

MORENCIDATA TXARDATA Natural Gas Explosion and Burn in New Mexico 19 August 2000 180 km NE of site No Seismic at TXAR T. Wallace Natural Gas Explosion and Burn in New Mexico T. Wallace Ft. Hancock Infrasound ~ 180 km are illustrated below. Type 1 - Coal overburden casting (Black Thunder) where explosions are designed to expose

Stump, Brian W.

112

Proceedings of the eleventh conference on explosives and blasting technique  

SciTech Connect (OSTI)

These papers were given at a symposium on explosives. Topics covered include new developments in chemical explosives and innovations in decking and detonating timing. Most papers dealt with the use of explosives in mining and drilling with emphasis on coal mining. Papers also dealt with structural damage to houses from explosive fracturing, road construction, and computerized simulation of explosive fracturing.

Konya, C.J.

1985-01-01T23:59:59.000Z

113

Glass produced by underground nuclear explosions. [Rainier  

SciTech Connect (OSTI)

Detonation of an underground nuclear explosive produces a strong shock wave which propagates spherically outward, vaporizing the explosive and nearby rock and melting, the surrounding rock. The vaporized material expands adiabatically, forming a cavity. As the energy is dissipated during the cavity formation process, the explosive and rock debris condense and mix with the melted rock. The melt flows to the bottom of the cavity where it is quenched by fractured rock fragments falling from above as the cavity collapses. Measurements indicate that about 740 tonnes of rock and/or soil are melted for every kiloton (10/sup 12/ calories) of explosive energy, or about 25% of the explosive energy goes to melting rock. The resulting glass composition reflects the composition of the unaltered rock with explosive debris. The appearance ranges from white pumice to dense, dark lava. The bulk composition and color vary with the amount of explosive iron incorporated into the glass. The refractory explosion products are mixed with the solidified melt, although the degree of mixing is variable. Electron microprobe studies of glasses produced by Rainier in welded tuff have produced the following results: glasses are dehydrated relative to the host media, glasses are extremely heterogeneous on a 20 ..mu..m scale, a ubiquitous feature is the presence of dark marble-cake regions in the glass, which were locally enriched in iron and may be related to the debris, optically amorphous regions provide evidence of shock melting, only limited major element redistribution and homogenization occur within the cavity.

Schwartz, L.; Piwinskii, A.; Ryerson, F.; Tewes, H.; Beiriger, W.

1983-01-01T23:59:59.000Z

114

Explosive laser light initiation of propellants  

DOE Patents [OSTI]

A improved initiator for artillery shell using an explosively generated laser light to uniformly initiate the propellent. A small quantity of a high explosive, when detonated, creates a high pressure and temperature, causing the surrounding noble gas to fluoresce. This fluorescence is directed into a lasing material, which lases, and directs laser light into a cavity in the propellant, uniformly initiating the propellant.

Piltch, M.S.

1993-05-18T23:59:59.000Z

115

Advancing Explosives Detection Capabilities: Vapor Detection  

ScienceCinema (OSTI)

A new, PNNL-developed method provides direct, real-time detection of trace amounts of explosives such as RDX, PETN and C-4. The method selectively ionizes a sample before passing the sample through a mass spectrometer to detect explosive vapors. The method could be used at airports to improve aviation security.

Atkinson, David

2014-07-24T23:59:59.000Z

116

Fire and explosion hazards of oil shale  

SciTech Connect (OSTI)

The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

Not Available

1989-01-01T23:59:59.000Z

117

Nuclear explosives testing readiness evaluation  

SciTech Connect (OSTI)

This readiness evaluation considers hole selection and characterization, verification, containment issues, nuclear explosive safety studies, test authorities, event operations planning, canister-rack preparation, site preparation, diagnostic equipment setup, device assembly facilities and processes, device delivery and insertion, emplacement, stemming, control room activities, readiness briefing, arming and firing, test execution, emergency response and reentry, and post event analysis to include device diagnostics, nuclear chemistry, and containment. This survey concludes that the LLNL program and its supporting contractors could execute an event within six months of notification, and a second event within the following six months, given the NET group`s evaluation and the following three restraints: (1) FY94 (and subsequent year) funding is essentially constant with FY93, (2) Preliminary work for the initial event is completed to the historical sic months status, (3) Critical personnel, currently working in dual use technologies, would be recallable as needed.

Valk, T.C.

1993-09-01T23:59:59.000Z

118

Method for fabricating non-detonable explosive simulants  

DOE Patents [OSTI]

A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

Simpson, Randall L. (Livermore, CA); Pruneda, Cesar O. (Livermore, CA)

1995-01-01T23:59:59.000Z

119

Method for fabricating non-detonable explosive simulants  

DOE Patents [OSTI]

A simulator is disclosed which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

Simpson, R.L.; Pruneda, C.O.

1995-05-09T23:59:59.000Z

120

Security and Use Control of Nuclear Explosives and Nuclear Weapons...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4C, Security and Use Control of Nuclear Explosives and Nuclear Weapons by LtCol Karl Basham Functional areas: Nuclear Explosives, Nuclear Weapons, Security The Order establishes...

Note: This page contains sample records for the topic "big explosives experimental" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nuclear Explosive Safety - DOE Directives, Delegations, and Requiremen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2D Admin Chg 1, Nuclear Explosive Safety by Carl Sykes This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of...

122

Chemical analysis kit for the presence of explosives  

DOE Patents [OSTI]

A tester for testing for explosives associated with a test location comprising a first explosives detecting reagent; a first reagent holder, the first reagent holder containing the first explosives detecting reagent; a second explosives detecting reagent; a second reagent holder, the second reagent holder containing the second explosives detecting reagent; a sample collection unit for exposure to the test location, exposure to the first explosives detecting reagent, and exposure to the second explosives detecting reagent; and a body unit containing a heater for heating the sample collection unit for testing the test location for the explosives.

Eckels, Joel Del (Livermore, CA); Nunes; Peter J. (Danville, CA); Alcaraz, Armando (Livermore, CA); Whipple, Richard E. (Livermore, CA)

2011-05-10T23:59:59.000Z

123

Infrared near-field spectroscopy of trace explosives using an...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

spectroscopy of trace explosives using an external cavity quantum cascade laser. Infrared near-field spectroscopy of trace explosives using an external cavity quantum...

124

Construction on Pantex High Explosives Pressing Facility Reaches...  

National Nuclear Security Administration (NNSA)

on Pantex High Explosives Pressing Facility Reaches 85% Mark Work on the National Nuclear Security Administration's (NNSA) High Explosives Pressing Facility at its Pantex...

125

Explosives exhibit opens at the Bradbury Science Museum Sept...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Explosives exhibit opens at the Bradbury Science Museum Explosives exhibit opens at the Bradbury Science Museum Sept. 18 To highlight the Laboratory's work in the field of...

126

Astrophysical S-factor for destructive reactions of lithium-7 in big bang nucleosynthesis  

SciTech Connect (OSTI)

One of the most prominent success with the Big Bang models is the precise reproduction of mass abundance ratio for {sup 4}He. In spite of the success, abundances of lithium isotopes are still inconsistent between observations and their calculated results, which is known as lithium abundance problem. Since the calculations were based on the experimental reaction data together with theoretical estimations, more precise experimental measurements may improve the knowledge of the Big Bang nucleosynthesis. As one of the destruction process of lithium-7, we have performed measurements for the reaction cross sections of the {sup 7}L({sup 3}He,p){sup 9}Be reaction.

Komatsubara, Tetsuro; Kwon, YoungKwan; Moon, JunYoung; Kim, Yong-Kyun [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of); Moon, Chang-Bum [Hoseo University, Asan, Chungnam (Korea, Republic of); Ozawa, Akira; Sasa, Kimikazu; Onishi, Takahiro; Yuasa, Toshiaki; Okada, Shunsuke; Saito, Yuta [Division of Physics, University of Tsukuba, Tsukuba, Ibaraki (Japan); Hayakawa, Takehito; Shizuma, Toshiyuki [Japan Atomic Energy Agency, Shirakata Shirane, Tokai, Ibaraki (Japan); Kubono, Shigeru [RIKEN, Hirosawa, Wako, Saitama (Japan); Kusakabe, Motohiko [School of Liberal Arts and Science, Korea Aerospace University (Korea, Republic of); Kajino, Toshitaka [National Astronomical Observatory, Osawa, Mitaka, Tokyo (Japan)

2014-05-02T23:59:59.000Z

127

The IIT Innovators Fueling Big Ideas  

E-Print Network [OSTI]

Making things work. The IIT Innovators Fueling Big Ideas Winter 2012 John P. Calamos sr. Bold Thinking The PlanT How the Zero-Waste System Works researCh Neutron Detection, Dinosaur Collagen, Big Data in our next wave of innovators and leaders, some of whom are featured in this issue. Our students have

Saniie, Jafar

128

Ultraviolet Resonant Raman Enhancements in the Detection of Explosives  

SciTech Connect (OSTI)

Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided {approx}2000-fold enhancement at 244 nm and {approx}800-fold improvement at 229 nm while PETN showed a maximum of {approx}25-fold at 244 nm and {approx}190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman enhancements for solid HE samples.

Short, B J; Carter, J C; Gunter, D; Hovland, P; Jagode, H; Karavanic, K; Marin, G; Mellor-Crummey, J; Moore, S; Norris, B; Oliker, L; Olschanowsky, C; Roth, P C; Schulz, M; Shende, S; Snavely, A; Spear, W

2009-06-03T23:59:59.000Z

129

EA-1880: Big Bend to Witten Transmission Line Project, South...  

Office of Environmental Management (EM)

880: Big Bend to Witten Transmission Line Project, South Dakota EA-1880: Big Bend to Witten Transmission Line Project, South Dakota Summary The USDA Rural Utilities Service, with...

130

Big Mysteries: The Higgs Mass  

SciTech Connect (OSTI)

With the discovery of what looks to be the Higgs boson, LHC researchers are turning their attention to the next big question, which is the predicted mass of the newly discovered particles. When the effects of quantum mechanics is taken into account, the mass of the Higgs boson should be incredibly high...perhaps upwards of a quadrillion times higher than what was observed. In this video, Fermilab's Dr. Don Lincoln explains how it is that the theory predicts that the mass is so large and gives at least one possible theoretical idea that might solve the problem. Whether the proposed idea is the answer or not, this question must be answered by experiments at the LHC or today's entire theoretical paradigm could be in jeopardy.

Lincoln, Don

2014-04-28T23:59:59.000Z

131

Big Mysteries: The Higgs Mass  

ScienceCinema (OSTI)

With the discovery of what looks to be the Higgs boson, LHC researchers are turning their attention to the next big question, which is the predicted mass of the newly discovered particles. When the effects of quantum mechanics is taken into account, the mass of the Higgs boson should be incredibly high...perhaps upwards of a quadrillion times higher than what was observed. In this video, Fermilab's Dr. Don Lincoln explains how it is that the theory predicts that the mass is so large and gives at least one possible theoretical idea that might solve the problem. Whether the proposed idea is the answer or not, this question must be answered by experiments at the LHC or today's entire theoretical paradigm could be in jeopardy.

Lincoln, Don

2014-06-03T23:59:59.000Z

132

Producing a computer generated explosive effect  

E-Print Network [OSTI]

is conducted in order to produce a convincing explosive effect with a computer. A description of the current state of the art provides current achievements by industry and individual artists. A tutorial focusing on modeling, lighting, and setting up animation...

Mao, Wei

1999-01-01T23:59:59.000Z

133

Explosive Safety Manual, to a New Order  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This memorandum provides justification for the conversion of Department of Energy (DOE) Manual (M) 440.1-1A, DOE Explosives Safety Manual, dated 1-9-06, into a new DOE Order.

2010-12-02T23:59:59.000Z

134

Nuclear Explosive and Weapon Surety Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1A. Canceled by DOE O 452.1C.

2001-08-06T23:59:59.000Z

135

Nuclear Explosive and Weapon Surety Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1. Canceled by DOE O 452.1B.

1997-01-17T23:59:59.000Z

136

High-explosive anti-tank warheads  

E-Print Network [OSTI]

Nov 30, 2011 ... In Russian literature, this jet of steel formed by explosion, which pierces the armor, is called the “wire”. It is very thin indeed. You can see the.

2011-11-30T23:59:59.000Z

137

Transforming big data into knowledge : experimental techniques in dynamic visualization  

E-Print Network [OSTI]

Information visualizations, especially those utilizing web-based platforms, are becoming an increasingly common medium for exchanging ideas. This emergent class of tools enabling web-based, interactive platforms for ...

Kennedy, Stephen James, M.C.P. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

138

In Defense of the National Labs and Big-Budget Science  

SciTech Connect (OSTI)

The purpose of this paper is to present the unofficial and unsanctioned opinions of a Visiting Scientist at Lawrence Livermore National Laboratory on the values of LLNL and the other National Labs. The basic founding value and goal of the National Labs is big-budget scientific research, along with smaller-budget scientific research that cannot easily be done elsewhere. The most important example in the latter category is classified defense-related research. The historical guiding light here is the Manhattan Project. This endeavor was unique in human history, and might remain so. The scientific expertise and wealth of an entire nation was tapped in a project that was huge beyond reckoning, with no advance guarantee of success. It was in many respects a clash of scientific titans, with a large supporting cast, collaborating toward a single well-defined goal. Never had scientists received so much respect, so much money, and so much intellectual freedom to pursue scientific progress. And never was the gap between theory and implementation so rapidly narrowed, with results that changed the world, completely. Enormous resources are spent at the national or international level on large-scale scientific projects. LLNL has the most powerful computer in the world, Blue Gene/L. (Oops, Los Alamos just seized the title with Roadrunner; such titles regularly change hands.) LLNL also has the largest laser in the world, the National Ignition Facility (NIF). Lawrence Berkeley National Lab (LBNL) has the most powerful microscope in the world. Not only is it beyond the resources of most large corporations to make such expenditures, but the risk exceeds the possible rewards for those corporations that could. Nor can most small countries afford to finance large scientific projects, and not even the richest can afford largess, especially if Congress is under major budget pressure. Some big-budget research efforts are funded by international consortiums, such as the Large Hadron Collider (LHC) at CERN, and the International Tokamak Experimental Reactor (ITER) in Cadarache, France, a magnetic-confinement fusion research project. The postWWII histories of particle and fusion physics contain remarkable examples of both international competition, with an emphasis on secrecy, and international cooperation, with an emphasis on shared knowledge and resources. Initiatives to share sometimes came from surprising directions. Most large-scale scientific projects have potential defense applications. NIF certainly does; it is primarily designed to create small-scale fusion explosions. Blue Gene/L operates in part in service to NIF, and in part to various defense projects. The most important defense projects include stewardship of the national nuclear weapons stockpile, and the proposed redesign and replacement of those weapons with fewer, safer, more reliable, longer-lived, and less apocalyptic warheads. Many well-meaning people will consider the optimal lifetime of a nuclear weapon to be zero, but most thoughtful people, when asked how much longer they think this nation will require them, will ask for some time to think. NIF is also designed to create exothermic small-scale fusion explosions. The malapropos 'exothermic' here is a convenience to cover a profusion of complexities, but the basic idea is that the explosions will create more recoverable energy than was used to create them. One can hope that the primary future benefits of success for NIF will be in cost-effective generation of electrical power through controlled small-scale fusion reactions, rather than in improved large-scale fusion explosions. Blue Gene/L also services climate research, genomic research, materials research, and a myriad of other computational problems that become more feasible, reliable, and precise the larger the number of computational nodes employed. Blue Gene/L has to be sited within a security complex for obvious reasons, but its value extends to the nation and the world. There is a duality here between large-scale scientific research machines and the supercomputers used

Goodwin, J R

2008-07-29T23:59:59.000Z

139

Explosive parcel containment and blast mitigation container  

DOE Patents [OSTI]

The present invention relates to a containment structure for containing and mitigating explosions. The containment structure is installed in the wall of the building and has interior and exterior doors for placing suspicious packages into the containment structure and retrieving them from the exterior of the building. The containment structure has a blast deflection chute and a blowout panel to direct over pressure from explosions away from the building, surrounding structures and people.

Sparks, Michael H. (Frederick County, MD)

2001-06-12T23:59:59.000Z

140

The physics of antimatter induced fusion and thermonuclear explosions  

E-Print Network [OSTI]

triggering large scale thermonuclear explosions is investigated. The number of antiproton annihilations

Andre Gsponer; Jean-pierre Hurni

Note: This page contains sample records for the topic "big explosives experimental" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The control of confined vapor phase explosions  

SciTech Connect (OSTI)

The probability of, for example, a fire or explosion occurring during a process operation is related both to the fire-related properties of the materials used, such as flash point, flammable limits etc., i.e. the material or intrinsic factors, and the nature of the operation and the equipment used, i.e. the extrinsic factors. The risk, or frequency of occurrence, of other hazards such as reaction runaway, major toxic release etc. can be determined in a similar manner. For a vapor phase explosion (and a fire) the probability of the event is the product of the probability of generating a flammable atmosphere and the probability of ignition. Firstly, materials may be coded using properties that are relevant to the hazard in question. Secondly, different operations have different degrees of risk and these risks are assigned as Low, Medium, High etc. according to criteria outlined here. Combination of these two factors will then be a measure of the overall risk of the operation with the specified material and may be used to define operating standards. Currently, the hazard/risk of a vapor phase explosions is examined by this method but in due course dust explosions, fires, condensed phase explosions, reaction runaways, physical explosions, major toxic releases and incompatibility will be included.

Scilly, N.F. [Laporte plc, Widnes (United Kingdom); Owen, O.J.R. [Fine Organics, Ltd., Middlesborough (United Kingdom); Wilberforce, J.K. [Solvay SA, Brussels (Belgium)

1995-12-31T23:59:59.000Z

142

Stellar Explosions by Magnetic Towers  

E-Print Network [OSTI]

We propose a magnetic mechanism for the collimated explosion of a massive star relevant for GRBs, XRFs and asymmetric supernovae. We apply Lynden-Bell's magnetic tower scenario to the interior of a massive rotating star after the core has collapsed to form a black hole with an accretion disk or a millisecond magnetar acting as a central engine. We solve the force-free Grad-Shafranov equation to calculate the magnetic structure and growth of a tower embedded in a stellar environment. The pressure of the toroidal magnetic field, continuously generated by differential rotation of the central engine, drives a rapid expansion which becomes vertically collimated after lateral force balance with the surrounding gas pressure is reached. The collimation naturally occurs because hoop stress concentrates magnetic field toward the rotation axis and inhibits lateral expansion. This leads to the growth of a self-collimated magnetic tower. When embedded in a massive star, the supersonic expansion of the tower drives a strong bow shock behind which an over-pressured cocoon forms. The cocoon confines the tower by supplying collimating pressure and provides stabilization against disruption due to MHD instabilities. Because the tower consists of closed field lines starting and ending on the central engine, mixing of baryons from the cocoon into the tower is suppressed. The channel cleared by the growing tower is thus plausibly free of baryons and allows the escape of magnetic energy from the central engine through the star. While propagating down the stellar density gradient, the tower accelerates and becomes relativistic. During the expansion, fast collisionless reconnection becomes possible resulting in dissipation of magnetic energy which may be responsible for GRB prompt emission.

Dmitri A. Uzdensky; Andrew I. MacFadyen

2006-05-05T23:59:59.000Z

143

BIG SKY CARBON SEQUESTRATION PARTNERSHIP  

SciTech Connect (OSTI)

The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed this quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. To date, there has been little research on soil carbon on rangelands, and since rangeland constitutes a major land use in the Big Sky region, this is important in achieving a better understanding of terrestrial sinks. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. Progress on other deliverables is noted in the PowerPoint presentations. A series of meetings held during the second quarter have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. Finally, the education and outreach efforts have resulted in a comprehensive plan and process which serves as a guide for implementing the outreach activities under Phase I. While we are still working on the public website, we have made many presentations to stakeholders and policy makers, connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmentally-friendly energy production. In addition, we have laid plans for integration of our outreach efforts with the students, especially at the tribal colleges and at the universities involved in our partnership. This includes collaboration with the film and media arts departments at MSU, with outreach effort

Susan M. Capalbo

2004-06-01T23:59:59.000Z

144

BIG SKY CARBON SEQUESTRATION PARTNERSHIP  

SciTech Connect (OSTI)

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies.

Susan M. Capalbo

2005-01-31T23:59:59.000Z

145

Big Picture 1991-2011 other industry  

E-Print Network [OSTI]

% Where are the ORC Ph.D. graduates today? #12;Other (Math, Statistics, etc...) 8% Engineering School 27 10% Finance 12% other industry 20% Research 8% Small Firms Big Firms ORC Alumni Start-ups #12;Non

146

Influence of insulating coating on aluminum wire explosions  

SciTech Connect (OSTI)

Single wire explosions are widely used in understanding the early stages of z-pinch experiments. This paper presents a serial of experiments conducted on the pulse power generator with ?1?kA peak current and ?10?ns rising time in Xi'an Jiao Tong University. Polyimide coated aluminum wires and uncoated ones were tested under three different voltages to analyze the effect of insulating coating. Experimental results showed that insulating coating can increase the energy deposition 10%?30% in aluminum wires by delaying the voltage collapse and raising the maximum load resistance. The substantial energy deposition resulted in about 20% faster expansion rates for coated wires. Experimental evidence that plasma channel shunts the current from the wire core was observed by streak camera and schlieren graphs. This paper also briefly discussed the influence of nonuniform coating on the morphology of wire expansion.

Li, Yang; Wu, Jian, E-mail: jxjawj@gmail.com [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China); State Key Laboratory of Intense Pulse Radiation of Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024 (China); Sheng, Liang; Zhao, Jizhen; Zhang, Mei; Yuan, Yuan; Peng, Bodong [State Key Laboratory of Intense Pulse Radiation of Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024 (China); Li, Xingwen [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China)

2014-10-15T23:59:59.000Z

147

Method of digesting an explosive nitro compound  

DOE Patents [OSTI]

The present invention is a process wherein bleaching oxidants are used to digest explosive nitro compounds. The process has an excellent reaction rate for digesting explosives and operates under multivariate conditions. Reaction solutions may be aqueous, non-aqueous or a combination thereof, and can also be any pH, but preferably have a pH between 2 and 9. The temperature may be ambient as well as any temperature above which freezing of the solution would occur and below which any degradation of the bleaching oxidant would occur or below which any explosive reaction would be initiated. The pressure may be any pressure, but is preferably ambient or atmospheric, or a pressure above a vapor pressure of the aqueous solution to avoid boiling of the solution. Because the bleaching oxidant molecules are small, much smaller than an enzyme molecule for example, they can penetrate the microstructure of plastic explosives faster. The bleaching oxidants generate reactive hydroxyl radicals, which can destroy other organic contaminants, if necessary, along with digesting the explosive nitro compound.

Shah, Manish M. (Richland, WA)

2000-01-01T23:59:59.000Z

148

Damage predictions of aluminum thin-walled structures subjected to explosive loads.  

SciTech Connect (OSTI)

Predicting failure of thin-walled structures from explosive loading is a very complex task. The problem can be divided into two parts; the detonation of the explosive to produce the loading on the structure, and secondly the structural response. First, the factors that affect the explosive loading include: size, shape, stand-off, confinement, and chemistry of the explosive. The goal of the first part of the analysis is predicting the pressure on the structure based on these factors. The hydrodynamic code CTH is used to conduct these calculations. Secondly, the response of a structure from the explosive loading is predicted using a detailed finite element model within the explicit analysis code Presto. Material response, to failure, must be established in the analysis to model the failure of this class of structures; validation of this behavior is also required to allow these analyses to be predictive for their intended use. The presentation will detail the validation tests used to support this program. Validation tests using explosively loaded aluminum thin flat plates were used to study all the aspects mentioned above. Experimental measurements of the pressures generated by the explosive and the resulting plate deformations provided data for comparison against analytical predictions. These included pressure-time histories and digital image correlation of the full field plate deflections. The issues studied in the structural analysis were mesh sensitivity, strain based failure metrics, and the coupling methodologies between the blast and structural models. These models have been successfully validated using these tests, thereby increasing confidence of the results obtained in the prediction of failure thresholds of complex structures, including aircraft.

Saul, W. Venner; Reu, Phillip L.; Gruda, Jeffrey Donald; Haulenbeek, Kimberly K.; Larsen, Marvin Elwood; Phelan, James M.; Stofleth, Jerome H.; Corona, Edmundo; Gwinn, Kenneth West

2010-11-01T23:59:59.000Z

149

BIG SKY CARBON SEQUESTRATION PARTNERSHIP  

SciTech Connect (OSTI)

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed in the second quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. While no key deliverables were due during the third quarter, progress on other deliverables is noted in the PowerPoint presentations and in this report. A series of meetings held during the second and third quarters have laid the foundations for assessing the issues surrounding carbon sequestration in this region, the need for a holistic approach to meeting energy demands and economic development potential, and the implementation of government programs or a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. In the fourth quarter, three deliverables have been completed, some in draft form to be revised and updated to include Wyoming. This is due primarily to some delays in funding to LANL and INEEL and the approval of a supplemental proposal to include Wyoming in much of the GIS data sets, analysis, and related materials. The de

Susan M. Capalbo

2004-10-31T23:59:59.000Z

150

Big Sky Carbon Sequestration Partnership  

SciTech Connect (OSTI)

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound MMV is critical for public acceptance of these technologies. Deliverables for the 7th Quarter reporting period include (1) for the geological efforts: Reports on Technology Needs and Action Plan on the Evaluation of Geological Sinks and Pilot Project Deployment (Deliverables 2 and 3), and Report on the Feasibility of Mineralization Trapping in the Snake River Plain Basin (Deliverable 14); (2) for the terrestrial efforts: Report on the Evaluation of Terrestrial Sinks and a Report of the Best Production Practices for Soil C Sequestration (Deliverables 8 and 15). In addition, the 7th Quarter activities for the Partnership included further development of the proposed activities for the deployment and demonstration phase of the carbon sequestration pilots including geological and terrestrial pilots, expansion of the Partnership to encompass regions and institutions that are complimentary to the steps we have identified, building greater collaborations with industry and stakeholders in the region, contributed to outreach efforts that spanned all partnerships, co-authorship on the Carbon Capture and Separation report, and developed a regional basis to address future energy opportunities in the region. The deliverables and activities are discussed in the following sections and appended to this report. The education and outreach efforts have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The public website has been expanded and integrated with the GIS carbon atlas. We have made presentations to stakeholders and policy makers including two tribal sequestration workshops, and made connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmental

Susan M. Capalbo

2005-11-01T23:59:59.000Z

151

PINS Testing and Modification for Explosive Identification  

SciTech Connect (OSTI)

The INL's Portable Isotopic Neutron Spectroscopy System (PINS)1 non-intrusively identifies the chemical fill of munitions and sealed containers. PINS is used routinely by the U.S. Army, the Defense Threat Reduction Agency, and foreign military units to determine the contents of munitions and other containers suspected to contain explosives, smoke-generating chemicals, and chemical warfare agents such as mustard and nerve gas. The objects assayed with PINS range from softball-sized M139 chemical bomblets to 200 gallon DOT 500X ton containers. INL had previously examined2 the feasibility of using a similar system for the identification of explosives, and based on this proof-of-principle test, the development of a dedicated system for the identification of explosives in an improvised nuclear device appears entirely feasible. INL has been tasked by NNSA NA-42 Render Safe Research and Development with the development of such a system.

E.H. Seabury; A.J. Caffrey

2011-09-01T23:59:59.000Z

152

Big Sky Carbon Sequestration Partnership  

SciTech Connect (OSTI)

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration re

Susan Capalbo

2005-12-31T23:59:59.000Z

153

Gasdynamic Model of Turbulent Combustion in TNT Explosions  

SciTech Connect (OSTI)

A model is proposed to simulate turbulent combustion in confined TNT explosions. It is based on: (i) the multi-component gasdynamic conservation laws, (ii) a fast-chemistry model for TNT-air combustion, (iii) a thermodynamic model for frozen reactants and equilibrium products, (iv) a high-order Godunov scheme providing a non-diffusive solution of the governing equations, and (v) an ILES approach whereby adaptive mesh refinement is used to capture the energy bearing scales of the turbulence on the grid. Three-dimensional numerical simulations of explosion fields from 1.5-g PETN/TNT charges were performed. Explosions in six different chambers were studied: three calorimeters (volumes of 6.6-l, 21.2-l and 40.5-l with L/D = 1), and three tunnels (L/D = 3.8, 4.65 and 12.5 with volumes of 6.3-l) - to investigate the influence of chamber volume and geometry on the combustion process. Predicted pressures histories were quite similar to measured pressure histories for all cases studied. Experimentally, mass fraction of products, Y{sub p}{sup exp}, reached a peak value of 88% at an excess air ratio of twice stoichiometric, and then decayed with increasing air dilution; mass fractions Y{sub p}{sup calc} computed from the numerical simulations followed similar trends. Based on this agreement, we conclude that the dominant effect that controls the rate of TNT combustion with air is the turbulent mixing rate; the ILES approach along with the fast-chemistry model used here adequately captures this effect.

Kuhl, A L; Bell, J B; Beckner, V E

2010-01-08T23:59:59.000Z

154

THE BIGGEST EXPLOSIONS IN THE UNIVERSE  

SciTech Connect (OSTI)

Supermassive primordial stars are expected to form in a small fraction of massive protogalaxies in the early universe, and are generally conceived of as the progenitors of the seeds of supermassive black holes (BHs). Supermassive stars with masses of ?55, 000 M{sub ?}, however, have been found to explode and completely disrupt in a supernova (SN) with an energy of up to ?10{sup 55} erg instead of collapsing to a BH. Such events, ?10, 000 times more energetic than typical SNe today, would be among the biggest explosions in the history of the universe. Here we present a simulation of such a SN in two stages. Using the RAGE radiation hydrodynamics code, we first evolve the explosion from an early stage through the breakout of the shock from the surface of the star until the blast wave has propagated out to several parsecs from the explosion site, which lies deep within an atomic cooling dark matter (DM) halo at z ? 15. Then, using the GADGET cosmological hydrodynamics code, we evolve the explosion out to several kiloparsecs from the explosion site, far into the low-density intergalactic medium. The host DM halo, with a total mass of 4 × 10{sup 7} M{sub ?}, much more massive than typical primordial star-forming halos, is completely evacuated of high-density gas after ?< 10 Myr, although dense metal-enriched gas recollapses into the halo, where it will likely form second-generation stars with metallicities of ? 0.05 Z{sub ?} after ?> 70 Myr. The chemical signature of supermassive star explosions may be found in such long-lived second-generation stars today.

Johnson, Jarrett L.; Whalen, Daniel J.; Smidt, Joseph [Nuclear and Particle Physics, Astrophysics and Cosmology Group (T-2), Thermonuclear Applications Physics Group (XTD-6), Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Even, Wesley; Fryer, Chris L. [Computational Physics and Methods Group (CCS-2), Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Heger, Alex [Monash Centre for Astrophysics, Monash University, VIC 3800 (Australia); Chen, Ke-Jung, E-mail: jlj@lanl.gov [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

2013-10-01T23:59:59.000Z

155

Probing thermonuclear supernova explosions with neutrinos  

E-Print Network [OSTI]

Aims: We present neutrino light curves and energy spectra for two representative type Ia supernova explosion models: a pure deflagration and a delayed detonation. Methods: We calculate the neutrino flux from $\\beta$ processes using nuclear statistical equilibrium abundances convoluted with approximate neutrino spectra of the individual nuclei and the thermal neutrino spectrum (pair+plasma). Results: Although the two considered thermonuclear supernova explosion scenarios are expected to produce almost identical electromagnetic output, their neutrino signatures appear vastly different, which allow an unambiguous identification of the explosion mechanism: a pure deflagration produces a single peak in the neutrino light curve, while the addition of the second maximum characterizes a delayed-detonation. We identified the following main contributors to the neutrino signal: (1) weak electron neutrino emission from electron captures (in particular on the protons Co55 and Ni56) and numerous beta-active nuclei produced by the thermonuclear flame and/or detonation front, (2) electron antineutrinos from positron captures on neutrons, and (3) the thermal emission from pair annihilation. We estimate that a pure deflagration supernova explosion at a distance of 1 kpc would trigger about 14 events in the future 50 kt liquid scintillator detector and some 19 events in a 0.5 Mt water Cherenkov-type detector. Conclusions: While in contrast to core-collapse supernovae neutrinos carry only a very small fraction of the energy produced in the thermonuclear supernova explosion, the SN Ia neutrino signal provides information that allows us to unambiguously distinguish between different possible explosion scenarios. These studies will become feasible with the next generation of proposed neutrino observatories.

A. Odrzywolek; T. Plewa

2011-03-27T23:59:59.000Z

156

Explosive-driven, high speed, arcless switch  

DOE Patents [OSTI]

An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed.

Skogmo, P.J.; Tucker, T.J.

1986-05-02T23:59:59.000Z

157

Explosive-driven, high speed, arcless switch  

DOE Patents [OSTI]

An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed. 7 figs.

Skogmo, P.J.; Tucker, T.J.

1987-07-14T23:59:59.000Z

158

IOL: Africa's big plans for biofuel Africa's big plans for biofuel  

E-Print Network [OSTI]

IOL: Africa's big plans for biofuel Africa's big plans for biofuel By Clare Byrne Visitors to Madagascar, Senegal to South Africa, biofuels is the buzzword as African countries wake up to the possibility of using their vast spaces to grow crops that reduce their fossil fuel bill. Biofuels also carry

159

Report on the Night of the Big Wind The Big Wind of 1839 was  

E-Print Network [OSTI]

the sea, causing widespread flooding in some areas telling me how extremely strong this wind wasReport on the Night of the Big Wind The Big Wind of 1839 was Ireland's worst natural disaster. It brought hurricane force winds very rare in such a temperate climate during the night of 6th - 7th January

160

WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS  

E-Print Network [OSTI]

WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS C. L. Liu and Thomas J. Ahrens Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125 In order to record P- and S-waves on the interactions between incident P- and SV-waves and free-surfaces of rocks. The relations between particle

Stewart, Sarah T.

Note: This page contains sample records for the topic "big explosives experimental" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nuclear Explosive and Weapon Surety Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.1D.

2009-04-14T23:59:59.000Z

162

Explosion proof vehicle for tank inspection  

DOE Patents [OSTI]

An Explosion Proof Vehicle (EPV) having an interior substantially filled with an inert fluid creating an interior pressure greater than the exterior pressure. One or more flexible tubes provide the inert fluid and one or more electrical conductors from a control system to the vehicle. The vehicle is preferably used in subsurface tank inspection, whereby the vehicle is submerged in a volatile fluid.

Zollinger, William T. (Idaho Falls, ID); Klingler, Kerry M. (Idaho Falls, ID); Bauer, Scott G. (Idaho Falls, ID)

2012-02-28T23:59:59.000Z

163

NUCLEAR ASPECTS OF STELLAR AND EXPLOSIVE NUCLEOSYNTHESIS  

E-Print Network [OSTI]

NUCLEAR ASPECTS OF STELLAR AND EXPLOSIVE NUCLEOSYNTHESIS Thomas Rauscher 1 , Friedrich. of Astron. and Astroph., Univ. of California, Santa Cruz, CA 95064 Abstract The majority of nuclear­Feshbach). The global parametrizations of the nuclear properties needed for predictions far off stability probe our

Rauscher, Thomas

164

Continuous wave laser irradiation of explosives  

SciTech Connect (OSTI)

Quantitative measurements of the levels of continuous wave (CW) laser light that can be safely applied to bare explosives during contact operations were obtained at 532 nm, 785 nm, and 1550 nm wavelengths. A thermal camera was used to record the temperature of explosive pressed pellets and single crystals while they were irradiated using a measured laser power and laser spot size. A visible light image of the sample surface was obtained before and after the laser irradiation. Laser irradiation thresholds were obtained for the onset of any visible change to the explosive sample and for the onset of any visible chemical reaction. Deflagration to detonation transitions were not observed using any of these CW laser wavelengths on single crystals or pressed pellets in the unconfined geometry tested. Except for the photochemistry of DAAF, TATB and PBX 9502, all reactions appeared to be thermal using a 532 nm wavelength laser. For a 1550 nm wavelength laser, no photochemistry was evident, but the laser power thresholds for thermal damage in some of the materials were significantly lower than for the 532 nm laser wavelength. No reactions were observed in any of the studied explosives using the available 300 mW laser at 785 nm wavelength. Tables of laser irradiance damage and reaction thresholds are presented for pressed pellets of PBX9501, PBX9502, Composition B, HMX, TATB, RDX, DAAF, PETN, and TNT and single crystals of RDX, HMX, and PETN for each of the laser wavelengths.

McGrane, Shawn D.; Moore, David S.

2010-12-01T23:59:59.000Z

165

ANALYSIS OF MINING EXPLOSION PERFORMANCE WITH MULTIPLE  

E-Print Network [OSTI]

Limitations of Video Data · Effect of Blast Design on Near-Source Seismograms · Different Types of Cast Blasts of Models in Visualization ß Two-Dimensional Blast Model ß Three-Dimensional Blast Models 3. Applications to Different Types of Mining Explosions · Single Shot · Cast Blast · Coal Fragmentation #12;Analysis of Mining

Stump, Brian W.

166

Burgess Shale: Cambrian Explosion in Full Bloom  

E-Print Network [OSTI]

4 Burgess Shale: Cambrian Explosion in Full Bloom James W. Hagadorn T he middle cambrian burgess shale is one of the world's best-known and best-studied fossil deposits. The story of the discovery in the Burgess Shale Formation of the Canadian Rockies, Charles Walcott discovered a remarkable "phyl- lopod

Hagadorn, Whitey

167

Electrical apparatus for explosive gas atmospheres, Part 0: General introduction   

E-Print Network [OSTI]

This Recommendation has been prepared by IEC Technical Committee No. 31, Electrical Apparatus for Explosive Atmospheres; It forms one of a series of publications dealing with electrical apparatus for use in explosive gas atmospheres. This particular...

IEC Technical Committee

1971-01-01T23:59:59.000Z

168

Detection of Explosives via Photolytic Cleavage of Nitroesters and Nitramines  

E-Print Network [OSTI]

The nitramine-containing explosive RDX and the nitroester-containing explosive PETN are shown to be susceptible to photofragmentation upon exposure to sunlight. Model compounds containing nitroester and nitramine moieties ...

Swager, Timothy Manning

169

aux explosions nucleaires: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

essentially undisturbed, even if the explosion is strong enough to blow away all the gas located inside the halo at the onset of the explosion and reheat the IGM surrounding...

170

Determination of explosive blast loading equivalencies with an explosively driven shock tube  

SciTech Connect (OSTI)

Recently there has been significant interest in evaluating the potential of many different non-ideal energetic materials to cause blast damage. We present a method intended to quantitatively compare the blast loading generated by different energetic materials through use of an explosively driven shock tube. The test explosive is placed at the closed breech end of the tube and initiated with a booster charge. The resulting shock waves are then contained and focused by the tube walls to form a quasi-one-dimensional blast wave. Pressure transducers along the tube wall measure the blast overpressure versus distance from the source and allow the use of the one-dimensional blast scaling relationship to determine the energy deposited into the blast wave per unit mass of test explosive. These values are then compared for different explosives of interest and to other methods of equivalency determination.

Jackson, Scott I [Los Alamos National Laboratory; Hill, Larry G [Los Alamos National Laboratory; Morris, John S [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

171

A mathematical simulation of earth satellite explosion debris orbital elements  

E-Print Network [OSTI]

perspective: (1) By simulating the explosion of a satellite we mean that: given the knowledge of' the number of pieces and the force vector of each piece, we will simulate the resulting trajectories. (2) The simulation of a satellite trajectory... classical elements of each debris piece as a function of: (1) the trajectory of the center of mass of *he explosion debris and (2) the explosive forces. Computer program modules are developed to create an explosion and calculate the elements of each...

Mabrey, Wayne Edward

1970-01-01T23:59:59.000Z

172

Colorimetric chemical analysis sampler for the presence of explosives  

DOE Patents [OSTI]

A tester for testing for explosives comprising a body, a lateral flow swab unit operably connected to the body, a explosives detecting reagent contained in the body, and a dispenser operatively connected to the body and the lateral flow swab unit. The dispenser selectively allows the explosives detecting reagent to be delivered to the lateral flow swab unit.

Nunes, Peter J.; Eckels, Joel Del; Reynolds, John G.; Pagoria, Philip F.; Simpson, Randall L.

2014-07-01T23:59:59.000Z

173

3-D Earth model more accurately pinpoints explosions  

E-Print Network [OSTI]

- 1 - 3-D Earth model more accurately pinpoints explosions October 25, 2013 During the Cold War, U) have partnered to develop a 3-D model of the Earth's mantle and crust called SALSA3D (Sandia-Los Alamos of explosions. Significance of the research After an explosion, the energy travels through the Earth as waves

174

Colorimetric chemical analysis sampler for the presence of explosives  

DOE Patents [OSTI]

A tester for testing for explosives comprising a body, a lateral flow swab unit operably connected to the body, a explosives detecting reagent contained in the body, and a dispenser operatively connected to the body and the lateral flow swab unit. The dispenser selectively allows the explosives detecting reagent to be delivered to the lateral flow swab unit.

Nunes, Peter J. (Danville, CA); Del Eckels, Joel (Livermore, CA); Reynolds, John G. (San Ramon, CA); Pagoria, Philip F. (Livermore, CA); Simpson, Randall L. (Livermore, CA)

2011-09-27T23:59:59.000Z

175

PREVENTION DES EXPLOSIONS DE POUSSIERES ET PROTECTION CONTRE LEURS EFFETS  

E-Print Network [OSTI]

of prevention and protection of explosible atmospheres, including dust air mixtures. On the framework95-27 PREVENTION DES EXPLOSIONS DE POUSSIERES ET PROTECTION CONTRE LEURS EFFETS DIRECTIVES aujourd'hui des problemes de prevention et de protection en ce qui concerne les explosions d

Paris-Sud XI, Université de

176

Effective dynamics of the matrix big bang  

SciTech Connect (OSTI)

We study the leading quantum effects in the recently introduced matrix big bang model. This amounts to a study of supersymmetric Yang-Mills theory compactified on the Milne orbifold. We find a one-loop potential that is attractive near the big bang. Surprisingly, the potential decays very rapidly at late times where it appears to be generated by D-brane effects. Usually, general covariance constrains the form of any effective action generated by renormalization group flow. However, the form of our one-loop potential seems to violate these constraints in a manner that suggests a connection between the cosmological singularity and long wavelength, late time physics.

Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands); Rajaraman, Arvind [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Sethi, Savdeep [Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637 (United States)

2006-05-15T23:59:59.000Z

177

Big Horn 2 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuelsBig BendCreekBig Horn

178

Intra- and interspecific responses to Rafinesque’s big-eared bat (Corynorhinus rafinesquii) social calls.  

SciTech Connect (OSTI)

Bats respond to the calls of conspecifics as well as to calls of other species; however, few studies have attempted to quantify these responses or understand the functions of these calls. We tested the response of Rafinesque’s big-eared bats (Corynorhinus rafinesquii) to social calls as a possible method to increase capture success and to understand the function of social calls. We also tested if calls of bats within the range of the previously designated subspecies differed, if the responses of Rafinesque’s big-eared bats varied with geographic origin of the calls, and if other species responded to the calls of C. rafinesquii. We recorded calls of Rafinesque’s big-eared bats at two colony roost sites in South Carolina, USA. Calls were recorded while bats were in the roosts and as they exited. Playback sequences for each site were created by copying typical pulses into the playback file. Two mist nets were placed approximately 50–500 m from known roost sites; the net with the playback equipment served as the Experimental net and the one without the equipment served as the Control net. Call structures differed significantly between the Mountain and Coastal Plains populations with calls from the Mountains being of higher frequency and longer duration. Ten of 11 Rafinesque’s big-eared bats were caught in the Control nets and, 13 of 19 bats of other species were captured at Experimental nets even though overall bat activity did not differ significantly between Control and Experimental nets. Our results suggest that Rafinesque’s big-eared bats are not attracted to conspecifics’ calls and that these calls may act as an intraspecific spacing mechanism during foraging.

Loeb, Susan, C.; Britzke, Eric, R.

2010-07-01T23:59:59.000Z

179

Reliability Meets Big Data: Opportunities and Challenges  

E-Print Network [OSTI]

Reliability Meets Big Data: Opportunities and Challenges William Q. Meeker Department of Statistics, 2013 Abstract Reliability field data such as that obtained from warranty claims and maintenance records products, the nature of field reliability data is changing dramatically. In particular, products can

180

ICME & MGI Big Area Additive Manufacturing  

E-Print Network [OSTI]

ICME & MGI · Big Area Additive Manufacturing · Neutron Characterization for AM · Materials problems in additive manu- facturing (AM). Additive manufacturing, or three-dimensional (3-D) printing of the world's most advanced neu- tron facilities, the HFIR and SNS, to characterize additive manufactured

Note: This page contains sample records for the topic "big explosives experimental" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Space Time Quantization and the Big Bang  

E-Print Network [OSTI]

A recent cosmological model is recapitulated which deduces the correct mass, radius and age of the universe as also the Hubble constant and other well known apparently coincidental relations. It also predicts an ever expanding accelerating universe as is confirmed by latest supernovae observations. Finally the Big Bang model is recovered as a suitable limiting case.

B. G. Sidharth

1998-06-21T23:59:59.000Z

182

Seismic and source characteristics of large chemical explosions. Final report  

SciTech Connect (OSTI)

From the very beginning of its arrangement in 1947, the Institute for Dynamics of the Geospheres RAS (former Special Sector of the Institute for physics of the Earth, RAS) was providing scientific observations of effects of nuclear explosions, as well as large-scale detonations of HE, on environment. This report presents principal results of instrumental observations obtained from various large-scale chemical explosions conducted in the Former-Soviet Union in the period of time from 1957 to 1989. Considering principal aim of the work, tamped and equivalent chemical explosions have been selected with total weights from several hundreds to several thousands ton. In particular, the selected explosions were aimed to study scaling law from excavation explosions, seismic effect of tamped explosions, and for dam construction for hydropower stations and soil melioration. Instrumental data on surface explosions of total weight in the same range aimed to test military technics and special objects are not included.

Adushkin, V.V.; Kostuchenko, V.N.; Pernik, L.M.; Sultanov, D.D.; Zcikanovsky, V.I.

1995-01-01T23:59:59.000Z

183

Method and system for detecting explosives  

DOE Patents [OSTI]

A method of detecting explosives in a vehicle includes providing a first rack on one side of the vehicle, the rack including a neutron generator and a plurality of gamma ray detectors; providing a second rack on another side of the vehicle, the second rack including a neutron generator and a plurality of gamma ray detectors; providing a control system, remote from the first and second racks, coupled to the neutron generators and gamma ray detectors; using the control system, causing the neutron generators to generate neutrons; and performing gamma ray spectroscopy on spectra read by the gamma ray detectors to look for a signature indicative of presence of an explosive. Various apparatus and other methods are also provided.

Reber, Edward L. (Idaho Falls, ID); Jewell, James K. (Idaho Falls, ID); Rohde, Kenneth W. (Idaho Falls, ID); Seabury, Edward H. (Idaho Falls, ID); Blackwood, Larry G. (Idaho Falls, ID); Edwards, Andrew J. (Idaho Falls, ID); Derr, Kurt W. (Idaho Falls, ID)

2009-03-10T23:59:59.000Z

184

Explosive lithium production in the classical nova V339 Del (Nova Delphini 2013)  

E-Print Network [OSTI]

The origin of lithium (Li) and its production process have long been an unsettled question in cosmology and astrophysics. Candidates environments of Li production events or sites suggested by previous studies include big bang nucleosynthesis, interactions of energetic cosmic rays with interstellar matter, evolved low mass stars, novae, and supernova explosions. Chemical evolution models and observed stellar Li abundances suggest that at least half of the present Li abundance may have been produced in red giants, asymptotic giant branch (AGB) stars, and novae. However, no direct evidence for the supply of Li from stellar objects to the Galactic medium has yet been found. Here we report on the detection of highly blue-shifted resonance lines of the singly ionized radioactive isotope of beryllium, $^{7}$Be, in the near ultraviolet (UV) spectra of the classical nova V339 Del (Nova Delphini 2013). Spectra were obtained 38 to 48 days after the explosion. $^{7}$Be decays to form $^{7}$Li within a short time (half-li...

Tajitsu, Akito; Naito, Hiroyuki; Arai, Akir; Aoki, Wako

2015-01-01T23:59:59.000Z

185

EIS-0315-S1: SEIS on Caithness Big Sandy Project  

Broader source: Energy.gov [DOE]

In June 2001, the Bureau of Land Management (BLM) and Western Area Power Administration (Western) issued the Big Sandy Energy Project Draft Environmental Impact Statement (EIS) (BLM and Western 2001). After June 2001, Caithness Big Sandy, L.L.C. (Caithness), revised aspects of the Big Sandy Energy Project (Project) described as the Proposed Action in the Draft EIS.

186

Visualizing Distributed Data with BigWig and BigBed at UCSC (2010 JGI/ANL HPC Workshop)  

ScienceCinema (OSTI)

Jim Kent from University of California, Santa Cruz presents on "Visualizing Distributed Data with BigWig and BigBed at UCSC" at the JGI/Argonne HPC Workshop on January 26, 2010.

Kent, Jim [UCSC

2011-06-08T23:59:59.000Z

187

DOE explosives safety manual. Revision 7  

SciTech Connect (OSTI)

This manual prescribes the Department of Energy (DOE) safety rules used to implement the DOE safety policy for operations involving explosives. This manual is applicable to all DOE facilities engaged in operations of development, manufacturing, handling, storage, transportation, processing, or testing of explosives, pyrotechnics and propellants, or assemblies containing these materials. The standards of this manual deal with the operations involving explosives, pyrotechnics and propellants, and the safe management of such operations. The design of all new explosives facilities shall conform to the requirements established in this manual and implemented in DOE 6430.1A, ``General Design Criteria Manual.`` It is not intended that existing physical facilities be changed arbitrarily to comply with these provisions, except as required by law. Existing facilities that do not comply with these standards may continue to be used for the balance of their functional life, as long as the current operation presents no significantly greater risk than that assumed when the facility was originally designed and it can be demonstrated clearly that a modification to bring the facility into compliance is not feasible. However, in the case of a major renovation, the facility must be brought into compliance with current standards. The standards are presented as either mandatory or advisory. Mandatory standards, denoted by the words ``shall,`` ``must,`` or ``will,`` are requirements that must be followed unless written authority for deviation is granted as an exemption by the DOE. Advisory standards denoted by ``should`` or ``may`` are standards that may be deviated from with a waiver granted by facility management.

Not Available

1994-08-01T23:59:59.000Z

188

Waveforms Measured in Confined Thermobaric Explosion  

SciTech Connect (OSTI)

Experiments with 1.5-g Shock-Dispersed-Fuel (SDF) charges have been conducted in six different chambers. Both flake Aluminum and TNT were used as the fuel. Static pressure gauges on the chamber wall were the main diagnostic. Waveforms for explosions in air were significantly larger than those in nitrogen - thereby demonstrating a strong thermobaric (combustion) effect. This effect increases as the confinement volume decreases and the mixture richness approaches 1.

Reichenbach, H; Neuwald, P; Kuhl, A L

2007-05-04T23:59:59.000Z

189

Presented by Toward the Explosion Mechanism for  

E-Print Network [OSTI]

of Energy Mezzacappa_Astro_SC10 · What are they? ­ Explosions of massive stars · How often do they occur-Battelle for the U.S. Department of Energy Mezzacappa_Astro_SC10 Core-collapse supernova paradigm The star's iron of a 15 M. star #12;4 Managed by UT-Battelle for the U.S. Department of Energy Mezzacappa_Astro_SC10 How

190

Calculation of safe parameters of air shock waves for underwater explosions  

SciTech Connect (OSTI)

The paper proposes a functional relationship for the calculation of the pressure at an air shock-wave front in underwater explosions of plaster-blasting charges. The maximum permissible mass of the charge and safe distance for objects can be calculated for an assigned value of the critical pressure at the air shock-wave front. The authors also state that this work was conducted as there are practically no significant results of experimental or theoretical investigations of this problem.

Smolii, N.I.; Ganopol'skii, M.I.

1985-07-01T23:59:59.000Z

191

THE BIGGEST EXPLOSIONS IN THE UNIVERSE. II  

SciTech Connect (OSTI)

One of the leading contenders for the origin of supermassive black holes (SMBHs) at z ?> 7 is catastrophic baryon collapse in atomically cooled halos at z ? 15. In this scenario, a few protogalaxies form in the presence of strong Lyman-Werner UV backgrounds that quench H{sub 2} formation in their constituent halos, preventing them from forming stars or blowing heavy elements into the intergalactic medium prior to formation. At masses of 10{sup 8} M{sub ?} and virial temperatures of 10{sup 4} K, gas in these halos rapidly cools by H lines, in some cases forming 10{sup 4}-10{sup 6} M{sub ?} Population III stars and, a short time later, the seeds of SMBHs. Instead of collapsing directly to black holes (BHs), some of these stars died in the most energetic thermonuclear explosions in the universe. We have modeled the explosions of such stars in the dense cores of line-cooled protogalaxies in the presence of cosmological flows. In stark contrast to the explosions in diffuse regions in previous simulations, these supernovae briefly engulf the protogalaxy, but then collapse back into its dark matter potential. Fallback drives turbulence that efficiently distributes metals throughout the interior of the halo and fuels the rapid growth of nascent BHs at its center. The accompanying starburst and X-ray emission from these line-cooled galaxies easily distinguish them from more slowly evolving neighbors and might reveal the birthplaces of SMBHs on the sky.

Whalen, Daniel J.; Smidt, Joseph [T-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Johnson, Jarrett L. [XTD-6, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Heger, Alexander [Monash Centre for Astrophysics, Monash University, Victoria 3800 (Australia); Even, Wesley; Fryer, Chris L. [CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

2013-11-10T23:59:59.000Z

192

High pressure-resistant nonincendive emulsion explosive  

DOE Patents [OSTI]

An improved emulsion explosive composition including hollow microspheres/bulking agents having high density and high strength. The hollow microspheres/bulking agents have true particle densities of about 0.2 grams per cubic centimeter or greater and include glass, siliceous, ceramic and synthetic resin microspheres, expanded minerals, and mixtures thereof. The preferred weight percentage of hollow microspheres/bulking agents in the composition ranges from 3.0 to 10.0 A chlorinated paraffin oil, also present in the improved emulsion explosive composition, imparts a higher film strength to the oil phase in the emulsion. The emulsion is rendered nonincendive by the production of sodium chloride in situ via the decomposition of sodium nitrate, a chlorinated paraffin oil, and sodium perchlorate. The air-gap sensitivity is improved by the in situ formation of monomethylamine perchlorate from dissolved monomethylamine nitrate and sodium perchlorate. The emulsion explosive composition can withstand static pressures to 139 bars and dynamic pressure loads on the order of 567 bars.

Ruhe, Thomas C. (Duquesne, PA); Rao, Pilaka P. (Baghlingampalli, IN)

1994-01-01T23:59:59.000Z

193

Explosive Detection in Aviation Applications Using CT  

SciTech Connect (OSTI)

CT scanners are deployed world-wide to detect explosives in checked and carry-on baggage. Though very similar to single- and dual-energy multi-slice CT scanners used today in medical imaging, some recently developed explosives detection scanners employ multiple sources and detector arrays to eliminate mechanical rotation of a gantry, photon counting detectors for spectral imaging, and limited number of views to reduce cost. For each bag scanned, the resulting reconstructed images are first processed by automated threat recognition algorithms to screen for explosives and other threats. Human operators review the images only when these automated algorithms report the presence of possible threats. The US Department of Homeland Security (DHS) has requirements for future scanners that include dealing with a larger number of threats, higher probability of detection, lower false alarm rates and lower operating costs. One tactic that DHS is pursuing to achieve these requirements is to augment the capabilities of the established security vendors with third-party algorithm developers. A third-party in this context refers to academics and companies other than the established vendors. DHS is particularly interested in exploring the model that has been used very successfully by the medical imaging industry, in which university researchers develop algorithms that are eventually deployed in commercial medical imaging equipment. The purpose of this paper is to discuss opportunities for third-parties to develop advanced reconstruction and threat detection algorithms.

Martz, H E; Crawford, C R

2011-02-15T23:59:59.000Z

194

Scientists train honeybees to detect explosives  

ScienceCinema (OSTI)

Members of the Los Alamos National Laboratory Stealthy Insect Sensor Project team have been able to harness the honeybee's exceptional olfactory sense by using the bees' natural reaction to nectar, a proboscis extension reflex (sticking out their tongue) to record an unmistakable response to a scent. Using Pavlovian techniques, researchers were able to train the bees to give a positive detection response via the PER when exposed to vapors from TNT, C4, and TATP explosives. The Stealthy Insect Sensor Project was born out of a global threat from the growing use of improvised explosive devices or IEDs, especially those that present a critical vulnerability for American military troops in Iraq and Afghanistan, and as an emerging danger for civilians worldwide. Current strategies to detect explosives are expensive and, in the case of trained detection dogs, too obtrusive to be used very discreetly. With bees however, they are small and discreet, offering the element of surprise. They're also are inexpensive to maintain and even easier to train than dogs. As a result of this need, initial funding for the work was provided by a development grant from the Defense Advanced Research Projects Agency.

None

2014-07-24T23:59:59.000Z

195

Big Blue Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuelsBig Bend

196

Response of simulated propellants and explosives to projectile impact  

SciTech Connect (OSTI)

This dissertation deals with experimental, analytical and numerical investigations into the response of two types of simulated propellants and explosives, known as Propergol, to projectile impact. The targets consisted of a polymeric mixture composed of potassium chloride, plaster of Paris and a polyurethane binder. Following the determination of the constitutive behavior of Propergol, experiments were conducted to study their penetration, perforation and fragmentation by projectiles. Both pneumatic and powder guns were employed in the tests, perfragmentation by projectiles. Both pneumatic and powder guns were employed in the tests, permitting impact velocities ranging from 40 to 1100 m/s, for flat- and conically-tipped as well as armor-piercing projectiles. The specimens include monolithic, composite and constrained Propergol circular disks and cylinders of 140 mm diameter with thicknesses ranging from 9 to 90 mm. Penetration tests were also conducted on model warheads loaded with the simulant material. Ballistic limit velocities for various target/projectile combinations were determined. Damage modes, such as cracking and fragmentation, were examined using experimental evidence including high-speed film data and microscopic photographs. Two types of fragments, Propergol clusters and crystalline particles, were recognized, and their size distributions were found to fit exponential functions. The dependent of fragment number and volume on initial projectile velocity was also studied. 103 refs., 172 figs., 19 tabs.

Yuan, W.

1990-11-01T23:59:59.000Z

197

Surface effects of underground nuclear explosions  

SciTech Connect (OSTI)

The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.

Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.

1997-06-01T23:59:59.000Z

198

Detonation and incineration products of PBX explosives  

SciTech Connect (OSTI)

A series of experiments are planned to determine detonation product gases that are released into the environment when high explosives are tested. These experiments will be done in a 1.8-m-diam confinement vessel at ambient air pressure and partial vacuum. A matrix of four shots of PBX 9501, three shots of PBX 9502 and one shot of LX-10 are analyzed to determine the reproducibility and mass balance of materials in the detonation. This paper will only report on the detonation product gases as other experiments are planned.

Fletcher, M.A.; Loughran, E.D.

1992-01-01T23:59:59.000Z

199

Method and system for detecting an explosive  

DOE Patents [OSTI]

A method and system for detecting at least one explosive in a vehicle using a neutron generator and a plurality of NaI detectors. Spectra read from the detectors is calibrated by performing Gaussian peak fitting to define peak regions, locating a Na peak and an annihilation peak doublet, assigning a predetermined energy level to one peak in the doublet, and predicting a hydrogen peak location based on a location of at least one peak of the doublet. The spectra are gain shifted to a common calibration, summed for respective groups of NaI detectors, and nitrogen detection analysis performed on the summed spectra for each group.

Reber, Edward L. (Idaho Falls, ID); Rohde, Kenneth W. (Idaho Falls, ID); Blackwood, Larry G. (Bozeman, MT)

2010-12-07T23:59:59.000Z

200

Explosives performance key to stockpile stewardship  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial Thin FilmEquipment SSRLExploring theExplosives

Note: This page contains sample records for the topic "big explosives experimental" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Quadractic Model of Thermodynamic States in SDF Explosions  

SciTech Connect (OSTI)

We study the thermodynamic states encountered during Shock-Dispersed-Fuel (SDF) explosions. Such explosions contain up to six components: three fuels (PETN, TNT and Aluminum) and their products corresponding to stoichiometric combustion with air. We establish the loci in thermodynamic state space that correctly describes the behavior of the components. Results are fit with quadratic functions that serve as fast equations of state suitable for 3D numerical simulations of SDF explosions.

Kuhl, A L; Khasainov, B

2007-05-04T23:59:59.000Z

202

Title Preactivity Survey Report for Five Tonopah Test Range Explosive...  

National Nuclear Security Administration (NNSA)

DESCRIPTION The Environmental Restoration Division (ERD) of the U.S. Department of Energy, Nevada Operations Office (DOENV), plans to remove explosive military weapons from...

203

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1D Admin Chg 1, Nuclear Explosive and Weapon Surety Program by Carl Sykes Functional areas: Administrative Change, Defense Nuclear Facility Safety and Health Requirement, Defense...

204

Nuclear Explosive Safety - DOE Directives, Delegations, and Requiremen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

52.2E, Nuclear Explosive Safety by Angela Chambers Functional areas: Safety, Security This Department of Energy (DOE) Order establishes requirements to implement the nuclear...

205

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1E, Nuclear Explosive and Weapon Surety Program by Angela Chambers Functional areas: Defense Nuclear Facility Safety and Health Requirement, Defense Programs, Nuclear Weapons...

206

A Preparation Zone For Volcanic Explosions Beneath Naka-Dake...  

Open Energy Info (EERE)

Volcanic explosions act to release the energy transferred from magma or volcanic fluids. Measurement of the subsurface electrical resistivity is a promising method in...

207

Method for digesting a nitro-bearing explosive compound  

DOE Patents [OSTI]

The present invention is a process wherein superoxide radicals from superoxide salt are used to break down the explosive compounds. The process has an excellent reaction rate for degrading explosives, and operates at ambient temperature and atmospheric pressure in aqueous or non-aqueous conditions. Because the superoxide molecules are small, much smaller than an enzyme molecule for example, they can penetrate the microstructure of plastic explosives faster. The superoxide salt generates reactive hydroxyl radicals, which can destroy other organic contaminants, if necessary, along with digesting the explosive nitro-bearing compound.

Shah, Manish M. (Richland, WA)

2000-01-01T23:59:59.000Z

208

Estimating Equivalency of Explosives Through A Thermochemical Approach  

SciTech Connect (OSTI)

The Cheetah thermochemical computer code provides an accurate method for estimating the TNT equivalency of any explosive, evaluated either with respect to peak pressure or the quasi-static pressure at long time in a confined volume. Cheetah calculates the detonation energy and heat of combustion for virtually any explosive (pure or formulation). Comparing the detonation energy for an explosive with that of TNT allows estimation of the TNT equivalency with respect to peak pressure, while comparison of the heat of combustion allows estimation of TNT equivalency with respect to quasi-static pressure. We discuss the methodology, present results for many explosives, and show comparisons with equivalency data from other sources.

Maienschein, J L

2002-07-08T23:59:59.000Z

209

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

D, Nuclear Explosive and Weapon Surety Program by cdornburg Functional areas: Defense Nuclear Facility Safety and Health Requirement, Defense Programs, Nuclear Weapons Programs,...

210

Big Canyon Creek Ecological Restoration Strategy.  

SciTech Connect (OSTI)

He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe then used data collected from the District's stream assessment and inventory, utilizing the Stream Visual Assessment Protocol (SVAP), to determine treatment necessary to bring 90% of reaches ranked Poor or Fair through the SVAP up to good or excellent. In 10 year's time, all reaches that were previously evaluated with SVAP will be reevaluated to determine progress and to adapt methods for continued success. Over 400 miles of stream need treatment in order to meet identified restoration goals. Treatments include practices which result in riparian habitat improvements, nutrient reductions, channel condition improvements, fish habitat improvements, invasive species control, water withdrawal reductions, improved hydrologic alterations, upland sediment reductions, and passage barrier removal. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resource Management Watershed Division (Tribe) developed this document to guide restoration activities within the Big Canyon Creek watershed for the period of 2008-2018. This plan was created to demonstrate the ongoing need and potential for anadromous fish habitat restoration within the watershed and to ensure continued implementation of restoration actions and activities. It was developed not only to guide the District and the Tribe, but also to encourage cooperation among all stakeholders, including landowners, government agencies, private organizations, tribal governments, and elected officials. Through sharing information, skills, and resources in an active, cooperative relationships, all concerned parties will have the opportunity to join together to strengthen and maintain a sustainable natural resource base for present and future generations within the watershed. The primary goal of the strategy is to address aquatic habitat restoration needs on a watershed level for resident and anadromous fish species, promoting quality habitat within a self-sustaining watershed. Seven objectives have been developed to support this goal: (1) Identify factors limiting quality

Rasmussen, Lynn; Richardson, Shannon

2007-10-01T23:59:59.000Z

211

An electromagnetic and thermodynamic lumped parameter model of an explosively driven regenerative magnetohydrodynamic generator  

SciTech Connect (OSTI)

The objective of this research is to develop a simple, yet accurate, lumped parameter mathematical model for an explosively driven magnetohydrodynamic generator that can predict the pulse power variables of voltage and current from startup through regenerative operation. The inputs to the model will be the plasma properties entering the generator as predicted by the explosive shock model of Reference [1]. The strategy used was to simplify electromagnetic and thermodynamic three dimensional effects into a zero dimensional model. The model will provide a convenient tool for researchers to optimize designs to be used in pulse power applications. The model is validated using experimental data of Reference [1]. An overview of the operation of the explosively driven generator is first presented. Then a simplified electrical circuit model that describes basic performance of the device is developed. Then a lumped parameter model that incorporates the coupled electromagnetic and thermodynamic effects that govern generator performance is described and developed. The model is based on fundamental physical principles and parameters that were either obtained directly from design data or estimated from experimental data. The model was used to obtain parameter sensitivities and predict beyond the limits observed in the experiments to the levels desired by the potential Department of Defense sponsors. The model identifies process limitations that provide direction for future research.

Morrison, J.L.

1992-12-01T23:59:59.000Z

212

Forensic analyses of explosion debris from the January 2, 1992 Pd/D{sub 2}O electrochemistry incident at SRI International  

SciTech Connect (OSTI)

The January 2, 1992 explosion in an electrochemistry laboratory at SRI International (SRI) resulted in the death of scientist Andrew Riley, and gained some notoriety due to its association with experimental work in the controversial field of cold fusion research. Selected components of explosion debris were subjected to forensic analyses at LLNL to elucidate potential causes of, or contributing factors to, the explosion. Interrogation of the debris by LLNL encompassed nuclear, chemical, physical, and materials investigations. Nuclear studies for the determination of tritium and neutron-activation products in stainless steel and brass were negative. No evidence of signature species indicative of orthodox nuclear events was detected. The inorganic and particulate analyses were likewise negative with respect to residues of unexpected chemical species. Such target compounds included conventional explosives, accelerants, propellants, or any exceptional industrial chemicals. The GC-MS analyses of trace organic components in the explosion debris provided perhaps the most interesting results obtained at LLNL. Although no evidence of organic explosives, oxidizers, or other unusual compounds was detected, the presence of a hydrocarbon oil in the interior of the electrochemical cell was established. It is likely that its source was lubricating fluid from the machining of the metal cell components. If residues of organic oils are present during electrolysis experiments, the potential exists for an explosive reaction in the increasingly enriched oxygen atmosphere within the headspace of a metal cell.

Andresen, B.; Whipple, R.; Vandervoort, D.; Grant, P.

1992-08-15T23:59:59.000Z

213

GRAVITATIONAL FIELD SHIELDING AND SUPERNOVA EXPLOSIONS  

SciTech Connect (OSTI)

A new mechanism for supernova explosions called gravitational field shielding is proposed, in accord with a five-dimensional fully covariant Kaluza-Klein theory with a scalar field that unifies the four-dimensional Einsteinian general relativity and Maxwellian electromagnetic theory. It is shown that a dense compact collapsing core of a star will suddenly turn off or completely shield its gravitational field when the core collapses to a critical density, which is inversely proportional to the square of mass of the core. As the core suddenly turns off its gravity, the extremely large pressure immediately stops the core collapse and pushes the mantle material of supernova moving outward. The work done by the pressure in the expansion can be the order of energy released in a supernova explosion. The gravity will resume and stop the core from a further expansion when the core density becomes less than the critical density. Therefore, the gravitational field shielding leads a supernova to impulsively explode and form a compact object such as a neutron star as a remnant. It works such that a compressed spring will shoot the oscillator out when the compressed force is suddenly removed.

Zhang, T. X. [Physics Department, Alabama A and M University, Normal, AL 35762 (United States)

2010-12-20T23:59:59.000Z

214

Communication: Determining the structure of the N{sub 2}Ar van der Waals complex with laser-based channel-selected Coulomb explosion  

SciTech Connect (OSTI)

We experimentally reconstructed the structure of the N{sub 2}Ar van der Waals complex with the technique of laser-based channel-selected Coulomb explosion imaging. The internuclear distance between the N{sub 2} center of mass and the Ar atom, i.e., the length of the van der Waals bond, was determined to be 3.88 Å from the two-body explosion channels. The angle between the van der Waals bond and the N{sub 2} principal axis was determined to be 90° from the three-body explosion channels. The reconstructed structure was contrasted with our high level ab initio calculations. The agreement demonstrated the potential application of laser-based Coulomb explosion in imaging transient molecular structure, particularly for floppy van der Waals complexes, whose structures remain difficult to be determined by conventional spectroscopic methods.

Wu, Chengyin, E-mail: cywu@pku.edu.cn; Liu, Yunquan; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China) [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Wu, Cong; Xie, Xiguo; Li, Min; Deng, Yongkai [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)] [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Song, Di; Su, Hongmei, E-mail: hongmei@iccas.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)] [State Key Laboratory of Molecular Reaction Dynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

2014-04-14T23:59:59.000Z

215

NREL: Wind Research - Pennsylvania State University Wins Big...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pennsylvania State University Wins Big in Las Vegas NWTC tests Collegiate Wind Competition turbines July 29, 2014 Members of the Pennsylvania State University pose in team uniforms...

216

assessment big canyon: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Build Data Sets for Data Mining, Data & Knowledge Engineering (DKE), 2014, Elsevier. DBMS 12 Ordonez, Carlos 237 Systems for Big-Graphs Arijit Khan Computer Technologies and...

217

LDRD symposium focuses on materials in extremes, big data, and...  

National Nuclear Security Administration (NNSA)

symposium focuses on materials in extremes, big data, and energy use impacts | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing...

218

Estimation of scalar moments from explosion-generated surface waves  

SciTech Connect (OSTI)

Rayleigh waves from underground nuclear explosions are used to estimate scaler moments for 40 Nevada Test Site (NTS) explosions and 18 explosions at the Soviet East Kazakh test site. The Rayleigh wave spectrum is written as a product of functions that depend on the elastic structure of the travel path, the elastic structure of the source region and the Q structure of the path. Results are used to examine the worldwide variability of each factor and the resulting variability of surface wave amplitudes. The path elastic structure and Q structure are found by inversion of Rayleigh wave phase and group velocities and spectral amplitudes. The Green's function derived from this structure is used to estimate the moments of explosions observed along the same path. This procedure produces more consistent amplitude estimates than conventional magnitude measurements. Network scatter in log moment is typically 0.1. In contrast with time-domain amplitudes, the elastic structure of the travel path causes little variability in spectral amplitudes. When the mantle Q is constrained to a value of approximately 100 at depths greater than 120 km, the inversion for Q and moment produces moments that remain constant with distance. Based on the best models available, surface waves from NTS explosions should be larger than surface waves from East Kazakh explosions with the same moment. Estimated scaler moments for the largest East Kazakh explosions since 1976 are smaller than the estimated moments for the largest NTS explosions for the same time period.

Stevens, J.L.

1985-04-01T23:59:59.000Z

219

Security and Use Control of Nuclear Explosives and Nuclear Weapons  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes requirements to implement the nuclear explosive security and use control elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts/deliberate unauthorized use. Cancels DOE O 452.4A.

2010-01-22T23:59:59.000Z

220

Security and Use Control of Nuclear Explosives and Nuclear Weapons  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes requirements to implement the nuclear explosive security and use control (UC) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts (DUAs), deliberate unauthorized use (DUU), and denial of authorized use (DAU).

2014-11-19T23:59:59.000Z

Note: This page contains sample records for the topic "big explosives experimental" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Wave Generation from Explosions in Rock Cavities CANGLI LIU1  

E-Print Network [OSTI]

Wave Generation from Explosions in Rock Cavities CANGLI LIU1 and THOMAS J. AHRENS1 Abstract Ð We have developed a measurement method to monitor P- and S-waves generated from laboratory diameter cavities. Stress waves generated by the explosions were recorded within a radius of 25 cm

Stewart, Sarah T.

222

The Next Big Thing - Eric Haseltine  

ScienceCinema (OSTI)

Eric Haseltine, Haseltine Partners president and former chief of Walt Disney Imagineering, presented "The Next Big Thing," on Sept. 11, at the ORNL. He described the four "early warning signs" that a scientific breakthrough is imminent, and then suggested practical ways to turn these insights into breakthrough innovations. Haseltine is former director of research at the National Security Agency and associate director for science and technology for the director of National Intelligence, former executive vice president of Walt Disney Imagineering and director of engineering for Hughes Aircraft. He has 15 patents in optics, special effects and electronic media, and more than 100 publications in science and technical journals, the web and Discover Magazine.

Eric Haseltine

2010-01-08T23:59:59.000Z

223

Tackling Big Data Together | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClient updateTRI-STATE GENERATION 1. Physical SecurityBig

224

Big Geysers Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuelsBig BendCreek

225

Big Sky Wind Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuelsBig°Facility Jump

226

Big Tree Climate Fund | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuelsBig°FacilitySpring

227

Statistical Method for the Determination of the Ignition Energy of Dust Cloud-Experimental Validation  

E-Print Network [OSTI]

of preventive safeguard to control the plants safety. The mitigation of an explosion hazard, according, using the Langlie test, for the quick determination of the explosion sensitivity of dusts. This methodStatistical Method for the Determination of the Ignition Energy of Dust Cloud- Experimental

Paris-Sud XI, Université de

228

Lecture 10: The European Bioinformatics Institute - "Big data" for biomedical sciences  

E-Print Network [OSTI]

Part 1: Big data for biomedical sciences (Tom Hancocks) Ten years ago witnessed the completion of the first international 'Big Biology' project that sequenced the human genome. In the years since biological sciences, have seen a vast growth in data. In the coming years advances will come from integration of experimental approaches and the translation into applied technologies is the hospital, clinic and even at home. This talk will examine the development of infrastructure, physical and virtual, that will allow millions of life scientists across Europe better access to biological data Tom studied Human Genetics at the University of Leeds and McMaster University, before completing an MSc in Analytical Genomics at the University of Birmingham. He has worked for the UK National Health Service in diagnostic genetics and in training healthcare scientists and clinicians in bioinformatics. Tom joined the EBI in 2012 and is responsible for the scientific development and delivery of training for the BioMedBridges pr...

CERN. Geneva; Dana, Jose

2013-01-01T23:59:59.000Z

229

GEOFRAC: an explosives stimulation technique for a geothermal well  

SciTech Connect (OSTI)

The first known use of explosives for stimulating a geothermal well was successfully conducted in December 1981 with a process called GEOFRAC. The 260/sup 0/C well was located at the Union Oil Company's Geysers Field in northern California. For the initial test, 364 kg of a new explosive called HITEX II was placed at a depth of 2256 meters and detonated to verify techniques. The explosive was contained in an aluminum canister to separate it from the well fluids. In the second test, 5000 kg of explosive was used representing a column length of approximately 191 meters. The explosive was detonated at a depth of 1697 meters in the same well. The results of these tests show that HITEX II can be safely emplaced and successfully detonated in a hot geothermal well without causing damage to the well bore or casing.

Mumma, D.M.; McCullough, F. Jr.; Schmidt, E.W.; Pye, D.S.; Allen, W.C.; Pyle, D.; Hanold, R.J.

1982-01-01T23:59:59.000Z

230

HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS  

SciTech Connect (OSTI)

Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

Leishear, R

2010-05-02T23:59:59.000Z

231

Acoustic Methods for Evaluation of High Energy Explosions  

E-Print Network [OSTI]

Two independent acoustic methods were used to verify the results of earlier explosion energy calculations of Chelyabinsk meteoroid. They are: estimations through a path length of infrasound wave and through maximum concentration of the wave energy. The energy of this explosion turned out the same as in earlier calculations, and it is close to 58 Mt of TNT. The first method, as well as evaluations through seismic signals and barograms, have confirmed the energy of Tunguska meteoroid explosion at 14.0 - 14.5 Mt level. Moreover, there is a good agreement between acoustic estimations and other data for the explosion energy of another meteoroid that was ended its flight over the southern part of Indian Ocean, and for two catastrophic volcanoes explosions - Bezymyanny and Krakatoa.

Lobanovsky, Yury I

2013-01-01T23:59:59.000Z

232

Antimatter induced fusion and thermonuclear explosions  

E-Print Network [OSTI]

The feasibility of using antihydrogen for igniting inertial confinement fusion pellets or triggering large scale thermonuclear explosions is investigated. The number of antiproton annihilations required to start a thermonuclear burn wave in either DT or Li_2DT is found to be about 10^{21}/k^2, where k is the compression factor of the fuel to be ignited. In the second part, the technologies for producing antiprotons with high energy accelerator systems and the means for manipulating and storing microgram amounts of antihydrogen are examined. While there seems to be no theoretical obstacles to the production of 10^{18} antiprotons per day (the amount required for triggering one thermonuclear bomb), the construction of such a plant involves several techniques which are between 3 and 4 orders of magnitude away from present day technology.

Gsponer, A; Gsponer, Andre; Hurni, Jean-Pierre

1987-01-01T23:59:59.000Z

233

US/RUSSIAN COLLABORATION; EXPERIMENTS WITH EXPLOSIVE PULSED POWER  

SciTech Connect (OSTI)

Through conferences and technical publications, personnel at Los Alamos National Laboratory (LANL) and the All-Russian Institute of Experimental Physics (VNIIEF) learned of each other's interests in both high explosive pulsed power (HEPP) systems and their applications to fusion and high magnetic field research. The principle forum for contact was the Megagauss (MG) Conference series, becoming visible in 1979 at the MG-II Conference in Washington DC and culminating in Novosibirsk at MG-V in 1989. Conversations at MG-V led to a proposal, advanced by VNIIEF in 1991, to form a collaborative research agreement. After further preliminary conversations, a contingent from VNIIEF arrived at the MG-VI conference in Albuquerque in 1992 with plans to visit Los Alamos after the conference and finalize an agreement. The two laboratories signed a Memorandum of Understanding (MOU) at this time, November of 1992, agreeing to conduct joint experiments using at least two HEPP systems developed by VNIIEF. Since that time, joint experiments have been conducted both at LANL and VNIIEF facilities using a variety of HEPP systems. On a few occasions, the effort has focused on the HEPP system itself, but more often it has focused on scientific applications of mutual interest.

J. GOFORTH; I. LINDEMUTH; ET AL

2001-04-01T23:59:59.000Z

234

Does Big Oil Collude and Price Gouge? Big Oil came back into the headlines in recent weeks with another spike in gasoline  

E-Print Network [OSTI]

Does Big Oil Collude and Price Gouge? Big Oil came back into the headlines in recent weeks gasoline price spike, Congress summoned the executives of the Big Oil companies to testify about their enormous profits. Some commentators and pundits characterize the pricing policy of Big Oil as "price

Ahmad, Sajjad

235

C-Safe Image Gallery from the Center for the Simulation of Accidental Fires and Explosions  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The University of Utah created an alliance with the DOE Advanced Simulation and Computing (ASC) program to form the Center for the Simulation of Accidental Fires and Explosions (C-SAFE). The Center focuses specifically on providing state-of-the-art, science-based tools for the numerical simulation of accidental fires and explosions, especially within the context of handling and storage of highly flammable materials. The objective of C-SAFE is to provide a system comprising a problem-solving environment in which fundamental chemistry and engineering physics are fully coupled with non-linear solvers, optimization, computational steering, visualization and experimental data verification. The availability of simulations using this system will help to better evaluate the risks and safety issues associated with fires and explosions. The scientific images at this website provide technical views of various flame types and configurations (http://www.csafe.utah.edu/Information/summary.html). See also the Container Dynamics presentations at http://www.csafe.utah.edu/Teams/ContainerDynamics/cd_presentations.html.

236

Argonne OutLoud: Computation, Big Data, and the Future of Cities...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computation, Big Data, and the Future of Cities Argonne OutLoud: Computation, Big Data, and the Future of Cities 1 of 10 Argonne OutLoud: Computation, Big Data, and the Future of...

237

Synoptic Observing Programs at Big Bear Solar Observatory  

E-Print Network [OSTI]

Solar Observatory in China, and will explore collaboration with observatories in Canary Island to extendSynoptic Observing Programs at Big Bear Solar Observatory Haimin Wang and Philip R. Goode Big Bear Solar Observatory, New Jersey Institute of Technology, Newark, NJ 07102, USA Abstract. New Jersey

238

Big Problems. Big Results. Energy demands, environmental impacts, and national security are some of America's toughest challenges.  

E-Print Network [OSTI]

Big Problems. Big Results. Energy demands, environmental impacts, and national security are some-leading expertise in subsurface science is reducing the environmental impacts of human activ- ities. Environmental to size. EMSL, the Environmental Molecular Sciences Laboratory, a U.S. Department of Energy national

239

DMP Planning for Big Science Projects  

E-Print Network [OSTI]

This report exists to provide high-level guidance for the strategic and engineering development of Data Management and Preservation plans for 'Big Science' data. Although the report's nominal audience is therefore rather narrow, we intend the document to be of use to other planners and data architects who wish to implement good practice in this area. For the purposes of this report, we presume that the reader is broadly persuaded (by external fiat if nothing else) of the need to preserve research data appropriately, and that they have both sophisticated technical support and the budget to support developments. The goal of the document is not to provide mechanically applicable recipes, but to allow the user to develop and lead a high-level plan which is appropriate to their organisation. Throughout, the report is informed where appropriate by the OAIS reference model.

Juan Bicarregui; Norman Gray; Rob Henderson; Roger Jones; Simon Lambert; Brian Matthews

2012-08-18T23:59:59.000Z

240

Big biology is here to stay  

SciTech Connect (OSTI)

The new, large-scale research centers started by the Roadmap initiative created new research opportunities. The purpose of many of them, in fact, is to provide resources to the scientific community that can be exploited to enable new research ideas and directions. Research grants are also available for investigators to contribute to many of these centers. The NIH is now actively soliciting ideas for new Roadmap projects, so if you have an opinion on the most useful types of projects to fund, let them know. However, just complaining about big science is not useful. The success of large, high profile NIH projects is the best way to get increased funding for all of NIH and to accelerate scientific advances in biology in the process.

Wiley, H. S.

2008-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "big explosives experimental" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Astrogenomics: big data, old problems, old solutions?  

E-Print Network [OSTI]

The ominous warnings of a `data deluge' in the life sciences from high-throughput DNA sequencing data are being supplanted by a second deluge, of cliches bemoaning our collective scientific fate unless we address the genomic data `tsunami'. It is imperative that we explore the many facets of the genome, not just sequence but also transcriptional and epigenetic variability, integrating these observations in order to attain a genuine understanding of how genes function, towards a goal of genomics-based personalized medicine. Determining any individual's genomic properties requires comparison to many others, sifting out the specific from the trends, requiring access to the many in order to yield information relevant to the few. This is the central big data challenge in genomics that still requires some sort of resolution. Is there a practical, feasible way of directly connecting the scientific community to this data universe? The best answer could be in the stars overhead.

Golden, Aaron; Greally, John M

2013-01-01T23:59:59.000Z

242

Los Alamos Explosives Performance Key to Stockpile Stewardship  

ScienceCinema (OSTI)

As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

Dattelbaum, Dana

2015-01-05T23:59:59.000Z

243

EDS V25 containment vessel explosive qualification test report.  

SciTech Connect (OSTI)

The V25 containment vessel was procured by the Project Manager, Non-Stockpile Chemical Materiel (PMNSCM) as a replacement vessel for use on the P2 Explosive Destruction Systems. It is the first EDS vessel to be fabricated under Code Case 2564 of the ASME Boiler and Pressure Vessel Code, which provides rules for the design of impulsively loaded vessels. The explosive rating for the vessel based on the Code Case is nine (9) pounds TNT-equivalent for up to 637 detonations. This limit is an increase from the 4.8 pounds TNT-equivalency rating for previous vessels. This report describes the explosive qualification tests that were performed in the vessel as part of the process for qualifying the vessel for explosive use. The tests consisted of a 11.25 pound TNT equivalent bare charge detonation followed by a 9 pound TNT equivalent detonation.

Rudolphi, John Joseph

2012-04-01T23:59:59.000Z

244

Experiment Hazard Class 6.7 - Explosive and Energetic Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

experiments involving small quantities of explosive material (ie, TATB, HMX, RDX, PETN, HNFX). The samples that are analyzed within the x-ray beam are typically encased within a...

245

Explosive silicic eruptions in Iceland: from vent to peat bog  

E-Print Network [OSTI]

Explosive silicic eruptions in Iceland: from vent to peat bog OUTLINE Microtephra horizons, found be found in peat bogs and lake sediments across Scotland and the rest of Northern Europe (Figure 1; Larsen

246

Ultrafast laser based coherent control methods for explosives detection  

SciTech Connect (OSTI)

The detection of explosives is a notoriously difficult problem, especially at stand-off, due to their (generally) low vapor pressure, environmental and matrix interferences, and packaging. We are exploring Optimal Dynamic Detection of Explosives (ODD-Ex), which exploits the best capabilities of recent advances in laser technology and recent discoveries in optimal shaping of laser pulses for control of molecular processes to significantly enhance the standoff detection of explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser pulses to simultaneously enhance sensitivity to explosives signatures while dramatically improving specificity, particularly against matrix materials and background interferences. These goals are being addressed by operating in an optimal non-linear fashion, typically with a single shaped laser pulse inherently containing within it coherently locked control and probe subpulses. Recent results will be presented.

Moore, David Steven [Los Alamos National Laboratory

2010-12-06T23:59:59.000Z

247

Security and Control of Nuclear Explosives and Nuclear Weapons  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This directive establishes requirements and responsibilities to prevent the deliberate unauthorized use of U.S. nuclear explosives and U.S. nuclear weapons. Cancels DOE O 452.4.

2001-12-17T23:59:59.000Z

248

Simulation of turbulent explosion of hydrogen-air mixtures  

E-Print Network [OSTI]

]. Also, fundamental understanding of hydrogen combustion is important from safety view points, for example generation and accumulation of hydrogen in nuclear reactors [7] and rupturing of a pressurised hydrogen storage tank can lead to explosions. A...

Ahmed, I.; Swaminathan, N.

2014-04-27T23:59:59.000Z

249

Impulsive Spot Heating and Thermal Explosion of Interstellar Grains Revisited  

E-Print Network [OSTI]

The problem of impulsive heating of dust grains in cold, dense interstellar clouds is revisited theoretically, with the aim to better understand leading mechanisms of the explosive desorption of icy mantles. It is rigorously shown that if the heating of a reactive medium occurs within a sufficiently localized spot (e.g., heating of mantles by cosmic rays), then the subsequent thermal evolution is characterized by a single dimensionless number $\\lambda$. This number identifies a bifurcation between two distinct regimes: When $\\lambda$ exceeds a critical value (threshold), the heat equation exhibits the explosive solution, i.e., the thermal (chemical) explosion is triggered. Otherwise, thermal diffusion causes the deposited heat to spread over the entire grain -- this regime is commonly known as the whole-grain heating. The theory allows us to find a critical combination of the physical parameters that govern the explosion of icy mantles due to impulsive spot heating. In particular, the calculations suggest tha...

Ivlev, A V; Vasyunin, A; Caselli, P

2015-01-01T23:59:59.000Z

250

Simulation of Enhanced-Explosive Devices in Chambers and Tunnels  

SciTech Connect (OSTI)

Introduction: Shock-dispersed fuel (SDF) explosives use a small chemical charge to disperse a combustible fuel that burns in the post-detonation environment. The energy released in the combustion process has the potential for generating higher pressures and temperatures than conventional explosives. However, the development of these types of novel explosive systems requires a detailed understanding of all of the modes of energy release. Objective: The objective of this project is develop a simulation capability for predicting explosion and combustion phase of SDF charges and apply that capability to quantifying the behavior of these types of explosives. Methodology: We approximate the dynamics of an SDF charge using high Reynolds number, fast chemistry model that effectively captures the thermodynamic behavior of SDF charges and accurately models the key modes of energy release. The overall computational model is combined with Adaptive Mesh Refinement (AMR) , implemented in a parallel adaptive framework suited to the massively parallel computer systems. Results: We have developed a multiphase version of the model and used it to simulate an SDF charge in which the dispersed fuel is aluminum flakes. Flow visualizations show that the combustion field is turbulent for the chamber and tunnel cases studied. During the 3 milli-seconds of simulation, over 90% of the Al fuel was consumed for the chamber case, while about 40% was consumed in the tunnel case in agreement with Al-SDF experiments. Significance to DoD: DoD has a requirement to develop enhanced energetic materials to support future military systems. The SDF charges described here utilize the combustion mechanism to increase energy per gram of fuel by a factor of 7 to 10 over conventional (detonating) charges, and increase the temperature of the explosion cloud to 2,000-4,000 K (depending on the SDF fuel). Accurate numerical simulation of such SDF explosions allows one to understand the energy release mechanism, and thereby design full-scale systems with greatly improved explosive efficiency.

Bell, J B; Kuhl, A L; Beckner, V E

2007-06-05T23:59:59.000Z

251

Reagent Selection Methodology for a Novel Explosives Detection Platform  

ScienceCinema (OSTI)

This video describes research being conducted by Dr. Marvin Warner, a research scientist at Pacific Northwest National Laboratory, in the individual pieces of antibodies used to set up a chemical reaction that will give off light just by mixing reagents together with a sample that contains an explosive molecule. This technology would help detect if explosives are present with just the use of a handheld system or container.

None

2012-12-31T23:59:59.000Z

252

NEW - DOE O 452.1E, Nuclear Explosive and Weapon Surety Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

253

Research Activities at Fermilab for Big Data Movement  

SciTech Connect (OSTI)

Adaptation of 100GE Networking Infrastructure is the next step towards management of Big Data. Being the US Tier-1 Center for the Large Hadron Collider's (LHC) Compact Muon Solenoid (CMS) experiment and the central data center for several other large-scale research collaborations, Fermilab has to constantly deal with the scaling and wide-area distribution challenges of the big data. In this paper, we will describe some of the challenges involved in the movement of big data over 100GE infrastructure and the research activities at Fermilab to address these challenges.

Mhashilkar, Parag; Wu, Wenji; Kim, Hyun W; Garzoglio, Gabriele; Dykstra, Dave; Slyz, Marko; DeMar, Phil

2013-01-01T23:59:59.000Z

254

Big Horn Rural Electric Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuelsBig BendCreekBigBig

255

HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation  

SciTech Connect (OSTI)

HERMES (High Explosive Response to MEchanical Stimulus) was developed to fill the need for a model to describe an explosive response of the type described as BVR (Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristically this response leaves a substantial amount of explosive unconsumed, the time to reaction is long, and the peak pressure developed is low. In contrast, detonations characteristically consume all explosive present, the time to reaction is short, and peak pressures are high. However, most of the previous models to describe explosive response were models for detonation. The earliest models to describe the response of explosives to mechanical stimulus in computer simulations were applied to intentional detonation (performance) of nearly ideal explosives. In this case, an ideal explosive is one with a vanishingly small reaction zone. A detonation is supersonic with respect to the undetonated explosive (reactant). The reactant cannot respond to the pressure of the detonation before the detonation front arrives, so the precise compressibility of the reactant does not matter. Further, the mesh sizes that were practical for the computer resources then available were large with respect to the reaction zone. As a result, methods then used to model detonations, known as {beta}-burn or program burn, were not intended to resolve the structure of the reaction zone. Instead, these methods spread the detonation front over a few finite-difference zones, in the same spirit that artificial viscosity is used to spread the shock front in inert materials over a few finite-difference zones. These methods are still widely used when the structure of the reaction zone and the build-up to detonation are unimportant. Later detonation models resolved the reaction zone. These models were applied both to performance, particularly as it is affected by the size of the charge, and to situations in which the stimulus was less than that needed for reliable performance, whether as a result of accident, hazard, or a fault in the detonation train. These models describe the build-up of detonation from a shock stimulus. They are generally consistent with the mesoscale picture of ignition at many small defects in the plane of the shock front and the growth of the resulting hot-spots, leading to detonation in heterogeneous explosives such as plastic-bonded explosives (PBX). The models included terms for ignition, and also for the growth of reaction as tracked by the local mass fraction of product gas, {lambda}. The growth of reaction in such models incorporates a form factor that describes the change of surface area per unit volume (specific surface area) as the reaction progresses. For unimolecular crystalline-based explosives, the form factor is consistent with the mesoscale picture of a galaxy of hot spots burning outward and eventually interacting with each other. For composite explosives and propellants, where the fuel and oxidizer are segregated, the diffusion flame at the fuel-oxidizer interface can be interpreted with a different form factor that corresponds to grains burning inward from their surfaces. The form factor influences the energy release rate, and the amount of energy released in the reaction zone. Since the 19th century, gun and cannon propellants have used perforated geometric shapes that produce an increasing surface area as the propellant burns. This helps maintain the pressure as burning continues while the projectile travels down the barrel, which thereby increases the volume of the hot gas. Interior ballistics calculations use a geometric form factor to describe the changing surface area precisely. As a result, with a suitably modified form factor, detonation models can represent burning and explosion in damaged and broken reactant. The disadvantage of such models in application to accidents is that the ignition term does not distinguish between a value of pressure that results from a shock, and the same pressure that results from a more gradual increase. This disagrees with experiments, where

Reaugh, J E

2011-11-22T23:59:59.000Z

256

Pilot-scale testing of a fuel oil-explosives cofiring process for recovering energy from waste explosives: Final report  

SciTech Connect (OSTI)

The US Army generates and stores a significant quantity of explosives and explosive-related materials that do not meet specifications for their primary use. Current explosives disposal processes do not recover any resources from these materials. The heat of combustion of these materials is typically 9 to 15 kJ/g (4000 to 6500 Btu/lb), which is 21 to 33% of the high heating value of No. 2 fuel oil. One secondary use for explosives is to cofire them with other fuels to recover their energy content. Bench-scale testing has shown that cofiring is feasible and safe within certain guidelines. To further evaluate cofiring, a proof-of-principle test was conducted in a 300-kW (10/sup 6/ Btu/h) combustion chamber. The test program was discontinued before completion because of failures largely unrelated to the explosives contained in the fuel. This report presents the results of the proof-of-principle tests, as well as design and operational changes that would eliminate problems encountered during the course of the test program. It is clearly feasible to cofire explosives and fuel oil. However, more data are needed before the process can be tested in a production boiler, furnace, or incinerator. 20 refs., 14 figs., 9 tabs.

Bradshaw, W.M.

1988-08-01T23:59:59.000Z

257

An examination of blast and impulse effects from the metal loading of explosives  

SciTech Connect (OSTI)

Explosive compositions loaded with various metal particulates were produced and tested using a unique experimental configuration. The high explosive HMX was used as the standard and was tested over a range of mass loading fractions using tungsten and tantalum as metal additives. The diagnostics used in this set of experiments included free-field blast sensors, dynamic force sensors, time-of-arrival sensors, and a high-speed digital camera. The experimental arrangement allowed for concurrent spatial measurements of the static pressure from expanding gaseous detonation products, along with the total force from the combination of gaseous products and solid particles. The total pressure from the multi-phase products was calculated by measuring the total force applied to the surface of a newly developed force sensor. The results from the force sensor and other measurement techniques were validated against existing numerical methods. The relationship between static and dynamic pressures as a function of metal loading fraction was examined empirically at several distances from the charge for two distinct metal additives.

Sanders, Victor E [Los Alamos National Laboratory; Zucker, Jonathan M [Los Alamos National Laboratory; Mc Afee, John M [Los Alamos National Laboratory; Tappan, Bryce C [Los Alamos National Laboratory; Asay, Blaine W [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

258

Project Summary The Big Green Challenge is NESTA's 1 million  

E-Print Network [OSTI]

Project Summary The Big Green Challenge is NESTA's £1 million prize fund to encourage will provide a greenhouse gas reduction initiative that can be cost-effectively replicated in communities

Everest, Graham R

259

Taking Battery Technology from the Lab to the Big City  

Broader source: Energy.gov [DOE]

A small New York City startup is hoping it has the next big solution in energy storage. A video documents what the company's breakthrough means for the future of grid-scale energy storage.

260

Demonstration of Black Liquor Gasification at Big Island  

SciTech Connect (OSTI)

This Final Technical Report provides an account of the project for the demonstration of Black Liquor Gasification at Georgia-Pacific LLC's Big Island, VA facility. This report covers the period from May 5, 2000 through November 30, 2006.

Robert DeCarrera

2007-04-14T23:59:59.000Z

Note: This page contains sample records for the topic "big explosives experimental" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Big Data Projects on Solar Tech Evolution and Diffusion  

Broader source: Energy.gov [DOE]

This is the meeting agenda from the Big Data Projects on Solar Technology Evolution and Diffusion kickoff meeting, held on July 15, 2013 in Arlington, VA and facilitated by the SunShot Initiative.

262

March 27, 2008 Without BIG-2, odor maps stink  

E-Print Network [OSTI]

in an electrical signal transmitted to the brain's olfactory bulb (OB) - a 'relay station' in the circuitry of mouse OSNs was found to express BIG-2. Detailed analyses involving elaborate fluorescent

Kazama, Hokto

263

Big and Small Ideas: How to Lower Solar Financing Costs  

Broader source: Energy.gov [DOE]

DOE hosted the "Big & Small Ideas: How to Lower Solar Financing Costs" breakout session during the SunShot Grand Challenge Summit and Technology Forum. This session explored a range of...

264

EIS-0377: Big Stone II Power Plant and Transmission Project  

Broader source: Energy.gov [DOE]

A systems study was carried out to identify the most appropriate locations to interconnect the proposed Big Stone II power plant to the regional utility grid. The study also identified transmission...

265

People's Physics Book Ch 8-1 The Big Idea  

E-Print Network [OSTI]

People's Physics Book Ch 8-1 The Big Idea When any two bodies in the universe interact, they can components are conserved. #12;People's Physics Book Ch 8-2 Key Concepts · Impulse is how momentum

California at Santa Cruz, University of

266

Big Bang Synthesis of Nuclear Dark Matter  

E-Print Network [OSTI]

We investigate the physics of dark matter models featuring composite bound states carrying a large conserved dark "nucleon" number. The properties of sufficiently large dark nuclei may obey simple scaling laws, and we find that this scaling can determine the number distribution of nuclei resulting from Big Bang Dark Nucleosynthesis. For plausible models of asymmetric dark matter, dark nuclei of large nucleon number, e.g. > 10^8, may be synthesised, with the number distribution taking one of two characteristic forms. If small-nucleon-number fusions are sufficiently fast, the distribution of dark nuclei takes on a logarithmically-peaked, universal form, independent of many details of the initial conditions and small-number interactions. In the case of a substantial bottleneck to nucleosynthesis for small dark nuclei, we find the surprising result that even larger nuclei, with size >> 10^8, are often finally synthesised, again with a simple number distribution. We briefly discuss the constraints arising from the novel dark sector energetics, and the extended set of (often parametrically light) dark sector states that can occur in complete models of nuclear dark matter. The physics of the coherent enhancement of direct detection signals, the nature of the accompanying dark-sector form factors, and the possible modifications to astrophysical processes are discussed in detail in a companion paper.

Edward Hardy; Robert Lasenby; John March-Russell; Stephen M. West

2015-01-24T23:59:59.000Z

267

A design guide and specification for small explosive containment structures  

SciTech Connect (OSTI)

The design of structural containments for testing small explosive devices requires the designer to consider the various aspects of the explosive loading, i.e., shock and gas or quasistatic pressure. Additionally, if the explosive charge has the potential of producing damaging fragments, provisions must be made to arrest the fragments. This may require that the explosive be packed in a fragment attenuating material, which also will affect the loads predicted for containment response. Material also may be added just to attenuate shock, in the absence of fragments. Three charge weights are used in the design. The actual charge is used to determine a design fragment. Blast loads are determined for a {open_quotes}design charge{close_quotes}, defined as 125% of the operational charge in the explosive device. No yielding is permitted at the design charge weight. Blast loads are also determined for an over-charge, defined as 200% of the operational charge in the explosive device. Yielding, but no failure, is permitted at this over-charge. This guide emphasizes the calculation of loads and fragments for which the containment must be designed. The designer has the option of using simplified or complex design-analysis methods. Examples in the guide use readily available single degree-of-freedom (sdof) methods, plus static methods for equivalent dynamic loads. These are the common methods for blast resistant design. Some discussion of more complex methods is included. Generally, the designer who chooses more complex methods must be fully knowledgeable in their use and limitations. Finally, newly fabricated containments initially must be proof tested to 125% of the operational load and then inspected at regular intervals. This specification provides guidance for design, proof testing, and inspection of small explosive containment structures.

Marchand, K.A.; Cox, P.A.; Polcyn, M.A. [Southwest Research Institute, San Antonio, TX (United States)

1994-12-01T23:59:59.000Z

268

Cognitive Energy Value Chain: Leveraging Big Data to Optimize Energy  

E-Print Network [OSTI]

20-23, 2014 - 8 -CEO Cognitive Energy Optimization Confidential Transforming The ‘Enterprise’ Cognitive Business Automation – Holistic Business Engine – Integrating the Enterprise – Business & Global Markets – Process Manufacturing Operations Big... FinancialMarket Big Data AnalyticsUniversal Engine providing Full Alignment IoT Web & Cloud Risk Mitigation ESL-IE-14-05-44 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 - 9 -CEO Cognitive Energy...

Birg, G.; Reitmeier, T.

2014-01-01T23:59:59.000Z

269

The game and furbearing mammals of Big Thicket National Preserve  

E-Print Network [OSTI]

, Schmidly et al. (1979) compiled a thorough inventory of all mammals in 2Common names are used extensively in this report. Appendix II contains all common names and their scientific nomenclature. the Big Thicket region. In the process of this exhaustive...THE GAME AND FURBEARING MAMMALS OF BIG THICKET NATIONAL PRESERVE A Thesis by WILLIAM GLENN NORTON Submitted to the Graduate College of Texas AaM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August...

Norton, William Glenn

1981-01-01T23:59:59.000Z

270

Prediction of blast damage from vapor cloud explosions  

SciTech Connect (OSTI)

The process industries handle a wide range of different materials and use them in different types of chemical reaction. Of particular concern is the prospect of damage and injury affecting the general public outside the boundary wall of the chemical plant. It is not wise to permit the construction of homes, schools or hospitals so close to chemical plants that they, and the people within, might be damaged or injured should there be an accidental explosion in the plant. The major hazard outside the plant is over-pressure, a consequence of an accidental explosion in a cloud of flammable gas or vapor (Vapor Cloud Explosion or VCE). It is the responsibility of plant management to ensure that any such accidental explosion is not so large as to endanger the public, and of the local planning authorities to ensure that homes, schools or hospitals are not sited so close to chemical plants that they may be endangered by accidental explosion. A vital tool for such authorities is a simple method of assessing the possible consequences of an accidental VCE. In this paper those methods of assessing the consequences are examined.

Phillips, H. [Phillips (H.), Buxton (United Kingdom)

1995-12-31T23:59:59.000Z

271

Sensitivity of once-shocked, weathered high explosives  

SciTech Connect (OSTI)

Effects caused by stimulating once-shocked, weathered high explosives (OSW-HE) are investigated. The sensitivity of OSW-HE to mechanical stimuli was determined using standard industry tests. Some initial results are given. Pieces of OSW-HE were collected from active and inactive firing sites and from an area surrounding a drop tower at Los Alamos where skid and spigot tests were done. Samples evaluated were cast explosives or plastic bonded explosive (PBX) formulations containing cyclotrimethylenetrinitramine (RDX), cyclotetramethylene tetranitramine (HMX), 2,4,6-trinitrotoluene (TNT), mock or inert HE [tris(beta-chloroethyl)phosphate (CEF)], barium nitrate, cyanuric acid, talc, and Kel-F. Once-shocked, weathered LX-10 Livermore explosive [HMX/Viton A, (95/5 wt %)], PBX 9011 [HMX/Estane, (90/10 wt %)], PBX 9404 [HMX/nitrocellulose, tris(beta-chloroethyl) phosphate, (94/3/3 wt %)], Composition B or cyclotol (TNT/RDX explosives), and PBX 9007 (90% RDX, 9.1% styrene, 0.5% dioctyl phthalate, and 0.45 resin) were subjected to the hammer test, the drop-weight impact sensitivity test, differential thermal analysis (DTA), the spark test, the Henkin`s critical temperature test, and the flame test. Samples were subjected to remote, wet cutting and drilling; remote, liquid-nitrogen-cooled grinding and crushing; and scanning electron microscope (SEM) surface analyses for morphological changes.

Williams, K.L.; Harris, B.W.

1998-07-01T23:59:59.000Z

272

UNIFYING THE ZOO OF JET-DRIVEN STELLAR EXPLOSIONS  

SciTech Connect (OSTI)

We present a set of numerical simulations of stellar explosions induced by relativistic jets emanating from a central engine sitting at the center of compact, dying stars. We explore a wide range of durations of the central engine activity, two candidate stellar progenitors, and two possible values of the total energy release. We find that even if the jets are narrowly collimated, their interaction with the star unbinds the stellar material, producing a stellar explosion. We also find that the outcome of the explosion can be very different depending on the duration of the engine activity. Only the longest-lasting engines result in successful gamma-ray bursts. Engines that power jets only for a short time result in relativistic supernova (SN) explosions, akin to observed engine-driven SNe such as SN2009bb. Engines with intermediate durations produce weak gamma-ray bursts, with properties similar to nearby bursts such as GRB 980425. Finally, we find that the engines with the shortest durations, if they exist in nature, produce stellar explosions that lack sizable amounts of relativistic ejecta and are therefore dynamically indistinguishable from ordinary core-collapse SNe.

Lazzati, Davide; Blackwell, Christopher H. [Department of Physics, NC State University, 2401 Stinson Drive, Raleigh, NC 27695-8202 (United States); Morsony, Brian J. [Department of Astronomy, University of Wisconsin-Madison, 2535 Sterling Hall, 475 N. Charter Street, Madison WI 53706-1582 (United States); Begelman, Mitchell C. [JILA, University of Colorado, 440 UCB, Boulder, CO 80309-0440 (United States)

2012-05-01T23:59:59.000Z

273

Method for loading explosive laterally from a borehole  

DOE Patents [OSTI]

There is provided a method for forming an in situ oil shale retort in a subterranean formation containing oil shale. At least one void is excavated in the formation, leaving zones of unfragmented formation adjacent the void. An array of main blastholes is formed in the zone of unfragmented formation and at least one explosive charge which is shaped for forming a high velocity gas jet is placed into a main blasthole with the axis of the gas jet extending transverse to the blasthole. The shaped charge is detonated for forming an auxiliary blasthole in the unfragmented formation adjacent a side wall of the main blasthole. The auxiliary blasthole extends laterally away from the main blasthole. Explosive is placed into the main blasthole and into the auxiliary blasthole and is detonated for explosively expanding formation towards the free face for forming a fragmented permeable mass of formation particles in the in situ oil shale retort.

Ricketts, Thomas E. (Grand Junction, CO)

1981-01-01T23:59:59.000Z

274

Capabilities for high explosive pulsed power research at Los Alamos National Laboratory  

SciTech Connect (OSTI)

Research on topics requiring high magnetic fields and high currents have been pursued using high explosive pulsed power (HEPP) techniques since the 1950s at Los Alamos National Laboratory. We have developed many sophisticated HEPr systems through the years, and most of them depend on technology available from the nuclear weapons program. Through the 1980s and 1990s, our budgets would sustain parallel efforts in zpinch research using both HEPr and capacitor banks. In recent years, many changes have occurred that are driven by concerns such as safety, security, and environment, as well as reduced budgets and downsizing of the National Nuclear Security Administration (NNSA) complex due to the end of the cold war era. In this paper, we review the teclmiques developed to date, and adaptations that are driven by changes in budgets and our changing complex. One new Ranchero-based solid liner z-pinch experimental design is also presented. Explosives that are cast to shape instead of being machined, and initiation systems that depend on arrays of slapper detonators are important new tools. Some materials that are seen as hazardous to the environment are avoided in designs. The process continues to allow a wide range of research however, and there are few, if any, experiments that we have done in the past that could not be perform today. The HErr firing facility at Los Alamos continues to have a 2000 lb. high explosive limit, and our 2.4 MJ capacitor bank remains a mainstay of the effort. Modem diagnostic and data analysis capabilities allow fewer personnel to achieve better results, and in the broad sense we continue to have a robust capability.

Goforth, James H [Los Alamos National Laboratory; Oona, Henn [Los Alamos National Laboratory; Tasker, Douglas G [Los Alamos National Laboratory; Kaul, A M [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

275

GRBs and Hypernova Explosions of Some Galactic Sources  

E-Print Network [OSTI]

Knowing the Kerr parameters we can make quantitative calculations of the rotational energy of black holes. We show that Nova Sco (GRO J1655 - 40), Il Lupi (4U 1543 - 47), XTE J1550 - 564 and GS 2023 + 338 are relics of gamma-ray burst (GRB) and Hypernova explosions. They had more than enough rotational energy to power themselves. In fact, they had so much energy that they would have disrupted the accretion disk of the black hole that powered them by the communicated rotational energy, so that the energy delivery was self limiting. The most important feature in producing high rotational energy in the binary is low donor (secondary star) mass. We suggest that V4641 Sgr (XTE J1819 - 254) and GRS 1915 + 105 underwent less energetic explosions; because of their large donor masses. These explosions were one or two orders of magnitude lower in energy than that of Nova Sco. Cyg X - 1 (1956 + 350) had an even less energetic explosion, because of an even larger donor mass. We find that in the evolution of the soft X-ray transient sources the donor (secondary star) is tidally locked with the helium star, which evolved from the giant, as the hydrogen envelope is stripped off in common envelope evolution. The tidal locking is transferred from the helium star to the black hole into which it falls. Depending on the mass of the donor, the black hole can be spun up to the angular momentum necessary to power the GRB and Hypernova explosion. The donor decouples, acting as a passive witness to the explosion which, for the given angular momentum, then proceeds as in the Woosley Collapsar model. High mass donors which tend to follow from low metallicity give long GRBs because their lower energy can be accepted by the central engine.

G. E. Brown; C. -H. Lee; E. Moreno Mendez

2007-10-29T23:59:59.000Z

276

Safety and performance enhancement circuit for primary explosive detonators  

DOE Patents [OSTI]

A safety and performance enhancement arrangement for primary explosive detonators. This arrangement involves a circuit containing an energy storage capacitor and preset self-trigger to protect the primary explosive detonator from electrostatic discharge (ESD). The circuit does not discharge into the detonator until a sufficient level of charge is acquired on the capacitor. The circuit parameters are designed so that normal ESD environments cannot charge the protection circuit to a level to achieve discharge. When functioned, the performance of the detonator is also improved because of the close coupling of the stored energy.

Davis, Ronald W. (Tracy, CA)

2006-04-04T23:59:59.000Z

277

Io - Are vapor explosions responsible for the 5-micron outbursts  

SciTech Connect (OSTI)

It is proposed that a vapor explosion of a submerged pool of liquid sulfur will remove the crust overlying an area of about 50-km diam. Thermal radiation from the exposed liquid sulfur pool with a surface temperature of 600 K is then presumed to be responsible for the 5-micron outbursts that have been observed. The explosive volcanoes are expected to leave black sulfur calderas, which are, indeed, found on the surface. The 5-micron outburst observed by Sinton (1980), on June 11, 1979 (UT), is identified with a new caldera found on Voyager 2 photographs but which had not been present on Voyager 1 pictures.

Sinton, W.M.

1980-01-01T23:59:59.000Z

278

Nuclear Explosion Monitoring Research and Engineering Program - Strategic Plan  

SciTech Connect (OSTI)

The Department of Energy (DOE)/National Nuclear Security Administration (NNSA) Nuclear Explosion Monitoring Research and Engineering (NEM R&E) Program is dedicated to providing knowledge, technical expertise, and products to US agencies responsible for monitoring nuclear explosions in all environments and is successful in turning scientific breakthroughs into tools for use by operational monitoring agencies. To effectively address the rapidly evolving state of affairs, the NNSA NEM R&E program is structured around three program elements described within this strategic plan: Integration of New Monitoring Assets, Advanced Event Characterization, and Next-Generation Monitoring Systems. How the Program fits into the National effort and historical accomplishments are also addressed.

Casey, Leslie A. [DOE/NNSA

2004-09-01T23:59:59.000Z

279

Thermodynamic Model of Aluminum Combustion in SDF Explosions  

SciTech Connect (OSTI)

Thermodynamic states encountered during combustion of Aluminum powder in Shock-Dispersed-Fuel (SDF) explosions were analyzed with the Cheetah code. Results are displayed in the Le Chatelier diagram: the locus of states of specific internal energy versus temperature. Accuracy of the results was confirmed by comparing the fuel and products curves with the heats of detonation and combustion, and species composition as measured in bomb calorimeter experiments. Results were fit with analytic functions u = f(T) suitable for specifying the thermodynamic properties required for gas-dynamic models of combustion in explosions.

Kuhl, . L

2006-06-19T23:59:59.000Z

280

Thermonuclear supernova explosions and their remnants: the case of Tycho  

E-Print Network [OSTI]

We propose to use the thermal X-ray emission from young supernova remnants (SNRs) originated in Type Ia supernovae (SNe) to extract relevant information concerning the explosion mechanism. We focus on the differences between numerical 1D and 3D explosion calculations, and the impact that these differences could have on young SNRs. We use the remnant of the Tycho supernova (SN 1572) as a test case to compare with our predictions, discussing the observational features that allow to accept or discard a given model.

Carles Badenes; Eduardo Bravo; Kazimierz J. Borkowski

2003-09-03T23:59:59.000Z

Note: This page contains sample records for the topic "big explosives experimental" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Method to prevent/mitigate steam explosions in casting pits  

DOE Patents [OSTI]

Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water.

Taleyarkhan, Rusi P. (Knoxville, TN)

1996-01-01T23:59:59.000Z

282

Honey bees (Apis mellifera) as explosives detectors: exploring proboscis extension reflex conditioned response to trinitrotolulene (TNT)  

SciTech Connect (OSTI)

We examined honey bee's associative learning response to conditioning with trinitrotolulene (TNT) vapor concentrations generated at three temperatures and their ability to be reconditioned after a 24 h period. We used classical conditioning of the proboscis extension (PER) in honey bees using TNT vapors as the conditioned stimulus and sucrose as the unconditioned stimulus. We conducted fifteen experimental trials with an explosives vapor generator set at 43 C, 25 C and 5 C, producing three concentrations of explosives (1070 ppt, 57 ppt, and 11 ppt). Our objective was to test the honey bee's ability to exhibit a conditioned response to TNT vapors at all three concentrations by comparing the mean percentage of honey bees successfully exhibiting a conditioned response within each temperature group. Furthermore, we conducted eight experimental trials to test the honey bee's ability to retain their ability to exhibit a conditioned response to TNT after 24h period by comparing the mean percentage of honey bees with a conditioned response TNT on the first day compared to the percentage of honey bees with a conditioned response to TNT on the second day. Results indicate that there was no significant difference between the mean percentage of honey bees with a conditioned response to TNT vapors between three temperature groups. There was a significant difference between the percentage of honey bees exhibiting conditioned response on the first day of training compared to the percentage of honey bees exhibiting conditioned response 24 h after training. Our experimental results indicate that honey bees can be trained to exhibit a conditioned response to a range of TNT concentrations via PER However, it appears that the honey bee's ability to retain the conditioned response to TNT vapors after 24h significantly decreases.

Taylor-mccabe, Kirsten J [Los Alamos National Laboratory; Wingo, Robert M [Los Alamos National Laboratory; Haarmann, Timothy K [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

283

Near-field dispersal modeling for liquid fuel-air explosives  

SciTech Connect (OSTI)

The near-field, explosive dispersal of a liquid into air has been explored using a combination of analytical and numerical models. The near-field flow regime is transient, existing only as long as the explosive forces produced by the detonation of the burster charge dominate or are approximately equal in magnitude to the aerodynamic drag forces on the liquid. The near-field model provides reasonable initial conditions for the far-field model, which is described in a separate report. The near-field model consists of the CTH hydrodynamics code and a film instability model. In particular, the CTH hydrodynamics code is used to provide initial temperature, pressure, and velocity fields, and bulk material distribution for the far-field model. The film instability model is a linear stability model for a radially expanding fluid film, and is used to provide a lower bound on the breakup time and an upper and lower bound on the initial average drop diameter for the liquid following breakup. Predictions of the liquid breakup time and the initial arithmetic average drop diameter from the model compare favorably with the sparse experimental data. 26 refs., 20 figs., 8 tabs.

Gardner, D.R.

1990-07-01T23:59:59.000Z

284

Free-radical reactions in glow and explosion of carbon monoxide-oxygen mixtures  

SciTech Connect (OSTI)

Examination of published compilations of rate coefficients of free-radical reactions yields reactions that are associated with chain branching in mixtures of CO and O/sub 2/ and small quantities of hydrogen or water vapor. The complete mechanism included diffusion of HO/sub 2/ radicals to the vessel wall and their adsorption and reaction at the surface. This mechanism is applied to the data of E.J. Buckler and R.G.W. Norrish on the branched-chain explosion of CO-O/sub 2/ mixtures containing H/sub 2/ in the order of 1 mm Hg. Substantial agreement is found between theory and experiment. Further, the mechanism is applied to experiments of Bond, Gray, and Griffiths with an H/sub 2/ content of 0.01-0.05 mm Hg. By specifying details of the adsorption and surface reaction of HO/sub 2/ on the basis of Langmuir's adsorption the phenomenon of flow is explained and the regions of slow reaction, glow, and explosion are described in accord with the experimental data. It is confirmed that the reaction between CO and O/sub 2/ requires the presence of a hydrogenous compound such as H/sub 2/, H/sub 2/O, CH/sub 4/, etc., and that ''dry'' homogenous reaction is not possible except at very high temperatures.

Von Elbe, G.; Lewis, B.

1986-02-01T23:59:59.000Z

285

Development of ab initio techniques critical for future science-based explosives R&D.  

SciTech Connect (OSTI)

Density Functional Theory (DFT) has emerged as an indispensable tool in materials research, since it can accurately predict properties of a wide variety of materials at both equilibrium and extreme conditions. However, for organic molecular crystal explosives, successful application of DFT has largely failed due to the inability of current exchange-correlation functionals to correctly describe intermolecular van der Waals' (vdWs) forces. Despite this, we have discovered that even with no treatment of vdWs bonding, the AM05 functional and DFT based molecular dynamics (MD) could be used to study the properties of molecular crystals under compression. We have used DFT-MD to predict the unreacted Hugoniots for PETN and HNS and validated the results by comparison with crystalline and porous experimental data. Since we are also interested in applying DFT methods to study the equilibrium volume properties of explosives, we studied the nature of the vdWs bonding in pursuit of creating a new DFT functional capable of accurately describing equilibrium bonding of molecular crystals. In this report we discuss our results for computing shock Hugoniots of molecular crystals and also what was learned about the nature of bonding in these materials.

Wixom, Ryan R.; Mattsson, Ann Elisabet

2013-10-01T23:59:59.000Z

286

Title: Experimental Platform for Novel Distributed Microgrids Control Solutions  

E-Print Network [OSTI]

Title: Experimental Platform for Novel Distributed Microgrids Control Solutions Principal Investigator: Wenxin Liu Sponsor: U.S. Department of Defense Office of Naval Research Summary: Microgrid can, and can operate autonomously without connecting to power grid. The microgrid concept is a big step toward

Johnson, Eric E.

287

Sea Turtle Observations at Explosive Removals of Energy Structures  

E-Print Network [OSTI]

Sea Turtle Observations at Explosive Removals of Energy Structures GREGG R. GITSCHLAG and BRYAN A. HERCZEG Introduction In July 1992 the total number of oil and gas production platformsI in the Gulfof. In that year 51 dead sea turtles were found on upper Texas beaches during mid-March to mid-April following

288

Subaqueous Explosive Eruption and Welding of Pyroclastic Deposits  

E-Print Network [OSTI]

Subaqueous Explosive Eruption and Welding of Pyroclastic Deposits Peter Kokelaar and Cathy Busby fabrics indicative of welding of glass shards and pumice at temperatures >500"C. The occurrence emplacement temperature in pyroclas- tic deposits is welding. Welding is hot-state viscous deformation

Busby, Cathy

289

Geothermics 34 (2005) 518526 Evolution of hydrothermal explosions  

E-Print Network [OSTI]

to predict possible future explosions as a natural hazard, we have monitored noble gas isotopes and gas, Tengchong volcanic region, China Zhiguan Shangguana,, Ciping Zhaob, Hengzhong Lic, Qingwu Gaoa, Mingliang Sund a Institute of Geology, China Earthquake Administration, Beijing 100029, China b Earthquake

Ahmad, Sajjad

290

An explosive acoustic telemetry system for seabed penetrators  

SciTech Connect (OSTI)

This report discusses the design and past applications of an explosive acoustic telemetry system (EATS) for gathering and transmitting data from seabed penetrators. The system was first fielded in 1982 and has since been used to measure penetrator performance on three other occasions. Descriptions are given of the mechanical hardware, system electronics, and software.

Hauser, G.C.; Hickerson, J.

1988-04-01T23:59:59.000Z

291

Proceedings of the twelfth conference on explosives and blasting techniques  

SciTech Connect (OSTI)

This book presents the papers given at a conference on the use of explosive fracturing to construct underground energy facilities. Topics considered at the conference included the Atomic Energy of Canada Limited's underground research laboratory, drilling and blasting techniques for canals, pipeline trenches, blasting costs, underground coal mining, presplitting of granite, energy consumption, and overburden blasting vibrations.

Konya, C.J.

1986-01-01T23:59:59.000Z

292

Morphology and dynamics of explosive vents through cohesive rock formations  

E-Print Network [OSTI]

to test the effects of these parameters. The experiments were used to test the effect of 2 on vent simulations were used to test the effect of 3 on vent morphology and dynamics. In the numerical models we see to underground explosions that blast the overlaying rock formations [e.g., Gisler, 2009]. This phenomenon occurs

Galland, Olivier

293

The physics of antimatter induced fusion and thermonuclear explosions  

E-Print Network [OSTI]

The feasibility of using antihydrogen for igniting inertial confinement fusion pellets or triggering large scale thermonuclear explosions is investigated. The number of antiproton annihilations required to start a thermonuclear burn wave in either DT or Li2DT is found to be about 10 21 /k 2, where

Andre Gsponer; Jean-pierre Hurni

294

Initial concepts on energetics and mass releases during nonnuclear explosive events in fuel cycle facilities  

SciTech Connect (OSTI)

Non-nuclear explosions are one of the initiating events (accidents) considered in the US Nuclear Regulatory Commission study of formal methods for estimating the airborne release of radionuclides from fuel cycle facilities. Methods currently available to estimate the energetics and mass airborne release from the four types of non-nuclear explosive events (fast and slow physical explosions and fast and slow chemical explosions) are reviewed. The likelihood that fast physical explosions will occur in fuel cycle facilities appears to be remote and this type of explosion is not considered. Methods to estimate the consequences of slow physical and fast chemical explosions are available. Methods to estimate the consequences of slow chemical explosions are less well defined.

Halverson, M.A.; Mishima, J.

1986-09-01T23:59:59.000Z

295

SciTech Connect: Some past and present uses of nuclear-explosion...  

Office of Scientific and Technical Information (OSTI)

Some past and present uses of nuclear-explosion sources in physics Citation Details In-Document Search Title: Some past and present uses of nuclear-explosion sources in physics...

296

Exoplanets from supernova explosions Shlomo Dado, Arnon Dar and Erez N Ribak  

E-Print Network [OSTI]

Exoplanets from supernova explosions Shlomo Dado, Arnon Dar and Erez N Ribak Physics Department disks (few) More? See "Misaligned And Alien Planets From Explosive Death Of Stars" by Dado, Dar

Ribak, Erez

297

Potential applications of the natural design of internal explosion chambers in the bombardier beetle (Carabidae, Brachinus)  

E-Print Network [OSTI]

The Bombardier Beetle (Carabidae, Brachinus) has a unique form of defense mechanism which involves the explosive mixing of hydroquinones and hydrogen peroxide in its internal explosion chambers and using the resultant high ...

Lai, Changquan

2010-01-01T23:59:59.000Z

298

Looking back in time beyond the big bang  

E-Print Network [OSTI]

String theory can (in principle) describe gravity at all curvature scales, and can be applied to cosmology to look back in time beyond the Planck epoch. The duality symmetries of string theory suggest a cosmological picture in which the imprint of a primordial, pre-big bang phase could still be accessible to present observations. The predictive power of such a scenario relies, however, on our ability to connect in a smooth way the pre-big bang to the present cosmological regime. Classical radiation back reaction seems to play a key role to this purpose, by isotropizing and turning into a final expansion any state of anisotropic contraction possibly emerging from the pre-big bang at the string scale.

M. Gasperini

1999-05-18T23:59:59.000Z

299

Explosion Clad for Upstream Oil and Gas Equipment  

SciTech Connect (OSTI)

Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO{sub 2} and/or H{sub 2}S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

Banker, John G. [Dynamic Materials Corp., 5405 Spine Rd., Boulder, CO 80301 (United States); Massarello, Jack [Global Metallix, Consultant to DMC, 5405 Spine Rd., Boulder, CO 80301 (United States); Pauly, Stephane [DMC., Nobelclad Business Unit, 1 Allee Alfred NOBEL, 66600 Rivesaltes (France)

2011-01-17T23:59:59.000Z

300

Big Flat Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuelsBig BendCreek HotBig

Note: This page contains sample records for the topic "big explosives experimental" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Big Horn County Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuelsBig BendCreekBig

302

Big Sandy Rural Elec Coop Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuelsBig° LoadingBig

303

Big Things from Small Beginnings | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (AprilBiden Says U.S. Will Lead Energy Revolution Biden SaysBigBig

304

Analysis of Subsidence Data for the Big Hill Site, Texas  

SciTech Connect (OSTI)

The elevation change data measured at the Big Hill SPR site over the last 10 years has been studied and a model utilized to project elevation changes into the future. The subsidence rate at Big Hill is low in comparison with other Strategic Petroleum Reserve sites and has decreased with time due to the maintenance of higher operating pressures and the normal decrease in creep closure rate of caverns with time. However, the subsidence at the site is projected to continue. A model was developed to project subsidence values 20 years into the future; no subsidence related issues are apparent from these projections.

Bauer, Stephen J.

1999-06-01T23:59:59.000Z

305

Multiple-Excitation-Wavelength Resonance-Raman Explosives Balakishore Yellampalle*a  

E-Print Network [OSTI]

) is a potential candidate for stand-off detection of explosives. A key challenge for stand-off sensors is to distinguish explosives, with high confidence, from a myriad of unknown background materials that may have of the variety of available explosives, myriad of unknown background materials and the minute quantities involved

Asher, Sanford A.

306

Improving explosion protection methods for industrial processes : the collaborative project DELFINE  

E-Print Network [OSTI]

in construction will allow studying dust explosions in real working conditions of a dust collector. Preliminary for optimization of the venting areas for dust collectors. Explosion tests in real conditions on the DELFINE systems, venting, dust, turbulence 1. Background Dust explosions continue to represent major risks

Boyer, Edmond

307

Energy Efficiency Upgrades Make a Big Difference to a Small Organizati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Upgrades Make a Big Difference to a Small Organization Energy Efficiency Upgrades Make a Big Difference to a Small Organization Photo of a man and woman standing outside...

308

Taking Battery Technology from the Lab to the Big City | Department...  

Broader source: Energy.gov (indexed) [DOE]

Taking Battery Technology from the Lab to the Big City Taking Battery Technology from the Lab to the Big City Addthis Duration 2:08 Topic Smart Grid Storage Innovation...

309

OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big Datasets OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big Datasets August 27, 2013 | Tags: Basic Energy...

310

E-Print Network 3.0 - aura laser big Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

laser big Search Powered by Explorit Topic List Advanced Search Sample search results for: aura laser big Page: << < 1 2 3 4 5 > >> 1 Aura as a Platform for Distributed Sensing and...

311

Multiple Tenure/Tenure-Track Faculty Positions Software Engineering Focus: CyberSecurity and Big Data  

E-Print Network [OSTI]

Multiple Tenure/Tenure-Track Faculty Positions Software Engineering Focus: CyberSecurity and Big to cybersecurity and big data. Outstanding candidates from all areas of software engineering and computer science

Carver, Jeffrey C.

312

Analysis of geothermal electric-power generation at Big Creek Hot Springs, Lemhi County, Idaho  

SciTech Connect (OSTI)

Big Creek Hot Springs was evaluated as a source of electrical power for the Blackbird Cobalt Mine, approximately 13 miles south of the hot spring. An evaluaton of the geothermal potential of Big Creek Hot Springs, a suggested exploration program and budget, an engineering feasibility study of power generation at Big Creek Hot Springs, an economic analysis of the modeled power generating system, and an appraisal of the institutional factors influencing development at Big Creek Hot Springs are included.

Struhsacker, D.W. (ed.)

1981-01-01T23:59:59.000Z

313

Original article Energy balance storage terms and big-leaf  

E-Print Network [OSTI]

), biomass heat storage (Sv) and photosynthetic energy storage (Sp). Soil heat storage Sg can be furtherOriginal article Energy balance storage terms and big-leaf evapotranspiration in a mixed deciduous not be omitted. On a seasonal basis soil heat storage seems to be the most important term. The overall heat

Boyer, Edmond

314

Small Buildings = Big Opportunity for Energy Savings (Fact Sheet)  

SciTech Connect (OSTI)

Small buildings have a big impact on energy use. In the United States, 44.6 million small buildings consume 44% of the overall energy used in buildings, presenting an enormous opportunity to cut costs, energy use, and greenhouse gas emissions.

Not Available

2013-12-01T23:59:59.000Z

315

BIG BEAR SOLAR OBSERVATORY CENTER FOR SOLAR-TERRESTRIAL RESEARCH  

E-Print Network [OSTI]

BIG BEAR SOLAR OBSERVATORY CENTER FOR SOLAR-TERRESTRIAL RESEARCH Faculty Position in Solar Physics, New Jersey Institute of Technology A tenure track faculty position in solar physics is available of NJIT's program in solar physics, visit http://solar.njit.edu. Applicants are required to have a Ph

316

Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program  

SciTech Connect (OSTI)

Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

1999-03-01T23:59:59.000Z

317

Recommendations for Technologies for Microgrids on the Big Island  

E-Print Network [OSTI]

and Energy Storage Studies 1 2.2 HNEI Sustainable Energy Study 3 3.0 Changes in Big Island Loads), and Hawaiian Electric Company (HECO) looked at the potential benefits of microgrids and energy storage of Energy Office of Electricity Delivery and Energy Reliability Under Award No. DE-FC-06NT42847 Subtask 2

318

UNIVERSITY OF NOTTINGHAM, 2006 Big Issues in Mobile  

E-Print Network [OSTI]

© UNIVERSITY OF NOTTINGHAM, 2006 Big Issues in Mobile Learning Report of a workshop by the Kaleidoscope Network of Excellence Mobile Learning Initiative Edited by Mike Sharples #12;Contents Foreword 2 Introduction: Mapping the Landscape of Mobile Learning 3 What is mobile learning? 5 How to enhance

Paris-Sud XI, Université de

319

SHADING CALCULATIONS FOR THE BIG DISH Jeff Cumpston1  

E-Print Network [OSTI]

as that of the Model Power Plant in Albuquerque, USA. Staggering of dish rows is simulated and it is found], building the 'SG4' 500m2 Big Dish solar paraboloidal concentrator for solar-thermal to electric energy into a dish-array for large-scale power production. A program has been created for modelling the annual

320

TREND Big Picture on Energy-Efficient Backbone Networks  

E-Print Network [OSTI]

-wavelength photonic switching and Elastic Optical Networking (EON). From the energy perspective, data centers haveTREND Big Picture on Energy-Efficient Backbone Networks Esther Le Rouzic, Raluca-Maria Indre Orange Ye Huawei Technologies Duesseldorf GmbH, Germany {Jorge.vizcaino ; Yeyabin}@huawei.com Ward Van

Wichmann, Felix

Note: This page contains sample records for the topic "big explosives experimental" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

People's Physics Book Ch13-1 The Big Ideas  

E-Print Network [OSTI]

People's Physics Book Ch13-1 The Big Ideas: The name electric current is given to the phenomenon of the power source, you need the total resistance of the circuit and the total current: Vtotal = ItotalRtotal. · Power is the rate that energy is released. The units for power are Watts (W), which equal Joules per

California at Santa Cruz, University of

322

People's Physics Book Ch 21-1 The Big Idea  

E-Print Network [OSTI]

People's Physics Book Ch 21-1 The Big Idea The nuclei of atoms are affected by three forces, the breaking apart of nuclei and it is responsible for atom bombs and nuclear power. A form of fission, where/tH #12;People's Physics Book Ch 21-2 Key Concepts · Some of the matter on Earth is unstable

California at Santa Cruz, University of

323

People's Physics book Ch 2-1 The Big Idea  

E-Print Network [OSTI]

People's Physics book Ch 2-1 The Big Idea Energy is a measure of the amount of, or potential for, often by heat or sound waves. #12;People's Physics book Ch 2-2 Key Applications · In "roller coaster of the bonding energy into energy that is used to power the body. This energy goes on to turn into kinetic energy

California at Santa Cruz, University of

324

People's Physics Book Ch 16-1 The Big Idea  

E-Print Network [OSTI]

People's Physics Book Ch 16-1 The Big Idea Modern circuitry depends on much more than just elements. An active circuit element needs an external source of power to operate. This differentiates them. base emitter collector Diodes have an arrow showing the direction of the flow. #12;People's Physics

California at Santa Cruz, University of

325

Big stakes for Indonesia and the world The Jakarta Post ,  

E-Print Network [OSTI]

Big stakes for Indonesia and the world The Jakarta Post , 9 January 2014, 925 words, English Indonesia, heretofore the famously troubled country and hypothetically hopeless archipelago of countless ambassador: For KM, Indonesia is a developing nation with immense promise and strategic importance

Chaudhuri, Sanjay

326

Big-hole drilling - the state of the art  

SciTech Connect (OSTI)

The art of big-hole drilling has been in a continual state of evolution at the Nevada Test Site since the start of underground testing in 1961. Emplacement holes for nuclear devices are still being drilled by the rotary-drilling process, but almost all the hardware and systems have undergone many changes during the intervening years. The current design of bits, cutters, and other big-hole-drilling hardware results from contributions of manufacturers and Test Site personnel. The dual-string, air-lift, reverse-circulation system was developed at the Test Site. Necessity was really the Mother of this invention, but this circulation system is worthy of consideration under almost any condition. Drill rigs for big-hole drilling are usually adaptations of large oil-well drill rigs with minor modifications required to handle the big bits and drilling assemblies. Steel remains the favorite shaft lining material, but a lot of thought is being given to concrete linings, especially precast concrete.

Lackey, M.D.

1983-01-01T23:59:59.000Z

327

President's Teaching Scholar Program Big Ideas Program: An Experiment  

E-Print Network [OSTI]

(if there is interest in doing so.) Phase I of our process is taking stock. What germs of Big Ideas to try to push the idea process at this year's Fall retreat, and thereafter. We'll take some time are we all carrying around? Are their past or current projects we can build on? We'll do this stock

Colorado at Boulder, University of

328

BIG Energy Upgrade: Procurement and Supply Chain report  

E-Print Network [OSTI]

BIG Energy Upgrade: Procurement and Supply Chain report ­ Green Deal and Energy Efficiency ­ Green Deal and Energy Efficiency Retrofitting Supply Chains Delivery Professor S.C. Lenny Koh Dr Andrea........................................................................................................................... 26 4.5 Generalities on Procurement Best Practices

Wrigley, Stuart

329

Big Data ja vakuutustoiminta Oulun yliopisto 28.1.2014  

E-Print Network [OSTI]

Frame insurance Analysis mProfit performance analysis OneFactor asset management mRisk market risk management 3 #12;Data-driven Decisions (1/2) · McKinsey Global Institute: "Big Data: The next frontier for innovation, competition and productivity," June 2011: · Visualization, a key tool for understanding very

Klemelä, Jussi

330

People's Physics Book Ch 7-1 The Big Idea  

E-Print Network [OSTI]

People's Physics Book Ch 7-1 The Big Idea The universe has many remarkable qualities, among them. This is the second of the five fundamental conservation laws in physics. The other four are conservation of energy;People's Physics Book Ch 7-2 as just the two cars. In this case, internal forces include

California at Santa Cruz, University of

331

Hydroliquefaction of Big Brown lignite in supercritical fluids  

E-Print Network [OSTI]

Big Brown lignite was liquefied in a fixed bed tube reactor. Three solvents were used in the liquefaction studies, toluene, cyclohexane and methanol. Two co-solvents, tetralin and water were used with toluene. The effects of the solvents and co...

Chen, Hui

1996-01-01T23:59:59.000Z

332

Experimental Highlights  

E-Print Network [OSTI]

Highlights at the 13th International Conference on Elastic & Diffractive Scattering (EDS09) of the presentations of new experimental results and developments are presented and discussed.

Dainton, John

2010-01-01T23:59:59.000Z

333

Determination of SNe explosions frequency distribution function.Method and numerical simulations  

E-Print Network [OSTI]

The method for determination of the Supernovae (SNe) explosions frequency distribution function based on the assumption of explosions independence are offered. The method is based on assumption that the sequence of SNe explosions in an individual galaxy is a Poisson sequence. The essence of the method is in the determination of statistical moments of the frequency of the SNe explosions and subsequent determination of distribution function . The program of numerical simulation has been developed for testing the efficiency of the method. Numerical simulations show that even for a small mean number of registered SNe explosions, method allows restoring initial distribution function. The results of numerical simulations are given.

A. A. Akopian

2007-05-03T23:59:59.000Z

334

Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof  

DOE Patents [OSTI]

Apparatus and method are disclosed for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the ultraviolet emission produced thereby, is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives. 4 figs.

Funsten, H.O.; McComas, D.J.

1999-06-15T23:59:59.000Z

335

In-Situ Silver Acetylide Silver Nitrate Explosive Deposition Measurements Using X-Ray Fluorescence.  

SciTech Connect (OSTI)

The Light Initiated High Explosive facility utilized a spray deposited coating of silver acetylide - silver nitrate explosive to impart a mechanical shock into targets of interest. A diagnostic was required to measure the explosive deposition in - situ. An X - ray fluorescence spectrometer was deployed at the facility. A measurement methodology was developed to measure the explosive quantity with sufficient accuracy. Through the use of a tin reference material under the silver based explosive, a field calibration relationship has been developed with a standard deviation of 3.2 % . The effect of the inserted tin material into the experiment configuration has been explored.

Covert, Timothy T.

2014-09-01T23:59:59.000Z

336

Experimental and numerical simulations of explosive loading on structural components : composite sandwich connections  

E-Print Network [OSTI]

Reaction block layout for Composite Joint Tests 3, 4 andof reaction block design for Composite Joint Tests 3, 4 and3.74: Reaction block layout for Composite Joint Tests 3, 4

Huson, Peter N.

2012-01-01T23:59:59.000Z

337

Experimental simulations of explosive loading on structural components : reinforced concrete columns with advanced composite jackets  

E-Print Network [OSTI]

5]. 3.A.4 Material Testing Concrete Concrete cylinders wereConcrete Institute ANFO Ammonium Nitrate and Fuel Oil ASTM ASTM International (American Society for Testing

Rodríguez-Nikl, Tonatiuh

2006-01-01T23:59:59.000Z

338

Strathclyde Business School established the Babcock International Group (BIG) Academy to  

E-Print Network [OSTI]

Strathclyde Business School established the Babcock International Group (BIG) Academy to provide and a `one business' approach across divisions. The University's response The BIG Academy was conceived of key operational areas. The learning experience The BIG Academy has three main learning platforms

Mottram, Nigel

339

How to use Big Data technologies to optimize operations in Upstream Petroleum Industry  

E-Print Network [OSTI]

How to use Big Data technologies to optimize operations in Upstream Petroleum Industry Abdelkader generated by the Petroleum Industry and particularly its upstream segment? Upstream is no stranger to Big the desired outcomes? Keywords Big Data; Analytics; Upstream Petroleum Industry; Knowledge Management; KM

Paris-Sud XI, Université de

340

A HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPING SYSTEMS  

SciTech Connect (OSTI)

Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

Leishear, R.

2013-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "big explosives experimental" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Physical properties of conventional explosives deduced from radio frequency emissions  

SciTech Connect (OSTI)

Los Alamos National Laboratory collected broadband radio frequency (RF) electric field change measurements from multiple detonations of high explosives (HE). Three types of HE were used: small cylinders of flake TNT, solid TNT, and PBX-9501. Low frequency signals (<80 MHz) were shot-to-shot repeatable and occurred within the first 100 {mu} s at measured amplitudes of about 2 V m{sup -1} at 35 m distance. High frequency signals (>290 MHz) occurred later, were an order of magnitude lower in signal strength, and were not repeatable. There is a positive correlation between the maximum electric field change and the shock velocity of the HE. The amount of free charge produced in the explosion estimated from the first RF pulse is between 10 and 150 {mu} C. This implies a weakly ionized plasma with temperatures between 2600 and 2900 K.

Harlin, Jeremiah D [Los Alamos National Laboratory; Nemzek, Robert [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

342

Standoff ultraviolet raman scattering detection of trace levels of explosives.  

SciTech Connect (OSTI)

Ultraviolet (UV) Raman scattering with a 244-nm laser is evaluated for standoff detection of explosive compounds. The measured Raman scattering albedo is incorporated into a performance model that focused on standoff detection of trace levels of explosives. This model shows that detection at {approx}100 m would likely require tens of seconds, discouraging application at such ranges, and prohibiting search-mode detection, while leaving open the possibility of short-range point-and-stare detection. UV Raman spectra are also acquired for a number of anticipated background surfaces: tile, concrete, aluminum, cloth, and two different car paints (black and silver). While these spectra contained features in the same spectral range as those for TNT, we do not observe any spectra similar to that of TNT.

Kulp, Thomas J.; Bisson, Scott E.; Reichardt, Thomas A.

2011-10-01T23:59:59.000Z

343

Rare Isotopes in Cosmic Explosions and Accelerators on Earth  

ScienceCinema (OSTI)

Rare isotopes are nature?s stepping stones to produce the heavy elements, and they are produced in large quantities in stellar explosions. Despite their fleeting existence, they shape the composition of the universe and the observable features of stellar explosions. The challenge for nuclear science is to produce and study the very same rare isotopes so as to understand the origin of the elements and a range of astronomical observations. I will review the progress that has been made to date in astronomy and nuclear physics, and the prospects of finally addressing many of the outstanding issues with the future Facility for Rare Isotope Beams (FRIB), which DOE will build at Michigan State University.

Hendrik Schatz

2010-01-08T23:59:59.000Z

344

Non-lead environmentally safe projectiles and explosive container  

DOE Patents [OSTI]

A solid object having controlled frangibility, such as a bullet or a container for explosives, is made by combining two different metals in proportions calculated to achieve a desired density, without using lead. A wetting material is deposited on the base constituent which is made of a relative dense, hard material. The wetting material enhances the wettability of the base constituent with the binder constituent, which is lighter and softer than the base constituent.

Lowden, Richard A. (Clinton, TN); McCoig, Thomas M. (Maryville, TN); Dooley, Joseph B. (Kingston, TN); Smith, Cyrus M. (Knoxville, TN)

1999-06-15T23:59:59.000Z

345

Non-lead, environmentally safe projectiles and explosives containers  

DOE Patents [OSTI]

A solid object having controlled frangibility, such as a bullet or a container for explosives, is made by combining two different metals in proportions calculated to achieve a desired density, without using lead. A wetting material is deposited on the base constituent which is made of a relative dense, hard material. The wetting material enhances the wettability of the base constituent with the binder constituent, which is lighter and softer than the base constituent.

Lowden, Richard A. (Clinton, TN); McCoig, Thomas M. (Maryville, TN); Dooley, Joseph B. (Kingston, TN); Smith, Cyrus M. (Knoxville, TN)

2001-01-16T23:59:59.000Z

346

Prediction of crystal densities of organic explosives by group additivity  

SciTech Connect (OSTI)

The molar volume of crystalline organic compound is assumed to be a linear combination of its constituent volumes. Compounds consisting only of the elements hydrogen, carbon, nitrogen, oxygen, and fluorine are considered. The constituent volumes are taken to be the volumes of atoms in particular bonding environments and are evaluated from a large set of crystallographic data. The predicted density has an expected error of about 3%. These results are applied to a large number of explosives compounds.

Stine, J R

1981-08-01T23:59:59.000Z

347

Non-lead environmentally safe projectiles and explosive container  

DOE Patents [OSTI]

A solid object having controlled frangibility, such as a bullet or a container for explosives, is made by combining two different metals in proportions calculated to achieve a desired density, without using lead. A wetting material is deposited on the base constituent which is made of a relative dense, hard material. The wetting material enhances the wettability of the base constituent with the binder constituent, which is lighter and softer than the base constituent. 10 figs.

Lowden, R.A.; McCoig, T.M.; Dooley, J.B.; Smith, C.M.

1999-06-15T23:59:59.000Z

348

Detonating Failed Deflagration Model of Thermonuclear Supernovae I. Explosion Dynamics  

E-Print Network [OSTI]

We present a detonating failed deflagration model of Type Ia supernovae. In this model, the thermonuclear explosion of a massive white dwarf follows an off-center deflagration. We conduct a survey of asymmetric ignition configurations initiated at various distances from the stellar center. In all cases studied, we find that only a small amount of stellar fuel is consumed during deflagration phase, no explosion is obtained, and the released energy is mostly wasted on expanding the progenitor. Products of the failed deflagration quickly reach the stellar surface, polluting and strongly disturbing it. These disturbances eventually evolve into small and isolated shock-dominated regions which are rich in fuel. We consider these regions as seeds capable of forming self-sustained detonations that, ultimately, result in the thermonuclear supernova explosion. Preliminary nucleosynthesis results indicate the model supernova ejecta are typically composed of about 0.1-0.25 Msun of silicon group elements, 0.9-1.2 Msun of iron group elements, and are essentially carbon-free. The ejecta have a composite morphology, are chemically stratified, and display a modest amount of intrinsic asymmetry. The innermost layers are slightly egg-shaped with the axis ratio ~1.2-1.3 and dominated by the products of silicon burning. This central region is surrounded by a shell of silicon-group elements. The outermost layers of ejecta are highly inhomogeneous and contain products of incomplete oxygen burning with only small admixture of unburned stellar material. The explosion energies are ~1.3-1.5 10^51 erg.

Tomasz Plewa

2006-11-24T23:59:59.000Z

349

FINDING THE FIRST COSMIC EXPLOSIONS. I. PAIR-INSTABILITY SUPERNOVAE  

SciTech Connect (OSTI)

The first stars are the key to the formation of primitive galaxies, early cosmological reionization and chemical enrichment, and the origin of supermassive black holes. Unfortunately, in spite of their extreme luminosities, individual Population III (Pop III) stars will likely remain beyond the reach of direct observation for decades to come. However, their properties could be revealed by their supernova explosions, which may soon be detected by a new generation of near-IR (NIR) observatories such as JWST and WFIRST. We present light curves and spectra for Pop III pair-instability supernovae calculated with the Los Alamos radiation hydrodynamics code RAGE. Our numerical simulations account for the interaction of the blast with realistic circumstellar envelopes, the opacity of the envelope, and Lyman absorption by the neutral intergalactic medium at high redshift, all of which are crucial to computing the NIR signatures of the first cosmic explosions. We find that JWST will detect pair-instability supernovae out to z ?> 30, WFIRST will detect them in all-sky surveys out to z ? 15-20, and LSST and Pan-STARRS will find them at z ?< 7-8. The discovery of these ancient explosions will probe the first stellar populations and reveal the existence of primitive galaxies that might not otherwise have been detected.

Whalen, Daniel J.; Smidt, Joseph; Lovekin, C. C. [T-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Even, Wesley; Fryer, Chris L. [CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Frey, Lucille H. [HPC-3, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Johnson, Jarrett L.; Hungerford, Aimee L. [XTD-6, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Stiavelli, Massimo [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Holz, Daniel E. [Enrico Fermi Institute, Department of Physics, and Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Heger, Alexander [Monash Centre for Astrophysics, Monash University, Victoria 3800 (Australia); Woosley, S. E. [Department of Astronomy and Astrophysics, UCSC, Santa Cruz, CA 95064 (United States)

2013-11-10T23:59:59.000Z

350

The physics of antimatter induced fusion and thermonuclear explosions  

E-Print Network [OSTI]

The feasibility of using antihydrogen for igniting inertial confinement fusion pellets or triggering large scale thermonuclear explosions is investigated. The number of antiproton annihilations required to start a thermonuclear burn wave in either DT or Li2DT is found to be about 10 21 /k 2, where k is the compression factor of the fuel to be ignited. In the second part, the technologies for producing antiprotons with high energy accelerator systems and the means for manipulating and storing microgram amounts of antihydrogen are examined. While there seems to be no theoretical obstacles to the production of 10 18 antiprotons per day (the amount required for triggering one thermonuclear bomb), the construction of such a plant involves several techniques which are between 3 and 4 orders of magnitude away from present day technology. Considering the financial and energy investments needed to produce antimatter, applications will probably remain confined to the military domain. Since antihydrogen-triggered thermonuclear explosives are very compact and have extremely reduced fall-out, we conclude that such devices will enhance the proliferation of nuclear weapons and further diffuse the distinction between low-yield nuclear weapons and conventional explosives. 1

Andre Gsponer; Jean-pierre Hurni

351

Signatures of Explosion Models for SN ~Ia & Cosmology  

E-Print Network [OSTI]

We give an overview of the current understanding of Type Ia supernovae relevant for their use as cosmological distance indicators. We present the physical basis to understand their homogeneity of the observed light curves and spectra and the observed correlations. SNe Ia have been well established as distance indicators on the 10 % level. However, the quest for the nature of the dark energy requires improvements in the accuracy to the 2 to 3 % level, we must understand the diversity within the SNe Ia population, and its evolution with redshift. Based on detailed models for the progenitors, explosions, light curves and spectra, we discuss signatures of thermonuclear explosions, and the implications for cosmology. We emphasize the relation between LC properties and spectra because, for local SNe~Ia, the diversity becomes apparent the combination of spectra and LCs whereas, by enlarge, we have to for high-z objects. At some examples, we show how we can actually probe the properties of the progenitor, its environment, and details of the explosion physics.

P. Hoeflich

2004-09-07T23:59:59.000Z

352

EA-1617: Lovell-Yellowtail and Basin-Lovell Transmission Line Rebuild Project, Big Horn County, Wyoming, and Big Horn and Carbon Counties, Montana  

Broader source: Energy.gov [DOE]

DOE’s Western Area Power Administration prepared this EA and a finding of no significant impact for a proposal to rebuild the Lovell-Yellowtail (LV-YT) No. 1 and No. 2 115-kV transmission lines, located in Big Horn County, Wyoming, and Big Horn and Carbon Counties in Montana, and the Basin-Lovell 115-kV transmission line in Big Horn County, Wyoming.

353

Big Bang Day: 5 Particles - 3. The Anti-particle  

ScienceCinema (OSTI)

Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existence be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.

None

2011-04-25T23:59:59.000Z

354

Big Bang Day: 5 Particles - 3. The Anti-particle  

SciTech Connect (OSTI)

Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existence be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.

None

2009-10-07T23:59:59.000Z

355

Big-Bang Nucleosynthesis verifies classical Maxwell-Boltzmann distribution  

E-Print Network [OSTI]

We provide the most stringent constraint to date on possible deviations from the usually-assumed Maxwell-Boltzmann (MB) velocity distribution for nuclei in the Big-Bang plasma. The impact of non-extensive Tsallis statistics on thermonuclear reaction rates involved in standard models of Big-Bang Nucleosynthesis (BBN) has been investigated. We find that the non-extensive parameter $q$ may deviate by, at most, $|\\delta q|$=6$\\times$10$^{-4}$ from unity for BBN predictions to be consistent with observed primordial abundances; $q$=1 represents the classical Boltzmann-Gibbs statistics. This constraint arises primarily from the {\\em super}sensitivity of endothermic rates on the value of $q$, which is found for the first time. As such, the implications of non-extensive statistics in other astrophysical environments should be explored. This may offer new insight into the nucleosynthesis of heavy elements.

S. Q. Hou; J. J. He; A. Parikh; K. Daid; C. Bertulani

2014-08-15T23:59:59.000Z

356

Demonstrated Wavelength Portability of Raman Reference Data for Explosives and Chemical Detection  

SciTech Connect (OSTI)

As Raman spectroscopy continues to evolve, questions arise as to the portability of Raman data: dispersive versus Fourier transform, wavelength calibration, intensity calibration, and in particular the frequency of the excitation laser. While concerns about fluorescence arise in the visible or ultraviolet, most modern (portable) systems use near-infrared excitation lasers, and many of these are relatively close in wavelength. We have investigated the possibility of porting reference data sets from one NIR wavelength system to another. We have constructed a reference library consisting of 145 spectra, including 20 explosives, as well as sundry other compounds and materials using a 1064 nm spectrometer. These data were used as a reference library to evaluate the same 145 compounds whose experimental spectra were recorded using a second 785 nm spectrometer. In 128 cases of 145 (or 88.3% including 20/20 for the explosives) the compounds were correctly identified with a mean 'hit score' of 954 of 1000. Adding in criteria for when to declare a correct match versus when to declare uncertainty, the approach was able to correctly categorize 134 out of 145 spectra, giving a 92.4% accuracy. For the few that were incorrectly identified, either the matched spectra were spectroscopically similar to the target or the 785 nm signal was degraded due to fluorescence. The results indicate that imported data recorded at a different NIR wavelength can be successfully used as reference libraries, but key issues must be addressed: The reference data must be of equal or higher resolution, the systems require rigorous wavelength calibration, and wavelength-dependent intensity response should be accounted for in the different systems.

Johnson, Timothy J.; Su, Yin-Fong; Jarman, Kristin H.; Kunkel, Brenda M.; Birnbaum, Jerome C.; Joly, Alan G.; Stephan, Eric G.; Tonkyn, Russell G.; Ewing, Robert G.; Dunham, Glen C.

2012-04-17T23:59:59.000Z

357

The State of the Art in Supporting "Big Data"  

E-Print Network [OSTI]

of investigation · Startups in this space · If there is any achilles heel in big data, this is it! #12;10 DBMS Security · Works well -- i.e. I have never heard of the DBMS screwing up in this area. #12;11 Encryption · Can be entrusted to the DBMS -- Appropriate when there are many clients sharing data -- Don't want

Oliva, Aude

358

Graceful exit via polymerization of pre-big bang cosmology  

E-Print Network [OSTI]

We consider a phenomenological modification of the Pre Big Bang scenario using ideas from the resolution of curvature singularities in Loop Quantum Cosmology. We show that non-perturbative Loop modifications to the dynamics, arising from the underlying polymer representation, can resolve the graceful exit problem. The curvature and the dilaton energy stay finite at all times, in both the string and Einstein frames. In the string frame, the dilaton tends to a constant value at late times after the bounce.

Giuseppe De Risi; Roy Maartens; Parampreet Singh

2007-09-25T23:59:59.000Z

359

Big Science: Supercomputing at the National Labs | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles » Alternative FuelNewsWashingtonAuditsBetter Buildings BetterBig

360

Big Bend Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuelsBig Bend Electric

Note: This page contains sample records for the topic "big explosives experimental" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Big Horn Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuelsBig

362

Big River, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuelsBig° Loading

363

Big Sky Carbon Sequestration Partnership | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuelsBig°

364

Big Smile Wind Farm (Dempsey Ridge) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuelsBig°Facility

365

Three dimensional simulation for Big Hill Strategic Petroleum Reserve (SPR).  

SciTech Connect (OSTI)

3-D finite element analyses were performed to evaluate the structural integrity of caverns located at the Strategic Petroleum Reserve's Big Hill site. State-of-art analyses simulated the current site configuration and considered additional caverns. The addition of 5 caverns to account for a full site and a full dome containing 31 caverns were modeled. Operations including both normal and cavern workover pressures and cavern enlargement due to leaching were modeled to account for as many as 5 future oil drawdowns. Under the modeled conditions, caverns were placed very close to the edge of the salt dome. The web of salt separating the caverns and the web of salt between the caverns and edge of the salt dome were reduced due to leaching. The impacts on cavern stability, underground creep closure, surface subsidence and infrastructure, and well integrity were quantified. The analyses included recently derived damage criterion obtained from testing of Big Hill salt cores. The results show that from a structural view point, many additional caverns can be safely added to Big Hill.

Ehgartner, Brian L. (Sandia National Laboratories, Albuquerque, NM); Park, Byoung Yoon; Sobolik, Steven Ronald (Sandia National Laboratories, Albuquerque, NM); Lee, Moo Yul (Sandia National Laboratories, Albuquerque, NM)

2005-07-01T23:59:59.000Z

366

Method for the decontamination of soil containing solid organic explosives therein  

DOE Patents [OSTI]

An efficient method for decontaminating soil containing organic explosives ("TNT" and others) in the form of solid portions or chunks which are not ordinarily subject to effective bacterial degradation. The contaminated soil is treated by delivering an organic solvent to the soil which is capable of dissolving the explosives. This process makes the explosives more bioavailable to natural bacteria in the soil which can decompose the explosives. An organic nutrient composition is also preferably added to facilitate decomposition and yield a compost product. After dissolution, the explosives are allowed to remain in the soil until they are decomposed by the bacteria. Decomposition occurs directly in the soil which avoids the need to remove both the explosives and the solvents (which either evaporate or are decomposed by the bacteria). Decomposition is directly facilitated by the solvent pre-treatment process described above which enables rapid bacterial remediation of the soil.

Radtke, Corey W. (Idaho Falls, ID); Roberto, Francisco F. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

367

Parameters of Chelyabinsk and Tunguska Objects and their Explosion Modes  

E-Print Network [OSTI]

This paper describes briefly a mathematical model that relates the parameters of celestial body motion in spheres of activity of the Sun and the Earth with mass-energy characteristics of these celestial bodies and their explosion modes during destruction in the Earth atmosphere, that in turn are linked with phenomena observed on the underlying surface. This model was used to calculate the characteristics of the objects which are causes of Chelyabinsk and Tunguska incidents. Thus, the basic data characterizing these two outstanding phenomena were obtained with using a regular physical-mathematical procedure without any speculative hypotheses and/or assumptions.

Lobanovsky, Yu I

2013-01-01T23:59:59.000Z

368

Conductivity Histories Measured in Shock-Dispersed-Fuel Explosion Clouds  

SciTech Connect (OSTI)

The notion of high ion and electron concentrations in the detonation of aluminized explosive mixtures has aroused some interest in electro-magnetic effects that the SDF charges might generate when detonated. Beside the scientific aspects at least two questions appear to be of practical interest: (1) Does the detonation of an SDF charge create electro-magnetic disturbances strong enough to affect the operation of electrical infrastructure in for example a tunnel system? (2) Does the detonation of an SDF charge in a tunnel system create an electromagnetic signature that relays information of the charge performance to the outside environment?

Kuhl, A L

2010-04-01T23:59:59.000Z

369

Use of explosives to demolish multistory steel frame buildings  

E-Print Network [OSTI]

. 2. 14 Muttifkior Firing Plan for a Typical Buikling 2. 15 Shaped Charge Placement on a Column Section . 2. 16 Column Attack, Showing Column Explosive Cuts and Kicker Charge . 2. 17 Preparation of Column Splice Plates in a Welded Connection . 2.... 18 Preparation of Column Splice Plates in a Riveted or Bolted Connection 2. 19 Column Cutting Schedule . 3. 1 Internal Cabling Showing Typical Column to Column Cabling . 3. 2 Cabling, From Corner Wall to Column 30 32 36 38 42 50 55 . 57...

Landry, Charles Vernon

2012-06-07T23:59:59.000Z

370

Thermonuclear Explosions of Chandrasekhar-Mass White Dwarfs  

E-Print Network [OSTI]

We present a new way of modeling turbulent thermonuclear deflagration fronts in Chandrasekhar-mass white dwarfs, consisting of carbon and oxygen, undergoing a type Ia supernova explosion. Our approach is a front capturing/tracking hybrid scheme, based on a level set method, which treats the front as a mathematical discontinuity and allows for full coupling between the front geometry and the flow field. First results of the method applied to the problem of type Ia supernovae are discussed. It will be shown that even in 2-D and even with a physically motivated sub-grid model numerically ``converged'' results are difficult to obtain.

W. Hillebrandt; M. Reinecke; J. C. Niemeyer

2000-05-16T23:59:59.000Z

371

The physics of antimatter induced fusion and thermonuclear explosions  

E-Print Network [OSTI]

The possibility of using antihydrogen for igniting inertial confinement fusion pellets or triggering large scale thermonuclear explosions is investigated. The number of antiproton annihilations required to start a thermonuclear burn wave in either D or Li_2DT is found to be about 10^{21}/k^2, where k is the compression factor of the fuel to be ignited. We conclude that the financial and energy investments needed to produce such amounts of antiprotons would confine applications of antimatter triggered thermonuclear devices to the military domain.

Gsponer, A; Gsponer, Andre; Hurni, Jean-Pierre

1987-01-01T23:59:59.000Z

372

Explosives exhibit opens at the Bradbury Science Museum Sept. 18  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial Thin FilmEquipment SSRLExploring theExplosives exhibit

373

E-Print Network 3.0 - aluminum dust explosion Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

retention Explosion with air 100 Tungsten Activation 100-400 Dust... of traditional plasma diagnostics. Who has resources, time to tackle it ? 12;Dust diagnostics in ITER ?...

374

E-Print Network 3.0 - atomic explosions Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Within... to Coulomb explosion (Last and Jortner, 2000). Calculation of the energy absorption of atomic clusters... these results with kinetic energy of the ions coming from...

375

E-Print Network 3.0 - atmospheric explosions Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geosciences 12 Friday 5 January 2001 earth: Meteors come in with a Summary: a sonic boom from a meteor explosion with an instrument similar to those currently under...

376

Experimental Conclusions  

E-Print Network [OSTI]

temperature and high pressure pyrolysis of biomass performed at industrially relevant heating rates. (2-Pressure Biomass Pyrolysis in an Entrained-Flow Reactor 1Gautami Newalkar, 2Kristiina Iisa, 1Carsten Sievers and 1) Objective Results Experimental Conclusions 1000°C 600°C 4s 30s A major advantage of Biomass

Das, Suman

377

THE IMPACT OF TYPE Ia SUPERNOVA EXPLOSIONS ON HELIUM COMPANIONS IN THE CHANDRASEKHAR-MASS EXPLOSION SCENARIO  

SciTech Connect (OSTI)

In the version of the single-degenerate scenario of Type Ia supernovae (SNe Ia) studied here, a carbon-oxygen white dwarf explodes close to the Chandrasekhar limit after accreting material from a non-degenerate helium (He) companion star. In the present study, we employ the STELLAR GADGET code to perform three-dimensional hydrodynamical simulations of the interaction of the SN Ia ejecta with the He companion star taking into account its orbital motion and spin. It is found that only 2%-5% of the initial companion mass is stripped off from the outer layers of He companion stars due to the supernova (SN) impact. The dependence of the unbound mass (or the kick velocity) on the orbital separation can be fitted to a good approximation by a power law for a given companion model. After the SN impact, the outer layers of a He donor star are significantly enriched with heavy elements from the low-expansion-velocity tail of SN Ia ejecta. The total mass of accumulated SN-ejecta material on the companion surface reaches about {approx}> 10{sup -3} M{sub Sun} for different companion models. This enrichment with heavy elements provides a potential way to observationally identify the surviving companion star in SN remnants. Finally, by artificially adjusting the explosion energy of the W7 explosion model, we find that the total accumulation of SN ejecta on the companion surface is also dependent on the explosion energy with a power-law relation to a good approximation.

Liu Zhengwei; Wang, B.; Han, Z. W. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Pakmor, R. [Heidelberger Institut fuer Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Seitenzahl, I. R.; Hillebrandt, W.; Kromer, M.; Edelmann, P.; Taubenberger, S. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany); Roepke, F. K. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany); Maeda, K., E-mail: zwliu@ynao.ac.cn [Kavli Institute for the Physics and Mathematics of the Universe (Kavli-IPMU), Todai Institutes for Advanced Study (TODIAS), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)

2013-09-01T23:59:59.000Z

378

Literature review of the lifetime of DOE materials: Aging of plastic bonded explosives and the explosives and polymers contained therein  

SciTech Connect (OSTI)

There are concerns about the lifetime of the nation`s stockpile of high explosives (HEs) and their components. The DOE`s Core Surveillance and Enhanced Surveillance programs specifically target degradation of HE, binders, and plastic-bonded explosives (PBXs) for determination of component lifetimes and handling procedures. The principal goal of this project is to identify the decomposition mechanisms of HEs, plasticizers, and plastic polymer binders resulting from exposure to ionizing radiation, heat, and humidity. The primary HEs of concern are 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and 1,3,5,7-tetranitro-1,3,5,7-tetraazocyclooctane (HMX). Hexahydro-1,3,5-triazine (RDX) is closely related to these two compounds and is also included in the literature review. Both Kel-F 800 and Estane are polymers of interest. A stabilizer, Irganox 1010, and an energetic plasticizer that is a blend of acetaldehyde 2,2-dinitropropyl acetal, are also of interest, but the focus of this report will be on the explosives and polymers. This presents a literature review that provides background on the synthesis, degradation, and techniques to analyze TATB, HMX, RDX, Kel-F 800, Estane, and the PBXs of these compounds. As there are many factors that can influence degradation of materials, the degradation discussion will be divided into sections based on each factor and how it might affect the degradation mechanism. The factors reviewed that influence the degradation of these materials are exposure to heat, UV- and {gamma}-irradiation, and the chemistry of these compounds. The report presents a recently compiled accounting of the available literature. 80 refs., 7 figs.

Burgess, C.E.; Woodyard, J.D. [West Texas A and M Univ., Canyon, TX (United States); Rainwater, K.A. [Texas Tech Univ., Lubbock, TX (United States); Lightfoot, J.M. [Pantex Plant, Amarillo, TX (United States); Richardson, B.R. [Engineered Carbons, Inc., Borger, TX (United States)

1998-09-01T23:59:59.000Z

379

Study of Forming of Magnesium Alloy by Explosive Energy  

SciTech Connect (OSTI)

Magnesium alloy is an attractive next generation material due to its high specific strength with low weight. However, magnesium alloys has few slip lines with close-packed hexagonal lattice, and generally poor ductility at room temperature, therefore it is difficult to form this material by cold forging. It is well known that the speed of deformation of metallic materials rapidly changes at the high strain rate. For some metallic materials, it is reported that the ductility also increases at the high strain rate with this speed effect. In this study, a series of high speed impulsive compressive tests were carried. By using explosives for shock wave loading, the velocity in this experiment reached 100 m/s that can't be easily obtained in normal experiment. In this paper, the possibility of forming the AZ31 extrusion magnesium alloy using explosive-impulsive pressure is investigated. And improved ductility by the effect of high-rate deformation is observed with this alloy.

Ruan, Liqun; Hokamoto, Kazuyuki; Marumo, Yasuo [Kumamoto University Department of Mechanical Systems Engineering Graduate School of Science and Technology, Kurokami 2-39-1, Kumamoto-shi 860-8555 (Japan); Yahiro, Ititoku [Mitsui Engineering and Shipbuilding Co., Ltd. Nihonbasi 1-3-16, Toukyou 104-8439 (Japan)

2011-05-04T23:59:59.000Z

380

DEMONSTRATION OF BLACK LIQUOR GASIFICATION AT BIG ISLAND  

SciTech Connect (OSTI)

This Technical Progress Report provides an account of the status of the project for the demonstration of Black Liquor Gasification at Georgia-Pacific Corporation's Big Island, VA facility. The report also includes budget information and a milestone schedule. The project to be conducted by G-P is a comprehensive, complete commercial-scale demonstration that is divided into two phases. Phase I is the validation of the project scope and cost estimate. Phase II is project execution, data acquisition and reporting, and consists of procurement of major equipment, construction and start-up of the new system. Phase II also includes operation of the system for a period of time to demonstrate the safe operation and full integration of the energy and chemical recovery systems in a commercial environment. The objective of Phase I is to validate the process design and to engineer viable solutions to any technology gaps. This phase includes engineering and planning for the integration of the full-scale MTCI/StoneChem PulseEnhanced{trademark} black liquor steam-reformer chemical recovery system into G-P's operating pulp and paper mill at Big Island, Virginia. During this phase, the scope and cost estimate will be finalized to confirm the cost of the project and its integration into the existing system at the mill. The objective of Phase II of the project is the successful and safe completion of the engineering, construction and functional operation of the fully integrated full-scale steam reformer process system. This phase includes installation of all associated support systems and equipment required for the enhanced recovery of both energy and chemicals from all of the black liquor generated from the pulping process at the Big Island Mill. The objective also includes operation of the steam reformer system to demonstrate the ability of the system to operate reliably and achieve designed levels of energy and chemical recovery while maintaining environmental emissions at or below the limits set by the environmental permits.

Robert DeCarrera

2003-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "big explosives experimental" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM, DOE O 452.2D, NUCLEAR EXPLOSIVE SAFETY  

Broader source: Energy.gov [DOE]

"To prevent accidents and inadvertent or unauthorized use of U.S. nuclear weapons and nuclear explosives. In conjunction with the Department of Defense (DoD), to protect the public health and...

382

Performance of First- and Second-Order Methods for Big Data ...  

E-Print Network [OSTI]

Mar 11, 2015 ... Performance of First- and Second-Order Methods for Big Data Optimization. Kimon Fountoulakis(K.Fountoulakis ***at*** sms.ed.ac.uk)

Kimon Fountoulakis

2015-03-11T23:59:59.000Z

383

af low-tar big: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Build Data Sets for Data Mining, Data & Knowledge Engineering (DKE), 2014, Elsevier. DBMS 12 Ordonez, Carlos 333 Systems for Big-Graphs Arijit Khan Computer Technologies and...

384

New Blog Seeks Out the "Next Big Thing" | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Money This image shows the barred spiral galaxy NGC 1398. | Image courtesy of the Dark Energy Survey. Supercomputing: A Toolbox to Simulate the Big Bang and Beyond...

385

Extraction of the pretzelosity distribution from experimental data  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

We attempt an extraction of the pretzelosity distribution ($h^{\\perp}_{1T}$) from preliminary COMPASS, HERMES, and JLAB experimental data on $\\sin(3\\phi_h - \\phi_S)$ asymmetry on proton and deuteron targets. The resulting distributions, albeit big errors, show tendency for up quark pretzelosity to be positive and down quark pretzelosity to be negative. A model relation of pretzelosity distribution and Orbital Angular Momentum of quarks is used to estimate contributions of up and down quarks.

Lefky, Christopher; Prokudin, Alexei

2015-02-01T23:59:59.000Z

386

Big Thicket National Preserve: Trails to the Future  

E-Print Network [OSTI]

of the Addition Act did not immediately transfer ownership of the land from timber companies to the National Park Service. Funds still had to be allocated to purchase the land. Completing the acquisition of these lands will cost an estimated $15 to $20... worked closely with an energy company in the region and had plans to apply for non-profit status. However, efforts began to slip and finally failed as funding decreased. Other efforts at improving the economic development in the Big Thicket region have...

Anderson, Luke; Allen, Chris; Elrod, Leah; Forbes, Melissa; Harbin, Hannah; Stromm, Diann

2003-01-01T23:59:59.000Z

387

Big Savings on Outdoor Lighting | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment ofEnergyEnergyBetter PlantsBeyondBig Savings on

388

Nonprofits create big economic impact in northern New Mexico  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNationalNewportBig Eddy ArcheologicalSolartoNonlocal

389

Big Sandy, Montana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio JumpVentures JumpGermany:Big Sandy, Montana:

390

Laboratory's Season of Giving was a big success  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 CERN 73-11 Laboratory I |Season of Giving big

391

BIG SUN Energy Technology Incorporation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: TexasAvoyellesdeA S BiogasBBIBDBESTECLands |BIG

392

What Was There Before the Big Bang? | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP Sign InWhat Was There Before the Big

393

Big Bear City, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuels LLCTravelBieberBig

394

Big Bend Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuelsBig Bend ElectricHot

395

Big Creek Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuelsBig BendCreek Hot

396

Big Rapids, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuelsBig° Loading map...

397

Big Spring I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuelsBig°FacilitySpring I

398

Big Spring II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuelsBig°FacilitySpring

399

The Big Picture on Process Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy TechnicalFlow RoomTexas(EAP)AtomicThe Big Picture on

400

Models from Big Molecules Captured in a Flash  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & Fuel CellsModels from Big Molecules

Note: This page contains sample records for the topic "big explosives experimental" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Big Data and Analytics at Work | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.Program InformationBibliographicAnodeOctoberBig

402

BigNeuron: Unlocking the Secrets of the Human Brain  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBESEnergy Department to ProvideBigNeuron:

403

Big changes for the Jefferson Lab campus | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for aCould Work as Heat ShieldsBig changes for

404

Big changes in liquidity - how they affect power rates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for aCould Work as Heat ShieldsBig changes forlot

405

Big wins at NERSC hack-a-thon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for aCould Work as Heat ShieldsBig changes

406

New Boilers, Big Savings for Minnesota County | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOETowardExecutiveRate principlesPierpont StudentsBoilers, Big

407

The big and little of fifty years of Moessbauer spectroscopy at Argonne.  

SciTech Connect (OSTI)

Using radioactive materials obtained by chance, a turntable employing gears from Heidelberg's mechanical toy shops, and other minimal equipment available in post World War II Germany, in 1959 Rudolf Moessbauer confirmed his suspicion that his graduate research had yielded ground-breaking results. He published his conclusion: an atomic nucleus in a crystal undergoes negligible recoil when it emits a low energy gamma ray and provides the entire energy to the gamma ray. In the beginning Moessbauer's news might have been dismissed. As Argonne nuclear physicist Gilbert Perlow noted: ''Everybody knew that nuclei were supposed to recoil when emitting gamma rays--people made those measurements every day''. If any such effect existed, why had no one noticed it before? The notion that some nuclei would not recoil was ''completely crazy'', in the words of the eminent University of Illinois condensed matter physicist Frederich Seitz. Intrigued, however, nuclear physicists as well as condensed matter (or solid state) physicists in various locations--but particularly at the Atomic Energy Research Establishment at Harwell in Britain and at Argonne and Los Alamos in the U.S.--found themselves pondering the Moessbauer spectra with its nuclear and solid state properties starting in late 1959. After an exciting year during which Moessbauer's ideas were confirmed and extended, the physics community concluded that Moessbauer was right. Moessbauer won the Nobel Prize for his work in 1961. In the 1960s and 1970s Argonne physicists produced an increasingly clear picture of the properties of matter using the spectroscopy ushered in by Moessbauer. The scale of this traditional Moessbauer spectroscopy, which required a radioactive source and other simple equipment, began quite modestly by Argonne standards. For example Argonne hosted traditional Moessbauer spectroscopy research using mostly existing equipment in the early days and equipment that cost $100,000 by the 1970s alongside work at the $50 million Zero Gradient Synchrotron (ZGS) and the $30 million Experimental Breeder Reactor (EBR) II. Starting in the mid-1990s, Argonne physicists expanded their exploration of the properties of matter by employing a new type of Moessbauer spectroscopy--this time using synchrotron light sources such as Argonne's Advanced Photon Source (APS), which at $1 billion was the most expensive U.S. accelerator project of its time. Traditional Moessbauer spectroscopy looks superficially like prototypical ''Little Science'' and Moessbauer spectroscopy using synchrotrons looks like prototypical ''Big Science''. In addition, the growth from small to larger scale research seems to follow the pattern familiar from high energy physics even though the wide range of science performed using Moessbauer spectroscopy did not include high energy physics. But is the story of Moessbauer spectroscopy really like the tale told by high energy physicists and often echoed by historians? What do U.S. national laboratories, the ''Home'' of Big Science, have to offer small-scale research? And what does the story of the 50-year development of Moessbauer spectroscopy at Argonne tell us about how knowledge is produced at large laboratories? In a recent analysis of the development of relativistic heavy ion science at Lawrence Berkeley Laboratory I questioned whether it was wise for historians to speak in terms of ''Big Science'', pointing out at that Lawrence Berkeley Laboratory hosted large-scale projects at three scales, the grand scale of the Bevatron, the modest scale of the HILAC, and the mezzo scale of the combined machine, the Bevalac. I argue that using the term ''Big Science'', which was coined by participants, leads to a misleading preoccupation with the largest projects and the tendency to see the history of physics as the history of high energy physics. My aim here is to provide an additional corrective to such views as well as further information about the web of connections that allows national laboratory scientists working at a variety of scales to produce both technological and

Westfall, C.

2005-09-20T23:59:59.000Z

408

Abstract--Airborne pollution and explosive gases threaten human health and occupational safety, therefore generating high  

E-Print Network [OSTI]

Abstract--Airborne pollution and explosive gases threaten human health and occupational safety and a thumb-drive sized prototype system. I. INTRODUCTION xposure to air pollution consistently ranks among to occupational safety as energy demands rise. Airborne pollutants and explosive gases vary in both time and space

Mason, Andrew

409

Nuclear Engineering and Design 189 (1999) 757 Lower head integrity under steam explosion loads  

E-Print Network [OSTI]

Nuclear Engineering and Design 189 (1999) 7­57 Lower head integrity under steam explosion loads T Engineering, Building 208, Argonne National Laboratory, 9700 South Cass A6enue, Argonne, IL 60439, USA Received 24 August 1998; accepted 24 November 1998 Abstract Lower head integrity under steam explosion

Yuen, Walter W.

410

Safety First Safety Last Safety Always Here is a partial list of safeguards for explosive actuated  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Here is a partial list of safeguards for explosive actuated the design requirements in "American National Standards Institute Safety Requirements for Explosive Actuated on the other side. Portable Power Tools Safety Tip #14 Don't be a fool. Inspect your tools. Operators

Minnesota, University of

411

DOI: 10.1002/adem.201100211 Atomistic Simulation of the Explosion Welding Process**  

E-Print Network [OSTI]

DOI: 10.1002/adem.201100211 Atomistic Simulation of the Explosion Welding Process** By Ossi Saresoja, Antti Kuronen* and Kai Nordlund Explosive welding (EXW) is an industrial process used to join. In the process, welding occurs in a high velocity collision between metal plates, achieved by using chemical

Nordlund, Kai

412

Impacts of the Explosive Removal of Offshore Petroleum Platforms on Sea Turtles and Dolphins  

E-Print Network [OSTI]

Impacts of the Explosive Removal of Offshore Petroleum Platforms on Sea Turtles and Dolphins on beaches of the up per Texas coast. Ten petroleum struc tures were removed from this area when shrimping of the Endangered Species Act of 1973, for each proposed use of explosives in ABSTRACT-Strandings of 51 dead sea

413

Computer Graphics Proceedings, Annual Conference Series, 2003 Animating Suspended Particle Explosions  

E-Print Network [OSTI]

, or other events. The blast wave is an explosion's pri- mary effect, but it moves at supersonic speeds. By design, the real explosions employed for visual effects typically minimize blast strength while the numerically trou- blesome, and largely invisible blast wave, the method uses a relatively stable

O'Brien, James F.

414

Isotropic and Nonisotropic Components of Earthquakes and Nuclear Explosions on the Lop Nor Test Site, China  

E-Print Network [OSTI]

Isotropic and Nonisotropic Components of Earthquakes and Nuclear Explosions on the Lop Nor Test and 1996 following events (seven nuclear explosions, three earthquakes) that occurred on the Lop Nor test Abstract Ð We test the hypothesis that the existence of an observable non-zero isotropic component

Ritzwolle, Mike

415

Infrasonic and Seismic Signals from Earthquake and Explosions in Arequipa, Peru  

E-Print Network [OSTI]

Infrasonic and Seismic Signals from Earthquake and Explosions in Arequipa, Peru J. Chilo, A. Jabor in characterization of infrasonic and seismic signals from mining explosions and an earthquake. Wavelet transform infrasonic and seismic signals. The ampligram may be considered as an analogy to signal decomposition

Haviland, David

416

IS THE DRAGON LEARNING TO FLY? AN ANALYSIS OF THE CHINESE PATENT EXPLOSION  

E-Print Network [OSTI]

IS THE DRAGON LEARNING TO FLY? AN ANALYSIS OF THE CHINESE PATENT EXPLOSION Markus EBERHARDT of the recent explosion of patent filings by Chinese firms both in China and the United States. We construct a firm-level dataset by matching USPTO and SIPO patents to Chinese manufacturing census data

Goldschmidt, Christina

417

Fire and explosion hazards of oil shale. Report of Investigations/1989  

SciTech Connect (OSTI)

This publication presents the results of investigations into the fire and explosion hazards of oil-shale rocks and dust. Three areas were examined: the explosibility and ignitability of oil-shale dust clouds, the fire hazards of oil-shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles.

Not Available

1989-01-01T23:59:59.000Z

418

Why not only electric discharge but even a minimum charge on the surface of highly sensitive explosives can catalyze their gradual exothermic decomposition and how a cloud of unipolar charged explosive particles turns into ball lightning  

E-Print Network [OSTI]

Even a single excess electron or ion migrating on the surface of sensitive explosives can catalyze their gradual exothermic decomposition. Mechanisms underlying such a charge-induced gradual thermal decomposition of highly sensitive explosives can be different. If sensitive explosive is a polar liquid, intense charge-dipole attraction between excess surface charges and surrounding explosive molecules can result in repetitive attempts of solvation of these charges by polar explosive molecules. Every attempt of such uncompleted nonequilibrium solvation causes local exothermic decomposition of thermolabile polar molecules accompanied by further thermal jumping unsolvated excess charges to new surface sites. Thus, ionized mobile hot spots emerge on charged explosive surface. Stochastic migration of ionized hot spots on explosive surface causes gradual exothermic decomposition of the whole mass of the polar explosive. The similar gradual charge-catalyzed exothermic decomposition of both polar and nonpolar highly s...

Meshcheryakov, Oleg

2014-01-01T23:59:59.000Z

419

Optically-energized, emp-resistant, fast-acting, explosion initiating device  

DOE Patents [OSTI]

Optical energy, provided from a remote user-operated source, is utilized to initially electrically charge a capacitor in a circuit that also contains an explosion initiating transducer in contact with a small explosive train contained in an attachable housing. Additional optical energy is subsequently supplied in a preferred embodiment to an optically responsive phototransistor acting in conjunction with a silicon controlled rectifer to release the stored electrical energy through the explosion initiating transducer to set off the explosive train. All energy transfers between the user and the explosive apparatus, either for charging it up or for setting it off, are conveyed optically and may be accomplished in a single optical fiber with coding to distinguish between specific optical energy transfers and between these and any extraneous signals.

Benson, David A. (Albuquerque, NM); Kuswa, Glenn W. (Albuquerque, NM)

1987-01-01T23:59:59.000Z

420

Polarisation spectral synthesis for Type Ia supernova explosion models  

E-Print Network [OSTI]

We present a Monte Carlo radiative transfer technique for calculating synthetic spectropolarimetry for multi-dimensional supernova explosion models. The approach utilises "virtual-packets" that are generated during the propagation of the Monte Carlo quanta and used to compute synthetic observables for specific observer orientations. Compared to extracting synthetic observables by direct binning of emergent Monte Carlo quanta, this virtual-packet approach leads to a substantial reduction in the Monte Carlo noise. This is vital for calculating synthetic spectropolarimetry (since the degree of polarisation is typically very small) but also useful for calculations of light curves and spectra. We first validate our approach via application of an idealised test code to simple geometries. We then describe its implementation in the Monte Carlo radiative transfer code ARTIS and present test calculations for simple models for Type Ia supernovae. Specifically, we use the well-known one-dimensional W7 model to verify tha...

Bulla, M; Kromer, M

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "big explosives experimental" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Thermonuclear Explosions of Chandrasekhar-Mass White Dwarfs  

E-Print Network [OSTI]

We present a new way of modeling turbulent thermonuclear deflagration fronts in Chandrasekhar-mass white dwarfs, consisting of carbon and oxygen, undergoing a type Ia supernova explosion. Our approach is a front capturing/tracking hybrid scheme, based on a level set method, which treats the front as a mathematical discontinuity and allows for full coupling between the front geometry and the flow field. First results of the method applied to the problem of type Ia supernovae are discussed. It will be shown that even in 2-D and even with a physically motivated sub-grid model numerically “converged ” results are difficult to obtain. Key Words: Hydrodynamics, turbulent combustion, type Ia supernovae 1.

Thermonuclear Explosions; Wolfgang Hillebr; Martin Reinecke; Jens C. Niemeyer

2000-01-01T23:59:59.000Z

422

Asymmetric explosion of clusters in intense laser fields  

SciTech Connect (OSTI)

We examine asymmetric expansion of argon clusters illuminated by 800 nm laser pulses of duration Almost-Equal-To 23fs, using three-dimensional particle-in-cell (PIC) simulation. For this short pulse duration, laser energy absorption by cluster electrons is dominated by the nonlinear resonance (NLR) absorption process [Phys. Rev. Lett. 96, 123401 (2006)]. In this work, we concentrate, particularly, on the ionic outcome in the NLR regime and show that higher charge states of argon ions are produced along the laser polarization than in the transverse directions leading to the anisotropy (asymmetry) in the ion energy distribution. This anisotropy already established during the short pulse duration (or in the early duration of a long pulse) may contribute to the anisotropic ion emission reported in cluster experiments with pulse duration longer than 100 fs. Our PIC results are compared with a charged-sphere model showing that cluster explosion is mainly due to Coulomb repulsion between the cluster ions.

Kundu, M. [Institute for Plasma Research, Bhat, Gandhinagar 382 428, Gujarat (India)

2012-08-15T23:59:59.000Z

423

Primordial Lithium Abundance in Catalyzed Big Bang Nucleosynthesis  

E-Print Network [OSTI]

There exists a well known problem with the Li7+Be7 abundance predicted by standard big bang nucleosynthesis being larger than the value observed in population II stars. The catalysis of big bang nucleosynthesis by metastable, \\tau_X \\ge 10^3 sec, charged particles X^- is capable of suppressing the primordial Li7+Be7, abundance and making it consistent with the observations. We show that to produce the correct abundance, this mechanism of suppression places a requirement on the initial abundance of X^- at temperatures of 4\\times 10^8 K to be on the order of or larger than 0.02 per baryon, which is within the natural range of abundances in models with metastable electroweak-scale particles. The suppression of Li7+Be7, is triggered by the formation of (Be7X^-), compound nuclei, with fast depletion of their abundances by catalyzed proton reactions, and in some models by direct capture of X^- on Be7. The combination of Li7+Be7 and Li6 constraints favours the window of lifetimes, 1000s \\la tau_X \\leq 2000 s.

Chris Bird; Kristen Koopmans; Maxim Pospelov

2008-05-19T23:59:59.000Z

424

The Soviet program for peaceful uses of nuclear explosions  

SciTech Connect (OSTI)

The concept of utilizing the weapons of war to serve the peaceful pursuits of mankind is as old as civilization itself. Perhaps the most famous reference to this basic desire is recorded in the Book of Micah where the great prophet Isiah called upon his people `to turn your spears into pitchforks and your swords into plowshares.` As the scientists at Los Alamos worked on developing the world`s first atomic bomb, thoughts of how this tremendous new source of energy could be used for peaceful purposes generally focused on using the thermal energy generated by the slow fission of uranium in a reactor, such as those being used to produce Plutonium to drive electric power stations. However, being scientists in a new, exciting field, it was impossible to avoid letting their minds wander from the task at hand to other scientific or non-military uses for the bombs themselves. During the Manhattan Project, Otto Frisch, one of the pioneers in the development of nuclear fission process in the 1930s, first suggested using an atomic explosion as a source for a large quantities of neutrons which could used in scientific experiments designed to expand their understanding of nuclear physics. After the war was over, many grandiose ideas appeared in the popular press on how this new source of energy should be to serve mankind. Not to be left out of the growing enthusiasm for peaceful uses of atomic energy, the Soviet Union added their visions to the public record. This document details the Soviet program for using nuclear explosions in peacetime pursuits.

Nordyke, M.D.

1996-07-24T23:59:59.000Z

425

EA-1106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory, San Joaquin County, California  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to build, permit, and operate the Explosive Waste Treatment Facility to treat explosive waste at the U.S. Department of Energy's Lawrence...

426

Nonreactor Nuclear Safety Design Criteria and Explosive Safety Criteria Guide for Use with DOE O 420.1, Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide provides guidance on the application of requirements for nonreactor nuclear facilities and explosives facilities of Department of Energy (DOE) O 420.1, Facility Safety, Section 4.1, Nuclear and Explosives Safety Design Criteria. No cancellation.

2000-03-28T23:59:59.000Z

427

NMIS With Gamma Spectrometry for Attributes of Pu and HEU, Explosives and Chemical Agents  

SciTech Connect (OSTI)

The concept for the system described herein is an active/passive Nuclear Materials Identification System{sup 2} (NMIS) that incorporates gamma ray spectrometry{sup 3}. This incorporation of gamma ray spectrometry would add existing capability into this system. This Multiple Attribute System can determine a wide variety of attributes for Pu and highly enriched uranium (HEU) of which a selected subset could be chosen. This system can be built using commercial off the shelf (COTS) components. NMIS systems are at All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) and Russian Federal Nuclear Center Institute of Technical Physics, (VNIITF) and measurements with Pu have been performed at VNIIEF and analyzed successfully for mass and thickness of Pu. NMIS systems are being used successfully for HEU at the Y-12 National Security Complex. The use of active gamma ray spectrometry for high explosive HE and chemical agent detection is a well known activation analysis technique, and it is incorporated here. This report describes the system, explains the attribute determination methods for fissile materials, discusses technical issues to be resolved, discusses additional development needs, presents a schedule for building from COTS components, and assembly with existing components, and discusses implementation issues such as lack of need for facility modification and low radiation exposure.

Mihalczo, J. T.; Mattingly, J. K.; Mullens, J. A.; Neal, J. S.

2002-05-10T23:59:59.000Z

428

BLACK THUNDER COAL MINE AND LOS ALAMOS NATIONAL LABORATORY EXPERIMENTAL STUDY  

E-Print Network [OSTI]

BLACK THUNDER COAL MINE AND LOS ALAMOS NATIONAL LABORATORY EXPERIMENTAL STUDY OF SEISMIC ENERGY of Explosive Engineers, 2-5 Feb 97, Las Vegas, NV #12;BLACK THUNDER COAL MINE AND LOS ALAMOS NATIONAL and David Gross Thunder Basin Coal Company Post Office Box 406 Wright, Wyoming 82732 D. Craig Pearson

429

HoustonChronicle.com -Tiny honor a big deal for algae scientist HoustonChronicle.  

E-Print Network [OSTI]

HoustonChronicle.com - Tiny honor a big deal for algae scientist HoustonChronicle. com Section-mail this story June 18, 2005, 5:48PM Tiny honor a big deal for algae scientist By DAVID A. FAHRENTHOLD Washington Post Sometimes, algae can be the highest form of flattery. ADVERTISEMENTSo it was for Diane K. Stoecker

Jeong, Hae Jin

430

Too Big or Too Small? The PTB-PTS ICMP-based Attack against IPsec Gateways  

E-Print Network [OSTI]

Too Big or Too Small? The PTB-PTS ICMP-based Attack against IPsec Gateways Ludovic Jacquin Inria the "Packet Too Big"-"Packet Too Small" ICMP based attack against IPsec gateways. We explain how an attacker in use, the attack either creates a Denial of Service or major performance penalties. This attack

Paris-Sud XI, Université de

431

The Telescope Control System of the New Solar Telescope at Big Bear Solar Observatory  

E-Print Network [OSTI]

mirror (M1) and its alignment with the secondary mirror (M2) will be actively controlled. HighThe Telescope Control System of the New Solar Telescope at Big Bear Solar Observatory G. Yang*a, J of Technology, 323 Martin Luther King Blvd., Newark, NJ 07104; bBig Bear Solar Observatory, 40386 North Shore

432

Yale's Environment School Power Plants Big Influence in Regional Mercury Emissions Introduction Knowledge  

E-Print Network [OSTI]

Yale's Environment School · Power Plants Big Influence in Regional Mercury Emissions Introduction Power Plants Big Influence in Regional Mercury Emissions Related Topics: News Releases; Publications winters and a correspondent decrease in the need for regional power plants to burn coal could partially

Lee, Xuhui

433

How to use Big Data technologies to optimize operations in Upstream Petroleum Industry  

E-Print Network [OSTI]

How to use Big Data technologies to optimize operations in Upstream Petroleum Industry Abdelkader for it to have value. But what about Big Data generated by the Petroleum Industry and particularly its upstream; Analytics; Upstream Petroleum Industry; Knowledge Management; KM; Business Intelligence; BI; Innovation

Boyer, Edmond

434

The Local Seeing Environment at Big Bear Solar Observatory Angelo Verdoni and Carsten Denker1  

E-Print Network [OSTI]

­ Big Bear Solar Observatory (BBSO) in California, Mees Solar Observatory (MSO) on Haleakal¯a, MauiThe Local Seeing Environment at Big Bear Solar Observatory Angelo Verdoni and Carsten Denker1 New Jersey Institute of Technology, Center for Solar-Terrestrial Research, 323 Martin Luther King Blvd

435

Modelling of the Effects of Friction and Compression on Explosives ESGI80 Modelling of the Effects of Friction and  

E-Print Network [OSTI]

Modelling of the Effects of Friction and Compression on Explosives ESGI80 Modelling of the Effects of Friction and Compression on Explosives Problem presented by John Curtis Atomic Weapons Establishment, based on the compression of a sample of the explosive. The study group identified frictional heating

Purvis, Richard

436

Building Simulation Modelers are we big-data ready?  

SciTech Connect (OSTI)

Recent advances in computing and sensor technologies have pushed the amount of data we collect or generate to limits previously unheard of. Sub-minute resolution data from dozens of channels is becoming increasingly common and is expected to increase with the prevalence of non-intrusive load monitoring. Experts are running larger building simulation experiments and are faced with an increasingly complex data set to analyze and derive meaningful insight. This paper focuses on the data management challenges that building modeling experts may face in data collected from a large array of sensors, or generated from running a large number of building energy/performance simulations. The paper highlights the technical difficulties that were encountered and overcome in order to run 3.5 million EnergyPlus simulations on supercomputers and generating over 200 TBs of simulation output. This extreme case involved development of technologies and insights that will be beneficial to modelers in the immediate future. The paper discusses different database technologies (including relational databases, columnar storage, and schema-less Hadoop) in order to contrast the advantages and disadvantages of employing each for storage of EnergyPlus output. Scalability, analysis requirements, and the adaptability of these database technologies are discussed. Additionally, unique attributes of EnergyPlus output are highlighted which make data-entry non-trivial for multiple simulations. Practical experience regarding cost-effective strategies for big-data storage is provided. The paper also discusses network performance issues when transferring large amounts of data across a network to different computing devices. Practical issues involving lag, bandwidth, and methods for synchronizing or transferring logical portions of the data are presented. A cornerstone of big-data is its use for analytics; data is useless unless information can be meaningfully derived from it. In addition to technical aspects of managing big data, the paper details design of experiments in anticipation of large volumes of data. The cost of re-reading output into an analysis program is elaborated and analysis techniques that perform analysis in-situ with the simulations as they are run are discussed. The paper concludes with an example and elaboration of the tipping point where it becomes more expensive to store the output than re-running a set of simulations.

Sanyal, Jibonananda [ORNL; New, Joshua Ryan [ORNL

2014-01-01T23:59:59.000Z

437

Assessing decision inputs in drug development between small, early stage companies and big pharma : is there is a difference?  

E-Print Network [OSTI]

The pipeline productivity challenge facing large, publicly traded pharmaceutical companies, collectively referred to as "Big Pharma," is well known. The unprecedented success Big Pharma achieved over the past few decades ...

Rippy, Daniel S. (Daniel Spensley)

2007-01-01T23:59:59.000Z

438

Big Data Frequent Pattern Mining David C. Anastasiu and Jeremy Iverson and Shaden Smith and George Karypis  

E-Print Network [OSTI]

Big Data Frequent Pattern Mining David C. Anastasiu and Jeremy Iverson and Shaden Smith and George with today, the so-called "Big Data". Web log data from social media sites such as Twitter produce over one

Karypis, George

439

Method for explosive expansion toward horizontal free faces for forming an in situ oil shale retort  

DOE Patents [OSTI]

Formation is excavated from within a retort site in formation containing oil shale for forming a plurality of vertically spaced apart voids extending horizontally across different levels of the retort site, leaving a separate zone of unfragmented formation between each pair of adjacent voids. Explosive is placed in each zone, and such explosive is detonated in a single round for forming an in situ retort containing a fragmented permeable mass of formation particles containing oil shale. The same amount of formation is explosively expanded upwardly and downwardly toward each void. A horizontal void excavated at a production level has a smaller horizontal cross-sectional area than a void excavated at a lower level of the retort site immediately above the production level void. Explosive in a first group of vertical blast holes is detonated for explosively expanding formation downwardly toward the lower void, and explosive in a second group of vertical blast holes is detonated in the same round for explosively expanding formation upwardly toward the lower void and downwardly toward the production level void for forming a generally T-shaped bottom of the fragmented mass.

Ricketts, Thomas E. (Bakersfield, CA)

1980-01-01T23:59:59.000Z

440

9/18/09 2:09 PM'Big Wave' Theory Offers Alternative to Dark Energy -Physical Science Page 1 of 3http://scienceblips.dailyradar.com/story/big_wave_theory_offers_alternative_to_dark_energy/  

E-Print Network [OSTI]

9/18/09 2:09 PM'Big Wave' Theory Offers Alternative to Dark Energy - Physical Science Page 1 of 3http://scienceblips.dailyradar.com/story/big_wave_theory_offers_alternative_to_dark_energy/ Gadget.com - 30 days ago 'Big Wave' Theory Offers Alternative to Dark Energy -- Mathematicians have proposed

Temple, Blake

Note: This page contains sample records for the topic "big explosives experimental" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Text-Alternative Version of Building America Webinar: Low-e Storms: The Next "Big Thing" in Window Retrofits  

Broader source: Energy.gov [DOE]

Low-e Storms:  The Next “Big Thing” in Window RetrofitsOfficial Webinar Transcript (September 9, 2014)

442

Big Bang Nucleosynthesis with Independent Neutrino Distribution Functions  

E-Print Network [OSTI]

We have performed new Big Bang Nucleosynthesis calculations which employ arbitrarily-specified, time-dependent neutrino and antineutrino distribution functions for each of up to four neutrino flavors. We self-consistently couple these distributions to the thermodynamics, the expansion rate and scale factor-time/temperature relationship, as well as to all relevant weak, electromagnetic, and strong nuclear reaction processes in the early universe. With this approach, we can treat any scenario in which neutrino or antineutrino spectral distortion might arise. These scenarios might include, for example, decaying particles, active-sterile neutrino oscillations, and active-active neutrino oscillations in the presence of significant lepton numbers. Our calculations allow lepton numbers and sterile neutrinos to be constrained with observationally-determined primordial helium and deuterium abundances. We have modified a standard BBN code to perform these calculations and have made it available to the community.

Christel J. Smith; George M. Fuller; Michael S. Smith

2008-12-06T23:59:59.000Z

443

Why not only electric discharge but even a minimum charge on the surface of highly sensitive explosives can catalyze their gradual exothermic decomposition and how a cloud of unipolar charged explosive particles turns into ball lightning  

E-Print Network [OSTI]

Even a single excess electron or ion migrating on the surface of sensitive explosives can catalyze their gradual exothermic decomposition. Mechanisms underlying such a charge-induced gradual thermal decomposition of highly sensitive explosives can be different. If sensitive explosive is a polar liquid, intense charge-dipole attraction between excess surface charges and surrounding explosive molecules can result in repetitive attempts of solvation of these charges by polar explosive molecules. Every attempt of such uncompleted nonequilibrium solvation causes local exothermic decomposition of thermolabile polar molecules accompanied by further thermal jumping unsolvated excess charges to new surface sites. Thus, ionized mobile hot spots emerge on charged explosive surface. Stochastic migration of ionized hot spots on explosive surface causes gradual exothermic decomposition of the whole mass of the polar explosive. The similar gradual charge-catalyzed exothermic decomposition of both polar and nonpolar highly sensitive explosives can be also caused by intense charge-dipole attacks of surrounding water vapor molecules electrostatically attracted from ambient humid air and strongly accelerated towards charged sites on explosive surfaces. Emission of electrons, photons and heat from ionized hot spots randomly migrating on charged surface of highly sensitive explosive aerosol nanoparticles converts such particles into the form of short-circuited thermionic nanobatteries.

Oleg Meshcheryakov

2013-07-17T23:59:59.000Z

444

Observation of shells in Coulomb explosions of rare-gas clusters  

SciTech Connect (OSTI)

The explosions of noble gas clusters from argon and xenon irradiated by intense 35-fs infrared laser pulses have been studied. The kinetic energy spectra of ions produced in small clusters (<700 atoms) show a two-mode shell structure that is attributed to originating from a radial charge distribution. With a simple classical particle simulation of Coulomb explosions, the energy structure was reproduced using information on the arrangement of charge in the cluster. It was found that, during the explosion, the inner atoms of the clusters were less ionized than the outer atoms.

Erk, B.; Hoffmann, K.; Kandadai, N.; Helal, A.; Keto, J.; Ditmire, T. [Texas Center for High Intensity Laser Science, Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

2011-04-15T23:59:59.000Z

445

A Model-Based Signal Processing Approach to Nuclear Explosion Monitoring  

SciTech Connect (OSTI)

This report describes research performed under Laboratory Research and Development Project 05-ERD-019, entitled ''A New Capability for Regional High-Frequency Seismic Wave Simulation in Realistic Three-Dimensional Earth Models to Improve Nuclear Explosion Monitoring''. A more appropriate title for this project is ''A Model-Based Signal Processing Approach to Nuclear Explosion Monitoring''. This project supported research for a radically new approach to nuclear explosion monitoring as well as allowed the development new capabilities in computational seismology that can contribute to NNSA/NA-22 Programs.

Rodgers, A; Harris, D; Pasyanos, M

2007-03-14T23:59:59.000Z

446

Hidden explosives detector employing pulsed neutron and x-ray interrogation  

DOE Patents [OSTI]

Methods and systems for the detection of small amounts of modern, highly-explosive nitrogen-based explosives, such as plastic explosives, hidden in airline baggage. Several techniques are employed either individually or combined in a hybrid system. One technique employed in combination is X-ray imaging. Another technique is interrogation with a pulsed neutron source in a two-phase mode of operation to image both nitrogen and oxygen densities. Another technique employed in combination is neutron interrogation to form a hydrogen density image or three-dimensional map. In addition, deliberately-placed neutron-absorbing materials can be detected.

Schultz, Frederick J. (Oak Ridge, TN); Caldwell, John T. (Los Alamos, NM)

1993-01-01T23:59:59.000Z

447

Hidden explosives detector employing pulsed neutron and x-ray interrogation  

DOE Patents [OSTI]

Methods and systems for the detection of small amounts of modern, highly-explosive nitrogen-based explosives, such as plastic explosives, hidden in airline baggage. Several techniques are employed either individually or combined in a hybrid system. One technique employed in combination is X-ray imaging. Another technique is interrogation with a pulsed neutron source in a two-phase mode of operation to image both nitrogen and oxygen densities. Another technique employed in combination is neutron interrogation to form a hydrogen density image or three-dimensional map. In addition, deliberately-placed neutron-absorbing materials can be detected.

Schultz, F.J.; Caldwell, J.T.

1993-04-06T23:59:59.000Z

448

Design of a telescope pointing and tracking subsystem for the Big Bear Solar Observatory New Solar Telescope  

E-Print Network [OSTI]

, California, U.S.A.; bNew Jersey Institute of Technology, Newark, New Jersey, U.S.A. ABSTRACT The New SolarDesign of a telescope pointing and tracking subsystem for the Big Bear Solar Observatory New Solar Telescope J. R. Varsika and G.Yangb aBig Bear Solar Observatory, 40386 North Shore Lane, Big Bear City

449

Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers  

SciTech Connect (OSTI)

We present a study of the spectral and angular dependence of scattered mid-infrared light from surfaces coated with explosives residues (TNT, RDX, and tetryl) detected at a 2 meter standoff distance. An external cavity quantum cascade laser provided tunable illumination between 7 and 8 µm. Important differences were identified in the spectral features between specular reflection and diffuse scattering which will impact most practical testing scenarios and complicate material identification. We discuss some of the factors influencing the dependence of observed spectra on the experimental geometry.

Suter, Jonathan D.; Bernacki, Bruce E.; Phillips, Mark C.

2012-09-01T23:59:59.000Z

450

An experimental investigation of the burning characteristics of water-oil emulsions  

SciTech Connect (OSTI)

An experimental investigation was conducted on the combustion characteristics of droplets of n-heptane, n-decane, n-dodecane, n-hexadecane and iso-octane emulsified with various amount of water and freely falling in a furnace of controlled temperature. Results demonstrate the intricate influences of water emulsification on the ignition, extinction and micro-explosion of the droplet response, and that the droplet burning time can be significantly reduced through judicious fuel blending so as to minimize the ignition delay and advance the onset of micro-explosion.

Wang, C.H.; Chen, J.T. [National Taiwan Univ., Taipei (Taiwan, Province of China). Dept. of Mechanical Engineering] [National Taiwan Univ., Taipei (Taiwan, Province of China). Dept. of Mechanical Engineering

1996-10-01T23:59:59.000Z

451

Symposium on Explosives and Pyrotechnics, 13th, Hilton Head Island, SC, Dec. 2-4, 1986, Proceedings  

SciTech Connect (OSTI)

The present conference on explosive and pyrotechnic technologies discusses the shock-sensitivity of RDX, the thermodynamic properties of RDX, TNT, nitroglycerine, and HMX energetic molecules, the dynamic resistivity of exploding conductors, the decomposition of azides, the critical shock-initiation energy of emulsion explosives, actuator valve optimization, pyrotechnic aerosolization from novel imbibed liquid matrices, tetrazole initiators, and polymeric binders for red phosphorus pellets. Also discussed are channel-effect studies, the dynamic desensitization of coal mine explosives, the electromagnetic and electrostatic protection of explosives, the reliability of fuze explosive trains, the hazardous properties of explosive chemicals, the emulsification of an explosive with a chemical foaming agent, and low energy ignition of HMX using a foil bridge.

Not Available

1987-01-01T23:59:59.000Z

452

Development and production of two explosive components using SCB technology  

SciTech Connect (OSTI)

For many years, explosive components have used hotwires to convert an electrical stimulus into the thermal energy required to initiate the device. A Semi-Conductor Bridge (SCB) performs the same function, but with the advantage of requiring approximately 1/10 the input energy of a comparable hotwire, while retaining excellent no-fire characteristics. The SCB also demonstrates faster function times due to its inherently-lower thermal mass. This paper discusses the development and production of two SCB-based devices, the MC4491 Initiator and the MC4492 Actuator. The initiator is designed to shock initiate a linear shaped charge by accelerating a thin metal plate across a small gap. The actuator functions several different components, serving as either an actuator by producing a rapidly expanding gas to activate piston mechanisms or as an ignitor by providing hot particles for initiating pyrotechnic mixtures. Details are provided on the construction of both devices, methods of assembly, and performance characteristics (function time, flyer velocity, pressure in a closed bomb, heat content, and no-fire and all-fire levels).

Tarbell, W.W.; Sanchez, D.H. [Sandia National Labs., Albuquerque, NM (United States); Oestreich, M.L.; Prentice, J.W. [Pacific Scientific, Inc., Chandler, AZ (United States). Energy Dynamics Div.

1995-05-01T23:59:59.000Z

453

Feedback effects of aspherical supernovae explosions on galaxies  

E-Print Network [OSTI]

We investigate how explosions of aspherical supernovae (A-SNe) can influence star formation histories and chemical evolution of dwarf galaxies by using a new chemodynamical model. We mainly present the numerical results of two comparative models so that the A-SN feedback effects on galaxies can be more clearly seen. SNe originating from stars with masses larger than 30M_sun are A-SNe in the "ASN" model whereas all SNe are spherical ones (S-SNe) in the "SSN" model. Each S-SN and A-SN are assumed to release feedback energy of 10^{51} erg and 10^{52} erg, respectively, and chemical yields and feedback energy of A-SN ejecta depend on angles between the axis of symmetry and the ejection directions. We find that star formation can become at least by a factor of ~3 lower in the ASN model in comparison with the SSN one owing to the more energetic feedback of A-SNe. As a result of this, chemical evolution can proceed very slowly in the ASN model. A-SN feedback effects can play a significant role in the formation of gi...

Bekki, Kenji; Tsujimoto, Takuji

2012-01-01T23:59:59.000Z

454

Molecules and materials for the optical detection of explosives and toxic chemicals  

E-Print Network [OSTI]

Optical chemosensing, especially using amplifying fluorescent polymers, can allow for the highly sensitive and selective vapor-phase detection of both explosives and highly toxic chemicals, including chemical warfare agents. ...

Thomas, Samuel William, III

2006-01-01T23:59:59.000Z

455

An assessment of the flammability and explosion potential of transuranic waste  

SciTech Connect (OSTI)

The explosion potential of transuranic (TRU) waste, destined for the Waste Isolation Pilot (WIPP), was recently examined in EEG-45. That investigation focused on the volatile organic compounds (VOCs) in the waste, particularly acetone, and concluded that an explosion due to the VOCs was unlikely. Recent evidence raises serious concerns about drums containing mixed radioactive hazardous waste bound for the WIPP. Static electricity generated by the plastic bags represents a potential ignition source for other fuels, such as methane gas or hydrogen gas, during transportation and during the test phase. The potential danger of explosion due to hydrogen gas or methane gas generation has not yet been resolved. This report investigates that potential hazard and examines documented ignitions, fires, explosions and incidents of overpressurization of containers at generating and storage sites planning to send transuranic waste to the WIPP for disposal. 68 refs., 6 figs.

Silva, M.

1991-06-01T23:59:59.000Z

456

Towards the development of an explosives detection system using Neutron Resonance Radiography  

E-Print Network [OSTI]

Detection of conventional explosives remains a challenge to air security, as indicated by recent reports detailing lapses in security screening and new requirements that mandate screening 100% of checked luggage. Neutron ...

Raas, Whitney

2007-01-01T23:59:59.000Z

457

Computer simulation and economic analysis for ammonia fiber explosion (AFEX) pretreatment process  

E-Print Network [OSTI]

The ammonia fiber explosion (AFFECT) process is a promising new pretreatment for enhancing the reactivity of lignocerulose materials with many advantages over existing processes. The material is soaked in high-pressure liquid ammonia for a few...

Wang, Lin

1996-01-01T23:59:59.000Z

458

Hydrogen Cylinder Storage Array Explosion Evaluations at the High Flux Isotope Reactor  

SciTech Connect (OSTI)

The safety analysis for a recently-installed cold neutron source at the High Flux Isotope Reactor (HFIR) involved evaluation of potential explosion consequences from accidental hydrogen jet releases that could occur from an array of hydrogen cylinders. The scope of the safety analysis involved determination of the release rate of hydrogen, the total quantity of hydrogen assumed to be involved in the explosion, the location of an ignition point or center of the explosion from receptors of interest, and the peak overpressure at the receptors. To evaluate the total quantity of hydrogen involved in the explosion, a 2D model was constructed of the jet concentration and a radial-axial integral over the jet cloud from the centerline to the flammability limit of 4% was used to determine the hydrogen mass to be used as a source term. The location of the point source was chosen as the peak of the jet centerline concentration profile. Consequences were assessed using a combination of three methods for estimating local overpressure as a function of explosion source strength and distance: the Baker-Strehlow method, the TNT-equivalence method, and the TNO method. Results from the explosions were assessed using damage estimates in screening tables for buildings and industrial equipment.

Cook, David Howard [ORNL] [ORNL; Griffin, Frederick P [ORNL] [ORNL; Hyman III, Clifton R [ORNL] [ORNL

2010-01-01T23:59:59.000Z

459

Quantification of non-ideal explosion violence with a shock tube  

SciTech Connect (OSTI)

There is significant interest in quantifying the blast violence associated with various nonideal explosions. Such data is essential to evaluate the damage potential of both explosive cookoff and terrorist explosive scenarios. We present a technique designed to measure the source energy associated with a non-ideal, asymmetrical, and three-dimensional explosion. A tube is used to confine and focus energy from a blast event into a one-dimensional, quasi-planar shock front. During propagation along the length of the tube, the wave is allowed to shocksteepen into a more ideal form. Pressure transducers then measure the shock overpressure as a function of the distance from the source. One-dimensional blast scaling theory allows calculation of the source energy from this data. This small-scale test method addresses cost and noise concerns as well as boosting and symmetry issues associated with large-scale, three-dimensional, blast arena tests. Results from both ideal explosives and non-ideal explosives are discussed.

Jackson, Scott I [Los Alamos National Laboratory; Hill, Larry G [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

460

Method for attenuating seismic shock from detonating explosive in an in situ oil shale retort  

DOE Patents [OSTI]

In situ oil shale retorts are formed in formation containing oil shale by excavating at least one void in each retort site. Explosive is placed in a remaining portion of unfragmented formation within each retort site adjacent such a void, and such explosive is detonated in a single round for explosively expanding formation within the retort site toward such a void for forming a fragmented permeable mass of formation particles containing oil shale in each retort. This produces a large explosion which generates seismic shock waves traveling outwardly from the blast site through the underground formation. Sensitive equipment which could be damaged by seismic shock traveling to it straight through unfragmented formation is shielded from such an explosion by placing such equipment in the shadow of a fragmented mass in an in situ retort formed prior to the explosion. The fragmented mass attenuates the velocity and magnitude of seismic shock waves traveling toward such sensitive equipment prior to the shock wave reaching the vicinity of such equipment.

Studebaker, Irving G. (Grand Junction, CO); Hefelfinger, Richard (Grand Junction, CO)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "big explosives experimental" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Dense Heterogeneous Continuum Model of Two-Phase Explosion Fields  

SciTech Connect (OSTI)

A heterogeneous continuum model is proposed to describe the dispersion of a dense Aluminum particle cloud in an explosion. Let {alpha}{sub 1} denote the volume fraction occupied by the gas and {alpha}{sub 2} the fraction occupied by the solid, satisfying the volume conservation relation: {alpha}{sub 1} + {alpha}{sub 2} = 1. When the particle phase occupies a non-negligible volume fraction (i.e., {alpha}{sub 2} > 0), additional terms, proportional to {alpha}{sub 2}, appear in the conservation laws for two-phase flows. These include: (i) a particle pressure (due to particle collisions), (ii) a corresponding sound speed (which produces real eigenvalues for the particle phase system), (iii) an Archimedes force induced on the particle phase (by the gas pressure gradient), and (iv) multi-particle drag effects (which enhance the momentum coupling between phases). These effects modify the accelerations and energy distributions in the phases; we call this the Dense Heterogeneous Continuum Model. A characteristics analysis of the Model equations indicates that the system is hyperbolic with real eigenvalues for the gas phase: {l_brace}v{sub 1}, v{sub 1} {+-} {alpha}{sub 1}{r_brace} and for the 'particle gas' phase: {l_brace}v{sub 2}, v{sub 2} {+-}{alpha}{sub 2}{r_brace} and the particles: {l_brace}v{sub 2}{r_brace}, where v{sub i} and {alpha}{sub i} denote the velocity vector and sound speed of phase i. These can be used to construct a high-order Godunov scheme to integrate the conservation laws of a dense heterogeneous continuum.

Kuhl, A L; Bell, J B

2010-04-07T23:59:59.000Z

462

Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring  

SciTech Connect (OSTI)

Compact maintenance free mechanical cooling systems are being developed to operate large volume (~570 cm3, ~3 kg, 140% or larger) germanium detectors for field applications. We are using a new generation of Stirling-cycle mechanical coolers for operating the very largest volume germanium detectors with absolutely no maintenance or liquid nitrogen requirements. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed five years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring (NEM). The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be utilized. These mechanically cooled germanium detector systems being developed here will provide the largest, most sensitive detectors possible for use with the RASA. To provide such systems, the appropriate technical fundamentals are being researched. Mechanical cooling of germanium detectors has historically been a difficult endeavor. The success or failure of mechanically cooled germanium detectors stems from three main technical issues: temperature, vacuum, and vibration. These factors affect one another. There is a particularly crucial relationship between vacuum and temperature. These factors will be experimentally studied both separately and together to insure a solid understanding of the physical limitations each factor places on a practical mechanically cooled germanium detector system for field use. Using this knowledge, a series of mechanically cooled germanium detector prototype systems are being designed and fabricated. Our collaborators at Pacific Northwest National Laboratory (PNNL) will evaluate these detector systems on the bench top and eventually in RASA systems to insure reliable and practical operation.

Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.; Bowyer, Ted W.

2006-09-21T23:59:59.000Z

463

Tax Credits Give Thin-Film Solar a Big Boost | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Thin-Film Solar a Big Boost October 18, 2010 - 2:00pm Addthis MiaSol will expand its capacity to make its thin-film solar panels by more than ten times, thanks to two Recovery...

464

Stochastic approximation vis-a-vis online learning for big data analytics  

E-Print Network [OSTI]

big data applications such as real-time medical imaging, smart cities, network state visualization and anomaly detection (e.g., in the power grid and the Internet), health informatics for personalized

Giannakis, Georgios

465

The Decay of the Neutron or Beta Decay, the Big Bang, and the...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Decay of the Neutron or Beta Decay, the Big Bang, and the Left-Handed Universe Apr 03 2014 01:00 PM - 02:30 PM Geoffrey L. Greene Physics Division, ORNL Research Accelerator...

466

Big Data for Disease Control: Interdisciplinary approaches to data linkage and management   

E-Print Network [OSTI]

The source of tremendous promise and unsettling surveillance alike, the term ‘Big Data’ has attracted substantial public attention in recent years, garnering widespread press coverage and debate in equal measure. In reality it is like any other...

Lee, Shona Jane

2014-08-26T23:59:59.000Z

467

Black Rocks, Brown Clouds and the Borderlands: Air Quality and the Making of the Big Bend  

E-Print Network [OSTI]

including choking pollution in Mexico City. They dismissedpollution issues in the Big Bend region of the Texas-Mexicopollution in the park probably originated not only from northern Mexico

Donez, Francisco

2007-01-01T23:59:59.000Z

468

E-Print Network 3.0 - atlas big wheel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wheel Search Powered by Explorit Topic List Advanced Search Sample search results for: atlas big wheel Page: << < 1 2 3 4 5 > >> 1 A Slip Model for the Spherical Actuation of the...

469

Microsoft Word - CX-Big Eddy-Redmond-WoodPolesFY13_WEB.doc  

Broader source: Energy.gov (indexed) [DOE]

4, 2013 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Richard Heredia Project Manager - TEP-TPP-1 Proposed Action: Big Eddy-Redmond No. 1 Wood Pole...

470

Modified big bang nucleosynthesis with non-standard neutron sources  

E-Print Network [OSTI]

During big bang nucleosynthesis, any injection of extra neutrons around the time of the $^7$Be formation, i.e. at a temperature of order $T \\simeq 50$~keV, can reduce the predicted freeze-out amount of $^7$Be + $^7$Li that otherwise remains in sharp contradiction with the Spite plateau value inferred from the observations of Pop II stars. However, the growing confidence in the primordial D/H determinations puts a strong constraint on any such scenario. We address this issue in detail, analyzing different temporal patterns of neutron injection, such as decay, annihilation, resonant annihilation, and oscillation between mirror and standard model world neutrons. For this latter case, we derive the realistic injection pattern taking into account thermal effects (damping and refraction) in the primordial plasma. If the extra neutron supply is the sole non-standard mechanism operating during the BBN, the suppression of lithium abundance below Li/H~$\\leq 1.9 \\times 10^{-10}$ always leads to the overproduction of deuterium, D/H~$\\geq 3.6 \\times 10^{-5}$, well outside the error bars suggested by recent observations.

Alain Coc; Maxim Pospelov; Jean-Philippe Uzan; Elisabeth Vangioni

2014-05-07T23:59:59.000Z

471

Big Bang Day : Afternoon Play - Torchwood: Lost Souls  

ScienceCinema (OSTI)

Martha Jones, ex-time traveller and now working as a doctor for a UN task force, has been called to CERN where they're about to activate the Large Hadron Collider. Once activated, the Collider will fire beams of protons together recreating conditions a billionth of a second after the Big Bang - and potentially allowing the human race a greater insight into what the Universe is made of. But so much could go wrong - it could open a gateway to a parallel dimension, or create a black hole - and now voices from the past are calling out to people and scientists have started to disappear... Where have the missing scientists gone? What is the secret of the glowing man? What is lurking in the underground tunnel? And do the dead ever really stay dead? Lost Souls is a spin-off from the award-winning BBC Wales TV production Torchwood. It stars John Barrowman, Freema Agyeman, Eve Myles, Gareth David-Lloyd, Lucy Montgomery (of Titty Bang Bang) and Stephen Critchlow.

None

2011-04-25T23:59:59.000Z

472

The NACRE Thermonuclear Reaction Compilation and Big Bang Nucleosynthesis  

E-Print Network [OSTI]

The theoretical predictions of big bang nucleosynthesis (BBN) are dominated by uncertainties in the input nuclear reaction cross sections. In this paper, we examine the impact on BBN of the recent compilation of nuclear data and thermonuclear reactions rates by the NACRE collaboration. We confirm that the adopted rates do not make large overall changes in central values of predictions, but do affect the magnitude of the uncertainties in these predictions. Therefore, we then examine in detail the uncertainties in the individual reaction rates considered by NACRE. When the error estimates by NACRE are treated as 1\\sigma limits, the resulting BBN error budget is similar to those of previous tabulations. We propose two new procedures for deriving reaction rate uncertainties from the nuclear data: one which sets lower limits to the error, and one which we believe is a reasonable description of the present error budget. We propagate these uncertainty estimates through the BBN code, and find that when the nuclear data errors are described most accurately, the resulting light element uncertainties are notably smaller than in some previous tabulations, but larger than others. Using these results, we derive limits on the cosmic baryon-to-photon ratio $\\eta$, and compare this to independent limits on $\\eta$ from recent balloon-borne measurements of the cosmic microwave background radiation (CMB). We discuss means to improve the BBN results via key nuclear reaction measurements and light element observations.

Richard H. Cyburt; Brian D. Fields; Keith A. Olive

2001-05-17T23:59:59.000Z

473

Too Big to Fail in the Local Group  

E-Print Network [OSTI]

We compare the dynamical masses of dwarf galaxies in the Local Group (LG) to the predicted masses of halos in the ELVIS suite of $\\Lambda$CDM simulations, a sample of 48 Galaxy-size hosts, 24 of which are in paired configuration similar to the LG. We enumerate unaccounted-for dense halos ($V_\\mathrm{max} \\gtrsim 25$ km s$^{-1}$) in these volumes that at some point in their histories were massive enough to have formed stars in the presence of an ionizing background ($V_\\mathrm{peak} > 30$ km s$^{-1}$). Within 300 kpc of the Milky Way, the number of unaccounted-for massive halos ranges from 2 - 25 over our full sample. Moreover, this "too big to fail" count grows as we extend our comparison to the outer regions of the Local Group: within 1.2 Mpc of either giant we find that there are 12-40 unaccounted-for massive halos. This count excludes volumes within 300 kpc of both the MW and M31, and thus should be largely unaffected by any baryonically-induced environmental processes. According to abundance matching -- s...

Garrison-Kimmel, Shea; Bullock, James S; Kirby, Evan N

2014-01-01T23:59:59.000Z

474

Seismic mapping of alluvial fans and sub-fan bedrock in Big Bend National Park, Texas  

E-Print Network [OSTI]

Layered Models Anomalous Time-Distance Plots Error Analysis Geologic Interpretations of Results CONCLUSIONS RECOMMENDATIONS REFERENCES ~ APPENDIX VITA 7 8 10 11 16 16 18 23 29 32 32 45 47 50 52 LIST OF FIGURES Figure Page 1 Ground...-water resource investigation study area Big Bend National Park, Texas 2 Location of seismic surveys within the Big Bend study area 3 Comparison of seismic surveys to driller's logs 12 4 Hypothetical three-layer case with dipping layers 20 5 Representative...

Monti, Joseph

1984-01-01T23:59:59.000Z

475

Big Problems. Big Results.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for aCould Work as Heat Shields (InsideProblems.

476

Biodegradation of high explosives on granular activated carbon [GAC]: Enhanced desorption of high explosives from GAC -- Batch studies  

SciTech Connect (OSTI)

Adsorption to GAC is an effective method for removing high explosives (HE) compounds from water, but no permanent treatment is achieved. Bioregeneration, which treats adsorbed contaminants by desorption and biodegradation, is being developed as a method for reducing GAC usage rates and permanently degrading RDX and HMX. Because desorption is often the limiting mass transfer mechanism in bioregeneration systems, several methods for increasing the rate and extent of desorption of RDX and HMX are being studied. These include use of cosolvents (methanol and ethanol), surfactants (both anionic and nonionic), and {beta}- and {gamma}-cyclodextrins. Batch experiments to characterize the desorption of these HEs from GAC have been completed using Northwestern LB-830, the GAC being used at Pantex. Over a total of 11 days of desorption, about 3% of the adsorbed RDX was desorbed from the GAC using buffered water as the desorption fluid. In comparison, about 96% of the RDX was extracted from the GAC by acetonitrile over the same desorption period. Ethanol and methanol were both effective in desorbing RDX and HMX; higher alcohol concentrations were able to desorb more HE from the GAC. Surfactants varied widely in their abilities to enhance desorption of HEs. The most effective surfactant that was studied was sodium dodecyl sulfate (SDS), which desorbed 56.4% of the adsorbed RDX at a concentration of 500 mg SDS/L. The cyclodextrins that were used were marginally more effective than water. Continuous-flow column tests are underway for further testing the most promising of these methods. These results will be compared to column experiments that have been completed under baseline conditions (using buffered water as the desorption fluid). Results of this research will support modeling and design of further desorption and bioregeneration experiments.

Morley, M.C.; Speitel, G.E. Jr. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering

1999-03-01T23:59:59.000Z

477

[Experimental physics at Yale University: Research proposal and budget Proposal, 1 January 1992--31 December 1996  

SciTech Connect (OSTI)

This report reviews the following topics: nuclear and quark matter; correlated pairs from heavy ion collisions-search for new low mass resonances coupled to electron-positron collisions; proposed light ion research program; experimental nuclear astrophysics (explosive nucleosynthesis); search for rare decay modes and rare processes in nuclei; and nuclear spectroscopy at the extremes of spin, isospin, and temperature. (LSP).

Not Available

1992-07-01T23:59:59.000Z

478

(Experimental physics at Yale University: Research proposal and budget Proposal, 1 January 1992--31 December 1996)  

SciTech Connect (OSTI)

This report reviews the following topics: nuclear and quark matter; correlated pairs from heavy ion collisions-search for new low mass resonances coupled to electron-positron collisions; proposed light ion research program; experimental nuclear astrophysics (explosive nucleosynthesis); search for rare decay modes and rare processes in nuclei; and nuclear spectroscopy at the extremes of spin, isospin, and temperature. (LSP).

Not Available

1992-01-01T23:59:59.000Z

479

A hydrodynamic model for asymmetric explosions of rapidly rotating collapsing supernovae with a toroidal atmosphere  

E-Print Network [OSTI]

We numerically solved the two-dimensional axisymmetric hydrodynamic problem of the explosion of a low-mass neutron star in a circular orbit. In the initial conditions, we assumed a nonuniform density distribution in the space surrounding the collapsed iron core in the form of a stationary toroidal atmosphere that was previously predicted analytically and computed numerically. The con?guration of the exploded neutron star itself was modeled by a torus with a circular cross section whose central line almost coincided with its circular orbit. Using an equation of state for the stellar matter and the toroidal atmosphere in which the nuclear statistical equilibrium conditions were satisfied, we performed a series of numerical calculations that showed the propagation of a strong divergent shock wave with a total energy of 0.2x10^51 erg at initial explosion energy release of 1.0x10^51 erg. In our calculations, we rigorously took into account the gravitational interaction, including the attraction from a higher-mass (1.9M_solar) neutron star located at the coordinate origin, in accordance with the rotational explosion mechanism for collapsing supernovae.W e compared in detail our results with previous similar results of asymmetric supernova explosion simulations and concluded that we found a lower limit for the total explosion energy.

V. S. Imshennik; K. V. Manukovskii

2004-11-16T23:59:59.000Z

480

Clean, agile alternative binders, additives and plasticizers for propellant and explosive formulations  

SciTech Connect (OSTI)

As part of the Strategic Environmental Research and Development Program (SERDP) a clean, agile manufacturing of explosives, propellants and pyrotechniques (CANPEP) effort set about to identify new approaches to materials and processes for producing propellants, explosives and pyrotechniques (PEP). The RDX based explosive PBXN-109 and gun propellant M-43 were identified as candidates for which waste minimization and recycling modifications might be implemented in a short time frame. The binders, additives and plasticizers subgroup identified cast non-curable thermoplastic elastomer (TPE) formulations as possible replacement candidates for these formulations. Paste extrudable explosives were also suggested as viable alternatives to PBXN-109. Commercial inert and energetic TPEs are reviewed. Biodegradable and hydrolyzable binders are discussed. The applicability of various types of explosive formulations are reviewed and some issues associated with implementation of recyclable formulations are identified. It is clear that some processing and weaponization modifications will need to be made if any of these approaches are to be implemented. The major advantages of formulations suggested here over PBXN-109 and M-43 is their reuse/recyclability. Formulations using TPE or Paste could by recovered from a generic bomb or propellant and reused if they met specification or easily reprocessed and sold to the mining industry.

Hoffman, D.M. [Lawrence Livermore National Lab., CA (United States); Hawkins, T.W. [Phillips Lab., Edwards AFB, CA (United States); Lindsay, G.A. [Naval Weapons Station, China Lake, CA (United States)] [and others

1994-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "big explosives experimental" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Pushing 1D CCSNe to explosions: model and SN 1987A  

E-Print Network [OSTI]

We report on a method, PUSH, for triggering core-collapse supernova explosions of massive stars in spherical symmetry. We explore basic explosion properties and calibrate PUSH such that the observables of SN1987A are reproduced. Our simulations are based on the general relativistic hydrodynamics code AGILE combined with the detailed neutrino transport scheme IDSA for electron neutrinos and ALS for the muon and tau neutrinos. To trigger explosions in the otherwise non-exploding simulations, we rely on the neutrino-driven mechanism. The PUSH method locally increases the energy deposition in the gain region through energy deposition by the heavy neutrino flavors. Our setup allows us to model the explosion for several seconds after core bounce. We explore the progenitor range 18-21M$_{\\odot}$. Our studies reveal a distinction between high compactness (HC) and low compactness (LC) progenitor models, where LC models tend to explore earlier, with a lower explosion energy, and with a lower remnant mass. HC models are...

Perego, A; Fröhlich, C; Ebinger, K; Eichler, M; Casanova, J; Liebendoerfer, M; Thielemann, F -K

2015-01-01T23:59:59.000Z

482

BWR ex-vessel steam explosion analysis with MC3D code  

SciTech Connect (OSTI)

A steam explosion may occur, during a severe reactor accident, when the molten core comes into contact with the coolant water. A strong enough steam explosion in a nuclear power plant could jeopardize the containment integrity and so lead to a direct release of radioactive material to the environment. To resolve the open issues in steam explosion understanding and modeling, the OECD program SERENA phase 2 was launched at the end of year 2007, focusing on reactor applications. To verify the progress made in the understanding and modeling of fuel coolant interaction key phenomena for reactor applications a reactor exercise has been performed. In this paper the BWR ex-vessel steam explosion study, which was carried out with the MC3D code in conditions of the SERENA reactor exercise for the BWR case, is presented and discussed. The premixing simulations were performed with two different jet breakup modeling approaches and the explosion was triggered also at the expected most challenging time. For the most challenging case, at the cavity wall the highest calculated pressure was {approx}20 MPa and the highest pressure impulse was {approx}90 kPa.s. (authors)

Leskovar, M. [Josef Stefan Inst., Jamova cesta 39, 1001 Ljubljana (Slovenia)

2012-07-01T23:59:59.000Z

483

9/18/09 2:43 PM'Big Wave' Theory Offers Alternative to Dark Energy // Current Page 1 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy.htm  

E-Print Network [OSTI]

9/18/09 2:43 PM'Big Wave' Theory Offers Alternative to Dark Energy // Current Page 1 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy.htm login | register |home tv shows schedule to Dark Energy // Current Page 2 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy

Temple, Blake

484

9/18/09 2:55 PMScienceNology: Big Wave Theory Offers Alternative to Dark Energy Page 1 of 5http://sciencenology.blogspot.com/2009/08/big-wave-theory-offers-alternative-to.html  

E-Print Network [OSTI]

9/18/09 2:55 PMScienceNology: Big Wave Theory Offers Alternative to Dark Energy Page 1 of 5http Offers Alternative to Dark Energy Page 2 of 5http://sciencenology.blogspot.com/2009/08/big-wave-theory-offers-alternative://sciencenology.blogspot.com/2009/08/big-wave-theory-offers-alternative-to.html home posts rss comments rss edit Home Applied

Temple, Blake

485

Stress wave propagationin the site 12 hydraulic/explosive fracturing experiment  

SciTech Connect (OSTI)

The Site 12 experiment was a heavily instrumented field event performed to examine the hydraulic/explosive fracturing concept for preparing an underground oil shale bed for true in situ processing. One of the key phases of this fracturing concept is the blasting operation which involves the insertion and detonation of slurry explosive in a pre-formed system of hydrofractures. To obtain a sound understanding of the nature of the blasting operations, a rather extensive array of stress gages, accelerometers, and time-of-arrival gages was installed in the rock mass in the vacinity of the explosive to monitor the dynamic events initiated by the detonation. These gages provided considerable amounts of information which were useful in evaluating overall results of the experiment. Details of the gage array, of the data, of analysis methods, and of the results and conclusions are considered in the report.

Boade, R. R.; Reed, R. P.

1980-05-01T23:59:59.000Z

486

SN 2009ip: Constraining the latest explosion properties by its late-phase light curve  

E-Print Network [OSTI]

We constrain the explosion and circumstellar properties at the 2012b event of SN 2009ip based on its late-phase bolometric light curve recently reported. The explosion energy and ejected mass at the 2012b event are estimated as 0.02 Msun and 2e49 erg, respectively. The circumstellar medium is assumed to have two components: an inner shell and an outer wind. The inner shell which is likely created at the 2012a event has 0.2 Msun. The outer wind is created by the wind mass loss before the 2012a mass ejection, and the progenitor is estimated to have had the mass-loss rate about 0.1 Msun/yr with the wind velocity 550 km/s before the 2012a event. The estimated explosion energy and ejected mass indicate that the 2012b event is not caused by a regular supernova.

Moriya, Takashi J

2015-01-01T23:59:59.000Z

487

EVIDENCE OF EXPLOSIVE EVAPORATION IN A MICROFLARE OBSERVED BY HINODE/EIS  

SciTech Connect (OSTI)

We present a detailed study of explosive chromospheric evaporation during a microflare which occurred on 2007 December 7 as observed with the Extreme-ultraviolet Imaging Spectrometer on board Hinode. We find temperature-dependent upflows for lines formed from 1.0 to 2.5 MK and downflows for lines formed from 0.05 to 0.63 MK in the impulsive phase of the flare. Both the line intensity and the nonthermal line width appear enhanced in most of the lines and are temporally correlated with the evaporation velocity. Our results are consistent with the numerical simulations of flare models, which take into account a strong nonthermal electron beam in producing the explosive chromospheric evaporation. The explosive evaporation observed in this microflare implies that the same dynamic processes may exist in events with very different magnitudes.

Chen, F.; Ding, M. D., E-mail: dmd@nju.edu.c [Department of Astronomy, Nanjing University, Nanjing 210093 (China)

2010-11-20T23:59:59.000Z

488

Experimental astrophysics with high power lasers and Z pinches  

SciTech Connect (OSTI)

With the advent of high energy density (HED) experimental facilities, such as high-energy lasers and fast Z-pinch, pulsed-power facilities, mm-scale quantities of matter can be placed in extreme states of density, temperature, and/or velocity. This has enabled the emergence of a new class of experimental science, HED laboratory astrophysics, wherein the properties of matter and the processes that occur under extreme astrophysical conditions can be examined in the laboratory. Areas particularly suitable to this class of experimental astrophysics include the study of opacities relevant to stellar interiors; equations of state relevant to planetary interiors; strong shock driven nonlinear hydrodynamics and radiative dynamics, relevant to supernova explosions and subsequent evolution; protostellar jets and high Mach-number flows; radiatively driven molecular clouds and nonlinear photoevaporation front dynamics; and photoionized plasmas relevant to accretion disks around compact objects, such as black holes and neutron stars.

Remington, B A; Drake, R P; Ryutov, D D

2004-12-10T23:59:59.000Z

489

Explosive Contamination from Substrate Surfaces: Differences and Similarities in Contamination Techniques using RDX and C-4  

SciTech Connect (OSTI)

The amount of time that an explosive is present on the surface of a material is dependent upon the original amount of explosive on the surface, temperature, humidity, rain, etc. This laboratory study focused on looking at similarities and differences in three different surface contamination techniques that are used when performance testing explosive trace detection equipment in an attempt to determine how effective the techniques are at replicating actual field samples. The three techniques used were dry transfer deposition of solutions using the Transportation Security Laboratory (TSL) patented dry transfer techniques (US patent 6470730), direct deposition of explosive standards, and fingerprinting of actual explosives. Explosives were deposited on the surface of one of five substrates using one of the three different deposition techniques. The process was repeated for each surface type using each contamination technique. The surface types used were: 50% cotton/50% polyester as found in T-shirts, 100% cotton with a smooth surface such as that found in a cotton dress shirt, 100% cotton on a rough surface such as that found on canvas or denim, suede leather such as might be found on jackets, purses, or shoes, and metal obtained from a car hood at a junk yard. The samples were not pre-cleaned prior to testing and contained sizing agents, and in the case of the metal, oil and dirt. The substrates were photographed using a Zeiss Discover V12 stereoscope with Axiocam ICc1 3 megapixel digital camera to determine the difference in the crystalline structure and surface contamination in an attempt to determine differences and similarities associated with current contamination techniques.

C.J. Miller; T.S. Yoder

2010-06-01T23:59:59.000Z

490

Elevated levels of plasma Big endothelin-1 and its relation to hypertension and skin lesions in individuals exposed to arsenic  

SciTech Connect (OSTI)

Chronic arsenic (As) exposure affects the endothelial system causing several diseases. Big endothelin-1 (Big ET-1), the biological precursor of endothelin-1 (ET-1) is a more accurate indicator of the degree of activation of the endothelial system. Effect of As exposure on the plasma Big ET-1 levels and its physiological implications have not yet been documented. We evaluated plasma Big ET-1 levels and their relation to hypertension and skin lesions in As exposed individuals in Bangladesh. A total of 304 study subjects from the As-endemic and non-endemic areas in Bangladesh were recruited for this study. As concentrations in water, hair and nails were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The plasma Big ET-1 levels were measured using a one-step sandwich enzyme immunoassay kit. Significant increase in Big ET-1 levels were observed with the increasing concentrations of As in drinking water, hair and nails. Further, before and after adjusting with different covariates, plasma Big ET-1 levels were found to be significantly associated with the water, hair and nail As concentrations of the study subjects. Big ET-1 levels were also higher in the higher exposure groups compared to the lowest (reference) group. Interestingly, we observed that Big ET-1 levels were significantly higher in the hypertensive and skin lesion groups compared to the normotensive and without skin lesion counterpart, respectively of the study subjects in As-endemic areas. Thus, this study demonstrated a novel dose–response relationship between As exposure and plasma Big ET-1 levels indicating the possible involvement of plasma Big ET-1 levels in As-induced hypertension and skin lesions. -- Highlights: ? Plasma Big ET-1 is an indicator of endothelial damage. ? Plasma Big ET-1 level increases dose-dependently in arsenic exposed individuals. ? Study subjects in arsenic-endemic areas with hypertension have elevated Big ET-1 levels. ? Study subjects with arsenic-induced skin lesions show elevated plasma Big ET-1 levels. ? Arsenic-induced hypertension and skin lesions may be linked to plasma Big ET-1 levels.

Hossain, Ekhtear; Islam, Khairul; Yeasmin, Fouzia [Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi-6205 (Bangladesh)] [Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi-6205 (Bangladesh); Karim, Md. Rezaul [Department of Applied Nutrition and Food Technology, Islamic University, Kushtia-7003 (Bangladesh)] [Department of Applied Nutrition and Food Technology, Islamic University, Kushtia-7003 (Bangladesh); Rahman, Mashiur; Agarwal, Smita; Hossain, Shakhawoat; Aziz, Abdul; Al Mamun, Abdullah; Sheikh, Afzal; Haque, Abedul; Hossain, M. Tofazzal [Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi-6205 (Bangladesh)] [Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi-6205 (Bangladesh); Hossain, Mostaque [Department of Medicine, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders (BIRDEM), Dhaka (Bangladesh)] [Department of Medicine, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders (BIRDEM), Dhaka (Bangladesh); Haris, Parvez I. [Faculty of Health and Life Sciences, De Montfort University, Leicester, LE1 9BH (United Kingdom)] [Faculty of Health and Life Sciences, De Montfort University, Leicester, LE1 9BH (United Kingdom); Ikemura, Noriaki; Inoue, Kiyoshi; Miyataka, Hideki; Himeno, Seiichiro [Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770–8514 (Japan)] [Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770–8514 (Japan); Hossain, Khaled, E-mail: khossain69@yahoo.com [Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi-6205 (Bangladesh)] [Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi-6205 (Bangladesh)

2012-03-01T23:59:59.000Z

491

Developmental of a Vapor Cloud Explosion Risk Analysis Tool Using Exceedance Methodology  

E-Print Network [OSTI]

cloud explosions [4]. Lenoir and Davenport [5] have presented a review of many major incidents involving vapor cloud explosions worldwide from 1921 to 1991. Hydrocarbon materials such as ethane, ethylene, propane, and butane, which have been involved... are typically either in the form of gas, liquid, or two-phase. Examples of hydrocarbon gas releases are methane through butane, while liquid releases could be crude oil, diesel, jet fuel, or others. An example of a two-phase leak is condensate since it is a...

Alghamdi, Salem

2012-10-19T23:59:59.000Z

492

Characteristics of seismic waves from Soviet peaceful nuclear explosions in salt  

SciTech Connect (OSTI)

The report is carried out by the Institute for Dynamics of the Geospheres, Russian Academy of Sciences under contract NB280344 with Lawrence Livermore National Laboratory, University of California. The work includes investigation of seismic waves generation and propagation from Soviet peaceful underground nuclear explosions in salt based on the data from temporary and permanent seismic stations. The explosions were conducted at the sites Azgir and Vega within the territory of the Caspian depression of the Russian platform. The data used were obtained in the following conditions of conduction: epicentral distance range from 0 to 60 degrees, yields from 1 to 65 kt and depths of burial from 160 to 1500 m.

Adushkin, V.V.; Kaazik, P.B.; Kostyuchenko, V.N.; Kuznetsov, O.P.; Nedoshivin, N.I.; Rubinshtein, K.D.; Sultanov, D.D. [Academy of Sciences, Moscow (Russian Federation). Inst. for Dynamics of the Geospheres

1995-04-01T23:59:59.000Z

493

Hyperspectral Microscopy of Explosives Particles Using an External Cavity Quantum Cascade Laser  

SciTech Connect (OSTI)

Using infrared hyperspectral imaging, we demonstrate microscopy of small particles of the explosives compounds RDX, tetryl, and PETN with near diffraction-limited performance. The custom microscope apparatus includes an external cavity quantum cascade laser illuminator scanned over its tuning range of 9.13-10.53 µm in four seconds, coupled with a microbolometer focal plane array to record infrared transmission images. We use the hyperspectral microscopy technique to study the infrared absorption spectra of individual explosives particles, and demonstrate sub-nanogram detection limits.

Phillips, Mark C.; Bernacki, Bruce E.

2012-12-26T23:59:59.000Z

494

Planar blast scaling with condensed-phase explosives in a shock tube  

SciTech Connect (OSTI)

Blast waves are strong shock waves that result from large power density deposition into a fluid. The rapid energy release of high-explosive (HE) detonation provides sufficiently high power density for blast wave generation. Often it is desirable to quantify the energy released by such an event and to determine that energy relative to other reference explosives to derive an explosive-equivalence value. In this study, we use condensed-phase explosives to drive a blast wave in a shock tube. The explosive material and quantity were varied to produce blast waves of differing strengths. Pressure transducers at varying lengths measured the post-shock pressure, shock-wave arrival time and sidewall impulse associated with each test. Blast-scaling concepts in a one-dimensional geometry were then used to both determine the energy release associated with each test and to verify the scaling of the shock position versus time, overpressure versus distance, and impulse. Most blast scaling measurements to-date have been performed in a three-dimensional geometry such as a blast arena. Testing in a three-dimensional geometry can be challenging, however, as spherical shock-wave symmetry is required for good measurements. Additionally, the spherical wave strength decays rapidly with distance and it can be necessary to utilize larger (several kg) quantities of explosive to prevent significant decay from occurring before an idealized blast wave has formed. Such a mode of testing can be expensive, require large quantities of explosive, and be limited by both atmospheric conditions (such as rain) and by noise complaints from the population density near the test arena. Testing is possible in more compact geometries, however. Non-planar blast waves can be formed into a quasi-planar shape by confining the shock diffraction with the walls of a shock tube. Regardless of the initial form, the wave shape will begin to approximate a planar front after successive wave reflections from the tube walls. Such a technique has previously been used to obtain blast scaling measurements in the planar geometry with gaseous explosives and the condensed-phase explosive nitroguanidine. Recently, there has been much interest in the blast characterization of various non-ideal high explosive (NIHE) materials. With non-ideals, the detonation reaction zone is significantly larger (up to several cm for ANFO) than more ideal explosives. Wave curvature, induced by charge-geometry, can significantly affect the energy release associated with NIHEs. To measure maximum NIHE energy release accurately, it is desirable to minimize any such curvature and, if possible, to overdrive the detonation shock to ensure completion of chemical reactions ahead of the sonic locus associated with the reaction zone. This is achieved in the current study through use of a powerful booster HE and a charge geometry consisting of short cylindrical lengths of NIHE initiated along the charge centerline.

Jackson, Scott L [Los Alamos National Laboratory

2011-01-25T23:59:59.000Z

495

Methane Bioattenuation and Implications for Explosion Risk Reduction along the Groundwater to Soil Surface Pathway above a  

E-Print Network [OSTI]

Methane Bioattenuation and Implications for Explosion Risk Reduction along the Groundwater to Soil aquifers, which could pose an explosion risk if methane migrates into enclosed spaces where ignitable table. Despite methane concentrations within the ethanol plume reaching saturated levels (20-23 mg

Alvarez, Pedro J.

496

Analysis, comparison, and modeling of radar interferometry, date of surface deformation signals associated with underground explosions, mine collapses and earthquakes. Phase I: underground explosions, Nevada Test Site  

SciTech Connect (OSTI)

We have previously presented simple elastic deformation modeling results for three classes of seismic events of concern in monitoring the CTBT--underground explosions, mine collapses and earthquakes. Those results explored the theoretical detectability of each event type using synthetic aperture radar interferometry (InSAR) based on commercially available satellite data. In those studies we identified and compared the characteristics of synthetic interferograms that distinguish each event type, as well the ability of the interferograms to constrain source parameters. These idealized modeling results, together with preliminary analysis of InSAR data for the 1995 mb 5.2 Solvay mine collapse in southwestern Wyoming, suggested that InSAR data used in conjunction with regional seismic monitoring holds great potential for CTBT discrimination and seismic source analysis, as well as providing accurate ground truth parameters for regional calibration events. In this paper we further examine the detectability and ''discriminating'' power of InSAR by presenting results from InSAR data processing, analysis and modeling of the surface deformation signals associated with underground explosions. Specifically, we present results of a detailed study of coseismic and postseismic surface deformation signals associated with underground nuclear and chemical explosion tests at the Nevada Test Site (NTS). Several interferograms were formed from raw ERS-1/2 radar data covering different time spans and epochs beginning just prior to the last U.S. nuclear tests in 1992 and ending in 1996. These interferograms have yielded information about the nature and duration of the source processes that produced the surface deformations associated with these events. A critical result of this study is that significant post-event surface deformation associated with underground nuclear explosions detonated at depths in excess of 600 meters can be detected using differential radar interferometry. An immediate implication of this finding is that underground nuclear explosions may not need to be captured coseismically by radar images acquired before and after an event in order to be detectable. This has obvious advantages in CTBT monitoring since suspect seismic events--which usually can be located within a 100 km by 100 km area of an ERS-1/2 satellite frame by established seismic methods-can be imaged after the event has been identified and located by existing regional seismic networks. Key Words: InSAR, SLC images, interferogram, synthetic interferogram, ERS-1/2 frame, phase unwrapping, DEM, coseismic, postseismic, source parameters.

Foxall, W; Vincent, P; Walter, W

1999-07-23T23:59:59.000Z

497

Conversion of the Big Hill geological site characterization report to a three-dimensional model.  

SciTech Connect (OSTI)

The Big Hill salt dome, located in southeastern Texas, is home to one of four underground oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Big Hill site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 14 oil storage caverns at the site. This work provides a realistic and internally consistent geologic model of the Big Hill site that can be used in support of future work.

Stein, Joshua S.; Rautman, Christopher Arthur

2003-02-01T23:59:59.000Z

498

Strategic Petroleum Reserve (SPR) geological site characterization report, Big Hill Salt Dome  

SciTech Connect (OSTI)

Geological and geophysical analyses of the Big Hill Salt Dome were performed to determine the suitability of this site for use in the Strategic Petroleum Reserve (SPR). Development of 140 million barrels (MMB) of storage capacity in the Big Hill Salt Dome is planned as part of the SPR expansion to achieve 750 MMB of storage capacity. Objectives of the study were to: (1) Acquire, evaluate, and interpret existing data pertinent to geological characterization of the Big Hill Dome; (2) Characterize the surface and near-surface geology and hydrology; (3) Characterize the geology and hydrology of the overlying cap rock; (4) Define the geometry and geology of the dome; (5) Determine the feasibility of locating and constructing 14 10-MMB storage caverns in the south portion of the dome; and (6) Assess the effects of natural hazards on the SPR site. Recommendations are included. (DMC)

Hart, R.J.; Ortiz, T.S.; Magorian, T.R.

1981-09-01T23:59:59.000Z

499

U.S. strategic petroleum reserve Big Hill 114 leak analysis 2012.  

SciTech Connect (OSTI)

This report addresses recent well integrity issues related to cavern 114 at the Big Hill Strategic Petroleum Reserve site. DM Petroleum Operations, M&O contractor for the U.S. Strategic Petroleum Reserve, recognized an apparent leak in Big Hill cavern well 114A in late summer, 2012, and provided written notice to the State of Texas as required by law. DM has since isolated the leak in well A with a temporary plug, and is planning on remediating both 114 A- and B-wells with liners. In this report Sandia provides an analysis of the apparent leak that includes: (i) estimated leak volume, (ii) recommendation for operating pressure to maintain in the cavern between temporary and permanent fixes for the well integrity issues, and (iii) identification of other caverns or wells at Big Hill that should be monitored closely in light of the sequence of failures there in the last several years.

Lord, David L.; Roberts, Barry L.; Lord, Anna C. Snider; Sobolik, Steven Ronald; Park, Byoung Yoon; Rudeen, David Keith [GRAM, Inc., Albuquerque, NM

2013-06-01T23:59:59.000Z

500

9/18/09 2:12 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 4http://digg.com/general_sciences/Big_Wave_Theory_Offers_Alternative_to_Dark_Energy  

E-Print Network [OSTI]

9/18/09 2:12 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 4http://digg.com/general_sciences/Big_Wave_Theory_Offers_Alternative_to_Dark_Energy show profanity settings Digg is a place Offers Alternative to Dark Energy space.com -- Mathematicians have proposed an alternative explanation

Temple, Blake