Sample records for bicarbonate sc sodium

  1. Sodium bicarbonate and Alkaten as buffers in beef cattle diets

    E-Print Network [OSTI]

    Boerner, Benedict Joseph

    1985-01-01T23:59:59.000Z

    SODIUM BICARBONATE AND ALKATEN AS BUFFERS IN BEEF CATTLE DIETS A Thesis by BENED ICT JOSEP H BOERNER Submitted to the Graduate College of Texas A8M University im partial fulfillment of the requirements for the degree of MASTER OF SC IENCE... August 1985 Major Subject: Nutrition SODIUM BICARBONATE AND ALKATEN AS BUFFERS IN BEEF CATTLE DIETS A thesis by BENEDICT JOSEPH BOERNER Approved as to style and content by: Flo M. Byers (Chairma of Committee) ~r( Gerald T. Schelling (Member...

  2. ORIGINAL RESEARCH Systematic family-wide analysis of sodium bicarbonate

    E-Print Network [OSTI]

    Hall, Randy A

    ORIGINAL RESEARCH Systematic family-wide analysis of sodium bicarbonate cotransporter NBCn1/SLC4A7/NBCn1 pulled down syntrophin c2 and con- versely GST/syntrophin c2 pulled down NBCn1. Moreover normally moves Na+ and HCO3 Ã? into cells and protects intracel- lular pH (pHi) from falling below normal

  3. Quantification of Kinetic Rate Law Parameters of Uranium Release from Sodium Autunite as a Function of Aqueous Bicarbonate Concentrations

    SciTech Connect (OSTI)

    Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn M.; Lagos, Leonel; Tansel, Berrin

    2013-09-05T23:59:59.000Z

    ABSTRACT: Hydrogen carbonate is one of the most significant components within the uranium geochemical cycle. In aqueous solutions, hydrogen carbonate forms strong complexes with uranium. As such, aqueous bicarbonate may significantly increase the rate of uranium release from uranium minerals. Quantifying the relationship of aqueous hydrogen carbonate solutions to the rate of uranium release during dissolution is critical to understanding the long-term fate of uranium within the environment. Single-pass flow-through (SPTF) experiments were conducted to estimate the rate of uranium release from Na meta-autunite as a function of bicarbonate solutions (0.0005-0.003 M) under the pH range of 6-11 and temperatures of 5-60oC. Consistent with the results of previous investigation, the rate of uranium release from sodium autunite exhibited minimal dependency on temperature; but were strongly dependent on pH and increasing concentrations of bicarbonate solutions. Most notably at pH 7, the rate of uranium release exhibited 370 fold increases relative to the rate of uranium release in the absence of bicarbonate. However, the effect of increasing concentrations of bicarbonate solutions on the release of uranium was significantly less under higher pH conditions. It is postulated that at high pH values, surface sites are saturated with carbonate, thus the addition of more bicarbonate would have less effect on uranium release. Results indicate the activation energies were unaffected by temperature and bicarbonate concentration variations, but were strongly dependent on pH conditions. As pH increased from 6 to 11, activation energy values were observed to decrease from 29.94 kJ mol-1 to 13.07 kJ mol-1. The calculated activation energies suggest a surface controlled dissolution mechanism.

  4. Effects of amounts and types of sodium bicarbonate in wheat flour tortillas

    E-Print Network [OSTI]

    Garza Casso, Jessica Beatriz

    2007-04-25T23:59:59.000Z

    with slower acting acids (van Wazer 1961). Fast acting acids are used as a leavener themselves (Le Baw 1982). 11 The chemical reactions of leavening acids that will be used in this study are as follows: 1) Sodium aluminum sulfate (SAS), NaAl (SO 4 ) 2...

  5. SC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited Release Printed March 2012B.Workshop on-- Sample4,7,SC

  6. In-Situ Method for Treating Residual Sodium

    DOE Patents [OSTI]

    Sherman, Steven R.; Henslee, S. Paul

    2005-07-19T23:59:59.000Z

    A unique process for deactivating residual sodium in Liquid Metal Fast Breeder Reactor (LMFBR) systems which uses humidified (but not saturated) carbon dioxide at ambient temperature and pressure to convert residual sodium into solid sodium bicarbonate.

  7. Influence of bicarbonate ions on the deterioration of mortar bars in sulfate solutions

    SciTech Connect (OSTI)

    Kunther, W., E-mail: Wolfgang.Kunther@empa.ch [Empa, Laboratory for Concrete and Construction Chemistry, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Lothenbach, B. [Empa, Laboratory for Concrete and Construction Chemistry, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland)] [Empa, Laboratory for Concrete and Construction Chemistry, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Scrivener, K. [EPFL, Laboratory of Construction Materials, CH-1015 Lausanne (Switzerland)] [EPFL, Laboratory of Construction Materials, CH-1015 Lausanne (Switzerland)

    2013-02-15T23:59:59.000Z

    This work investigates the influence of bicarbonate ions on the deterioration of cementitious material exposed to sulfate ions. Mortars based on a CEM I and on a CEM III/B cement were investigated. Experimental investigations were compared to thermodynamic modeling and phase characterization to understand the differences in deterioration. The presence of bicarbonate ions significantly reduced the expansion of the CEM I mortars. Thermodynamic modeling showed that at high concentrations of bicarbonate ettringite and gypsum become unstable. Microstructural characterization combined with information from thermodynamic modeling suggests that conditions of high supersaturation with respect to ettringite are unlikely in the samples exposed in solutions containing bicarbonate. Consequently, expansive forces are not generated by the crystallization pressure of ettringite. There was little expansion of the CEM III/B sample even in the sodium sulfate solution. In the bicarbonate solution this mortar showed a highly leached zone at the surface in which calcite was observed.

  8. Spatially tracking 13C labeled substrate (bicarbonate) accumulation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tracking 13C labeled substrate (bicarbonate) accumulation in microbial communities using laser ablation isotope ratio Spatially tracking 13C labeled substrate (bicarbonate)...

  9. tributed by bicarbonate (HCO3 ) and carbon-

    E-Print Network [OSTI]

    Kalas, Paul G.

    - tinental margin "biogeochemical reactor." Sea- level change also affected carbon sequestration through such as phosphorous may have caused a glacial-interglacial redistri- bution of carbon sequestration between the margin1982 tributed by bicarbonate (HCO3 ­) and carbon- ate (CO3 2­) ions, the main forms of dissolved

  10. The Structure of a Cyanobacterial Bicarbonate Transport Protein...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cyanobacterial Bicarbonate Transport Protein, CmpA. Abstract: Cyanobacteria, blue-green algae, are the most abundant autotrophs in aquatic environments and form the base of the...

  11. TThe {\\sc Majorana} Project

    E-Print Network [OSTI]

    The MAJORANA collaboration

    2009-10-23T23:59:59.000Z

    The {\\sc Majorana} Project, a neutrinoless double-beta decay experiment is described with an emphasis on the choice of Ge-detector configuration.

  12. Decommissioning of Experimental Breeder Reactor - II Complex, Post Sodium Draining

    SciTech Connect (OSTI)

    J. A. (Bart) Michelbacher; S. Paul Henslee; Collin J. Knight; Steven R. sherman

    2005-09-01T23:59:59.000Z

    The Experimental Breeder Reactor - II (EBR-II) was shutdown in September 1994 as mandated by the United States Department of Energy. This sodium-cooled reactor had been in service since 1964. The bulk sodium was drained from the primary and secondary systems and processed. Residual sodium remaining in the systems after draining was converted into sodium bicarbonate using humid carbon dioxide. This technique was tested at Argonne National Laboratory in Illinois under controlled conditions, then demonstrated on a larger scale by treating residual sodium within the EBR-II secondary cooling system, followed by the primary tank. This process, terminated in 2002, was used to place a layer of sodium bicarbonate over all exposed surfaces of sodium. Treatment of the remaining EBR-II sodium is governed by the Resource Conservation and Recovery Act (RCRA). The Idaho Department of Environmental Quality issued a RCRA Operating Permit in 2002, mandating that all hazardous materials be removed from EBR-II within a 10 year period, with the ability to extend the permit and treatment period for another 10 years. A preliminary plan has been formulated to remove the remaining sodium and NaK from the primary and secondary systems using moist carbon dioxide, steam and nitrogen, and a water flush. The moist carbon dioxide treatment was resumed in May 2004. As of August 2005, approximately 60% of the residual sodium within the EBR-II primary tank had been treated. This process will continue through the end of 2005, when it is forecast that the process will become increasingly ineffective. At that time, subsequent treatment processes will be planned and initiated. It should be noted that the processes and anticipated costs associated with these processes are preliminary. Detailed engineering has not been performed, and approval for these methods has not been obtained from the regulator or the sponsors.

  13. Growth Rate of Marine Microalgal Species using Sodium Bicarbonate for Biofuels 

    E-Print Network [OSTI]

    Gore, Matthew

    2013-08-05T23:59:59.000Z

    With additional research on species characteristics and continued work towards cost effective production methods, algae are viewed as a possible alternative biofuel crop to current feedstocks such as corn. Current open pond production methods...

  14. Effects of amounts and types of sodium bicarbonate in wheat flour tortillas 

    E-Print Network [OSTI]

    Garza Casso, Jessica Beatriz

    2007-04-25T23:59:59.000Z

    during baking of tortillas. Combinations of different levels and ratios of fast- and slow-release NBC did not yield significant improvements in tortilla properties. Tetrasodium pyrophosphate (TSPP, 0.15%) was added to modify protein functionality...

  15. Growth Rate of Marine Microalgal Species using Sodium Bicarbonate for Biofuels

    E-Print Network [OSTI]

    Gore, Matthew

    2013-08-05T23:59:59.000Z

    With additional research on species characteristics and continued work towards cost effective production methods, algae are viewed as a possible alternative biofuel crop to current feedstocks such as corn. Current open pond production methods...

  16. Thermochemical cyclic system for decomposing H/sub 2/O and/or CO/sub 2/ by means of cerium-titanium-sodium-oxygen compounds

    DOE Patents [OSTI]

    Bamberger, C.E.

    1980-04-24T23:59:59.000Z

    A thermochemical closed cyclic process for the decomposition of water and/or carbon dioxide to hydrogen and/or carbon monoxide begins with the reaction of ceric oxide (CeO/sub 2/), titanium dioxide (TiO/sub 2/) and sodium titanate (Na/sub 2/TiO/sub 3/) to form sodium cerous titanate (NaCeTi/sub 2/O/sub 6/) and oxygen. Sodium cerous titanate (NaCeTi/sub 2/O/sub 6/) reacted with sodium carbonate (Na/sub 2/CO/sub 3/) in the presence of steam, produces hydrogen. The same reaction, in the absence of steam, produces carbon monoxide. The products, ceric oxide and sodium titanate, obtained in either case, are treated with carbon dioxide and water to produce ceric oxide, titanium dioxide, sodium titanate, and sodium bicarbonate. After dissolving sodium bicarbonate from the mixture in water, the remaining insoluble compounds are used as starting materials for a subsequent cycle. The sodium bicarbonate can be converted to sodium carbonate by heating and returned to the cycle.

  17. M.Sc. Finance M.Sc. Investment and Finance

    E-Print Network [OSTI]

    Mottram, Nigel

    M.Sc. Finance M.Sc. Investment and Finance M.Sc. International Banking and Finance and M.Sc. International Accounting and Finance 2014-15 Introductory Meeting Information Welcome to the full-time postgraduate taught programmes for the Department of Accounting and Finance at the University of Strathclyde

  18. Sodium Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    for  Sodium  Ion  Batteries   One   of   the   challenges  of   sodium   ion   batteries   is   identification   of  for   use   in   batteries.   Our   recent   work   has  

  19. Tools for supercritical carbon dioxide cycle analysis and the cycle's applicability to sodium fast reactors

    E-Print Network [OSTI]

    Ludington, Alexander R. (Alexander Rockwell)

    2009-01-01T23:59:59.000Z

    The Sodium-Cooled Fast Reactor (SFR) and the Supercritical Carbon Dioxide (S-C0?) Recompression cycle are two technologies that have the potential to impact the power generation landscape of the future. In order for their ...

  20. The influence of copper and bicarbonate ions on the corrosion of aluminum alloys saline solutions

    E-Print Network [OSTI]

    Becerra-Diaz, Alcibiades

    1972-01-01T23:59:59.000Z

    THE INFLUENCE OF COPPER AND BICARBONATE IONS ON THE CORROSION OF ALUMINUM ALLOYS IN SALINE SOLUTIONS A Thesis by ALCIBIADES BECERRA-DIAZ Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE August 1972 Major Subject: Mechanical Engineerinq THE INFLUENCE OF COPPER AND BICARBONATE IONS ON THE CORROSION OF ALUMINUM ALLOYS IN SALINE SOLUTIONS A Thesis by ALCIBIADES BECERRA-DIAZ Approved as to sty1e...

  1. Effect of Sodium Carboxymethyl Celluloses on Water-catalyzed Self-degradation of 200-degree C-heated Alkali-Activated Cement

    SciTech Connect (OSTI)

    Sugama T.; Pyatina, T.

    2012-05-01T23:59:59.000Z

    We investigated the usefulness of sodium carboxymethyl celluloses (CMC) in promoting self-degradation of 200°C-heated sodium silicate-activated slag/Class C fly ash cementitious material after contact with water. CMC emitted two major volatile compounds, CO2 and acetic acid, creating a porous structure in cement. CMC also reacted with NaOH from sodium silicate to form three water-insensitive solid reaction products, disodium glycolate salt, sodium glucosidic salt, and sodium bicarbonate. Other water-sensitive solid reaction products, such as sodium polysilicate and sodium carbonate, were derived from hydrolysates of sodium silicate. Dissolution of these products upon contact with water generated heat that promoted cement’s self-degradation. Thus, CMC of high molecular weight rendered two important features to the water-catalyzed self-degradation of heated cement: One was the high heat energy generated in exothermic reactions in cement; the other was the introduction of extensive porosity into cement.

  2. New Ellenton, SC SRS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilverNephelineNeuralNew AdvancesNew Crystal40Aiken

  3. Highlights From SC11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbetand Modeling EricHighlights LANS invests

  4. SC e-journals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs Running jobsS2. ReceiptsSCSC LogosSC

  5. Sodium Titanates as Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    Anodes  for  Sodium  Ion  Batteries   Marca  M.  Doeff,  dual   intercalation   batteries   based   on   sodium  future   of   sodium  ion  batteries  will  be  discussed  

  6. The use of mannitol and/or sodium bicarbonate in the prevention of amphotericin B induced nephrotoxicity

    E-Print Network [OSTI]

    Troy, Gregory Clem

    1982-01-01T23:59:59.000Z

    and Posttreatment Urine acidification Values for All Treatment Groups Experiment IIL . . . . . . . . . . . . . . . . . , 24 Pretreatment and Posttreatment Values of Serum Urea Nitrogen for A& 1 Treatment Groups Experiment III . . . . 46 25 Pretreatment.... ' Approximately 2. 5 to 13% of an intravenous dose can be found in urine within the 16, 18 first 24 hours. ' Forty percent of the injected dose is excreted in 18 the urine within 7 days. The main route of elimination is through the bile. Amphotericin B can...

  7. SC Correspondence Control Center (SC CCC) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSC Correspondence Control Center (SC CCC)

  8. C.Sc. 131: Systems ArchitectureC.Sc. 131: Systems ArchitectureC.Sc. 131: Systems Architecture ---200620062006 Systems Architecture

    E-Print Network [OSTI]

    Cheverst, Keith

    1 C.Sc. 131: Systems ArchitectureC.Sc. 131: Systems ArchitectureC.Sc. 131: Systems Architecture --- 200620062006 C.Sc. 131: Systems Architecture Dr Keith Cheverst kc@comp.lancs.ac.uk C42, infolab C.Sc. 131: Systems ArchitectureC.Sc. 131: Systems ArchitectureC.Sc. 131: Systems Architecture --- 200620062006 CSc101

  9. SC Logos | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSC Correspondence Control Center (SCSC Logos

  10. SC Projects | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSC Correspondence Control Center (SCSC

  11. The influence of copper and bicarbonate ions on the corrosion of aluminum alloys saline solutions 

    E-Print Network [OSTI]

    Becerra-Diaz, Alcibiades

    1972-01-01T23:59:59.000Z

    Min. 99. 0 Remainder Remainder 1. Beryllium 0. 0008 Maximum for welding electrode and filler wire only ~Tem er The 1100-H14 Aluminum Alloy has been strain-hardened without supplementary thermal treatment. The 5052-H32 Aluminum Alloy has been...THE INFLUENCE OF COPPER AND BICARBONATE IONS ON THE CORROSION OF ALUMINUM ALLOYS IN SALINE SOLUTIONS A Thesis by ALCIBIADES BECERRA-DIAZ Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement...

  12. Evan Marshall Trevathan Admissible SC-Graphs

    E-Print Network [OSTI]

    Donnelly, Rob

    Evan Marshall Trevathan Admissible SC-Graphs Page 1 Admissible SC-Graphs Define: ( , )G ( 2)nB n ( 4)nD n ( 6,7,8)nE n 4F 2G 2H 3H #12;Evan Marshall Trevathan Admissible SC-Graphs Page 2 the form of a #12;Evan Marshall Trevathan Admissible SC-Graphs Page 3 "loop", like ,with no other

  13. Submersible sodium pump

    DOE Patents [OSTI]

    Brynsvold, G.V.; Lopez, J.T.; Olich, E.E.; West, C.W.

    1989-11-21T23:59:59.000Z

    An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates. 14 figs.

  14. DOE/SC-ARM-0606

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24,7,INL is aSC Lehman0606

  15. DOE/SC-ARM-0903

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24,7,INL is aSC

  16. NERSC Training at SC11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReports Usage Reports

  17. NERSC Training at SC11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReports Usage

  18. NERSC Training at SC11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReports UsageParallel

  19. NERSC Training at SC11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReports

  20. NERSC Training at SC11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReportsHPC Archive

  1. NERSC Training at SC12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReportsHPC Archive

  2. NERSC Training at SC12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReportsHPC ArchivePGAS

  3. NERSC Training at SC12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReportsHPC

  4. NERSC Training at SC12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReportsHPCProxy

  5. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    Anodes for Sodium Ion Batteries Identification of a suitabledevelopment of sodium ion batteries, because graphite, theanode for lithium ion batteries, does not undergo sodium

  6. B.Sc)1997,(,M.Sc)2001,(,Ph.D)2005( .2007

    E-Print Network [OSTI]

    Rimon, Elon

    1 " " " ' * '". B.Sc)1997,(,M.Sc)2001,(,Ph.D)2005( . .2007 )ETH. Fulbright)2003(, )2001( . High-Tech. : )machine learning(, , , , ,, . " B.Sc)1997(-M Competition. : , , , - . #12;4 " * '". )2003( Ph.D .Danish Technical University )1997(- M

  7. SC11 Education Program Applications due July 31

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SC11 Education Program Applications due July 31 SC11 Education Program Applications due July 31 June 9, 2011 by Francesca Verdier (0 Comments) Applications for the Education...

  8. Neutron fluence effects on SC coils and comments

    E-Print Network [OSTI]

    McDonald, Kirk

    SH#3 SH#4 SC#1-5 SC#6-10 SC#11-15 SC#1 7.9W 2.0W 1.0W 0.7W 0.9W 1.4W COMET NF/MC Same size SC wires to increase the SC wire temperature (may be up to the room temperature) to recover their property by anneal on SC#6-10 : 3.5 days HTS instead of resistive magnets looks no hope. #12;Anneal Effect: SC -Tc

  9. 222 Old Cherry Road Clemson, SC 29631

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    at the farm or purchased from commercial vendors. The birds housed at the farm are used for research, teaching Clemson,SC29634-0385 #12;Solar Brooder House The incubation/hatching facility is located in the Solar

  10. INTRA Programme B.Sc. Biotechnology

    E-Print Network [OSTI]

    Humphrys, Mark

    Analysis n Environmental Monitoring & Analysis n Waste Treatment Work Areas To date, Biotechnology Engineering Environmental Biotechnology Food Biotechnology RESEARCH PROJECT Literature Survey LaboratoryINTRA Programme B.Sc. Biotechnology Biotechnology is defined as the controlled and deliberate

  11. B.Sc.)(-M.Sc. )1989,1996.(Ph.D. )2001.( -,.

    E-Print Network [OSTI]

    Rimon, Elon

    " " " B.Sc.)(-M.Sc. )1989,1996.(Ph.D. )2001.( - ,. : - , , . - ,DTM;" Diplome d' Lngeneur)1990( - -Brussels Free University)1995( -Ph.D.)2000( . - )2001-2002( )2002( .-M.S.),1996( .M.S.)1998(-Ph.D.)2001( +) (-CALTECH. - -MIT)2001-2002(, Irvine

  12. ID-69 Sodium drain experiments

    SciTech Connect (OSTI)

    Johnston, D.C.

    1996-09-19T23:59:59.000Z

    This paper describes experiments to determine the sodium retention and drainage from the two key areas of an ID-69. This information is then used as the initiation point for guidelines of how to proceed with washing an ID-69 in the IEM Cell Sodium Removal System.

  13. Tables of thermodynamic properties of sodium

    SciTech Connect (OSTI)

    Fink, J.K.

    1982-06-01T23:59:59.000Z

    The thermodynamic properties of saturated sodium, superheated sodium, and subcooled sodium are tabulated as a function of temperature. The temperature ranges are 380 to 2508 K for saturated sodium, 500 to 2500 K for subcooled sodium, and 400 to 1600 K for superheated sodium. Tabulated thermodynamic properties are enthalpy, heat capacity, pressure, entropy, density, instantaneous thermal expansion coefficient, compressibility, and thermal pressure coefficient. Tables are given in SI units and cgs units.

  14. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca

    2014-01-01T23:59:59.000Z

    Company-v3832/Lithium-Ion-Batteries- Outlook-Alternative-Anodes for Sodium Ion Batteries Marca M. Doeff * , Jordirechargeable sodium ion batteries, particularly for large-

  15. SC e-journals About/FAQ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited Release Printed March 2012B.Workshop on--(SC) SC

  16. SC Federal Project Directors | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSC Correspondence Control Center (SC

  17. Simulation of sodium boiling experiments with THERMIT sodium version

    E-Print Network [OSTI]

    Huh, Kang Yul

    1982-01-01T23:59:59.000Z

    Natural and forced convection experiments(SBTF and French) are simulated with the sodium version of the thermal-hydraulic computer code THERMIT. Simulation is done for the test secti- -on with the pressure-velocity boundary ...

  18. INTRA Programme B.Sc. Applied Physics

    E-Print Network [OSTI]

    Humphrys, Mark

    INTRA Programme B.Sc. Applied Physics The Objective of this four-year, full-time degree is to produce graduates with a thorough understanding of physics, with an emphasis on modern technological areas: n Computer programming, mathematics and computational physics n Electronics and instrumentation n

  19. MASTQt UCRL-15515 S/C 5299101

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    tritium breeder. About 521 of the energy incident on the blanket is deposited in the front radial tone? MASTQt UCRL-15515 S/C 5299101 UCRL--15515 DE83 006557 MARS HIGH-TEMPERATURE BLANKET TRW, INC : December 1982 ·nwBcfTBOKar.nug' 4 #12;MASS HIGH TtHPERATUK BLANKET J» D. Gordon, D, B. Berwald, B. A

  20. S.C. Honors College Scholarships

    E-Print Network [OSTI]

    Almor, Amit

    Foley Thesis Support Fund Eligibility will be determined by Kay Banks, the Honors College Thesis the spring semester. Yes Fall 2014 Pearl Fernandes 803.777.2187 pefernan@mailbox.sc.edu James Gadsden Holmes IV Scholarship The James Gadsden Holmes IV Scholarship is awarded to a worthy incoming freshman. No N

  1. Ground beef shelf life assessment as influenced by sodium lactate, sodium propionate, sodium diacetate, and soy protein concentrate 

    E-Print Network [OSTI]

    Grones, Kelly Leann

    2000-01-01T23:59:59.000Z

    In phase I all-beef and soy-added ground beef patties containing sodium lactate, sodium propionate, and sodium diacetate at various levels and combinations were stored for nine months at -10°C. Upon cooking, the addition of sodium lactate increased...

  2. Equation of state of sodium

    SciTech Connect (OSTI)

    Fritz, J.N.; Olinger, B.

    1984-03-15T23:59:59.000Z

    The volume of sodium in the bcc structure was measured at 293 K to 9 GPa using a high pressure, x-ray diffraction technique. The compression of NaF was used as the pressure gauge. These data, the shock compression data of Rice and Bakanova et al., and the melting curve data of Luedemann and Kennedy, and Ivanov et al., are all used to establish a model for the equation of state of sodium.

  3. ISO/IEC JTC1/SC7 Software & Systems Engineering

    E-Print Network [OSTI]

    Kindler, Ekkart

    ISO/IEC JTC1/SC7 Software & Systems Engineering Secretariat: CANADA (SCC) Address reply to: ISO Notre Dame Ouest, Montréal, Québec Canada H3C 1K3 secretariat@jtc1-sc7.org www.jtc1-sc7.org ISO/IEC JTC1 Members Medium Acrobat No. of Pages 54 Note #12;ISO/IEC JTC1/SC7 WD 19509-2 Date 2005-07-03 Reference

  4. Studienordnung fr den Masterstudiengang (M.Sc.) ,,Health Care Management"

    E-Print Network [OSTI]

    Greifswald, Ernst-Moritz-Arndt-Universität

    Studienordnung für den Masterstudiengang (M.Sc.) ,,Health Care Management" an der Ernst- Moritz den Masterstudiengang (M.Sc.) ,,Health Care Management" als Sat- zung: Inhaltsverzeichnis § 1.Sc.) ,,Health Care Management" an der Ernst-Moritz-Arndt-Universität Greifswald vom 18.07.2006 das Studium

  5. Studienordnung fr den Masterstudiengang (M.Sc.) ,,Health Care Management"

    E-Print Network [OSTI]

    Greifswald, Ernst-Moritz-Arndt-Universität

    Studienordnung für den Masterstudiengang (M.Sc.) ,,Health Care Management" an der Ernst- Moritz den Masterstudiengang (M.Sc.) ,,Health Care Management" als Satzung: Inhaltsverzeichnis § 1.Sc.) ,,Health Care Management" an der Ernst-Moritz- Arndt-Universität Greifswald vom 18.07.2006 das Studium

  6. Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams. Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams. Abstract: Sodium ion (Na+) batteries...

  7. anticoagulant sodium citrate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pressure-velocity boundary ... Huh, Kang Yul 1982-01-01 38 Ground beef shelf life assessment as influenced by sodium lactate, sodium propionate, sodium diacetate, and soy...

  8. Proceedings of the ACM/IEEE SC97 Conference (SC'97) 0-89791-985-8/97 $ 17.00 1997 IEEE

    E-Print Network [OSTI]

    Brightwell, Ron

    Proceedings of the ACM/IEEE SC97 Conference (SC'97) 0-89791-985-8/97 $ 17.00 © 1997 IEEE #12;Proceedings of the ACM/IEEE SC97 Conference (SC'97) 0-89791-985-8/97 $ 17.00 © 1997 IEEE #12;Proceedings of the ACM/IEEE SC97 Conference (SC'97) 0-89791-985-8/97 $ 17.00 © 1997 IEEE #12;Proceedings of the ACM

  9. PHYSICS ASSEMBLY LABORATORY HAER NO. SC-43

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize832 2.860SelectedGLOWAGREEMENT

  10. SC Johnson Waxdale Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY) JumpLand FocusSC Johnson Waxdale Plant

  11. SC e-journals Contact page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited Release Printed March 2012B.Workshop on--(SC)

  12. SC e-journals Help page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited Release Printed March 2012B.Workshop on--(SC)Help

  13. Adsorption of Sodium Dodecyl Sulfate and Sodium Dodecyl Benzenesulfonate on Poly(Vinyl Chloride) Latexes

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Adsorption of Sodium Dodecyl Sulfate and Sodium Dodecyl Benzenesulfonate on Poly(Vinyl Chloride@cpe.fr #12;2 Abstract The adsorption of sodium dodecyl sulfate (SDS) and sodium dodecyl benzenesulfonate performed to determine the area per surfactant molecule at various temperatures (20-50ºC) and the adsorption

  14. Science Headlines | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    imageshighlights201502molecular-structure-thumb.jpg SC User Facility Combining computer simulations with laboratory measurements provides insights on molecular-level...

  15. Steam and Condensate System Optimization in Converse College, Spartanburg, SC

    E-Print Network [OSTI]

    Cruz, A.; Iordanova, N.; Stevenson, S.

    2007-01-01T23:59:59.000Z

    STEAM AND CONDENSATE SYSTEM OPTIMIZATION IN CONVERSE COLLEGE, SPARTANBURG, SC Alberto Cruz, CEM Nevena Iordanova, CEM Susan Stevenson Energy Systems Engineer Director of Engineering Services VP for Finance...

  16. Agenda | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    file (264KB) Links Databases Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown...

  17. Fire suppressing apparatus. [sodium fires

    DOE Patents [OSTI]

    Buttrey, K.E.

    1980-12-19T23:59:59.000Z

    Apparatus for smothering a liquid sodium fire comprises a pan, a perforated cover on the pan, and tubed depending from the cover and providing communication between the interior of the pan and the ambient atmosphere through the perforations in the cover. Liquid caught in the pan rises above the lower ends of the tubes and thus serves as a barrier which limits the amount of air entering the pan.

  18. Clemson University Water System System No, SC3910006

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Clemson University Water System System No, SC3910006 Clemson, SC 2008 Annual Water-Quality Report and reliable supply of high-quality drinking water. We test our water using sophisticated equipment

  19. Clemson University Water System System No, SC3910006

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Clemson University Water System System No, SC3910006 Clemson, SC 2004 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  20. Clemson University Water System System No, SC3910006

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Clemson University Water System System No, SC3910006 Clemson, SC 2005 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  1. Clemson University Water System System No, SC3910006

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    of microbial contaminants. Maximum Residual Disinfectant Level Goal or (MRDLG): The level of drinking water1 Clemson University Water System System No, SC3910006 Clemson, SC 2007 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  2. Fant's Grove Water System System No, SC390112

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Fant's Grove Water System System No, SC390112 Clemson, SC 2003 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  3. Clemson University Water System System No, SC3910006

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    of microbial contaminants. Maximum Residual Disinfectant Level Goal or (MRDLG): The level of drinking water1 Clemson University Water System System No, SC3910006 Clemson, SC 2006 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  4. Clemson University Water System System No, SC3910006

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Clemson University Water System System No, SC3910006 Clemson, SC 2003 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  5. Fant's Grove Water System System No, SC390112

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Fant's Grove Water System System No, SC390112 Clemson, SC 2004 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  6. Next Story > SC DMV lifting drivers' suspensions this week

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    The State Next Story > SC DMV lifting drivers' suspensions this week Researcher: Zombie fads peak COLUMBIA, S.C. -- Zombies seem to be everywhere these days. In the popular TV series "The Walking Dead at the University of California at Davis. Lauro said she keeps track of zombie movies, TV shows and video games

  7. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    DOE Patents [OSTI]

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

    2012-09-18T23:59:59.000Z

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

  8. A layered sodium titanate as promising anode material for sodium ion batteries

    E-Print Network [OSTI]

    Wu, Di, S.M. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Sodium ion batteries have recently received great attention for large-scale energy applications because of the abundance and low cost of sodium source. Although some cathode materials with desirable electrochemical properties ...

  9. Integrated dry NO{sub x}/SO{sub 2} emissions control system sodium-based dry sorbent injection test report. Test period: August 4, 1993--July 29, 1995

    SciTech Connect (OSTI)

    Smith, R.A.; Shimoto, G.H.; Muzio, L.J. [Fossil Energy Research Corp., Laguna Hills, CA (United States)] [Fossil Energy Research Corp., Laguna Hills, CA (United States); Hunt, T. [Public Service Co. of Colorado, Denver, CO (United States)] [Public Service Co. of Colorado, Denver, CO (United States)

    1997-04-01T23:59:59.000Z

    The project goal is to demonstrate up to 70% reductions in NOx and SO{sub 2} emissions through the integration of: (1) down-fired low-NOx burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NOx removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. This report documents the sixth phase of the test program, where the performance of dry sorbent injection with sodium compounds was evaluated as a SO{sub 2} removal technique. Dry sorbent injection was performed in-duct downstream of the air heater (ahead of the fabric filter), as well as at a higher temperature location between the economizer and air heater. Two sodium compounds were evaluated during this phase of testing: sodium sesquicarbonate and sodium bicarbonate. In-duct sodium injection with low levels of humidification was also investigated. This sixth test phase was primarily focused on a parametric investigation of sorbent type and feed rate, although boiler load and sorbent preparation parameters were also varied.

  10. Sodium Titanate Anodes for Dual Intercalation Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    for Dual Intercalation Batteries Lithium supply securityinterest in sodium-ion batteries. These devices operate muchsodium-ion or lithium-ion batteries that utilize them as

  11. SC In Your State | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1U CO1)Programs »PoliciesRSS FeedsSC In

  12. Connect with SC | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC) BESACU.S.Computational

  13. Official List of SC User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact of ResearchNPNSBabout/jobs/

  14. Precipitation in cold-rolled Al–Sc–Zr and Al–Mn–Sc–Zr alloys prepared by powder metallurgy

    SciTech Connect (OSTI)

    Vlach, M., E-mail: martin.vlach@mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, CZ-121 16 Prague (Czech Republic); Stulikova, I.; Smola, B.; Kekule, T.; Kudrnova, H.; Danis, S. [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, CZ-121 16 Prague (Czech Republic); Gemma, R. [King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, 23955-6900 Thuwal (Saudi Arabia); Ocenasek, V. [SVÚM a.s., Podnikatelská 565, CZ-190 11 Prague (Czech Republic); Malek, J. [Czech Technical University in Prague, Faculty of Mechanical Engineering, CZ-120 00 Prague (Czech Republic); Tanprayoon, D.; Neubert, V. [Institut für Materialprüfung und Werkstofftechnik, Freiberger Strasse 1, D-38678 Clausthal-Zellerfeld (Germany)

    2013-12-15T23:59:59.000Z

    The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 °C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al{sub 3}Sc and/or Al{sub 3}(Sc,Zr) particles precipitated during extrusion at 350 °C in the alloys studied. Additional precipitation of the Al{sub 3}Sc and/or Al{sub 3}(Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 °C. The precipitation of the Al{sub 6}Mn- and/or Al{sub 6}(Mn,Fe) particles of a size ? 1.0 ?m at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 °C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al{sub 3}Sc particles formation and/or coarsening and that of the Al{sub 6}Mn and/or Al{sub 6}(Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al{sub 3}Sc-phase and the Al{sub 6}Mn-phase precipitation. - Highlights: • The Mn, Sc and Zr additions to Al totally suppresses recrystallization at 550 °C. • The Sc,Zr-containing particle precipitation is slightly facilitated by cold rolling. • The Mn-containing particle precipitation is highly enhanced by cold rolling. • Cold rolling has no effect on activation energy of the Al{sub 3}Sc and Al{sub 6}Mn precipitation. • The texture development is affected by high solid solution strengthening by Mn.

  15. Nidc Orgchart | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833...

  16. ALCF contributes papers, posters, and more to SC14 | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a DOE Office of Science User Facility, will have a strong presence at the high-performance computing community's premier annual event, Nov. 16-21 in New Orleans. SC is the...

  17. FY 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Small Business Technology Transfer U.S. Department of Energy SC-29Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-5707 F: (301) 903-5488 E:...

  18. Prfungsordnung fr den Masterstudiengang (M.Sc.) ,,Health Care Management "

    E-Print Network [OSTI]

    Greifswald, Ernst-Moritz-Arndt-Universität

    Prüfungsordnung für den Masterstudiengang (M.Sc.) ,,Health Care Management " an der Ernst ,,Health Care Management" (HCM) als Satzung: Inhaltsverzeichnis § 1 Regelungsgegenstand § 2* Regelungsgegenstand (1) Diese Prüfungsordnung regelt das Prüfungsverfahren im Masterstudiengang ,,Health Care

  19. Thermoelectric Transport in a ZrN/ScN Superlattice

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    at Springerlink.com Thermoelectric Transport in a ZrN/ScNthe potential for a high thermoelectric ?gure of merit. Theexperimental studies of the thermoelectric transport in ZrN/

  20. Study of the reactivity of sodium compounds and Ca(OH){sub 2} towards SO{sub 2} and NO{sub x}

    SciTech Connect (OSTI)

    Mocke, K.; Stejskalova, K.; Bach, P. [J. Heyrovsky Institute of Physical Chemistry, Prague (Czechoslovakia)] [and others

    1995-06-01T23:59:59.000Z

    The J.Heyrovsky Institute of Physical Chemistry (IPC) has conducted a detailed basic research under contract to Solvay Company (Belgium) to examine the reactivity of solid substances towards acid gases (SO{sub 2},NO{sub x}) with the aim to find the best conditions for their efficient removal. The reactivity of different sodium compounds (sodium bicarbonate, active soda, sodium carbonate monohydrate, dense soda ash) and Ca(OH){sub 2} was examined in the reaction with sulphur dioxide in a broad range of experimental variables (temperature, gas composition). The reactivity of selected samples was investigated also in the reactions with gaseous mixtures containing SO{sub 2} and NO{sub x} in the dependence on temperature, SO{sub 2}/NO{sub x}, and NO/NO{sub 2} ratios and the hydrodynamic regime of the fixed bed flow reactor. Further, ESCA and SEM methods were used for the identification of solid reaction products and their evolution as a function of reaction parameters. It is shown that in the case of NaHCO{sub 3} precursor it is possible to achieve in average at least a 90 % SO{sub 2} and simultaneously an almost 50 % NO{sub x} removal. The results obtained are very promising with respect to the NaHCO{sub 3} utilization especially for the purification of waste gases from incinerators and power plants.

  1. High-capacity hydrogen storage in lithium and sodium amidoboranes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capacity hydrogen storage in lithium and sodium amidoboranes. High-capacity hydrogen storage in lithium and sodium amidoboranes. Abstract: A substantial effort worldwide has been...

  2. SciTech Connect: Thermodynamic and transport properties of sodium...

    Office of Scientific and Technical Information (OSTI)

    of state calculations on thermophysical properties of sodium have been included in this critical assessment. Thermodynamic properties of sodium liquid and vapor that have been...

  3. Density functional theory studies on theelectronic, structural, phonon dynamicaland thermo-stability properties of bicarbonates MHCO3, M D Li, Na, K

    SciTech Connect (OSTI)

    Duan, Yuhua; Zhang, Bo; Sorescu, Dan C.; Johnson, Karl; Majzoub, Eric H; Luebke, David R.

    2012-07-01T23:59:59.000Z

    The structural, electronic, phonon dispersion and thermodynamic properties of MHCO3 (M D Li, Na, K) solids were investigated using density functional theory. The calculated bulk properties for both their ambient and the high-pressure phases are in good agreement with available experimental measurements. Solid phase LiHCO3 has not yet been observed experimentally. We have predicted several possible crystal structures for LiHCO3 using crystallographic database searching and prototype electrostatic ground state modeling. Our total energy and phonon free energy .FPH/ calculations predict that LiHCO3 will be stable under suitable conditions of temperature and partial pressures of CO2 and H2O. Our calculations indicate that the HCO􀀀 3 groups in LiHCO3 and NaHCO3 form an infinite chain structure through O#1; #1; #1;H#1; #1; #1;O hydrogen bonds. In contrast, the HCO􀀀 3 anions form dimers, .HCO􀀀 3 /2, connected through double hydrogen bonds in all phases of KHCO3. Based on density functional perturbation theory, the Born effective charge tensor of each atom type was obtained for all phases of the bicarbonates. Their phonon dispersions with the longitudinal optical–transverse optical splitting were also investigated. Based on lattice phonon dynamics study, the infrared spectra and the thermodynamic properties of these bicarbonates were obtained. Over the temperature range 0–900 K, the FPH and the entropies (S) of MHCO3 (M D Li, Na, K) systems vary as FPH.LiHCO3/ > FPH.NaHCO3/ > FPH.KHCO3/ and S.KHCO3/ > S.NaHCO3/ > S.LiHCO3/, respectively, in agreement with the available experimental data. Analysis of the predicted thermodynamics of the CO2 capture reactions indicates that the carbonate/bicarbonate transition reactions for Na and K could be used for CO2 capture technology, in agreement with experiments.

  4. A resting bottom sodium cooled fast reactor

    SciTech Connect (OSTI)

    Costes, D. [Consultant (France)

    2012-07-01T23:59:59.000Z

    This follows ICAPP 2011 paper 11059 'Fast Reactor with a Cold Bottom Vessel', on sodium cooled reactor vessels in thermal gradient, resting on soil. Sodium is frozen on vessel bottom plate, temperature increasing to the top. The vault cover rests on the safety vessel, the core diagrid welded to a toric collector forms a slab, supported by skirts resting on the bottom plate. Intermediate exchangers and pumps, fixed on the cover, plunge on the collector. At the vessel top, a skirt hanging from the cover plunges into sodium, leaving a thin circular slit partially filled by sodium covered by argon, providing leak-tightness and allowing vessel dilatation, as well as a radial relative holding due to sodium inertia. No 'air conditioning' at 400 deg. C is needed as for hanging vessels, and this allows a large economy. The sodium volume below the slab contains isolating refractory elements, stopping a hypothetical corium flow. The small gas volume around the vessel limits any LOCA. The liner cooling system of the concrete safety vessel may contribute to reactor cooling. The cold resting bottom vessel, proposed by the author for many years, could avoid the complete visual inspection required for hanging vessels. However, a double vessel, containing support skirts, would allow introduction of inspecting devices. Stress limiting thermal gradient is obtained by filling secondary sodium in the intermediate space. (authors)

  5. Kinetics of wet sodium vapor complex plasma

    SciTech Connect (OSTI)

    Mishra, S. K., E-mail: nishfeb@rediffmail.com [Institute for Plasma Research (IPR), Gandhinagar 382428 (India); Sodha, M. S. [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)] [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)

    2014-04-15T23:59:59.000Z

    In this paper, we have investigated the kinetics of wet (partially condensed) Sodium vapor, which comprises of electrons, ions, neutral atoms, and Sodium droplets (i) in thermal equilibrium and (ii) when irradiated by light. The formulation includes the balance of charge over the droplets, number balance of the plasma constituents, and energy balance of the electrons. In order to evaluate the droplet charge, a phenomenon for de-charging of the droplets, viz., evaporation of positive Sodium ions from the surface has been considered in addition to electron emission and electron/ion accretion. The analysis has been utilized to evaluate the steady state parameters of such complex plasmas (i) in thermal equilibrium and (ii) when irradiated; the results have been graphically illustrated. As a significant outcome irradiated, Sodium droplets are seen to acquire large positive potential, with consequent enhancement in the electron density.

  6. Radial power flattening in sodium fast reactors

    E-Print Network [OSTI]

    Krentz-Wee, Rebecca (Rebecca Elizabeth)

    2012-01-01T23:59:59.000Z

    In order to improve a new design for a uranium startup sodium cooled fast reactor which was proposed at MIT, this thesis evaluated radial power flattening by varying the fuel volume fraction at a fixed U-235 enrichment of ...

  7. Low-Pressure Sodium Lighting Basics

    Broader source: Energy.gov [DOE]

    Low-pressure sodium lighting provides more energy-efficient outdoor lighting than high-intensity discharge lighting, but it has very poor color rendition. Typical applications include highway and security lighting, where color is not important.

  8. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of Science (SC)

  9. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of Science (SC)About »

  10. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of Science (SC)About »About

  11. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of Science (SC)About

  12. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of Science (SC)AboutAbout »

  13. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of Science (SC)AboutAbout

  14. February 2007 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National LaboratoryJeffrey L KrauseEarthJuly 2007(SC)(SC)

  15. February 2008 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National LaboratoryJeffrey L KrauseEarthJuly 2007(SC)(SC)8

  16. Vignettes | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC) The(SC)andVignettes

  17. What's New | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC) The(SC)andVignettesNew

  18. What's New | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC) The(SC)andVignettesNew

  19. What's New | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC) The(SC)andVignettesNew

  20. 2012 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX1 DiscoveryScience (SC)

  1. Method and system for producing hydrogen using sodium ion separation membranes

    DOE Patents [OSTI]

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M; Frost, Lyman

    2013-05-21T23:59:59.000Z

    A method of producing hydrogen from sodium hydroxide and water is disclosed. The method comprises separating sodium from a first aqueous sodium hydroxide stream in a sodium ion separator, feeding the sodium produced in the sodium ion separator to a sodium reactor, reacting the sodium in the sodium reactor with water, and producing a second aqueous sodium hydroxide stream and hydrogen. The method may also comprise reusing the second aqueous sodium hydroxide stream by combining the second aqueous sodium hydroxide stream with the first aqueous sodium hydroxide stream. A system of producing hydrogen is also disclosed.

  2. Effects of sodium lactate and sodium propionate on the sensory, microbial, and chemical characteristics of fresh aerobically stored ground beef

    E-Print Network [OSTI]

    Eckert, Laura Anne

    1995-01-01T23:59:59.000Z

    Coarse ground beef was mixed with sodium lactate (0, 3, or 4%) alone or in combination with sodium propionate (0. 1 or 0. 2%). The mixtures were then re-ground and formed into hamburger patties, which were placed in Styrofoam meat trays and overwrapped... sodium lactate tended to be sweeter than control patties. Hamburger patties with sodium lactate were springier. more cohesive. and less crumbly than the control patties. Treatments containing 0. 2% sodium propionate were more juicy than the control...

  3. SC-RISE LECTURE SERIES BRIGHT HORIZONS IN SOLAR ENERGY

    E-Print Network [OSTI]

    SC-RISE LECTURE SERIES BRIGHT HORIZONS IN SOLAR ENERGY Sustainable Energy Opportunities, Options are being developed including biomass, geothermal, hydropower, ocean thermal energy conversion, solar electric, solar thermal, and wind. However, such aspects as low energy density, siting, and temporal

  4. Graduate Student ScHool of Graduate StudieS

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Graduate Student Handbook ScHool of Graduate StudieS 2012-2013 #12;Foreword This handbook should website http://gradstudies.case.edu for the most comprehensive and up to date information. The learning scholarly activity, the very search for knowledge is impaired. In these respects, each of us

  5. S1The Newsletter for all ScHARR graduates

    E-Print Network [OSTI]

    Oakley, Jeremy

    , corruption and poor management can often turn a challenge into a disaster. Tide From September, ScHARR's new Master of Public Health specialist programme in Management and Leadership will do its bit to turn the tide of public health. Management and governance of public health have been recognised as among

  6. M.Sc. Mathematics: Guidelines on Writing the Project Dissertation

    E-Print Network [OSTI]

    Wright, Francis

    M.Sc. Mathematics: Guidelines on Writing the Project Dissertation Aim The aim of the dissertation. Remember that your dissertation will be read by three examiners, all of whom will be asking themselves `Can The dissertation should be written in correct, grammatical English. The content should be clear and readable

  7. DOE/SC-0060 U. S. Department of Energy

    E-Print Network [OSTI]

    . The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severeDOE/SC-0060 U. S. Department of Energy Office of Science September, 2002 Fusion Energy Sciences Advisory Committee A BURNING PLASMA PROGRAM STRATEGY TO ADVANCE FUSION ENERGY #12;1 Report of the FESAC

  8. Structure and Dynamics of Forsterite-scCO2/H2O Interfaces as...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forsterite-scCO2H2O Interfaces as a Function of Water Content. Structure and Dynamics of Forsterite-scCO2H2O Interfaces as a Function of Water Content. Abstract: Molecular...

  9. ISO/IEC JTC1/SC29/WG1 N1584 13 March 2000

    E-Print Network [OSTI]

    Zeng, Wenjun "Kevin"

    ISO/IEC JTC1/SC29/WG1 N1584 13 March 2000 ISO/IEC JTC 1/SC 29/WG 1 (ITU-T SG8) Coding of Still Mailing List Contact: ISO/IEC JTC 1/SC 29/WG 1 Convener - Dr. Daniel T. Lee Hewlett-Packard Company, 11000-mail: Daniel_Lee@hp.com 1 #12;ISO/IEC JTC1/SC29/WG1 N1584 13 March 2000 Core Experiment Description

  10. ISO/IEC JTC1/SC29/WG1 N1716 22 June 2000

    E-Print Network [OSTI]

    Zeng, Wenjun "Kevin"

    ISO/IEC JTC1/SC29/WG1 N1716 22 June 2000 ISO/IEC JTC 1/SC 29/WG 1 (ITU-T SG8) Coding of Still: For information only DISTRIBUTION: WG 1 Mailing List Contact: ISO/IEC JTC 1/SC 29/WG 1 Convener - Dr. Daniel T 447 4160, Fax: +1 408 447 2842, E-mail: Daniel_Lee@hp.com 1 #12;ISO/IEC JTC1/SC29/WG1 N1716 22 June

  11. ISO/IEC JTC1/SC29/WG1 N1303 30 June 1999

    E-Print Network [OSTI]

    Zeng, Wenjun "Kevin"

    ISO/IEC JTC1/SC29/WG1 N1303 30 June 1999 ISO/IEC JTC 1/SC 29/WG 1 (ITU-T SG8) Coding of Still: ISO/IEC JTC 1/SC 29/WG 1 Convener - Dr. Daniel T. Lee Hewlett-Packard Company, 11000 Wolfe Road, MS42U_Lee@hp.com 1 #12;ISO/IEC JTC1/SC29/WG1 N1303 30 June 1999 Core Experiment Description/Results Summary

  12. Method of making a sodium sulfur battery

    DOE Patents [OSTI]

    Elkins, P. E.

    1981-09-22T23:59:59.000Z

    A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another. 3 figs.

  13. Sodium-tetravalent sulfur molten chloroaluminate cell

    DOE Patents [OSTI]

    Mamantov, Gleb (Knoxville, TN)

    1985-04-02T23:59:59.000Z

    A sodium-tetravalent sulfur molten chloroaluminate cell with a .beta."-alumina sodium ion conductor having a S-Al mole ratio of above about 0.15 in an acidic molten chloroaluminate cathode composition is disclosed. The cathode composition has an AlCl.sub.3 -NaCl mole percent ratio of above about 70-30 at theoretical full charge. The cell provides high energy densities at low temperatures and provides high energy densities and high power densities at moderate temperatures.

  14. Sodium hypochlorite Market | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteel CorporationSocovoltaic Systems JumpSodiumSodium

  15. College/University: 1999 B.Sc. University of Indonesia, Indonesia

    E-Print Network [OSTI]

    Manstein, Dietmar J.

    Education College/University: 1999 B.Sc. University of Indonesia, Indonesia 2003 M.Sc. University of Indonesia, Indonesia Highest degree: M.Sc. in Microbiology Medicine Major Subjects: Cell Biology, Embryonic name: Andri Last name: Pramono Date of birth: 21.08.1976 Country: Indonesia E-mail: pramesyanti @yahoo

  16. ccsd00001116 Nucleation of Al 3 Zr and Al 3 Sc in aluminum alloys

    E-Print Network [OSTI]

    ccsd­00001116 (version 1) : 4 Feb 2004 Nucleation of Al 3 Zr and Al 3 Sc in aluminum alloys: from 4, 2004) Zr and Sc precipitate in aluminum alloys to form the compounds Al3Zr and Al3Sc which

  17. M.Sc. and Ph.D. in Agricultural & Biological Engineering www.usask.ca

    E-Print Network [OSTI]

    Saskatchewan, University of

    Department of Chemical and Biological Engineering M.Sc. and Ph.D. in Agricultural & BioresourceM.Sc. and Ph.D. in Agricultural & Biological Engineering www.usask.ca College of Engineering Engineering M.Sc. and Ph.D. programs in Agricultural & Bioresource Engineering integrate engineering

  18. ISO/IEC JTC 1/SC 29/WG 1 N 867 Date: June 27, 1998

    E-Print Network [OSTI]

    Adams, Michael D.

    ISO/IEC JTC 1/SC 29/WG 1 N 867 Date: June 27, 1998 ISO/IEC JTC 1/SC 29/WG 1 (ITU­T SG8) Coding ACTION: Discussion DISTRIBUTION: July 1998 Meeting of WG1 Contact: ISO/IEC JTC 1/SC 29/WG 1 Convener

  19. ISO/IEC JTC 1/SC 29/WG 1 N 2415 Date: 2006-12-07

    E-Print Network [OSTI]

    Adams, Michael D.

    ISO/IEC JTC 1/SC 29/WG 1 N 2415 Date: 2006-12-07 ISO/IEC JTC 1/SC 29/WG 1 (ITU-T SG 16) Coding STATUS: REQUESTED ACTION: None DISTRIBUTION: Public Contact: ISO/IEC JTC 1/SC 29/WG 1 Convener

  20. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis

  1. Sodium and sulfur release and recapture during black liquor burning

    SciTech Connect (OSTI)

    Frederick, W.J.; Iisa, K.; Wag, K.; Reis, V.V.; Boonsongsup, L.; Forssen, M.; Hupa, M.

    1995-08-01T23:59:59.000Z

    The objective of this study was to provide data on sulfur and sodium volatilization during black liquor burning, and on SO2 capture by solid sodium carbonate and sodium chloride. This data was interpreted and modeled into rate equations suitable for use in computational models for recovery boilers.

  2. Corrosion performance of advanced structural materials in sodium.

    SciTech Connect (OSTI)

    Natesan, K.; Momozaki, Y.; Li, M.; Rink, D.L. (Nuclear Engineering Division)

    2012-05-16T23:59:59.000Z

    This report gives a description of the activities in design, fabrication, construction, and assembling of a pumped sodium loop for the sodium compatibility studies on advanced structural materials. The work is the Argonne National Laboratory (ANL) portion of the effort on the work project entitled, 'Sodium Compatibility of Advanced Fast Reactor Materials,' and is a part of Advanced Materials Development within the Reactor Campaign. The objective of this project is to develop information on sodium corrosion compatibility of advanced materials being considered for sodium reactor applications. This report gives the status of the sodium pumped loop at Argonne National Laboratory, the specimen details, and the technical approach to evaluate the sodium compatibility of advanced structural alloys. This report is a deliverable from ANL in FY2010 (M2GAN10SF050302) under the work package G-AN10SF0503 'Sodium Compatibility of Advanced Fast Reactor Materials.' Two reports were issued in 2009 (Natesan and Meimei Li 2009, Natesan et al. 2009) which examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design specifications for the ANL pumped loop for testing advanced structural materials. Available information was presented on solubility of several metallic and nonmetallic elements along with a discussion of the possible mechanisms for the accumulation of impurities in sodium. That report concluded that the solubility of many metals in sodium is low (<1 part per million) in the temperature range of interest in sodium reactors and such trace amounts would not impact the mechanical integrity of structural materials and components. The earlier report also analyzed the solubility and transport mechanisms of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen in laboratory sodium loops and in reactor systems such as Experimental Breeder Reactor-II, Fast Flux Test Facility, and Clinch River Breeder Reactor. Among the nonmetallic elements discussed, oxygen is deemed controllable and its concentration in sodium can be maintained in sodium for long reactor life by using cold-trap method. It was concluded that among the cold-trap and getter-trap methods, the use of cold trap is sufficient to achieve oxygen concentration of the order of 1 part per million. Under these oxygen conditions in sodium, the corrosion performance of structural materials such as austenitic stainless steels and ferritic steels will be acceptable at a maximum core outlet sodium temperature of {approx}550 C. In the current sodium compatibility studies, the oxygen concentration in sodium will be controlled and maintained at {approx}1 ppm by controlling the cold trap temperature. The oxygen concentration in sodium in the forced convection sodium loop will be controlled and monitored by maintaining the cold trap temperature in the range of 120-150 C, which would result in oxygen concentration in the range of 1-2 ppm. Uniaxial tensile specimens are being exposed to flowing sodium and will be retrieved and analyzed for corrosion and post-exposure tensile properties. Advanced materials for sodium exposure include austenitic alloy HT-UPS and ferritic-martensitic steels modified 9Cr-1Mo and NF616. Among the nonmetallic elements in sodium, carbon was assessed to have the most influence on structural materials since carbon, as an impurity, is not amenable to control and maintenance by any of the simple purification methods. The dynamic equilibrium value for carbon in sodium systems is dependent on several factors, details of which were discussed in the earlier report. The current sodium compatibility studies will examine the role of carbon concentration in sodium on the carburization-decarburization of advanced structural materials at temperatures up to 650 C. Carbon will be added to the sodium by exposure of carbon-filled iron tubes, which over time will enable carbon to diffuse through iron and dissolve into sodium. The method enables addition of dissolved carbon (without carb

  3. Effects of sodium lactate and sodium propionate on the sensory, microbial, and chemical characteristics of fresh aerobically stored ground beef 

    E-Print Network [OSTI]

    Eckert, Laura Anne

    1995-01-01T23:59:59.000Z

    EFFECTS OF SODIUM LACTATE AND SODIUM PROPIONATE ON THE SENSORY, MICROBIAL, AND CHEMICAL CHARACTERISTICS OF FRESH AEROBICALLY STORED GROUND BEEF A Thesis by LAURA ANNE ECKERT Submitted to the Office of Graduate Studies of Texas A&M University... in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1995 Major Subject: Food Science and Technology EFFECTS OF SODIUM LACTATE AND SODIUM PROPIONATE ON THE SENSORY, MICROBIAL, AND CHEMICAL CHARACTERISTICS OF FRESH...

  4. BIOLOGY AT NCBS, BANGALORE AND DBS, MUMBAI (PhD/Int-PhD/ M. Sc.-by-Research/ M. Sc. in Wildlife & Conservation)

    E-Print Network [OSTI]

    Bhalla, Upinder S.

    BIOLOGY AT NCBS, BANGALORE AND DBS, MUMBAI (PhD/Int-PhD/ M. Sc.-by-Research/ M. Sc. in Wildlife & Conservation) (Please check the websites: `Admissions' at www.ncbs.res.in; http at both Bangalore and Mumbai campuses. Internet access, e-mail and bibliography search support are also

  5. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect (OSTI)

    Fox, K. M.; Roberts, K. A.; Edwards, T. B.

    2014-02-28T23:59:59.000Z

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leachability indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The thermal analyses completed in this study provide some preliminary insight, although the l

  6. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect (OSTI)

    Fox, K. M.; Roberts, K. A.; Edwards, T. B.

    2013-09-17T23:59:59.000Z

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leach indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The thermal analyses completed in this study provide some preliminary insight, although the limited

  7. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect (OSTI)

    Fox, K. M.; Edwards, T. A.; Roberts, K. B.

    2013-10-02T23:59:59.000Z

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leach indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The thermal analyses completed in this study provide some preliminary insight, although the limited

  8. The calculated rovibronic spectrum of scandium hydride, ScH

    E-Print Network [OSTI]

    Lodi, Lorenzo; Tennyson\\, Jonathan

    2015-01-01T23:59:59.000Z

    The electronic structure of six low-lying electronic states of scandium hydride, $X\\,{}^{1}\\Sigma^+$, $a\\,{}^{3}\\Delta$, $b\\,{}^{3}\\Pi$, $A\\,{}^{1}\\Delta$ $c\\,{}^{3}\\Sigma^+$, and $B\\,{}^{1}\\Pi$, is studied using multi-reference configuration interaction as a function of bond length. Diagonal and off-diagonal dipole moment, spin-orbit coupling and electronic angular momentum curves are also computed. The results are benchmarked against experimental measurements and calculations on atomic scandium. The resulting curves are used to compute a line list of molecular ro-vibronic transitions for $^{45}$ScH.

  9. News Archives | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew UserCAMD Home | Beamlines |

  10. IACT | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen Storage inChang Curriculum Vitae' NetCDF

  11. DOE/SC Lehman Review of US ITER Project, USIPO,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24,7,INL is aSC Lehman

  12. Bionic Plants | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC) BESAC HomeU.S. DOE OfficeBionic

  13. Brochures | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC) BESAC HomeU.S. DOEhighlights/

  14. Ceremony | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC) BESACU.S. DOE Office ofCeremony

  15. Commercialization Assistance| U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC) BESACU.S. DOE

  16. Contacts | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC) BESACU.S.ComputationalContacts

  17. Contract Information | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)Contract Information Grants &

  18. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)Contract Information Grants

  19. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)Contract Information GrantsContract

  20. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)Contract Information

  1. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)Contract InformationContract

  2. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)Contract

  3. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)ContractContract Management Oak

  4. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)ContractContract Management

  5. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)ContractContract ManagementContract

  6. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)ContractContract

  7. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)ContractContractContract Management

  8. Cosmic Frontier | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)ContractContractContract

  9. Current Projects | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)ContractContractContractCurrent

  10. Designation Process | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of ScienceCurrent ProjectsResearch(SC)2/ Below

  11. Functions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of ScienceCurrentEmergencyU.S.U.S.(SC)

  12. News | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact of ResearchNPNSB Home

  13. Newsletters | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact of ResearchNPNSB HomeNewsletters About About

  14. Open FOAs | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact of ResearchNPNSBabout/jobs/CeO2 » Open FOAs

  15. Other Links | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact of ResearchNPNSBabout/jobs/CeO2Other Links

  16. Other Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact of ResearchNPNSBabout/jobs/CeO2Other

  17. Oversight | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact of

  18. Privacy Act | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome Pacific NorthwestHomePrivacy Act

  19. Programs | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome Pacific

  20. Project Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome PacificManagement Project Assessment

  1. Publications | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome PacificManagement ProjectPublications

  2. Recovery Act | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome PacificManagementRecovery Act News

  3. Reference Links | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome PacificManagementRecovery Act

  4. Reporting Fraud | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome PacificManagementRecovery

  5. Research News | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome PacificManagementRecoveryResearch

  6. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome

  7. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearch Biological and Environmental

  8. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearch Biological and

  9. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearch Biological andResearch Fusion

  10. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearch Biological andResearch

  11. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearch Biological

  12. Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearch BiologicalOrganization

  13. Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearch

  14. Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearchResources Brookhaven Site

  15. Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearchResources Brookhaven

  16. Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearchResources BrookhavenResources

  17. Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearchResources

  18. Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearchResourcesResources Pacific

  19. Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearchResourcesResources

  20. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of Science

  1. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of ScienceAbout » Staff Small

  2. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of ScienceAbout » Staff

  3. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of ScienceAbout » StaffAbout »

  4. Sustainability | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of ScienceAbout

  5. Technology Transfer | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of ScienceAboutTechnology

  6. Theoretical Physics | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe Life of Enrico

  7. Training | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe Life of

  8. User Agreements | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUser Agreements User

  9. User Safety | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUser AgreementsUser

  10. 1950's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork 100Gbps's The

  11. 1960's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork 100Gbps's

  12. 1960's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork 100Gbps's's

  13. 1970's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork 100Gbps's's's

  14. 1970's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork

  15. 1980's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's The Enrico

  16. 1980's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's The

  17. 1990's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's The's The

  18. 1990's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's The's The's

  19. 2000's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's The's

  20. 2000's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's The's's The

  1. 2009 Awards | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's Awards

  2. 2010's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's Awards's

  3. 2010's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's Awards's's

  4. 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's33 Discovery

  5. 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's33

  6. 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's333 High

  7. 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's333 High3

  8. 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's333 High344

  9. 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's333 High3444

  10. 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's333

  11. 2015 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's3332015

  12. 2015 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's3332015

  13. 2015 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's33320155

  14. 2015 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's333201555

  15. DOE SC Exascale Requirements Review: High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOST MANAGEMENT REPORT26,go!(RMP)08ResponseSC

  16. RMSSEC | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, andSmart SensorsData -Madison

  17. Agenda20120921 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5, 2009

  18. Agenda22610 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5, 2009February 26,

  19. Agenda31105 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5, 2009February

  20. Agenda31708 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5, 2009February7,

  1. Agenda3209 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,

  2. Agenda3211 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,Minutes March 02,

  3. Agenda3807 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,Minutes March

  4. Agenda61505 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,Minutes MarchJune

  5. Agenda72709 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,Minutes

  6. Agenda73010 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,Minutes30, 2010

  7. Agenda82108 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,Minutes30,

  8. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,Minutes30,Ames

  9. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,Minutes30,AmesAmes

  10. April 2004 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication Evaluation andApril 2004

  11. April | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication Evaluation andApril 2004April

  12. Archives | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication Evaluation andAprilArchives

  13. Aug 2011 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 Advanced Scientific

  14. August 2006 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 Advanced Scientific6

  15. August 2007 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 Advanced Scientific67

  16. August 2008 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 Advanced Scientific678

  17. August 2009 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 Advanced Scientific6789

  18. August 2010 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 Advanced Scientific67890

  19. August 2012 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 Advanced Scientific678902

  20. BERAC Minutes | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 AdvancedMinutes Biological

  1. BES Reports | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 AdvancedMinutesBES Reports

  2. BES Reports | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 AdvancedMinutesBES

  3. Biogeochemical Controls | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1Biogeochemical Controls

  4. Bios | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1BiogeochemicalBios High

  5. European Labs | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National LaboratoryJeffrey L KrauseEarth System(SC)of

  6. Thiyaga | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC) The birth of

  7. 2011 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC)WolfgangOffice of1

  8. 2012 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC)WolfgangOffice of120122

  9. 2012 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC)WolfgangOffice of1201222

  10. 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC)WolfgangOffice of12012223

  11. 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC)WolfgangOffice of120122233

  12. 20130627 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC)WolfgangOfficeJune 27-28,

  13. 20130905 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC)WolfgangOfficeJune

  14. 20131205 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC)WolfgangOfficeJune5-6, 2012

  15. 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC)WolfgangOfficeJune5-6,

  16. AEC Headquarters | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC)WolfgangOfficeJune5-6,AAEC

  17. Bibtexcitationinfo | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals »Awake AnimalScience (SC)Reports

  18. November | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts Regions NationalScience (SC) NewYorkNorthNovember

  19. November | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts Regions NationalScience (SC)

  20. November | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts Regions NationalScience (SC)November Advanced

  1. UNC EFRC | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts RegionsPaulShades of(SC)

  2. Utah Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts RegionsPaulShades of(SC)ScienceOffice ofUtah

  3. Utah Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts RegionsPaulShades of(SC)ScienceOffice ofUtahUtah

  4. Vermont Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts RegionsPaulShades of(SC)ScienceOffice

  5. Vermont Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts RegionsPaulShades of(SC)ScienceOfficeVermont

  6. MEEM | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll Love You Back LoveM od ein

  7. Meetings | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDispositionMechanicalAbout UsHome » Meetings

  8. ASCR Budget | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe A Growing

  9. ASCR Budget | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe A GrowingASCR Budget

  10. ASCR Presentations | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe APresentations Advanced

  11. About ASCAC | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofTheAbout ASCAC Advanced

  12. About | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofTheAbout ASCAC AdvancedAbout

  13. About | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofTheAbout ASCAC

  14. About | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofTheAbout ASCACAbout Materials

  15. About | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofTheAbout ASCACAbout

  16. About | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofTheAbout ASCACAboutAbout

  17. Benefits | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOEAward Search NuclearBESBarry

  18. Contact | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping theCategoricalScienceConrad L. Longmire,Contact

  19. Eligibility | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12, 2004Documenting theEligibility

  20. Fundamental Interactions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S. DOE OfficeU.S.Frequently

  1. Fusion Education | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S. DOE OfficeU.S.FrequentlyBenefits of FES

  2. Fusion Institutions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S. DOE OfficeU.S.FrequentlyBenefits of

  3. Fusion Links | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S. DOE OfficeU.S.FrequentlyBenefits

  4. Geosciences | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S. DOEGas Phase ChemicalGeorge

  5. High School | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S. DOEGasH.G.Herbert F. York,High School

  6. Jobs | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S.U.S. DOEJoan F. Brennecke, 2009JobsJobs

  7. Key Dates | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S.U.S. DOEJoanKaye D. Lathrop,KevinKey

  8. Meetings | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S.U.S.Maurice Goldhaber,MedicineMeetings

  9. Meetings | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S.U.S.Maurice

  10. Middle School | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S.U.S.MauriceMeetingsMichaelVocabulary

  11. News Archives | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctoberMildred S.Applications in High Energy News

  12. News Media | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctoberMildred S.Applications in High Energy NewsNews

  13. Organization | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctoberMildred S.ApplicationsOrganization Argonne Site

  14. Participant Obligations | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctoberMildredParticipant Obligations Community

  15. Quality Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)Principal Investigators' MeetingsSciencePublicQuality Management

  16. Recommender Information | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)Principal Investigators'Ray Irwin Deputy Director

  17. Recommender Information | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)Principal Investigators'Ray Irwin Deputy DirectorRecommender

  18. Science Highlights | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)Principal Investigators'Ray IrwinandRobertofScience Highlights

  19. Science Highlights | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)Principal Investigators'Ray IrwinandRobertofScience

  20. Science Highlights | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)Principal Investigators'Ray IrwinandRobertofScienceScience

  1. Science Highlights | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)Principal Investigators'Ray

  2. Sciences | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)Principal Investigators'RayScience and Cellular

  3. Sharlene Weatherwax | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)Principal Investigators'RayScience andSelectingSharlene

  4. 2008 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX RayNanotechnology:U.S.8

  5. 2009 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX RayNanotechnology:U.S.89

  6. 2010 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX RayNanotechnology:U.S.8900

  7. 2011 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX

  8. 2011 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX1 Discovery &

  9. 2012 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX1 DiscoveryScience

  10. 2012 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX1 DiscoveryScience2 High

  11. 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX1 DiscoveryScience23

  12. 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX1 DiscoveryScience233 High

  13. 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX14 Advanced Scientific

  14. 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX14 Advanced Scientific4

  15. 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX14 Advanced Scientific4

  16. 2015 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX14 Advanced

  17. About INCITE | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX14 SciDAC 2

  18. Agenda 20130128 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX14 SciDAC

  19. Agenda 20130308 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX14 SciDACDOE/NSF Nuclear

  20. Agenda 20131219 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX14 SciDACDOE/NSF

  1. Agenda012901 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX14 SciDACDOE/NSFJanuary

  2. Agenda021904 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX14

  3. Agenda030206 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3, 2006 Nuclear Science

  4. Agenda030603 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3, 2006 Nuclear

  5. Agenda031402 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3, 2006 Nuclear14-15,

  6. Agenda053003 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3, 2006

  7. Agenda072106 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3, 2006July 21, 2006

  8. Agenda080204 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3, 2006July 21,

  9. Agenda091303 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3, 2006July

  10. Agenda10704 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3, 2006JulyOctober 7,

  11. Agenda110102 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3, 2006JulyOctober 7,1,

  12. Agenda110703 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3, 2006JulyOctober

  13. Agenda111804 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3, 2006JulyOctober18,

  14. Agenda112901 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,

  15. Agenda11509 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5, 2009 Nuclear

  16. Agenda12307 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5, 2009 Nuclear3-4,

  17. Agenda12810 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5, 2009 Nuclear3-4,8,

  18. Obligations | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC)Gas and Oil ResearchPublic

  19. NERSC Scientists Contribute to SC14 Technical Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role in NobelReachesNERSC

  20. Report on sodium compatibility of advanced structural materials.

    SciTech Connect (OSTI)

    Li, M.; Natesan, K.; Momozaki, Y.; Rink, D.L.; Soppet, W.K.; Listwan, J.T. (Nuclear Engineering Division)

    2012-07-09T23:59:59.000Z

    This report provides an update on the evaluation of sodium compatibility of advanced structural materials. The report is a deliverable (level 3) in FY11 (M3A11AN04030403), under the Work Package A-11AN040304, 'Sodium Compatibility of Advanced Structural Materials' performed by Argonne National Laboratory (ANL), as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing corrosion and tensile data from the standpoint of sodium compatibility of advanced structural alloys. The scope of work involves exposure of advanced structural alloys such as G92, mod.9Cr-1Mo (G91) ferritic-martensitic steels and HT-UPS austenitic stainless steels to a flowing sodium environment with controlled impurity concentrations. The exposed specimens are analyzed for their corrosion performance, microstructural changes, and tensile behavior. Previous reports examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design, fabrication, and construction of a forced convection sodium loop for sodium compatibility studies of advanced materials. This report presents the results on corrosion performance, microstructure, and tensile properties of advanced ferritic-martensitic and austenitic alloys exposed to liquid sodium at 550 C for up to 2700 h and at 650 C for up to 5064 h in the forced convection sodium loop. The oxygen content of sodium was controlled by the cold-trapping method to achieve {approx}1 wppm oxygen level. Four alloys were examined, G92 in the normalized and tempered condition (H1 G92), G92 in the cold-rolled condition (H2 G92), G91 in the normalized and tempered condition, and hot-rolled HT-UPS. G91 was included as a reference to compare with advanced alloy, G92. It was found that all four alloys showed weight loss after sodium exposures at 550 and 650 C. The weight loss of the four alloys was comparable after sodium exposures at 550 C; the weight loss of ferritic-martensitic steels, G92 and G91 is more significant than that of austenitic stainless steel, HT-UPS after sodium exposures at 650 C. Sodium exposures up to 2700 h at 550 C had no significant influence on tensile properties, while sodium exposures up to 5064 h at 650 C dramatically lowered the tensile strengths of the four alloys. The ultimate tensile strength of H1 G92, H2 G92, and G91 ferritic-martensitic steels was reduced to as much as nearly half of its initial value after sodium exposures at 650 C. Though the uniform elongation was recovered to some extent, these three ferritic-martensitic steels showed considerable strain softening after sodium exposures. The yield stress of HT-UPS austenitic stainless steel increased, the ultimate tensile strength decreased, and the total elongation was reduced after sodium exposures at 650 C. The dynamic strain aging effect observed in the as-received HT-UPS specimens became less pronounced after sodium exposures at 650 C. Microstructural characterization of sodium-exposed specimens showed no appreciable surface deterioration or grain structure changes under an optical microscope, except for the H2 G92 steel, in which the martensite structure transformed to large grain ferrite after sodium exposures at 650 C. TEM observations of the sodium-exposed H2 G92 steel showed significant recrystallization after sodium exposure for 2700 h at 550 C, and transformation of martensite to ferrite and high density of precipitates in nearly dislocation-free matrix after sodium exposures at 650 C. Further microstructural analysis and evaluation of decarburization/carburization behavior is needed to understand the dramatic changes in the tensile strengths of advanced ferritic-martensitic and austenitic steels after sodium exposures at 650 C.

  1. ISO/IEC JTC 1/SC 29/WG1 N2233 July 19, 2001

    E-Print Network [OSTI]

    Salvaggio, Carl

    ISO/IEC JTC 1/SC 29/WG1 N2233 July 19, 2001 TITLE: An Overview of the JPEG2000 Still Image Contact: ISO/IEC JTC 1/SC 29/WG 1 Convener ­ Dr. Daniel T. Lee Yahoo! 3420 Central Expressway, Santa Clara, California 95051, USA Tel: +1 408 992 7051, Fax: +1 253 830 0372, E-mail: dlee@yahoo-inc.com ISO/IEC JTC 1/SC

  2. Growth and characterization of Sc-doped EuO thin films

    SciTech Connect (OSTI)

    Altendorf, S. G.; Reisner, A.; Chang, C. F.; Hollmann, N.; Rata, A. D.; Tjeng, L. H. [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany)

    2014-02-03T23:59:59.000Z

    The preparation of 3d-transition metal-doped EuO thin films by molecular beam epitaxy is investigated using the example of Sc doping. The Sc-doped EuO samples display a good crystalline structure, despite the relatively small ionic radius of the dopant. The Sc doping leads to an enhancement of the Curie temperature to up to 125?K, remarkably similar to previous observations on lanthanide-doped EuO.

  3. Texas AM Junior Science Bowl | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    News Media WDTS Home Contact Information National Science Bowl U.S. Department of Energy SC-27 Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P:...

  4. Other Participants 1995 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    News Media WDTS Home Contact Information National Science Bowl U.S. Department of Energy SC-27 Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P:...

  5. Other Participants 1997 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    News Media WDTS Home Contact Information National Science Bowl U.S. Department of Energy SC-27 Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P:...

  6. ISO/IEC JTC1/SC29/WG1 N1452 24 Nov 1999

    E-Print Network [OSTI]

    Zeng, Wenjun "Kevin"

    ISO/IEC JTC1/SC29/WG1 N1452 24 Nov 1999 ISO/IEC JTC 1/SC 29/WG 1 (ITU-T SG8) Coding of Still as an option in WD, Part II DISTRIBUTION: WG 1 Mailing List Contact: ISO/IEC JTC 1/SC 29/WG 1 Convener - Dr 408 447 4160, Fax: +1 408 447 2842, E-mail: Daniel_Lee@hp.com 1 #12;ISO/IEC JTC1/SC29/WG1 N1452 24 Nov

  7. ESnet Powers NRL's 100 Gbps Remote I/O Demo at SC14

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Powers NRL's 100 Gbps Remote IO Demo at SC14 News & Publications ESnet News Media & Press Publications and Presentations Galleries ESnet Awards and Honors Contact Us Media Jon...

  8. Agenda/Presentations | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    file (264KB) Links Databases Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown...

  9. Working Group Presentations | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    file (264KB) Links Databases Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown...

  10. Official List of SC User Facilities | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Policies and Processes Definition Official List of SC User Facilities Designation Process User Statistics Collection Practices Science Highlights Frequently Asked Questions...

  11. The Sodium Content of Your Food.

    E-Print Network [OSTI]

    Anonymous,

    1982-01-01T23:59:59.000Z

    are usually processed without added salt. However, starchy vegetables such a s lima beans and peas frequently are sorted in brine before freezing. Frozen vegetables with added sauces, mushrooms or nuts are higher in sodium than plain varieties. Canned... ............................ Canned iced Powdaed. mn-flawred iced. sugarsweetened ......................... Low-calorie iced ....................... Thirst Quencher 1 cup 1 cup 1 cup 1 cup 1 cup 1 cup 1 cup 1 cup 1 cup 1 cup 1 cup 1 cup 1 cup 1 cup 8 fl oz Dairy...

  12. Efficacy of soluble sodium tripolyphosphate amendments for the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of soluble sodium tripolyphosphate amendments for the in-situ immobilisation of uranium."Environmental Chemistry 4:293-300. Authors: DM Wellman EM Pierce MM Valenta...

  13. aqueous sodium sulfate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    viscosity, 771, for PDMDAAC fractions in sodium chloride solutions by viscosity, size-exclusionchromatography, and light Dubin, Paul D. 32 Structure and Dynamics in Aqueous...

  14. Sodium fast reactor safety and licensing research plan. Volume II.

    SciTech Connect (OSTI)

    Ludewig, H. (Brokhaven National Laboratory, Upton, NY); Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A. (Argonne National Laboratory, Argonne, IL); Phillips, J.; Zeyen, R. (Institute for Energy Petten, Saint-Paul-lez-Durance, France); Clement, B. (IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France); Garner, Frank (Radiation Effects Consulting, Richland, WA); Walters, Leon (Advanced Reactor Concepts, Los Alamos, NM); Wright, Steve; Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Suo-Anttila, Ahti Jorma; Denning, Richard (Ohio State University, Columbus, OH); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki, Japan); Ohno, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Miyhara, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Yacout, Abdellatif (Argonne National Laboratory, Argonne, IL); Farmer, M. (Argonne National Laboratory, Argonne, IL); Wade, D. (Argonne National Laboratory, Argonne, IL); Grandy, C. (Argonne National Laboratory, Argonne, IL); Schmidt, R.; Cahalen, J. (Argonne National Laboratory, Argonne, IL); Olivier, Tara Jean; Budnitz, R. (Lawrence Berkeley National Laboratory, Berkeley, CA); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki, Japan); Serre, Frederic (Centre d'%C3%94etudes nucl%C3%94eaires de Cadarache, Cea, France); Natesan, Ken (Argonne National Laboratory, Argonne, IL); Carbajo, Juan J. (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin-Madison, Madison, WI); Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN); Bari, R. (Brokhaven National Laboratory, Upton, NY); Porter D. (Idaho National Laboratory, Idaho Falls, ID); Lambert, J. (Argonne National Laboratory, Argonne, IL); Hayes, S. (Idaho National Laboratory, Idaho Falls, ID); Sackett, J. (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.

    2012-05-01T23:59:59.000Z

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  15. Sodium cobalt bronze batteries and a method for making same

    DOE Patents [OSTI]

    Doeff, M.M.; Ma, Y.; Visco, S.J.; DeJonghe, L.

    1999-06-29T23:59:59.000Z

    A solid state secondary battery utilizing a low cost, environmentally sound, sodium cobalt bronze electrode is described. A method is provided for producing same. 11 figs.

  16. INITIATION OF DEGRADATION IN POLYCRYSTALLINE SODIUM-BETA ALUMINA ELECTROLYTES

    E-Print Network [OSTI]

    De Jonghe, L.C.

    2010-01-01T23:59:59.000Z

    boundaries. XBB 804 4130 2B Degradation initiation at 300 C,the Proceedings INITIATION OF DEGRADATION IN POLYCRYSTALLINEs w a m INITIATION OF DEGRADATION IN POLYCRYSTALLINE SODIUM-

  17. United States, France and Japan Increase Cooperation on Sodium...

    Broader source: Energy.gov (indexed) [DOE]

    together to establish design goals and high-level requirements for sodium-cooled fast reactor prototypes; identify common safety principles and key technical innovations to...

  18. Sodium dichromate expedited response action assessment

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The US Environmental Protection Agency (EPA) and Washington Department of Ecology (Ecology) recommended that the US Department of Energy (DOE) perform an expedited response action (ERA) for the Sodium Dichromate Barrel Disposal Landfill. The ERA lead regulatory agency is Ecology and EPA is the support agency. The ERA was categorized as non-time-critical, which required preparation of an engineering evaluation and cost analysis (EE/CA). The EE/CA was included in the ERA proposal. The EE/CA is a rapid, focused evaluation of available technologies using specific screening factors to assess feasibility, appropriateness, and cost. The ERA goal is to reduce the potential for any contaminant migration from the landfill to the soil column, groundwater, and Columbia River. Since the Sodium Dichromate Barrel Disposal Landfill is the only waste site within the operable unit, the removal action may be the final remediation of the 100-IU-4 Operable Unit. This ERA process started in March 1992. The ERA proposal went through a parallel review process with Westinghouse Hanford Company (WHC), DOE Richland Operations (RL), EPA, Ecology, and a 30-day public comment period. Ecology and EPA issued an Action Agreement Memorandum in March 1993 (Appendix A). The memorandum directed excavation of all anomalies and disposal of the collected materials at the Hanford Site Central Landfill. Primary field activities were completed by the end of April 1993. Final waste disposal of a minor quantity of hazardous waste was completed in July 1993.

  19. Final Report for DOE Grant Number DE-SC0001481

    SciTech Connect (OSTI)

    Liang, Edison [Rice University

    2013-12-02T23:59:59.000Z

    This report covers research activities, major results and publications supported by DE-SC-000-1481. This project was funded by the DOE OFES-NNSA HEDLP program. It was a joint research program between Rice University and the University of Texas at Austin. The physics of relativistic plasmas was investigated in the context of ultra-intense laser irradiation of high-Z solid targets. Laser experiments using the Texas Petawatt Laser were performed in the summers of 2011, 2012 and 2013. Numerical simulations of laser-plasma interactions were performed using Monte Carlo and Particle-in-Cell codes to design and support these experiments. Astrophysical applications of these results were also investigated.

  20. Analysis of Stripping to Quasibound Levels in Sc-41

    E-Print Network [OSTI]

    Youngblood, David H.; Kozub, R. L.; Kenefick, R. A.; Hiebert, John C.

    1970-01-01T23:59:59.000Z

    Levels in 4'Sc~ D. H. Youngblood, R. L. Kozub, R. A. Kenefick, and J. C. Hiebert Cyclotron Institute, Texas A 5 M University, College Station, Texas 77843 (Received 2 February 1970) Angular distributions have been measured for 15 levels observed... Befs. 1-8. Ex (MeV) Contribution to 0. by unresolved levels 0 1.718 2.100 2.419 2.686 2.892 2.966 3.192 3.471 3.744 4.030 4,519 4.812 5.037 6.413 5.542 6.709 6.862 5.981 6.167 6.257 6.470 6.902' 7.814 8.119' 8.694 See text...

  1. Nichtamtliche Lesefassung der Fachprfungsordnung M.Sc. Health Care Management Fachprfungsordnung

    E-Print Network [OSTI]

    Greifswald, Ernst-Moritz-Arndt-Universität

    Nichtamtliche Lesefassung der Fachprüfungsordnung M.Sc. Health Care Management Fachprüfungsordnung des Masterstudiengangs Health Care Management an der Ernst-Moritz-Arndt-Universität Greifswald vom 15-Moritz-Arndt-Universität Greifs- wald die folgende Prüfungsordnung für den Masterstudiengang (M. Sc.) ,,Health Care Management

  2. Thermoelectric Transport in a ZrN/ScN Superlattice MONA ZEBARJADI,1

    E-Print Network [OSTI]

    Thermoelectric Transport in a ZrN/ScN Superlattice MONA ZEBARJADI,1 ZHIXI BIAN,1 RAJEEV SINGH,1 ALI for a high thermoelectric figure of merit. The thermopower of these structures can be enhanced by controlling and experimental studies of the thermoelectric transport in ZrN/ScN metal/semiconductor superlattices. Preliminary

  3. CrowdSC: Building Smart Cities with Large Scale Citizen Participation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CrowdSC: Building Smart Cities with Large Scale Citizen Participation Karim Benouaret1 , Raman/Inria/Universit´e de Lorraine, Villers-l`es-Nancy, France Abstract ­ An elegant way to make cities smarter would CrowdSC, an effective crowdsourcing frame- work designed for smarter cities. We show that it is possible

  4. SODIUM CYANIDE AS A FISH POISON Marine Biological Laboratory

    E-Print Network [OSTI]

    SODIUM CYANIDE AS A FISH POISON Marine Biological Laboratory APR 2 '^ 1958 WOODS HOLE, MASS CYANIDE AS A FISH POISON By W. R. Bridges Cooperative Fishery Research Laboratory Southern Illinois as a fish poison. At concentrations of 1 p. p.m. sodium cyanide and at a variety of temperature and p

  5. RESEARCH Open Access Half-molar sodium lactate infusion improves

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    RESEARCH Open Access Half-molar sodium lactate infusion improves cardiac performance in acute heart for the myocardium at rest and during stress. We tested the effects of half-molar sodium lactate infusion on cardiac by 1 ml/kg/h continuous infusion for 24 hours. The control group received only a 3 ml/kg bolus

  6. Low temperature sodium-beta battery

    DOE Patents [OSTI]

    Farmer, Joseph C

    2013-11-19T23:59:59.000Z

    A battery that will operate at ambient temperature or lower includes an enclosure, a current collector within the enclosure, an anode that will operate at ambient temperature or lower within the enclosure, a cathode that will operate at ambient temperature or lower within the enclosure, and a separator and electrolyte within the enclosure between the anode and the cathode. The anode is a sodium eutectic anode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower. The cathode is a low melting ion liquid cathode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower.

  7. Production of sodium-22 from proton irradiated aluminum

    DOE Patents [OSTI]

    Taylor, Wayne A. (Los Alamos, NM); Heaton, Richard C. (Los Alamos, NM); Jamriska, David J. (Los Alamos, NM)

    1996-01-01T23:59:59.000Z

    A process for selective separation of sodium-22 from a proton irradiated minum target including dissolving a proton irradiated aluminum target in hydrochloric acid to form a first solution including aluminum ions and sodium ions, separating a portion of the aluminum ions from the first solution by crystallization of an aluminum salt, contacting the remaining first solution with an anion exchange resin whereby ions selected from the group consisting of iron and copper are selectively absorbed by the anion exchange resin while aluminum ions and sodium ions remain in solution, contacting the solution with an cation exchange resin whereby aluminum ions and sodium ions are adsorbed by the cation exchange resin, and, contacting the cation exchange resin with an acid solution capable of selectively separating the adsorbed sodium ions from the cation exchange resin while aluminum ions remain adsorbed on the cation exchange resin is disclosed.

  8. Calcium and sodium bentonite for hydraulic containment applications

    SciTech Connect (OSTI)

    Gleason, M.H. [GeoSyntec Consultants, Columbia, MD (United States); Daniel, D.E. [Univ. of Illinois, Urbana, IL (United States). Dept. of Civil Engineering; Eykholt, G.R. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Civil Engineering

    1997-05-01T23:59:59.000Z

    The hydraulic conductivity of calcium and sodium bentonites was investigated for sand-bentonite mixtures, a thin bentonite layer simulating a geosynthetic clay liner (GCL), and bentonite-cement mixtures simulating backfill for a vertical cutoff wall. The permeant liquids were tap water and distilled water containing 0.25 M calcium chloride. In general, the hydraulic performance of calcium bentonite was not significantly better than the performance of sodium bentonite for either the clay-amended sand or the GCL application, and was substantially worse than the performance of sodium bentonite in the bentonite-cement mixture. A drained angle of internal friction of 21{degree} was measured for calcium bentonite, compared to 10{degree} for sodium bentonite. Except for a larger drained shear strength, no advantage of calcium bentonite over sodium bentonite could be identified from the results of this study.

  9. SC Beta Graded Cavity Design for a Proposed 350 MHZ Linac for Waste Transmutation and Energy Production

    E-Print Network [OSTI]

    Barni, D; Pagani, C; Pierini, P; Visona, S; Gemme, G; Parodi, R

    1998-01-01T23:59:59.000Z

    SC Beta Graded Cavity Design for a Proposed 350 MHZ Linac for Waste Transmutation and Energy Production

  10. Sodium bromide electron-extraction layers for polymer bulk-heterojunction solar cells

    SciTech Connect (OSTI)

    Gao, Zhi; Qu, Bo, E-mail: bqu@pku.edu.cn; Xiao, Lixin; Chen, Zhijian [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China) [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); New Display Device and System Integration Collaborative Innovation Center of the West Coast of the Taiwan Strait, Fuzhou 350002 (China); Zhang, Lipei [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)] [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Gong, Qihuang [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China) [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-03-10T23:59:59.000Z

    Inexpensive and non-toxic sodium bromide (NaBr) was introduced into polymer solar cells (PSCs) as the cathode buffer layer (CBL) and the electron extraction characteristics of the NaBr CBL were investigated in detail. The PSCs based on NaBr CBL with different thicknesses (i.e., 0?nm, 0.5?nm, 1?nm, and 1.5?nm) were prepared and studied. The optimal thickness of NaBr was 1?nm according to the photovoltaic data of PSCs. The open-circuit voltage (V{sub oc}), short-circuit current density (J{sub sc}), fill factor (FF), and power conversion efficiency (PCE) of the PSC with 1?nm NaBr were evaluated to be 0.58?V, 7.36?mA/cm{sup 2}, 0.63, and 2.70%, respectively, which were comparable to those of the reference device with the commonly used LiF. The optimized photovoltaic performance of PSC with 1?nm NaBr was ascribed to the improved electron transport and extraction capability of 1?nm NaBr in PSCs. In addition, the NaBr CBL could prevent the diffusion of oxygen and water vapor into the active layer and prolong the lifetime of the devices to some extent. Therefore, NaBr layer could be considered as a promising non-toxic CBL for PSCs in future.

  11. ScGaN Alloy Growth by Molecular Beam Epitaxy: Evidence for a Metastable Layered Hexagonal Phase

    E-Print Network [OSTI]

    range x = 0-100%. Optical and structural analysis show separate regimes of growth, namely I) wurtzite predicted a metastable wurtzite phase (w-ScN) for ScN.8 However, recently Farrer and Bellaiche have found coordination, denoted h-ScN, which can be arrived at by flattening the bilayer of the wurtzite structure

  12. EngenuitySC Commercialization and Entrepreneurial Training Project

    SciTech Connect (OSTI)

    Hughes, Meghan; Hutton, Katherine R

    2012-12-31T23:59:59.000Z

    A team led by EngenuitySC has performed education and outreach on development of advanced energy markets that will enable wider use of clean energy technologies. This report details the efforts that have made significant advances to improve the market place through education, outreach, and increased communications between industry members. The project resulted in two self-funded industry clusters known as the Fuel Cell Collaborative and NuHub. This project has focused on building and strengthening the leading clean energy clusters in South Carolina: nuclear energy and fuel cell technologies. For the nuclear industry, a new cluster was developed that is now known as NuHub. This cluster has already engaged over 25 nuclear industry leaders or suppliers, four public sector partners, six community economic development foundations, and nearly ten academic partners in a 175 mile radius between Augusta, Georgia and Charlotte, North Carolina. Our outreach has touched over 2,000 stakeholders through the website alone, not including the public audiences and members of the business community reached through news stories and releases that were distributed to over 620 print and online publications. NuHub has established a formal leadership structure, developed subcommittees to focus on industry issues, instituted educational programs for the workforce, and created an industry funding structure that will sustain the industry cluster and mission. NuHub has participated in a wide-variety of community building and outreach activities since its formation under this grant. In the two years since its creation in 2010, we have initiated efforts focused in four main areas that correlate with the four NuHub subcommittees including: innovation, workforce development, industry engagement, and marketing and communications. NuHub successfully raised over $160,000 in both public and private funding, which has supported work to grow the cluster and engage partners including NuScale, Fluor, and Holtec International for research about deployment of advanced small modular reactor (SMR) technologies. The workforce training efforts from NuHub have focused on assisting existing industry to fill positions needed to construct and operate new nuclear plants being built at the VC Summer plant in Jenkinsville, SC and at Plant Votgle in Augusta, Georgia �¢���� both of whom are constructing the first nuclear reactors (Westinghouse AP 1000 units), to be built in over 30 years. This includes a partnership with Midlands Technical College to train reactor operators and the development of training facilities to support workforce development activities. It is anticipated that approximately 70 students a year will be trained through these programs in the next five years, and it will be expanded to meet new industry needs.

  13. E-Print Network 3.0 - acetate sodium lactate Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sodium-high lactate infusion'. Of course, it is easy to demonstrate that high lactate infusion... . Also, sodium-lactate infusion in humans ... Source: Ecole Polytechnique, Centre...

  14. Communication Relaxometry of insensitive nuclei: Optimizing dissolution dynamic

    E-Print Network [OSTI]

    the sensitivity of 13 C in urea [3], pyruvic acid [4], bicarbonate [5], sodium acetate and glycine [6], of protons

  15. $\\beta$ Decay and Isomeric Properties of Neutron-Rich Ca and Sc Isotopes

    E-Print Network [OSTI]

    Crawford, H L; Mantica, P F; Berryman, J S; Broda, R; Carpenter, M P; Cieplicka, N; Fornal, B; Grinyer, G F; Hoteling, N; Kay, B P; Lauritsen, T; Minamisono, K; Stefanescu, I; Stoker, J B; Walters, W B; Zhu, S

    2010-01-01T23:59:59.000Z

    The isomeric and $\\beta$-decay properties of neutron-rich $^{53-57}$Sc and $^{53,54}$Ca nuclei near neutron number $N$=32 are reported, and the low-energy level schemes of $^{53,54,56}$Sc and $^{53-57}$Ti are presented. The low-energy level structures of the $_{21}$Sc isotopes are discussed in terms of the coupling of the valence $1f_{7/2}$ proton to states in the corresponding $_{20}$Ca cores. Implications with respect to the robustness of the $N$=32 subshell closure are discussed, as well as the repercussions for a possible $N$=34 subshell closure.

  16. The OGLE-II event sc5_2859 a Classical Nova outburst?

    E-Print Network [OSTI]

    Afonso, C; Andersen, J; Ansari, R; Aubourg, E; Bareyre, P; Beaulieu, J P; Blanc, G; CSmith, M; Charlot, X; Coutures, C; De Kat, J; Ferlet, R; Fouqué, P; Glicenstein, J F; Goldman, B; Gould, A; Graff, D; Gros, M; Hamadache, C; Haïssinski, J; Le Guillou, Laurent; Lesquoy, E; Loup, C; Magneville, C; Marquette, J B; Maurice, E; Maury, A; Milsztajn, A; Moniez, M; Palanque-Delabrouille, Nathalie; Perdereau, O; Prévôt, L; Rahal, Y R; Rich, J; Spiro, M; Tisserand, P; Vidal-Madjar, A; Vigroux, L; Wagner, R M; Zylberajch, S

    2006-01-01T23:59:59.000Z

    The OGLE-II event sc5_2859 was previously identified as the third longest microlensing event ever observed. Additional photometric observations from the EROS (Experience de Recherche d'Objets Sombres) survey and spectroscopic observations of the candidate star are used to test the microlensing hypothesis.The combined OGLE and EROS data provide a high quality coverage of the light curve. The colour of the sc5_2859 event is seen to change with time. A spectrum taken in 2003 exhibits a strong Halpha emission line. The additionnal data show that the OGLE-II sc5_2859 event is actually a classical nova outburst.

  17. Hazard categorization and classification for the sodium storage facility

    SciTech Connect (OSTI)

    Van Keuren, J.C.

    1994-08-30T23:59:59.000Z

    The Sodium Storage Facility is planned to be constructed in the 400 area for long term storage of sodium from the Fast Flux Test Facility (FFTF). It will contain four large sodium storage tanks. Three of the tanks have a capacity of 80,000 gallons of sodium each, and the fourth will hold 52,500 gallons. The tanks will be connected by piping with each other and to the FFTF. Sodium from the FFTF primary and secondary Heat Transport Systems (HTS), Interim Decay Storage (IDS), and the Fuel Storage Facility (FSF) will be transferred to the facility, and stored there in a frozen state pending final disposition. A Hazard Classification has been performed in order to evaluate the potential toxic consequences of a sodium fire according to the provisions of DOE Order 5481.1B. The conclusion of these evaluations is that the Sodium Storage Facility meets the requirements of the lowest Hazard Category, i.e., radiological facility, and the Hazard Classification is recommended to be moderate.

  18. Experimental investigations on sodium plugging in narrow flow channels.

    SciTech Connect (OSTI)

    Momozaki, Y.; Cho, D. H.; Sienicki, J. J.; Moisseytsev, A.; Nuclear Engineering Division

    2010-08-01T23:59:59.000Z

    A series of experiments was performed to investigate the potential for plugging of narrow flow channels of sodium by impurities (e.g., oxides). In the first phase of the experiments, clean sodium was circulated through the test sections simulating flow channels in a compact diffusion-bonded heat exchanger such as a printed circuit heat exchanger. The primary objective was to see if small channels whose cross sections are semicircles of 2, 4, and 6 mm in diameter are usable in liquid sodium applications where sodium purity is carefully controlled. It was concluded that the 2-mm channels, the smallest of the three, could be used in clean sodium systems at temperatures even as low as 100 to 110 C without plugging. In the second phase, sodium oxide was added to the loop, and the oxygen concentration in the liquid sodium was controlled by means of varying the cold-trap temperature. Intentional plugging was induced by creating a cold spot in the test sections, and the subsequent plugging behavior was observed. It was found that plugging in the 2-mm test section was initiated by lowering the cold spot temperature below the cold-trap temperature by 10 to 30 C. Unplugging of the plugged channels was accomplished by heating the affected test section.

  19. Risk Management for Sodium Fast Reactors.

    SciTech Connect (OSTI)

    Denman, Matthew R; Groth, Katrina; Cardoni, Jeffrey N; Wheeler, Timothy A.

    2015-01-01T23:59:59.000Z

    Accident management is an important component to maintaining risk at acceptable levels for all complex systems, such as nuclear power plants. With the introduction of self - correcting, or inherently safe, reactor designs the focus has shifted from management by operators to allowing the syste m's design to manage the accident. While inherently and passively safe designs are laudable, extreme boundary conditions can interfere with the design attributes which facilitate inherent safety , thus resulting in unanticipated and undesirable end states. This report examines an inherently safe and small sodium fast reactor experiencing a beyond design basis seismic event with the intend of exploring two issues : (1) can human intervention either improve or worsen the potential end states and (2) can a Bayes ian Network be constructed to infer the state of the reactor to inform (1). ACKNOWLEDGEMENTS The author s would like to acknowledge the U.S. Department of E nergy's Office of Nuclear Energy for funding this research through Work Package SR - 14SN100303 under the Advanced Reactor Concepts program. The authors also acknowledge the PRA teams at A rgonne N ational L aborator y , O ak R idge N ational L aborator y , and I daho N ational L aborator y for their continue d contributions to the advanced reactor PRA mission area.

  20. WAPD-SC-545 HYDROGEN FLAMMABILITY DATA AND APPLICATION TO PWR

    Office of Scientific and Technical Information (OSTI)

    WAPD-SC-545 HYDROGEN FLAMMABILITY DATA AND APPLICATION TO PWR LOSS-OF-COOLANT ACCIDENT CONTRACT A T - I M - G E N - H BETTIS PLANT PITTSBURGH, PENNSYLVANIA Operated for the U.S....

  1. B.Sc. Specialization in Environmental Earth Sciences 2014-2015 Name ____________________________

    E-Print Network [OSTI]

    Machel, Hans

    B.Sc. Specialization in Environmental Earth Sciences 2014-2015 Name ____________________________ I Analysis _______ EAS 354 Env. Earth Science Field School _______ *6 of EAS 327 Environmental discuss their optional courses with the Environmental Earth Sciences advisor. For students entering

  2. ANTH 376: GENOMICS & ANTHROPOLOGY 4 credit hours (satisfies an SC requirement)

    E-Print Network [OSTI]

    1 ANTH 376: GENOMICS & ANTHROPOLOGY 4 credit hours (satisfies an SC variation, health and evolution. Extended Course Description The Human Genome Project and recent advances in genome sequencing techniques have made it possible

  3. PM Update - Steve Meador, Acting Dir for Proj Assessment-SC,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jack Surash, Dep Asst Secretary for APM-EM, Bob Raines, Assoc. Administrator for APM-NNSA PM Update - Steve Meador, Acting Dir for Proj Assessment-SC, Jack Surash, Dep Asst...

  4. HEP Reporting Requirement | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information Funding Opportunities HEP Reporting...

  5. PROPERTIES OF THE LOW-LYING NEGATIVE PARITY STATES IN 45Sc

    E-Print Network [OSTI]

    Boyer, Edmond

    rayonnements 03B3 ont été mesurés aux angles 105° ~ 03B8 ~ 0° au moyen d'un détecteur Ge(Li). Les spins et les'expérience. Abstract. 2014 The electromagnetic decays of the negative parity states in 45Sc up to an excitation energy of 2107 keV have been investigated via the 42Ca(03B1, p03B3)45Sc reaction at a bombarding energy of 10

  6. Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applicatio...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B Schwenzer, J Xiao, Z Nie, LV Saraf, Z Yang, and J Liu.2012."Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications."Nano Letters 12(7):37833787....

  7. Title of dissertation: HYDROMAGNETIC TURBULENT INSTABILITY IN LIQUID SODIUM

    E-Print Network [OSTI]

    Lathrop, Daniel P.

    ABSTRACT Title of dissertation: HYDROMAGNETIC TURBULENT INSTABILITY IN LIQUID SODIUM EXPERIMENTS Daniel R. Sisan, Doctor of Philosophy, 2004 Dissertation directed by: Professor Daniel P. Lathrop Department of Physics This dissertation describes the observation of magnetically-induced instabil- ities

  8. aged sodium borophosphate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ultraviolet flux will produce a similar variation in the column of neutral sodium for a fixed mass flux and density. However, if the cold gas is in pressure equilibrium with a hot...

  9. Sodium-cooled Fast Reactor - Past and Future | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sodium-cooled Fast Reactor - Past and Future June 16, 2015 10:00AM to 11:00AM Presenter Taek K. Kim (NE), Principal Nuclear Engineer and Department Manager Location Building 205,...

  10. aluminum sodium chloride: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    made with either sodium chloride or potassium chloride. The addition of 75 or 150 porn N02 did not lower plate counts (P&0. 05... Kayfus, Timothy Jon 2012-06-07 47...

  11. aerated sodium chloride: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    made with either sodium chloride or potassium chloride. The addition of 75 or 150 porn N02 did not lower plate counts (P&0. 05... Kayfus, Timothy Jon 2012-06-07 39 Evaluation...

  12. aqueous sodium chloride: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    made with either sodium chloride or potassium chloride. The addition of 75 or 150 porn N02 did not lower plate counts (P&0. 05... Kayfus, Timothy Jon 2012-06-07 58 Systematic...

  13. acidified sodium chlorite: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: In order to improve a new design for a uranium startup sodium cooled fast reactor which was proposed at MIT, this thesis evaluated radial power flattening by varying...

  14. Loop simulation capability for sodium-cooled systems

    E-Print Network [OSTI]

    Adekugbe, Oluwole A.

    1984-01-01T23:59:59.000Z

    A one-dimensional loop simulation capability has been implemented in the thermal-hydraulic analysis code, THERMIT-4E. This code had been used to simulate and investigate flow in test sections of experimental sodium loops ...

  15. Probabilistic transient analysis of fuel choices for sodium fast reactors

    E-Print Network [OSTI]

    Denman, Matthew R

    2011-01-01T23:59:59.000Z

    This thesis presents the implications of using a risk-informed licensing framework to inform the design of Sodium Fast Reactors. NUREG-1860, more commonly known as the Technology Neutral Framework (TNF), is a risk-informed ...

  16. Reactor protection system design alternatives for sodium fast reactors

    E-Print Network [OSTI]

    DeWitte, Jacob D. (Jacob Dominic)

    2011-01-01T23:59:59.000Z

    Historically, unprotected transients have been viewed as design basis events that can significantly challenge sodium-cooled fast reactors. The perceived potential consequences of a severe unprotected transient in a ...

  17. A Photoelectron Spectroscopic and Computational Study of Sodium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The global minimum of Na3Au3 - has a bent-flake structure lying 0.077 eV below a more compact structure. The global minima of the sodium auride clusters are confirmed by the...

  18. SLAM: a sodium-limestone concrete ablation model

    SciTech Connect (OSTI)

    Suo-Anttila, A.J.

    1983-12-01T23:59:59.000Z

    SLAM is a three-region model, containing a pool (sodium and reaction debris) region, a dry (boundary layer and dehydrated concrete) region, and a wet (hydrated concrete) region. The model includes a solution to the mass, momentum, and energy equations in each region. A chemical kinetics model is included to provide heat sources due to chemical reactions between the sodium and the concrete. Both isolated model as well as integrated whole code evaluations have been made with good results. The chemical kinetics and water migration models were evaluated separately, with good results. Several small and large-scale sodium limestone concrete experiments were simulated with reasonable agreement between SLAM and the experimental results. The SLAM code was applied to investigate the effects of mixing, pool temperature, pool depth and fluidization. All these phenomena were found to be of significance in the predicted response of the sodium concrete interaction. Pool fluidization is predicted to be the most important variable in large scale interactions.

  19. The Salt or Sodium Chloride Content of Feeds

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach); Lomanitz, S. (Sebastian)

    1920-01-01T23:59:59.000Z

    1 EXAS AGRICULTURAL EXPERIMENT STATION AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS W. B. BIZZELL, Preeident BULLETIN NO. 271 OCTOBER, 1920 DIVISION OF CHEMISTRY THE SALT OR SODIUM CHLORIDE CONTENT OF FEEDS B. YOUNGBLOOD, DIRECTOK COLLEGE.... ............... Salt content of feecls.. ......... Salt content of mixed feeds.. ................... Summary ancl conclusions. Page. l1 [Blank Page in Original Bulletin] BULLETIN XO. 271. OCTOBE- '"On THE SALT OR SODIUM CHLORIDE CONTENT OF FEI The Texas feed...

  20. Classification : Original Article VOLTAGE-GATED SODIUM CHANNELS POTENTIATE THE INVASIVE

    E-Print Network [OSTI]

    Boyer, Edmond

    - gated sodium channels in non-small-cell lung cancer cell lines. Functional voltage-gated sodium channels cancerous cell lines H23, H460 and Calu-1 possess functional sodium channels while normal and weakly metastatic cell lines do not. While all the cell lines expressed mRNA for numerous sodium channel isoforms

  1. Advanced sodium fast reactor accident source terms : research needs.

    SciTech Connect (OSTI)

    Powers, Dana Auburn; Clement, Bernard [IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France; Denning, Richard [Ohio State University, Columbus, OH; Ohno, Shuji [Japan Atomic Energy Agency, Ibaraki, Japan; Zeyen, Roland [Institute for Energy Petten, Saint-Paul-lez-Durance, France

    2010-09-01T23:59:59.000Z

    An expert opinion elicitation has been used to evaluate phenomena that could affect releases of radionuclides during accidents at sodium-cooled fast reactors. The intent was to identify research needed to develop a mechanistic model of radionuclide release for licensing and risk assessment purposes. Experts from the USA, France, the European Union, and Japan identified phenomena that could affect the release of radionuclides under hypothesized accident conditions. They qualitatively evaluated the importance of these phenomena and the need for additional experimental research. The experts identified seven phenomena that are of high importance and have a high need for additional experimental research: High temperature release of radionuclides from fuel during an energetic eventEnergetic interactions between molten reactor fuel and sodium coolant and associated transfer of radionuclides from the fuel to the coolantEntrainment of fuel and sodium bond material during the depressurization of a fuel rod with breached claddingRates of radionuclide leaching from fuel by liquid sodiumSurface enrichment of sodium pools by dissolved and suspended radionuclidesThermal decomposition of sodium iodide in the containment atmosphereReactions of iodine species in the containment to form volatile organic iodides. Other issues of high importance were identified that might merit further research as development of the mechanistic model of radionuclide release progressed.

  2. publication 348-827 Sodium is a necessary part of our diet. Sodium helps our bodies keep the right

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    amount of water, but we only need a little bit. The most common form of sodium is found in table salt-fashioned oatmeal Pasta and rice Peas, beans, and lentils Plain popcorn Pudding Seeds Unsalted nuts Whole

  3. ANSI X3H297010 ISO/IEC JTC1/SC21/WG3 DBL MAD245

    E-Print Network [OSTI]

    Snodgrass, Richard T.

    ANSI X3H2­97­010 ISO/IEC JTC1/SC21/WG3 DBL MAD­245 I S O INTERNATIONAL ORGANIZATION. Planned UK Contributions to SQL/Temporal, December, 1996. (ISO/IEC JTC 1/SC 21/WG 3 DBL MAD­221). [3] Melton, J. (ed.) SQL/Temporal. July, 1996. (ISO/IEC JTC 1/SC 21/WG 3 DBL­MCI­012.) [4] Snodgrass, R. T

  4. ANSI X3H2-97-010 ISO IEC JTC1 SC21 WG3 DBL MAD-245

    E-Print Network [OSTI]

    Snodgrass, Richard T.

    ANSI X3H2-97-010 ISO IEC JTC1 SC21 WG3 DBL MAD-245 I S O INTERNATIONAL ORGANIZATION Contributions to SQL Temporal, December, 1996. ISO IEC JTC 1 SC 21 WG 3 DBL MAD-221. 3 Melton, J. ed. SQL Temporal. July, 1996. ISO IEC JTC 1 SC 21 WG 3 DBL-MCI-012. 4 Snodgrass, R. T., M. H. Bohlen, C. S. Jensen

  5. Hydride vapor phase epitaxy and characterization of high-quality ScN epilayers

    SciTech Connect (OSTI)

    Oshima, Yuichi, E-mail: OSHIMA.Yuichi@nims.go.jp; Víllora, Encarnación G.; Shimamura, Kiyoshi [Environment and Energy Materials Research Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-04-21T23:59:59.000Z

    The heteroepitaxial growth of ScN films was investigated on various substrates by hydride vapor phase epitaxy (HVPE). Single crystalline mirror-like ScN(100) and ScN(110) layers were successfully deposited on r- and m-plane sapphire substrates, respectively. Homogeneous stoichiometric films (N/Sc ratio 1.01?±?0.10) up to 40??m in thickness were deposited. Their mosaicity drastically improved with increasing the film thickness. The band gap was determined by optical methods to be 2.06?eV. Impurity concentrations including H, C, O, Si, and Cl were investigated through energy dispersive X-ray spectrometry and secondary ion mass spectrometry. As a result, it was found that the presence of impurities was efficiently suppressed in comparison with that of HVPE-grown ScN films reported in the past, which was possible thanks to the home-designed corrosion-free HVPE reactor. Room-temperature Hall measurements indicated that the residual free electron concentrations ranged between 10{sup 18}–10{sup 20}?cm{sup ?3}, which was markedly lower than the reported values. The carrier mobility increased monotonically with the decreasing in carrier concentration, achieving the largest value ever reported, 284?cm{sup 2}?V{sup ?1}?s{sup ?1} at n?=?3.7?×?10{sup 18}?cm{sup ?3}.

  6. A Unique Dust Formation Episode in the SC-Type Star UY Cen

    E-Print Network [OSTI]

    Justin D. R. Steinfadt; Geoffrey C. Clayton; Tom Lloyd Evans; Tom Williams

    2005-06-21T23:59:59.000Z

    We report the first detection of new dust formation in an SC star. The prototype of the SC stars, UY Cen, underwent a decline of 2 magnitudes in the V-band. The SC stars show pulsational variations and have 60 micron excesses indicating past dust formation. It has been suggested that as a star evolves from oxygen rich to carbon rich, there is a short period of time when C/O$~1 that the star appears spectroscopically as an SC star and ceases to produce dust. The SC star, BH Cru, has shown large spectroscopic and pulsation period variations in only 30 years, indicating rapid evolution but it has shown no sign of new dust formation. UY Cen has not shown any pulsation or spectroscopic variations accompanying the onset of its dust formation. In addition, UY Cen did not show emission in the resonance lines of Na I, K I or Rb I when it was at its faintest, although these lines were a feature of the carbon stars R Lep and V Hya during similar faint phases.

  7. Semiclassical (SC) Description of Electronically Non-AdiabaticDynamics via the Initial Value Representation (IVR)

    SciTech Connect (OSTI)

    Ananth, V.; Venkataraman, C.; Miller, W.H.

    2007-06-22T23:59:59.000Z

    The initial value representation (IVR) of semiclassical (SC) theory is used in conjunction with the Meyer-Miller/Stock-Thoss description of electronic degrees of freedom in order to treat electronically non-adiabatic processes. It is emphasized that the classical equations of motion for the nuclear and electronic degrees of freedom that emerge in this description are precisely the Ehrenfest equations of motion (the force on the nuclei is the force averaged over the electronic wavefunction), but that the trajectories given by these equations of motion do not have the usual shortcomings of the traditional Ehrenfest model when they are used within the SC-IVR framework. For example, in the traditional Ehrenfest model (a mixed quantum-classical approach) the nuclear motion emerges from a non-adiabatic encounter on an average potential energy surface (a weighted average according to the population in the various electronic states), while the SC-IVR describes the correct correlation between electronic and nuclear dynamics, i.e., the nuclear motion is on one potential energy surface or the other depending on the electronic state. Calculations using forward-backward versions of SC-IVR theory (FB-IVR) are presented to illustrate this behavior. An even more approximate version of the SC-IVR, the linearized approximation (LSC-IVR), is slightly better than the traditional Ehrenfest model, but since it cannot describe quantum coherence effects, the LSC-IVR is also not able to describe the correct correlation between nuclear and electronic dynamics.

  8. Method of uranium reclamation from aqueous systems by reactive ion exchange. [US DOE patent application; anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands

    DOE Patents [OSTI]

    Maya, L.

    1981-11-05T23:59:59.000Z

    A reactive ion exchange method for separation and recovery of values of uranium, neptunium, plutonium, or americium from substantially neutral aqueous systems of said metals comprises contacting said system with an effective amount of a basic anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands to achieve nearly 100% sorption of said actinyl ion onto said resin and an aqueous system practically free of said actinyl ions. The method is operational over an extensive range of concentrations from about 10/sup -6/ M to 1.0 M actinyl ion and a pH range of about 4 to 7. The method has particulr application to treatment of waste streams from Purex-type nuclear fuel reprocessing facilities and hydrometallurgical processes involving U, Np, P, or Am.

  9. Bixbyite- and anatase-type phases in the system Sc-Ta-O-N

    SciTech Connect (OSTI)

    Stork, A.; Schilling, H. [Institut fuer Chemie, TU Berlin, Strasse des 17. Juni 135, D-10623 Berlin (Germany); Wessel, C.; Wolff, H. [Institut fuer Anorganische Chemie, RWTH Aachen, Landoltweg 1, D-52056 Aachen (Germany); Boerger, A. [Institut fuer Physikalische und Theoretische Chemie, TU Braunschweig, Hans-Sommer-Str. 10, D-38106 Braunschweig (Germany); Baehtz, C. [HASYLAB at DESY, Netkestr. 85, D-22603 Hamburg (Germany); Becker, K.-D. [Institut fuer Physikalische und Theoretische Chemie, TU Braunschweig, Hans-Sommer-Str. 10, D-38106 Braunschweig (Germany); Dronskowski, R. [Institut fuer Anorganische Chemie, RWTH Aachen, Landoltweg 1, D-52056 Aachen (Germany); Lerch, M., E-mail: lerch@chem.tu-berlin.d [Institut fuer Chemie, TU Berlin, Strasse des 17. Juni 135, D-10623 Berlin (Germany)

    2010-09-15T23:59:59.000Z

    The aim of our study was to modify the basis compound ss-TaON, which crystallizes in the monoclinic baddeleyite-type, by incorporation of appropriate dopant ions, in order to obtain anion-deficient cubic fluorite-type phases, which are of interest as solids with mobile nitrogen ions. For this purpose, scandium-doped tantalum oxide nitrides were prepared by ammonolysis of amorphous oxide precursors. An unexpected variety of phases with different structural features was observed: bixbyite-type phases of general composition Sc{sub x}Ta{sub 1-x}(O,N){sub y} with 0.33{<=}x{<=}1 and 1.7{<=}y{<=}1.9, yellow colored metastable anatase-type phases such as Sc{sub 0.1}Ta{sub 0.9}O{sub 1.2}N{sub 0.8} or Sc{sub 0.15}Ta{sub 0.85}O{sub 1.3}N{sub 0.7} and, additionally, anosovite-type phases Sc{sub x}Ta{sub 3-x}O{sub 2x}N{sub 5-2x} with 0{<=}x{<=}1.05. Selected phases were investigated by UV/vis spectroscopy. Anatase- and anosovite-type compounds show brilliant colors. In the anatase-type phase, a possible anion ordering was examined by theoretical methods. Additionally, energy calculations on phase stability were performed for Sc{sub x}Ta{sub 1-x}O{sub 1+2x}N{sub 1-2x} in the baddeleyite, rutile, and anatase structure types with varying amounts of dopants. - Graphical abstract: New anatase- and bixbyite-type phases obtained as single-phase samples in the system Sc-Ta-O-N.

  10. Aluminum Zintl anion moieties within sodium aluminum clusters

    SciTech Connect (OSTI)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Bowen, Kit H., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Schnöckel, Hansgeorg [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany)] [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Eichhorn, Bryan W. [Department of Chemistry, University of Maryland at College Park, College Park, Maryland 20742 (United States)] [Department of Chemistry, University of Maryland at College Park, College Park, Maryland 20742 (United States); Lee, Mal-Soon; Jena, P. [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)] [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Kandalam, Anil K., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Physics, West Chester University of Pennsylvania, West Chester, Pennsylvania 19383 (United States); Kiran, Boggavarapu, E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States)] [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States)

    2014-02-07T23:59:59.000Z

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium–aluminum cluster anions, Na{sub m}Al{sub n}{sup ?}, were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

  11. The magnesium nutrition of cotton as influenced by sodium 

    E-Print Network [OSTI]

    Thenabadu, Mervyn Wellesly

    1964-01-01T23:59:59.000Z

    1964 Major Subject. Plant Physic logy THE MAGNESIUM NUTRITION OF COTTON AS INFLUENCED BY SODIUM A Thesis By MERVYN M. THENABADU Approved as to style and content by: Chairman of Commi. e Nun Head of Department Member Mem, er Member Member... REVIEW OF LITERATURE (a) Sodium as a plant nutrient (b) I'he role of magnesium in plant nutrition MATERIALS AND METHODS RESUL:S DISCUSSION 13 21 24 (a) The effect of treatments on grcwth and reproduction (b) The effect of treatments on the ccr...

  12. SLAC Site Office Homepage | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSC Correspondence Control Center (SCSCHome

  13. STEM Resources for K-12 Educators | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSC Correspondence Control Center

  14. Safeguards & Security (S&S) Program | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSC Correspondence Control CenterSafeguards

  15. Squaring the Circle in Biofuels? | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of Science (SC) Spin

  16. John Negele Awarded Feshbach Prize | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home as Ready for(SC) JettingChemistry and

  17. SC Laboratory Performance Report Card Archives | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited Release Printed March 2012B.Workshop on--(SC) SC

  18. FY 2007 SC Laboratory Performance Report Cards | U.S. DOE Office of Science

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National LaboratoryJeffrey L KrauseEarthJuly 2007(SC) 7 SC

  19. FY 2009 SC Laboratory Performance Report Cards | U.S. DOE Office of Science

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National LaboratoryJeffrey L KrauseEarthJuly 2007(SC) 7(SC)

  20. FY 2011 SC Laboratory Performance Report Cards | U.S. DOE Office of Science

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National LaboratoryJeffrey L KrauseEarthJuly 2007(SC)(SC) 1

  1. Top Teams for 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC) The birth(SC)

  2. Top Teams for 2015 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC) The birth(SC)Top Teams

  3. University Research National Labs | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC) The(SC) UltrafastAbout

  4. Uranium and Thorium Ores Price List | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC) The(SC)and Thorium

  5. User Facilities: Tools for Seeing Atoms | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC) The(SC)and Thorium

  6. Various Project Management Reports | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC) The(SC)and

  7. Trapping the Light Fantastic | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts RegionsPaulShades of(SC) Thomas(SC)

  8. U.S. Virgin Islands Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts RegionsPaulShades of(SC) Thomas(SC)Office

  9. Ahmed H. Zewail, 1998 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office(SC) 4 » Advances in

  10. Alan R. Bishop, 1993 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office(SC) 4 » Advances inAlan R.

  11. Application Review and Selection Process | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office(SC) 4

  12. Attending National Event | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office(SC)JuneArthur

  13. 2012 Cohort Profiles | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX1 Discovery &(SC)2

  14. The magnesium nutrition of cotton as influenced by sodium

    E-Print Network [OSTI]

    Thenabadu, Mervyn Wellesly

    1964-01-01T23:59:59.000Z

    -oa:, cld c:t. r. p alit ir a. clans as inrluenced ty siagnesium ard s jiL I . -'?'g"rs f:ct:o" pi ants at weekls lr ti rvdls as it' flL1 reed oy Htdg;1. S1L'm dl. d s 'dium R eld ls. ? chlcr opr yl contet t 1;. inrlu?. . ced ty magnesium ard sc... 1 . au=? as ol m R La=. te carctencio cnt?nt c:r ir. flu reed by maga siu?m arid sc edt. S o LU'm 615 . be distr ibu" c rr c f day - Ld ccttcr pl Cd 10rs li. l;':LSS? Ci 30 at' s distr ibu7 ic. . cf 6G-day olo cct cn radgr. esrum ar. d...

  15. Computer Science Master's (M.Sc.) and Doctoral (Ph.D.) Programs www.cs.usask.ca/gradstudies

    E-Print Network [OSTI]

    Saskatchewan, University of

    Computer Science Master's (M.Sc.) and Doctoral (Ph.D.) Programs www.cs.usask.ca/gradstudies Computer Science Master's (M.Sc.) and Doctoral (Ph.D.) Programs Expertise in computing is needed everywhere. Digital information processing has permeated all

  16. CarolinaTiesA newsletter for University of South Carolina parents www.sa.sc.edu/parents

    E-Print Network [OSTI]

    Almor, Amit

    CarolinaTiesA newsletter for University of South Carolina parents www.sa.sc.edu/parents Nestled a few recommendations. "Students should visit the Columbia Visitor's Bureau (CVB) website, www up-to-date with the CVB's online calendar of events, as well as like "Experience Columbia, SC

  17. 620 OPTICS LETTERS / Vol. 29, No. 6 / March 15, 2004 Damage to extreme-ultraviolet Sc Si multilayer mirrors

    E-Print Network [OSTI]

    Rocca, Jorge J.

    620 OPTICS LETTERS / Vol. 29, No. 6 / March 15, 2004 Damage to extreme-ultraviolet Sc Si multilayer, Russia Received August 21, 2003 The damage threshold and damage mechanism of extreme-ultraviolet Sc Si multilayer mirror coatings are investigated with focused nanosecond pulses at 46.9-nm radiation from

  18. Method of Manufacturing Micro-Disperse Particles of Sodium Borohydride

    DOE Patents [OSTI]

    Kravitz, Stanley H. (Placitas, NM); Hecht, Andrew M. (Sandia Park, NM); Sylwester. Alan P. (Albuquerque, NM); Bell, Nelson S. (Albuquerque, NM)

    2008-09-23T23:59:59.000Z

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  19. Method of generating hydrogen gas from sodium borohydride

    DOE Patents [OSTI]

    Kravitz, Stanley H. (Placitas, NM); Hecht, Andrew M. (Sandia Park, NM); Sylwester, Alan P. (Albuquerque, NM); Bell, Nelson S. (Albuquerque, NM)

    2007-12-11T23:59:59.000Z

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  20. Immobilization of sodium nitrate waste with polymers: Topical report

    SciTech Connect (OSTI)

    Franz, E.M.; Heiser, J.H. III; Colombo, P.

    1987-04-01T23:59:59.000Z

    This report describes the development of solidification systems for sodium nitrate waste. Sodium nitrate waste was solidified in the polymers polyethylene, polyester-styrene (PES), and water-extendible polyester-styrene (WEP). Evaluations were made of the properties of waste forms containing various amounts of sodium nitrate by leaching immersion in water, measuring compressive strengths and by the EPA Extraction Procedure. Results of the leaching test are presented as cumulative fraction leached (CFL), incremental leaching rate, and average leaching indices (LI). For waste forms containing 30 to 70 wt% sodium nitrate, the CFL ranged from 9.0 x 10/sup -3/ to 7.3 x 10/sup -1/ and the LI from 11 to 7.8. After ninety days immersion in water, the compressive strengths ranged from 720 psi to 2550 psi. The nitrate releases from these samples using the EPA Extraction Procedure were below 500 ppM. The nitrate releases from PES waste forms were similar to those from polyethylene waste forms at the same waste loadings. The compressive yield strengths, measured after ninety-day immersion in water, ranged between 2070 and 7710 psi. In the case of WEP waste forms, only 30 wt% loaded samples passed the immersion test. 23 refs., 24 figs., 12 tabs.

  1. Electrochemical Recovery of Sodium Hydroxide from Alkaline Salt Solution

    SciTech Connect (OSTI)

    Hobbs, D.T. [Westinghouse Savannah River Company, AIKEN, SC (United States); Edwards, T.B.

    1996-10-01T23:59:59.000Z

    A statistically designed set of tests determined the effects of current density, temperature, and the concentrations of nitrate/nitrite, hydroxide and aluminate on the recovery of sodium as sodium hydroxide (caustic) from solutions simulating those produced from the Savannah River Site (SRS) In-Tank Precipitation process. These tests included low nitrate and nitrite concentrations which would be produced by electrolytic nitrate/nitrite destruction. The tests used a two compartment electrochemical cell with a Nafion Type 324 ion-exchange membrane. Caustic was successfully recovered from the waste solutions. Evaluation of the testing results indicated that the transport of sodium across the membrane was not significantly affected by any of the varied parameters. The observed variance in the sodium flux is attributed to experimental errors and variations in the performance characteristics of individual pieces of the organic-based Nafion membrane.Additional testing is recommended to determine the maximum current density, to evaluate the chemical durability of the organic membrane as a function of current density and to compare the durability and performance characteristics of the organic-based Nafion membrane with that of other commercially available organic membranes and the inorganic class of membranes under development by Ceramatec and PNNL.

  2. Compatibility Assessment of Advanced Stainless Steels in Sodium

    SciTech Connect (OSTI)

    Pawel, Steven J [ORNL

    2012-01-01T23:59:59.000Z

    Type 316L stainless steel capsules containing commercially pure sodium and miniature tensile specimens of HT-UPS (austenitic, 14Cr-16Ni), NF-616 (ferritic/martensitic, 9Cr-2W-0.5Mo), or 316L (austenitic, 17Cr-10Ni-2Mo) stainless steel were exposed at 600 or 700 C for 100 and 400 h as a screening test for compatibility. Using weight change, tensile testing, and metallographic analysis, HT-UPS and 316L were found to be largely immune to changes resulting from sodium exposure, but NF-616 was found susceptible to substantial decarburization at 700 C. Subsequently, two thermal convection loops (TCLs) constructed of 316L and loaded with commercially pure sodium and miniature tensile specimens of HT-UPS and 316L were operated for 2000 h each one between 500 and 650 C, the other between 565 and 725 C at a flow rate of about 1.5 cm/s. Changes in specimen appearance, weight, and tensile properties were observed to be very minor in all cases, and there was no metallographic evidence of microstructure changes, composition gradients, or mass transfer resulting from prolonged exposure in a TCL. Thus, it appears that HT-UPS and 316L stainless steels are similarly compatible with commercially pure sodium under these exposure conditions.

  3. Gypsum and Polyacrylamide Soil Amendments Used With High Sodium Wastewater

    E-Print Network [OSTI]

    Gardiner, Duane

    and sodium. Two soil amendments were applied to plots furrowirrigated with wastewater. The amendments were gypsum (11 Mg ha-1), and PAM added to irrigation water at rates of 25 mg L-1 PAM applications were made during every irrigation and during every second...

  4. Laboratory-scale sodium-carbonate aggregate concrete interactions. [LMFBR

    SciTech Connect (OSTI)

    Westrich, H.R.; Stockman, H.W.; Suo-Anttila, A.

    1983-09-01T23:59:59.000Z

    A series of laboratory-scale experiments was made at 600/sup 0/C to identify the important heat-producing chemical reactions between sodium and carbonate aggregate concretes. Reactions between sodium and carbonate aggregate were found to be responsible for the bulk of heat production in sodium-concrete tests. Exothermic reactions were initiated at 580+-30/sup 0/C for limestone and dolostone aggregates as well as for hydrated limestone concrete, and at 540+-10/sup 0/C for dehydrated limestone concrete, but were ill-defined for dolostone concrete. Major reaction products included CaO, MgO, Na/sub 2/CO/sub 3/, Na/sub 2/O, NaOH, and elemental carbon. Sodium hydroxide, which forms when water is released from cement phases, causes slow erosion of the concrete with little heat production. The time-temperature profiles of these experiments have been modeled with a simplified version of the SLAM computer code, which has allowed derivation of chemical reaction rate coefficients.

  5. Agrin regulation of alpha3 sodium-potassium ATPase activity modulates cardiac myocyte contraction.

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    in the U.S.A. Agrin Regulation of ? 3 Sodium-Potassiumis modulated by agrin regulation of ? 3 Na,K-ATPasegated sodium channels, capa- regulation of cardiac myocyte

  6. apical sodium-chloride cotransporter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    g magnesium chloride, 3.24 g magnesium sulfate bromide, 34 mg strontium chloride, 22 mg boric acid, 4 mg sodium silicate, 2.4 mg sodium fluoride, 1.6 mg Bae, Jin-Woo 302 The...

  7. Recommended Academic Plan for Food Science (FD SC) University Park and Commonwealth Campuses

    E-Print Network [OSTI]

    Kaye, Jason P.

    Credits: 15 Total Credits: 14 #12; Bold type indicates courses requiring a quality grade of C or better Total Credits: 16 Total Credits: 17 Semester 3 Credits Semester 4 Credits CHEM 202 or 210 3 CHEM 203 Sciences (GS) 3 Total Credits: 16 Total Credits: 17-19 Semester 5 Credits Semester 6 Credits FD SC 400 4 FD

  8. Irradiation requirements of Nb3Sn based SC magnets electrical insulation

    E-Print Network [OSTI]

    McDonald, Kirk

    Irradiation requirements of Nb3Sn based SC magnets electrical insulation developed within the Eu electrical insulation candidates · EuCARD insulators certification conditions · Post irradiation tests and neutrino factories will be subjected to very high radiation doses. · The electrical insulation employed

  9. M.Sc in Telecommunications Reduced-complexity semi-blind

    E-Print Network [OSTI]

    M.Sc in Telecommunications Reduced-complexity semi-blind channel estimation for LTE Downlink Niccol of channel capacity. Semi-blind channel estimators address this problem making use of both pilot of data has to be processed to produce the estimate. The aim of this thesis is investigating low

  10. Final Report for Research supported by US DoE grant DE-SC0006721

    SciTech Connect (OSTI)

    Brizard, Alain J. [Saint Michael's College

    2014-08-27T23:59:59.000Z

    A final report is presented on research carried out by Alain J. Brizard (Principal Investigator) with funding provided by the U.S. DoE grant No. DE-SC0006721 during the period of 08/01/2011 to 07/31/2014.

  11. Fermilab's SC Accelerator Magnet Program for Future U.S. HEP Facilities

    SciTech Connect (OSTI)

    Lamm, Michael; Zlobin, Alexander; /Fermilab

    2010-01-01T23:59:59.000Z

    The invention of SC accelerator magnets in the 1970s opened wide the possibilities for advancing the energy frontier of particle accelerators, while limiting the machine circumference and reducing their energy consumption. The successful development of SC accelerator magnets based on NbTi superconductor have made possible a proton-antiproton collider (Tevatron) at Fermilab, an electron-proton collider (HERA) at DESY, a relativistic heavy ion collider (RHIC) at BNL and recently a proton-proton collider (LHC) at CERN. Further technological innovations and inventions are required as the US HEP looks forward towards the post-LHC energy or/and intensity frontiers. A strong, goal oriented national SC accelerator magnet program must take on this challenge to provide a strong base for the future of HEP in the U.S. The results and experience obtained by Fermilab during the past 30 years will allow us to play a leadership role in the SC accelerator magnet development in the U.S., in particular, focusing on magnets for a Muon Collider/Neutrino Factory [1]-[2]. In this paper, we summarize the required Muon Collider magnet needs and challenges, summarize the technology advances in the Fermilab accelerator magnet development over the past few years, and present and discuss our vision and long-term plans for these Fermilab-supported accelerator initiatives.

  12. M.Sc.-thesis research Robustness improvement of polyhedral mesh method for airbag

    E-Print Network [OSTI]

    Vuik, Kees

    M.Sc.-thesis research Robustness improvement of polyhedral mesh method for airbag deployment. Project background A madymo airbag deployment simulation is a coupled simulation of the airbag fabric dynamics (structural equations of motion) and the fluid inside the airbag (Euler equations of fluid motion

  13. ccsd00004518, Precipitation kinetics of Al 3 Zr and Al 3 Sc in

    E-Print Network [OSTI]

    , kinetics, aluminum alloys, cluster dynamics PACS: 64.60.Cn, 64.60.-i, 64.70.Kb, 64.75.+g 1 Introduction Transition elements are added to aluminum alloys so as to obtain small ordered precipitates and by this wayccsd­00004518, version 2 ­ 21 Mar 2005 Precipitation kinetics of Al 3 Zr and Al 3 Sc in aluminum

  14. Physics basis for a spherical torus power plant S.C. Jardin a,

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    Physics basis for a spherical torus power plant S.C. Jardin a, *, C.E. Kessel a , J. Menard a , T for a fusion power plant. A special class of wall-stabilized high-b high-bootstrap fraction low-aspect-ratio tokamak; Fusion power plant; Plasma operating regime 1. Introduction The most significant difference

  15. CITI Technical Report 01-6 SC-CFS: Smartcard Secured Cryptographic File System

    E-Print Network [OSTI]

    Michigan, University of

    guessing attack, and minimizes the damage caused by physical attack and bug exploitation. January 16, 2001- tionary attack possible. An adversary can ob- tain ciphertext through physical attack or bug exploitationCITI Technical Report 01-6 SC-CFS: Smartcard Secured Cryptographic File System Naomaru Itoi Center

  16. The University of Aberdeen is a charity registered in Scotland, No SC013683 History of Art

    E-Print Network [OSTI]

    Pym, David J.

    guide The University of Aberdeen is a charity registered in Scotland, No SC013683 History of Art in Primo) Art and Architecture Complete http://search.ebscohost.com/ (see Quick Guide) Contains records, the SFX button searches for the full-text, or checks the catalogue for a print version. Arts

  17. IN FORMATION PU BLIC ATION SC H EME TITLE Agency plan for The Australian National University

    E-Print Network [OSTI]

    1 | IN FORMATION PU BLIC ATION SC H EME TITLE Agency plan for The Australian National University on its website. It will be directly accessible from the webpage foi.anu.edu.au and be identified possible, provide online content that can be searched by web browsers Provide a search function

  18. The University of Aberdeen is a charity registered in Scotland, No SC013683 Accessing electronic information

    E-Print Network [OSTI]

    Pym, David J.

    guide The University of Aberdeen is a charity registered in Scotland, No SC013683 Accessing://primo.abdn.ac.uk:1701/, open the Find Databases link (located at the top right hand side of every screen), and search. For individual e-books: carry out a regular search of Primo. 4. Use the link provided in the results list

  19. SIAM J. ScI. COMPUT. Vol. 14, No. 1, pp. 159-184, January 1993

    E-Print Network [OSTI]

    Beylkin, Gregory

    SIAM J. ScI. COMPUT. Vol. 14, No. 1, pp. 159-184, January 1993 () 1993 Society for Industrial 06520 (coifman@loml .math. yale. edu). Departments of Mathematics and Computer Science, Yale University-9012751, IBM grant P00038437, and Department of Energy contract DE-AC03-76SF00098. lLawrence Berkeley

  20. T-527: OpenSC Smart Card Serial Number Multiple Buffer Overflow Vulnerabilities

    Broader source: Energy.gov [DOE]

    OpenSC is prone to multiple buffer-overflow vulnerabilities because the application fails to perform adequate boundary checks on user-supplied input. Attackers may leverage these issues to execute arbitrary code in the context of the application. Failed attacks will cause denial-of-service conditions.

  1. ECI International Conference on Boiling Heat Transfer Florianpolis-SC-Brazil, 3-7 May 2009

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    . Recently the study of heat transfer in micro pin fin heat sinks has been extended to flow boiling by Koar and Peles (2006c), who studied boiling heat transfer in a hydrofoil-based micro pin fin heat sinkECI International Conference on Boiling Heat Transfer Florianópolis-SC-Brazil, 3-7 May 2009

  2. ATF Basler scA1400-17gm GigE Digital CCD Cameras

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basler scA1400-17gm GigE Digital CCD Cameras Camera DNS Name (.private.atf.net) Use Location FG Lens Flange IP Address (172.16.82.024) MAC ADDRESS (00:30:53 OUI) Serial ...

  3. DiSC: Benchmarking Secure Chip DBMS Nicolas Anciaux, Luc Bouganim, Philippe Pucheral, and Patrick Valduriez

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    DiSC: Benchmarking Secure Chip DBMS Nicolas Anciaux, Luc Bouganim, Philippe Pucheral, and Patrick irrelevant. The main problem faced by secure chip DBMS designers is to be able to assess various design choices and trade-offs for different applications. Our solution is to use a benchmark for secure chip DBMS

  4. DOE Award # DE-SC0008085 Close-Out Report for UIUC Portion of Grant

    SciTech Connect (OSTI)

    Teixeira, Kristina Anderson; DeLucia, Evan H

    2014-11-20T23:59:59.000Z

    This is the final technical report for the University of Illinois (UIUC) portion of grant # SC0008085 (CARBON DYNAMICS OF FOREST RECOVERY UNDER A CHANGING CLIMATE: FORCINGS, FEEDBACKS, AND IMPLICATIONS FOR EARTH SYSTEM MODELING), which closed June 14, 2014. The grant remains active at the Smithsonian.

  5. ISO/IEC JTC1/SC 18/WG 9 N1651en Date: 13 December 1996

    E-Print Network [OSTI]

    Kuhn, Markus

    NORMALISATION INTERNATIONAL ORGANIZATION FOR STANDARDIZATION CEI (IEC) COMMISSION �LECTROTECHNIQUE'un clavier ou d'autres unités d'entrée #12; Foreword ISO (the International Organization for Standardization.57.00.00.00.00 Status Final text of the international standard Reference SC18/WG9 N1644, Disposition of comments on ISO

  6. J.J. Berezan is currently a M.Sc. graduate student

    E-Print Network [OSTI]

    Joseph, Tim Grain

    of the operator as well as the reliability of the equip- ment. It is proposed that an onboard vibration warningJ.J. Berezan is currently a M.Sc. graduate student in the Alberta Equipment-Ground Interactions of British Columbia reported that operators of heavy equipment in the mining and other industries were found

  7. Frequency-Domain Turbo Equalisation in Coded SC-FDMA Systems: EXIT Chart Analysis and Performance

    E-Print Network [OSTI]

    Quartly, Graham

    Frequency-Domain Turbo Equalisation in Coded SC-FDMA Systems: EXIT Chart Analysis and Performance) turbo equalisers are considered. The first one is the turbo FD linear equaliser (LE). The second one is a parallel interference cancellation (PIC)-assisted turbo FD decision-feedback equaliser (DFE). The final one

  8. M.Sc. LANDSCAPE ECOLOGY Landscape Ecology delivers the essential ecological foundation for the understanding of

    E-Print Network [OSTI]

    Damm, Werner

    students specialize in the area of Photovoltaics (U Northumbria, UK), Solar Energy in the Built Environment.Golba@uni-oldenburg.de Homepage: http//www.uni-oldenburg.de/ppre/ M.Sc. POSTGRADUATE PROGRAMME RENEWABLE ENERGY The three term non introduction to all basic renewable energy systems plays the main role in this program. In addition to a two

  9. Spring/Summer 2013Registered Charity No. SC 009009 Millionth visitor to the Sir

    E-Print Network [OSTI]

    Levi, Ran

    Aberdeen binding acquired ................. 6 Rare railway report . 7 Library team shortlisted for national to national role........ 9 Purchase of The Novels & Tales of Henry James ..............................10Spring/Summer 2013Registered Charity No. SC 009009 Millionth visitor to the Sir Duncan Rice Library

  10. Quantifying Errors Associated with Satellite Sampling of Offshore Wind S.C. Pryor1,2

    E-Print Network [OSTI]

    1 Quantifying Errors Associated with Satellite Sampling of Offshore Wind Speeds S.C. Pryor1,2 , R, Bloomington, IN47405, USA. Tel: 1-812-855-5155. Fax: 1-812-855-1661 Email: spryor@indiana.edu 2 Dept. of Wind an attractive proposition for measuring wind speeds over the oceans because in principle they also offer

  11. Method of and apparatus for removing silicon from a high temperature sodium coolant

    DOE Patents [OSTI]

    Yunker, W.H.; Christiansen, D.W.

    1983-11-25T23:59:59.000Z

    This patent discloses a method of and system for removing silicon from a high temperature liquid sodium coolant system for a nuclear reactor. The sodium is cooled to a temperature below the silicon saturation temperature and retained at such reduced temperature while inducing high turbulence into the sodium flow for promoting precipitation of silicon compounds and ultimate separation of silicon compound particles from the liquid sodium.

  12. Go No-Go Recommendation for Sodium Borohydride for On-Board Vehicular Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    Independent review panel recommendation for go/no go decision on use of hydrolysis of sodium borohydride for hydrogen storage.

  13. E-Print Network 3.0 - affecting sodium hypochlorite Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -Partial list Chemical Incompatibilities Summary: hypochlorite, all oxidizing agents Carbon tetrachloride Sodium Chlorates Ammonium salts, acids, powdered metals... and...

  14. Teaching Sodium Fast Reactor Technology and Operation for the Present and Future Generations of SFR Users

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Teaching Sodium Fast Reactor Technology and Operation for the Present and Future Generations of SFR or development of sodium fast reactors and related experimental facilities. The sum of courses provided by CEA on sodium fast reactor design, technology, safety and operation experience, decommissioning aspects

  15. Ultracold Molecules from Ultracold Atoms: Interactions in Sodium and Lithium Gas

    E-Print Network [OSTI]

    Ultracold Molecules from Ultracold Atoms: Interactions in Sodium and Lithium Gas by Caleb from Ultracold Atoms: Interactions in Sodium and Lithium Gas by Caleb A Christensen Submitted of Philosophy Abstract The thesis presents results from experiments in which ultracold Sodium-6 and Lithium-23

  16. Synthesis of highly ordered mesoporous silica materials using sodium silicate and amphiphilic block copolymers

    E-Print Network [OSTI]

    Kim, Ji Man

    Synthesis of highly ordered mesoporous silica materials using sodium silicate and amphiphilic block) structures, using sodium silicate as the silica source and amphiphilic block copolymers as the structure of mesoporous silica material using nonionic surfac- tant and sodium silicate in the pH range 3­10.5. However

  17. Suboptimal Control Techniques for Networked Hybrid Systems S.C. Bengea, P.F. Hokayem, R.A. DeCarlo and C.T. Abdallah

    E-Print Network [OSTI]

    problem in the S.C. Bengea is with the Innovation Center, Eaton Corporation, Eden Prairie, MN, sbengea

  18. The use of sodium and/or potassium lactate to extend shelf-life and reduce sodium levels in precooked beef systems 

    E-Print Network [OSTI]

    Pagach, Denise Ann

    1992-01-01T23:59:59.000Z

    of the requirements for the degree of MASTER OF SCIENCE May 1992 Major Subject: Food Science and Technology THE USE OF SODIUM AND/OR POTASSIUM LACTATE TO EXTEND SHELF-LIFE AND REDUCE SODIUM LEVELS IN PRECOOKED BEEF SYSTEMS A Thesis by DENISE ANN PAGACH... ABSTRACT The Use of Sodium and/or Potassium Lactate to Extend Shelf-Life and Reduce Sodium Levels in Precooked Beef Systems. (May 1992) Denise Ann Pagach, B. S. , Texas AdtM University Chair of Advisory Committee: Dr. R. K. Miller Concern for food...

  19. Clinch River breeder reactor sodium fire protection system design and development

    SciTech Connect (OSTI)

    Foster, K.W.; Boasso, C.J.; Kaushal, N.N.

    1984-04-13T23:59:59.000Z

    To assure the protection of the public and plant equipment, improbable accidents were hypothesized to form the basis for the design of safety systems. One such accident is the postulated failure of the Intermediate Heat Transfer System (IHTS) piping within the Steam Generator Building (SGB), resulting in a large-scale sodium fire. This paper discusses the design and development of plant features to reduce the consequences of the accident to acceptable levels. Additional design solutions were made to mitigate the sodium spray contribution to the accident scenario. Sodium spill tests demonstrated that large sodium leaks can be safely controlled in a sodium-cooled nuclear power plant.

  20. Cleaning Cesium Radionuclides from BN-350 Primary Sodium

    SciTech Connect (OSTI)

    Romanenko, O.G.; Allen, K.J.; Wachs, D.M.; Planchon, H.P.; Wells, P.B.; Michelbacher, J.A.; Nazarenko, P.; Dumchev, I.; Maev, V.; Zemtzev, B.; Tikhomirov, L.; Yakovlev, V.; Synkov, A

    2005-04-15T23:59:59.000Z

    This paper reports the successful design and operation of a system to remove highly radioactive cesium from the sodium coolant of the BN-350 reactor in Aktau, Kazakhstan. As an international effort between the United States and the Republic of Kazakhstan, a cesium-trapping system was jointly designed, fabricated, installed, and successfully operated. The results are significant for a number of reasons, including (a) a significant reduction of radioactivity levels of the BN-350 coolant and reactor surfaces, thereby reducing exposure to workers during shutdown operations; (b) demonstration of scientific ideas; and (c) the engineering application of effective cesium trap deployment for commercial-sized liquid-metal reactors. About 255 300 GBq (6900 Ci) of cesium was trapped, and the {sup 137}Cs specific activity in BN-350 primary sodium was decreased from 296 MBq/kg (8000 {mu}Ci/kg) to 0.37 MBq/kg (10 {mu}Ci/kg) by using seven cesium traps containing reticulated vitreous carbon (RVC) as the cesium adsorbent. Cesium trapping was accomplished by pumping sodium from the primary circuit, passing it through a block of RVC within each trap, and returning the cleaned sodium to the primary circuit. Both to predict and to analyze the behavior of the cesium traps in the BN-350 reactor primary circuit, a model was developed that satisfactorily describes the observed results of the cesium trapping. By using this model, thermodynamic parameters, such as the heat of adsorption of cesium atoms on RVC and on internal piping surfaces of the BN-350 reactor primary circuit, -22.7 and -5.0 kJ/mole, respectively, were extracted from the experimental data.