Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bharat heavy electricals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Bharat Heavy Electricals Ltd BHEL | Open Energy Information  

Open Energy Info (EERE)

Heavy Electricals Ltd BHEL Heavy Electricals Ltd BHEL Jump to: navigation, search Name Bharat Heavy Electricals Ltd. (BHEL) Place New Delhi, Delhi (NCT), India Zip 110049 Sector Biomass, Hydro, Renewable Energy, Solar, Wind energy Product Delhi-based power generation equipment manufacturer in the energy-related/infrastructure sector. The firm is also involved in renewable energy sector- small hydro, solar, biomass and wind. References Bharat Heavy Electricals Ltd. (BHEL)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Bharat Heavy Electricals Ltd. (BHEL) is a company located in New Delhi, Delhi (NCT), India . References ↑ "Bharat Heavy Electricals Ltd. (BHEL)" Retrieved from

2

Bharat Electronics Limited BEL | Open Energy Information  

Open Energy Info (EERE)

Limited BEL Limited BEL Jump to: navigation, search Name Bharat Electronics Limited (BEL) Place Bangalore, India Zip 560015 Sector Solar Product Major supplier of products and turnkey systems with expertise in solar products and systems, defence communication, radars & sensors, telecommunication, broadcasting equipments, e-governance networks and other components. References Bharat Electronics Limited (BEL)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Bharat Electronics Limited (BEL) is a company located in Bangalore, India . References ↑ "Bharat Electronics Limited (BEL)" Retrieved from "http://en.openei.org/w/index.php?title=Bharat_Electronics_Limited_BEL&oldid=342709

3

Bharat Petroleum Corporation Ltd BPCL | Open Energy Information  

Open Energy Info (EERE)

Petroleum Corporation Ltd BPCL Petroleum Corporation Ltd BPCL Jump to: navigation, search Name Bharat Petroleum Corporation Ltd. (BPCL) Place Mumbai, Maharashtra, India Sector Solar, Wind energy Product Mumbai-based company, majority owned by the government and involved in the storing, marketing and distribution of petroleum products. Also involved with the development of wind and solar PV projects. References Bharat Petroleum Corporation Ltd. (BPCL)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Bharat Petroleum Corporation Ltd. (BPCL) is a company located in Mumbai, Maharashtra, India . References ↑ "Bharat Petroleum Corporation Ltd. (BPCL)" Retrieved from "http://en.openei.org/w/index.php?title=Bharat_Petroleum_Corporation_Ltd_BPCL&oldid=342712"

4

Heavy ion fusion--Using heavy ions to make electricity  

E-Print Network (OSTI)

for a practical fusion power reactor. HIF is the only fusionenter the reactor chamber, and focus Heavy Ion Fusion ontoengineering test reactor. The promise of fusion as a power

Celata, C.M.

2004-01-01T23:59:59.000Z

5

Active Sensing Shipeng Yu, Balaji Krishnapuram, Romer Rosales, R. Bharat Rao  

E-Print Network (OSTI)

of the active sensing setting described above are abundant. For land mine detection in a sensor net- work, weActive Sensing Shipeng Yu, Balaji Krishnapuram, Romer Rosales, R. Bharat Rao CAD and Knowledge expensive to get, and this motivates active learning which chooses the most informative samples for label

Rosales, Rómer E.

6

Heavy Fuel Oil Prices for Electricity Generation - EIA  

Gasoline and Diesel Fuel Update (EIA)

Heavy Fuel Oil Prices for Electricity Generation for Selected Countries1 Heavy Fuel Oil Prices for Electricity Generation for Selected Countries1 U.S. Dollars per Metric Ton2 Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Argentina NA NA NA NA NA NA NA NA NA Australia NA NA NA NA NA NA NA NA NA Austria 83.0 96.4 146.4 153.3 182.2 226.1 220.3 342.3 248.3 Barbados NA NA NA NA NA NA NA NA NA Belgium 155.1 160.4 - - - - - - - - - - - - - - Bolivia NA NA NA NA NA NA NA NA NA Brazil NA NA NA NA NA NA NA NA NA Canada 115.7 117.8 180.4 141.5 198.4 222.4 NA NA NA Chile NA NA NA NA NA NA NA NA NA China NA NA NA NA NA NA NA NA NA Chinese Taipei (Taiwan) NA NA NA NA NA NA NA NA NA Colombia NA NA NA NA NA NA NA NA NA Cuba NA NA NA 183.4 NA NA NA NA NA

7

Estimation of electric conductivity of the quark gluon plasma via asymmetric heavy-ion collisions  

E-Print Network (OSTI)

We show that in asymmetric heavy-ion collisions, especially off-central Cu+Au collisions, a sizable strength of electric field directed from Au nucleus to Cu nucleus is generated in the overlapping region, because of the difference in the number of electric charges between the two nuclei. This electric field would induce an electric current in the matter created after the collision, which result in a dipole deformation of the charge distribution. The directed flow parameters $v_1^{\\pm}$ of charged particles turn out to be sensitive to the charge dipole and provide us with information about electric conductivity of the quark gluon plasma.

Yuji Hirono; Masaru Hongo; Tetsufumi Hirano

2014-12-08T23:59:59.000Z

8

Heavy Triplets: Electric Dipole Moments vs Proton Decay  

E-Print Network (OSTI)

The experimental limit on the electron electric dipole moment constraints the pattern of supersymmetric grand-unified theories with right-handed neutrinos. We show that such contraints are already competing with the well known ones derived by the limit on proton lifetime.

Isabella Masina; Carlos A. Savoy

2003-10-30T23:59:59.000Z

9

Heavy Triplets: Electric Dipole Moments vs Proton Decay  

E-Print Network (OSTI)

The experimental limit on the electron electric dipole moment constraints the pattern of supersymmetric grand-unified theories with right-handed neutrinos. We show that such contraints are already competing with the well known ones derived by the limit on proton lifetime.

Masina, I; Masina, Isabella; Savoy, Carlos

2004-01-01T23:59:59.000Z

10

Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks  

SciTech Connect

The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

Larry Slone; Jeffrey Birkel

2007-10-31T23:59:59.000Z

11

Department of Energy and Electrical Engineering Spring 2012 Heavy-Duty Diesel Engine Friction Reduction Testing and Analysis  

E-Print Network (OSTI)

PENNSTATE Department of Energy and Electrical Engineering Spring 2012 Heavy-Duty Diesel Engine and pumping frictional losses on Volvo-Mack's 11 liter Diesel Engine. Thermocouples and pressure transducers use this rig in the future to quantify frictional losses and improve on the efficiency of their diesel

Demirel, Melik C.

12

Measurements of electrical resistivity of heavy ion beam produced high energy density matter: Latest results for lead and tungsten  

Science Journals Connector (OSTI)

The high-intensity heavy ion beams provided by the accelerator facilities of the Gesellschaft fr Schwerionenforschung (GSI) Darmstadt are an excellent tool to produce large volumes of high energy density (HED) matter. Thermophysical and transport properties of HED matter states are of interest for fundamental as well as for applied research. During the last few years development of new diagnostic techniques allowed for a series of measurements of the electrical resistivity of heavy ion beam generated HED matter. In this report we present the most recent results on electrical resistivity of HED matter at GSI. The experiments on which we report have been performed with targets consisting of tungsten wires and lead foils, respectively. Uranium and argon beam pulses with durations of a few hundred ns, intensities of about 2 10 9 and 1 10 11 ions / bunch , respectively, and an initial ion energy of 300350AMeV have been used as a driver. An energy density deposition of about 1kJ/g has been achieved by focusing the ion beam down to 1mm FWHM or less.

Serban Udrea; Vladimir Ternovoi; Nikolay Shilkin; Alexander Fertman; Vladimir E. Fortov; Dieter H.H. Hoffmann; Alexander Hug; Michail I. Kulish; Victor Mintsev; Pavel Ni; Dmitry Nikolaev; Naeem A. Tahir; Vladimir Turtikov; Dmitry Varentsov; Denis Yuriev

2007-01-01T23:59:59.000Z

13

Shell model estimate of electric dipole moment in medium and heavy nuclei  

SciTech Connect

The nuclear electric dipole moment (EDM) and the nuclear Schiff moment for the lowest 1/2{sup +} state of {sup 129}Xe are investigated in terms of the nuclear shell model. We estimate the upper limit for the EDM of neutral {sup 129}Xe atom using the Schiff moment. We also estimate the upper limit of the nuclear EDM, which may be directly measured through ionic atoms.

Yoshinaga, Naotaka [Department of Physics, Saitama University, Saitama City 338-8570 (Japan); Higashiyama, Koji [Department of Physics, Chiba Institute of Technology, Narashino, Chiba 275-0023 (Japan)

2011-05-06T23:59:59.000Z

14

Research on viscosity-reduction technology by electric heating and blending light oil in ultra-deep heavy oil wells  

Science Journals Connector (OSTI)

In the Tahe oilfield in China, heavy oil is commonly lifted using the light oil blending technology. However, due to the lack of light oil, the production of heavy oil has been seriously limited. Thus, a new c...

Mo Zhu; Haiquan Zhong; Yingchuan Li

2014-07-01T23:59:59.000Z

15

ELECTRIC  

Office of Legacy Management (LM)

you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

16

ELECTRIC  

Office of Legacy Management (LM)

ELECTRIC ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A quantity of at lezst 5 grams would probably be sufficient for our purpose, and this was included in our 3@icntion for license to the Atonic Energy Coskqission.. This license has been approved, 2nd rre would Llp!Jreciate informztion as to how to ?r*oceed to obtain thit: m2teria.l.

17

New Zealand Heavy-Water Scheme  

Science Journals Connector (OSTI)

... has decided to withdraw from participation in the Wairakei Scheme. This scheme provided for utilizing geothermal steam for the generation of electric power and for the manufacture of heavy water, ... the heavy-water plant would be much higher than was originally estimated. A company, Geothermal Development, Ltd., was formed for this purpose, and this will be wound up ...

1956-02-04T23:59:59.000Z

18

Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Medium- and Medium- and Heavy-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Transit Vehicles Trucks Idle Reduction Oil Bypass Filter Airport Ground Support Equipment Medium and Heavy Duty Hybrid Electric Vehicles

19

Progress in heavy ion fusion researcha... C. M. Celata,b)  

E-Print Network (OSTI)

Park, Maryland 20742 D. V. Rose and D. R. Welch Mission Research Corporation, Albuquerque, New Mexico.S. Heavy Ion Fusion HIF program is to produce commercial electricity by using multiple beams of heavy ions

Gilson, Erik

20

Desulfurization of heavy oil  

Science Journals Connector (OSTI)

Strategies for heavy oil desulfurization were evaluated by reviewing desulfurization literature and critically assessing the viability of the various methods for heavy oil. The desulfurization methods includin...

Rashad Javadli; Arno de Klerk

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "bharat heavy electricals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Electric Currents Electric Current  

E-Print Network (OSTI)

coefficient of resistivity Electric Power: = = = Also, = . So, = = 2 = 2 Unit of Power(P): Watt (WChapter 18 Electric Currents #12;Electric Current: Flow of electric charge Current is flow of positive charge. In reality it's the electron moves in solids- Electron current. #12;Ohm's Law : Resistance

Yu, Jaehoon

22

Heavy metal biosensor  

DOE Patents (OSTI)

Compositions and methods are provided for detection of certain heavy metals using bacterial whole cell biosensors.

Hillson, Nathan J; Shapiro, Lucille; Hu, Ping; Andersen, Gary L

2014-04-15T23:59:59.000Z

23

Heavy Water' Project in New Zealand  

Science Journals Connector (OSTI)

... A COMPANY known as Geothermal Development, Ltd., in which the New Zealand Government and the United Kingdom Atomic ... construction of a factory and the subsequent production of heavy water and electric power from geothermal steam in the Wairakei district of North Island, New Zealand. The project has been ...

1955-03-05T23:59:59.000Z

24

Exploiting heavy oil reserves  

E-Print Network (OSTI)

North Sea investment potential Exploiting heavy oil reserves Beneath the waves in 3D Aberdeen the potential of heavy oil 8/9 Taking the legal lessons learned in the north Sea to a global audience 10 potential Exploiting heavy oil reserves Aberdeen: A community of science AT WORK FOR THE ENERGY SECTOR ISSUE

Levi, Ran

25

HEAVY-DUTYDIEGRINDERS EXTRAROBUSTERECTIFIEUSESPOURMATRICES  

E-Print Network (OSTI)

HEAVY-DUTYDIEGRINDERS EXTRAROBUSTERECTIFIEUSESPOURMATRICES HEAVYDUTYRECTIFICADORDEMATRICES OPERATOR tool. Keep cord away from heat, oil, sharp edges, or moving parts. Damaged or entangled cords increase

Kleinfeld, David

26

Bioconversion of Heavy oil.  

E-Print Network (OSTI)

??70 % of world?s oil reservoirs consist of heavy oil, and as the supply of conventional oil decreases, researchers are searching for new technologies to (more)

Steinbakk, Sandra

2011-01-01T23:59:59.000Z

27

Electricity Reliability  

E-Print Network (OSTI)

Electricity Delivery and Energy Reliability High Temperature Superconductivity (HTS) Visualization in the future because they have virtually no resistance to electric current, offering the possibility of new electric power equipment with more energy efficiency and higher capacity than today's systems

28

All mercury lamps contain small amounts of mercury. An electric current passes through the lamp and vaporizes the mercury to generate light. Recycling mercury containing lamps protects human health and our environment from heavy  

E-Print Network (OSTI)

All mercury lamps contain small amounts of mercury. An electric current passes through the lamp and vaporizes the mercury to generate light. Recycling mercury containing lamps protects human health and our the environment by recycling universal wastes, contact EH&S at (949) 824-6200 or visit: www.ehs.uci.edu Mercury

George, Steven C.

29

Electrical insulation  

Science Journals Connector (OSTI)

n....Material with very low conductivity, which surrounds active electrical devices. Common electrical insulation chemicals are fluorine-containing polymers.

2007-01-01T23:59:59.000Z

30

Electrical Insulation  

Science Journals Connector (OSTI)

n...Material with very low conductivity which surrounds active electrical devices. Common electrical insulation chemicals are fluorine-containing polymers (Dissado LA...

Jan W. Gooch

2011-01-01T23:59:59.000Z

31

Heavy Oil Consumption Reduction Program (Quebec, Canada) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heavy Oil Consumption Reduction Program (Quebec, Canada) Heavy Oil Consumption Reduction Program (Quebec, Canada) Heavy Oil Consumption Reduction Program (Quebec, Canada) < Back Eligibility Commercial Agricultural Industrial Construction Savings Category Solar Buying & Making Electricity Maximum Rebate $5 million per site Program Info Funding Source Government of Quebec State Quebec Program Type Rebate Program Provider Agence de l'efficacité énergétique This program helps heavy oil consumers move toward sustainable development while improving their competitive position by reducing their consumption. Financial assistance is offered to carry out various analyses as well as implement energy efficient measures relating to heavy fuel oil or to switch to other forms of energy containing fewer pollutants, such as natural gas,

32

Quarkonia and heavy flavors at the LHC  

E-Print Network (OSTI)

Perspectives for quarkonia and heavy flavors measurements in heavy ion collisions at LHC are reviewed

P. Crochet

2005-03-14T23:59:59.000Z

33

Process for removing heavy metal compounds from heavy crude oil  

DOE Patents (OSTI)

A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

Cha, Chang Y. (Golden, CO); Boysen, John E. (Laramie, WY); Branthaver, Jan F. (Laramie, WY)

1991-01-01T23:59:59.000Z

34

Heavy Hybrid mesons Masses  

E-Print Network (OSTI)

We estimate the ground state masses of the heavy hybrid mesons using a phenomenological QCD-type potential. 0^{- -},1^{- -},0^{- +},1^{- +} and 0^{+ -} J^{PC} states are considered.

F. Iddir; L. Semlala

2006-11-13T23:59:59.000Z

35

HEAVY ION INERTIAL FUSION  

E-Print Network (OSTI)

Accelerators as Drivers for Inertially Confined Fusion, W.B.LBL-9332/SLAC-22l (1979) Fusion Driven by Heavy Ion Beams,OF CALIFORNIA f Accelerator & Fusion Research Division

Keefe, D.

2008-01-01T23:59:59.000Z

36

Electricity Markets  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Markets Electricity Markets Researchers in the electricity markets area conduct technical, economic, and policy analysis of energy topics centered on the U.S. electricity sector. Current research seeks to inform public and private decision-making on public-interest issues related to energy efficiency and demand response, renewable energy, electricity resource and transmission planning, electricity reliability and distributed generation resources. Research is conducted in the following areas: Energy efficiency research focused on portfolio planning and market assessment, design and implementation of a portfolio of energy efficiency programs that achieve various policy objectives, utility sector energy efficiency business models, options for administering energy efficiency

37

Charge Fluctuations as Thermometer for Heavy-Ion Collisions  

E-Print Network (OSTI)

We present a determination of freeze-out conditions in heavy-ion collisions based on ratios of cu- mulants of net electric charge fluctuations obtained from lattice QCD. These ratios can reliably be calculated for a wide range of chemical potential values by using a next-to-leading order Taylor series expansion around the limit of vanishing baryon, electric charge and strangeness chemical potentials. We first determine the strangeness and electric charge chemical potentials that characterize the conditions in heavy ion collisions at RHIC and LHC. We then show that a comparison of lattice QCD results for ratios of up to third order cumulants of electric charge fluctuations with experimental results allows us to extract the freeze-out baryon chemical potential and the freeze-out temperature. We apply our method to preliminary data of the STAR and PHENIX collaborations.

Wagner, Mathias

2013-01-01T23:59:59.000Z

38

Charge Fluctuations as Thermometer for Heavy-Ion Collisions  

E-Print Network (OSTI)

We present a determination of freeze-out conditions in heavy-ion collisions based on ratios of cu- mulants of net electric charge fluctuations obtained from lattice QCD. These ratios can reliably be calculated for a wide range of chemical potential values by using a next-to-leading order Taylor series expansion around the limit of vanishing baryon, electric charge and strangeness chemical potentials. We first determine the strangeness and electric charge chemical potentials that characterize the conditions in heavy ion collisions at RHIC and LHC. We then show that a comparison of lattice QCD results for ratios of up to third order cumulants of electric charge fluctuations with experimental results allows us to extract the freeze-out baryon chemical potential and the freeze-out temperature. We apply our method to preliminary data of the STAR and PHENIX collaborations.

Mathias Wagner

2013-11-15T23:59:59.000Z

39

Toward discovery science of human brain function Bharat B. Biswala  

E-Print Network (OSTI)

of Radiology, New Jersey Medical School, Newark, NJ 07103; b Phyllis Green and Randolph Cwen Institute for Pediatric Neuroscience, New York University Child Study Center, NYU Langone Medical Center, New York, NY & Science University, Portland, OR 97239; i Department of Diagnostic Radiology, Yale University School

Miall, Chris

40

Electrical Engineer  

Energy.gov (U.S. Department of Energy (DOE))

This position is located in the Office of Electric Reliability. The Office of Electric Reliability helps protect and improve the reliability and security of the nation's bulk power system through...

Note: This page contains sample records for the topic "bharat heavy electricals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Axial Current Generation from Electric Field: Chiral Electric Separation Effect  

E-Print Network (OSTI)

We study a relativistic plasma containing charged chiral fermions in an external electric field. We show that with the presence of both vector and axial charge densities, the electric field can induce an axial current along its direction and thus cause chirality separation. We call it the Chiral Electric Separation Effect (CESE). On very general basis, we argue that the strength of CESE is proportional to $\\mu_V\\mu_A$ with $\\mu_V$ and $\\mu_A$ the chemical potentials for vector charge and axial charge. We then explicitly calculate this CESE conductivity coefficient in thermal QED at leading-log order. The CESE can manifest a new gapless wave mode propagating along the electric field. Potential observable of CESE in heavy-ion collisions is also discussed.

Xu-Guang Huang; Jinfeng Liao

2013-06-07T23:59:59.000Z

42

Chapter 1 - Refining Heavy Oil and Extra-heavy Oil  

Science Journals Connector (OSTI)

The definitions of heavy oil, extra-heavy oil, and tar sand bitumen are inadequate insofar as the definitions rely upon a single physical property to define a complex feedstock. This chapter presents viable options to the antiquated definitions of the heavy feedstocks (heavy oil, extra-heavy oil, and tar sand bitumen) as well as an introduction to the various aspects of heavy feedstock refining in order for the reader to place each feedstock in the correct context of properties, behavior, and refining needs.

James G. Speight

2013-01-01T23:59:59.000Z

43

PHYTOEXTRACTION OF HEAVY METALS  

E-Print Network (OSTI)

) Type of phytoremediation Cost effective form of environmental remediation (Glass 1999) Chelating Agents: desorb heavy metals from soil matrix and form water-soluble metal complexes (Shen et al -using hyperaccumulator plant biomass to produce a bio-ore for commercial use -Li et al. look at using Ni

Blouin-Demers, Gabriel

44

Electric Vehicles  

ScienceCinema (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-07-23T23:59:59.000Z

45

Electric Vehicles  

SciTech Connect

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-05-02T23:59:59.000Z

46

Electrical hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

and certification by ANL prior to use. The Control of Hazardous Energy Sources - LockoutTagout (LOTO) Types of Energy Sources 1. Electricity 2. Gas, steam & pressurized...

47

Ch 16 Electric Charge &Ch 16. Electric Charge & Electric Field  

E-Print Network (OSTI)

Ch 16 Electric Charge &Ch 16. Electric Charge & Electric Field Liu UCD Phy1B 2012 #12;I Basic ConceptsI. Basic Concepts Static electricity: charges at rest Electric charge Like charges repel Unlike charges attract Liu UCD Phy1B 2012 #12;Electric ChargeElectric Charge Electron charge: -eElectron charge

Yoo, S. J. Ben

48

Electric machine  

DOE Patents (OSTI)

An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

El-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Reddy, Patel Bhageerath (Madison, WI)

2012-07-17T23:59:59.000Z

49

PHENIX recent heavy flavor results  

E-Print Network (OSTI)

Cold nuclear matter (CNM) effects provide an important baseline for the interpretation of data in heavy ion collisions. Such effects include nuclear shadowing, Cronin effect, and initial patron energy loss, and it is interesting to study the dependence on impact parameter and kinematic region. Heavy quark production is a good measurement to probe the CNM effects particularly on gluons, since heavy quarks are mainly produced via gluon fusions at RHIC energy. The PHENIX experiment has experiment has ability to study the CNM effects by measuring heavy quark production in $d$$+$Au collisions at variety of kinematic ranges. Comparisons of heavy quark production at different rapidities allow us to study modification of gluon density function in the Au nucleus depending on momentum fraction. Furthermore, comparisons to the results from heavy ion collisions (Au$+$Au and Cu$+$Cu) measured by PHENIX provide insight into the role of CNM effects in such collisions. Recent PHENIX results on heavy quark production are discussed.

Sanghoon Lim for the PHENIX collaboration

2014-02-28T23:59:59.000Z

50

Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

Relativistic Heavy Ion Collider Relativistic Heavy Ion Collider managed for the U.S. Department of Energy by Brookhaven Science Associates, founded by Stony Brook University and Battelle. managed for the U.S. Department of Energy by Brookhaven Science Associates, a company founded by Stony Brook University and Battelle 07/07 Brookhaven National Laboratory Funded by the U.S. Department of Energy, Brookhaven National Laboratory is a multipurpose research institution located on a 5,300-acre site on Long Island, New York. Six Nobel Prize-winning discoveries have been made at Brookhaven Lab. The Laboratory operates large-scale scientific facilities and performs research in physics, chemistry, biology, medicine, applied science, and

51

Characterizing Heavy Ion  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Ion Heavy Ion Reactions in the 1980's Is there Treasure at the end of the Rainbow? & What happens and how do different modes compete? John Schiffer One of the three research areas for ATLAS, as stated in a 1984 document to Congress: Are there some new marvelous symmetries, hidden in resonances in heavier nuclei, beyond 12 C+ 12 C and its immediate vicinity? (s.c. linac work, pre-ATLAS) Other attempts to chase the rainbow 180 o elastic scattering of 12 C on 40 Ca shows structure Fusion of 16 O on 40 Ca does not. In the end, it seemed that these structures were sometimes present in alpha-particle nuclei, but almost never in others. Some optimists, continued the pursuit. We also looked at the total fusion cross section in systems that showed resonances in scattering.

52

Detecting heavy quarks  

SciTech Connect

In this exercise we examine the performance of a detector specifically configured to tag heavy quark (HQ) jets through direct observations of D-meson decays with a high resolution vertex detector. To optimize the performance of such a detector, we assume the small diamond beam crossing configuration as described in the 1978 ISABELLE proposal, giving a luminosity of 10/sup 32/ cm/sup -2/ sec/sup -1/. Because of the very large backgrounds from light quark (LQ) jets, most triggering schemes at this luminosity require high P/sub perpendicular to/ leptons and inevitably give missing neutrinos. If alternative triggering schemes could be found, then one can hope to find and calculate the mass of objects decaying to heavy quarks. A scheme using the high resolution detector will also be discussed in detail. The study was carried out with events generated by the ISAJET Monte Carlo and a computer simulation of the described detector system. (WHK)

Benenson, G.; Chau, L.L.; Ludlam, T.; Paige, F.E.; Platner, E.D.; Protopopescu, S.D.; Rehak, P.

1983-01-01T23:59:59.000Z

53

Heavy Ions - Cyclotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Ions Heavy Ions Heavy ions used at the BASE Facility are accelerated in the form of "cocktails," named because of the fact that several heavy ions with the same mass-to-charge ratio are sent into the Cyclotron, which accelerates the ions while acting as a precision mass separator. The Control Room Operator then uses Cyclotron frequency to select only the desired ion, a process that takes about 2 minutes. We provide four standard cocktails: 4.5, 10, 16, and 30 MeV/nucleon. Depending on the cocktail, LETs from 1 to 100 MeV/(mg/cm^2) and flux levels of up to 1E7 ions/cm2-sec are available. Parts are tested in our vacuum chamber, and can be remotely positioned horizontally, vertically, or rotationally (y and z axes) with the motion table. An alignment laser is available to ensure the part is in the center of the beam. Mounting hardware is readily available. 12xBNC (F-F), 2x25-pin D (F-M or M-F), 4x40-pin flat ribbon (M-M), 4x50-pin flat ribbon (M-M), 12xSMA (F-F), and 2xEthernet vacuum feedthroughs are mounted upon request. (The 4x40-pin and 4x50-pin flat ribbon connectors are wired straight across, so you will need a F-F adapter to correct the pin numbers to normal.) Holes are provided through the cave shielding blocks for connecting additional test equipment, with a distance of approximately 10 feet from vacuum feedthrough to the top of the shielding block.

54

Utah Heavy Oil Program  

SciTech Connect

The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

2009-10-20T23:59:59.000Z

55

Engineering Electrical &  

E-Print Network (OSTI)

Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2012 Eight Required Courses Chart: 120 points College

Hickman, Mark

56

Engineering Electrical &  

E-Print Network (OSTI)

Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2011 Eight Required Courses Chart: 120 points College

Hickman, Mark

57

INL '@work' heavy equipment mechanic  

ScienceCinema (OSTI)

INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

Christensen, Cad

2013-05-28T23:59:59.000Z

58

RHIC | Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

breakthrough accelerator could collide electrons with heavy ions or protons at nearly the speed of light to create "snapshots" of the force binding all visible matter. Accelerator...

59

Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine Test Schedule for Representative Measurement of Heavy-Duty Engine Emissions Creation and Testing of the ACES Heavy...

60

The stimulation of heavy oil reservoirs with electrical resistance heating  

E-Print Network (OSTI)

-307. Stuckey, W. D. : "A Study of the Pyrolysis of Oil Shale By Microwave Heating, " MS Thesis, University of Colorado, Boulder (1977). Bridges, J. E. , Taflove, A. , and Snow, R. H. : eNet Energy Recoveries for the In-Situ Dielectric Heating of Oil Shales..., w Proc. 1978 Oil Shale Symposium, Colorado School of Mines, Golden, Apr. 12-14. Solomon, B. : "Shale Oil Via Microwaves: Illinois Institute Says Yes, e Energy Daily (May 1978) 2-4; Energy Abstr. Policy Anal. (Nov. 1978) 831. Snowi R H i et. el...

Baylor, Blake Allen

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "bharat heavy electricals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

OXFORD BIBLIOGRAPHIES IN ECOLOGY "HEAVY METAL TOLERANCE"  

E-Print Network (OSTI)

cellular mechanisms affected by heavy metals is Bánfalvi 2011. Pollution by heavy metals is an important environmental problem, and sources that focus on heavy metal pollution often contain information about heavyOXFORD BIBLIOGRAPHIES IN ECOLOGY "HEAVY METAL TOLERANCE" By Nishanta Rajakaruna and Robert S. Boyd

Rajakaruna, Nishanta

62

Electricity 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity > Soliciting comments on EIA-111 Electricity > Soliciting comments on EIA-111 EIA announces the proposal of Form EIA-111, Quarterly Electricity Imports and Exports Report Released: August 15, 2011 Background On August 11, 2011, a Federal Register Notice was published soliciting comments for the new EIA-111 survey form. The EIA-111, Quarterly Electricity Imports and Exports Report will replace the OE-781R, Monthly Electricity Imports and Exports Report. The OE-781R has been suspended and will be terminated upon the approval of the EIA-111. The OE-781R administered from July 2010 through May 2011, proved complex and confusing for the repondents. As a result, the EIA-111 was developed to more effectively and efficiently collect more accurate and meaningful data. The Paperwork Reduction Act (PRA) of 1995 requires that each Federal agency obtains approval from the Office of Management and Budget (OMB) before undertaking to collect information from ten or more persons, or continuing a collection for which the OMB approval and the OMB control number are about to expire. The approval process, which is popularly known as the "OMB clearance process," is extensive. It requires two Federal Register notices and a detailed application ("supporting statement") to OMB. The first Federal Register Notice was published on August 11, 2011. EIA is prepared to address the comments submitted by each individual.

63

A STRUCTURAL MODEL FOR ELECTRICITY PRICES RENE CARMONA, MICHAEL COULON, AND DANIEL SCHWARZ  

E-Print Network (OSTI)

A STRUCTURAL MODEL FOR ELECTRICITY PRICES RENE CARMONA, MICHAEL COULON, AND DANIEL SCHWARZ Abstract pricing in electricity markets, thus extending the growing branch of liter- ature which describes power prices for electricity. We capture both the heavy-tailed nature of spot prices and the complex dependence

Carmona, Rene

64

Rheological properties of heavy oils and heavy oil emulsions  

SciTech Connect

In this study, the author investigated the effects of a number of process variables such as shear rate, measurement temperature, pressure, the influence of pretreatment, and the role of various amounts of added water on the rheology of the resulting heavy oil or the emulsion. Rheological properties of heavy oils and the corresponding emulsions are important from transportation and processing standpoints.

Khan, M.R. [Texaco, Inc., Beacon, NY (United States). Fuels and Lubricants Technology Dept.

1996-06-01T23:59:59.000Z

65

Heavy vehicle hybrid propulsion systems R and D program plan, FY 2000-2005  

SciTech Connect

This report contains the program plan and background information for the Heavy Vehicle Hybrid Propulsion R and D Program sponsored by the Department of Energy's Office of Heavy Vehicle Technologies. The program is a collaboration between industry and government established for the development of advanced hybrid-electric propulsion technology for urban cycle trucks and buses. It targets specific applications to enhance potential market success. Potential end-users are also involved.

None

2000-07-01T23:59:59.000Z

66

ELECTRIC RAILWAYS  

Science Journals Connector (OSTI)

...candidate. It is safe to say that the...education in the fundamental facts and methods...Steam-engine, boilers and dynamos...road in successful operation upon or-dinary...been in successful operation for several years...now in successful operation electric rail-ways...

W. D. Marks

1886-04-09T23:59:59.000Z

67

Electric Propulsion  

Science Journals Connector (OSTI)

...is clear. The long-t?me continuous operation is required for electric propulsion pri-marily...travel against a small voltage to the cold element. The cell thereby produces an...concentrate and focus the solar rays on a heater. Little, if any, decrease in specific...

W. E. Moeckel

1963-10-11T23:59:59.000Z

68

Electricity costs  

Science Journals Connector (OSTI)

... index is used to correct for inflation. The short answer is given by the Central Electricity Generating Board's (CEGB's) 1980-81 report, paragraph 168. "The ... Generating Board's (CEGB's) 1980-81 report, paragraph 168. "The cost per kWh of fuel. . . rose by 18.6 per cent (between 1979 ...

J.W. JEFFERY

1982-03-18T23:59:59.000Z

69

electrical, engineering  

E-Print Network (OSTI)

in groundbreaking community solar project PMC-based technology products enter the market Expanding our capacity: new learning educational gaming energy-efficient data storage and computing health informatics haptic education K-12 STEM electrical energy storage thermal energy storage and conversion energy production

Zhang, Junshan

70

Heavy oil transportation by pipeline  

SciTech Connect

Worldwide there are a number of pipelines used to transport heavy crude oils. The operations are facilitated in a variety of ways. For example, the Alyeska pipeline is an insulated pipeline transporting warm oil over 800 miles. This 48-inch line experiences limited heat loss due to the insulation, volume of oil contained, and heat gain due to friction and pumping. Some European trunk lines periodically handle heavy and waxy crudes. This is achieved by proper sizing of batches, following waxy crudes with non-waxy crudes, and increased use of scrapers. In a former Soviet republic, the transportation of heavy crude oil by pipeline has been facilitated by blending with a lighter Siberian crude. The paper describes the pipeline transport of heavy crudes by Interprovincial Pipe Line Inc. The paper describes enhancing heavy oil transportation by emulsion formation, droplet suspension, dilution, drag reducing agents, and heating.

Gerez, J.M.; Pick, A.R. [Interprovincial Pipe Line Inc., Edmonton, Alberta (Canada)

1996-12-31T23:59:59.000Z

71

Managing Inventories of Heavy Actinides  

SciTech Connect

The Department of Energy (DOE) has stored a limited inventory of heavy actinides contained in irradiated targets, some partially processed, at the Savannah River Site (SRS) and Oak Ridge National Laboratory (ORNL). The 'heavy actinides' of interest include plutonium, americium, and curium isotopes; specifically 242Pu and 244Pu, 243Am, and 244/246/248Cm. No alternate supplies of these heavy actinides and no other capabilities for producing them are currently available. Some of these heavy actinide materials are important for use as feedstock for producing heavy isotopes and elements needed for research and commercial application. The rare isotope 244Pu is valuable for research, environmental safeguards, and nuclear forensics. Because the production of these heavy actinides was made possible only by the enormous investment of time and money associated with defense production efforts, the remaining inventories of these rare nuclear materials are an important part of the legacy of the Nuclear Weapons Program. Significant unique heavy actinide inventories reside in irradiated Mark-18A and Mark-42 targets at SRS and ORNL, with no plans to separate and store the isotopes for future use. Although the costs of preserving these heavy actinide materials would be considerable, for all practical purposes they are irreplaceable. The effort required to reproduce these heavy actinides today would likely cost billions of dollars and encompass a series of irradiation and chemical separation cycles for at least 50 years; thus, reproduction is virtually impossible. DOE has a limited window of opportunity to recover and preserve these heavy actinides before they are disposed of as waste. A path forward is presented to recover and manage these irreplaceable National Asset materials for future use in research, nuclear forensics, and other potential applications.

Wham, Robert M [ORNL; Patton, Bradley D [ORNL

2011-01-01T23:59:59.000Z

72

heavy_oil | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Oil Publications KMD Contacts Project Summaries EPAct 2005 Arctic Energy Office Announcements Software Stripper Wells Heavy oil is a vast U.S. oil resource that is...

73

Effect of dodecyl benzene sulfonic acid (DBSA) and lauric amine (LA) on the associating state and rheology of heavy oils  

Science Journals Connector (OSTI)

Abstract The effects of two amphiphiles, DBSA and LA, on the associating state and viscosity of three heavy oils with different resin/asphaltene (R/A) mass ratios were investigated through DSC analysis, rheological test and electrical conductivity measurement. The wax appearance temperatures of the three heavy oils are lower than 40C. The viscosity of heavy oils at temperature range 50~70C increases with increasing DBSA concentration but decreases with increasing LA concentration. Addition of DBSA increases the electrical conductivity of heavy oils, which implies that the DBSA acts as asphaltene dispersants; the electrical conductivity of heavy oils decreases after LA addition, which implies that the LA acts as asphaltene flocculants. The addition of DBSA decreases the size of asphaltene particles and generates new solvation layers, both of which favor the increase of heavy oil viscosity; the addition of LA increases the size of asphaltene particles and releases some liquid oils bounded by asphaltene particles, both of which favor the decrease of heavy oil viscosity. With the increase of R/A mass ratio, the stability of heavy oils increases while the viscosity enhancing/reducing efficiency of DBSA/LA decreases.

Fei Yang; Chuanxian Li; Shuang Yang; Qin Zhang; Jie Xu

2014-01-01T23:59:59.000Z

74

Electromagnetic Heating Methods for Heavy Oil Reservoirs  

SciTech Connect

The most widely used method of thermal oil recovery is by injecting steam into the reservoir. A well-designed steam injection project is very efficient in recovering oil, however its applicability is limited in many situations. Simulation studies and field experience has shown that for low injectivity reservoirs, small thickness of the oil-bearing zone, and reservoir heterogeneity limits the performance of steam injection. This paper discusses alternative methods of transferring heat to heavy oil reservoirs, based on electromagnetic energy. They present a detailed analysis of low frequency electric resistive (ohmic) heating and higher frequency electromagnetic heating (radio and microwave frequency). They show the applicability of electromagnetic heating in two example reservoirs. The first reservoir model has thin sand zones separated by impermeable shale layers, and very viscous oil. They model preheating the reservoir with low frequency current using two horizontal electrodes, before injecting steam. The second reservoir model has very low permeability and moderately viscous oil. In this case they use a high frequency microwave antenna located near the producing well as the heat source. Simulation results presented in this paper show that in some cases, electromagnetic heating may be a good alternative to steam injection or maybe used in combination with steam to improve heavy oil production. They identify the parameters which are critical in electromagnetic heating. They also discuss past field applications of electromagnetic heating including technical challenges and limitations.

Sahni, A.; Kumar, M.; Knapp, R.B.

2000-05-01T23:59:59.000Z

75

LABORATORY II ELECTRIC FIELDS AND ELECTRIC POTENTIALS  

E-Print Network (OSTI)

Lab II - 1 LABORATORY II ELECTRIC FIELDS AND ELECTRIC POTENTIALS In this lab you will continue to investigate the abstract concept of electric field. If you know the electric field at a point in space, you). With this simulation you can construct a complicated charge configuration and read out the resulting electric field

Minnesota, University of

76

Electrical and Computer Engineering Electrical Engineering  

E-Print Network (OSTI)

Electrical and Computer Engineering Electrical Engineering Department Website: www.iit.edu/engineering/ece Electrical engineering is concerned with the generation, transmission, and utilization of electrical energy and with the transmitting and processing of information. Electrical engineers are involved in the analysis, design, and pro

Heller, Barbara

77

Heavy Ion Collisions at RHIC  

NLE Websites -- All DOE Office Websites (Extended Search)

at Heavy Ion Colliders at Heavy Ion Colliders Theory Drivers & View from LHC Urs Achim Wiedemann CERN PH-TH NSAC Implementation Subcommittee Hearings 7 September 2012 Heavy Ion Physics - Main Tools of Theorists Understanding properties of hot and dense matter from the elementary interactions in QCD High Energy Physics String Theory Computational Physics Fluid Dynamics Dissipative fluid dynamic description * Based on: E-p conservation: 2 nd law of thermodynamics: * Sensitive to properties of matter that are calculated from first principles in quantum field theory - EOS: and sound velocity - transport coefficients: shear , bulk viscosity, conductivities ...

78

Heavy absorption chillers: The Tortoise technology that can win  

SciTech Connect

Why has Absorption taken over 200 years to become a viable technology and secondarily what is the long term potential for heavy absorption technology? A third interesting question may be as some knowledgeable people in the North America industry have professed, is there a Window of Opportunity which was presented by the electric vapor compressor refrigerant issue which will be the last chance for absorption? Of course we know that absorption is not a new technology in 1994. It is however being rediscovered in many parts of the world by specifiers and engineers who are otherwise totally familiar with HVAC systems technology. As has been well documented in Japan, absorption heavy systems have been dominant for some time to the point that over 90% of the new units installed in the heavy systems category are absorption. Further by now 50% of the installed heavy systems tonnage in the country are absorption chillers. It did not take the electric vapor compressor refrigerant issue to make this huge market for absorption and there aren`t too many people in the HVAC business in Japan that view absorption as the {open_quotes}Tortoise technology.{close_quotes} If we only understood what the drivers were in Japan to create this absorption market then perhaps we could understand and possibly predict the long term potential for the technology in other markets of the world. We could actually go to work and look for markets that mirror the prevailing conditions in Japan. There will be those amongst us who will tell you that Japan is a unique market in almost every product category and most certainly with respect to heavy chiller systems.

Irwin, F.E.

1995-06-01T23:59:59.000Z

79

High Temperatures & Electricity Demand  

E-Print Network (OSTI)

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

80

RHIC | Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

Relativistic Heavy Ion Collider Relativistic Heavy Ion Collider Photo of LINAC The Relativistic Heavy Ion Collider (RHIC) is a world-class particle accelerator at Brookhaven National Laboratory where physicists are exploring the most fundamental forces and properties of matter and the early universe. RHIC accelerates beams of particles (e.g., the nuclei of heavy atoms such as gold) to nearly the speed of light, and smashes them together to recreate a state of matter thought to have existed immediately after the Big Bang some 13.8 billion years ago. STAR and PHENIX, two large detectors located around the 2.4-mile-circumference accelerator, take "snapshots" of these collisions to reveal a glimpse of the basic constituents of visible matter, quarks and gluons. Understanding matter at

Note: This page contains sample records for the topic "bharat heavy electricals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Illinois Municipal Electric Agency- Electric Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

The Illinois Municipal Electric Agency (IMEA) offers rebates to member municipal utilities* (those who purchase wholesale electric service from IMEA) and retail customers for energy efficiency...

82

LCLS Heavy Met Outgassing Tests  

SciTech Connect

A Heavy Met that is 95% tungsten, 3% nickel and 2% iron and sintered to 100% density and is Ultra High Vacuum (UHV) compatible is proposed for use as the X-ray slit in the Front End Enclosure and the Fixed Mask for the Linac Coherent Light Source (LCLS). The Heavy Met was tested in the LLNL Vacuum Sciences and Engineering Lab (VSEL) to determine its outgassing rate and its overall compatibility with the vacuum requirements for LCLS.

Kishiyama, K. I.

2010-12-01T23:59:59.000Z

83

Electrical receptacle  

DOE Patents (OSTI)

The invention is a receptacle for a three prong electrical plug which has either a tubular or U-shaped grounding prong. The inventive receptacle has a grounding prong socket which is sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having two ridges to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. The two ridges are made to prevent the socket from expanding when either the U-shaped grounding prong or the tubular grounding prong is inserted.

Leong, R.

1993-06-22T23:59:59.000Z

84

ELECTRICAL ENGINEERING EECS Department  

E-Print Network (OSTI)

ELECTRICAL ENGINEERING EECS Department The Electrical Engineering and Computer Science (EECS) Department at WSU offers undergraduate degrees in electrical engineering, computer engineering and computer science. The EECS Department offers master of science degrees in computer science, electrical engineering

85

Electric Wheel Hub Motor  

Science Journals Connector (OSTI)

Wheel hub motors are an innovative drive concept for electric vehicles where the electric machine and, in some cases, the...

Dipl.-Ing. Michael Grninger; Dipl.-Ing. Felix Horch

2012-02-01T23:59:59.000Z

86

Gas turbine generators from India for Asian and world markets  

SciTech Connect

Bharat Heavy Electricals Ltd. (BHEL), in India, is an important producer of large industrial gas turbines in the Asian area. The company produces both GE frame type industrial gas turbines and Siemens design gas turbines for power generation service. Up to this time, BHEL has manufactured and supplied 68 gas turbine power generation units of GE design, ranging from Frame 1 to Frame 6 sizes, and two Siemens V94.2 gas turbines rated at 150 MW ISO. In addition, 15 gas turbine generating units are currently being manufactured. These include a large Frame 9 unit and a V94.2 gas turbine. This paper describes briefly some of the projects completed by the company.

NONE

1996-07-01T23:59:59.000Z

87

Electrical Equipment Inspection Program Electrical Safety  

E-Print Network (OSTI)

Electrical Equipment Inspection Program Electrical Safety SLAC-I-730-0A11A-001-R003 23 March 2005 Document Title: Electrical Equipment Inspection Program Original Publication Date: 19 January 2005 Revised Publication Date: 23 March 2005 (updated 29 November 2010) Department: Electrical Safety Document Number: SLAC

Wechsler, Risa H.

88

Anomalous effects and possible environmental symmetry "violation" in heavy-ion collisions  

E-Print Network (OSTI)

The heavy ion collision provides a unique many-body environment where local domains of strongly interacting chiral medium may occur and in a sense allow environmental symmetry "violation" pheomena. We briefly review recent progress in both the theoretical understanding and experimental search of various anomalous transport effects (such as the Chiral Magnetic Effect, Chiral Separation Effect, Chiral Electric Separation Effect, Chiral Electric/Magnetic Waves, etc) in the hot QCD fluid created by such experiments.

Jinfeng Liao

2014-01-11T23:59:59.000Z

89

Electrical Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE HANDBOOK ELECTRICAL SAFETY DOE-HDBK-1092-2013 July 2013 Superseding DOE-HDBK-1092-2004 December 2004 U.S. Department of Energy AREA SAFT Washington, D.C.20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1092-2013 Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/techstds/ ii DOE-HDBK-1092-2013 FOREWORD 1. This Department of Energy (DOE) Handbook is approved for use by the Office of Health, Safety and Security and is available to all DOE components and their contractors. 2. Specific comments (recommendations, additions, deletions, and any pertinent data) to enhance this document should be sent to: Patrick Tran

90

Top U.S. Automakers Collaborate to Improve Heavy-Duty Freight Efficiency |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top U.S. Automakers Collaborate to Improve Heavy-Duty Freight Top U.S. Automakers Collaborate to Improve Heavy-Duty Freight Efficiency Top U.S. Automakers Collaborate to Improve Heavy-Duty Freight Efficiency November 22, 2013 - 5:37pm Addthis As part of the 21st Century Truck Partnership, the Army will demonstrate technology that converts waste heat from an exhaust system to electricity used in its Stryker vehicle. | Photo courtesy of courtesy of U.S. Army As part of the 21st Century Truck Partnership, the Army will demonstrate technology that converts waste heat from an exhaust system to electricity used in its Stryker vehicle. | Photo courtesy of courtesy of U.S. Army Natalie Committee Communications Specialist, Office of Energy Efficiency and Renewable Energy Detroit, the hub of America's automotive industry hosted a gathering of

91

A Better Method for Evaluating Heavy Metal Water Pollution  

E-Print Network (OSTI)

efforts to control heavy metal pollution have focused oncomponent of heavy metal pollution, Dr. Hering found thatthat makes measuring heavy metal pollution a moving target.

Hering, Janet

2002-01-01T23:59:59.000Z

92

The electron and neutron EDM in the 3-3-1 model with heavy leptons  

E-Print Network (OSTI)

We calculate the electric dipole moment for the electron and neutron in the framework of the 3-3-1 model with heavy charged leptons. We assume that the only source of CP violation arise from a complex trilinear coupling constant and the three VEVs complex. Only one physical phase survives.

G. De Conto; V. Pleitez

2014-08-27T23:59:59.000Z

93

Electrical Properties of Mineral Surfaces for Increasing Water Sorption  

E-Print Network (OSTI)

in the presence of O2.2,4,5 In addition to controlling Mn concentrations, the nanostructures sequester heavy-metal and the associated toxic metals can be remobilized. N the electrical properties of mineral surfaces and thereby affect reactions with charged species such as metal

94

RHIC | Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites

Brookhaven National Laboratory Brookhaven National Laboratory search U.S. Department of Energy logo Home RHIC Science News Images Videos For Scientists Björn Schenke 490th Brookhaven Lecture, 12/18 Join Björn Schenke of Brookhaven Lab's Physics Department for the 490th Brookhaven Lecture, titled 'The Shape and Flow of Heavy Ion Collisions,' on Wednesday, Dec. 18, at 4 p.m. in Berkner Hall. droplets Tiny Drops of Hot Quark Soup-How Small Can They Be? New analyses indicate that collisions of small particles with large gold nuclei at the Relativistic Heavy Ion Collider may be serving up miniscule servings of hot quark-gluon plasma. RHIC Physics RHIC is the first machine in the world capable of colliding ions as heavy as gold. The Spin Puzzle RHIC is the world's only machine capable of colliding beams of polarized

95

CMVRTC: Heavy Truck Duty Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

heavy truck duty cycle (HTDC) project heavy truck duty cycle (HTDC) project OVERVIEW The Heavy Truck Duty Cycle (HTDC) Project was initiated in 2004 and is sponsored by the US Department of Energy's (DOE's) Office of FreedomCar and Vehicle Technologies Program. ORNL designed the research program to generate real-world-based duty cycle data from trucks operating in long-haul operations and was designed to be conducted in three phases: identification of parameters to be collected, instrumentation and pilot testing, identification of a real-world fleet, design of the data collection suite and fleet instrumentation, and data collection, analysis, and development of a duty cycle generation tool (DCGT). ANL logo dana logo michelin logo Schrader logo This type of data will be useful for supporting energy efficiency

96

Elliptic flow of heavy flavors  

E-Print Network (OSTI)

The propagation of charm and bottom quarks through a ellipsoidal domain of quark gluon plasma has been studied within the ambit of non-equilibrium statistical mechanics. Energy dissipation of heavy quarks by both radiative and collisional processes are taken in to account. The experimental data on the elliptic flow of the non-photonic electrons resulting from the semi-leptonic decays of hadrons containing heavy flavours has been reproduced with the same formalism that has been used earlier to reproduce the nuclear suppression factors. The elliptic flow of the non-photonic electron from heavy meson decays produced in nuclear collisions at LHC and low energy RHIC run have also been predicted.

Das, Santosh K

2010-01-01T23:59:59.000Z

97

Elliptic flow of heavy flavors  

E-Print Network (OSTI)

The propagation of charm and bottom quarks through an ellipsoidal domain of quark gluon plasma has been studied within the ambit of non-equilibrium statistical mechanics. Energy dissipation of heavy quarks by both radiative and collisional processes are taken in to account. The experimental data on the elliptic flow of the non-photonic electrons resulting from the semi-leptonic decays of hadrons containing heavy flavours has been reproduced with the same formalism that has been used earlier to reproduce the nuclear suppression factors. The elliptic flow of the non-photonic electron from heavy meson decays produced in nuclear collisions at LHC and low energy RHIC run have also been predicted.

Santosh K Das; Jan-e Alam

2010-08-16T23:59:59.000Z

98

A study on ultra heavy oil gasification technology  

SciTech Connect

Raising the thermal efficiency of a thermal power plant is an important issue from viewpoints of effective energy utilization and environmental protection. In view of raising the thermal efficiency, a gas turbine combined cycle power generation is considered to be very effective. The thermal efficiency of the latest LNG combined cycle power plant has been raised by more than 50%. On the other hand, the diversification of fuels to ensure supply stability is also an important issue, particularly in Japan where natural resources are scarce. Because of excellent handling characteristics petroleum and LNG which produces clean combustion are used in many sectors, and so the demand for such fuels is expected to grow. However, the availability of such fuels is limited, and supplies will be exhausted in the near future. The development of a highly efficient and environment-friendly gas turbine combined cycle using ultra heavy oil such as Orimulsion{trademark} (trademark of BITOR) is thus a significant step towards resolving these two issues. Chubu Electric Power Co, Inc., the Central Research Institute of Electric Power Industry (CRIEPI), and Mitsubishi Heavy Industries, Ltd. (MHI) conducted a collaboration from 1994 to 1998 with the objective of developing an ultra heavy oil integrated gasification combined cycle (IGCC). Construction of the ultra heavy oil gasification testing facility (fuel capacity:2.4t/d) was completed in 1995, and Orimulsion{trademark} gasification tests were carried out in 1995 and 1996. In 1997, the hot dedusting facility with ceramic filter and the water scrubber used as a preprocessor of a wet desulfurization process were installed. Gasification and clean up the syngs tests were carried out on Orimulsion{trademark}, Asmulsion{trademark} (trademark of Nisseki Mitsubishi K.K.), and residue oil in 1997 and 1998. The results of the collaboration effort are described below.

Kidoguchi, Kazuhiro; Ashizawa, Masami; Taki, Masato; Ishimura, Masato; Takeno, Keiji

2000-07-01T23:59:59.000Z

99

Pionic Fusion of Heavy Ions  

Science Journals Connector (OSTI)

We report the first experimental observation of the pionic fusion of two heavy ions. The 12C(12C,24Mg)?0 and 12C(12C,24Na)?+ cross sections have been measured to be 20838 and 18284 pb, respectively, at Ecm=137MeV. This cross section for heavy-ion pion production, at an energy just 6 MeV above the absolute energy-conservation limit, constrains possible production mechanisms to incorporate the kinetic energy of the entire projectile-target system as well as the binding energy gained in fusion.

D. Horn; G. C. Ball; D. R. Bowman; W. G. Davies; D. Fox; A. Galindo-Uribarri; A. C. Hayes; G. Savard; L. Beaulieu; Y. Larochelle; C. St-Pierre

1996-09-16T23:59:59.000Z

100

Spontaneous emission of heavy clusters  

Science Journals Connector (OSTI)

The lifetimes of some heavy nuclei relative to the spontaneous emission of various clusters heavier than the alpha particle are estimated with a model extended from the fission theory of alpha decay, showing that this phenomenon is a new manifestation of the nuclear shell structure. A greater probability is obtained for parent-heavy-cluster combinations leading to a magic or almost magic daughter nucleus. The analytical formula obtained allows one to handle a large number of cases to search for new kinds of radioactivities.

D N Poenaru; M Ivascu; A Sandulescu; W Greiner

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bharat heavy electricals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Central collisions of heavy ions  

SciTech Connect

This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1990 to September 30, 1991. During this period, our program focuses on particle production at AGS energies, and correlation studies at the Bevalac in nucleus central collisions. We participated in the preparation of letters of intent for two RHIC experiments -- the OASIS proposal and the Di-Muon proposal -- and worked on two RHIC R D efforts -- a silicon strip detector project and a muon-identifier project. A small fraction of time was also devoted to physics programs outside the realm of heavy ion reactions by several individuals.

Fung, Sun-yiu.

1991-10-01T23:59:59.000Z

102

Power Management Strategy for a Parallel Hybrid Electric Truck Power Management Strategy for a Parallel Hybrid Electric Truck  

E-Print Network (OSTI)

. The design procedure starts by defining a cost function, such as minimizing a combination of fuel consumption of a small increase in fuel consumption. #12;Power Management Strategy for a Parallel Hybrid Electric Truck I. INTRODUCTION Medium and heavy trucks running on diesel engines serve an important role in modern societies

Grizzle, Jessy W.

103

Mercury Monohalides: Suitability for Electron Electric Dipole Moment Searches  

E-Print Network (OSTI)

Heavy polar diatomic molecules are the primary tools for searching for the T-violating permanent electric dipole moment of the electron (eEDM). Valence electrons in some molecules experience extremely large effective electric fields due to relativistic interactions. These large effective electric fields are crucial to the success of polar-molecule-based eEDM search experiments. Here we report on the results of relativistic ab initio calculations of the effective electric fields in a series of molecules that are highly sensitive to an eEDM, the mercury monohalides (HgF, HgCl, HgBr,and HgI). We study the influence of the halide anions on effective electric field, and identify HgBr and HgI as interesting candidates for future electric dipole moment search experiments.

Prasannaa, V S; Abe, M; Das, B P

2014-01-01T23:59:59.000Z

104

Electrical Transmission Line Diametrical Retention Mechanism  

DOE Patents (OSTI)

The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within downhole components. The invention allows a transmission line to be attached to the internal diameter of drilling components that have a substantially uniform drilling diameter. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to withstand the tension and compression of drill pipe during routine drilling cycles.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

2006-01-03T23:59:59.000Z

105

Electricity and Magnetism  

Science Journals Connector (OSTI)

... and practical applications; or, speaking briefly, theory and practice. In the theoretical part, magnetism is first treated, then electricity, in the order statical electricity, electro-chemistry, and ... first treated, then electricity, in the order statical electricity, electro-chemistry, and electro-magnetism. In the practical part are comprised telegraphy and telephony, electric lighting and transmission of ...

A. GRAY

1891-11-05T23:59:59.000Z

106

Jones Electric Moho Page 1 ImagingandobservingtheElectricalMoho  

E-Print Network (OSTI)

Jones Electric Moho Page 1 ImagingandobservingtheElectricalMoho Alan G. Jones Dublin Institute version: 18 July, 2012 Revised version: 06 February 2013 Keywords: Moho, electrical Moho, electrical conductivity, electrical resistivity, crustmantle boundary #12;Jones Electric Moho Page 2 Abstract

Jones, Alan G.

107

Heavy quarks in effective field theories  

E-Print Network (OSTI)

Heavy quark physics serves as a probe to understand QCD, measure standard model parameters, and look for signs of new physics. We study several aspects of heavy quark systems in an effective field theory framework, including ...

Jain, Ambar

2009-01-01T23:59:59.000Z

108

Super Heavy Nuclei over Critical Fields and their Conections  

SciTech Connect

Low energy collisions of very heavy nuclei (238U+238U, 232Th+250Cf and 238U+248Cm) have been studied within the realistic dynamical model based on multi-dimensional Langevin equations. Large charge and mass transfer was found due to the 'inverse quasi-fission' process leading to formation of survived superheavy long-lived neutron-rich nuclei. In many events lifetime of the composite system consisting of two touching nuclei turns out to be rather long; sufficient for spontaneous positron formation from super-strong electric field, a fundamental QED process.

Greiner, Walter [Frankfurt Institute for Advanced Studies, J.W. Goethe-Universitaet, 60325 Frankfurt (Germany); Zagrebaev, Valery [Flerov Laboratory of Nuclear Reaction, JINR, Dubna, 141980, Moscow region (Russian Federation)

2007-04-28T23:59:59.000Z

109

Strangeness signals in heavy ion collisions  

SciTech Connect

The experimental data on strange meson and strange baryon production in relativistic heavy ion collisions are reviewed.

Remsberg, L.P.

1992-11-01T23:59:59.000Z

110

Strangeness signals in heavy ion collisions  

SciTech Connect

The experimental data on strange meson and strange baryon production in relativistic heavy ion collisions are reviewed.

Remsberg, L.P.

1992-01-01T23:59:59.000Z

111

Heavy oils (natural and refined)  

SciTech Connect

This section of the Petroleum and Coal review again contains discussions on the analysis of asphalts, bitumens, tars, and pitches as well as heavy natural and refined oils. The characterization of these heavy (high-boiling) materials impacts the way they are produced, their effect on the processing environment, and their suitability for various end products. The analysis of these heavy materials is becoming increasingly important as crude oil stocks get heavier and larger quantities of high-boiling materials are processed to derive clean lower boiling products. This review covers articles found in the literature in the last two years. This review will cover new or improved analytical procedures and applications to new sources of heavy oils. This review will be subdivided into individual separation or analytical techniques. Combined analytical techniques (e.g., GC-FT-IR) will be included under the technique most emphasized in the article. The review is categorized further by chromatographic techniques, spectroscopic techniques, thermal techniques, and miscellaneous. 71 refs.

Lintelmann, K.A. [Marathon Oil Co., Littleton, CO (United States)

1995-06-15T23:59:59.000Z

112

The Search for Heavy Elements  

ScienceCinema (OSTI)

The 1994 documentary "The Search for Heavy Elements" chronicles the expansion of the periodic table through the creation at Berkeley Lab of elements heavier than uranium. The documentary features a mix of rarely-seen archival footage, historical photos, and interviews with scientists who made history, such as Glenn Seaborg and Albert Ghiorso.

None

2010-01-08T23:59:59.000Z

113

Fusion and Heavy Ion Reactions  

Science Journals Connector (OSTI)

......February 2004 research-article Articles Fusion and Heavy Ion Reactions David M. Brink...useful for understanding of sub-barrier fusion processes. The Christensen-Winther...potentials like the CW interaction give good fusion cross-sections near and for a few MeV......

David M. Brink

2004-02-01T23:59:59.000Z

114

Heavy quark physics from LEP  

SciTech Connect

A review of some of the latest results on heavy flavor physics from the LEP Collaborations is presented. The emphasis is on B physics, particularly new results and those where discrepancies is given of the many techniques which have been developed to permit these analyses.

Dornan, P.J. [Imperial College of Science Technology and Medicine, London (United Kingdom)

1997-01-01T23:59:59.000Z

115

The Search for Heavy Elements  

SciTech Connect

The 1994 documentary "The Search for Heavy Elements" chronicles the expansion of the periodic table through the creation at Berkeley Lab of elements heavier than uranium. The documentary features a mix of rarely-seen archival footage, historical photos, and interviews with scientists who made history, such as Glenn Seaborg and Albert Ghiorso.

2008-04-17T23:59:59.000Z

116

Proton Distribution in Heavy Nuclei  

DOE R&D Accomplishments (OSTI)

It is reasoned that, from considerations connected with beta-decay stability and Coulomb repulsion forces, a neutron excess is developed on the surface of heavy nuclei. Several consequences of this qualitative analysis in nucleon interactions are briefly noted. (K.S.)

Johnson, M. H; Teller, E.

1953-11-13T23:59:59.000Z

117

Ratios of heavy baryons to heavy mesons in relativistic nucleus-nucleus collisions  

E-Print Network (OSTI)

Heavy baryon/meson ratios Lambda(c)/D(0) and Lambda(b)/(B) over bar (0) in relativistic heavy ion collisions are studied in the quark coalescence model. For heavy baryons, we include production from coalescence of heavy quarks with free light quarks...

Oh, Yongseok; Ko, Che Ming; Lee, Su Houng; Yasui, Shigehiro.

2009-01-01T23:59:59.000Z

118

NREL: Transportation Research - Electric and Plug-In Hybrid Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Electric and Plug-In Hybrid Electric Vehicles Work EVs use batteries to store the electric energy that powers the motor. EV...

119

Raft River Rural Electric Coop. Vigilante Electric Coop. Northern  

NLE Websites -- All DOE Office Websites (Extended Search)

Raft River Rural Electric Coop. Vigilante Electric Coop. Northern Lights Bonners Ferry East End Mutual Heyburn Burley United Electric Albion Raft River Rural Electric Coop. Declo...

120

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

Figure 34. Regional electricity cost duration curves in 2010especially focus on electricity costs and grid compositionrelatively higher electricity costs. If electricity demand

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bharat heavy electricals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Estimating the Value of Electricity Storage Resources in Electricity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 The...

122

Electrical Generation for More-Electric Aircraft using Solid...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells This study, completed by...

123

Electric Vehicle Research Group  

E-Print Network (OSTI)

.................................................................................9 From diesel to electric: a new era in personnel transport for underground coal minesElectric Vehicle Research Group Annual Report 2012 #12;Table of Contents Executive Summary................................................................................8 C2-25 Electric Vehicle Drivetrain

Liley, David

124

Electric car Gasoline car  

E-Print Network (OSTI)

ENAC/ Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares of an electric vehicle? Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares preference survey with choice situation contexts involving gasoline cars (Renault and competitors

125

ELECTRICAL ENERGY SYSTEMS ELECTRICAL ENERGY SYSTEMS  

E-Print Network (OSTI)

. In its Energy Policy, the Scottish Government stated that it is Scotland's ambition to become a worldMEng ELECTRICAL ENERGY SYSTEMS #12;MEng ELECTRICAL ENERGY SYSTEMS Electrical energy is vital aspects of modern life. One of the biggest challenges facing society is the need for reliable energy

Strathclyde, University of

126

Heavy Quark Production in ep Collisions  

E-Print Network (OSTI)

Heavy Quark Production in ep Collisions o Introduction o Charm Production o Beauty Production o in ep collisions 23 February 2007 2/17 Heavy Flavor Production Boson-Gluon Fusion, dominant process Hard of the proton: #12;G. Leibenguth, Heavy Quarks Production in ep collisions 23 February 2007 3/17 HERA, Electron

127

3, 37453768, 2003 Heavy hydrogen in  

E-Print Network (OSTI)

ACPD 3, 3745­3768, 2003 Heavy hydrogen in the stratosphere T. R¨ockmann et al. Title Page Abstract/3745/ © European Geosciences Union 2003 Atmospheric Chemistry and Physics Discussions Heavy hydrogen Heavy hydrogen in the stratosphere T. R¨ockmann et al. Title Page Abstract Introduction Conclusions

Paris-Sud XI, Université de

128

Heavy oil production from Alaska  

SciTech Connect

North Slope of Alaska has an estimated 40 billion barrels of heavy oil and bitumen in the shallow formations of West Sak and Ugnu. Recovering this resource economically is a technical challenge for two reasons: (1) the geophysical environment is unique, and (2) the expected recovery is a low percentage of the oil in place. The optimum advanced recovery process is still undetermined. Thermal methods would be applicable if the risks of thawing the permafrost can be minimized and the enormous heat losses reduced. Use of enriched natural gas is a probable recovery process for West Sak. Nearby Prudhoe Bay field is using its huge natural gas resources for pressure maintenance and enriched gas improved oil recovery (IOR). Use of carbon dioxide is unlikely because of dynamic miscibility problems. Major concerns for any IOR include close well spacing and its impact on the environment, asphaltene precipitation, sand production, and fines migration, in addition to other more common production problems. Studies have indicated that recovering West Sak and Lower Ugnu heavy oil is technically feasible, but its development has not been economically viable so far. Remoteness from markets and harsh Arctic climate increase production costs relative to California heavy oil or Central/South American heavy crude delivered to the U.S. Gulf Coast. A positive change in any of the key economic factors could provide the impetus for future development. Cooperation between the federal government, state of Alaska, and industry on taxation, leasing, and permitting, and an aggressive support for development of technology to improve economics is needed for these heavy oil resources to be developed.

Mahmood, S.M.; Olsen, D.K. [NIPER/BDM-Oklahoma, Inc., Bartlesville, OK (United States); Thomas, C.P. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1995-12-31T23:59:59.000Z

129

Comparing Emissions Benefits from Regulating Heavy Vehicle Idling...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

from Regulating Heavy Vehicle Idling Comparing Emissions Benefits from Regulating Heavy Vehicle Idling 2005 Diesel Engine Emissions Reduction (DEER) Conference...

130

Electrical safety guidelines  

SciTech Connect

The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

Not Available

1993-09-01T23:59:59.000Z

131

Electricity Monthly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and...

132

Electricity Monthly Update  

Annual Energy Outlook 2012 (EIA)

Update November 28, 2012 Map of Electric System Selected for Daily Peak Demand was replaced with the correct map showing Selected Wholesale Electricity and Natural Gas Locations....

133

Electricity Monthly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S....

134

Electricity Monthly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity...

135

User Electrical Equipment Inspections  

NLE Websites -- All DOE Office Websites (Extended Search)

User Electronic and Electrical Equipment Inspection Criteria In order to be in compliance with NEC, OSHA, and DOE regulations all electronic and electrical equipment at the APS...

136

Electricity Monthly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

See all Electricity Reports Electricity Monthly Update With Data for September 2014 | Release Date: Nov. 25, 2014 | Next Release Date: Dec. 23, 2014 Previous Issues Issue:...

137

Electricity Monthly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

See all Electricity Reports Electricity Monthly Update With Data for October 2014 | Release Date: Dec. 23, 2014 | Next Release Date: Jan. 26, 2015 Previous Issues Issue:...

138

California's electricity crisis  

E-Print Network (OSTI)

The collapse of California's electricity restructuring and competition program has attracted attention around the world. Prices in California's competitive wholesale electricity market increased by 500% between the second ...

Joskow, Paul L.

2001-01-01T23:59:59.000Z

139

Electricity Monthly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

See all Electricity Reports Electricity Monthly Update With Data for August 2014 | Release Date: Oct. 24, 2014 | Next Release Date: Nov. 24, 2014 Previous Issues Issue: October...

140

Open heavy flavor production at RHIC  

E-Print Network (OSTI)

The study of heavy flavor production in relativistic heavy ion collisions is an extreme experimental challenge but provides important information on the properties of the Quark-Gluon Plasma (QGP) created in Au+Au collisions at RHIC. Heavy-quarks are believed to be produced in the initial stages of the collision, and are essential on the understanding of parton energy loss in the dense medium created in such environment. Moreover, heavy-quarks can help to investigate fundamental properties of QCD in elementary p+p collisions. In this work we review recent results on heavy flavor production and their interaction with the hot and dense medium at RHIC.

A. A. P. Suaide

2007-02-16T23:59:59.000Z

Note: This page contains sample records for the topic "bharat heavy electricals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Electrical Safety - Monthly Analyses of Electrical Safety Occurrences  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Analysis Office of Analysis Operating Experience Committee Safety Alerts Safety Bulletins Annual Reports Special Operations Reports Safety Advisories Special Reports Causal Analysis Reviews Contact Us HSS Logo Electrical Safety Monthly Analyses of Electrical Safety Occurrences 2013 September 2013 Electrical Safety Occurrences August 2013 Electrical Safety Occurrences July 2013 Electrical Safety Occurrences June 2013 Electrical Safety Occurrences May 2013 Electrical Safety Occurrences April 2013 Electrical Safety Occurrences March Electrical Safety Occurrence February Electrical Safety Occurrence January Electrical Safety Occurrence 2012 December Electrical Safety Occurrence November Electrical Safety Occurrence October Electrical Safety Occurrence September Electrical Safety Occurrence

142

Refiner options for converting and utilizing heavy fuel oil  

SciTech Connect

Ongoing advances in established technologies, together with recent commercial applications of residue fluid catalytic cracking (RFCC), automated residue demetallization, solvent deasphalting and gasification of pitch and coke, have markedly enhanced options for processing and economically using residues. Key long-term driving forces for processing strategies are: the need for flexibility to handle heavy, high-metals crude oils, and the economic benefit of being able to convert low-value residues to high-value light transportation fuels, hydrogen and electric power. Narrowing light/heavy crude oil price differentials and relatively low crude oil price levels since the early 1990s until the first quarter of 1996 have slowed the addition of new bottom-of-the-barrel conversion projects over the past two years. At the same time, world crude oil demand has increased at an annual average rate of nearly one million barrels/day (MMbpd) since 1985. Some major producer/refining companies forecast this rate of increase to continue well into the next decade. The inevitable net result will be the increased production of heavier crude oils. The authors project that this will be accompanied by flat or declining markets for heavy fuel oil and a resultant need for additional residue conversion/utilization capacity. The paper discusses technology application and status, economic observations, and technology outlook.

Dickenson, R.L.; Biasca, F.E.; Schulman, B.L.; Johnson, H.E. [SFA Pacific, Inc., Mountain View, CA (United States)

1997-02-01T23:59:59.000Z

143

Impact and future of heavy oil produciton  

SciTech Connect

Heavy oil resources are becoming increaingly important in meeting world oil demand. Heavy oil accounts for 10% of the worlds current oil production and is anticipated to grow significantly. Recent narrowing of the price margins between light and heavy oil and the development of regional heavy oil markets (production, refining and marketing) have prompted renewed investment in heavy oil. Production of well known heavy oil resources of Canada, Venezuela, United States, and elsewhere throughout the world will be expanded on a project-by-project basis. Custom refineries designed to process these heavy crudes are being expanded. Refined products from these crudes will be cleaner than ever before because of the huge investment. However, heavy oil still remains at a competitive disadvantage due to higher production, transportation and refining have to compete with other investment opportunities available in the industry. Expansion of the U.S. heavy oil industry is no exception. Relaxation of export restrictions on Alaskan North Slope crude has prompted renewed development of California's heavy oil resources. The location, resource volume, and oil properties of the more than 80-billion barrel U.S. heavy oil resource are well known. Our recent studies summarize the constraints on production, define the anticipated impact (volume, location and time frame) of development of U.S. heavy oil resources, and examines the $7-billion investment in refining units (bottoms conversion capacity) required to accommodate increased U.S. heavy oil production. Expansion of Canadian and Venezuelan heavy oil and tar sands production are anticipated to dramatically impact the U.S. petroleum market while displacing some imported Mideast crude.

Olsen, D.K, (National Inst. for Petroleum and Energy Research/BDM-Oklahoma Inc., Bartlesville, OK (United States))

1996-01-01T23:59:59.000Z

144

Impact and future of heavy oil produciton  

SciTech Connect

Heavy oil resources are becoming increaingly important in meeting world oil demand. Heavy oil accounts for 10% of the worlds current oil production and is anticipated to grow significantly. Recent narrowing of the price margins between light and heavy oil and the development of regional heavy oil markets (production, refining and marketing) have prompted renewed investment in heavy oil. Production of well known heavy oil resources of Canada, Venezuela, United States, and elsewhere throughout the world will be expanded on a project-by-project basis. Custom refineries designed to process these heavy crudes are being expanded. Refined products from these crudes will be cleaner than ever before because of the huge investment. However, heavy oil still remains at a competitive disadvantage due to higher production, transportation and refining have to compete with other investment opportunities available in the industry. Expansion of the U.S. heavy oil industry is no exception. Relaxation of export restrictions on Alaskan North Slope crude has prompted renewed development of California`s heavy oil resources. The location, resource volume, and oil properties of the more than 80-billion barrel U.S. heavy oil resource are well known. Our recent studies summarize the constraints on production, define the anticipated impact (volume, location and time frame) of development of U.S. heavy oil resources, and examines the $7-billion investment in refining units (bottoms conversion capacity) required to accommodate increased U.S. heavy oil production. Expansion of Canadian and Venezuelan heavy oil and tar sands production are anticipated to dramatically impact the U.S. petroleum market while displacing some imported Mideast crude.

Olsen, D.K, [National Inst. for Petroleum and Energy Research/BDM-Oklahoma Inc., Bartlesville, OK (United States)

1996-12-31T23:59:59.000Z

145

GEI 41040G - Specification for Fuel Gases for COmbustion in Heavy-Duty Gas Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Turbine Gas Turbine Revised, January 2002 GEI 41040G These instructions do not purport to cover all details or variations in equipment nor to provide for every possible contingency to be met in connection with installation, operation or maintenance. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes the matter should be referred to the GE Company. © 1999 GENERAL ELECTRIC COMPANY Specification for Fuel Gases for Combustion in Heavy-Duty Gas Turbines GEI 41040G Specification for Fuel Gases for Combustion in Heavy-Duty Gas Turbines 2 TABLE OF CONTENTS I. INTRODUCTION 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

146

Muon bremsstrahlung on heavy atoms  

Science Journals Connector (OSTI)

The cross section for high energy muon bremsstrahlung on heavy atoms is calculated without the use of the Born approximation. It is shown that the correction to the Born approximation in the region of momentum transfers q of the order of ?c has the same order of magnitude as the well-known correction of Davies, Bethe, and Maximon. It is shown also that these corrections have different signs and nearly compensate each other.

Yu. M. Andreev and E. V. Bugaev

1997-02-01T23:59:59.000Z

147

Central collisions of heavy ions  

SciTech Connect

This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1991 to September 30, 1992. During this period, the program focused on particle production at AGS energies, and correlation studies at the Bevalac in nucleus-nucleus central collisions. As part of the PHENIX collaboration, contributions were made to the Preliminary Conceptual Design Report (pCDR), and work on a RHIC silicon microstrip detector R D project was performed.

Fung, Sun-yiu.

1992-10-01T23:59:59.000Z

148

Energy Conversion to Electricity  

Science Journals Connector (OSTI)

30 May 1974 research-article Energy Conversion to Electricity D. Clark...continuing growth in the demand for energy, and of electricity as the route...the electricity share of the total energy market and of the substitution of electricity...

1974-01-01T23:59:59.000Z

149

Massachusetts Electric Vehicle Efforts  

E-Print Network (OSTI)

Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through

California at Davis, University of

150

LABORATORY V ELECTRIC CIRCUITS  

E-Print Network (OSTI)

Lab V -1 LABORATORY V ELECTRIC CIRCUITS Electrical devices are the cornerstones of our modern world understanding of them. In the previous laboratory, you studied the behavior of electric fields and their effect on the motion of electrons using a cathode ray tube (CRT). This beam of electrons is one example of an electric

Minnesota, University of

151

Career Map: Electrical Engineer  

Energy.gov (U.S. Department of Energy (DOE))

The Wind Program's Career Map provides job description information for Electrical Engineer positions.

152

Electronics, Electrical Engineering  

E-Print Network (OSTI)

SCHOOL OF Electronics, Electrical Engineering and Computer Science IS IN YOUR HANDS THE FUTURE #12;SCHOOL OF Electronics, Electrical Engineering and Computer Science2 CAREERS IN ELECTRONICS, ELECTRICAL Belfast. Ranked among the top 100 in the world for Electrical and Electronic Engineering (QS World

153

Syracuse University Electrical Engineering  

E-Print Network (OSTI)

Syracuse University Electrical Engineering and Computer Science Tenure Track Faculty Position in Electrical Engineering The Department of Electrical Engineering and Computer Science is seeking applicants for a tenure track position in Electrical Engineering starting in August 2014 or January 2015. The department

Mather, Patrick T.

154

Renewable Electricity Futures Study  

E-Print Network (OSTI)

Renewable Electricity Futures Study End-use Electricity Demand Volume 3 of 4 Volume 2 PDF Volume 3;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U Sandor, D. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study

155

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology  

SciTech Connect

Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

Hopman, Ulrich,; Kruiswyk, Richard W.

2005-07-05T23:59:59.000Z

156

DEVELOPMENT PRACTICES FOR OPTIMIZED MEOR IN SHALLOW HEAVY OIL RESERVOIRS  

SciTech Connect

The objective of this research project is to demonstrate an economically viable and sustainable method of producing shallow heavy oil reserves in western Missouri and southeastern Kansas, using an integrated approach including surface geochemical surveys, conventional MEOR treatments, horizontal fracturing in vertical wells, electrical resistivity tomography (ERT), and reservoir simulation to optimize the recovery process. The objective also includes transferring the knowledge gained from the project to other local landowners, to demonstrate how they may identify and develop their own heavy oil resources with minimal capital investment. In the twelve to eighteen-month project period, three wells were equipped with ERT arrays. Electrical resistivity tomography (ERT) background measurements were taken in the three ERT equipped wells. Pumping equipment was installed on the two fracture stimulated wells and pumping tests were conducted following the hydraulic fracture treatments. All wells were treated monthly with microbes, by adding a commercially available microbial mixture to wellbore fluids. ERT surveys were taken on a monthly basis, following microbial treatments. Worked performed to date demonstrates that resistivity changes are occurring in the subsurface, with resistivity increasing slightly. Pumping results for the hydraulically fractured wells were disappointing, with only a show of oil recovered and an increase in well shut-in pressure.

Shari Dunn-Norman

2005-06-01T23:59:59.000Z

157

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page inTenTionally lefT blank 91 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2012, DOE/EIA-M068(2012). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

158

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 95 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2011, DOE/EIA-M068(2011). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

159

Electricity Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Market Module Market Module This page inTenTionally lefT blank 101 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2013, DOE/EIA-M068(2013). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

160

Plug-In Electric Vehicle Handbook for Electrical  

E-Print Network (OSTI)

Plug-In Electric Vehicle Handbook for Electrical Contractors #12;Plug-In Electric Vehicle Handbook for Electrical Contractors2 Table of Contents Introduction . . . . . . . 9 EVSE Training for Electrical Contractors . . . . . . . . . . . . . . . . 18

Note: This page contains sample records for the topic "bharat heavy electricals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Introduction Computational Efficiency Electricity Portfolio Planning Electricity Portfolios  

E-Print Network (OSTI)

Introduction Computational Efficiency Electricity Portfolio Planning Electricity Portfolios 2009/11/30­12/01 István Maros Electricity Portfolio #12;Introduction Computational Efficiency Electricity Portfolio Outline 1 Introduction 2 Computational Efficiency 3 Electricity Portfolio Approximate

162

Algae fuel clean electricity generation  

Science Journals Connector (OSTI)

Algae fuel clean electricity generation ... The link between algae and electricity may seem tenuous at best. ...

DERMOT O'SULIVAN

1993-02-08T23:59:59.000Z

163

Richmond Electric Vehicle Initiative Electric Vehicle Readiness...  

Office of Environmental Management (EM)

MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

164

ECE 438 Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric  

E-Print Network (OSTI)

ECE 438 ­ Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric vehicle configurations. Vehicle mechanics. Energy sources and storage. Range prediction. Motor for HEVs. Electric drive components. Vehicle transmission system. Credits

165

Neglected heavy leptons at the LHC  

Science Journals Connector (OSTI)

New heavy leptons with standard model gauge couplings have well-determined cross sections for pair production. A standard pattern of mass mixing implies that the most likely decays are ???W?? and ???W?. Interestingly there have been no direct searches for heavy leptons with these decays at the LHC. However comparison with several multilepton searches allows us to set new limits on the heavy lepton masses. Three observed excesses in the signal regions prevent us from setting stronger limits.

B. Holdom and M. Ratzlaff

2014-07-18T23:59:59.000Z

166

Electricity Consumption Electricity Consumption EIA Electricity Consumption Estimates  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumption Consumption Electricity Consumption EIA Electricity Consumption Estimates (million kWh) National Petroleum Council Assumption: The definition of electricity con- sumption and sales used in the NPC 1999 study is the equivalent ofwhat EIA calls "sales by utilities" plus "retail wheeling by power marketers." This A nn u al Gro wth total could also be called "sales through the distribution grid," 2o 99 99 to Sales by Utilities -012% #N/A Two other categories of electricity consumption tracked by EIA cover on site Retail Wheeling Sales by generation for host use. The first, "nonutility onsite direct use," covers the Power Marketen 212.25% #N/A traditional generation/cogeneration facilities owned by industrial or large All Sales Through Distribution

167

Central Electric Coop. Oregon Trail Electric Coop. Douglas Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Grove Tillamook PUD Columbia River PUD West Oregon Electric Coop. Clatskanie PUD Umpqua Indian Utility Coop. McNar y Foster Cougar John Day Lost Creek Bonneville Hills Creek...

168

Electric arc saw apparatus  

DOE Patents (OSTI)

A portable, hand held electric arc saw has a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc to erode a workpiece. Electric current is supplied to the blade by biased brushes and a slip ring which are mounted in the frame. A pair of freely movable endless belts in the form of crawler treads stretched between two pulleys are used to facilitate movement of the electric arc saw. The pulleys are formed of dielectric material to electrically insulate the crawler treads from the frame.

Deichelbohrer, Paul R [Richland, WA

1986-01-01T23:59:59.000Z

169

Compositional changes in heavy oil steamflood simulators.  

E-Print Network (OSTI)

??The numerical simulation of heavy oil steamfloods has generally been conducted assuming that the oil is non-volatile. Reservoir simulation has traditionally ignored compositional effect s (more)

Lolley, Christopher Scott

2012-01-01T23:59:59.000Z

170

Adiabatic and Isothermal Compressibilities of Heavy Water  

Science Journals Connector (OSTI)

... ABOUT 50 grams of heavy water supplied by the Norsk Hydro-Elektrisk Kvaelstofaktieselskab as 992 per cent pure has been used in the present ...

S. BHAGAVANTAM; B. SUNDARA RAMA RAO

1937-12-25T23:59:59.000Z

171

Heavy flavor production in the STAR experiment  

E-Print Network (OSTI)

In this paper, recent STAR heavy flavor measurements in proton-proton and heavy-ion collisions are highlighted. We report studies of open charm mesons, reconstructed directly from hadronic decay products, and studies of electrons from semi-leptonic decays of heavy flavor hadrons. We also present J/$\\psi$ measurements via the di-electron decay channel at various collision systems and energies. In Au+Au collisions the energy dependence of J/$\\psi$ production measured at $\\sqrt{s_{NN}}$ = 39, 62.4 and 200 GeV is shown. Finally, prospects of heavy flavor measurements with the STAR detector upgrades are discussed.

Barbara Trzeciak; for the STAR Collaboration

2014-09-11T23:59:59.000Z

172

The Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy  

E-Print Network (OSTI)

-consistent power plant design for a multi- beam induction linac, final focus and chamber propagationThe Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy Grant Logan Director Heavy-Ion Fusion Virtual National Laboratory Presented to FESAC Workshop on Development Paths

173

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV)

174

Electricity Distribution System Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Discussion Summary Discussion Summary Electricity Transmission System Workshop 1 Grid Tech Team Discussion Summary Electricity Transmission System Workshop 2 Table of Contents INTRODUCTION ............................................................................................................................................. 3 EXECUTIVE SUMMARY .................................................................................................................................. 4 Process ...................................................................................................................................................... 4 Synthesized Challenges ............................................................................................................................. 5

175

ELECTRICAL & COMPUTER ENGINEERING  

E-Print Network (OSTI)

ELECTRICAL & COMPUTER ENGINEERING SEMINAR "Agile Sensing Systems: Analysis, Design and Implementation" by Prof. Jun (Jason) Zhang Electrical and Computer Engineering University of Denver Tuesday requirements, computational complexity requirements, and robustness to time- varying physical environments

176

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Use: February 2014 Retail RatesPrices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based...

177

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: July 2014 Retail ratesprices and consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based...

178

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: August 2014 Retail ratesprices and consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based...

179

Recent Graduate Electrical Engineer  

Energy.gov (U.S. Department of Energy (DOE))

This position is located in the Office of Electric Reliability. The Office of Electric Reliability helps protect and improve the reliability and security of the nation's bulk power system through...

180

Electricity | Department of Energy  

Office of Environmental Management (EM)

Sources Electricity Electricity January 22, 2015 State of the Union Remarks on Energy in Four Charts We dive into the data behind President Obama's State of the Union statements...

Note: This page contains sample records for the topic "bharat heavy electricals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-10-01T23:59:59.000Z

182

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-11-01T23:59:59.000Z

183

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2013-04-01T23:59:59.000Z

184

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Hand, M. M.

2012-09-01T23:59:59.000Z

185

Designing electricity transmission auctions  

E-Print Network (OSTI)

The UK has ambitious plans for exploiting offshore wind for electricity production in order to meet its challenging target under the EU Renewable Energy Directive. This could involve investing up to 20bn in transmission assets to bring electricity...

Greve, Thomas; Pollitt, Michael G.

2012-10-26T23:59:59.000Z

186

Automobile Electrical Systems  

Science Journals Connector (OSTI)

The modern electrical system has been developed, over a period of some fifty years from the days of the early motor-car which usually had only one electrical system, namely, that of the ignition comp...

Arthur W. Judge

1970-01-01T23:59:59.000Z

187

2014 Electricity Form Proposals  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity and Renewable (Photovoltaic) Survey Form Changes Proposed for Electricity and Renewable (Photovoltaic) Survey Form Changes Proposed for 2014 The U.S. Energy Information Administration (EIA) is proposing changes to its electricity data collection in 2014. These changes involve the following surveys: Form EIA-63B, "Annual Photovoltaic Cell/Module Shipments Report," Form EIA-411, "Coordinated Bulk Power Supply Program Report," Form EIA-826, "Monthly Electric Utility Sales and Revenue Report with State Distributions," Form EIA-860, "Annual Electric Generator Report," Form EIA-860M, "Monthly Update to the Annual Electric Generator Report," Form EIA-861, "Annual Electric Power Industry Report," Form EIA-861S, "Annual Electric Power Industry Report (Short Form)," and

188

Radical scavengers from heavy hydrocarbons  

SciTech Connect

The hydrogen-donating properties of some hydrocarbons form the basis for processes such as coal liquefaction and heavy oil upgrading. However, these hydrocarbons have seldom been used for other purposes, because their potential applications have not been well recognized. Research has indicated that these hydrogen-donating hydrocarbons can be used in important reactions as radical scavengers and have properties particular to those of pure hydrocarbons without functional groups containing heteroatoms. Over years of study researchers have found that pure hydrocarbons with radical-scavenging effects nearly as high as those in conventional hindered phenolic antioxidants can be produced from petroleum, and these hydrogen-donating hydrocarbons exhibit such effects even in oxidative atmospheres (i.e., they function as antioxidants). He has also shown that these mixtures have some properties particular to pure hydrocarbons without functional groups containing heteroatoms, and they`ve seen that a mechanism based on the steric effects appears when these hydrocarbons are used in heavy oil hydroprocessing. Hydrogen-donating hydrocarbons should be a viable resource in many applications. In this article, he presents radical-scavenging abilities, characteristics as pure hydrocarbons, and applications on the basis of the studies.

Kubo, Junichi [Nippon Oil Co. Ltd. (Japan)

1996-10-01T23:59:59.000Z

189

Electric resistive space heating  

Science Journals Connector (OSTI)

The cost of heating residential buildings using electricity is compared to the cost employing gas or oil. (AIP)

David Bodansky

1985-01-01T23:59:59.000Z

190

Electric vehicles: UK content  

Science Journals Connector (OSTI)

... overnight recharging are identified as the main obstacles to the early success of the all-electric car. Another problem is that most of the advantages accrue to society and the electricity ... in Britain. They offer the most promising prospects for private use by overcoming the pure electric car problem of short range, typically 50-70 miles. They also do not necessarily depend ...

Judy Redfearn

1980-09-11T23:59:59.000Z

191

Insulation of Electrical Equipment  

Science Journals Connector (OSTI)

... A VACATION 'school' on the insulation of electrical equipment was held in the Electrical Engineering Department of the Imperial College of ... the universities. The purpose of the course was to consider the factors which are limiting insulation design in the main classes of electrical equipment, and the general principles which should ...

1952-12-13T23:59:59.000Z

192

ELECTRICAL & COMPUTER ENGINEERING  

E-Print Network (OSTI)

ELECTRICAL & COMPUTER ENGINEERING SEMINAR "Geometry as a Prior in Signal Processing" by Yuejie Chi Electrical Engineering Princeton University Monday, March 19, 2012, 11:00 a.m. Location LSC 210 Abstract processing. Biography: Yuejie Chi is a Ph.D. candidate in Electrical Engineering at Princeton University

193

Electricity in Horticulture  

Science Journals Connector (OSTI)

... ELECTRO-CULTURE has to take into account the effects of electric heating, electric lighting and the voltage stress on the life of plants. The first applica-tion of ... and increases up to forty per cent have been obtained. Electricity in the form of light was the next application in the aid of ...

1936-07-11T23:59:59.000Z

194

EFCOG / DOE Electrical Safety  

E-Print Network (OSTI)

of electrical hazards used in the DOE Electrical Safety Handbook and laboratory programs. Thus, portionsEFCOG / DOE Electrical Safety Improvement Project Project Area 4 ­Performance Measurement personnel. This tool is also intended to assist DOE organizations in determining and classifying ORPS

195

Electric Services in Buildings  

Science Journals Connector (OSTI)

... Institution of Electrical Engineers on October 22. In the early days, electrical installations in buildings were for lighting and bells. Wood casing was used, and, so far as ... equipment were placed anywhere where they would be out of sight. Now new and larger buildings are being erected all over the country, and electrical contractors are having difficulty in ...

1936-10-31T23:59:59.000Z

196

Electrical Equipment of Buildings  

Science Journals Connector (OSTI)

... eleventh) edition of the regulations of the Institution of Electrical Engineers for the wiring of buildings was published in June (London: Spon. Cloth 1s. 6d. net; paper cover ... of electrical energy in and about all types of dwelling houses, business premises, public buildings and factories, whether tho electric supply is derived from an external source or from ...

1939-10-14T23:59:59.000Z

197

Vehicle Technologies Office: Electrical Machines  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Machines to Electrical Machines to someone by E-mail Share Vehicle Technologies Office: Electrical Machines on Facebook Tweet about Vehicle Technologies Office: Electrical Machines on Twitter Bookmark Vehicle Technologies Office: Electrical Machines on Google Bookmark Vehicle Technologies Office: Electrical Machines on Delicious Rank Vehicle Technologies Office: Electrical Machines on Digg Find More places to share Vehicle Technologies Office: Electrical Machines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Electrical Machines Emphasis in the electrical machines activity is on advanced motor

198

Electric Turbo Compounding Technology Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turbo Compounding Technology Update Electric Turbo Compounding Technology Update 15 August, 2007 Carl Vuk 15 August, 2007 Carl Vuk Electric Turbo Compounding Highlights Electric...

199

Electricity Generation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electricity Generation Electricity Generation Photo of geothermal power plant. A geothermal resource requires fluid, heat and permeability in order to generate electricity:...

200

Case Study of the Emissions from a Heavy-Oil-Fueled Hungarian Power Plant  

Science Journals Connector (OSTI)

Case Study of the Emissions from a Heavy-Oil-Fueled Hungarian Power Plant ... More than 50% of the electric power in Hungary is produced by fossil-fuel-burning power plants. ... 15 The concentration of the pollutant at a location is described by an explicit function in Descartes coordinate system, where the origin is the source; the direction of the abscissa is the same as the wind direction. ...

Jnos Osn; Szabina Trk; Jen Fekete; Anders Rindby

2000-08-26T23:59:59.000Z

Note: This page contains sample records for the topic "bharat heavy electricals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Heavy Petroleum Composition. 3. Asphaltene Aggregation  

Science Journals Connector (OSTI)

The ever-increasing worldwide demand for energy has led to the upgrading of heavy crude oil and asphaltene-rich feedstocks becoming viable refining options for the petroleum industry. ... fractions of heavy petroleums were examd. ... changes, introduction of miscible gases and liqs., mixing with diluents and other oils, and, during acid stimulation, hot oiling and other oilfield operations. ...

Amy M. McKenna; Lynda J. Donald; Jade E. Fitzsimmons; Priyanka Juyal; Victor Spicer; Kenneth G. Standing; Alan G. Marshall; Ryan P. Rodgers

2013-01-16T23:59:59.000Z

202

A Heavy Flavor Tracker for STAR  

SciTech Connect

We propose to construct a Heavy Flavor Tracker (HFT) for the STAR experiment at RHIC. The HFT will bring new physics capabilities to STAR and it will significantly enhance the physics capabilities of the STAR detector at central rapidities. The HFT will ensure that STAR will be able to take heavy flavor data at all luminosities attainable throughout the proposed RHIC II era.

Xu, Z.; Chen, Y.; Kleinfelder, S.; Koohi, A.; Li, S.; Huang, H.; Tai, A.; Kushpil, V.; Sumbera, M.; Colledani, C.; Dulinski, W.; Himmi,A.; Hu, C.; Shabetai, A.; Szelezniak, M.; Valin, I.; Winter, M.; Surrow,B.; Van Nieuwenhuizen, G.; Bieser, F.; Gareus, R.; Greiner, L.; Lesser,F.; Matis, H.S.; Oldenburg, M.; Ritter, H.G.; Pierpoint, L.; Retiere, F.; Rose, A.; Schweda, K.; Sichtermann, E.; Thomas, J.H.; Wieman, H.; Yamamoto, E.; Kotov, I.

2005-03-14T23:59:59.000Z

203

Intelligent Power Assist Algorithms for Electric Bicycles  

E-Print Network (OSTI)

electric hub motor . . . . . . . . . . . . . . . . . . .Golden Motor electric bicycle model MT-Electric hub motor in the front

Fan, Xuan

2010-01-01T23:59:59.000Z

204

Random Walks and Electrical Networks Electrical Network ...  

E-Print Network (OSTI)

Feb 4, 2008 ... Much of this talk is based on the book Random Walks and Electric. Networks by Peter .... Rx,y resistance of the edge from x to y. Cx,y = 1. Rx,y.

Jonathon Peterson

2008-01-30T23:59:59.000Z

205

Electric Power Monthly  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Monthly > Electric Power Monthly Back Issues Electric Power Monthly > Electric Power Monthly Back Issues Electric Power Monthly Back Issues Monthly Excel files zipped 2010 January February March April May June July August September October November December 2009 January February March April May June July August September October November December 2008 January February March March Supplement April May June July August September October November December 2007 January February March April May June July August September October November December 2006 January February March April May June July August September October November December 2005 January February March April May June July August September October November December

206

EIA Electric Power Forms  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Forms Electric Power Forms EIA Electric Power Forms Listing of Publicly Available and Confidential Data EIA's statistical surveys encompass each significant electric supply and demand activity in the United States. Most of the electric power survey forms resulting data elements are published, but respondent confidentiality is required. The chart below shows the data elements for each survey form and how each data element is treated in regard to confidentiality. Data Categories Data collection forms EIA- 411 EIA- 826 EIA- 860 EIA- 860M EIA- 861 EIA- 923 Frame Information Utility identification and iocation -- -- -- -- X -- Plant identification and iocation -- -- -- X -- X Generation and fuel Latitude and longitude -- -- X -- -- --

207

Determination of Electric-Field, Magnetic-Field, and Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric-Field, Magnetic-Field, and Electric-Current Distributions of Infrared Optical Antennas: A Near-Field Determination of Electric-Field, Magnetic-Field, and Electric-Current...

208

Research and Development Opportunities for Heavy Trucks  

NLE Websites -- All DOE Office Websites (Extended Search)

1] 1] Introduction Heavy-duty long-haul trucks are critical to the movement of the Nation's freight. These vehicles, which currently consume about 10 percent of the Nation's oil, are characterized by high fuel consumption, fast market turnover, and rapid uptake of new technologies. Improving the fuel economy of Class 8 trucks will dramatically impact both fuel and cost savings. This paper describes the importance of heavy trucks to the Nation's economy, and its potential for fuel efficiency gains. Why Focus on Heavy Trucks? Large and Immediate Impact Investments in improving the fuel economy of heavy Class 8 trucks will result in large reduction in petroleum consumption within a short timeframe. While heavy-duty vehicles make up only 4% of the

209

Heavy photon search experiment at JLAB  

SciTech Connect

The Heavy Photon Search (HPS) experiment in Hall-B at Jefferson Lab will search for new heavy vector boson(s), aka 'heavy photons', in the mass range of 20 MeV/c{sup 2} to 1000 MeV/c{sup 2} using the scattering of high energy, high intensity electron beams off a high Z target. The proposed measurements will cover the region of parameter space favored by the muon g-2 anomaly, and will explore a significant region of parameter space, not only at large couplings (??/? > 10{sup ?7}), but also in the regions of small couplings, down to ??/??10{sup ?10}. The excellent vertexing capability of the Si-tracker uniquely enables HPS to cover the small coupling region. Also, HPS will search for heavy photons in an alternative to the e{sup +}e{sup ?} decay mode, in the heavy photon's decay to ?{sup +}??.

Stepanyan, S. [Jefferson Lab, Newport News, VA (United States); Collaboration: HPS Collaboration

2013-11-07T23:59:59.000Z

210

QCD mechanisms for heavy particle production  

SciTech Connect

For very large pair mass, the production of heavy quarks and supersymmetric particles is expected to be governed by ACD fusion subprocesses. At lower mass scales other QCD mechanisms such as prebinding distortion and intrinsic heavy particle Fock states can become important, possibly accounting for the anomalies observed for charm hadroproduction. We emphasize the importance of final-state Coulomb interactions at low relative velocity in QCD and predict the existence of heavy narrow four quark resonances (c c-bar u u-bar) and (cc c-bar c-bar) in ..gamma gamma.. reactions. Coherent QCD contributions are discussed as a contribution to the non-additivity of nuclear structure functions and heavy particle production cross sections. We also predict a new type of amplitude zero for exclusive heavy meson pair production which follows from the tree-graph structure of QCD. 35 refs., 8 figs., 1 tab.

Brodsky, S.J.

1985-09-01T23:59:59.000Z

211

EIA - Electric Power Data  

U.S. Energy Information Administration (EIA) Indexed Site

Survey-level Detail Data Files Survey-level Detail Data Files Electric power data are collected on survey instruments. Data collection is mandated by Congress to promote sound policymaking, efficient markets, and public understanding. The most widely used data are disseminated in reports, such as the Electric Power Monthly and the Electric Power Annual. Publicly available electric power data is available down to the plant level in the Electricity Data Browser and in detailed spreadsheets by survey below. Description Data availability State-level data (consolidated across forms) Contains electricity generation; fuel consumption; emissions; retail sales, revenue, number of customers, and retail prices; generating capacity; and financial data. 1990-2012 (monthly and annual) Electric power sales and revenue data - monthly (Form EIA-826)

212

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

213

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

214

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

215

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

216

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

217

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

218

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

219

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

220

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

Note: This page contains sample records for the topic "bharat heavy electricals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Heavy Duty Vehicle Futures Analysis.  

SciTech Connect

This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

2014-05-01T23:59:59.000Z

222

Heavy quark physics from SLD  

SciTech Connect

This report covers preliminary measurements from SLD on heavy quark production at the Z{sup 0}, using 150,000 hadronic Z{sup 0} decays accumulated during the 1993-1995 runs. A measurement of R{sub b} with a lifetime double tag is presented. The high electron beam polarization of the SLC is employed in the direct measurement of the parity-violating parameters A{sub b} and A{sub c} by use of the left-right forward-backward asymmetry. The lifetimes of B{sup +} and B{sup 0} mesons have been measured by two analyses. The first identifies semileptonic decays of B mesons with high (p,p{sub t}) leptons; the second analysis isolates a sample of B meson decays with a two-dimensional impact parameter tag and reconstructs the decay length and charge using a topological vertex reconstruction method.

Messner, R. [Stanford Univ., CA (United States)

1997-01-01T23:59:59.000Z

223

SUPRI heavy oil research program  

SciTech Connect

The 14th Annual Report of the SUPRI Heavy Oil Research Program includes discussion of the following topics: (1) A Study of End Effects in Displacement Experiments; (2) Cat Scan Status Report; (3) Modifying In-situ Combustion with Metallic Additives; (4) Kinetics of Combustion; (5) Study of Residual Oil Saturation for Steam Injection and Fuel Concentration for In-Situ Combustion; (6) Analysis of Transient Foam Flow in 1-D Porous Media with Computed Tomography; (7) Steam-Foam Studies in the Presence of Residual Oil; (8) Microvisualization of Foam Flow in a Porous Medium; (9) Three- Dimensional Laboratory Steam Injection Model; (10) Saturation Evaluation Following Water Flooding; (11) Numerical Simulation of Well-to-Well Tracer Flow Test with Nonunity Mobility Ratio.

Aziz, K.; Ramey, H.J. Jr.; Castanier, L.M.

1991-12-01T23:59:59.000Z

224

Ultrasensitive Voltammetric Detection of Trace Heavy Metal Ions...  

NLE Websites -- All DOE Office Websites (Extended Search)

Voltammetric Detection of Trace Heavy Metal Ions Using Carbon Nanotube Nanoelectrode Array. Ultrasensitive Voltammetric Detection of Trace Heavy Metal Ions Using Carbon Nanotube...

225

Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using...

226

LNT + SCR Aftertreatment for Medium-Heavy Duty Applications:...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

+ SCR Aftertreatment for Medium-Heavy Duty Applications: A Systems Approach LNT + SCR Aftertreatment for Medium-Heavy Duty Applications: A Systems Approach Poster presentation at...

227

Development of SCR on Diesel Particulate Filter System for Heavy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SCR on Diesel Particulate Filter System for Heavy Duty Applications Development of SCR on Diesel Particulate Filter System for Heavy Duty Applications Evaluation of a system...

228

SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards...

229

Advanced Natural Gas Engine Technology for Heavy Duty Vehicles...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Natural Gas Engine Technology for Heavy Duty Vehicles Advanced Natural Gas Engine Technology for Heavy Duty Vehicles Natural gas engine technology has evolved to meet the...

230

Hydrogen in the Heavy Duty Market? | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in the Heavy Duty Market? Hydrogen in the Heavy Duty Market? 2002 DEER Conference Presentation: Sandia National Laboratories 2002deerkeller.pdf More Documents & Publications...

231

Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Presentation...

232

NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Adsorbers for Heavy Duty Truck Engines - Testing and Simulation NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation This report provides the results of an...

233

Design of Integrated Laboratory and Heavy-Duty Emissions Testing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Integrated Laboratory and Heavy-Duty Emissions Testing Center Design of Integrated Laboratory and Heavy-Duty Emissions Testing Center Both simulated and actual diesel emissions...

234

Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles Discusses Detroit Diesel collaborative multi-year...

235

Long Plasma Source for Heavy Ion Beam Charge Neutralization  

E-Print Network (OSTI)

neutralizing plasma column the heavy ion beam can focus to aPlasmas are a source of unbound electrons for charge neutralizing intense heavy ion beams to focus

Efthimion, P.C.

2009-01-01T23:59:59.000Z

236

Ferroelectric Plasma Source for Heavy Ion Beam Charge Neutralization  

E-Print Network (OSTI)

Heavy Ion Beam Driven Fusion Reactor Study, KfK-3480,a possible heavy ion fusion reactor design [1]. The final

2005-01-01T23:59:59.000Z

237

Electric Charge and Electric Field Electrostatics: Charge at rest  

E-Print Network (OSTI)

Chapter 16 Electric Charge and Electric Field #12;Electrostatics: Charge at rest Electric Charges of conservation of Electric Charge: The net amount of electric charge produced in any process is zero. Model, neutral). #12;· All protons and electrons have same magnitude of electric charge but their masses

Yu, Jaehoon

238

DIVISION 16 -ELECTRICAL 16000 GENERAL  

E-Print Network (OSTI)

Electrical Code American National Standards Institute National Electrical Manufacturers Association Institute of Electrical & Electronics Engineers Insulated Cable Engineers Association 3. Three copies of the followingDIVISION 16 - ELECTRICAL _____________________________________________________________ 16000

239

Venezuela bets on heavy crude for long term  

SciTech Connect

In the heart of eastern Venezuela lies the Orinoco Belt, a vast reserve of heavy crudes and bitumen that equate to only 8{degree} to 10{degree} API. At the beginning of the 1920s, a number of foreign companies explored this area. However, they realized that this crude was too heavy to be produced commercially and abandoned their exploratory sites. In 1978--1980, state firm PDVSA made a large effort to quantify the resources. Geologists finally estimated the in-place reserves at 1.2 trillion bbl, of which 267 billion bbl (41 billion t) were considered recoverable. If produced at a rate of 1.5 million bopd, these reserves would last nearly 500 years. PDVSA experimented with various methods to produce the bitumen. Finally, in the mid-1980s, a breakthrough of sorts was achieved, almost by accident. Lab technicians discovered that bitumen will continue to burn effectively when emulsified with water. Company officials describe the flame as resembling burning gas. This discovery began the rapidly accelerating process to develop what is called the now-patented Orimulsion production. PDVSA managers discarded their plans to supply refineries with bitumen and adopted a new strategy of targeting Orimulsion as an alternative boiler fuel for electric power-generating stations. To oversee this project, a new subsidiary, Bitor (a compressed combination of the terms, bitumen and Orinoco), was created. Bitor operations are described.

Abraham, K.S.

1997-01-01T23:59:59.000Z

240

DEVELOPMENT PRACTICES FOR OPTIMIZED MEOR IN SHALLOW HEAVY OIL RESERVOIRS  

SciTech Connect

The objective of this research project is to demonstrate an economically viable and sustainable method of producing shallow heavy oil reserves in western Missouri and southeastern Kansas, using an integrated approach including surface geochemical surveys, conventional MEOR treatments, horizontal fracturing in vertical wells, electrical resistivity tomography (ERT), and reservoir simulation to optimize the recovery process. The objective also includes transferring the knowledge gained from the project to other local landowners, to demonstrate how they may identify and develop their own heavy oil resources with minimal capital investment. Tasks completed in the first six-month period include soil sampling, geochemical analysis, construction of ERT arrays, collection of background ERT surveys, and analysis of core samples to develop a geomechanical model for designing the hydraulic fracturing treatment. Five wells were to be drilled in phase I. However, weather and funding delays resulted in drilling shifting to the second phase of the project. Work performed to date demonstrates that surface geochemical methods can be used to differentiate between productive and non-productive areas of the Warner Sand and that ERT can be used to successfully image through the Warner Sand.

Shari Dunn-Norman

2003-09-05T23:59:59.000Z

Note: This page contains sample records for the topic "bharat heavy electricals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Dynamics of neutralizing electrons during the focusing of intense heavy ions beams inside a heavy fusion reactor chamber  

E-Print Network (OSTI)

beams inside a heavy ion fusion reactor chamber * Agustin F.efficiency of a Heavy Ion Fusion reactor heavily depends on

Lifschitz, Agustin F.; Maynard, Gilles; Vay, Jean-Luc; Lenglet, Andrian

2006-01-01T23:59:59.000Z

242

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: January 2012 Electric Power Sector Coal Stocks: January 2012 Stocks Above normal temperatures in January have allowed electric utilities to significantly replinish stockpiles of coal. The upswing in coal stockpiles corresponds to decreasing consumption of coal at electric generators seen in the resource use section across all regions of the country. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. Along with coal stockpiles at electric power plants, the supply of coal significantly increased in January of 2012. Total bituminous coal days of burn increased 10 percent from January 2011 to 87, while subbituminous supply increased nearly 10

243

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: December 2011 End Use: December 2011 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

244

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: August 2011 End Use: August 2011 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by State regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average revenue per kWh by state Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

245

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: November 2011 End Use: November 2011 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

246

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: February 2012 End Use: February 2012 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by State regulators. However, a number of States have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

247

Electric Utility Industry Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Industry Update Electric Utility Industry Update Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG Spring 2012 April 12, 2012 Edison Electric Institute  Investor-Owned Electric Companies  Membership includes  200 US companies,  More than 65 international affiliates and  170 associates  US members  Serve more than 95% of the ultimate customers in the investor-owned segment of the industry and  Nearly 70% of all electric utility ultimate customers, and  Our mission focuses on advocating public policy; expanding market opportunities; and providing strategic business information Agenda Significant Industry Trends Utility Infrastructure Investments Generation and Fuel Landscape

248

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: October 2011 End Use: October 2011 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

249

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: March 2012 End Use: March 2012 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by State regulators. However, a number of States have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

250

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: September 2011 End Use: September 2011 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by State regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

251

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: October 2013 End Use: October 2013 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by state Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

252

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: January 2012 End Use: January 2012 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

253

Thermoacoustic magnetohydrodynamic electrical generator  

DOE Patents (OSTI)

A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

1986-01-01T23:59:59.000Z

254

Helioseismic limit on heavy element abundance  

E-Print Network (OSTI)

Primary inversions of accurately measured solar oscillation frequencies coupled with the equations of thermal equilibrium and other input physics, enable us to infer the temperature and hydrogen abundance profiles inside the Sun. These profiles also help in setting constraints on the input physics as well as on heavy element abundance in the solar core. Using different treatments of plasma screening for nuclear reaction rates, limits on the cross-section of proton-proton nuclear reaction as a function of heavy element abundance in the solar core are obtained and an upper limit on heavy element abundance in the solar core is also derived from these results.

H. M. Antia; S. M. Chitre

2002-09-08T23:59:59.000Z

255

Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric and Hybrid Electric Vehicle Sales: December 2010 - June Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Sales data for various models of electric and hybrid electric vehicles from December 2010 through June 2013. 062010-092013_EV_HEV Sales.xlsx Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (Excel) 062010-092013_EV_HEV Sales.csv Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (CSV) 062010-092013_EV_HEV Sales.jpeg Description Chart of Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (JPG) More Documents & Publications Federal Reporting Recipient Information Natural Gas Imports and Exports - Second Quarter Report 2013 Federal Reporting Recipient Information

256

Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric and Hybrid Electric Vehicle Sales: December 2010 - June Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Sales data for various models of electric and hybrid electric vehicles from December 2010 through June 2013. 062010-092013_EV_HEV Sales.xlsx Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (Excel) 062010-092013_EV_HEV Sales.csv Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (CSV) 062010-092013_EV_HEV Sales.jpeg Description Chart of Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (JPG) More Documents & Publications Federal Reporting Recipient Information Natural Gas Imports and Exports - Second Quarter Report 2013 Federal Reporting Recipient Information

257

Electricity Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Advisory Committee Meeting Electricity Advisory Committee Meeting Sheraton National Hotel May 20, 2008 Minutes Members Present: Linda Stuntz, Esquire, Stuntz, Davis, and Staffier, P.C. (Chair) Yakout Mansour, California ISO (Vice Chair) Paul J. Allen, Constellation Energy Guido Bartels, IBM Gerry Cauley, SERC Reliability Corporation Jose Delgado, American Transmission Company The Honorable Jeanne Fox, New Jersey Board of Public Utilities Rob Gramlich, American Wind Energy Association The Honorable Dian Grueneich, California Public Utilities Commission Michael Heyeck, American Electric Power Hunter Hunt, Sharyland Utilities Susan Kelly, American Public Power Association Irwin Kowenski, Occidental Energy Ventures Corporation Barry Lawson, National Rural Electric Cooperative Association

258

Physics: The mind electric  

Science Journals Connector (OSTI)

... When entrepreneur Elon Musk named his all-electric car company Tesla Motors, he was paying homage to a remarkable man. Serbian inventor and ...

W. Patrick McCray

2013-05-29T23:59:59.000Z

259

2012 National Electricity Forum  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Development, American Electric Power * John P. Buechler, Executive Regulatory Policy Advisor, New York Independent System Operator * Jim Busbin, Supervisor, Bulk Power, Southern...

260

ELECTRICAL & COMPUTER ENGINEERING  

E-Print Network (OSTI)

ELECTRICAL & COMPUTER ENGINEERING SEMINAR "Considerations for Curriculum Planning and Computer Engineering Colorado State University Monday, Feb. 20, 2012, 11:00 a.m. Location: LSC 210 Abstract

Note: This page contains sample records for the topic "bharat heavy electricals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

the country last July, while temperatures in July 2014 were closer to average. This led to a decrease in demand for electricity generation in July 2014, with total...

262

EIA - State Electricity Profiles  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Profile 2012 Table 1. 2012 Summary statistics (Missouri) Item Value U.S. Rank NERC Region(s) SERCSPP Primary Energy Source Coal Net Summer Capacity (megawatts)...

263

Electric Power Annual 2011  

U.S. Energy Information Administration (EIA) Indexed Site

net internal demand, capacity resources, and capacity margins by North American Electric Reliability Corporation Region" "1999 through 2011 actual, 2012-2016 projected"...

264

Electric Vehicle Supply Equipment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Procurement of Electric Vehicle Supply Equipment This Guidance provides a description of the types of requirements to be included in an employer's workplace charging request for...

265

Office of Electricity Delivery  

Energy Savers (EERE)

Office of Electricity Delivery and Energy Reliability Use of the NIST Cybersecurity Framework & DOE C2M2 CategorySubcategory CategorySubcategory CategorySubcategory Category...

266

Capacity Markets for Electricity  

E-Print Network (OSTI)

ternative Approaches for Power Capacity Markets, Papers andprof id=pjoskow. Capacity Markets for Electricity [13]Utility Commission- Capacity Market Questions, available at

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

267

Electricity | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

play a critical role in transforming the current electric grid into the next-generation grid. PE enable utilities to deliver power to their customers effectively while providing...

268

Electrical Circuit Tester  

DOE Patents (OSTI)

An electrical circuit testing device is provided, comprising a case, a digital voltage level testing circuit with a display means, a switch to initiate measurement using the device, a non-shorting switching means for selecting pre-determined electrical wiring configurations to be tested in an outlet, a terminal block, a five-pole electrical plug mounted on the case surface and a set of adapters that can be used for various multiple-pronged electrical outlet configurations for voltages from 100 600 VAC from 50 100 Hz.

Love, Frank (Amarillo, TX)

2006-04-18T23:59:59.000Z

269

2014 Electricity Form Proposals  

NLE Websites -- All DOE Office Websites (Extended Search)

electricity data collection in 2014 via the following survey forms: Form EIA-63B, "Annual Photovoltaic CellModule Shipments Report" Form EIA-411, "Coordinated Bulk Power Supply...

270

Perforation patterned electrical interconnects  

DOE Patents (OSTI)

This disclosure describes systems and methods for increasing the usable surface area of electrical contacts within a device, such as a thin film solid state device, through the implementation of electrically conductive interconnects. Embodiments described herein include the use of a plurality of electrically conductive interconnects that penetrate through a top contact layer, through one or more multiple layers, and into a bottom contact layer. The plurality of conductive interconnects may form horizontal and vertical cross-sectional patterns. The use of lasers to form the plurality of electrically conductive interconnects from reflowed layer material further aids in the manufacturing process of a device.

Frey, Jonathan

2014-01-28T23:59:59.000Z

271

electricity.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This...

272

Electricity Monthly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

and fuel consumption In this section, we look at the resources used to produce electricity. Generating units are chosen to run primarily on their operating costs, of which...

273

Electricity Monthly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Wholesale Markets: October 2014 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale...

274

EIA - Electricity Generating Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010...

275

2012 National Electricity Forum  

Energy Savers (EERE)

of reliability, resource options, wholesale competition and market power, cost of electricity to consumers, environmental quality, or other? Are these consequences so...

276

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2012 Table 1. 2012 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERCSPP Primary Energy Source Coal Net Summer Capacity...

277

Electricity Monthly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Wholesale Markets: September 2014 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale...

278

Electric power annual 1992  

SciTech Connect

The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

Not Available

1994-01-06T23:59:59.000Z

279

Electricity Monthly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Wholesale Markets: August 2014 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale...

280

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Wholesale Markets: February 2014 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale...

Note: This page contains sample records for the topic "bharat heavy electricals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Alternative Fuels Data Center: Electricity  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity to someone by E-mail Share Alternative Fuels Data Center: Electricity on Facebook Tweet about Alternative Fuels Data Center: Electricity on Twitter Bookmark Alternative Fuels Data Center: Electricity on Google Bookmark Alternative Fuels Data Center: Electricity on Delicious Rank Alternative Fuels Data Center: Electricity on Digg Find More places to share Alternative Fuels Data Center: Electricity on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Prices Find electricity fuel prices and trends. Electricity can be used to power all-electric vehicles and plug-in hybrid

282

Detection of Heavy Metal Ions Based on Quantum Point Contacts  

E-Print Network (OSTI)

. The ability to detect trace amounts of metal ions is important because of the toxicity of heavy metal ionsDetection of Heavy Metal Ions Based on Quantum Point Contacts Vasanth Rajagopalan, Salah Boussaad on many living organisms and the consequence of heavy metal ions not being biodegradable. To date, heavy

Zhang, Yanchao

283

Chemistry 330 / Study Guide 217 Toxic Heavy Metals  

E-Print Network (OSTI)

Chemistry 330 / Study Guide 217 Unit 7 Toxic Heavy Metals Overview In ancient Rome wine was stored for this section. #12;Chemistry 330 / Study Guide 219 Common Features--Toxicity of the Heavy Metals Objectives. Metals--especially heavy metals--pose a unique environmental pollution problem. Heavy metals

Short, Daniel

284

Heavy Oil Upgrading from Electron Beam (E-Beam) Irradiation  

E-Print Network (OSTI)

-heavy oil, and oil shale. Tremendous amounts of heavy oil resources are available in the world. Fig. 1.1 shows the total world oil reserves, and indicates that heavy oil, extra heavy oil, and bitumen make up about 70% of the world?s total oil resources...

Yang, Daegil

2011-02-22T23:59:59.000Z

285

Heavy Metal Tolerance Robert S. Boyd, Nishanta Rajakaruna  

E-Print Network (OSTI)

be useful to solve environmental problems caused by heavy metal pollution. General Overviews General: a recent example targeting cellular mechanisms affected by heavy metals is Bánfalvi 2011. Pollution by heavy metals is an important environmental problem, and sources that focus on heavy metal pollution

Rajakaruna, Nishanta

286

ECR plasma source for heavy ion beam charge neutralization  

E-Print Network (OSTI)

resonance. Keywords: Plasma focus; RF plasma; Beam charge neutralization 1. INTRODUCTION A possible heavy

Gilson, Erik

287

Molecule-based modeling of heavy oil  

Science Journals Connector (OSTI)

A molecular-level kinetics model has been developed for the pyrolysis of heavy residual oil. Resid structure was modeled in terms of three attribute groups: cores, inter-core linkages, and side chains. The con...

Scott R. Horton; Zhen Hou; Brian M. Moreno; Craig A. Bennett

2013-07-01T23:59:59.000Z

288

NUCLEAR STRUCTURE AND HEAVY-ION FUSION  

E-Print Network (OSTI)

Nuclear Structure and Heavy-Ton Fusion* A series of lecturesthe cross section for fusion in the experiments consideredEffects g in III. Subharrier Fusion Cross Sections for Light

Stokstad, R.G.

2010-01-01T23:59:59.000Z

289

Materials Engineering with Swift Heavy Ions  

Science Journals Connector (OSTI)

High energy heavy ions are proving to be important tools in the efforts to modify the properties of materials in a controlled fashion to provide possibility of making them functional for specific applications ...

D. K. Avasthi

2011-01-01T23:59:59.000Z

290

Soft photons from relativistic heavy ion collisions  

Science Journals Connector (OSTI)

Production of soft photons in relativistic heavy ion collisions due to bremsstrahlung processes in quark matter and hadronic matter is studied. The contribution of pion-driven processes is found to dominate the yield. 1996 The American Physical Society.

Pradip Kumar Roy, Dipali Pal, Sourav Sarkar, Dinesh Kumar Srivastava, and Bikash Sinha

1996-05-01T23:59:59.000Z

291

Updated Satellite Technique to Forecast Heavy Snow  

Science Journals Connector (OSTI)

Certain satellite interpretation techniques have proven quite useful in the heavy snow forecast process. Those considered best are briefly reviewed, and another technique is introduced. This new technique was found to be most valuable in cyclonic ...

Edward C. Johnston

1995-06-01T23:59:59.000Z

292

Status of Heavy-lepton Searches  

DOE R&D Accomplishments (OSTI)

Searches for heavy leptons using e{sup +}e{sup -} annihilation, lepton-hadron collisions, photon-hadron collisions, hadron-hadron collisions, and studies of macroscopic matter are reviewed. The present experimental status and future possibilities are summarized.

Perl, M. L.

1981-06-00T23:59:59.000Z

293

Magnetism in Heavy-Electron Liquids  

Science Journals Connector (OSTI)

......Theoretical Physics February 1992 research-article Articles Magnetism in Heavy-Electron Liquids Fusayoshi J. Ohkawa Department...d expansion to paramagnons, metamagnetism, tiny-moment magnetism, and other topics are presented. Citing Article(s......

Fusayoshi J. Ohkawa

1992-02-01T23:59:59.000Z

294

Heavy-Ion Fusion Accelerator Research, 1991  

SciTech Connect

This report discusses the following topics: research with multiple- beam experiment MBE-4; induction linac systems experiments; and long- range research and development of heavy-ion fusion accelerators.

Not Available

1992-03-01T23:59:59.000Z

295

Heavy metals in Antarctic organisms  

SciTech Connect

To evaluate levels of essential (zinc and copper) and non-essential (mercury and cadmium) heavy metals, 34 species of organisms from different areas close to the Antarctic Peninsula were analysed. These included algae, filter-feeders, omnivorous invertebrates and vertebrates. Mercury was not detected, while cadmium was found in the majority of organisms analysed (detection limit was 0.05 ppm for both metals). The highest cadmium concentration was observed in the starfish Odontaster validus. Anthozoans, sipunculids and nudibranchs showed maximum levels of zinc, while the highest copper level was found in the gastropod Trophon brevispira. Mercury and cadmium levels in fishes were below the detection limit. Concentrations of essential and non-essential metals in birds were highest in liver followed by muscle and eggs. Cadmium and mercury levels in muscle of southern elephant seals were above the detection limit, whereas in Antarctic fur seals they were below it. The objective of the study was to gather baseline information for metals in Antarctic Ocean biota that may be needed to detect, measure and monitor future environmental changes. 46 refs., 7 figs., 8 tabs.

Moreno, J.E.A. de; Moreno, V.J. [Universidad Nacional de Mar del Plata (Argentina); Gerpe, M.S.; Vodopivez, C. [Instituto Antartico Argentino, Buenos Aires (Argentina)

1997-02-01T23:59:59.000Z

296

CERTS 2012 Program Review - Baselining Studies and Analysis - Bharat Bhargava, EPG  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Song Xue, Prashant Palayam, Mark Woodall Washington, DC June 12-13, 2012 1 Project Objective  Operators monitor power flows at specific interchange points (like Keystone-Juniata). However, power flows may not be a good measure of wide area system stress  Phasor networks provide the capability to monitor in real-time phase angle differences and other power system metrics which are better indicators of wide area system stress  Angle differences can also be correlated with power flows and State Estimator outputs  Research objective is to develop approach for EI baselining using data from different ISOs and establish limits for use in real-time operations  Approach utilized is to use data from state estimation and stressed

297

Jets in relativistic heavy ion collisions  

SciTech Connect

Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs.

Wang, Xin-Nian; Gyulassy, M.

1990-09-01T23:59:59.000Z

298

Probing the Symmetry Energy with Heavy Ions  

E-Print Network (OSTI)

Constraints on the EoS for symmetric matter (equal neutron and proton numbers) at supra-saturation densities have been extracted from energetic collisions of heavy ions. Collisions of neutron-deficient and neutron-rich heavy ions now provide initial constraints on the EoS of neutron-rich matter at sub-saturation densities. Comparisons are made to other available constraints.

Lynch, W G; Zhang, Y; Danielewicz, P; Famiano, M; Li, Z; Steiner, A W

2009-01-01T23:59:59.000Z

299

Probing the Symmetry Energy with Heavy Ions  

E-Print Network (OSTI)

Constraints on the EoS for symmetric matter (equal neutron and proton numbers) at supra-saturation densities have been extracted from energetic collisions of heavy ions. Collisions of neutron-deficient and neutron-rich heavy ions now provide initial constraints on the EoS of neutron-rich matter at sub-saturation densities. Comparisons are made to other available constraints.

W. G. Lynch; M. B. Tsang; Y. Zhang; P. Danielewicz; M. Famiano; Z. Li; A. W. Steiner

2009-01-05T23:59:59.000Z

300

IRRIGATION & ELECTRICAL DISTRICTS  

NLE Websites -- All DOE Office Websites (Extended Search)

IRRIGATION & ELECTRICAL DISTRICTS IRRIGATION & ELECTRICAL DISTRICTS ASSOCIATION OF ARIZONA R.D. JUSTICE SUITE 140 WILLIAM H. STACY PRESIDENT 340 E. PALM LANE SECRETARY-TREASURER PHOENIX, ARIZONA 85004-4603 ELSTON GRUBAUGH (602) 254-5908 ROBERT S. LYNCH VICE-PRESIDENT Fax (602) 257-9542 COUNSEL AND

Note: This page contains sample records for the topic "bharat heavy electricals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

IRRIGATION & ELECTRICAL DISTRICTS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IRRIGATION & ELECTRICAL DISTRICTS IRRIGATION & ELECTRICAL DISTRICTS ASSOCIATION OF ARIZONA R. GALE PEARCE SUITE 140 ELSTON GRUBAUGH PRESIDENT 340 E. PALM LANE SECRETARY-TREASURER PHOENIX, ARIZONA 85004-4603 R.D. JUSTICE (602) 254-5908 ROBERT S. LYNCH VICE-PRESIDENT Fax (602) 257-9542 ASSISTANT SECRETARY-TREASURER

302

Texas Electric Lighting Report  

NLE Websites -- All DOE Office Websites (Extended Search)

electric lighting electric lighting The SNAP House's lighting design aims for elegant simplicity in concept, use, and maintenance. Throughout the house, soft, ambient light is juxtaposed with bright, direct task lighting. All ambient and most task lighting is integrated directly into the architectural design of the house. An accent light wall between the bedroom and bathroom provides a glowing light for nighttime navigation.

303

Transport: No Electric Shocks  

Science Journals Connector (OSTI)

... Engineers chose the week of the Earls Court Motor Show to arrange a colloquium on electric cars, the second in what seems intended to be an annual series. In the event ... definitely the best way of propelling vehicles from one place to another; supporters of the electric car, for the most part, agreed with Mr L. Mart land of Ford, who ...

1968-10-26T23:59:59.000Z

304

Photo-Electric Cells  

Science Journals Connector (OSTI)

... be measured, and its variation studied with variation of the incident light. Again, the photo-electric current may be amplified by valve circuits used outside the cell, or may ... to the infra-red, in which the active substance is oxidised thallium sulphide), barium photo-electric cells, sodium, and selenium cells.

ALLAN FERGUSON

1930-06-21T23:59:59.000Z

305

Electrical shock accident investigation  

SciTech Connect

This report documents results of the accident investigation of an electrical shock received by two subcontractor employees on May 13, 1994, at the Pinellas Plant. The direct cause of the electrical shock was worker contact with a cut ``hot`` wire and a grounded panelboard (PPA) enclosure. Workers presumed that all wires in the enclosure were dead at the time of the accident and did not perform thorough Lockout/Tagout (LO/TO). Three contributing causes were identified. First, lack of guidance in the drawing for the modification performed in 1987 allowed the PPA panel to be used as a junction box. The second contributing cause is that Environmental, Safety and Health (ES&H) procedures do not address multiple electrical sources in an enclosure. Finally, the workers did not consider the possibility of multiple electrical sources. The root cause of the electrical shock was the inadequacy of administrative controls, including construction requirement and LO/TO requirements, and subcontractor awareness regarding multiple electrical sources. Recommendations to prevent further reoccurrence of this type of accident include revision of ES&H Standard 2.00, Electrical Safety Program Manual, to document requirements for multiple electrical sources in a single enclosure to specify a thorough visual inspection as part of the voltage check process. In addition, the formality of LO/TO awareness training for subcontractor electricians should be increased.

Not Available

1994-09-30T23:59:59.000Z

306

Hawaii electric system reliability.  

SciTech Connect

This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers' views of reliability %E2%80%9Cworth%E2%80%9D and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers' views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

Silva Monroy, Cesar Augusto; Loose, Verne William

2012-09-01T23:59:59.000Z

307

Magnetism and Electricity  

Science Journals Connector (OSTI)

... WRITTEN in colloquial language, this book, which is a first-year course on magnetism and electricity, will appeal to many beginners besides the students in technical institutions, for ... have almost forgotten that their jargon is not that of the man in the street. Magnetism is first dealt with, and then the ideas of static and current electricity are ...

1922-11-11T23:59:59.000Z

308

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

Hand, M.

2012-10-01T23:59:59.000Z

309

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

Mai, T.

2012-08-01T23:59:59.000Z

310

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

Hand, M.; Mai, T.

2012-08-01T23:59:59.000Z

311

Energy 101: Electric Vehicles  

ScienceCinema (OSTI)

This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

None

2013-05-29T23:59:59.000Z

312

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

Hand, M. M.

2012-08-01T23:59:59.000Z

313

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

Mai, T.

2012-08-01T23:59:59.000Z

314

Physics of Electric Contacts  

Science Journals Connector (OSTI)

... his subject in three distinct parts. Part 1, of 186 pages, deals with the elementary processes involved in the passage of electricity across stationary electrode surfaces. It Introduces the ... in the passage of electricity across stationary electrode surfaces. It Introduces the idea of constriction resistance, in which the lines of current-flow through clean electrodes are constricted through the ...

F. LLEWELLYN JONES

1947-09-27T23:59:59.000Z

315

Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Idle Heavy-Duty Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Heavy-Duty Idle Reduction Requirement Heavy-duty vehicles with a gross vehicle weight rating greater than 8,500

316

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: September 2011 Resource Use: September 2011 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By generator type By fuel type Region map map showing electricity regions Fossil steam generation, primarily coal-fired, is most pronounced in the Central region and supplies close to half of the electricity in the

317

Canadian Electrical Association Petition  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BEFORE THE DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY TransAlta Energy Marketing (U.S.) Inc. ) Docket No. EA-216-C PROTEST OF THE CANADIAN ELECTRICITY ASSOCIATION AND THE ELECTRIC POWER SUPPLY ASSOCIATION TO SIERRA CLUB'S NOTICE OF INTERVENTION AND MOTION TO INTERVENE Pursuant to Section 202(e) of the Federal Power Act ("FPA"), 16 U.s.c. § 824(e) (2006) and § 385.211 of the Federal Energy Regulatory Commission's ("FERC") Rules of Practice and Procedure, the Canadian Electricity Association ("CEA") and the Electric Power Supply Association ("EPSA") hereby submit this filing in protest to Sierra Club's Notice ofIntervention and Motion to Intervene and in support of TransAlta Energy Marketing (U.S

318

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: August 2011 Resource Use: August 2011 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation output by region By generator type By fuel type Region map map showing electricity regions Fossil steam generation, primarily coal-fired, predominants in the Central region and supplies close to half of the electricity in the Southeast and

319

Electricity Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 3, 2011 Page 1 October 3, 2011 Page 1 Electricity Advisory Committee Meeting National Rural Electric Cooperative Association Headquarters 4301 Wilson Boulevard Arlington, VA Agenda October 19, 2011 2:00 - 5:00 pm EDT 1:30 - 2:00 pm Registration 2:00 - 2:15 pm WELCOME and Introductions Richard Cowart, Chair, Electricity Advisory Committee Patricia Hoffman, Assistant Secretary for Electricity Delivery and Energy Reliability, U.S. Department of Energy (DOE) 2:15 - 3:15 pm Presentation on U.S. Department of Energy's Vision of a Future Grid Bill Parks, Senior Advisor, DOE Office Electricity Delivery and Energy Reliability 3:15 - 3:30 pm Break 3:30 - 4:15 pm Response to U.S. Department of Energy's Vision of a Future Grid Honorable Robert Curry, Commissioner, New York State Public Service

320

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

6, DOE/EIA- 6, DOE/EIA- M068(2006). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. This section describes the model parameters and assumptions used in EMM. It includes a discussion of legislation and regulations that are incorporated in EMM as well as information about the climate change action plan. The various electricity and technology cases are also described. EMM Regions The supply regions used in EMM are based on the North American Electric Reliability Council regions and

Note: This page contains sample records for the topic "bharat heavy electricals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: December 2011 Electric Power Sector Coal Stocks: December 2011 Stocks Temperate weather throughout the fall has allowed electric power sector coal stocks to replenish from the summer burn. All coal stockpile levels were essentially flat when compared to December 2010 and were a mostly up year-to-date. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plantâ€(tm)s current stockpile and past consumption patterns. The average number of days of burn held on hand at electric power plants was essentially flat compared to last month and remained below levels seen in December of 2010 or 2009. While stockpile levels have recovered from summer lows, the increasing

322

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: September 2011 Electric Power Sector Coal Stocks: September 2011 Stocks Electric power sector coal stocks continued to replenish after the summer burn in October, though stockpile levels remain well below 2010 levels. All coal stockpile levels declined from October 2010, with bituminous coal stockpile levels 12 percent lower than the same month of 2010. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. The average number of days of burn held on hand at electric power plants was generally flat in October 2011 compared to September of this year. The summer of 2011 saw significant declines in total U.S. stockpile levels, which were replenished in the

323

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: November 2011 Electric Power Sector Coal Stocks: November 2011 Stocks As discussed in this month's feature story, electric power sector coal stocks continued to replenish after the summer burn in November, though stockpile levels remain below 2010 and 2009 levels. All coal stockpile levels declined from November 2010, with bituminous coal stockpile levels 9 percent lower than the same month of 2010. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plantâ€(tm)s current stockpile and past consumption patterns. The average number of days of burn held on hand at electric power plants dropped slightly from last month and remained below levels seen in November of 2010 or 2009. While

324

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Reports Electricity Reports Electricity Monthly Update With Data for October 2013 | Release Date: Dec. 20, 2013 | Next Release Date: Jan. 22, 2014 Previous Issues Issue: November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 Previous issues Format: html xls Go Highlights: October 2013 Thirty-one states saw the average cost of electricity increase by more than two percent, with fourteen states experiencing increases of at least five percent compared to a year ago. Texas (ERCOT) and the Midwest (MISO) experienced above average wholesale electricity prices for October due to unseasonable temperatures. The New York City (Transco Zone 6 NY) natural gas price was

325

Definition: Electricity | Open Energy Information  

Open Energy Info (EERE)

Electricity Electricity Jump to: navigation, search Dictionary.png Electricity Energy resulting from the flow of charge particles[1][2] View on Wikipedia Wikipedia Definition Electricity is the set of physical phenomena associated with the presence and flow of electric charge. Electricity gives a wide variety of well-known effects, such as lightning, static electricity, electromagnetic induction and the flow of electrical current. In addition, electricity permits the creation and reception of electromagnetic radiation such as radio waves. In electricity, charges produce electromagnetic fields which act on other charges. Electricity occurs due to several types of physics: electric charge: a property of some subatomic particles, which determines their electromagnetic interactions. Electrically charged matter is

326

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

problems, Electric Power Systems Research, 73(2): p. 169-problems, Electric Power Systems Research, 77(3-4): p. 212-decomposition, Electric Power Systems Research, 77(7): p.

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

327

electricAl engineering College of Engineering and Mines  

E-Print Network (OSTI)

encompasses telecommunica- tions, electrical power generation, transmission and distribution, control systems power engineers design and oversee the construction, installation and maintenance of electrical systems modern power electronic devices to control power generation and distribution and build electric drives

Hartman, Chris

328

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

Designing Markets for Electricity, Wiley-IEEE Press. CEC (in Major Drivers in U.S. Electricity Markets, NREL/CP-620-and fuel efficiency and electricity demand assumptions used

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

329

Electricity Grid: Impacts of Plug-In Electric Vehicle Charging  

E-Print Network (OSTI)

mail: ccyang@ucdavis.edu. Electricity Grid Impacts of Plug-by either gasoline or electricity, but unlike hybrids, PHEVsto use very low-carbon electricity resources, such as

Yang, Christopher; McCarthy, Ryan

2009-01-01T23:59:59.000Z

330

Soil remediation demonstration project: Biodegradation of heavy fuel oils. Special report  

SciTech Connect

Treatment of oil-contaminated soils is necessary to protect water supplies, human health, and environmental quality; but because of limited funds, cleanup costs are often prohibitive. High costs are exacerbated in cold regions such as Alaska, where spills are often in areas inaccessible to heavy equipment and where there is limited infrastructure. Owing to the lack of infrastructure, widespread fuel distribution systems, and the need for heating in the cold climate, there are numerous small-scale oil spills. Low-cost treatments applicable to small-scale spills are needed. The object of this CPAR project was to examine using cost-effective, on-site bioremediation techniques for heavy-oil-contaminated soil in cold regions. Both heavy-oil and diesel-contaminated soils were used to compare landfarming, a low-intensity treatment, to pile bioventing, a costlier treatment. For each soil-contaminant combination, we compared nutrient additions to a control with no nutrient additions. Under the conditions of this study, landfarming with nutrient additions was as effective for treating diesel-contaminated soil as was bioventing with nutrient additions. For heavy oils, landfarming with nutrients resulted in lower soil concentrations after one year, but differences among treatments were not statistically significant. Because landfarming does not require pumps, electricity, or plumbing, all costs are less than for bioventing. The minimal requirements for infrastructure also make landfarming attractive in remote sites typical of cold regions.

Reynolds, C.M.; Bhunia, P.; Koenen, B.A.

1997-08-01T23:59:59.000Z

331

Water issues associated with heavy oil production.  

SciTech Connect

Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

Veil, J. A.; Quinn, J. J.; Environmental Science Division

2008-11-28T23:59:59.000Z

332

Electricity Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 5, 2012 June 5, 2012 Electricity Advisory Committee 2012 Membership Roster Richard Cowart Regulatory Assistance Project CHAIR Irwin Popowsky Pennsylvania Consumer Advocate VICE CHAIR William Ball Southern Company Guido Bartels IBM Rick Bowen Alcoa Merwin Brown California Institute for Energy and Environment Ralph Cavanagh Natural Resources Defense Council The Honorable Paul Centolella Public Utilities Commission of Ohio David Crane NRG Energy, Inc. The Honorable Robert Curry New York State Public Service Commission José Delgado American Transmission Company (Ret.) Clark Gellings Electric Power Research Institute Robert Gramlich American Wind Energy Association Dian Grueneich Dian Grueneich Consulting, LLC. Michael Heyeck American Electric Power

333

Electricity Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

08 Membership Roster 08 Membership Roster Linda Stuntz, Esquire Chair of the Electricity Advisory Committee Stuntz, Davis & Staffier, P.C. Paul J. Allen Constellation Energy Guido Bartels IBM Gerry Cauley SERC Reliability Corporation Ralph Cavanagh Natural Defense Resources Council Jose Delgado American Transmission Company The Honorable Jeanne Fox New Jersey Board of Public Utilities Joseph Garcia National Congress of American Indians Robert Gramlich American Wind Energy Association The Honorable Dian Grueneich California Public Utilities Commission Michael Heyeck American Electric Power Hunter Hunt Sharyland Utilities, LLP Susan Kelly American Public Power Association Yakout Mansour Vice-Chair of the Electricity Advisory Committee California Independent System Operator

334

Atoms to electricity. [Booklet  

SciTech Connect

This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle and the role of nuclear energy as one of the domestic energy resources being developed to help meet our national energy demand. Nuclear power accounted for over 16 percent of the US electric energy supply in 1986 and was second only to coal as a source of our electric power. In the 1990s, nuclear energy is expected to provide almost 20 percent of the Nation's electricity. 38 figs., 5 tabs.

Not Available

1987-11-01T23:59:59.000Z

335

Atoms to electricity  

SciTech Connect

This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle and the role of nuclear energy as one of the domestic energy resources being developed to help meet our national energy demand. Nuclear power accounted for some 12 percent of the US electric energy supply in 1982. In the 1990's, it is expected to become second only to coal as a source of our electric power, almost doubling its present contribution to our national electricity supply. 14 references, 40 figures, 5 tables.

Not Available

1983-11-01T23:59:59.000Z

336

Central American electrical interconnection  

SciTech Connect

A technical cooperation grant of $2.25 million, designed to strengthen the capacity of Central American countries to operate their regional interconnected electrical system, was announced by the Inter-American Development Bank (IDB). The grant, extended from the banks Fund for Special Operations, will help improve the capacity of the regions electric power companies to achieve economical, safe operation of the interconnected electric power systems. The funds will also be used to finance regional studies of the accords, procedures, regulations, and supervisory mechanisms for the system, as well as program development and data bases.

Not Available

1988-12-01T23:59:59.000Z

337

Thermionic electric converter  

SciTech Connect

A thermionic electric converter is disclosed wherein an externally located heat source causes electrons to be boiled off an electron emissive surface interiorly positioned on one end wall of an evacuated cylindrical chamber. The electrons are electrically focused and accelerated through the interior of an air core induction coil located within a transverse magnetic field, and subsequently are collected on the other end wall of the chamber functioning as a collecting plate. The emf generated in the induction coil by action of the transiting electron stream interacting with the transverse magnetic field is applied to an external circuit to perform work, thereby implementing a direct heat energy to electrical energy conversion.

Davis, E.D.

1981-12-01T23:59:59.000Z

338

Electricity Advisory Committee Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2008 5, 2008 Minutes Members Present: Linda Stuntz, Esquire, Stuntz, Davis, and Staffier, P.C. (Chair) Yakout Mansour, California ISO (Vice Chair) Paul J. Allen, Constellation Energy Guido Bartels, IBM Gerry Cauley, SERC Reliability Corporation Jose Delgado, American Transmission Company Rob Gramlich, American Wind Energy Association The Honorable Dian Grueneich, California Public Utilities Commission Michael Heyeck, American Electric Power Hunter Hunt, Hunt Oil Susan Kelly, American Public Power Association Irwin Kowenski, Occidental Energy Ventures Corp. Barry Lawson, National Rural Electric Cooperative Association Ralph D. Masiello, KEMA John McDonald, GE Energy Steve Nadel, American Council for an Energy Efficient Economy David Nevius, North American Electric Reliability Corporation

339

Electricity Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 20, 2012 December 20, 2012 Electricity Advisory Committee 2012 Membership Roster Richard Cowart Regulatory Assistance Project CHAIR Irwin Popowsky Pennsylvania Consumer Advocate (Ret.) VICE CHAIR William Ball Southern Company Linda Blair ITC Holdings Corporation Rick Bowen Alcoa Merwin Brown California Institute for Energy and Environment Ralph Cavanagh Natural Resources Defense Council Paul Centolella Analysis Group The Honorable Robert Curry New York State Public Service Commission Clark Gellings Electric Power Research Institute Dian Grueneich Dian Grueneich Consulting, LLC. Michael Heyeck American Electric Power Paul Hudson Stratus Energy Group Val Jensen Commonwealth Edison Susan Kelly American Public Power Association Barry Lawson

340

Electric Utilities and Electric Cooperatives (South Carolina) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) < Back Eligibility Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation authorizes the Public Service Commission to promulgate regulations related to investor owned utilities in South Carolina, and addresses service areas, rates and charges, and operating procedures for

Note: This page contains sample records for the topic "bharat heavy electricals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Electricity market clearing price forecasting under a deregulated electricity market.  

E-Print Network (OSTI)

??Under deregulated electric market, electricity price is no longer set by the monopoly utility company rather it responds to the market and operating conditions. Offering (more)

Yan, Xing

2010-01-01T23:59:59.000Z

342

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicles International - EVI-MD Electric Vehicles International - 260-hp AC permanent magnet motor with...

343

The electric organ discharge (EOD) of weakly electric fish generates transcutaneous electric currents that stimulate  

E-Print Network (OSTI)

2443 The electric organ discharge (EOD) of weakly electric fish generates transcutaneous electric object whose conductivity is different from that of water produces an electric image consisting for the formation of electric images. Rule 1: objects more conductive than water cause a local increase

Grant, Kirsty

344

Electricity 101 | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources » Electricity 101 Resources » Electricity 101 Electricity 101 FREQUENTLY ASKED QUESTIONS: Why do other countries use different shaped plugs? Why do outlets have three holes? Why do we have AC electricity? Can we harness lightning as an energy source? Can we have wireless transmission of electricity? SYSTEM: What is electricity? Where does electricity come from? What is the "grid"? How much electricity does a typical household use? How did the electric system evolve? What does the future look like? PEOPLE: Who owns the electric system? Who runs the grid? Who uses electricity? Where can I find out more about potential careers? How can I improve my energy use? POLICY: How is electricity regulated? Where can I find out about State incentives for renewables? What is a national corridor?

345

The Gas/Electric Partnership  

E-Print Network (OSTI)

The electric and gas industries are each in the process of restructuring and "converging" toward one mission: providing energy. Use of natural gas in generating electric power and use of electricity in transporting natural gas will increase...

Schmeal, W. R.; Royall, D.; Wrenn, K. F. Jr.

346

THE ELECTRIC PROGRAM INVESTMENT CHARGE  

E-Print Network (OSTI)

THE ELECTRIC PROGRAM INVESTMENT CHARGE: PROPOSED 201214 TRIENNIAL INVESTMENT PLAN The California Energy Commission has prepared this triennial investment plan (2012 ­ 2014) for the new Electric, 2012, Phase 2 Decision 1205037. This decision established the Electric Program Investment Charge

347

Electricity Restructuring: Deregulation or Reregulation?  

E-Print Network (OSTI)

PWP-074 Electricity Restructuring: Deregulation or Reregulation? Severin Borenstein and James;1 Electricity Restructuring: Deregulation or Reregulation? Severin Borenstein and James Bushnell1 Forthcoming from the experience with electricity restructuring to date. The gains from restructuring are most

California at Berkeley. University of

348

Magnetic Process For Removing Heavy Metals From Water Employing Magnetites  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetic Process For Removing Heavy Metals From Water Employing Magnetic Process For Removing Heavy Metals From Water Employing Magnetites Magnetic Process For Removing Heavy Metals From Water Employing Magnetites A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. Available for thumbnail of Feynman Center (505) 665-9090 Email Magnetic Process For Removing Heavy Metals From Water Employing Magnetites A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. The magnetite is mixed with the water such that at least a portion of, and preferably the majority of, the heavy metal in the water is bound to the magnetite. Once this occurs the magnetite and

349

Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Vehicle Heavy-Duty Vehicle Emissions Reduction Grants to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Heavy-Duty Vehicle Emissions Reduction Grants

350

North American Electric Reliability Corporation Interconnections...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

North American Electric Reliability Corporation Interconnections North American Electric Reliability Corporation Interconnections Map of the North American Electric Reliability...

351

National Electric Transmission Congestion Study Webinars | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Electric Transmission Congestion Study National Electric Transmission Congestion Study Webinars National Electric Transmission Congestion Study Webinars The Department...

352

Electrical Contacts to Individual Colloidal Semiconductor Nanorods  

E-Print Network (OSTI)

stable nanostructured electrical devices with interestingElectrical Contacts to Individual Colloidal Semiconductorand its effect on electrical properties has important

Trudeau, Paul-Emile

2008-01-01T23:59:59.000Z

353

Geothermal Electricity Technology Evaluation Model | Department...  

Energy Savers (EERE)

Geothermal Electricity Technology Evaluation Model Geothermal Electricity Technology Evaluation Model The Geothermal Electricity Technology Evaluation Model (GETEM) aids the...

354

Electricity Advisory Committee - Federal Register Notices | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Register Notices Electricity Advisory Committee - Federal Register Notices Electricity Advisory Committee - Federal Register Notices September 3, 2014 Electricity Advisory...

355

Electricity Advisory Committee: 2008 Membership Roster | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Committee: 2008 Membership Roster Electricity Advisory Committee: 2008 Membership Roster Membership Roster of the 2008 Electricity Advisory Committee. Electricity Advisory...

356

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network (OSTI)

with residential electric resistance water heater solar system backup electric resistance water heaters. Anheaters require electric resistance backup water heaters.

Levy, Roger

2014-01-01T23:59:59.000Z

357

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

358

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

359

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

360

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

Note: This page contains sample records for the topic "bharat heavy electricals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

362

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Electricity Profile 2010 Arizona profile Arizona Electricity Profile 2010 Arizona profile Table 1. 2010 Summary Statistics (Arizona) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 26,392 15 Electric Utilities 20,115 14 Independent Power Producers & Combined Heat and Power 6,277 16 Net Generation (megawatthours) 111,750,957 12 Electric Utilities 91,232,664 11 Independent Power Producers & Combined Heat and Power 20,518,293 17 Emissions (thousand metric tons) Sulfur Dioxide 33 33 Nitrogen Oxide 57 17 Carbon Dioxide 55,683 15 Sulfur Dioxide (lbs/MWh) 0.7 43 Nitrogen Oxide (lbs/MWh) 1.1 31 Carbon Dioxide (lbs/MWh) 1,099 35 Total Retail Sales (megawatthours) 72,831,737 21 Full Service Provider Sales (megawatthours) 72,831,737 20

363

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

364

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

365

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

366

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

367

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

368

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

369

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

370

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

371

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

372

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

373

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

374

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

375

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

376

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

377

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

378

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

379

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

380

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

Note: This page contains sample records for the topic "bharat heavy electricals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: October 2011 Resource Use: October 2011 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By generator type By fuel type Region map map showing electricity regions Consistent with the retail sales numbers, generation output rose in Texas, as well as the Central and Mid-Atlantic regions and declined or remained

382

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

West Virginia Electricity Profile 2010 West Virginia profile West Virginia Electricity Profile 2010 West Virginia profile Table 1. 2010 Summary Statistics (West Virginia) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 16,495 24 Electric Utilities 11,719 21 Independent Power Producers & Combined Heat and Power 4,775 19 Net Generation (megawatthours) 80,788,947 20 Electric Utilities 56,719,755 18 Independent Power Producers & Combined Heat and Power 24,069,192 13 Emissions (thousand metric tons) Sulfur Dioxide 105 20 Nitrogen Oxide 49 23 Carbon Dioxide 74,283 12 Sulfur Dioxide (lbs/MWh) 2.9 20 Nitrogen Oxide (lbs/MWh) 1.3 25 Carbon Dioxide (lbs/MWh) 2,027 5 Total Retail Sales (megawatthours) 32,031,803 34 Full Service Provider Sales (megawatthours) 32,031,803 33

383

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: October 2013 Resource Use: October 2013 Supply and Fuel Consumption In this section, we look at the resources used to produce electricity. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below, electricity generation output by fuel type and generator type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By fuel type By generator type Region map map showing electricity regions In October 2013, net generation in the United States increased 1.0 percent compared to the previous year. This increase in electricity generation occurred mainly in the Mid-Atlantic, Central, and Southeast regions, along

384

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: March 2012 Resource Use: March 2012 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By generator type By fuel type Region map map showing electricity regions Generation output declined across much of the country in March due to unseasonably warm temperatures. The two regions that observed small

385

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont Electricity Profile 2010 Vermont profile Vermont Electricity Profile 2010 Vermont profile Table 1. 2010 Summary Statistics (Vermont) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 1,128 50 Electric Utilities 260 45 Independent Power Producers & Combined Heat and Power 868 43 Net Generation (megawatthours) 6,619,990 49 Electric Utilities 720,853 44 Independent Power Producers & Combined Heat and Power 5,899,137 35 Emissions (thousand metric tons) Sulfur Dioxide * 51 Nitrogen Oxide 1 50 Carbon Dioxide 8 51 Sulfur Dioxide (lbs/MWh) * 51 Nitrogen Oxide (lbs/MWh) 0.2 51 Carbon Dioxide (lbs/MWh) 3 51 Total Retail Sales (megawatthours) 5,594,833 51 Full Service Provider Sales (megawatthours) 5,594,833 48 Direct Use (megawatthours) 19,806 47

386

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

387

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

388

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

389

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

390

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

391

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

392

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

393

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

394

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Electricity Profile 2010 Missouri profile Missouri Electricity Profile 2010 Missouri profile Table 1. 2010 Summary Statistics (Missouri) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 21,739 18 Electric Utilities 20,360 12 Independent Power Producers & Combined Heat and Power 1,378 39 Net Generation (megawatthours) 92,312,989 18 Electric Utilities 90,176,805 12 Independent Power Producers & Combined Heat and Power 2,136,184 46 Emissions (thousand metric tons) Sulfur Dioxide 233 8 Nitrogen Oxide 56 18 Carbon Dioxide 78,815 10 Sulfur Dioxide (lbs/MWh) 5.6 6 Nitrogen Oxide (lbs/MWh) 1.3 26 Carbon Dioxide (lbs/MWh) 1,882 7 Total Retail Sales (megawatthours) 86,085,117 17 Full Service Provider Sales (megawatthours) 86,085,117 15

395

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

396

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

397

Electric Power Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Annual Technical Notes This appendix describes how the U.S. Energy Information Administration collects, estimates, and reports electric power data in the Electric Power Annual. Data Quality and Submission The Electric Power Annual (EPA) is prepared by the Office of Electricity, Renewables, and Uranium Statistics (ERUS), U.S. Energy Information Administration (EIA), U.S. Department of Energy (DOE). ERUS performs routine reviews of the data collection respondent frames, survey forms, and reviews the quality of the data received. Data are entered directly by respondents into the ERUS Internet Data Collection (IDC) system. A small number of hard copy forms are keyed into the system by ERUS personnel. All data are subject to review via interactive edits built into the IDC system, internal quality assurance reports, and review by ERUS

398

NSLS Electrical Equipment Inspection  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Equipment Inspection Information Electrical Equipment Inspection Information A note to vendors visiting NSLS A note to users visiting NSLS Proteus Electrical Conformity Remediation Currently Certified Electrical Equipment Inspectors: First Line Contacts Email Extension Poshka, Dennis poshka@bnl.gov 2825 Alternate Contacts Boerner Jr, Albert aboerner@bnl.gov 5990 Buda, Scott buda@bnl.gov 3914 Caruso, Michael caruso@bnl.gov 4100 Chmiel, Robert chmiel@bnl.gov 8141 Church, Randolph church@bnl.gov 2736 Clay, Barret clay@bnl.gov 7284 D'Alsace, Roy dalsace@bnl.gov 3973 Danneil, Christopher cdanneil@bnl.gov 8609 Davila, Peter davila@bnl.gov 7625 De Toll, Peter detoll@bnl.gov 4100 Durfee, Douglas ddurfee@bnl.gov 7625 Fulkerson, Michael fulkerso@bnl.gov 5194 Gallagher, John jgallagher@bnl.gov 5770 Harder, David dharder@bnl.gov 4978

399

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

400

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

Note: This page contains sample records for the topic "bharat heavy electricals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

402

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

403

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

404

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: March 2012 Electric Power Sector Coal Stocks: March 2012 Stocks The seasonal winter drawdown of coal stocks was totally negated during the winter months this year due to low natural gas prices and unseasonably warm temperatures throughout the continental United States. In fact, March 2012 was the seventh straight month that coal stockpiles at power plants increased from the previous month. The largest driver of increasing stockpiles has been declining consumption of coal due to unseasonably warm weather and declining natural gas prices. Because much of the coal supplied to electric generators is purchased through long-term contracts, increasing coal stockpiles have proven difficult for electric power plant operators to handle. Some operators have inventories so high that they are refusing

405

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

406

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

407

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: February 2012 Resource Use: February 2012 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By generator type By fuel type Region map map showing electricity regions Generation output declined in almost all regions in February due to unseasonably warm temperatures. Following the same pattern as January,

408

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

409

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

410

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

York Electricity Profile 2010 New York profile York Electricity Profile 2010 New York profile Table 1. 2010 Summary Statistics (New York) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 39,357 6 Electric Utilities 11,032 25 Independent Power Producers & Combined Heat and Power 28,325 5 Net Generation (megawatthours) 136,961,654 9 Electric Utilities 34,633,335 31 Independent Power Producers & Combined Heat and Power 102,328,319 5 Emissions (thousand metric tons) Sulfur Dioxide 62 25 Nitrogen Oxide 44 28 Carbon Dioxide 41,584 22 Sulfur Dioxide (lbs/MWh) 1.0 40 Nitrogen Oxide (lbs/MWh) 0.7 44 Carbon Dioxide (lbs/MWh) 669 42 Total Retail Sales (megawatthours) 144,623,573 7 Full Service Provider Sales (megawatthours) 79,119,769 18

411

ELECTRICAL DISTRICT No.  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRICAL ELECTRICAL DISTRICT No. 4 PINAL COUNTY POST OFFICE BOX 605- ELOY, ARIZONA 85131 Telephone: (520) 468-7338 BOARD OF DIRECTORS: DISTRICT MANAGER: MARK HAMILTON, CHAIRMAN RON McEACHERN CHARLES BUSH ThOMAS W. SCM JAMES F. SHEDD WILLIAM WARREN VIA ELECTRONIC MAIL TO: DSWFPP~2wapa.gov July 19, 2010 Mr. Darrick Moe Desert Southwest Regional Manager Western Area Power Authority P.O. Box 6457 Phoenix, AZ 85005-6457 Re: SPPR Proposed ED5 to Palo Verde Transmission Project Electrical District Number Four of Pinal County ("ED4") and Electrical District Number Five of Pinal County ("ED5") are members of the Southwest Public Power Resource ("SPPR") Group and support the ED5 to Palo Verde Project Statement of Interest ("SOT") submitted by the SPPR Group. ED4 is also a participant in the Southeast Valley C'SEV") Project and has offered to

412

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

413

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

414

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

415

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Electricity Profile 2010 Illinois profile Illinois Electricity Profile 2010 Illinois profile Table 1. 2010 Summary Statistics (Illinois) Item Value U.S. Rank NERC Region(s) MRO/RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 44,127 5 Electric Utilities 4,800 35 Independent Power Producers & Combined Heat and Power 39,327 3 Net Generation (megawatthours) 201,351,872 5 Electric Utilities 12,418,332 35 Independent Power Producers & Combined Heat and Power 188,933,540 3 Emissions (thousand metric tons) Sulfur Dioxide 232 9 Nitrogen Oxide 83 8 Carbon Dioxide 103,128 6 Sulfur Dioxide (lbs/MWh) 2.5 25 Nitrogen Oxide (lbs/MWh) 0.9 38 Carbon Dioxide (lbs/MWh) 1,129 34 Total Retail Sales (megawatthours) 144,760,674 6 Full Service Provider Sales (megawatthours) 77,890,532 19

416

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

417

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

418

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 South Dakota profile Dakota Electricity Profile 2010 South Dakota profile Table 1. 2010 Summary Statistics (South Dakota) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,623 45 Electric Utilities 2,994 37 Independent Power Producers & Combined Heat and Power 629 48 Net Generation (megawatthours) 10,049,636 46 Electric Utilities 8,682,448 36 Independent Power Producers & Combined Heat and Power 1,367,188 47 Emissions (thousand metric tons) Sulfur Dioxide 12 43 Nitrogen Oxide 12 43 Carbon Dioxide 3,611 47 Sulfur Dioxide (lbs/MWh) 2.6 23 Nitrogen Oxide (lbs/MWh) 2.6 8 Carbon Dioxide (lbs/MWh) 792 41 Total Retail Sales (megawatthours) 11,356,149 46 Full Service Provider Sales (megawatthours) 11,356,149 42

419

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

420

electric | OpenEI  

Open Energy Info (EERE)

electric electric Dataset Summary Description This dataset is part of a larger internal dataset at the National Renewable Energy Laboratory (NREL) that explores various characteristics of large solar electric (both PV and CSP) facilities around the United States. This dataset focuses on the land use characteristics for solar facilities that are either under construction or currently in operation. Source Land-Use Requirements for Solar Power Plants in the United States Date Released June 25th, 2013 (5 months ago) Date Updated Unknown Keywords acres area average concentrating solar power csp Density electric hectares km2 land land requirements land use land-use mean photovoltaic photovoltaics PV solar statistics Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Master Solar Land Use Spreadsheet (xlsx, 1.5 MiB)

Note: This page contains sample records for the topic "bharat heavy electricals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Massachusetts Electricity Profile 2010 Massachusetts profile Massachusetts Electricity Profile 2010 Massachusetts profile Table 1. 2010 Summary Statistics (Massachusetts) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 13,697 31 Electric Utilities 937 42 Independent Power Producers & Combined Heat and Power 12,760 8 Net Generation (megawatthours) 42,804,824 34 Electric Utilities 802,906 43 Independent Power Producers & Combined Heat and Power 42,001,918 10 Emissions (thousand metric tons) Sulfur Dioxide 35 31 Nitrogen Oxide 17 38 Carbon Dioxide 20,291 36 Sulfur Dioxide (lbs/MWh) 1.8 34 Nitrogen Oxide (lbs/MWh) 0.9 39 Carbon Dioxide (lbs/MWh) 1,045 38 Total Retail Sales (megawatthours) 57,123,422 26 Full Service Provider Sales (megawatthours) 31,822,942 34

422

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

423

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: December 2011 Resource Use: December 2011 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By generator type By fuel type Region map map showing electricity regions Generation output declined in all regions, with the exception of the West and Texas, due to unseasonably warm temperatures in December. Fossil steam

424

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

425

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: November 2011 Resource Use: November 2011 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By generator type By fuel type Region map map showing electricity regions Generation output declined or remained relatively flat in all regions except for Texas and the Southeast. Both of these regions saw generation

426

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

427

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

428

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

429

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: February 2012 Electric Power Sector Coal Stocks: February 2012 Stocks The unseasonably warm temperatures that the continental United States experienced throughout the winter, coupled with low natural gas prices, caused coal stocks at power plants to increase throughout the winter of 2011 - 2012. During this period, coal stocks usually see a seasonal decline due to the added need for electricity generation from coal plants for spacing heating load. However, it was the sixth straight month that coal stocks increased from the previous month, with this trend likely to continue as the country enters into spring. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current

430

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

431

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

432

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

433

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

434

Electricity Distribution System Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid Tech Team Grid Tech Team Discussion Summary Electricity Distribution System Workshop 2 Table of Contents INTRODUCTION ............................................................................................................................................. 3 EXECUTIVE SUMMARY .................................................................................................................................. 4 Process ...................................................................................................................................................... 4 Common Themes ...................................................................................................................................... 5 Discussion Topic Tables ............................................................................................................................. 8

435

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

436

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

437

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

438

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

439

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

440

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

Note: This page contains sample records for the topic "bharat heavy electricals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

442

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

443

2013 Electricity Form Proposals  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity Survey Form Changes in 2013 The U.S. Energy Information Administration (EIA) proposed changes to its electricity data collection in 2013. These changes involve three forms: Form EIA-861, "Annual Electric Power Industry Report" The addition of a new form, the Form EIA-861S, "Annual Electric Power Industry Report (Short Form)" Form EIA-923, "Power Plant Operations Report." The proposals were initially announced to the public via a Federal Register Notice published March 15, 2012. Comments regarding this proposed information collection were due by May 14, 2012. EIA reviewed all comments and made several revisions to the proposals as a result. A second Federal Register Notice was published on August 30, 2012. It outlined the proposals

444

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

445

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

446

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

447

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

448

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

449

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

450

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

451

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

452

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

453

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

454

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

statistics (Georgia) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Natural gas Net Summer Capacity (megawatts) 38,488 7 Electric Utilities 29,293 3...

455

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

statistics (New York) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Natural Gas Net Summer Capacity (megawatts) 39,520 6 Electric Utilities 10,739 26...

456

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

statistics (Rhode Island) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Natural Gas Net Summer Capacity (megawatts) 1,781 49 Electric Utilities 8 50 Independent...

457

Micromachined electrical cauterizer  

DOE Patents (OSTI)

A micromachined electrical cauterizer. Microstructures are combined with microelectrodes for highly localized electro cauterization. Using boron etch stops and surface micromachining, microneedles with very smooth surfaces are made. Micromachining also allows for precision placement of electrodes by photolithography with micron sized gaps to allow for concentrated electric fields. A microcauterizer is fabricated by bulk etching silicon to form knife edges, then parallelly placed microelectrodes with gaps as small as 5 .mu.m are patterned and aligned adjacent the knife edges to provide homeostasis while cutting tissue. While most of the microelectrode lines are electrically insulated from the atmosphere by depositing and patterning silicon dioxide on the electric feedthrough portions, a window is opened in the silicon dioxide to expose the parallel microelectrode portion. This helps reduce power loss and assist in focusing the power locally for more efficient and safer procedures.

Lee, Abraham P. (Walnut Creek, CA); Krulevitch, Peter A. (Pleasanton, CA); Northrup, M. Allen (Berkeley, CA)

1999-01-01T23:59:59.000Z

458

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Electricity Profile 2012 Table 1. 2012 Summary Statistics (Indiana) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 26,837 14...

459

EIA - State Electricity Profiles  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Profile 2012 Table 1. 2012 Summary Statistics (Arizona) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,587...

460

EIA - State Electricity Profiles  

NLE Websites -- All DOE Office Websites (Extended Search)

Alabama Table 1. 2012 Summary statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary energy source Natural gas Net summer capacity (megawatts) 32,547 9 Electric...

Note: This page contains sample records for the topic "bharat heavy electricals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Costs of Electricity  

Science Journals Connector (OSTI)

A major reason for the decreased interest in the building of new nuclear power plants in recent years has been the relatively high cost of nuclear power. In this section, we will consider the role of costs in electricity

2005-01-01T23:59:59.000Z

462

Electricity Monthly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. Retail rates and prices are not collected by EIA. EIA...

463

Electricity Restructuring in Practice  

Science Journals Connector (OSTI)

Severe flaws exist in the theoretic case for regulation and practice in electric power is worse than theory predicts. Theory suggests regulation was both unneeded and unlikely to succeed. New Deal initiatives ...

Richard L. Gordon

2002-01-01T23:59:59.000Z

464

Retail electricity competition  

E-Print Network (OSTI)

We analyze a number of unstudied aspects of retail electricity competition. We first explore the implications of load profiling of consumers whose traditional meters do not allow for measurement of their real time consumption, ...

Joskow, Paul L.

2004-01-01T23:59:59.000Z

465

Electricity and Gas  

Science Journals Connector (OSTI)

As in electricity, the downstream sector of the natural gas business has traditionally been regarded as a ... the two sub-industries: economies of scale, capital-intensiveness and the geographic specificity of as...

Julin Barqun

2013-01-01T23:59:59.000Z

466

EIA - State Electricity Profiles  

Annual Energy Outlook 2012 (EIA)

(South Dakota) Item Value U.S. Rank NERC Region(s) MROWECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 4,057 45 Electric Utilities 3,428 36 Independent...

467

ELECTRICAL & COMPUTER ENGINEERING  

E-Print Network (OSTI)

ELECTRICAL & COMPUTER ENGINEERING SEMINAR "Restoration of Soft X-Ray Laser Images of Nanostructures for restoration of images obtained with the 46.9 nm soft x-ray (SXR) laser microscope will be presented. We

468

Electrically conductive material  

DOE Patents (OSTI)

An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.

Singh, Jitendra P. (Bollingbrook, IL); Bosak, Andrea L. (Burnam, IL); McPheeters, Charles C. (Woodridge, IL); Dees, Dennis W. (Woodridge, IL)

1993-01-01T23:59:59.000Z

469

Electrically conductive material  

DOE Patents (OSTI)

An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

1993-09-07T23:59:59.000Z

470

Electrical and Computer Engineering  

E-Print Network (OSTI)

technologies such as solar power and solid state (LED) lighting; Design sensors that measure glucose, generating and transmitting power, and designing smart sensors for robots. Circuits Communications Optics Power Sensors Signal & Image Processing #12;Electrical Engineering Develop environmentally friendly

Weber, Rodney

471

Generating electricity from viruses  

ScienceCinema (OSTI)

Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

Lee, Seung-Wuk

2014-06-23T23:59:59.000Z

472

Generating electricity from viruses  

SciTech Connect

Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

Lee, Seung-Wuk

2013-10-31T23:59:59.000Z

473

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Summary Statistics (Illinois) Item Value U.S. Rank NERC Region(s) MRORFCSERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 45,146 5 Electric Utilities 5,274 34...

474

Electric Transmission Lines (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

Electric transmission lines capable of operating at 69 kV or greater cannot be constructed along, across, or over any public highways or grounds outside of cities without a franchise from the...

475

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

476

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

477

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

478

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

479

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

480

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

Note: This page contains sample records for the topic "bharat heavy electricals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: January 2012 Resource Use: January 2012 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By generator type By fuel type Region map map showing electricity regions Generation output declined in all regions due to unseasonably warm temperatures in January. Fossil steam generation followed total generation

482

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

483

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

484

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

485

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana Electricity Profile 2010 Indiana profile Indiana Electricity Profile 2010 Indiana profile Table 1. 2010 Summary Statistics (Indiana) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,638 13 Electric Utilities 23,008 8 Independent Power Producers & Combined Heat and Power 4,630 23 Net Generation (megawatthours) 125,180,739 11 Electric Utilities 107,852,560 5 Independent Power Producers & Combined Heat and Power 17,328,179 20 Emissions (thousand metric tons) Sulfur Dioxide 385 4 Nitrogen Oxide 120 4 Carbon Dioxide 116,283 5 Sulfur Dioxide (lbs/MWh) 6.8 4 Nitrogen Oxide (lbs/MWh) 2.1 12 Carbon Dioxide (lbs/MWh) 2,048 4 Total Retail Sales (megawatthours) 105,994,376 11 Full Service Provider Sales (megawatthours) 105,994,376 8

486

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

487

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

488

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

489

Southeastern Electric - Electric Equipment Loan Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southeastern Electric - Electric Equipment Loan Program Southeastern Electric - Electric Equipment Loan Program Southeastern Electric - Electric Equipment Loan Program < Back Eligibility Agricultural Commercial Industrial Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Heat Pumps/Electric Heat: up to $10,000 Weatherization/Insulation: $3,000 Program Info State South Dakota Program Type Utility Loan Program Rebate Amount Heat Pumps/Electric Heat: up to $10,000 Weatherization/Insulation loans: up to $3,000 Provider Southeastern Electric Cooperative Southeastern Electric Cooperative is a member-owned electric cooperative that serves customers in the southeastern part of South Dakota.

490

Estimating the Value of Electricity Storage Resources in Electricity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating the Value of Electricity Storage Resources in Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 The purpose of this report is to assist the U.S. Department of Energy (DOE) in 1) establishing a framework for understanding the role electricity storage resources (storage) can play in wholesale and retail electricity markets, 2) assessing the value of electricity storage in a variety of regions or markets, 3) analyzing current and potential issues that can affect the valuation of storage by investors at the wholesale and retail level, and 4) identifying areas for future research and development for electricity storage technologies and applications. EAC - Estimating the Value of Electricity Storage Resources in Electricity

491

Estimating the Value of Electricity Storage Resources in Electricity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating the Value of Electricity Storage Resources in Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 The purpose of this report is to assist the U.S. Department of Energy (DOE) in 1) establishing a framework for understanding the role electricity storage resources (storage) can play in wholesale and retail electricity markets, 2) assessing the value of electricity storage in a variety of regions or markets, 3) analyzing current and potential issues that can affect the valuation of storage by investors at the wholesale and retail level, and 4) identifying areas for future research and development for electricity storage technologies and applications. EAC - Estimating the Value of Electricity Storage Resources in Electricity

492

Low NOx combustion system for heavy oil  

SciTech Connect

As a result of the increasing demand for white oil as one of countermeasures for pollution control and as a fuel for motor vehicle, coupled with the increasing import of heavy crude oil, heavy oils such as asphalt and distillation residue have become surplus in Japan. It is difficult by the conventional low NOx technology to control the NOx emission from the industrial small and medium capacity boilers, which use heavy oil as their fuels. The authors have been developing and improving NOx control technologies for boilers such as low NOx burners, two-stage combustion methods and so on. They have developed a new combustion system for heavy oil, which generates less NOx and soot than conventional systems, by applying the knowledge, obtained in the course of their development of Coal Partial Combustor (CPC). The conventional low NOx combustion method for oil firing boilers has been developed based on decreasing the flame temperature and delaying the combustion reaction. In the system, however, the heavy oil shall be combusted in the intense reducing atmosphere at the high flame temperature between 1,500 C and 1,600 C, and then the combustions gas shall be cooled and oxidized by two-stage combustion air. With this system, NOx emission can be suppressed below 100ppm (converted as O{sub 2}=4%).

Kurata, Chikatoshi; Sasaki, Hideki

1999-07-01T23:59:59.000Z

493

Ion electric propulsion unit  

DOE Patents (OSTI)

An electron cyclotron resonance (ECR) thruster is disclosed having a plasma chamber which is electrically biased with a positive voltage. The chamber bias serves to efficiently accelerate and expel the positive ions from the chamber. Electrons follow the exiting ions, serving to provide an electrically neutral exhaust plume. In a further embodiment, a downstream shaping magnetic field serves to further accelerate and/or shape the exhaust plume.

Light, Max E; Colestock, Patrick L

2014-01-28T23:59:59.000Z

494

Accomodating Electric Vehicles  

E-Print Network (OSTI)

Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

Aasheim, D.

2011-01-01T23:59:59.000Z

495

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

Hand, M. M.

2012-08-01T23:59:59.000Z

496

Saving Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saving Electricity Saving Electricity Saving Electricity Reducing energy use in your home saves you money, increases our energy security and reduces the pollution that is emitted from non-renewable sources of energy. Learn more about reducing your electricity use. Reducing energy use in your home saves you money, increases our energy security and reduces the pollution that is emitted from non-renewable sources of energy. Learn more about reducing your electricity use. We rely on electricity to power our lights, appliances, and electronics in our homes. Many of us also use electricity to provide our homes with hot water, heat, and air conditioning. As we use more electricity in our homes,

497

Resolving Water's Electrical Properties | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Resolving Water's Electrical Properties Resolving Water's Electrical Properties Team ends long-standing confusion about modeling water's electrons The team's work appears on the...

498

Electric vehicles | Open Energy Information  

Open Energy Info (EERE)

vehicles Jump to: navigation, search TODO: add content Electric vehicles first came into existence in the mid-19th century, when electricity was among the preferred methods for...

499

Rural Utilities Service Electric Program  

Energy.gov (U.S. Department of Energy (DOE))

The Rural Utilities Service Electric Programs loans and loan guarantees finance the construction of electric distribution, transmission, and generation facilities, including system improvements...

500

Renewable Electricity Working Group Presentation  

U.S. Energy Information Administration (EIA) Indexed Site

Renewable Electricity Working Group Chris Namovicz, Renewable Electricity Analysis Team July 9, 2013 Agenda * Review status of AEO 2013 * Discuss new model updates and development...