Sample records for bg cn ch

  1. Pyrolysis and Combustion of Acetonitrile (CH{sub 3}CN)

    SciTech Connect (OSTI)

    Britt, P.F.

    2002-05-22T23:59:59.000Z

    Acetonitrile (CH{sub 3}CN) is formed from the thermal decomposition of a variety of cyclic, noncyclic, and polymeric nitrogen-containing compounds such as pyrrole and polyacrylonitrile. The pyrolysis and combustion of acetonitrile have been studied over the past 30 years to gain a more detailed understanding of the complex mechanisms involved in the release of nitrogen-containing compounds such as hydrogen cyanide (HCN) in fires and nitrogen oxides (NOx) in coal combustion. This report reviews the literature on the formation of HCN and NOx from the pyrolysis and combustion of acetonitrile and discusses the possible products found in an acetonitrile fire.

  2. Cn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing:DOE NationalCommitteeof3HEPiX SpringCn

  3. Experimental and Theoretical Examination of C-CN and C-H Bond Activations of Acetonitrile Using Zerovalent Nickel

    E-Print Network [OSTI]

    Jones, William D.

    Experimental and Theoretical Examination of C-CN and C-H Bond Activations of Acetonitrile Using and density functional theory show that the reaction of acetonitrile with a zerovalent nickel bis -nitrile complex and the activation products. The lowest energy transition state is an 3 -acetonitrile

  4. Time-resolved dynamics in acetonitrile cluster anions CH3CN Ryan M. Young a

    E-Print Network [OSTI]

    Neumark, Daniel M.

    Time-resolved dynamics in acetonitrile cluster anions ðCH3CN�� n Ryan M. Young a , Graham B December 2009 a b s t r a c t Excited state dynamics of acetonitrile cluster anions, ðCH3CN�� n , were, antiparallel solvent molecules [19,20]. Evidence for two electron solvation motifs in acetonitrile also comes

  5. Transferring oxygen isotopes to 1,2,4-benzotriazine 1-oxides forming the corresponding 1,4-dioxides by using the HOF$CH3CN complex

    E-Print Network [OSTI]

    Gates, Kent. S.

    Transferring oxygen isotopes to 1,2,4-benzotriazine 1-oxides forming the corresponding 1,4-dioxides Available online 14 August 2012 Keywords: Oxygen transfer 18 O isotope Tirapazamine HOF$CH3CN F2/N2 N is their ability to capitalize on the low oxygen (hypoxic) environment found in many solid tumors. The lead

  6. Thermodynamic Studies of [H2Rh(diphosphine)2]+ and [HRh(diphosphine)2(CH3CN)]2+ Complexes in Acetonitrile

    SciTech Connect (OSTI)

    Aaron D. Wilson; Alexander J. M. Miller; Daniel L. DuBois; Jay A. Labinger; John E. Bercaw

    2011-04-01T23:59:59.000Z

    Thermodynamic studies of a series of [H2Rh(PP)2]+ and [HRh(PP)2(CH3CN)]2+ complexes have been carried out in acetonitrile. Seven different diphosphine (PP) ligands were selected to allow variation of the electronic properties of the ligand substituents, the cone angles, and the natural bite angles (NBAs). Oxidative addition of H2 to [Rh(PP)2]+ complexes is favored by diphosphine ligands with large NBAs, small cone angles, and electron donating substituents, with the NBA being the dominant factor. Large pKa values for [HRh(PP)2(CH3CN)]2+ complexes are favored by small ligand cone angles, small NBAs, and electron donating substituents with the cone angles playing a major role. The hydride donor abilities of [H2Rh(PP)2]+ complexes increase as the NBAs decrease, the cone angles decrease, and the electron donor abilities of the substituents increase. These results indicate that if solvent coordination is involved in hydride transfer or proton transfer reactions, the observed trends can be understood in terms of a combination of two different steric effects, NBAs and cone angles, and electron-donor effects of the ligand substituents.

  7. Thermodynamic Studies of [H2Rh(diphosphine)2]+ and [HRh(diphosphine)2(CH3CN)]2+ Complexes in Acetonitrile

    SciTech Connect (OSTI)

    Wilson, Aaron D.; Miller, Alexander J.; DuBois, Daniel L.; Labinger, Jay A.; Bercaw, John E.

    2010-04-19T23:59:59.000Z

    Thermodynamic studies of a series of [H2Rh(PP)2]+ and [HRh(PP)2(CH3CN)]2+ complexes have been carried out in acetonitrile. Seven different diphosphine (PP) ligands were selected to allow variation of the electronic properties of the ligand substituents, the cone angles, and the natural bite angles (NBAs). Oxidative addition of H2 to [Rh(PP)2]+ complexes is favored by diphosphine ligands with large NBAs, small cone angles, and electron donating substituents, with the NBA being the dominant factor. Large pKa values for [HRh(PP)2(CH3CN)]2+ complexes are favored by small ligand cone angles, small NBAs, and electron donating substituents with the cone angles playing a major role. The hydride donor abilities of [H2Rh(PP)2]+ complexes increase as the NBAs decrease, the cone angles decrease, and the electron donor abilities of the substituents increase. These results indicate that if solvent coordination is involved in hydride transfer or proton transfer reactions, the observed trends can be understood in terms of a combination of two different steric effects, NBAs and cone angles, and electron-donor effects of the ligand substituents. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  8. 820 mV open-circuit voltages from Cu2O/CH3CN junctions Chengxiang Xiang, Gregory M. Kimball, Ronald L. Grimm, Bruce S. Brunschwig, Harry A. Atwater*

    E-Print Network [OSTI]

    Kimball, Gregory

    couple, cuprous oxide yielded open- circuit voltage, Voc, values of 820 mV and short-circuit current-conversion efficiency of 1.5% was limited by solution absorption and optical reflection losses that reduced the short-circuit820 mV open-circuit voltages from Cu2O/CH3CN junctions Chengxiang Xiang, Gregory M. Kimball, Ronald

  9. Studies of a Series of [Ni(PR2NPh2)2(CH3CN)]2+ Complexes as Electrocatalysts for H2 Production: Substituent Variation at the Phosphorus Atom of the P2N2 Ligand

    SciTech Connect (OSTI)

    Kilgore, Uriah J.; Stewart, Michael P.; Helm, Monte L.; Dougherty, William G.; Kassel, W. S.; Rakowski DuBois, Mary; DuBois, Daniel L.; Bullock, R. Morris

    2011-11-07T23:59:59.000Z

    A series of [Ni(PR2NPh2)2(CH3CN)](BF4)2 complexes containing the cyclic diphosphine ligands (PR2NPh2 = 1,5-diaza-3,7-diphosphacyclooctane; R = benzyl (Bn), n-butyl (n-Bu), 2-phenylethyl (PE), 2,4,4-trimethylpentyl (TP), and cyclohexyl (Cy)) have been synthesized and characterized. X-ray diffraction studies reveal that the cations of [Ni(PBn2NPh2)2(CH3CN)](BF4)2 and [Ni(Pn-Bu2NPh2)2(CH3CN)](BF4)2 have distorted trigonal bipyramidal geometries. The Ni(0) complex [Ni(PBn2NPh2)2 (CH3CN)] was also synthesized and characterized by X-ray diffraction studies and shown to have a distorted tetrahedral structure. These complexes, with the exception of [Ni(PCy2NPh2)2(CH3CN)](BF4)2, all exhibit reversible electron transfer processes for both the Ni(II/I) and Ni(I/0) couples and are electrocatalysts for the production of H2 in acidic acetonitrile solutions. The heterolytic cleavage of H2 by [Ni(PR2NPh2)2(CH3CN)](BF4)2 complexes in the presence of p-anisidine or p-bromoaniline was used to determine the hydride donor abilities of the corresponding [HNi(PR2NPh2)2](BF4) complexes. However, the failure to observe a strong correlation between the turnover frequencies for H2 production and the hydride donor abilities, along with structural features of [Ni(PBn2NPh2)2(CH3CN)], suggest that steric interactions between the alkyl substituents on phosphorus and the nitrogen atom of the pendant amines play an important role in determining the overall catalytic rate. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.

  10. [Ni(PPh2NBn2)2(CH3CN)]2+ as an Electrocatalyst for H2 Production: Dependence on Acid Strength and Isomer Distribution

    SciTech Connect (OSTI)

    Appel, Aaron M.; Pool, Douglas H.; O'Hagan, Molly J.; Shaw, Wendy J.; Yang, Jenny Y.; Rakowski DuBois, Mary; DuBois, Daniel L.; Bullock, R. Morris

    2011-07-01T23:59:59.000Z

    [Ni(PPh2NBz2)2(CH3CN)](BF4)2, Ni(PPh2NBz2)22+ (where PPh2NBz2 is 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) has been studied as an electrocatalyst for the production of hydrogen in acetonitrile. Using strong acids, such as p cyanoanilinium, Ni(PPh2NBz2)22+ has been shown to be protonated under catalytic conditions prior to reduction, with an effective pKa of 6.7±0.4. Through multinuclear NMR spectroscopy studies, the nickel(II) complex was found to be doubly protonated without any observed singly protonated species. In the doubly protonated complex, both protons are positioned exo with respect to the metal center and are stabilized by an N-H-N hydrogen bond. The formation of exo protonated isomers is proposed to limit the rate of hydrogen production because the protons are unable to gain suitable proximity to the reduced metal center to generate dihydrogen. Pre-protonation of Ni(PPh2NBz2)22+ has been found to shift the catalytic operating potential to more positive potentials by up to 440 mV, depending upon the conditions. The catalytic rate was found to increase by an order of magnitude by increasing the solution pH or through the addition of water. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.

  11. Synthesis and characterization by sup 1 H, sup 13 C, and sup 19 F NMR spectroscopy of (CH sub 3 CN) sub n (CO) sub 4 minus n (NO)W(. mu. -F)BF sub 3 and ((CH sub 3 CN) sub n+1 (CO) sub 4 minus n (NO)W)(BF sub 4 )(n = 0 minus 2), tungsten mononitrosyl carbonyl cations with labile acetonitrile and ((. mu. -F)BF sub 3 ) sup minus ligands

    SciTech Connect (OSTI)

    Hersh, W.H. (Univ. of California, Los Angeles (USA))

    1990-02-21T23:59:59.000Z

    Addition of (NO)(BF{sub 4}) to CH{sub 3}CNW(CO){sub 5} in CH{sub 2}Cl{sub 2} gives a mixture of five mononitrosyl compounds, mer-(cis-CH{sub 3}CN)(trans-NO)(CO){sub 3}W({mu}-F)BF{sub 3} (1), (mer,cis-(CH{sub 3}CN){sub 2}W(CO){sub 3}(NO))(BF{sub 4}) (2a), cis,cis,trans-(CH{sub 3}CN){sub 2}(CO){sub 2}(NO)W({mu}-F)BF{sub 3} (3), (fac-(CH{sub 3}CN){sub 3} W(CO){sub 2}(NO))(BF){sub 4} (4a), and trans-(NO)(CO){sub 4}W({mu}-F)BF{sub 3} (5); in a typical experiment the yield is 90%, and the ratio 1:2a:3:4a:5 is 47:14:11:1:27. Support for the identities of 1-5 is obtained by reaction of the mixture with Me{sub 3}P, giving (mer-(cis-CH{sub 3}CN)(trans-Me{sub 3}P)W(CO){sub 3}(NO))(BF{sub 4}) (7a), (cis,cis,trans-(CH{sub 3}CN){sub 2}(CO){sub 2}(NO)W(PMe{sub 3}))(BF{sub 4}) (8a), (trans-Me{sub 3}P(CO){sub 4}WNO)(BF{sub 4}) (9), and the previously reported compound (mer,cis-(Me{sub 3}P){sub 2}W(CO){sub 3}(NO))(BF{sub 4}) (10a). The reaction mixtures are analyzed by IR and {sup 1}H, {sup 13}C, and {sup 19}F NMR spectroscopy. In particular, the {sup 13}C NMR spectrum exhibits quintets for the carbonyl ligands of 1,3, 5 due to a dynamic spinning process of the (({mu}-F)BF{sub 3}){sup {minus}} ligand, and the {sup 19}F NMR spectrum exhibits doublets for the terminal fluorine atoms (which are further separated into {sup 10}B and {sup 11}B isotopomers) near {minus}153 ppM and quartets for the bridging fluorine atoms from {minus}203 to {minus}238 ppM. Independent synthesis and isolation in good yield of 2b-c, 4a-d, 7b-c, and 8b (where the anions for a-d are (BF{sub 4}){sup {minus}}, (SbF{sub 6}){sup {minus}}, ((C{sub 6}H{sub 5}){sub 4}B){sup {minus}}, and (PF{sub 6}){sup {minus}}{sup {minus}}, respectively) are described, as are the independent synthesis and spectroscopic characterization of 3, 5, and 6. 4 figs., 1 tab.

  12. Comparison of [Ni(PPh2NPh2)2(CH3CN)]2+ and [Pd(PPh2NPh2)2]2+ as Electrocatalysts for H2 Production

    SciTech Connect (OSTI)

    Wiedner, Eric S.; Helm, Monte L.

    2014-09-22T23:59:59.000Z

    The complexes [Ni(PPh2NPh2)2(CH3CN)]2+ and [Pd(PPh2NPh2)2]2+, where PPh2NPh2 is 1,5-diphenyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane, are compared as electrocatalysts for H2 production under identical experimental conditions. With [(DMF)H]+ as the acid in acetonitrile solution, [Pd(PPh2NPh2)2]2+ afforded a turnover frequency (TOF) of 230 s-1 for formation of H2 under dry conditions and a TOF of 640 s-1 when H2O was added. These rates are similar to the TOF’s of 590 s-1 (dry) and 720 s-1 (wet) that were previously measured for [Ni(PPh2NPh2)2(CH3CN)]2+ using [(DMF)H]+. The [Ni(PPh2NPh2)2(CH3CN)]2+ and [Pd(PPh2NPh2)2]2+ complexes both exhibited large current enhancements when treated with trifluoroacetic acid (TFA). At a TFA concentration of 1.8 M, TOF values of 5670 s-1 and 2060 s-1 were measured for [Ni(PPh2NPh2)2(CH3CN)]2+ and [Pd(PPh2NPh2)2]2+, respectively. The fast rates observed using TFA are, in part, attributed to homoconjugation of TFA in acetonitrile solutions, which decreases the effective pKa of the acid. In support of this hypothesis, dramatically lower rates of H2 production were observed using p anisidinium, which has a pKa comparable to TFA but does not homoconjugate significantly in acetonitrile solutions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is oper-ated by Battelle for the U.S. Department of Energy.

  13. Adsorption of acetonitrile (CH{sub 3}CN) on Si(111)-7x7 at room temperature studied by synchrotron radiation core-level spectroscopies and excited-state density functional theory calculations

    SciTech Connect (OSTI)

    Bournel, F.; Carniato, S.; Dufour, G.; Gallet, J.-J.; Ilakovac, V.; Rangan, S.; Rochet, F.; Sirotti, F. [Laboratoire de Chimie Physique Matiere et Rayonnement, Universite Pierre et Marie Curie, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin, Boite Postale 48, 91192 Gif sur Yvette Cedex (France)

    2006-03-15T23:59:59.000Z

    The room temperature adsorption of acetonitrile (CH{sub 3}-C{identical_to}N) on Si(111)-7x7 is examined by synchrotron radiation N 1s x-ray photoemission and x-ray absorption spectroscopies. The experimental spectroscopic data point to multiple adsorption geometries. Candidate structures are optimized using density functional theory (DFT), the surface being simulated by silicon clusters encompassing one (adjacent) adatom-rest atom pair. This is followed by the DFT calculation of electron transition energies and cross sections. The comparison of theoretical spectra with experimental ones indicates that the molecule is adsorbed on the surface under two forms, a nondissociated geometry (an sp{sup 2}-hybridized CN) and a dissociated one (leading to a pendent sp-hybridized CN). In the nondissociative mode, the molecule bridges an adatom-rest atom pair. For bridge-type models, the discussion of the core-excited state calculations is focussed on the so-called silicon-molecule mixed-state transitions that strongly depend on the breaking or not of the adatom backbonds and on the attachment of the nitrogen end either to the adatom or to the rest atom. Concerning the dissociated state, the CH bond cleavage leads to a cyanomethyl (Si-CH{sub 2}-CN) plus a silicon monohydride, which accounts for the spectroscopic evidence of a free C{identical_to}N group (we do not find at 300 K any spectroscopic evidence for a C{identical_to}N group datively bonded to a silicon atom via its nitrogen lone pair). Therefore the reaction products of acetonitrile on Si(111)-7x7 are similar to those detected on the Si(001)-2x1 surface at the same temperature, despite the marked differences in the reconstruction of those two surfaces, especially the distance between adjacent silicon broken bonds. In that respect, we discuss how adatom backbond breaking in the course of adsorption may explain why both surface orientations react the same way with acetonitrile.

  14. THE LIFETIMES OF NITRILES (CN) AND ACIDS (COOH) DURING ULTRAVIOLET PHOTOLYSIS AND THEIR SURVIVAL IN SPACE

    E-Print Network [OSTI]

    ) versus acetonitrile (CH3CN) and glycine (H2NCH2COOH) versus aminoacetonitrile (H2NCH2CN). We findCOOH) versus acetonitrile (CH3CN) and glycine (H2NCH2COOH) versus amino- acetonitrile (H2NCH2CN). We

  15. SF6432-CN Construction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    under the tab titled "Forms" or obtained from the Control : SF 6432-CN Title: Standard Terms and Conditions for Firm-Fixed Price Commercial Construction Contracts Owner:...

  16. THE SPATIAL DISTRIBUTION OF OH AND CN RADICALS IN THE COMA OF COMET ENCKE

    SciTech Connect (OSTI)

    Ihalawela, Chandrasiri A.; Pierce, Donna M.; Dorman, Garrett R. [Department of Physics and Astronomy, Mississippi State University, P.O. Box 5167, Mississippi State, MS 39762-5167 (United States); Cochran, Anita L., E-mail: cai11@msstate.edu, E-mail: ci856509@ohio.edu, E-mail: dmp149@msstate.edu, E-mail: grd33@msstate.edu, E-mail: anita@barolo.as.utexas.edu [McDonald Observatory, University of Texas at Austin, 1 University Station, C1402, Austin, TX 78712-0259 (United States)

    2011-11-10T23:59:59.000Z

    Multiple potential parent species have been proposed to explain CN abundances in comet comae, but the parent has not been definitively identified for all comets. This study examines the spatial distribution of CN radicals in the coma of comet Encke and determines the likelihood that CN is a photodissociative daughter of HCN in the coma. Comet Encke is the shortest orbital period (3.3 years) comet known and also has a low dust-to-gas ratio based on optical observations. Observations of CN were obtained from 2003 October 22 to 24, using the 2.7 m telescope at McDonald Observatory. To determine the parent of CN, the classical vectorial model was modified by using a cone shape in order to reproduce Encke's highly aspherical and asymmetric coma. To test the robustness of the modified model, the spatial distribution of OH was also modeled. This also allowed us to obtain CN/OH ratios in the coma. Overall, we find the CN/OH ratio to be 0.009 {+-} 0.004. The results are consistent with HCN being the photodissociative parent of CN, but we cannot completely rule out other possible parents such as CH{sub 3}CN and HC{sub 3}N. We also found that the fan-like feature spans {approx}90 Degree-Sign , consistent with the results of Woodney et al..

  17. BG/Q DGEMM Performance | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugust NazimBudgetRenewable Energy SourceBG/Q DGEMM

  18. BG/Q Drivers Status | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugust NazimBudgetRenewable Energy SourceBG/Q DGEMM

  19. BG/Q File Systems | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugust NazimBudgetRenewable Energy SourceBG/Q DGEMM

  20. BG/Q Performance Counters | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugust NazimBudgetRenewable Energy SourceBG/Q DGEMM

  1. Genome Sequence of the Obligate Gammaproteobacterial Methanotroph Methylomicrobium album strain BG8

    SciTech Connect (OSTI)

    Kits, K. Dimitri [University of Alberta, Edmondton, Canada; Kalyuzhnaya, Marina G. [University of Washington, Seattle; Klotz, Martin G [University of Louisville, Louisville; Jetten, MSM [Radboud University Nijmegen, The Netherlands; Huber, Harald [Universitat Regensburg, Regensburg, Germany; Vuilleumier, Stephane [University of Strasbourg; Bringel, Francoise O. [University of Strasbourg; DiSpirito, Alan [Iowa State University; Murrell, Colin [School of Environmental Sciences, University of East Anglia, Norwich, UK; Bruce, David [Los Alamos National Laboratory (LANL); Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Hauser, Loren John [ORNL; Lajus, Aurelie [Genoscope/Centre National de la Recherche Scientifique-Unite Mixte de Recherche; Land, Miriam L [ORNL; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Medigue, Claudine [Genoscope/Centre National de la Recherche Scientifique-Unite Mixte de Recherche; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Zeytun, Ahmet [Los Alamos National Laboratory (LANL); Stein, Lisa Y [University of California, Riverside

    2013-01-01T23:59:59.000Z

    The complete genome sequence of Methylomicrobium album BG8, a methane-oxidizing gammaproteobacterium isolated from freshwater, is reported. Aside from conserved inventory for growth on single-carbon compounds, M. album BG8 encodes a range of inventory for additional carbon and nitrogen transformations, but no genes for growth on multi-carbon substrates or for N-fixation.

  2. Reactions of the CN Radical with Benzene and Toluene: Product Detection and Low-Temperature Kinetics

    SciTech Connect (OSTI)

    Trevitt, Adam J.; Goulay, Fabien; Taatjes, Craig A.; Osborn, David L.; Leone, Stephen R.

    2009-12-23T23:59:59.000Z

    Low temperature rate coefficients are measured for the CN + benzene and CN + toluene reactions using the pulsed Laval nozzle expansion technique coupled with laser-induced fluorescence detection. The CN + benzene reaction rate coefficient at 105, 165 and 295 K is found to be relatively constant over this temperature range, 3.9 - 4.9 x 10-10 cm3 molecule-1 s-1. These rapid kinetics, along with the observed negligible temperature dependence, are consistent with a barrierless reaction entrance channel and reaction efficiencies approaching unity. The CN + toluene reaction is measured to have a slower rate coefficient of 1.3 x 10-10 cm3 molecule-1 s-1 at 105 K. At room temperature, non-exponential decay profiles are observed for this reaction that may suggest significant back-dissociation of intermediate complexes. In separate experiments, the products of these reactions are probed at room temperature using synchrotron VUV photoionization mass spectrometry. For CN + benzene, cyanobenzene (C6H5CN) is the only product recorded with no detectable evidence for a C6H5 + HCN product channel. In the case of CN + toluene, cyanotoluene (NCC6H4CH3) constitutes the only detected product. It is not possible to differentiate among the ortho, meta and para isomers of cyanotoluene because of their similar ionization energies and the ~;; 40 meV photon energy resolution of the experiment. There is no significant detection of benzyl radicals (C6H5CH2) that would suggest a H-abstraction or a HCN elimination channel is prominent at these conditions. As both reactions are measured to be rapid at 105 K, appearing to have barrierless entrance channels, it follows that they will proceed efficiently at the temperatures of Saturn?s moon Titan (~;;100 K) and are also likely to proceed at the temperature of interstellar clouds (10-20 K).

  3. Reactions of the CN Radical with Benzene and Toluene: Product Detection and Low-Temperature Kinetics

    E-Print Network [OSTI]

    Trevitt, Adam J.

    2010-01-01T23:59:59.000Z

    of the CN Radical with Benzene and Toluene: Productare measured for the CN + benzene and CN + toluene reactionsdetection. The CN + benzene reaction rate coefficient at

  4. Experimental and theoretical study of neutral AlmCn and AlmCnHx clusters

    E-Print Network [OSTI]

    Rocca, Jorge J.

    Cn clusters reacting with H2 gas in a fast flow reactor. The VIEs of AlmCnHx clusters are observed to vary ablation plasma-hydrocarbon reaction, an Al­C ablation plasma reacting with H2 gas, or through cold Alm

  5. Reaction Dynamics on the Formation of 1-and 3-Cyanopropylene in the Crossed Beams Reaction of Ground-State Cyano Radicals (CN) with Propylene (C3H6) and Its Deuterated

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    of Ground-State Cyano Radicals (CN) with Propylene (C3H6) and Its Deuterated Isotopologues Xibin Gu + ), with propylene (CH3CHCH2) together with two d3-isotopologues (CD3CHCH2, CH3CDCD2) as potential pathways to form with its radical center to the R-carbon atom of the propylene molecule yielding a doublet radical

  6. Black and white BG1 copiers are available in the following locations: Jerome Library Serials Area Browne Popular Culture Library

    E-Print Network [OSTI]

    Moore, Paul A.

    and the Rec Center. Guest patrons may purchase a BG1Copy Card at the BG1 Account Management Center located, power the machine off, wait five seconds then power back on. The power button is located towards the back on the left side of the copier. Do not use the power button on the front of the machine. Please

  7. Resolving Two Closely Overlapping -CN Vibrations and Structure in the Langmuir Monolayer of the Long-Chain Nonadecanenitrile by Polarization Sum Frequency Generation Vibrational Spectroscopy

    SciTech Connect (OSTI)

    Zhang, Zhen; Guo, Yuan; Lu, Zhou; Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2012-01-10T23:59:59.000Z

    Polarization sum frequency generation vibrational spectra (SFG-VS) reveals that there are two distinctively different but closely overlapping -CN vibrations at 2244.5 cm{sup -1} and 2251.1 cm{sup -1}, respectively, in the Langmuir monolayer of the long-chain nonadecanenitrile (C18CN, CH{sub 3}(CH{sub 2}){sub 17}CN, or C18CN)at the air/water interface. The blue shifted -CN groups at 2251.1 cm{sup -1} peak is about 1.8 times broader than that of the 2244.5 cm{sup -1}. Both the spectral shift and spectral width are consistent with the picture that this blue shifted peak corresponds to the solvated -CN group; while the 2244.5 cm{sup -1} peak is the signature of the less solvated -CN group. Polarization dependence of these two peaks further suggest that the -CN group corresponding to the 2251.1 cm{sup -1} peak is tilted with an average angle of 50{sup o} from interface normal, where that to the 2244.5 cm{sup -1} peak is tilted with an angle around 67{sup o}. The relative population for the -CN groups corresponding to the 2251.1 cm{sup -1} peak is about three times of that of the 2244.5 cm{sup -1} peak. These results suggest that the -CN head groups in the C18CN Langmuir monolayer are not aligned uniformly at slightly different depth, in order to avoid the strong repulsive forces between the strong -CN dipoles. The SFG-VS spectra of the O-H stretches at C18CN Langmuir monolayer is similar to those of the 4''-n-pentyl-4-cyano-p-terphenyl (5CT) monolayer, indicating complete exclusion of the water molecules from the C18CN Langmuir monolayer, but significantly different from those of the 4''-n-octyl-4-p-cyanobiphenyl (8CB) monolayer, as well as those of the air/acetonitrile aqueous solution interface. Different from previous held understandings, these results suggest that the structure of the insoluble long-chain C18CN Langmuir monolayer is significantly different from that of the Gibbs adsorption layer of the short chain soluble acetonitrile or propanenitrile aqueous solution surfaces. These observations not only shed new light on understanding the detailed structure and interactions in the molecular monolayer and films, but also suggest the importance of the polarization and spectral resolution in the SFG studies.

  8. OPTICAL AND INFRARED PHOTOMETRY OF THE TYPE Ia SUPERNOVAE 1991T, 1991bg, 1999ek, 2001bt, 2001cn, 2001cz, AND 2002bo

    E-Print Network [OSTI]

    Moro-Martin, Amaya

    Jose´ Luis Prieto,2 Roberto Antezana,4 Robin Chassagne,5 Hsiao-Wen Chen,6 Mark Dickinson,7 Peter R by fitting discrete tem- plates (Hamuy et al. 1996; Phillips et al. 1999; Prieto et al. 2004), a similar, Chile; mmp@lco.cl, mario@lco.cl, miguel@lco.cl, wojtek@lco.cl. 2 Cerro Tololo Inter-American Observatory

  9. CH Packaging Operations Manual

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-05-15T23:59:59.000Z

    Introduction - This procedure provides instructions forassembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP)

  10. CH Packaging Operations Manual

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-12-18T23:59:59.000Z

    Introduction - This procedure provides instructions forassembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP)

  11. CH Packaging Operations Manual

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-08-22T23:59:59.000Z

    This procedure provides instructions forassembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP)

  12. CH Packaging Operations Manual

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-11-29T23:59:59.000Z

    This procedure provides instructions forassembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP)

  13. WRF Test on IBM BG/L:Toward High Performance Application to Regional Climate Research

    SciTech Connect (OSTI)

    Chin, H S

    2008-09-25T23:59:59.000Z

    The effects of climate change will mostly be felt on local to regional scales (Solomon et al., 2007). To develop better forecast skill in regional climate change, an integrated multi-scale modeling capability (i.e., a pair of global and regional climate models) becomes crucially important in understanding and preparing for the impacts of climate change on the temporal and spatial scales that are critical to California's and nation's future environmental quality and economical prosperity. Accurate knowledge of detailed local impact on the water management system from climate change requires a resolution of 1km or so. To this end, a high performance computing platform at the petascale appears to be an essential tool in providing such local scale information to formulate high quality adaptation strategies for local and regional climate change. As a key component of this modeling system at LLNL, the Weather Research and Forecast (WRF) model is implemented and tested on the IBM BG/L machine. The objective of this study is to examine the scaling feature of WRF on BG/L for the optimal performance, and to assess the numerical accuracy of WRF solution on BG/L.

  14. Characterization of BG28 and KG3 filter glass for Drive Diagnostic Attenuators

    SciTech Connect (OSTI)

    Page, R H; Weiland, T; Folta, J

    2007-11-30T23:59:59.000Z

    BG28 and KG3 filter glasses were tested for use as attenuators in the NIF drive diagnostic (DrD) systems. Tests were performed in the Optical Sciences Laser facility with a 351 nm, 2-step, 3-nsec pulse at fluences ranging up to {approx} 1 J/cm{sup 2}. Single-shot measurements showed no solarization when the samples were allowed to relax for a week after exposure. KG3 filters exhibited no luminescence and no transient pulse distortion. BG28 filters luminesced appreciably and imposed a 'droop' (similar to 'square-pulse distortion') on the signals. The droop parameter is estimated at 0.50 {+-} 0.11 cm{sup 2}/J. Droop is explained in terms of known copper-doped-glass spectroscopy and kinetics (buildup of triplet-state populations, with excited-state absorption). Simulation of the distortion ({approx}1.6%) expected on a 1.8 MJ Haan pulse led to a minor redesign of the Drive Diagnostic with reduced fluence on the BG28 filters to reduce the droop distortion to 0.5%.

  15. The circumstellar shell of the post-AGB star HD 56126: the $^{12}$CN/$^{13}$CN isotope ratio and fractionation

    E-Print Network [OSTI]

    Eric J. Bakker; David L. Lambert

    1997-11-15T23:59:59.000Z

    We have detected circumstellar absorption lines of the $^{12}$CN and $^{13}$CN Violet and Red System in the spectrum of the post-AGB star HD~56126. From a synthetic spectrum analysis, we derive a Doppler broadening parameter of $b=0.51\\pm0.04$ km~s$^{-1}$, $^{12}$CN/$^{13}$CN$=38\\pm2$, and a lower limit of $2000$ on $^{12}$CN/$^{14}$CN and $^{12}$C$^{14}$N/$^{12}$C$^{15}$N. A simple chemical model has been computed of the circumstellar shell surrounding HD~56126 that takes into account the gas-phase ion-molecule reaction between CN and C$^{+}$. From this we infer that this reaction leads to isotopic fractionation of CN. Taking into account the isotopic exchange reaction and the observed $^{12}$CN/$^{13}$CN we find $^{12}$C/$^{13}$C$\\sim 67$ (for $T_{\\rm kin}=25$ K). Our analysis suggests that $^{12}$CN has a somewhat higher rotational temperature than $^{13}$CN: $T_{\\rm rot}=11.5\\pm0.6$ and $8.0\\pm0.6$ K respectively. We identify possible causes for this difference in excitation temperature, among which the $N''$ dependence of the isotopic exchange reaction.

  16. CN Solar Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,BurkeNebraska:CDMValencia JumpLtdCISCMERI Jump to:CN

  17. Microsoft Word - long-cn.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625Data ShowC - Patent Rights -10toNext

  18. IAEA-F1-CN69.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen andHypernuclei in Hall CIn this

  19. Infrared spectra of ClCN{sup +}, ClNC{sup +}, and BrCN{sup +} trapped in solid neon

    SciTech Connect (OSTI)

    Jacox, Marilyn E.; Thompson, Warren E. [Optical Technology Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8441 (United States)

    2007-06-28T23:59:59.000Z

    When a mixture of ClCN or BrCN with a large excess of neon is codeposited at 4.3 K with a beam of neon atoms that have been excited in a microwave discharge, the infrared spectrum of the resulting solid includes prominent absorptions of the uncharged isocyanide, ClNC or BrNC, and of the corresponding cation, ClCN{sup +} or BrCN{sup +}. The NC-stretching fundamentals of the isocyanides trapped in solid neon lie close to the positions for their previously reported argon-matrix counterparts. The CN-stretching absorptions of ClCN{sup +} and BrCN{sup +} and the CCl-stretching absorption of ClCN{sup +} appear very close to the gas-phase band centers. Absorptions of two overtones and one combination band of ClCN{sup +} are identified. Reversible photoisomerization of ClCN{sup +} to ClNC{sup +} occurs. The two stretching vibrational fundamentals and several infrared and near infrared absorptions associated with electronic transitions of ClNC{sup +} are observed. Minor infrared peaks are attributed to the vibrational fundamental absorptions of the CX and CX{sup +} species (X=Cl,Br)

  20. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-08-15T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  1. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2004-10-01T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  2. CH-TRU Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-10-15T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  3. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-05-01T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  4. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-11-20T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  5. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-06-20T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  6. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-01-18T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  7. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-09-15T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  8. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-01-15T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codesand corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  9. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-03-15T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  10. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-08-15T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  11. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-06-15T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  12. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-08-15T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  13. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-12-20T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  14. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-02-15T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  15. CH-TRU Waste Content Codes (CH TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2004-12-01T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  16. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-09-20T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  17. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-06-20T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  18. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-12-15T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  19. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-01-30T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  20. CH E 2421 Chemical Engineering Thermodynamics I CH E 3322 Chemical Engineering Thermodynamics II

    E-Print Network [OSTI]

    Zhang, Yuanlin

    CH E 2421 Chemical Engineering Thermodynamics I CH E 3322 Chemical Engineering Thermodynamics II CH E 3330 Engineering Materials Science CH E 4342 Polymer Physics Engineering Thermodynamics I M E 3311 Materials Science M E 3322 Engineering Thermodynamics II M

  1. CH-TRUCON Rev. 21, January 2008

    Office of Environmental Management (EM)

    DOEWIPP 01-3194 Rev. 21 CH-TRU WASTE CONTENT CODES (CH-TRUCON) Revision 21 January 2008 This document supercedes DOEWIPP 01-3194, Revision 20 CH-TRUCON, Rev. 21, January 2008...

  2. Performance Analysis of and Tool Support for Transactional Memory on BG/Q

    SciTech Connect (OSTI)

    Schindewolf, M

    2011-12-08T23:59:59.000Z

    Martin Schindewolf worked during his internship at the Lawrence Livermore National Laboratory (LLNL) under the guidance of Martin Schulz at the Computer Science Group of the Center for Applied Scientific Computing. We studied the performance of the TM subsystem of BG/Q as well as researched the possibilities for tool support for TM. To study the performance, we run CLOMP-TM. CLOMP-TM is a benchmark designed for the purpose to quantify the overhead of OpenMP and compare different synchronization primitives. To advance CLOMP-TM, we added Message Passing Interface (MPI) routines for a hybrid parallelization. This enables to run multiple MPI tasks, each running OpenMP, on one node. With these enhancements, a beneficial MPI task to OpenMP thread ratio is determined. Further, the synchronization primitives are ranked as a function of the application characteristics. To demonstrate the usefulness of these results, we investigate a real Monte Carlo simulation called Monte Carlo Benchmark (MCB). Applying the lessons learned yields the best task to thread ratio. Further, we were able to tune the synchronization by transactifying the MCB. Further, we develop tools that capture the performance of the TM run time system and present it to the application's developer. The performance of the TM run time system relies on the built-in statistics. These tools use the Blue Gene Performance Monitoring (BGPM) interface to correlate the statistics from the TM run time system with performance counter values. This combination provides detailed insights in the run time behavior of the application and enables to track down the cause of degraded performance. Further, one tool has been implemented that separates the performance counters in three categories: Successful Speculation, Unsuccessful Speculation and No Speculation. All of the tools are crafted around IBM's xlc compiler for C and C++ and have been run and tested on a Q32 early access system.

  3. NostalgisCH Anton Nijholt

    E-Print Network [OSTI]

    Nijholt, Anton

    CH stuk te schrijven over een periode van voor 2006 enerzijds interessant, anderzijds ook een beetje een stuk van wiens leven dan ook automatisch te reconstrueren, wellicht vanuit een bepaald

  4. Lecture Ch. 8 Cloud Classification

    E-Print Network [OSTI]

    Russell, Lynn

    clouds Middle clouds Grayish, block the sun, sometimes patchy Sharp outlines, rising, bright white1 Lecture Ch. 8 · Cloud Classification ­ Descriptive approach to clouds · Drop Growth and Precipitation Processes ­ Microphysical characterization of clouds · Complex (i.e. Real) Clouds ­ Examples

  5. lingyy@ruc.edu.cn Web Web Web

    E-Print Network [OSTI]

    DEEP WEB 100872 lingyy@ruc.edu.cn Web Web Web Deep Web Deep Web Deep Web; Web TP391 Entity Identification for Deep Web Data Integration Ling Yan-Yan, Liu Wei, Wang Zhong-Yuan, Ai Nowadays, growing number of Web Databases emerge from the web with their contents duplicated. Two or more

  6. C-DBLPhttp://www.cdblp.cn Web 2008 10 863

    E-Print Network [OSTI]

    C-DBLP: C-DBLPhttp://www.cdblp.cn Web 2008 10 863 "" 2007AA01Z155 Web C-DBLP Community Academic Community Information Management DBLP Computer Science Bibliography DBLP WAMDM 2000 Web Web Web DBLP 2008 WAMDM Web 11 NDBC2000 2008 5 C-DBLP 2008 10 C-DBLP 1 1 C

  7. Compositional depth profiling of TaCN thin films

    SciTech Connect (OSTI)

    Adelmann, Christoph; Conard, Thierry; Franquet, Alexis; Brijs, Bert; Munnik, Frans; Burgess, Simon; Witters, Thomas; Meersschaut, Johan; Kittl, Jorge A.; Vandervorst, Wilfried; Van Elshocht, Sven [Imec, B-3001 Leuven (Belgium); Forschungszentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Oxford Instruments NanoAnalysis, High Wycombe, HP12 3SE (United Kingdom); Imec, B-3001 Leuven (Belgium); Imec, B-3001 Leuven, Belgium and Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit Leuven, B-3001 Leuven (Belgium); Imec, B-3001 Leuven (Belgium)

    2012-07-15T23:59:59.000Z

    The composition profiling of thin TaCN films was studied. For the composition profile determination using x-ray photoemission spectrometry (XPS) in combination with Ar sputtering, preferential sputtering effects of N with respect to Ta and C were found to lead to inaccurate elemental concentrations. Sputter yield calculations for the given experimental conditions allowed for the correction of a part of the error, leading to fair accuracy by reference-free measurements. Further improvement of the accuracy was demonstrated by the calibration of the XPS compositions against elastic recoil detection analysis (ERDA) results. For Auger electron spectrometry (AES) in combination with Ar sputtering, accurate results required the calibration against ERDA. Both XPS and AES allowed for a reliable and accurate determination of the compositional profiles of TaCN-based thin films after calibration. Time-of-flight secondary-ion mass spectrometry was also used to assess the composition of the TaCN films. However, the analysis was hampered by large matrix effects due to small unintentional oxygen contents in the films. Energy-dispersive x-ray spectrometry is also discussed, and it is shown that an accurate reference-free measurement of the average film concentration can be achieved.

  8. LCLS_CDR-ch06

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s - 1 2 3 4 5 6 7 8 9 10 11 12 136

  9. LCLS_CDR-ch10

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s - 1 2 3 4 5 6 7 8 9 10 11 12 1360 0

  10. 4, 31953227, 2007 Modelling CH4

    E-Print Network [OSTI]

    Boyer, Edmond

    Interactive Discussion EGU 1 Introduction Together with water vapour and carbon dioxide (CO2), CH4, hydrology, soil physical properties, vegetation type and NPP.15 For Kytalyk the simulated CH4 fluxes show

  11. Sequence of a complete chicken BG haplotype shows dynamic expansion and contraction of two gene lineages with particular expression patterns

    E-Print Network [OSTI]

    Salomonsen, Jan; Chattaway, John A.; Chan, Andrew C. Y.; Parker, Aimée; Huguet, Samuel; Marston, Denise A.; Rogers, Sally L.; Wu, Zhiguang; Smith, Adrian L.; Staines, Karen; Butter, Colin; Riegert, Patricia; Vainio, Olli; Nielsen, Line; Kaspers, Bernd; Griffin, Darren K.; Yang, Fengtang; Zoorob, Rima; Guillemot, Francois; Auffray, Charles; Beck, Stephan; Skjødt, Karsten; Kaufman, Jim

    2014-06-05T23:59:59.000Z

    , provided the original author and source are credited. Funding: This work was originally supported by core funding to the Basel Institute for Immunology (which was founded and supported by F. Hoffmann-La Roche & Co. Ltd., CH-4005 Basel, Switzerland...

  12. trans-K3[TcO2(CN)4

    SciTech Connect (OSTI)

    Chatterjee, Sayandev; Del Negro, Andrew S.; Edwards, Matthew K.; Twamley, Brendan; Krause, Jeanette A.; Bryan, Samuel A.

    2010-07-14T23:59:59.000Z

    The dioxotetracyanotechnetate anion, [TcO2(CN)4]3-, of the title complex has octahedral symmetry. The technetium is located on a center of inversion and is bound by two oxygen atoms and four cyano ligands. The Tc?O bond distance of 1.7721 (12) Å is consistent with double bond character. The potassium cations [located on special (1/2,0,1) and general positions] reside in octahedral or tetrahedral environments; interionic K···O and K···N interactions occur in the 2.7877 (19)-2.8598 (15) Å range.

  13. IAEA-CN-94/EX/C4-6

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen andHypernuclei in Hall CIn this issueNews

  14. EDUCATIONALIMPACTSTATEMENT C.H. Nash Museum

    E-Print Network [OSTI]

    Dasgupta, Dipankar

    EDUCATIONALIMPACTSTATEMENT CHUCALISSA C.H. Nash Museum The UniversiTy of MeMphis 1987 Indian of the C.H. Nash Museum at Chucalissa, a division of The University of Memphis, is to protect and interpret and present Native American and traditional cultures. CHUCALISSA FACTS · Since 1962, both the C.H. Nash Museum

  15. Long-term treatment with the pure anti-estrogen fulvestrant durably remodels estrogen signaling in BG-1 ovarian cancer cells

    E-Print Network [OSTI]

    Boyer, Edmond

    ovarian cancers are estrogen-positive and hormonal treatments using anti-estrogens or aromatase inhibitors1 Long-term treatment with the pure anti-estrogen fulvestrant durably remodels estrogen signaling in BG-1 ovarian cancer cells Eric Badia1* , Aurélie Docquier1 , Muriel Busson1 , Marion Lapierre1

  16. CH

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0LinkA Look

  17. ARM - Datastreams - nfov2ch

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492airDatastreamsncepgfsnausfc Documentation XDC documentation Data QualityDatastreamsnfov2ch Documentation

  18. A formula representing Magnetic Berezin Transformsas functions of the Laplacian on Cn

    E-Print Network [OSTI]

    Nour Eddine Askour; Ahmed Intissar; Zouhair Mouayn

    2010-04-17T23:59:59.000Z

    We give a formula that express magnetic Berezin transforms associated with generalized Bargmann-Fock spaces as functions of the Euclidean Laplacian on Cn.

  19. MArCh 2008 46 Introduction

    E-Print Network [OSTI]

    Feng, Xizhou

    Systems #12;MArCh 2008 47 4 US-Canada Power System Outage Task Force. Final Report on the August 14, 2003MArCh 2008 46 Introduction This article describes our ongoing efforts to develop a global modeling-resolution scalable models of complex socio-technical systems;i. Service-oriented architecture and delivery mechanism

  20. 1Prepared by BG Rahm & SJ Riha (NYS Water Resources Institute), D Yoxtheimer (Penn State Marcellus Center for Outreach and Research), E Boyer (PA Water Resources Research Center), D Carder (WVU Center for Alternative Fuels, Engines, and Emissions), K Davi

    E-Print Network [OSTI]

    1Prepared by BG Rahm & SJ Riha (NYS Water Resources Institute), D Yoxtheimer (Penn State Marcellus and coordinated research teams that can build credibility and relationships with industry and government

  1. CH-TRU Waste Content Codes

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2008-01-16T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  2. CN-Cycle Solar Neutrinos and Sun's Primordial Core Metalicity

    E-Print Network [OSTI]

    W. C. Haxton; A. M. Serenelli

    2008-05-14T23:59:59.000Z

    We argue that it may be possible to exploit neutrinos from the CN cycle and pp chain to determine the primordial solar core abundances of C and N at an interesting level of precision. Such a measurement would allow a comparison of the Sun's deep interior composition with it surface, testing a key assumption of the standard solar model (SSM), a homogeneous zero-age Sun. It would also provide a cross-check on recent photospheric abundance determinations that have altered the once excellent agreement between the SSM and helioseismology. As further motivation, we discuss a speculative possibility in which photospheric abundance/helioseismology puzzle is connected with the solar-system metal differentiation that accompanied formation of the gaseous giant planets. The theoretical relationship between core C and N and the 13N and 15O solar neutrino fluxes can be made more precise (and more general) by making use of the Super-Kamiokande and SNO 8B neutrino capture rates, which calibrate the temperature of the solar core. The primordial C and N abundances can then be obtained from these neutrino fluxes and from a product of nuclear rates, with little residual solar model dependence. We describe some of the recent experimental advances that could allow this comparison to be made (theoretically) at about the 9% level, and note that this uncertainty may be reduced further due to ongoing work on the S-factor for 14N(p,gamma). The envisioned measurement might be possible in deep, large-volume detectors using organic scintillator, e.g., Borexino or SNO+

  3. ARM - Datastreams - fullavhrr15ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We wouldDatastreamsdisdrometerch2 Documentation XDC documentation Data Qualitych2ch4ch2ch4

  4. Prof. Roger Wattenhofer http://www.dcg.ethz.ch

    E-Print Network [OSTI]

    @tik.ee.ethz.ch, ETZ G61.3, · Philipp Sommer: sommer@tik.ee.ethz.ch, ETZ G64.1 · Roger Wattenhofer: wattenhofer

  5. Expanded Prussian Blue Analogues Incorporating [Re6Se8(CN)6]3-/4-Clusters: Adjusting Porosity via Charge Balance

    E-Print Network [OSTI]

    Shores, Matthew P.

    Expanded Prussian Blue Analogues Incorporating [Re6Se8(CN)6]3-/4- Clusters: Adjusting Porosity via of octahedral [M(CN)6]3-/4- complexes for the synthesis of microporous Prussian blue type solids with adjustable to be a direct expansion of Prussian blue (Fe4[Fe(CN)6]3,14H2O), with [Re6Se8(CN)6]4- clusters connected through

  6. trans-K3[TcO2(CN)4]. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    range. Citation: Chatterjee S, AS Del Negro, MK Edwards, B Twamley, JA Krause, and SA Bryan.2010."trans-K3TcO2(CN)4."Acta Crystallographica. Section E 66(8):i61 - i62....

  7. Risk management for CAT events Georg Ch. Pflug

    E-Print Network [OSTI]

    Pflug, Georg

    Outline Risk management for CAT events Georg Ch. Pflug 20.5.2005 Georg Ch. Pflug Risk management billion in reconstruction lending. Georg Ch. Pflug Risk management for CAT events #12;Outline Fundamentals, budget reallocation, additional taxation) Georg Ch. Pflug Risk management for CAT events #12;Outline

  8. ARM - Datastreams - avhrr10ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would loveDatastreamsassistch2 Documentation Data Quality Plots Citation DOI:ch2ch4

  9. ARM - Datastreams - avhrr12ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would loveDatastreamsassistch2 Documentation Data Quality Plots Citationch41rad2ch2ch4

  10. ARM - Datastreams - avhrr15ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would loveDatastreamsassistch2 Documentation Data Quality4rad Documentation XDC5ch2ch4

  11. ARM - Datastreams - fullavhrr15ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We wouldDatastreamsdisdrometerch2 Documentation XDC documentation Data Qualitych2ch4ch2

  12. MEASURED ENERGY PERFORMANCE OF ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS: RESULTS FROM THE BECA-CN DATA COMPILATION

    E-Print Network [OSTI]

    Piette, M.A.

    2010-01-01T23:59:59.000Z

    owners to share energy consumption data. In the future wecompare BECA-CN to energy consumption data for conventionalABSTRACT Measured energy consumption data have been compiled

  13. Analysis of the Homogeneous Thermal Decomposition of the Tungsten Dimethylhydrazido Complex Cl4(CH3CN)W(NNMe2) Using in situ Raman

    E-Print Network [OSTI]

    Anderson, Timothy J.

    -flow, cold-wall CVD reactor. Comparison of the experimental results with literature data and DFT calculations), this up-flow, impinging-jet CVD reactor was designed to produce a stable 2-D flow pattern Figure 1

  14. Rotational spectroscopy as a tool to investigate interactions between vibrational polyads in symmetric top molecules: low-lying states v8 <= 2 of methyl cyanide, CH$_3$CN

    E-Print Network [OSTI]

    Müller, Holger S P; Drouin, Brian J; Pearson, John C; Kleiner, Isabelle; Sams, Robert L; Sung, Keeyoon; Ordu, Matthias H; Lewen, Frank

    2015-01-01T23:59:59.000Z

    Spectra of methyl cyanide were recorded to analyze interactions in low-lying vibrational states and to construct line lists for radio astronomical observations as well as for infrared spectroscopic investigations of planetary atmospheres. The rotational spectra cover large portions of the 36-1627 GHz region. In the infrared (IR), a spectrum was recorded for this study in the region of 2nu8 around 717 cm-1 with assignments covering 684-765 cm-1. Additional spectra in the nu8 region were used to validate the analysis. The large amount and the high accuracy of the rotational data extend to much higher J and K quantum numbers and allowed us to investigate for the first time in depth local interactions between these states which occur at high K values. In particular, we have detected several interactions between v8 = 1 and 2. Notably, there is a strong Delta(v8) = +- 1, Delta(K) = 0, Delta(l) = +-3 Fermi resonance between v8 = 1^-1 and v8 = 2^+2 at K = 14. Pronounced effects in the spectrum are also caused by reso...

  15. cis-[Rh2(-O2CCH3)2(CH3CN)6]2+ as a Photoactivated Cisplatin Analog

    E-Print Network [OSTI]

    Turro, Claudia

    and U.S. Food and Drug Administration, 5100 Paint Branch Parkway, College Park, Maryland 20740 Received toxicity in the dark becomes highly toxic upon irradiation with low energy light. This mode of drug activation provides a means to localize the action of the drug to the irradiated area and is commonly known

  16. People's Physics Book Ch 7-1 The Big Idea

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics Book Ch 7-1 The Big Idea The universe has many remarkable qualities, among them;People's Physics Book Ch 7-2 as just the two cars. In this case, internal forces include

  17. sp2 Carbon-Hydrogen Bond (C-H) Functionalization

    E-Print Network [OSTI]

    Yotphan, Sirilata

    2010-01-01T23:59:59.000Z

    C-C) bonds from carbon-hydrogen (C-H) bonds in organicof them is unusually short. Hydrogen atoms were included insp 2 Carbon-Hydrogen Bond (C-H) Functionalization By

  18. J.-J. CH. MEYER* R. J. WIER,INGA**

    E-Print Network [OSTI]

    Wieringa, Roel

    F. DIGNUM J.-J. CH. MEYER* R. J. WIER,INGA** Free Choice and Contextually Permitted Actions the hospitality of Link5ping University during revision of this paper. **This research of J.-J.Ch.Meyer and R Academic Publishers. Printed in the Netherlands. #12;194 F.Dignurn, J.-J.Ch.Meyer, R.J. Wieringa Kamp [14

  19. Tailored Macroporous SiCN and SiC Structures for High-Temperature Fuel Reforming**

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Tailored Macroporous SiCN and SiC Structures for High-Temperature Fuel Reforming** By In-Kyung Sung such as the reforming of hydrocarbon fuels (e.g., die- sel or JP-8) into hydrogen for use in portable power sources the reaction rate of endothermic reactions (such as the steam reforming of hydrocarbons), at the macroscale

  20. Dating the Glass Lake Dugout by Dendrochronology (NY State Museum #CN-37516)

    E-Print Network [OSTI]

    Manning, Sturt

    Dating the Glass Lake Dugout by Dendrochronology (NY State Museum #CN-37516) Carol Griggs, Dendrochronology Lab, Cornell University, cbg4@cornell.edu The Glass Lake Dugout was found at the bottom of Glass for the Glass Lake Dugout (Figure 2B). The series was compared with other site and regional white pine

  1. F1-CN64/GP-2 DEVELOPMENT OF INNOVATIVE FUELLING SYSTEMS

    E-Print Network [OSTI]

    F1-CN64/GP-2 DEVELOPMENT OF INNOVATIVE FUELLING SYSTEMS FOR FUSION ENERGY SCIENCE M. J. Gouge,1 D Development of Innovative Fuelling Systems for Fusion Energy Science Abstract The development of innovative's) complex fuelling needs. For ITER [1] and fusion power plants, the fuelling system has to provide deuterium

  2. C ISOTOPE GRADIENT DERIVED FROM MILLIMETER TRANSITIONS OF CN: THE CASE FOR GALACTIC CHEMICAL EVOLUTION

    E-Print Network [OSTI]

    Ziurys, Lucy M.

    THE 12 C/13 C ISOTOPE GRADIENT DERIVED FROM MILLIMETER TRANSITIONS OF CN: THE CASE FOR GALACTIC kinetic temperature, suggests that chemical fractionation and isotope-selective photodissociation both do be a result of 13 C enrichment since the formation of the solar system, as predicted by recent models. Subject

  3. Pedosphere 20(1): 114, 2010 ISSN 1002-0160/CN 32-1315/P

    E-Print Network [OSTI]

    Ellis, Erle C.

    Published by Elsevier Limited and Science Press Land Use and Soil Organic Carbon in China's Village. Q., Li, H. X. and Ellis, E. C. 2010. Land use and soil organic carbon in China's village landscapesPedosphere 20(1): 1­14, 2010 ISSN 1002-0160/CN 32-1315/P c 2010 Soil Science Society of China

  4. CRADA Identification Number: CN-FY-XXXX Collaborator: [Insert Company Name

    E-Print Network [OSTI]

    CRADA Identification Number: CN-FY-XXXX Collaborator: [Insert Company Name] CRADA Template 10.21.13 Article 1. INTRODUCTION This Cooperative Research and Development Agreement (CRADA) between the National of the Parties in the course of this CRADA is detailed in the Technical Statement of Work (SoW) which is attached

  5. ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn Journal of Software, Vol.19, No.2, February 2008, pp.179-193 http://www.jos.org.cn

    E-Print Network [OSTI]

    -10-62562563 © 2008 by Journal of Software. All rights reserved. Web , + , ( , 100872) A Graph-Based Approach for Web Database Sampling LIU Wei, MENG Xiao-Feng+ , LING Yan-Yan (School of Information, Renmin@ruc.edu.cn, http://idke.ruc.edu.cn/xfmeng/ Liu W, Meng XF, Ling YY. A graph-based approach for Web database

  6. Competitive CH and OD bond fission channels in the UV photodissociation of the deuterated hydroxymethyl radical CH2OD

    E-Print Network [OSTI]

    Reisler, Hanna

    Competitive C­H and O­D bond fission channels in the UV photodissociation of the deuterated hydroxymethyl radical CH2OD Lin Feng, Andrey V. Demyanenko, and Hanna Reisler Department of Chemistry January 2004 Photodissociation studies of the CH2OD radical in the region 28 000­41 000 cm 1 357­244 nm

  7. Possible hydride and methide transfer reactions: Reactions of Fe(CO){sub 4}R{sup -} (R=H, CH{sub 3}) and W(CO){sub 5}R{sup -} (R = H, CH{sub 3}, CL, Br, I) with metal carbonyl cations

    SciTech Connect (OSTI)

    Wang, P.; Striejewske, W.S.; Atwood, J.D. [State Univ. of New York, Buffalo, NY (United States)

    1996-02-01T23:59:59.000Z

    Reactions of metal carbonyl cations (M(CO){sub 6}{sup +}, M = Mn, Re) with hydride-, methide- or halide-containing metal carbonyl anions Fe(CO){sub 4}R{sup -}, R = H, Me; W(CO){sub 5} (CH{sub 3}CN) and W(CO){sub 5}X{sup -}. In contrast, the tungsten hydride and methide complexes react, predominantly, by transfer of the hydride or methide to a carbonyl of the cation at a much faster rate. The iron hydride and methide complexes react by iron-based nucleophilicity involving a two-electron process.

  8. ARM - Datastreams - aeri01ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would love torwpprecipmom Documentation Data Quality Plotsrwpwindmom Documentationch1ch2

  9. ARM - Datastreams - avhrr10ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would loveDatastreamsassistch2 Documentation Data Quality Plots Citation DOI:ch2

  10. ARM - Datastreams - avhrr12ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would loveDatastreamsassistch2 Documentation Data Quality Plots Citationch41rad2ch2

  11. ARM - Datastreams - avhrr14ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would loveDatastreamsassistch2 Documentation Data Quality Plotslacnau Documentation4ch2

  12. ARM - Datastreams - avhrr15ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would loveDatastreamsassistch2 Documentation Data Quality4rad Documentation XDC5ch2

  13. ARM - Datastreams - fullavhrr12ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We wouldDatastreamsdisdrometerch2 Documentation XDC documentation Data Quality Plotsch4ch2

  14. ARM - Datastreams - fullavhrr14ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We wouldDatastreamsdisdrometerch2 Documentation XDC documentation Data Qualitych2ch4

  15. cnEiFrnr,:-BR,1;q*tsE ns John Franks

    E-Print Network [OSTI]

    Short, Daniel

    cnEiFrnr,:- BR,1;q*tsE ns Acid rain John Franks The liDk betwccn sulphur at|d dtrogen odde5 sofe.i,rc fro; th..f..ts torhesethe6xh6ustsofmiilionsol porlol of acid rain, little has been don. Acid rain was mntioned by Bdish chemistRobenAngus Smirhas a factor in lhe air a.ound Manchesterand 'cor

  16. Size-, shape-, and composition-dependent polarizabilities of SimCn (m, n = 1 - 4) clusters

    E-Print Network [OSTI]

    Lan, You-Zhao

    2011-01-01T23:59:59.000Z

    We theoretically investigate the size-, shape-, and composition-dependent polarizabilities of the SimCn (m, n = 1 - 4) clusters by using the density functional based coupled perturbed Hartree-Fock method. The size-dependence of the polarizabilities of the SimCn (m, n = 1 - 4) clusters is more complicated than that of pure Sim and Cn (m, n = 1 - 8) clusters because for a given cluster size the heteroatomic clusters have more isomers than the homoatomic ones. For the shape-dependence, we consider three kinds of shape, linear (chain), prolate, and compact. For most clusters, we can clearly observe orders of {\\alpha}(linear) > {\\alpha}(prolate) and {\\alpha}(prolate) > {\\alpha}(compact) for a given composition. The composition-dependence of polarizabilities reveals that the linear clusters have an obvious larger polarizability than both the prolate and the compact clusters especially for a given m/n value. The shape effect makes a main contribution to determine the size of the polarizability. To understand the siz...

  17. Protonation Studies of the New Iron Carbonyl Cyanide trans-[Fe(CO)3(CN)2]2-: Implications with Respect to Hydrogenases

    E-Print Network [OSTI]

    Rauchfuss, Thomas B.

    , Fe-CO-CN-H species may be considered as minimalist biomimetic models of Fe-only and possibly the [NiFe] hydro- genase features two CN- ligands.8 This logic suggested that the replacement of a further CO by CN indicate extensive -back-bonding in the Fe-CO bond and the predominantly -bond character * Author to whom

  18. Central Characterization Program (CCP) Contact-Handled (CH) TRU...

    Office of Environmental Management (EM)

    and Waste Information SystemWaste Data System (WWISWDS) Data Entry Central Characterization Program (CCP) Contact-Handled (CH) TRU Waste Certification and Waste Information...

  19. Microsoft Word - CH1311-11 CH2M HILL Awards $1B to Small Businesses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE SWPAURTeC:8 3. MarchFigure 1CAMDCBFO Contact:

  20. Electronic structure of the molecule-based magnet MnN,,CN...22 from theory and experiment

    E-Print Network [OSTI]

    Liu, Amy Y.

    of SmCo5 and Nd2Fe14B2.2 For Mn N(CN)2 2, Kurmoo et al.2 report that the structure be- haves as a canted

  1. People's Physics Book Ch 21-1 The Big Idea

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics Book Ch 21-1 The Big Idea The nuclei of atoms are affected by three forces, the breaking apart of nuclei and it is responsible for atom bombs and nuclear power. A form of fission, where/tH #12;People's Physics Book Ch 21-2 Key Concepts · Some of the matter on Earth is unstable

  2. People's Physics book Ch 2-1 The Big Idea

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics book Ch 2-1 The Big Idea Energy is a measure of the amount of, or potential for, often by heat or sound waves. #12;People's Physics book Ch 2-2 Key Applications · In "roller coaster of the bonding energy into energy that is used to power the body. This energy goes on to turn into kinetic energy

  3. People's Physics Book Ch 8-1 The Big Idea

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics Book Ch 8-1 The Big Idea When any two bodies in the universe interact, they can an initial configuration and the final configuration · P = E/t Power delivered to or from a system components are conserved. #12;People's Physics Book Ch 8-2 Key Concepts · Impulse is how momentum

  4. Quantum Critical Transition Amplifies Magnetoelastic Coupling in Mn[N(CN)2]2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brinzari, T. V.; Chen, P.; Sun, Q.-C.; Liu, J.; Tung, L.-C.; Wang, Y.; Schlueter, J. A.; Singleton, J.; Manson, J. L.; Whangbo, M.-H.; Litvinchuk, A. P.; Musfeldt, J. L.

    2013-06-01T23:59:59.000Z

    We report the discovery of a magnetic quantum critical transition in Mn[N(CN)2]2 that drives the system from a canted antiferromagnetic state to the fully polarized state with amplified magnetoelastic coupling as an intrinsic part of the process. The local lattice distortions, revealed through systematic phonon frequency shifts, suggest a combined MnN6 octahedra distortion+counterrotation mechanism that reduces antiferromagnetic interactions and acts to accommodate the field-induced state. These findings deepen our understanding of magnetoelastic coupling near a magnetic quantum critical point and away from the static limit.

  5. Sub-Doppler Stark Spectroscopy in the A?X (1,0) Band of CN

    SciTech Connect (OSTI)

    Hall, G.E.; Hause, M.L.; Sears, T.J.

    2009-11-26T23:59:59.000Z

    The effect of external electric fields has been measured in hyperfine-resolved sub-Doppler transitions in the A {sup 2}{Pi}-X {sup 2}{Sigma} (1,0) band of the CN radical near 10900 cm{sup -1}. Static electric fields less than 1 kV/cm are sufficient to mix the most closely spaced {Lambda}-dpublets in the A state, leading to Stark spectra with both new and shifted resonances. Simulations of the saturation-dip Stark spectral line profiles allow extraction of the A-state permanent electric dipole moment with a magnitude of 0.06 {+-} 0.02 D.

  6. Approved Module Information for CH2107, 2014/5 Module Title/Name: Physical Chemistry II Module Code: CH2107

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    : CH2107 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module. ----- [Part 2: Physical Chemistry Laboratory]; Building on material from a number of modules in the 1st and 2Approved Module Information for CH2107, 2014/5 Module Title/Name: Physical Chemistry II Module Code

  7. Approved Module Information for CH3010, 2014/5 Module Title/Name: Catalysis Module Code: CH3010

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Approved Module Information for CH3010, 2014/5 Module Title/Name: Catalysis Module Code: CH3010 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module Credits: 10 in which available: BSc/MChem Applied Chemistry. BSc/MChem Chemistry. BEng/MEng Chemical Engineering. MEng

  8. Excitation functions for the reactions of Ar^+ with CH4, CD4, and CH2D2

    E-Print Network [OSTI]

    Wyatt, J. R.; Strattan, L. W.; Chivalak, S.; Hierl, Peter M.

    1975-01-01T23:59:59.000Z

    Integral reaction cross sections as a function of initial translational energy (0.4–30 eV c.m.) are reported for isotopic variants of the exoergic ion?molecule reaction Ar++CH4 ? ArH++CH3. The excitation functions, which maximize at about 5 e...

  9. The first direct measurement of 12C(12C,n)23Mg at stellar energies

    E-Print Network [OSTI]

    Bucher, B; Fang, X; Heger, A; Almaraz-Calderon, S; Alongi, A; Ayangeakaa, A D; Beard, M; Best, A; Browne, J; Cahillane, C; Couder, M; deBoer, R J; Kontos, A; Lamm, L; Li, Y J; Long, A; Lu, W; Lyons, S; Notani, M; Patel, D; Paul, N; Pignatari, M; Roberts, A; Robertson, D; Smith, K; Stech, E; Talwar, R; Tan, W P; Wiescher, M; Woosley, S E

    2015-01-01T23:59:59.000Z

    Neutrons produced by the carbon fusion reaction 12C(12C,n)23Mg play an important role in stellar nucleosynthesis. However, past studies have shown large discrepancies between experimental data and theory, leading to an uncertain cross section extrapolation at astrophysical energies. We present the first direct measurement that extends deep into the astrophysical energy range along with a new and improved extrapolation technique based on experimental data from the mirror reaction 12C(12C,p)23Na. The new reaction rate has been determined with a well-defined uncertainty that exceeds the precision required by astrophysics models. Using our constrained rate, we find that 12C(12C,n)23Mg is crucial to the production of Na and Al in Pop-III Pair Instability Supernovae. It also plays a non-negligible role in the production of weak s-process elements as well as in the production of the important galactic gamma-ray emitter 60Fe.

  10. Solar BG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector:Shrenik Industries JumpSoham Renewable Energy PBG

  11. BG Capital | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:AurigaPlantillas JumpBE Geothermal

  12. Evidence for Methane -Complexes in Reductive Elimination Reactions from TpRh(L)(CH3)H

    E-Print Network [OSTI]

    Jones, William D.

    , the methyl deuteride complex TpRh(L)(CH3)D is observed to rearrange to TpRh(L)(CH2D)H prior to loss of CH3D

  13. JASPERSE CHEM 350 TEST 2 VERSION 3 Ch. 4 The Study of Chemical Reactions

    E-Print Network [OSTI]

    Jasperse, Craig P.

    carbons in the following structures as (R) or (S). CH3 H CH3 H HHO 15. Draw (R)-2-bromopentane 16. Draw

  14. JASPERSE CHEM 341 TEST 2 VERSION 3 Ch. 5 The Study of Chemical Reactions

    E-Print Network [OSTI]

    Jasperse, Craig P.

    of the chiral carbons in the following structures as (R) or (S). CH3 H CH3 H HHO 15. Draw (R)-2-bromopentane 16

  15. aliphatic ch bonds: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015-01-01 39 H-atom high-n Rydberg time-of-flight spectroscopy of CH bond fission in acrolein dissociated at 193 nm Chemistry Websites Summary: H-atom high-n Rydberg...

  16. Imperial College London ChBE London Summer Program 2015

    E-Print Network [OSTI]

    Sherrill, David

    Imperial College London ChBE London Summer Program 2015 (June 28­July 31, 2015) 6 credit hours has taught the London Program twice and GTL twice. Deadline for first payment ($500) with application

  17. Lecture Ch. 5a Surface tension (Kelvin effect)

    E-Print Network [OSTI]

    Russell, Lynn

    1 Lecture Ch. 5a · Surface tension (Kelvin effect) ­ Hygroscopic growth (subsaturated humidity: · Expansion against pressure difference Surface Tension · By definition · By 1st Law (modified for surface) ­ Saturation · Chemical potential (Raoult effect) · Nucleation ­ Competition between surface and chemical

  18. Concurrent Collections (CnC): A new approach to parallel programming

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    A common approach in designing parallel languages is to provide some high level handles to manipulate the use of the parallel platform. This exposes some aspects of the target platform, for example, shared vs. distributed memory. It may expose some but not all types of parallelism, for example, data parallelism but not task parallelism. This approach must find a balance between the desire to provide a simple view for the domain expert and provide sufficient power for tuning. This is hard for any given architecture and harder if the language is to apply to a range of architectures. Either simplicity or power is lost. Instead of viewing the language design problem as one of providing the programmer with high level handles, we view the problem as one of designing an interface. On one side of this interface is the programmer (domain expert) who knows the application but needs no knowledge of any aspects of the platform. On the other side of the interface is the performance expert (programmer or program) who demands maximal flexibility for optimizing the mapping to a wide range of target platforms (parallel / serial, shared / distributed, homogeneous / heterogeneous, etc.) but needs no knowledge of the domain. Concurrent Collections (CnC) is based on this separation of concerns. The talk will present CnC and its benefits. About the speaker Kathleen Knobe has focused throughout her career on parallelism especially compiler technology, runtime system design and language design. She worked at Compass (aka Massachusetts Computer Associates) from 1980 to 1991 designing compilers for a wide range of parallel platforms for Thinking Machines, MasPar, Alliant, Numerix, and several government projects. In 1991 she decided to finish her education. After graduating from MIT in 1997, she joined Digital Equipment?s Cambridge Research Lab (CRL). She stayed through the DEC/Compaq/HP mergers and when CRL was acquired and absorbed by Intel. She currently works in the Software and Services Group / Technology Pathfinding and Innovation.

  19. The structure and electrochemical behavior of nitrogen-containing nanocrystalline diamond films deposited from CH4/N2/Ar mixtures.

    SciTech Connect (OSTI)

    Chen, Q.; Gruen, D. M.; Krauss, A. R.; Corrigan, T. D.; Swain, G. M.; Utah State Univ.; Northwestern Univ.

    2001-01-01T23:59:59.000Z

    Electrically conductive nanocrystalline diamond films (approximately 750 to 1000 nm thick) were deposited on conducting Si and W substrates from CH{sub 4}/N{sub 2}/Ar gas mixtures using plasma-enhanced chemical vapor deposition. Such films are continuous over the surface and nanometer smooth. The grain size is 3 to 10 nm, and the grain boundaries are 0.2 to 0.5 nm wide (two carbon atoms). Nitrogen appears to substitutionally insert into the grain boundaries and the film concentration ({approx}10{sup 20} atom/cm{sup 3}) scales with the N{sub 2} added to the source gas mixture up to about the 5% level. The nitrogen-incorporated films are void of pinholes and cracks, and electrically conducting due in part to the high concentration of nitrogen impurities and or the nitrogen-related defects (sp{sup 2} bonding). The films possess semimetallic electronic properties over a potential range from at least -1.5 to 1.0 V vs. SCE. The electrodes, like boron-doped microcrystalline diamond, exhibit a wide working potential window, a low background current, and high degree of electrochemical activity for redox systems such as Fe(CN)6{sup -3/-4}, Ru(NH{sub 3}6{sup +3/+2}), IrCl6{sup -2/-3}, and methyl viologen (MV{sup +2/+}). More sluggish electrode kinetics are observed for 4-methylcatechol, presumably due to weak adsorption on the surface. Apparent heterogeneous electron transfer rate constants of 10{sup -2} to 10{sup -1} cm/s are observed for Fe(CN)6{sup -3/-4}, Ru(NH{sub 3})6{sup +3/+2}, IrCl6{sup -2/-3}, and MV {sup +2/+} at films without any pretreatment.

  20. Analysis of the mouse embryonic stem cell regulatory networks obtained by ChIP-chip and ChIP-PET

    E-Print Network [OSTI]

    Mathur, Divya

    Background: Genome-wide approaches have begun to reveal the transcriptional networks responsible for pluripotency in embryonic stem (ES) cells. Chromatin Immunoprecipitation (ChIP) followed either by hybridization to a ...

  1. Dependency of temperature on polarization in CH{sub 4}/N{sub 2} dielectric barrier discharge plasma: A crude assumption

    SciTech Connect (OSTI)

    Majumdar, Abhijit; Hippler, Rainer [Institut of Physics, University of Greifswald, Felix Hausdorff Strasse 6, 17489 Greifswald (Germany); Ghosh, Basudev [Jadavpur University, Kolkata 700032, West Bengal (India)

    2010-11-15T23:59:59.000Z

    We have investigated the variations of polarization (P) and the temperature ({Delta}T) at the electrode surfaces during the deposition of C-N layer in CH{sub 4}/N{sub 2} (1:2) dielectric barrier discharge plasma. The reactive deposition process influences the surface temperature, polarization, and the value of the in situ dielectric constant. We have developed a crude model that correlates the surface temperature and surface polarization with thin film properties. We assume that during the thin film deposition process, the atomic mean kinetic energy is equal to the electrostatic energy stored in the electrode surface area. Theoretically estimated temperature is found to agree well with the experimental results. However, the linear model thus developed cannot be used to explain the phenomena in the interfacial polarization stage that requires a nonlinear theory.

  2. NOx-Mediated Homogeneous Pathways for the Synthesis of Formaldehyde from CH4-O2 Mixtures

    E-Print Network [OSTI]

    Iglesia, Enrique

    CH4 conversion, because weaker C-H bonds in HCHO and CH3OH relative to CH4 lead to their fast that the O2 distribution along a reactor will not improve HCHO yields but may prove useful to inhibit NOx losses to less reactive N-compounds. 1. Introduction The practical conversion of remote natural gas

  3. Preprint version 2011 IEEE International Conference on Robotics and Automation, Shanghai, CN Haptic Teleoperation of Multiple Unmanned Aerial Vehicles

    E-Print Network [OSTI]

    Preprint version 2011 IEEE International Conference on Robotics and Automation, Shanghai, CN Haptic Teleoperation of Multiple Unmanned Aerial Vehicles over the Internet Dongjun Lee, Antonio Franchi, Paolo Robuffo control framework for multiple unmanned aerial vehicles (UAVs) over the Internet, consisting of the three

  4. You will arrive at International Terminal of Haneda Airport. http://www.tokyo-airport-bldg.co.jp/cn/

    E-Print Network [OSTI]

    Hasegawa, Shuji

    You will arrive at International Terminal of Haneda Airport. http://www.tokyo-airport-bldg.co.jp/cn/ http://www.tokyo-airport-bldg.co.jp/kr/ Move to Terminal 1 or 2 (domestic terminal) by free terminal shuttle bus in Airport. Buy a ticket for Monorail and take Monorail to Hamamatsu-Cho Station () (Terminal

  5. PDF versions of previous colloquia and more information can be found in "events" at http://gcosmo.bao.ac.cn/

    E-Print Network [OSTI]

    Tian, Weidong

    -materials and devices, and less well known microwave related research efforts for energy related applications. All://gcosmo.bao.ac.cn/ 2012 37 / Number 37,2012 TIME: Wednesday, 3:00 PM, June 27, 2012 LOCATION: A601 NAOC Microwave are in the area of microwave / millimeter wave / THz devices, circuits, antennas and their applications

  6. IAEA-CN-69/EXP2/12 Highly Radiative Plasmas for Local Transport Studies and Power and Particle

    E-Print Network [OSTI]

    energy production (7.6ÊMJ) in a TFTR pulse. Comparisons of the measured radiated power profiles the severe problem of concentrated power loading of the divertor.Ê[2] Experiments have shown that a large1 IAEA-CN-69/EXP2/12 Highly Radiative Plasmas for Local Transport Studies and Power and Particle

  7. Quantum Rate Coefficients and Kinetic Isotope Effect for the Reaction Cl + CH[subscript 4] ? HCl + CH[subscript 3] from Ring Polymer Molecular Dynamics

    E-Print Network [OSTI]

    Li, Yongle

    Thermal rate coefficients and kinetic isotope effect have been calculated for prototypical heavy–light–heavy polyatomic bimolecular reactions Cl + CH[subscript 4]/CD[subscript 4] ? HCl/DCl + CH[subscript 3]/CD[subscript ...

  8. Subthreshold Photoionization Spectra of CH3I Perturbed by SF6 C. M. Evansa,b

    E-Print Network [OSTI]

    Findley, Gary L.

    1 (1) Subthreshold Photoionization Spectra of CH3I Perturbed by SF6 C. M. Evansa,b , R. Reiningera spectra of pure CH3I (up to 200 mbar) and CH3I doped into SF6 (up to 1 bar). At the high pressures studied number density (pure CH3I) and SF6 number density (CH3I doped into SF6) shows a quadratic dependence

  9. Total eclipse of the heart: The AM CVn Gaia14aae / ASSASN-14cn

    E-Print Network [OSTI]

    Campbell, H C; Fraser, M; Hodgkin, S T; de Miguel, E; Gänsicke, B T; Steeghs, D; Hourihane, A; Breedt, E; Littlefair, S P; Koposov, S E; Wyrzykowski, L; Altavilla, G; Blagorodnova, N; Clementini, G; Damljanovic, G; Delgado, A; Dennefeld, M; Drake, A J; Fernández-Hernández, J; Gilmore, G; Gualandi, R; Hamanowicz, A; Handzlik, B; Hardy, L K; Harrison, D L; Ilkiewicz, K; Jonker, P G; Kochanek, C S; Kolaczkowski, Z; Kostrzewa-Rutkowska, Z; Kotak, R; van Leeuwen, G; Leto, G; Ochner, P; Pawlak, M; Palaversa, L; Rixon, G; Rybicki, K; Shappee, B J; Smartt, S J; Torres, M A P; Tomasella, L; Turatto, M; Ulaczyk, K; van Velzen, S; Vince, O; Walton, N A; Wielgórski, P; Wevers, T; Whitelock, P; Yoldas, A; De Angeli, F; Burgess, P; Busso, G; Busuttil, R; Butterley, T; Chambers, K C; Copperwheat, C; Danilet, A B; Dhillon, V S; Evans, D W; Eyer, L; Froebrich, D; Gomboc, A; Holland, G; Holoien, T W -S; Jarvis, J F; Kaiser, N; Kann, D A; Koester, D; Kolb, U; Komossa, S; Magnier, E A; Mahabal, A; Polshaw, J; Prieto, J L; Prusti, T; Riello, M; Scholz, A; Simonian, G; Stanek, K Z; Szabados, L; Waters, C; Wilson, R W

    2015-01-01T23:59:59.000Z

    We report the discovery and characterisation of a deeply eclipsing AM CVn-system, Gaia14aae (= ASSASN-14cn). Gaia14aae was identified independently by the All-Sky Automated Survey for Supernovae (ASAS-SN; Shappee et al. 2014) and by the Gaia Science Alerts project, during two separate outbursts. A third outburst is seen in archival Pan-STARRS-1 (PS1; Schlafly et al. 2012; Tonry et al. 2012; Magnier et al. 2013) and ASAS-SN data. Spectroscopy reveals a hot, hydrogen-deficient spectrum with clear double-peaked emission lines, consistent with an accreting double degenerate classification. We use follow-up photometry to constrain the orbital parameters of the system. We find an orbital period of 49.71 min, which places Gaia14aae at the long period extremum of the outbursting AM CVn period distribution. Gaia14aae is dominated by the light from its accreting white dwarf. Assuming an orbital inclination of 90 degrees for the binary system, the contact phases of the white dwarf lead to lower limits of 0.78 M solar an...

  10. Pressure-Induced Enhanced Magnetic Anisotropy in Mn(N(CN)2)2

    SciTech Connect (OSTI)

    Quintero, P. A. [University of Florida, Gainesville; Rajan, D. [University of Florida, Gainesville; Peprah, M. K. [University of Florida, Gainesville; Brinzari, T. V. [University of Florida, Gainesville; Fishman, Randy Scott [ORNL; Talham, Daniel R. [University of Florida, Gainesville; Meisel, Mark W. [University of Florida, Gainesville

    2015-01-01T23:59:59.000Z

    Using DC and AC magnetometry, the pressure dependence of the magnetization of the threedimensional antiferromagnetic coordination polymer Mn(N(CN)2)2 was studied up to 12 kbar and down to 8 K. The magnetic transition temperature, Tc, increases dramatically with applied pressure (P), where a change from Tc(P = ambient) = 16:0 K to Tc(P = 12:1 kbar) = 23:5 K was observed. In addition, a marked difference in the magnetic behavior is observed above and below 7.1 kbar. Specifically, for P < 7:1 kbar, the differences between the field-cooled and zero-field-cooled (fc-zfc) magnetizations, the coercive field, and the remanent magnetization decrease with increasing pressure. However, for P > 7:1 kbar, the behavior is inverted. Additionally, for P > 8:6 kbar, minor hysteresis loops are observed. All of these effects are evidence of the increase of the superexchange interaction and the appearance of an enhanced exchange anisotropy with applied pressure.

  11. THE DETECTION OF INTERSTELLAR ETHANIMINE (CH{sub 3}CHNH) FROM OBSERVATIONS TAKEN DURING THE GBT PRIMOS SURVEY

    SciTech Connect (OSTI)

    Loomis, Ryan A.; Zaleski, Daniel P.; Steber, Amanda L.; Neill, Justin L.; Muckle, Matthew T.; Harris, Brent J.; Pate, Brooks H. [Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, VA 22904 (United States); Hollis, Jan M. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Jewell, Philip R.; Remijan, Anthony J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22904-2475 (United States); Lattanzi, Valerio; Martinez, Oscar Jr.; McCarthy, Michael C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lovas, Frank J. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Corby, Joanna F. [Department of Astronomy, University of Virginia, McCormick Road, Charlottesville, VA 22904 (United States)

    2013-03-01T23:59:59.000Z

    We have performed reaction product screening measurements using broadband rotational spectroscopy to identify rotational transition matches between laboratory spectra and the Green Bank Telescope PRIMOS radio astronomy survey spectra in Sagittarius B2 North (Sgr B2(N)). The broadband rotational spectrum of molecules created in an electrical discharge of CH{sub 3}CN and H{sub 2}S contained several frequency matches to unidentified features in the PRIMOS survey that did not have molecular assignments based on standard radio astronomy spectral catalogs. Several of these transitions are assigned to the E- and Z-isomers of ethanimine. Global fits of the rotational spectra of these isomers in the range of 8-130 GHz have been performed for both isomers using previously published mm-wave spectroscopy measurements and the microwave measurements of the current study. Possible interstellar chemistry formation routes for E-ethanimine and Z-ethanimine are discussed. The detection of ethanimine is significant because of its possible role in the formation of alanine-one of the twenty amino acids in the genetic code.

  12. On Maximum Norm of Exterior Product and A Conjecture of C.N. Yang

    E-Print Network [OSTI]

    Zhilin Luo

    2015-01-08T23:59:59.000Z

    Let $V$ be a finite dimensional inner product space over $\\mathbb{R}$ with dimension $n$, where $n\\in \\mathbb{N}$, $\\wedge^{r}V$ be the exterior algebra of $V$, the problem is to find $\\max_{\\| \\xi \\| = 1, \\| \\eta \\| = 1}\\| \\xi \\wedge \\eta \\|$ where $k,l$ $\\in \\mathbb{N},$ $\\forall \\xi \\in \\wedge^{k}V, \\eta \\in \\wedge^{l}V.$ This is a problem suggested by the famous Nobel Prize Winner C.N. Yang. He solved this problem for $k\\leq 2$ in [1], and made the following \\textbf{conjecture} in [2] : If $n=2m$, $k=2r$, $l=2s$, then the maximum is achieved when $\\xi_{max} = \\frac{\\omega^{k}}{\\| \\omega^{k}\\|}, \\eta_{max} = \\frac{\\omega^{l}}{\\| \\omega^{l}\\|}$, where $ \\omega = \\Sigma_{i=1}^m e_{2i-1}\\wedge e_{2i}, $ and $\\{e_{k}\\}_{k=1}^{2m}$ is an orthonormal basis of V. From a physicist's point of view, this problem is just the dual version of the easier part of the well-known Beauzamy-Bombieri inequality for product of polynomials in many variables, which is discussed in [4]. Here the duality is referred as the well known Bose-Fermi correspondence, where we consider the skew-symmetric algebra(alternative forms) instead of the familiar symmetric algebra(polynomials in many variables) In this paper, for two cases we give estimations of the maximum of exterior products, and the Yang's conjecture is answered partially under some special cases.

  13. Ch.2 Solar Energy to Earth and the Seasons

    E-Print Network [OSTI]

    Pan, Feifei

    -Output Energy=Storage Change #12;Learning Objective Four: The Seasons #12;The Seasons SeasonalityCh.2 Solar Energy to Earth and the Seasons #12;Learning Objective One: The Solar System #12;Milky Aphelion ­ farthest, on July 4 152,083,000 km #12;Learning Objective Two: The Solar Energy #12;What

  14. People's Physics Book Ch13-1 The Big Ideas

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics Book Ch13-1 The Big Ideas: The name electric current is given to the phenomenon of the power source, you need the total resistance of the circuit and the total current: Vtotal = ItotalRtotal. · Power is the rate that energy is released. The units for power are Watts (W), which equal Joules per

  15. People's Physics Book Ch 16-1 The Big Idea

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics Book Ch 16-1 The Big Idea Modern circuitry depends on much more than just elements. An active circuit element needs an external source of power to operate. This differentiates them. base emitter collector Diodes have an arrow showing the direction of the flow. #12;People's Physics

  16. AT 351 Lab 3: Seasons and Surface Temperature (Ch. 3)

    E-Print Network [OSTI]

    Rutledge, Steven

    an important role in an area's local vertical temperature distribution. Below, Figure 1 shows the verticalAT 351 Lab 3: Seasons and Surface Temperature (Ch. 3) Question #1: Seasons (20 pts) A. In your own words, describe the cause of the seasons. B. In the Northern Hemisphere we are closer to the sun during

  17. Molecular Dynamics of Methanol Monocation (CH3OH+ ) in Strong

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    Molecular Dynamics of Methanol Monocation (CH3OH+ ) in Strong Laser Fields Bishnu Thapa and H surfaces of methanol neutral, monocation, and singlet and triplet dication were explored using the CBS in the presence of a 2.9 × 1014 W/cm2 800 nm laser field for methanol monocation on the ground state potential

  18. ChE 210A M. F. Doherty Thermodynamics

    E-Print Network [OSTI]

    Bigelow, Stephen

    ChE 210A M. F. Doherty Thermodynamics Instructor: Michael F. Doherty (mfd@engineering.ucsb.edu, 893 is an introduction to the fundamentals of classical and statistical thermodynamics. We focus on equilibrium are formulated using either classical or statistical thermodynamics, and these methods have found wide

  19. Lecture Ch. 2a Energy and heat capacity

    E-Print Network [OSTI]

    Russell, Lynn

    machine! Conservation of energy! Definition of energy! Uniqueness of work values! Q = 0,W = 0 ! "E = 0 ! E1 Lecture Ch. 2a · Energy and heat capacity ­ State functions or exact differentials ­ Internal energy vs. enthalpy · 1st Law of thermodynamics ­ Relate heat, work, energy · Heat/work cycles (and path

  20. Lecture Ch. 2a Energy and heat capacity

    E-Print Network [OSTI]

    Russell, Lynn

    of energy Definition of energy Uniqueness of work values Q = 0,W = 0 E = 0 E2 = E1 Q = 0 E = W Wrev1 Lecture Ch. 2a · Energy and heat capacity ­ State functions or exact differentials ­ Internal energy vs. enthalpy · 1st Law of thermodynamics ­ Relate heat, work, energy · Heat/work cycles (and path

  1. Enantioselective nickel catalysis : exploiting activated C-H bonds

    E-Print Network [OSTI]

    Bencivenga, Nicholas Ernest

    2012-01-01T23:59:59.000Z

    A method for the nickel-catalyzed cross-coupling between benzoxazole and secondary halides was explored. This method was to make use of the activated C-H bond found in benzoxazole at the 2-position to generate the nucleophilic ...

  2. FIBER ORIENTATION MEASUREMENTS IN COMPOSITE MATERIALS , Ch. GERMAIN1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 FIBER ORIENTATION MEASUREMENTS IN COMPOSITE MATERIALS R. BLANC1 , Ch. GERMAIN1 , J.P. DA COSTA1 for the physical properties of composite materials. The theoretical parameters of a given reinforcement are usually. Our method has been successfully applied to the characterization of carbon reinforcement of composite

  3. Seismic Tomography: Definitions Lapo Boschi (lapo@erdw.ethz.ch)

    E-Print Network [OSTI]

    Boschi, Lapo

    Tomography Seismic tomography is the science of interpreting seismic measurements (seismograms) to derive; that is to say, solve the seismological inverse problem. Seismic data and their interpretation Seismic stationsSeismic Tomography: Definitions Lapo Boschi (lapo@erdw.ethz.ch) September 14, 2009 Seismic

  4. Open Source Ch Control System Toolkit and Web-Based

    E-Print Network [OSTI]

    Cheng, Harry H.

    Open Source Ch Control System Toolkit and Web-Based Control System Design for Teaching Automatic, and WCCDM for teaching automatic control of linear time-invariant systems is presented. With the CCST.20454 Keywords: control systems; Web-based education INTRODUCTION Automatic control has become a major

  5. Ch 20. Magnetism Liu UCD Phy1B 2012 1

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Ch 20. Magnetism Liu UCD Phy1B 2012 1 #12;I. MagnetI. Magnet Poles of a magnet: magnetic effect is strongest When the magnet is freely suspended North pole: pointing to north South pole: pointing to south Poles always come in pairs Liu UCD Phy1B 2012 2 #12;Magnetic MaterialsMagnetic Materials Magnetite Fe3O4

  6. 1997 by M. Kostic Ch.4: Probability and Statistics

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    1 ©1997 by M. Kostic Ch.4: Probability and Statistics Variations due to: · Measurement System. ©1997 by M. Kostic Statistical Measurement Theory · Sample - a set of measured data · Measurand - measured variable · (True) mean value: (x') xmean #12;2 ©1997 by M. Kostic Mean Value and Uncertainty x

  7. Lecture Ch. 5a Surface tension (Kelvin effect)

    E-Print Network [OSTI]

    Russell, Lynn

    1 Lecture Ch. 5a · Surface tension (Kelvin effect) ­ Hygroscopic growth (subsaturated humidity Surface Tension · By definition · By 1st Law (modified for surface area change) Kelvin Effect · Force: What happens to condensed H2O? ­ Precipitation processes Surface Thermodynamics · Surfaces require

  8. Pedosphere 16(5): 566-571, 2006 ISSN 1002-0160/CN 32-1315/P

    E-Print Network [OSTI]

    Sparks, Donald L.

    Pedosphere 16(5): 566-571, 2006 ISSN 1002-0160/CN 32-1315/P @ 2006 Soil Science Society of China The remaining phosphorus (Prem),P concentration that remains in solution after shaking soil with 0.01 mol L-' CaCl2 containing 60 pg mL-l P, is a very useful index for studies related to the chemistry of variable

  9. Approved Module Information for CH1102, 2014/5 Module Title/Name: Organic Chemistry I Module Code: CH1102

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    : CH1102 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module of Delivery Learning Hours Lecture: 12 hours Tutorial: 2 hours Lab Session: 16 hours Independent Study: 70 reading, tutorial support, supervised laboratory sessions Module Assessment Methods of Assessment

  10. Approved Module Information for CH3115, 2014/5 Module Title/Name: Inorganic Chemistry III Module Code: CH3115

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Code: CH3115 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module is provided. The fields of Homogeneous Catalysis and Heterogeneous Catalysis are introduced and basic aspects homogeneous and heterogenous catalytic process), hydroformylation (homogeneous catalysis), ammonia synthesis

  11. Identification of Transcription Factor Binding Sites Derived from Transposable Element Sequences Using ChIP-seq

    E-Print Network [OSTI]

    Jordan, King

    unnoticed using conservation screens. Here, we describe a simple pipeline method for using data generated through ChIP-seq to identify TE-derived TFBS. Key words: Transposable elements, ChIP-seq, gene regulation

  12. Salinity-induced hydrate dissociation: A mechanism for recent CH4 release on Mars

    SciTech Connect (OSTI)

    Madden, Megan Elwood [ORNL; Ulrich, Shannon M [ORNL; Onstott, Tullis [Princeton University; Phelps, Tommy Joe [ORNL

    2007-01-01T23:59:59.000Z

    Recent observations of CH4 in the Martian atmosphere suggest that CH4 has been added relatively recently. Several mechanisms for recent CH4 release have been proposed including subsurface biological methanogenesis, abiogenic hydrothermal and/or volcanic activity, dissociation of CH4 hydrates, atmospheric photolysis, or addition of organics via bolide impact. This study examines the effects of increasing salinity on gas hydrate stability and compares estimates of the Martian geothermal gradient to CH4 and CO2 hydrate stability fields in the presence of high salinity brines. The results demonstrate that salinity increases alone result in a significant decrease in the predicted hydrate stability zone within the Martian subsurface and may be a driving force in CH4 hydrate destabilization. Active thermal and/or pressure fluctuations are not required in order for CH4 hydrates to be the source of atmospheric CH4.

  13. Isomerization of Acetonitrile N-Methylide [CH3CNCH2]+ and N-Methylketenimine [CH3NCCH2]+ Radical Cations in the Gas Phase: Theoretical Study of the [C3,H5,N]+

    E-Print Network [OSTI]

    Nguyen, Minh Tho

    Isomerization of Acetonitrile N-Methylide [CH3CNCH2]·+ and N-Methylketenimine [CH3NCCH2]·+ Radical(d,p) basis set show that acetonitrile N-methylide [CH3CNCH2]·+, a·+, and N-methylketenimine [CH3NCCH2]·+, b with acetonitrile and methyl isocyanide to generate acetonitrile N-methylide [CH3-CtN-CH2]·+, a·+, and N

  14. Chem 350 Jasperse Ch. 3 Handouts 1 ALKANE NAMES (Memorize) (Sections 3.2)

    E-Print Network [OSTI]

    Jasperse, Craig P.

    C) Structure 1 Methane CH4 -162 H-(CH2)-H 2 Ethane C2H6 -89 H-(CH2)2-H 3 Propane C3H8 -42 H-(CH2)3-H 4 Butane C "Petroleum Gas" C2-C4 Propane C3 -42º Propane tanks, camping, etc. Gasoline C4-C9 30-180º

  15. Theoretical Studies of the sp2 C-H Bond Activation

    E-Print Network [OSTI]

    Burke, Kieron

    ring sp2 C-H bond and the methyl sp3 C-H bond are explored. The energies to form the 2 -(N products for both thorium and uranium systems with similar reaction energies of -15.8 kcal(IV) and uranium(IV) alkyl complexes (C5Me5)2AnR2 (where An ) Th, U; R ) CH3, CH2Ph, Ph) have proven

  16. Independent Activity Report, CH2M Hill Plateau Remediation Company- January 2011

    Broader source: Energy.gov [DOE]

    Review of the CH2M Hill Plateau Remediation Company Unreviewed Safety Question Procedure [ARPT-RL-2011-003

  17. Near-infrared electronic spectrum of CH2 Jennifer L. Gottfried and Takeshi Okaa)

    E-Print Network [OSTI]

    Oka, Takeshi

    Near-infrared electronic spectrum of CH2 ¿ Jennifer L. Gottfried and Takeshi Okaa) Department B1( u)X~ 2 A1 electronic transition of CH2 have been observed in the near infrared from 11 000 of CH2 was reported by our group in 1992 as the infrared vibration­ rotation spectrum of the 3 band

  18. 2001 by M. Kosticwww.kostic.niu.edu Ch.3: Measurement System Behavior

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    1 ©2001 by M. Kosticwww.kostic.niu.edu Ch.3: Measurement System Behavior · Ch.3: Measurement System) · Magnitude ratio (2nd O.S.) · Phase shift (2nd O.S.) · 2nd Order System (MathCAD) · The End ©2001 by M. Kosticwww.kostic.niu.edu Ch.3:MeasurementSystem Behavior #12;2 ©2001 by M. Kosticwww

  19. NETWORKS OF LAW ENCODING DIAGRAMS FOR UNDERSTANDING Peter C-H. Cheng

    E-Print Network [OSTI]

    Cheng, Peter

    NETWORKS OF LAW ENCODING DIAGRAMS FOR UNDERSTANDING SCIENCE. Peter C-H. Cheng ESRC Centre learning environments based on LEDs are considered. Cheng, P. C.-H. (1999). Networks of Law Encoding Diagrams for understanding science. European Journal of Psychology of Education, 14(2), 167-184. #12;P. C-H

  20. MODELING THE EMISSIONS OF NITROUS OXIDE (N20) AND METHANE (CH 4) FROM THE

    E-Print Network [OSTI]

    MODELING THE EMISSIONS OF NITROUS OXIDE (N20) AND METHANE (CH 4) FROM THE TERRESTRIAL BIOSPHERE;2 #12;MODELING THE EMISSIONS OF NITROUS OXIDE (N 20) AND METHANE (CH 4) FROM THE TERRESTRIAL BIOSPHERE cli- mate has on natural emissions of N2 0 and CH4 from the terrestrial biosphere to the atmosphere

  1. Interactions between wetlands CH4 emissions and climate at global scale

    E-Print Network [OSTI]

    Canet, Léonie

    emissions? Observations Introduction Tool Wetlands emissions [CH4 ]atmo Feedback Conclusion #12;[CO2 ]atmo e.g.: Climate (T) CO2 anthropogenic emissions wetlands CH4 emissions Under future climate change, Shindell et al. (2004) => +78% under climate change generated by 2xCO2 Introduction Tool Wetlands emissions [CH4

  2. A versatile source to produce high-intensity, pulsed supersonic radical beams for crossed-beam experiments: The cyanogen radical CN,,X2

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    CN radicals in a low- pressure fast-flow chemical reactor. Although valuable ki- netic data of the ablated species with molecular nitrogen, which acts also as a seeding gas. A chopper wheel located after

  3. 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net 38 (2009~OE) 6 http: www. wuli. ac. cn

    E-Print Network [OSTI]

    Gao, Hongjun

    § --° · ¢ /»,,> ·¤ ¨ ,¢¶ , ··¤ ~ ª ,--¿ · ... ^ l----`¸ ° . ,, ...·° ¡¡ ¡¡ Graphene,~ ¶ ¿ , ­, ··¤ ,Æ,,,, -- Preparation been exploited to prepare high quality Graphene. Three main methods are reviewed, including the thermal://www.cnki.net ¡¡Îï Àí ¡¤38 (2009~OE) 6 ¡¡ ¡¡ ¡¡ ¡¡ ¡¡ ¡¡ ¡¡ ¡¡ ¡¡ ¡¡ ¡¡ ¡¡ ¡¡ http: www. wuli. ac. cn Graphene¿ § º

  4. de Lange Lab Chromatin Immunoprecipitation (ChIP)

    E-Print Network [OSTI]

    de Lange, Titia

    with cold PBS x 2. 7. Scrape cells in ~ 10 ml PBS into 50 ml conical tube . Spin down cells. 8. Combine cell. The remainder can be kept at 4ºC and reused, but add sodium azide before storage. ChIP Protocol Timeline Day 1IP) protocol 3 Preparing the lysate 1. Grow cells to subconfluence. Set up experiment for 10 IPs. For primary

  5. Ch 15. Thermodynamics Liu UCD Phy1B 2012 1

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Ch 15. Thermodynamics Liu UCD Phy1B 2012 1 #12;I The First Law of ThermodynamicsI. The First Law of Thermodynamics Closed system: U=Q-Wy Q U Internal energy: all the energy of the moleculesgy gy for an ideal gas1B 2012 2 #12;Thermodynamic ProcessesThermodynamic Processes Isothermal: T=0, U=0, Q=W Adiabatic: Q

  6. Efficiency of formation of CH{sub 3}O in the reaction of CH{sub 3}O{sub 2} with ClO

    SciTech Connect (OSTI)

    Biggs, P.; Canosa-Mas, C.E.; Frachebound, J.M. [Physical Chemistry Laboratory, Oxford (United Kingdom)] [Physical Chemistry Laboratory, Oxford (United Kingdom)

    1995-05-15T23:59:59.000Z

    Employing a discharge-flow apparatus the authors measure the branching ratio for the reaction of ClO with CH{sub 3}O{sub 2} to the formation of CH{sub 3}O. The CH{sub 3}O{sub 2} is formed in the stratosphere from the reaction of Cl with CH{sub 4}. This branching ratio is of interest to determine if a chain of reactions through it could be a contributor to the stratospheric decomposition of ozone.

  7. Quantum Critical Transition Amplifies Magnetoelastic Coupling in Mn[N(CN)2]2

    SciTech Connect (OSTI)

    Brinzari, T. V.; Chen, P.; Sun, Q.-C.; Liu, J.; Tung, L.-C.; Wang, Y.; Schlueter, J. A.; Singleton, J.; Manson, J. L.; Whangbo, M.-H.; Litvinchuk, A. P.; Musfeldt, J. L.

    2013-06-01T23:59:59.000Z

    We report the discovery of a magnetic quantum critical transition in Mn[N(CN)2]2 that drives the system from a canted antiferromagnetic state to the fully polarized state with amplified magnetoelastic coupling as an intrinsic part of the process. The local lattice distortions, revealed through systematic phonon frequency shifts, suggest a combined MnN6 octahedra distortion+counterrotation mechanism that reduces antiferromagnetic interactions and acts to accommodate the field-induced state. These findings deepen our understanding of magnetoelastic coupling near a magnetic quantum critical point and away from the static limit.

  8. Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    propene, acetone, benzene, propane and ?-pinene (Table 1).cyanide Acetonitrile Ethane Propane i-Butane n-Butane i-= Ethane Ethane Ethane Ethane Propane Propane Propane ARCTAS

  9. Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    and Fehsenfeld, F. C. : Emission sources and ocean uptake ofand No- vakov, T. : Emissions of trace gases and particlesGroot, W. J. : Future emissions from Canadian boreal forest

  10. Role of impact parameter in branching reactions: Chemical accelerator studies of the reaction Xe++CH4?XeCH3 ++H

    E-Print Network [OSTI]

    Miller, G. D.; Strattan, L. W.; Hierl, Peter M.

    1981-01-01T23:59:59.000Z

    Integral reaction cross sections and product velocity distributions have been measured for the ion–molecule reaction Xe+(CH4,H)XeCH3 + over the relative reactant translational energy range of 0.7–5.5 eV by chemical accelerator techniques...

  11. Approved Module Information for CH3102, 2014/5 Module Title/Name: Advances in Biomaterials Science Module Code: CH3102

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Approved Module Information for CH3102, 2014/5 Module Title/Name: Advances in Biomaterials Science Module Code: CH3102 School: Engineering and Applied Science Module Type: Standard Module New Module of lectures, directed reading and tutorial support Module Assessment Methods of Assessment & associated

  12. A Single Transition State Serves Two Mechanisms. The Branching Ratio for CH2O-+ CH3Cl on Improved Potential Energy Surfaces

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    for this reaction has been studied by ab initio molecular dynamics (AIMD). The energies of transition states change of the potential energy surface around the transition state may vary the branching ratioA Single Transition State Serves Two Mechanisms. The Branching Ratio for CH2O·- + CH3Cl on Improved

  13. Formation and Characterization of Acetonitrile N-Methylide [CH3CNCH2]+ and N-Methylketenimine [CH3NCCH2]+ Radical Cations in the Gas Phase

    E-Print Network [OSTI]

    Nguyen, Minh Tho

    Formation and Characterization of Acetonitrile N-Methylide [CH3CNCH2]·+ and N-Methylketenimine [CH3 Palaiseau Cedex, France ReceiVed: July 24, 1997; In Final Form: NoVember 4, 1997 Acetonitrile N by ion-molecule reactions between ionized cyclobutanone or ionized ketene and acetonitrile or methyl

  14. Unique determination of the -CN group tilt angle in Langmuir monolayers using sum-frequency polarization null angle and phase

    SciTech Connect (OSTI)

    Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2013-10-14T23:59:59.000Z

    The relative phase and amplitude ratio between the ssp and ppp polarization combinations of the vibrational sum-frequency generation (SFG) response can be uniquely and accurately determined by the polarization null angle (PNA) method. In this report we show that PNA measurements of the -CN vibration in the 4-n pentyl-4'-cyanoterphenyl (5CT) Langmuir monolayer at the air/water interface yields ssp and ppp response of the same phase, while those in the 4-n-octyl-4'cyanobiphenyl (8CB) Langmuir monolayer have the opposite phase. Accordingly, the -CN group in the 5CT monolayer is tilted around 25+/-2 from the interface normal, while that in the 8CB is tilted around 57+/-2, consistent with the significant differences in the phase diagrams and hydrogen bonding SFG spectra of the two Langmuir monolayers as reported in the literature. These results also demonstrate that in SFG studies the relative phase information of the different polarization combinations, especially for the ssp and ppp, is important in the unique determination of the tilt angle and conformation of a molecular group at the interface.

  15. chApter 1. Introduction to Synthesis of Current Science 1 Regarding Cumulative Watershed Effects of Fuel

    E-Print Network [OSTI]

    Watershed Effects of Fuel Reduction Treatments Douglas F. Ryan chApter 2. Fire Regimes and Ecoregions 7 Robert G. Bailey chApter 3. Fuel Management in Forests of the Inland West 19 Russell T. Graham, Theresa B. Jain, Susan Matthews chApter 4. Tools for Fuel Management 69 Bob Rummer chApter 5. Fuel Management

  16. Contrasting wetland CH4 emission responses to simulated glacial atmospheric CO2 in temperate bogs and fens

    E-Print Network [OSTI]

    Gauci, Vincent

    Contrasting wetland CH4 emission responses to simulated glacial atmospheric CO2 in temperate bogs, glacial, Last Glacial Maximum (LGM), methane (CH4), peatland, wetland. Summary · Wetlands were the largest (n = 8 per treatment) and measured gaseous CH4 flux, pore water dissolved CH4 and volatile fatty acid

  17. ChEAS Data: The Chequamegon Ecosystem Atmosphere Study

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Davis, Kenneth J. [Penn State

    The Chequamegon Ecosystem-Atmosphere Study (ChEAS) is a multi-organizational research effort studying biosphere/atmosphere interactions within a northern mixed forest in Northern Wisconsin. A primary goal is to understand the processes controlling forest-atmosphere exchange of carbon dioxide and the response of these processes to climate change. Another primary goal is to bridge the gap between canopy-scale flux measurements and the global CO2 flask sampling network. The ChEAS flux towers participate in AmeriFlux, and the region is an EOS-validation site. The WLEF tower is a NOAA-CMDL CO2 sampling site. ChEAS sites are primarily located within or near the Chequamegon-Nicolet National Forest in northern Wisconsin, with one site in the Ottawa National Forest in the upper peninsula of Michigan. Current studies observe forest/atmosphere exchange of carbon dioxide at canopy and regional scales, forest floor respiration, photosynthesis and transpiration at the leaf level and use models to scale to canopy and regional levels. EOS-validation studies quantitatively assess the land cover of the area using remote sensing and conduct extensive ground truthing of new remote sensing data (i.e. ASTER and MODIS). Atmospheric remote sensing work is aimed at understanding atmospheric boundary layer dynamics, the role of entrainment in regulating the carbon dioxide mixing ratio profiles through the lower troposphere, and feedback between boundary layer dynamics and vegetation (especially via the hydrologic cycle). Airborne studies have included include balloon, kite and aircraft observations of the CO2 profile in the troposphere.

  18. Manganese Porphyrins Catalyze Selective C-H Bond Halogenations

    SciTech Connect (OSTI)

    Liu, Wei; Groves, John T

    2010-01-01T23:59:59.000Z

    We report a manganese porphyrin mediated aliphatic C?H bond chlorination using sodium hypochlorite as the chlorine source. In the presence of catalytic amounts of phase transfer catalyst and manganese porphyrin Mn(TPP)Cl 1, reaction of sodium hypochlorite with different unactivated alkanes afforded alkyl chlorides as the major products with only trace amounts of oxygenation products. Substrates with strong C?H bonds, such as neopentane (BDE =?100 kcal/mol) can be also chlorinated with moderate yield. Chlorination of a diagnostic substrate, norcarane, afforded rearranged products indicating a long-lived carbon radical intermediate. Moreover, regioselective chlorination was achieved by using a hindered catalyst, Mn(TMP)Cl, 2. Chlorination of trans-decalin with 2 provided 95% selectivity for methylene-chlorinated products as well as a preference for the C2 position. This novel chlorination system was also applied to complex substrates. With 5?-cholestane as the substrate, we observed chlorination only at the C2 and C3 positions in a net 55% yield, corresponding to the least sterically hindered methylene positions in the A-ring. Similarly, chlorination of sclareolide afforded the equatorial C2 chloride in a 42% isolated yield. Regarding the mechanism, reaction of sodium hypochlorite with the Mn{sup III} porphyrin is expected to afford a reactive Mn{sup V}?O complex that abstracts a hydrogen atom from the substrate, resulting in a free alkyl radical and a Mn{sup IV}—OH complex. We suggest that this carbon radical then reacts with a Mn{sup IV}—OCl species, providing the alkyl chloride and regenerating the reactive Mn{sup V}?O complex. The regioselectivity and the preference for CH{sub 2} groups can be attributed to nonbonded interactions between the alkyl groups on the substrates and the aryl groups of the manganese porphyrin. The results are indicative of a bent [Mn{sup v}?O---H---C] geometry due to the C—H approach to the Mn{sup v}?O (d??p?)* frontier orbital.

  19. L: Shape-based peak identification for ChIPSeq

    E-Print Network [OSTI]

    Valerie Hower; Steven N. Evans; Lior Pachter

    Abstract. We present a new algorithm for the identification of bound regions from ChIP-seq experiments. Our method for identifying statistically significant peaks from read coverage is inspired by the notion of persistence in topological data analysis and provides a non-parametric approach that is robust to noise in experiments. Specifically, our method reduces the peak calling problem to the study of tree-based statistics derived from the data. We demonstrate the accuracy of our method on existing datasets, and we show that it can discover previously missed regions and can more clearly discriminate between multiple binding events.

  20. Methanogenic Conversion of CO2 Into CH4

    SciTech Connect (OSTI)

    Stevens, S.H., Ferry, J.G., Schoell, M.

    2012-05-06T23:59:59.000Z

    This SBIR project evaluated the potential to remediate geologic CO2 sequestration sites into useful methane gas fields by application of methanogenic bacteria. Such methanogens are present in a wide variety of natural environments, converting CO2 into CH4 under natural conditions. We conclude that the process is generally feasible to apply within many of the proposed CO2 storage reservoir settings. However, extensive further basic R&D still is needed to define the precise species, environments, nutrient growth accelerants, and economics of the methanogenic process. Consequently, the study team does not recommend Phase III commercial application of the technology at this early phase.

  1. CH2M HILL Plateau Remediation Company have

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r k C o'IUHopper3 Environmental CH2M

  2. 1-D and 2-D homoleptic dicyanamide structures, [Ph{sub 4}P]{sub 2}{Co{sup II}[N(CN){sub 2}]{sub 4}} and [Ph{sub 4}P]{M[N(CN){sub 2}]{sub 3}} (M = Mn, Co).

    SciTech Connect (OSTI)

    Raebiger, J. W.; Manson, J. L.; Sommer, R. D.; Geiser, U.; Rheingold, A. L.; Miller, J. S.; Materials Science Division; Univ. of Utah; Univ. of Delaware

    2001-05-21T23:59:59.000Z

    The homoleptic complexes [Ph{sub 4}P]{sub 2}{l_brace}Co[N(CN){sub 2}]{sub 4}{r_brace} and [Ph{sub 4}P]{l_brace}M[N(CN){sub 2}]{sub 3}{r_brace} [ M = Co, Mn] have been structurally as well as magnetically characterized. The complexes containing {l_brace}M[N(CN){sub 2}]{sub 4}{r_brace}{sup 2-} form 1-D chains, which are bridged via a common dicyanamide ligand in {l_brace}M[N(CN){sub 2}]{sub 3}{r_brace}{sup -} to form a 2-D structure. The five-atom [NCNCN]{sup -} ligands lead to a {sup 4}T{sub 1g} ground state for Co(II) which has an unquenched spin-orbit coupling that is reflected in the magnetic properties. Long-range magnetic ordering was not observed in any of these materials.

  3. Laser photolysis, infrared fluorescence determination of CH3(nu3) vibrational deactivation by He, Ar, N2, CO, SF6, and (CH3)2CO

    SciTech Connect (OSTI)

    Donaldson, D.J.; Leone, S.R.

    1987-06-04T23:59:59.000Z

    Room temperature vibrational deactivation rate constants are reported for methyl radicals with antisymmetric stretch excitation, CH3(nu3) + M CH3 + M, where M = He, Ar, N2, CO, SF6, (CH3)2CO. Excimer laser photolysis of acetone at 193 nm is used to populate CH3(nu3), and time-resolved infrared emission from the CH stretch is used to follow the deactivation kinetics. The rate constants obtained are (+/-2sigma) (2.6 +/- 0.5) x 10 T (He, (6.8 +/- 0.7) x 10 T (Ar), (6.1 +/- 0.6) x 10 T (N2), (3.6 +/- 0.7) x 10 T (CO), (6.9 +/- 0.7) x 10 T (SF6), and (8.1 +/- 0.9) x 10 S (CH3COCH3) in units of cmT molecule s . The deactivation probability is not controlled by long-range forces due to the lone electron on the radical, but rather by the probabilities for intramode vibrational energy flow in CH3.

  4. DISSOCIATIVE RECOMBINATION OF VIBRATIONALLY COLD CH{sup +}{sub 3} AND INTERSTELLAR IMPLICATIONS

    SciTech Connect (OSTI)

    Thomas, R. D.; Kashperka, I.; Vigren, E.; Geppert, W. D.; Hamberg, M.; Larsson, M.; Af Ugglas, M.; Zhaunerchyk, V. [Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm (Sweden); Indriolo, N. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Yagi, K.; Hirata, S. [Department of Chemistry, University of Illinois, Urbana, IL 61801 (United States); McCall, B. J., E-mail: rdt@fysik.su.se [Departments of Chemistry, Astronomy, and Physics, University of Illinois, Urbana, IL 61801 (United States)

    2012-10-10T23:59:59.000Z

    CH{sup +}{sub 3} is an important molecular ion in the astrochemistry of diffuse clouds, dense clouds, cometary comae, and planetary ionospheres. However, the rate of one of the major destruction mechanisms of CH{sup +}{sub 3}, dissociative recombination (DR), has long been uncertain, hindering the use of CH{sup +}{sub 3} as an astrochemical probe. Here, we present the first absolute measurement of the DR of vibrationally cold CH{sup +}{sub 3}, which has been made using the heavy storage ring CRYRING in Stockholm, Sweden. From our collision-energy-dependent cross sections, we infer a thermal rate constant of k(T) = 6.97({+-} 0.03) Multiplication-Sign 10{sup -7}(T/300){sup -0.61({+-}0.01)} cm{sup 3} s{sup -1} over the region 10 K {<=} T {<=} 1000 K. At low collision energies, we have measured the branching fractions of the DR products to be CH{sub 3} (0.00{sup +0.01}{sub -0.00}), CH{sub 2} + H (0.35{sup +0.01}{sub -0.01}), CH + 2H (0.20{sup +0.02}{sub -0.02}), CH + H{sub 2} (0.10{sup +0.01}{sub -0.01}), and C + H{sub 2} + H (0.35{sup +0.01}{sub -0.02}), indicating that two or more C-H bonds are broken in 65% of all collisions. We also present vibrational calculations which indicate that the CH{sup +}{sub 3} ions in the storage ring were relaxed to the vibrational ground state by spontaneous emission during the storage time. Finally, we discuss the implications of these new measurements for the observation of CH{sup +}{sub 3} in regions of the diffuse interstellar medium where CH{sup +} is abundant.

  5. Stoichiometry of CH4 and CO2 flux in a California Rice Paddy

    E-Print Network [OSTI]

    McMillan, Andrew M. S.; Goulden, Michael L.; Tyler, Stanley C.

    2007-01-01T23:59:59.000Z

    Measurements of carbon sequestration by long-term eddyemission versus carbon sequestration, Tellus, Ser. B,which to estimate carbon sequestration from F CH4 data since

  6. Isotopic constraints on off-site migration of landfill CH{sub 4}

    SciTech Connect (OSTI)

    Desrocher, S.; Lollar, B.S. [Univ. of Toronto, Ontario (Canada). Dept. of Geology

    1998-09-01T23:59:59.000Z

    Occurrences of CH{sub 4} in residential areas in the vicinity of the Beare Road landfill, Toronto, Canada, have raised public concern about potential off-site migration of CH{sub 4} from the landfill site. Carbon isotopic analysis of dissolved and gas phase CH{sub 4} at the Beare Road site, however, indicates that CH{sub 4} in the ground water systems in the vicinity of the landfill is related to naturally occurring microbial methanogenesis within these geologic units, rather than to contamination by landfill CH{sub 4}. CH{sub 4} gas in the landfill and landfill cover has {delta}{sup 13}C values typical of microbially produced gas. Concentrations of CH{sub 4} found in deep ground water in the Scarborough, Don, and Whitby Formations underlying the landfill are isotopically distinct from the landfill gases. They are isotopically and compositionally similar, however, to naturally occurring microbial CH{sub 4} identified in organic-rich glacial deposits throughout Ontario. The lack of any significant CH{sub 4} concentrations or concentration gradients in the upper tin zone between the landfill and the deep ground water aquifer is further evidence that no transport between the landfill and deep ground water is occurring.

  7. Bimetallic cleavage of aromatic C-H bonds by rare-earth-metal complexes

    E-Print Network [OSTI]

    Huang, W; Huang, W; Dulong, F; Khan, SI; Cantat, T; Diaconescu, PL

    2014-01-01T23:59:59.000Z

    of Aromatic C-H Bonds by Rare Earth Metal Complexes Wenliangone week prior to use. Rare earth metal oxides (scandium,

  8. alkane c-h bond: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activation of functionalized hydrocarbons. II. CH and CCN bond activation of acetonitrile and benzonitrile. Open Access Theses and Dissertations Summary: ??Several...

  9. aliphatic c-h bond: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activation of functionalized hydrocarbons. II. CH and CCN bond activation of acetonitrile and benzonitrile. Open Access Theses and Dissertations Summary: ??Several...

  10. arene c-h bonds: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activation of functionalized hydrocarbons. II. CH and CCN bond activation of acetonitrile and benzonitrile. Open Access Theses and Dissertations Summary: ??Several...

  11. Voluntary Protection Program Onsite Review, CH2M WG LLC, Idaho Cleanup Project – March 2014

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether CH2M WG LLC, Idaho Cleanup Project is performing at a level deserving DOE-VPP Star recognition.

  12. Bimolecular reaction of CH{sub 3} + CO in solid p-H{sub 2}: Infrared absorption of acetyl radical (CH{sub 3}CO) and CH{sub 3}-CO complex

    SciTech Connect (OSTI)

    Das, Prasanta [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Lee, Yuan-Pern, E-mail: yplee@mail.nctu.edu.tw [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China)

    2014-06-28T23:59:59.000Z

    We have recorded infrared spectra of acetyl radical (CH{sub 3}CO) and CH{sub 3}-CO complex in solid para-hydrogen (p-H{sub 2}). Upon irradiation at 248 nm of CH{sub 3}C(O)Cl/p-H{sub 2} matrices, CH{sub 3}CO was identified as the major product; characteristic intense IR absorption features at 2990.3 (?{sub 9}), 2989.1 (?{sub 1}), 2915.6 (?{sub 2}), 1880.5 (?{sub 3}), 1419.9 (?{sub 10}), 1323.2 (?{sub 5}), 836.6 (?{sub 7}), and 468.1 (?{sub 8}) cm{sup ?1} were observed. When CD{sub 3}C(O)Cl was used, lines of CD{sub 3}CO at 2246.2 (?{sub 9}), 2244.0 (?{sub 1}), 1866.1 (?{sub 3}), 1046.7 (?{sub 5}), 1029.7 (?{sub 4}), 1027.5 (?{sub 10}), 889.1 (?{sub 6}), and 723.8 (?{sub 7}) cm{sup ?1} appeared. Previous studies characterized only three vibrational modes of CH{sub 3}CO and one mode of CD{sub 3}CO in solid Ar. In contrast, upon photolysis of a CH{sub 3}I/CO/p-H{sub 2} matrix with light at 248 nm and subsequent annealing at 5.1 K before re-cooling to 3.2 K, the CH{sub 3}-CO complex was observed with characteristic IR features at 3165.7, 3164.5, 2150.1, 1397.6, 1396.4, and 613.0 cm{sup ?1}. The assignments are based on photolytic behavior, observed deuterium isotopic shifts, and a comparison of observed vibrational wavenumbers and relative IR intensities with those predicted with quantum-chemical calculations. This work clearly indicates that CH{sub 3}CO can be readily produced from photolysis of CH{sub 3}C(O)Cl because of the diminished cage effect in solid p-H{sub 2} but not from the reaction of CH{sub 3} + CO because of the reaction barrier. Even though CH{sub 3} has nascent kinetic energy greater than 87 kJ mol{sup ?1} and internal energy ?42 kJ mol{sup ?1} upon photodissociation of CH{sub 3}I at 248 nm, its energy was rapidly quenched so that it was unable to overcome the barrier height of ?27 kJ mol{sup ?1} for the formation of CH{sub 3}CO from the CH{sub 3} + CO reaction; a barrierless channel for formation of a CH{sub 3}-CO complex was observed instead. This rapid quenching poses a limitation in production of free radicals via bimolecular reactions in p-H{sub 2}.

  13. Thermal desorption of CH4 retained in CO2 ice

    E-Print Network [OSTI]

    R. Luna; C. Millan; M. Domingo; M. A. Satorre

    2008-01-21T23:59:59.000Z

    CO2 ices are known to exist in different astrophysical environments. In spite of this, its physical properties (structure, density, refractive index) have not been as widely studied as those of water ice. It would be of great value to study the adsorption properties of this ice in conditions related to astrophysical environments. In this paper, we explore the possibility that CO2 traps relevant molecules in astrophysical environments at temperatures higher than expected from their characteristic sublimation point. To fulfil this aim we have carried out desorption experiments under High Vacuum conditions based on a Quartz Crystal Microbalance and additionally monitored with a Quadrupole Mass Spectrometer. From our results, the presence of CH4 in the solid phase above the sublimation temperature in some astrophysical scenarios could be explained by the presence of several retaining mechanisms related to the structure of CO2 ice.

  14. Thermal desorption of CH4 retained in CO2 ice

    E-Print Network [OSTI]

    Luna, R; Domingo, M; Satorre, M A

    2008-01-01T23:59:59.000Z

    CO2 ices are known to exist in different astrophysical environments. In spite of this, its physical properties (structure, density, refractive index) have not been as widely studied as those of water ice. It would be of great value to study the adsorption properties of this ice in conditions related to astrophysical environments. In this paper, we explore the possibility that CO2 traps relevant molecules in astrophysical environments at temperatures higher than expected from their characteristic sublimation point. To fulfil this aim we have carried out desorption experiments under High Vacuum conditions based on a Quartz Crystal Microbalance and additionally monitored with a Quadrupole Mass Spectrometer. From our results, the presence of CH4 in the solid phase above the sublimation temperature in some astrophysical scenarios could be explained by the presence of several retaining mechanisms related to the structure of CO2 ice.

  15. TransCom model simulations of CH? and related species: linking transport, surface flux and chemical loss with CH? variability in the troposphere and lower stratosphere

    E-Print Network [OSTI]

    Patra, P. K.

    A chemistry-transport model (CTM) intercomparison experiment (TransCom-CH?) has been designed to investigate the roles of surface emissions, transport and chemical loss in simulating the global methane distribution. Model ...

  16. OD bond dissociation from the 3s state of deuterated hydroxymethyl radical ,,CH2OD...

    E-Print Network [OSTI]

    Reisler, Hanna

    O­D bond dissociation from the 3s state of deuterated hydroxymethyl radical ,,CH2OD... Lin Feng of the deuterated hydroxymethyl radical CH2OD is investigated on the lowest excited state, the 3s Rydberg state at these wavelengths. Comparison with the conical intersection calculations of Hoffman and Yarkony suggests that O­D

  17. Method of preparing (CH.sub.3).sub.3 SiNSO and byproducts thereof

    DOE Patents [OSTI]

    Spicer, Leonard D. (Salt Lake City, UT); Bennett, Dennis W. (Clemson, SC); Davis, Jon F. (Salt Lake City, UT)

    1984-01-01T23:59:59.000Z

    (CH.sub.3).sub.3 SiNSO is produced by the reaction of ((CH.sub.3).sub.3 Si).sub.2 NH with SO.sub.2. Also produced in the reaction are ((CH.sub.3).sub.3 Si).sub.2 O and a new solid compound [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ]. Both (CH.sub.3).sub.3 SiNSO and [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ] have fluorescent properties. The reaction of the subject invention is used in a method of measuring the concentration of SO.sub.2 pollutants in gases. By the method, a sample of gas is bubbled through a solution of ((CH.sub.3).sub.3 Si).sub.2 NH, whereby any SO.sub.2 present in the gas will react to produce the two fluorescent products. The measured fluorescence of these products can then be used to calculate the concentration of SO.sub.2 in the original gas sample. The solid product [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ] may be used as a standard in solid state NMR spectroscopy.

  18. People's Physics book 3e Ch 19-1 The Big Ideas

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics book 3e Ch 19-1 The Big Ideas Heat is a form of energy transfer. It can change). Thermodynamics is the study of heat engines. Any engine or power plant obeys the laws of thermodynamics by the expanding gas. Work can be done on the gas in order to compress it. #12;People's Physics book 3e Ch 19

  19. People's Physics Book 3e Ch 14-1 The Big Idea

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics Book 3e Ch 14-1 The Big Idea For static electric charges, the electromagnetic a loop of wire generate currents in that wire; this is how electric power generators work. Likewise field is pointing. Be sure to use your right hand! #12;People's Physics Book 3e Ch 14-2 o Right Hand

  20. RESEARCH ARTICLE Greenhouse gas emissions (CO2, CH4, and N2O) from several

    E-Print Network [OSTI]

    Wehrli, Bernhard

    RESEARCH ARTICLE Greenhouse gas emissions (CO2, CH4, and N2O) from several perialpine and alpine hydropower reservoirs by diffusion and loss in turbines T. Diem · S. Koch · S. Schwarzenbach · B. Wehrli · C investigated greenhouse gas emissions (CO2, CH4, and N2O) from reservoirs located across an altitude gradient

  1. Photodissociation spectroscopy and dynamics of the vinoxy (CH{sub 2}CHO) radical

    SciTech Connect (OSTI)

    Osborn, D.L.; Choi, H.; Neumark, D.M. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States). Chemical Sciences Div.

    1995-11-01T23:59:59.000Z

    The photodissociation spectroscopy and dynamics of the vinoxy (CH{sub 2}CHO) radical have been studied using fast beam photofragment translational spectroscopy. The photodissociation cross section over the B{sup 2}A{double_prime} {l_arrow} X{sup 2}A{double_prime} band is measured, and photofragment translational energy and angular distributions are obtained at several excitation energies. For CH{sub 2}CHO, predissociation is observed over the entire band, including several transitions near the band origin which were seen previously in laser-induced fluorescence experiments. Two dissociation channels are seen: CH{sub 3} + CO and H + CH{sub 2}CO. The CH{sub 3} + CO channel was investigated in considerable detail and appears to proceed via internal conversion to the CH{sub 2}CHO ground state followed by isomerization to CH{sub 3}CO and subsequent dissociation. The translational energy distributions for this channel suggest an isomerization barrier in the range of 2 eV with respect to CH{sub 3} + CO products.

  2. DISCOVERY OF THE FIRST METHANOL (CH [subscript 3] OH) MASER IN THE ANDROMEDA GALAXY (M31)

    E-Print Network [OSTI]

    Sjouwerman, Loránt O.

    We present the first detection of a 6.7 GHz Class II methanol (CH[subscript 3]OH) maser in the Andromeda galaxy (M31). The CH[subscript 3]OH maser was found in a VLA survey during the fall of 2009. We have confirmed the ...

  3. SimpleMonitorUSBXPress User Guide Tobi Delbruck, tobi@ini.phys.ethz.ch

    E-Print Network [OSTI]

    Delbruck, Tobi

    SimpleMonitorUSBXPress User Guide Tobi Delbruck, tobi@ini.phys.ethz.ch Allows monitoring AER over at the University of Sevilla and the second by Tobi Delbruck at INI in Zurich. The firmware and host code is written. Last modified 8/20/2005 Under subversion https://svn.ini.unizh.ch/repos/avlsi/CAVIAR/wp5/USBAER

  4. Ligand Lone-Pair Influence on Hydrocarbon C-H Activation: A Computational Perspective

    SciTech Connect (OSTI)

    Ess, Daniel H; Gunnoe, T. Brent; Cundari, Thomas R; Goddard, William A; Periana, Roy A

    2010-01-01T23:59:59.000Z

    Mid to late transition metal complexes that break hydrocarbon C?H bonds by transferring the hydrogen to a heteroatom ligand while forming a metal?alkyl bond offer a promising strategy for C?H activation. Here we report a density functional (B3LYP, M06, and X3LYP) analysis of cis-(acac){sub 2}MX and TpM(L)X (M = Ir, Ru, Os, and Rh; acac = acetylacetonate, Tp = tris(pyrazolyl)borate; X = CH{sub 3}, OH, OMe, NH{sub 2}, and NMe{sub 2}) systems for methane C?H bond activation reaction kinetics and thermodynamics. We address the importance of whether a ligand lone pair provides an intrinsic kinetic advantage through possible electronic d{sub ?}?p{sub ?} repulsions for M?OR and M?NR{sub 2} systems versus M?CH{sub 3} systems. This involves understanding the energetic impact of the X ligand group on ligand loss, C?H bond coordination, and C?H bond cleavage steps as well as understanding how the nucleophilicity of the ligand X group, the electrophilicity of the transition metal center, and cis-ligand stabilization effect influence each of these steps. We also explore how spectator ligands and second- versus third-row transition metal centers impact the energetics of each of these C?H activation steps.

  5. A CH O Hydrogen Bond Stabilized Polypeptide Chain Reversal Motif at the C Terminus of Helices

    E-Print Network [OSTI]

    Babu, M. Madan

    A C­H· · ·O Hydrogen Bond Stabilized Polypeptide Chain Reversal Motif at the C Terminus of Helices of Science Bangalore 560012, India The serendipitous observation of a C­H· · ·O hydrogen bond mediated­N hydrogen bond involving the side- chain of residue T 2 4 and the N­H group of residue T þ 3. In as many

  6. Draft Genome sequence of Frankia sp. strains CN3 , an atypical, non-infective (Nod-) ineffective (Fix-) isolate from Coriaria nepalensis

    SciTech Connect (OSTI)

    Ghodhbane-Gtari, Faten [University of New Hampshire; Beauchemin, Nicholas [University of New Hampshire; Bruce, David [Los Alamos National Laboratory (LANL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Davenport, Karen W. [Los Alamos National Laboratory (LANL); Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Furnholm, Teal [University of New Hampshire; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Gtari, Maher [University of New Hampshire; Han, Cliff [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Nouioui, Imen [University of Tunis-El Manar, Tunisia; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Santos, Catarina [Instiuto Celular e Aplicada, Portugal; Sen, Arnab [University of North Bengal, Siliguri, India; Sur, Saubashya [University of North Bengal, Siliguri, India; Szeto, Ernest [U.S. Department of Energy, Joint Genome Institute; Tavares, Fernando [Instiuto Celular e Aplicada, Portugal; Hazuki, Teshima [Los Alamos National Laboratory (LANL); Thakur, Subarna [University of North Bengal, Siliguri, India; Wall, Luis [University of Quilmes, Argentina; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Tisa, Louis S. [University of New Hampshire

    2013-01-01T23:59:59.000Z

    We report here the genome sequence of Frankia sp. strain CN3, which was isolated from Coriaria nepalensis. This genome sequence is the first from the fourth lineage of Frankia, that are unable to re-infect actinorhizal plants. At 10 Mb, it represents the largest Frankia genome sequenced to date.

  7. 80 K anomaly and its effect on the superconducting and magnetic transition in deuterated -,,BEDT-TTF...2CuN,,CN...2Br

    E-Print Network [OSTI]

    Zuo, Fulin

    careful transport and magnetic measurements on single crystals of deuterated - ET 2Cu N CN 2 Br cooling through 80 K will freeze the high temperature magnetic phase to low temperatures and the presence ordering of the chains. In this paper, we report careful transport and magnetic measurements on several

  8. Safety Evaluation Report of the Waste Isolation Pilot Plant Contact Handled (CH) Waste Documented Safety Analysis

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-09-01T23:59:59.000Z

    This Safety Evaluation Report (SER) documents the Department of Energy’s (DOE's) review of Revision 9 of the Waste Isolation Pilot Plant Contact Handled (CH) Waste Documented Safety Analysis, DOE/WIPP-95-2065 (WIPP CH DSA), and provides the DOE Approval Authority with the basis for approving the document. It concludes that the safety basis documented in the WIPP CH DSA is comprehensive, correct, and commensurate with hazards associated with CH waste disposal operations. The WIPP CH DSA and associated technical safety requirements (TSRs) were developed in accordance with 10 CFR 830, Nuclear Safety Management, and DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports.

  9. Structural and Morphological Difference Between Ti/TiN/TiCN Coatings Grown in Multilayer and Graded Form

    SciTech Connect (OSTI)

    Restrepo, E.; Baena, A.; Agudelo, C.; Castillo, H.; Devia, A. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, Manizales (Colombia); Marino, A. [Departamento de Fisica, Universidad Nacional de Colombia Sede Bogota, Av. Cra. 30 No. 45-03, Bogota (Colombia)

    2006-12-04T23:59:59.000Z

    Thin films can be grown in super-lattice, multilayers and graded form, having each one advantages and disadvantages. The difference between multilayer and graded coatings is the interface. In multilayers the interface is abrupt and in graded coatings it is diffuse. The interface influences many chemical and physical properties of the materials, and its choice depends on the application. Graded coatings have the advantage of having gradual properties such as thermal expansion coefficient and lattice parameter, avoiding adherence problems due to good match between their component materials. In this work the comparison between some properties of coatings grown as multilayer and graded is performed. The materials are produced using the sputtering DC technique because of its facility to control the deposition parameters and generate a slow growth. The target is a disc of titanium and the samples are made of stainless steel 304. The working gases are argon, nitrogen and methane, which are mixed according to the material to be produced, i.e. Ti layer is grown with argon, the TiN film is produced with a mixture of argon and nitrogen, and the TiCN material is obtained mixing argon, nitrogen and methane. These materials are characterized with AFM in order to determine grain size and with XPS studying the chemical composition and performing depth profiles.

  10. Reaction Dynamics of Phenyl Radicals (C6H5) with Propylene (CH3CHCH2) and Its Deuterated Isotopologues

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    ARTICLES Reaction Dynamics of Phenyl Radicals (C6H5) with Propylene (CH3CHCH2) and Its Deuterated The reactions between phenyl radicals (C6H5) and propylene (CH3CHCH2) together with its D6- and two D3 atom) of the propylene molecule at the dCH2 unit to form a radical intermediate (CH3CHCH2C6H5

  11. ChBE 4505/4525 Chemical Process Design/Biochemical Process Design Basic Curriculum and Learning Outcomes.

    E-Print Network [OSTI]

    Sherrill, David

    Outcomes. Credit: 3-0-3 Instructor: Matthew J. Realff Textbook: Product & Process Design Principles, Third Edition, Wiley 2009. W.D. Seider, J.D. Seader, D.R. Lewin, S. Widagdo, Catalog Description: Principles Phen. II (ChBE 3210), Kinetics & Reactor Design (ChBE 4300), and separation processes (ChBE 3225

  12. Spatialpatternsofhomeoboxgene expressioninthedevelopingmammalianCN$

    E-Print Network [OSTI]

    Stern, Claudio

    Antennapedia and the human gene HHo. c10 c~rf- fer by only three of the terminal 53 amino acids4. An editorial

  13. SF6432-CN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs RunningSEABRV 148002/01/12 Page 1 of

  14. SF6432-CN Construction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs RunningSEABRV 148002/01/12 Page 1

  15. CnLrJGD

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertowni5W 95.5x-L* d! CT NC0I

  16. ¹?C(n,?) ¹?C as a Test Case in the Evaluation of a New Method to Determine Spectroscopic Factors Using Asymptotic Normalization Coefficients

    E-Print Network [OSTI]

    McCleskey, Matthew Edgar

    2012-02-14T23:59:59.000Z

    14C(n,?)15C AS A TEST CASE IN THE EVALUATION OF A NEW METHOD TO DETERMINE SPECTROSCOPIC FACTORS USING ASYMPTOTIC NORMALIZATION COEFFICIENTS A Dissertation by MATTHEW EDGAR MCCLESKEY Submitted to the Office of Graduate Studies... FACTORS USING ASYMPTOTIC NORMALIZATION COEFFICIENTS A Dissertation by MATTHEW EDGAR MCCLESKEY Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR...

  17. Thng tin pht t my ghi m v khon chi tr phc li Bo Him Tht Nghip gn nht c th tip cn 24 ting

    E-Print Network [OSTI]

    Thông tin phát t máy ghi âm v khon chi tr phúc li Bo Him Tht Nghip gn nht có th tip cn 24 ting mt chiu, Th Hai n Th Sáu, hoc vào nhng ngày cui tun. Thông tin chi tr phúc li UI c cp nht hng ngày, và phn ánh sinh hot h s vào ngày làm vic trc ó. nhn c thông tin v khon chi tr ca mình, xin làm nhng s la chn

  18. March an t Pereira 954, Providen cia, San tiago. fon os: (56-2) 2690223 -2690224 -2690225. web: www.cn ach ile.cl

    E-Print Network [OSTI]

    Pérez, Carlos E.

    -XQLR #12;Norm as y Procedim ien tos para la Acreditación , Com isión Nacion al de Acreditación . CNA: www.cn ach ile.cl 2 ,QWURGXFFLyQ El presen te docu m en to describe las Norm as y Procedim ien tos orm as y procedim ien tos propu estos por su s Com ités Con su ltivos, aplicará tran sitoriam en te

  19. au melange co2-ch4: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of natural gas production. Facing Paris-Sud XI, Universit de 11 Open top chambers and infrared lamps: A comparison of heating efficacy and CO2CH4 dynamics in a lake superior...

  20. 28 BIts&ChIps 17 november 2005 Energetiq Technology heeft een licht-

    E-Print Network [OSTI]

    Cambridge, University of

    28 · BIts&ChIps · 17 november 2005 Energetiq Technology heeft een licht- bron gelanceerd voor extreem ultravi- olet (EUV) metrologie. Deze Electrode- less Z-Pinch EUV-source, of EQ-10M, genereert EUV

  1. Hydrogen Storage in Carbon Nanotubes Through Formation of C-H...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Two of the major challenges for humanity in the next 20 years are the shrinking availability of fossil...

  2. Preliminary Notice of Violation, CH2M-Washington Group Idaho...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LLC - EA-2007-03 June 14, 2007 Issued to CH2M-Washington Group Idaho, LLC, related to Radiation Protection Program Deficiencies at the Radioactive Waste Management Complex -...

  3. ChIMES: "Limited only by our imaginations" | Y-12 National Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensors consist of an MRPs and a ferromagnetic wire. There are no moving parts, and the sensor communicates wirelessly with the detection system. Photo: ChIMES uses chemical...

  4. Intern experience at CH?M Hill, Inc.: an internship report

    E-Print Network [OSTI]

    Winter, William John, 1949-

    2013-03-13T23:59:59.000Z

    A review of the author's internship experience with CH?M HILL, Inc. during the period September 1975 through May 1976 is presented. During this nine month internship the author worked as an Engineer II in the Industrial Processes...

  5. STATEMENT OF CONSIDERATIONS REQUEST BY MlCH..t\\EL BROCKWELL ...

    Broader source: Energy.gov (indexed) [DOE]

    MlCH..tEL BROCKWELL (INVENTOR) FOR THE W .AJVER OF DOM ESTIC N'l'D FOREIGN RJG HTS TO AN IDENTIFIED INVENTION ENTITLED ''EXOTEN SIONED STRU CTURE AND METHOD FOR CONSTRUCTION,"...

  6. Flooding of the continental shelves as a contributor to deglacial CH4 rise

    E-Print Network [OSTI]

    Jones, Peter JS

    Flooding of the continental shelves as a contributor to deglacial CH4 rise ANDY RIDGWELL,1 MARK of the continental shelves that were exposed and vegetated during the glacial sea-level low stand and that can help

  7. First principles calculation of a large variation in dielectric tensor through the spin crossover in the CsFe[Cr(CN){sub 6}] Prussian blue analogue

    SciTech Connect (OSTI)

    Middlemiss, Derek S., E-mail: derekmiddlemiss@gmail.com, E-mail: R.J.Deeth@warwick.ac.uk; Deeth, Robert J., E-mail: derekmiddlemiss@gmail.com, E-mail: R.J.Deeth@warwick.ac.uk [Inorganic Computational Chemistry Group, Department of Chemistry, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2014-04-14T23:59:59.000Z

    The dielectric response of spin-crossover (SCO) materials is a key property facilitating their use in next-generation information processing technologies. Solid state hybrid density functional theory calculations show that the temperature-induced and strongly hysteretic SCO transition in the Cs{sup +}Fe{sup 2+}[Cr{sup 3+}(CN{sup ?}){sub 6}] Prussian blue analogue (PBA) is associated with a large change (?) in both the static, ??{sup 0}(HS ? LS), and high frequency, ??{sup ?}(HS ? LS) dielectric constants. The SCO-induced variation in CsFe[Cr(CN){sub 6}] is significantly greater than the experimental ?? values observed previously in other SCO materials. The phonon contribution, ??{sup phon}(HS ? LS), determined within a lattice dynamics approach, dominates over the clamped nuclei term, ??{sup ?}(HS ? LS), and is in turn dominated by the low-frequency translational motions of Cs{sup +} cations within the cubic voids of the Fe[Cr(CN){sub 6}]{sup ?} framework. The Cs{sup +} translational modes couple strongly to the large unit cell volume change occurring through the SCO transition. PBAs and associated metal-organic frameworks emerge as a potentially fruitful class of materials in which to search for SCO transitions associated with large changes in dielectric response and other macroscopic properties.

  8. PHOTOIONIZATION SPECTRA OF CH3I PERTURBED BY SF6: ELECTRON SCATTERING IN SF6 GAS

    E-Print Network [OSTI]

    Findley, Gary L.

    1 PHOTOIONIZATION SPECTRA OF CH3I PERTURBED BY SF6: ELECTRON SCATTERING IN SF6 GAS C. M. Evansa of SF6 perturbers (up to the perturber density 9.75 x 1019 cm-3 ) disclosed a red shift of autoionizing of the CH3I nd! Rydbergs (n=9,10,11,12), the electron scattering length of SF6 was found to be A = -0.484 nm

  9. 1997-2001 by M. Kostic Ch.5: Uncertainty/Error Analysis

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    1 ©1997-2001 by M. Kostic Ch.5: Uncertainty/Error Analysis · Introduction · Bias and Precision Summation/Propagation (Expanded Combined Uncertainty) · Problem 5-30 ©1997-2001 by M. Kostic Ch.5) at corresponding Probability (%P) Remember: u = d%P = t,%PS (@ %P); z=t=d/S #12;2 ©1997-2001 by M. Kostic Bias

  10. Design and Charge-Transfer Properties of Bioinspired Electrets

    E-Print Network [OSTI]

    Bao, Duoduo

    2013-01-01T23:59:59.000Z

    CH 2 Cl 2 ), acetonitrile (MeCN) and dimethylformamide (C TBATFB , for acetonitrile………………. …..58 Figure 2-8.molecular orbital MeCN: acetonitrile, CH 3 CN MePy: 1-

  11. Site Battelle, btiment D 7 route de Drize CH1227 Carouge Tl. 022 379 06 46 Fax 022 379 06 39 www.unige.ch/energie

    E-Print Network [OSTI]

    Laemmli, Ulrich

    Energy Agency SDC: Swiss Agency for Development and Cooperation #12;Site Battelle, bâtiment D 7 route University of New York, Albany. o National Renewable Energy Laboratory à Golden. France : o Ecole des www.unige.ch/energie Groupe Energie ­ Institut Forel / Institut des sciences de l

  12. Fourier Transform Spectroscopy of CH3OH: Rotation-Torsion-Vibration Structure for the CH3-Rocking and OH-Bending Modes

    SciTech Connect (OSTI)

    Lees, R M.; Xu, Li-Hong; Johns, Judy C.; Lu, Zhe; Winnewisser, Brenda P.; Sams, Robert L.

    2004-12-01T23:59:59.000Z

    High-resolution Fourier Transform Spectra of CH3OH have been investigated in the infrared region from 930 -1450 cm-1 in order to map the torsion-rotation energy manifolds associated with the v7 in-plane CH3 rock, the v11 out-of-plane CH3 rock, and the v6 OH bend. Upper-state term values have been determined from the assigned spectral subbands, and have been fitted to power-series expansions to obtain substate origins and effective B-values for the three modes. The substate origins have been grouped into related families according to systemic trends observed in the torsion-vibration energy map, but there are substantial differences from the traditional torsional patterns. There appears to be significant torsion-mediated spectral fractionation, and a variety of subbands of mixed torsion-vibration parentage have been observed. For example, coupling of the v6=1 OH bend to nearby torsionally excited (v1, vt) = (1,1) CH3-rock and (v8, vt) = (1,1) CO-stretch states introduces (v6, vt) = (1,0) ? (0,1) ''forbidden'' subbands into the spectrum and makes the v7+v12-v12 torsional hot band stronger than the v7 fundamental. The results suggest a picture of strong coupling the OH-bending, CH3-rocking and CO-stretching modes that modifies the traditional energy structure and raises interesting and provocative questions about the torsion-vibration identity of a number of the observed states.

  13. Insights into the structure of mixed CO2/CH4 in gas hydrates

    SciTech Connect (OSTI)

    Everett, Susan M [ORNL; Rawn, Claudia J [ORNL; Chakoumakos, Bryan C [ORNL; Keffer, David J. [University of Tennessee, Knoxville (UTK); Huq, Ashfia [ORNL; Phelps, Tommy Joe [ORNL

    2015-01-01T23:59:59.000Z

    The exchange of CO2 for CH4 in natural gas hydrates is an attractive approach to methane for energy production while simultaneously sequestering CO2. In addition to the energy and environmental implications, the solid solution of clathrate hydrate (CH4)1-x(CO2)x 5.75H2O provides a model system to study how the distinct bonding and shapes of CH4 and CO2 influence the structure and properties of the compound. High-resolution neutron diffraction was used to examine mixed CO2/CH4 gas hydrates. CO2-rich hydrates had smaller lattice parameters, which were attributed to the higher affinity of the CO2 molecule interacting with H2O molecules that form the surrounding cages, and resulted in a reduction in the unit cell volume. Experimental nuclear scattering densities illustrate how the cage occupants and energy landscape change with composition. These results provide important insights on the impact and mechanisms for exchanging CH4 and CO2.

  14. Improved synthesis and crystal structure of the flexible pillared layer porous coordination polymer: Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN)(4)

    SciTech Connect (OSTI)

    Wong-Ng, W.; Culp, J. T.; Chen, Y. S.; Zavalij, P.; Espinal, L.; Siderius, D. W.; Allen, A. J.; Scheins, S Matranga, C

    2013-04-04T23:59:59.000Z

    This paper reports our synthesis of flexible coordination polymer, Ni(L)[Ni(CN){sub 4}], (L = 1,2-bis(4- pyridyl)ethylene (nicknamed bpene)), and its structural characterization using synchrotron single crystal X-ray diffraction. The structure of the purplish crystals has been determined to be monoclinic, space group P2{sub 1}/m, a = 13.5941(12) Å, b = 14.3621(12) Å, c = 14.2561(12) Å, {beta} = 96.141(2){degrees|, V = 2767.4(4) Å{sup 3}, Z = 4, D{sub c} = 1.46 g cm{sup -1}. Ni(bpene)[Ni(CN){sub 4}] assumes a pillared layer structure with layers defined by Ni[Ni(CN){sub 4}]{sub n} nets and bpene ligands acting as pillars. With the present crystallization technique which involves the use of concentrated ammonium hydroxide solution and dimethyl sulfoxide (DMSO), disordered free bpene ligands and solvents of crystallization (DMSO and water molecules) occupy the pores, resulting in a formula of Ni(bpene)[Ni(CN){sub 4}](1/2)bpene.DMSO.2H{sub 2}O, or Ni{sub 2}N{sub 7}C{sub 24}H{sub 2}.5SO{sub 3}. Without the inclusion of free bpene ligands and solvent molecules, the free volume is approximately 61% of the total volume; this free volume fraction is reduced to 50% with the free ligands present. Pores without the free ligands were found to have a local diameter of 5.7 Å and a main aperture of 3.5 Å. Based on the successful crystal synthesis, we also devised a new bulk synthetic technique which yielded a polycrystalline material with a significantly improved CO{sub 2} uptake as compared to the originally reported powder material. The improved synthetic technique yielded a polycrystalline material with 40% higher CO{sub 2} uptake compared to the previously reported powder material. An estimated 14.4 molecules of CO{sub 2} per unit cell was obtained.

  15. J. Chem. Thermodynamics 1996, 28, 521538 Volumetric properties for {(1-x)CO2+xCH4},

    E-Print Network [OSTI]

    Bodnar, Robert J.

    J. Chem. Thermodynamics 1996, 28, 521­538 Volumetric properties for {(1-x)CO2+xCH4}, {(1-x)CO2+xN2, U.S.A. Densities r of pure CO2, CH4, and {(1-x)CO2+xCH4}, {(1-x)CO2+xN2}, and {(1-x)CH4+xN2} were from mole fraction x=0 to x=1. The results were obtained with a custom-designed, high-pressure, high-temperature

  16. Core-to-valence spectroscopic detection of the CH{sub 2}Br radical and element-specific femtosecond photodissociation dynamics of CH{sub 2}IBr

    SciTech Connect (OSTI)

    Attar, Andrew R.; Piticco, Lorena [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Leone, Stephen R. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States)

    2014-10-28T23:59:59.000Z

    Element-specific single photon photodissociation dynamics of CH{sub 2}IBr and core-to-valence absorption spectroscopy of CH{sub 2}Br radicals are investigated using femtosecond high-harmonic extreme ultraviolet (XUV) transient absorption spectroscopy. Photodissociation of CH{sub 2}IBr along both the C–I or C–Br reaction coordinates is observed in real-time following excitation at 266 nm. At this wavelength, C–I dissociation is the dominant reaction channel and C–Br dissociation is observed as a minor pathway. Both photodissociation pathways are probed simultaneously through individual 4d(I) N{sub 4/5} and 3d(Br) M{sub 4/5} core-to-valence transitions. The 3d(Br) M{sub 4/5} pre-edge absorption spectrum of the CH{sub 2}Br radical photoproduct corresponding to the C–I dissociation channel is characterized for the first time. Although the radical's singly occupied molecular orbital (SOMO) is mostly localized on the central carbon atom, the 3d(Br) ? ?{sup *}(SOMO) resonances at 68.5 eV and 69.5 eV are detected 2 eV below the parent molecule 3d(Br) ? ?{sup *}(LUMO) transitions. Core-to-valence XUV absorption spectroscopy provides a unique probe of the local electronic structure of the radical species in reference to the Br reporter atom. The measured times for C–I dissociation leading to I and I{sup *} atomic products are 48 ± 12 fs and 44 ± 4 fs, respectively, while the measured C–Br dissociation time leading to atomic Br is 114 ± 17 fs. The investigation performed here demonstrates the capability of femtosecond time-resolved core-level spectroscopy utilizing multiple reporter atoms simultaneously.

  17. Observation of CH4 and other Non-CO2 Green House Gas Emissions from California

    SciTech Connect (OSTI)

    Fischer, Marc L.; Zhao, Chuanfeng; Riley, William J.; Andrews, Arlyn C.

    2009-01-09T23:59:59.000Z

    In 2006, California passed the landmark assembly bill AB-32 to reduce California's emissions of greenhouse gases (GHGs) that contribute to global climate change. AB-32 commits California to reduce total GHG emissions to 1990 levels by 2020, a reduction of 25 percent from current levels. To verify that GHG emission reductions are actually taking place, it will be necessary to measure emissions. We describe atmospheric inverse model estimates of GHG emissions obtained from the California Greenhouse Gas Emissions Measurement (CALGEM) project. In collaboration with NOAA, we are measuring the dominant long-lived GHGs at two tall-towers in central California. Here, we present estimates of CH{sub 4} emissions obtained by statistical comparison of measured and predicted atmospheric mixing ratios. The predicted mixing ratios are calculated using spatially resolved a priori CH{sub 4} emissions and surface footprints, that provide a proportional relationship between the surface emissions and the mixing ratio signal at tower locations. The footprints are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. Integral to the inverse estimates, we perform a quantitative analysis of errors in atmospheric transport and other factors to provide quantitative uncertainties in estimated emissions. Regressions of modeled and measured mixing ratios suggest that total CH{sub 4} emissions are within 25% of the inventory estimates. A Bayesian source sector analysis obtains posterior scaling factors for CH{sub 4} emissions, indicating that emissions from several of the sources (e.g., landfills, natural gas use, petroleum production, crops, and wetlands) are roughly consistent with inventory estimates, but livestock emissions are significantly higher than the inventory. A Bayesian 'region' analysis is used to identify spatial variations in CH{sub 4} emissions from 13 sub-regions within California. Although, only regions near the tower are significantly constrained by the tower measurements, CH{sub 4} emissions from the south Central Valley appear to be underestimated in a manner consistent with the under-prediction of livestock emissions. Finally, we describe a pseudo-experiment using predicted CH{sub 4} signals to explore the uncertainty reductions that might be obtained if additional measurements were made by a future network of tall-tower stations spread over California. These results show that it should be possible to provide high-accuracy estimates of surface CH{sub 4} emissions for multiple regions as a means to verify future emissions reductions.

  18. 3 C E 301 Civil Engineering Systems * (fall or spring) 3 CH 302 Principles of Chemistry II * 3 CH 301 Principles of Chemistry I * 4 M 408D Seq, Series & Multivariable Calculus *

    E-Print Network [OSTI]

    Lightsey, Glenn

    S Probability & Statistics for Civil Engineers * 3 E M 306 Statics * 3 E M 319 Mechanics of Solids requirements. Approved Math/Science/ Engineering Science Elective ______________ Approved Science Elective3 C E 301 Civil Engineering Systems * (fall or spring) 3 CH 302 Principles of Chemistry II * 3 CH

  19. Ultrafast UV Pump/IR Probe Studies of C-H Activation in Linear, Cyclic, and Aryl Hydrocarbons

    E-Print Network [OSTI]

    Harris, Charles B.

    Ultrafast UV Pump/IR Probe Studies of C-H Activation in Linear, Cyclic, and Aryl Hydrocarbons, cyclic, and aromatic hydrocarbon solvents on a femtosecond to microsecond time scale. These results have revealed that the structure of the hydrocarbon substrate affects the final C-H bond activation step, which

  20. Energetics of C-H Bond Activation of Fluorinated Aromatic Hydrocarbons Using a [TpRh(CNneopentyl)] Complex

    E-Print Network [OSTI]

    Jones, William D.

    Energetics of C-H Bond Activation of Fluorinated Aromatic Hydrocarbons Using a [Tp activation of fluorinated aromatic hydrocarbons by [TpRh(CNneopentyl)] resulted in the formation of products of homogeneous transition-metal catalysts to activate and functionalize C-H bonds of hydrocarbons for industrial

  1. * Corresponding author. Fax: 0041-1-823-5210. E-mail address: peeters@eawag.ch (F. Peeters)

    E-Print Network [OSTI]

    Aeschbach-Hertig, Werner

    .M. Imboden , K. Rozanski , K. FroK hlich Swiss Federal Institute of Technology (ETH), CH-8600 Du( bendorf, Switzerland Swiss Federal Institute of Environmental Science and Technology (EAWAG), CH-8600 Du( bendorf International Atomic Energy Agency, Department of Research and Isotopes, Vienna, Austria Received 24 June 1998

  2. Synthesis, Structure, and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene

    E-Print Network [OSTI]

    Goddard III, William A.

    with Benzene Gaurav Bhalla, Xiang Yang Liu, Jonas Oxgaard, William A. Goddard, III, and Roy A. Periana. All the R-Ir-Py complexes undergo quantitative, intermolecular CH activation reactions with benzene to benzene to generate a discrete benzene complex, cis-R-Ir-PhH; and (D) rapid C-H cleavage. Kinetic isotope

  3. 2590 J. Am. Chem. SOC.1995,117, 2590-2599 The C-H Bond Energy of Benzene

    E-Print Network [OSTI]

    Ellison, Barney

    2590 J. Am. Chem. SOC.1995,117, 2590-2599 The C-H Bond Energy of Benzene Gustavo E. Davico ion with benzene and phenide ion with ammonia: c&6 +NH2- C6H5- +NH3. The ratio of these rate constants for derived. The enthalpy of deprotonationof benzene, the C-H bond dissociationenergy, and the electron

  4. Contract No. DE-AC02-07CH11358 Contract Modification No. 0145

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H-11 H.8 PRIVACY ACT RECORDS H-12 H.9 ADDITIONAL DEFINITIONS H-12 H.10 SERVICE CONTRACT ACT OF 1965 (41 U.S.C. 35) H-14 Contract No. DE-AC02-07CH11358 Section H TOC...

  5. CH 5 MANAGEMENT PLAN.DOC 5-1 5 Management Plan

    E-Print Network [OSTI]

    CH 5 MANAGEMENT PLAN.DOC 5-1 5 Management Plan 5.1 Vision The Willamette Subbasin Plan Oversight drafted the following vision: Willamette Basin citizens from all walks of life prize and enjoy a quilt-work of natural areas, working landscapes, and distinctive communities, from the crest of the Coast Range

  6. LeTemps.ch I Des robots pour mieux comprendre l,volution 08011217:49

    E-Print Network [OSTI]

    Alvarez, Nadir

    LeTemps.ch I Des robots pour mieux comprendre l,volution LE TEMPs 08011217:49 biologie Vendredi6 janvier 2012 Des robots pour mieux comprendre l'6volution Par L'aldatoire entrerait en jeu Le d6'y parvenir en employant comme cobayes... des robots. Etude qu,ils publient cette semaine dans une

  7. Fractal characterisation of high-pressure and hydrogen-enriched CH4air turbulent premixed flames

    E-Print Network [OSTI]

    Gülder, �mer L.

    Fractal characterisation of high-pressure and hydrogen-enriched CH4­air turbulent premixed flames measurements were performed to obtain the flame front images, which were further analyzed for fractal of the flame front curvature as a function of the pressure. Fractal dimension showed a strong dependence

  8. *Email: findley@chem.ulm.edu Photoionization Spectra of CH3I Perturbed by SF6

    E-Print Network [OSTI]

    Findley, Gary L.

    1 *Email: findley@chem.ulm.edu (1) (2) (3) Photoionization Spectra of CH3I Perturbed by SF6: Electron Scattering in SF6 Gas C. M. Evansa,b , R. Reiningera and G. L. Findleya a Department of Chemistry in the presence of SF6 perturbers (up to the perturber density 9.75 x 1019 cm-3 ) disclosed a red shift

  9. Use of phytostabilisation to remediate mtal polluted dredged V Bert', Ch Lors2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Use of phytostabilisation to remediate métal polluted dredged sédiment V Bert', Ch Lors2 scale on dredged sédiments polluted with metals. A sédiment deposit contaminated with metals of waterways générâtes numerous dredged sédiment deposits. Due to the local intensive industrial history

  10. A liquid-crystal model for friction C.H. A. Cheng

    E-Print Network [OSTI]

    Shkoller, Steve

    for sliding friction. Dry friction between two sliding surfaces gen- erates granulation, resultingA liquid-crystal model for friction C.H. A. Cheng , L. H. Kellogg , S. Shkoller , and D. L, University of California, Davis, CA 95616 Contributed by D. L. Turcotte, November 19, 2007 Rate-and-state-friction

  11. Thursday, March 11, 2010 Pages to read: CH5, 407-422

    E-Print Network [OSTI]

    Toohey, Darin W.

    Acid Rain Thursday, March 11, 2010 Pages to read: CH5, 407-422 #12;Cap and Trade Working Already rain, to 7.6 million tons in 2008. #12;Overview of Acid Rain Phenomenon Most common term Agency announced that power plants across the country decreased emissions of SO2, a precursor to acid

  12. Modification No.0136 Contract No. DE-AC02-09CH11466

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    of the Princeton Plasma Physics Laboratory A Department of Energy National Laboratory Contract No. DE-AC02-09CH.2 Provide Effective and Efficient Science and Technology Project / Program / Facilities Management J-B-28 3 Financial Management System(s) J-B-42 6.2 Provide and Efficient, Effective, and Responsive Acquisition

  13. Ch. 13 Transform Coding My Coverage is Different from the Book

    E-Print Network [OSTI]

    Fowler, Mark

    1 Ch. 13 Transform Coding My Coverage is Different from the Book #12;2 Overview Transform. Block Diagram of Transform Coding "Fig. A" Often (but not always!) done on a block-by-block basis: · Non-Overlapped Blocks (most common) · Overlapped Blocks #12;3 Transform as Linear Operator We'll view transforms

  14. CH 4 INVENTORY.DOC 4-1 4 Inventory and Assessment of Conservation Efforts

    E-Print Network [OSTI]

    CH 4 INVENTORY.DOC 4-1 4 Inventory and Assessment of Conservation Efforts 4.1 Background According and imminent protections, and 3) current strategies implemented through specific projects. The inventory residents makes an inventory and assessment of this nature very difficult. It may therefore be helpful

  15. REMARQUES SUR LE MMOIRE DE MM. NAGAOKA ET HONDA; Par CH.-ED. GUILLAUME.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    621 REMARQUES SUR LE MÉMOIRE DE MM. NAGAOKA ET HONDA; Par CH.-ED. GUILLAUME. 11 est facile de voir que le plissement des courbes d'aimantation et d'allongement constaté par MM. Nagaoka et Honda et Honda indique un point singulier des alliages, ou s'il s'agit d'un fait fortuit. J'ajou- terai que

  16. REMARQUES SUR LE TRAVAIL DE MM. NAGAOKA ET HONDA ; Par M. CH.-D. GUILLAUME

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    633 REMARQUES SUR LE TRAVAIL DE MM. NAGAOKA ET HONDA ; Par M. CH.-ÉD. GUILLAUME Les recherches de MM. Nagaolia et Honda sur la inagnéto- striction donnent lieu à deux genres de remarques : les unes que pour une proportion insignifiante dans les résultats énoncés par MM. Nagaoka et Honda, et que les

  17. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats

    E-Print Network [OSTI]

    Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats C . C . T R E Hampshire, Durham, NH, USA, 3 Department of Natural Resources and the Environment, University of New carbon (SOC) losses following perma- frost thaw in peat soils across Alaska. We compared the carbon

  18. Soil chemistry versus environmental controls on production of CH4 and CO2 in northern peatlands

    E-Print Network [OSTI]

    Williams, Christopher J.

    . B. YAVITT a , C. J. WILLIAMS b & R. K. WIEDER c a Department of Natural Resources, Cornell Rates of organic carbon mineralization (to CO2 and CH4) vary widely in peat soil. We transplanted four peat soils with different chemical composition into six sites with different environmental conditions

  19. Temperature Dependence of Scott Thermomagnetic Torque in N2, Ch4, and Hd

    E-Print Network [OSTI]

    Adair, Thomas W.

    1972-01-01T23:59:59.000Z

    curve'which has a maxi- mum value at a field-to-pressure .ratio (P/P) ~. The temperature dependence of (JI/P) ~ for N2 and CH4 has been measured, and from these data the value for the optimum ratio of preces- sion frequency to collision frequency...

  20. PREPARED FORTHE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DEAC0276CH03073

    E-Print Network [OSTI]

    , radial electric fields generated rf­induced fast loss utilized drive poloidal rotation thereby inducePREPARED FORTHE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE­AC02­76CH03073 PRINCETON PLASMA Electric Fields on ICRF Waves C.K. Phillips, J.C. Hosea, Ono, Wilson June 2001 #12; PPPL Reports Disclaimer

  1. The Drivetrain of Sustainability Powering innovation in Clean teCh

    E-Print Network [OSTI]

    California at Davis, University of

    The Drivetrain of Sustainability Powering innovation in Clean teCh iNSiDe: BUSiNeSS OF HeALTH CARe energy use, generation and storage, as well as other necessities of life, environmentally responsible of Management, I hope to participate in what many expect to be the next big chapter of the California Dream

  2. ChBE 4300 Kinetics and Reactor Design (required course) Credit: 3-0-3

    E-Print Network [OSTI]

    Sherrill, David

    , and (ii) reactor design for the homogeneous reaction systems. The design principles for ideal homogeneousChBE 4300 Kinetics and Reactor Design (required course) Credit: 3-0-3 Prerequisite in terms of reaction mechanisms, kinetics, and reactor design. Both homogeneous and heterogeneous reactions

  3. ChBE 4310 Bioprocess Engineering (required course) Credit: 3-0-3

    E-Print Network [OSTI]

    Sherrill, David

    Description: Integrating several ChBE core concepts, bioprocess engineering applies the engineering principles) or Biochemistry II (Chem 4511) minimum grade "D", and Kinetics and Reactor Design, minimum grade "C" Objectives: Specifically, after completing the course, students should be able to: 1.) Apply engineering principles

  4. EnvironMEntAl chEMiStry College of Natural Science and Mathematics

    E-Print Network [OSTI]

    Hartman, Chris

    EnvironMEntAl chEMiStry College of Natural Science and Mathematics Department of Chemistry education and research opportunities focused on the molecular scale as- pects of environmental science prepares students for careers in the environmental science and technology sector as specialists

  5. Learning Qualitative Relations in Physics with Law Encoding Diagrams Peter C-H. Cheng

    E-Print Network [OSTI]

    Cheng, Peter

    Learning Qualitative Relations in Physics with Law Encoding Diagrams Peter C-H. Cheng ESRC Centre that evaluates the effectiveness of Law Encoding Diagrams (LEDs) for learning qualitative relations in the domain of elastic colli- sions in physics. A LED is a representation that captures the laws or important relations

  6. SCIENTIFIC DISCOVERY WITH LAW ENCODING DIAGRAMS Peter C-H. Cheng

    E-Print Network [OSTI]

    Cheng, Peter

    - 1 - SCIENTIFIC DISCOVERY WITH LAW ENCODING DIAGRAMS Peter C-H. Cheng ESRC Centre for Research the concept of Law Encoding Diagrams, LEDs, and argues that they have had a role in scientific discovery the underlying relations of a law, or a system of simultaneous laws, in the structure of a diagram by the means

  7. 16. Wave-particle interaction Reading: Shu, Vol.II, Ch.29

    E-Print Network [OSTI]

    Pohl, Martin Karl Wilhelm

    16. Wave-particle interaction Reading: Shu, Vol.II, Ch.29 16.1 Landau damping We started our discussion of hydromagnetic waves with simple one-dimensional electrostatic fluctuations, the Langmuir waves, whose dispersion relation is = p = e2 ne 0 me Can the waves change plasma properties or, vice versa

  8. Large-Scale Quality Analysis of Published ChIP-seq Data

    E-Print Network [OSTI]

    Kundaje, Anshul

    ChIP-seq has become the primary method for identifying in vivo protein–DNA interactions on a genome-wide scale, with nearly 800 publications involving the technique appearing in PubMed as of December 2012. Individually and ...

  9. Effect of plastic deformation on the formation of acicular ferrite C.H. Lee a,1

    E-Print Network [OSTI]

    Cambridge, University of

    Effect of plastic deformation on the formation of acicular ferrite C.H. Lee a,1 , H deformation on the transformation of austenite to acicular ferrite in a FeÁ/MnÁ/SiÁ/C alloy steel containing non-metallic inclusions was investigated. The transformation to acicular ferrite is retarded

  10. High resolution spectroscopy of BaCH3,,X~ 2 A1...: Fine and hyperfine

    E-Print Network [OSTI]

    Ziurys, Lucy M.

    interactions were also resolved, arising from the spin of the barium nucleus. The complete data set has been these improvements, some of the simplest organometallic compounds such as methyl lithium (LiCH3) have not been in their crystalline state.7,8 In such environments, establishing the fundamental properties of a given molecule

  11. FL47CH15-Goldstein ARI 25 November 2014 9:45 Green Algae as Model

    E-Print Network [OSTI]

    Goldstein, Raymond E.

    FL47CH15-Goldstein ARI 25 November 2014 9:45 Green Algae as Model Organisms for Biological Fluid green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model of flagellar synchronization. Green algae are well suited to the study of such problems because of their range

  12. Fax +41 61 306 12 34 E-Mail karger@karger.ch

    E-Print Network [OSTI]

    Denver, Robert J.

    Fax +41 61 306 12 34 E-Mail karger@karger.ch www.karger.com At the Cutting Edge Neuroendocrinology in a blood-borne factor, while the db/db strain was deficient in the receptor for this factor [1­3]. Over

  13. BE12CH08-Zare ARI 22 April 2010 20:22 Microfluidic Platforms

    E-Print Network [OSTI]

    Zare, Richard N.

    BE12CH08-Zare ARI 22 April 2010 20:22 R E V I E W S IN A D V A N CE Microfluidic Platforms, genetic analysis Abstract Microfluidics, the study and control of the fluidic behavior in microstruc to analyze various types of intracellular components quantitatively. The microfluidic approach offers a rapid

  14. Charge-Separation in Uranium Diazomethane Complexes Leading to C-H Activation and Chemical Transformation

    E-Print Network [OSTI]

    Meyer, Karsten

    coordination and organometallic chemistry.1-3 The covalency in uranium ligand bonds is weaker thanCharge-Separation in Uranium Diazomethane Complexes Leading to C-H Activation and ChemicalVersity of California, San Diego, Department of Chemistry, 9500 Gilman DriVe, La Jolla, California 92093, and Uni

  15. Bennett's Ch. 17: `Even If...' Maile Holck, 11/16/04

    E-Print Network [OSTI]

    Fitelson, Branden

    1 Bennett's Ch. 17: `Even If...' Maile Holck, 11/16/04 Bennett begins this chapter by dismissing, but the material is fun and (possibly) more relevant to conditionals than Bennett wants to believe. §102. `Even': Preliminaries Bennett starts with Pollock's 1976 account of "even if" wherein: `even if' is an idiom

  16. Bennett's Ch 7: Indicative Conditionals Lack Truth Values Jennifer Zale, 10/12/04

    E-Print Network [OSTI]

    Fitelson, Branden

    Bennett's Ch 7: Indicative Conditionals Lack Truth Values Jennifer Zale, 10/12/04 §38. No Truth Ernest Adams (founder) Jackson Bennett Lycan Gibbard Edgington McDermott III. Requirements for joining. (cf. Jackson, who believes AC has Ramseyan `assertability' conditions PLUS truth conditions). Bennett

  17. Effect of Blast Design on Crack Response C.H. Dowding

    E-Print Network [OSTI]

    Effect of Blast Design on Crack Response C.H. Dowding Professor of Civil & Environmental to assess the effect of changes in blast design on the house response. Velocity response was measured some 11 velocity transducers and 3 crack sensors measured excitation and response for each blast

  18. Computer simulation study of liquid CH2F2 with a new effective pair potential model

    E-Print Network [OSTI]

    Mezei, Mihaly

    to reproduce the thermodynamic internal energy, density, heat capacity, vapor-liquid equilibrium and structuralComputer simulation study of liquid CH2F2 with a new effective pair potential model Pa potential model is proposed for computer simulations of liquid methylene fluoride and used in Monte Carlo

  19. Catalytic C-H Activation and Functionalization: Some Applications in Organic Synthesis

    E-Print Network [OSTI]

    Stoltz, Brian M.

    Non-hydro renewables Hydro power Natural Gas Transportation is Costly - CH4 major constituent,000 3,000 4,000 5,000 6,000 1970 1980 1990 2000 2010 2020 2030 Mtoe Oil Natural gas Coal Nuclear power of natural gas with 5-10% ethane - The energy efficiency of natural gas liquefaction and regasification add

  20. Joint CO2 and CH4 accountability for global warming Kirk R. Smitha,1,2

    E-Print Network [OSTI]

    Silver, Whendee

    the causes of global warming, because the amount of global warming occurring at any time is ac- tually dueJoint CO2 and CH4 accountability for global warming Kirk R. Smitha,1,2 , Manish A. Desaia,1 for global warming is its current annual emissions of greenhouse gases (GHGs)*. The second most common

  1. The time evolution of a vortex-flame interaction observed via planar imaging of CH and OH

    SciTech Connect (OSTI)

    Nguyen, Quang-Viet; Paul, P.H.

    1996-05-01T23:59:59.000Z

    Planar laser-induced fluorescence imaging diagnostics of OH and CH are used to examine a premixed laminar flame subjected to a strong line-vortex pair. Results are reported for a fuel-rcih lamiar CH{sub 4}-air-N{sub 2} rod-stabilized flame. The flow studied was highly reproducible, which enabled the use of phase-sampled imaging to provide time-resolved image sequences. Image sequences are shown for a condition sufficient to produce localized extinction of the primary flame. Results indicate that a breakage in the CH front is not preceded by any distinct change in the OH front. The structure of the CH and OH profiles during the transient leading up to, and through the breakage of the CH front do not appear to be consistent with the concept of a strained laminar flame.

  2. Circumstellar {sup 12}C/{sup 13}C isotope ratios from millimeter observations of CN and CO: Mixing in carbon- and oxygen-rich stars

    SciTech Connect (OSTI)

    Milam, S. N.; Woolf, N. J.; Ziurys, L. M. [Department of Chemistry, University of Arizona, Tucson, AZ 85721 (United States)], E-mail: Stefanie.N.Milam@nasa.gov, E-mail: nwoolf@as.arizona.edu, E-mail: lziurys@as.arizona.edu

    2009-01-01T23:59:59.000Z

    A survey of the {sup 12}C/{sup 13}C ratio toward circumstellar envelopes has been conducted at millimeter wavelengths using the facilities of the Arizona Radio Observatory (ARO). The ratios were obtained for a sample of local C- and O-rich asymptotic giant branch and supergiant stars from observations of the {sup 12}C and {sup 13}C isotopologues of CO and CN, respectively. The J = 1 {yields} 0 transitions of both molecules were observed at {lambda} = 3 mm using the ARO 12 m telescope, while the J = 2 {yields} 1 lines of the two species were measured using the ARO Sub-Millimeter Telescope (SMT) at {lambda} = 1 mm. The {sup 12}C/{sup 13}C ratios were determined from the CO data by modeling both transitions simultaneously with a circumstellar radiative transfer code, which can account for the high opacities present in the emission from this species. In the case of CN, the hyperfine structure was used to evaluate opacity effects. Ratios obtained independently from CO and CN are in good agreement. For the C-rich envelopes, the ratios fall in the range {sup 12}C/{sup 13}C {approx} 25-90, while the O-rich shells have values of 10-35. Ratios of {sup 12}C/{sup 13}C {approx} 3-14 are found for the supergiant stars, with the exception of VY CMa, where the values lie in the range 25-46. All ratios obtained in this study are {<=} 89, the solar value, suggesting that substantial carbon-13 enrichment may be currently occurring in the local interstellar medium. A qualitative model was constructed based on first and third dredge-up convective mixing that can reproduce the observed ratios. Substantial mixing of H-burning products must occur to explain the ratios in the O-rich objects, while a wide range of {sup 12}C/{sup 13}C values can be generated by only a few percent mixing of He-burning ashes in the C-rich case. The {sup 12}C/{sup 13}C ratios obtained in this study should help improve stellar yield models and contribute to the understanding of Galactic chemical evolution.

  3. Joint DOE-CH2M HILL News Release For Immediate Release:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beamJoin HERO Mariners vs. TexasJoinSecurity For

  4. Joint DOE-CH2M HILL News Release For Immediate Release:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beamJoin HERO Mariners vs. TexasJoinSecurity ForFor

  5. Joint DOE-CH2M HILL News Release Media Contact: For Immediate Release:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beamJoin HERO Mariners vs. TexasJoinSecurity

  6. Joint DOE-CH2M HILL News Release Media Contact: For Immediate Release:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beamJoin HERO Mariners vs. TexasJoinSecurityDestry

  7. Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen and Fuel CellFew-LayerGas Streamsof

  8. Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen and Fuel CellFew-LayerGas StreamsofHydrogen

  9. Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen and Fuel CellFew-LayerGas

  10. Media Contacts: For Immediate Release: Andre Armstrong, CH2M HILL January 19, 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a NewCuneoTechnologyCHPRC NewsMarch 4,5, 2010

  11. In late 2013, the U.S. Department of Energy (DOE), Office of River Protection ch

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News Community Connections: Your link toina mininglate

  12. Rare-earth transition-metal gallium chalcogenides RE{sub 3}MGaCh{sub 7} (M=Fe, Co, Ni; Ch=S, Se)

    SciTech Connect (OSTI)

    Rudyk, Brent W.; Stoyko, Stanislav S.; Oliynyk, Anton O.; Mar, Arthur, E-mail: arthur.mar@ualberta.ca

    2014-02-15T23:59:59.000Z

    Six series of quaternary rare-earth transition-metal chalcogenides RE{sub 3}MGaCh{sub 7} (M=Fe, Co, Ni; Ch=S, Se), comprising 33 compounds in total, have been prepared by reactions of the elements at 1050 °C (for the sulphides) or 900 °C (for the selenides). They adopt noncentrosymmetric hexagonal structures (ordered Ce{sub 3}Al{sub 1.67}S{sub 7}-type, space group P6{sub 3}, Z=2) with cell parameters in the ranges of a=9.5–10.2 Å and c=6.0–6.1 Å for the sulphides and a=10.0–10.5 Å and c=6.3–6.4 Å for the selenides as refined from powder X-ray diffraction data. Single-crystal structures were determined for five members of the sulphide series RE{sub 3}FeGaS{sub 7} (RE=La, Pr, Tb) and RE{sub 3}CoGaS{sub 7} (RE=La, Tb). The highly anisotropic crystal structures consist of one-dimensional chains of M-centred face-sharing octahedra and stacks of Ga-centred tetrahedra all pointing in the same direction. Magnetic measurements on the sulphides reveal paramagnetic behaviour in some cases and long-range antiferromagnetic behaviour with low Néel temperatures (15 K or lower) in others. Ga L-edge XANES spectra support the presence of highly cationic Ga tetrahedral centres with a tendency towards more covalent Ga–Ch character on proceeding from the sulphides to the selenides. Band structure calculations on La{sub 3}FeGaS{sub 7} indicate that the electronic structure is dominated by Fe 3d-based states near the Fermi level. - Graphical abstract: The series of chalcogenides RE{sub 3}MGaS{sub 7}, which form for a wide range of rare-earth and transition metals (M=Fe, Co, Ni), adopt highly anisotropic structures containing chains of M-centred octahedra and stacks of Ga-centred tetrahedra. Display Omitted - Highlights: • Six series (comprising 33 compounds) of chalcogenides RE{sub 3}MGaCh{sub 7} were prepared. • They adopt noncentrosymmetric hexagonal structures with high anisotropy. • Most compounds are paramagnetic; some show antiferromagnetic ordering. • Ga L-edge XANES confirms presence of cationic Ga species.

  13. Local magnetism in the molecule-based metamagnet [Ru2(O2CMe)4]3[Cr(CN)6] probed with implanted muons

    SciTech Connect (OSTI)

    Lancaster, T. [University of Oxford; Pratt, F. L. [ISIS Facility, Rutherford Appleton Laboratory; Blundell, S. J. [University of Oxford; Steele, Andrew J. [University of Oxford; Baker, Peter J. [ISIS Facility, Rutherford Appleton Laboratory; Wright, Jack D. [University of Oxford; Fishman, Randy Scott [ORNL; Miller, Joel S. [University of Utah

    2011-01-01T23:59:59.000Z

    We present a muon-spin relaxation study of local magnetism in the molecule-based metamagnet [Ru2(O2CMe)4]3[Cr(CN)6]. We observe magnetic order with TN = 33 K, although above 25 K the sublattice spins become less rigid and a degree of static magnetic disorder is observed. The comparison of measurements in applied magnetic field with simulations allows us to understand the origin of the muon response across the metamagnetic transition and to map out the phase diagram of the material. Applied hydrostatic pressures of up to 6 kbar lead to an increase in the local magnetic field along with a complex change in the internal magnetic field distribution.

  14. THE CH(G) INDEX AS A NEW CRITERION FOR SELECTING RED GIANT STARS

    SciTech Connect (OSTI)

    Chen, Y. Q.; Zhao, G.; Carrell, K.; Zhao, J. K.; Tan, K. F., E-mail: cyq@bao.ac.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2013-03-10T23:59:59.000Z

    We have measured the CH G band (CH(G)) index for evolved stars in the globular cluster M3 based on the Sloan Digital Sky Survey (SDSS) spectroscopic survey. It is found that there is a useful way to select red giant branch (RGB) stars from the contamination of other evolved stars such as asymptotic giant branch (AGB) and red horizontal branch (RHB) stars by using the CH(G) index versus (g - r){sub 0} diagram if the metallicity is known from the spectra. When this diagram is applied to field giant stars with similar metallicity, we establish a calibration of CH(G) = 1.625(g - r){sub 0} - 1.174(g - r){sup 2}{sub 0} - 0.934. This method is confirmed by stars with [Fe/H] {approx} -2.3 where spectra of member stars in globular clusters M15 and M92 are available in the SDSS database. We thus extend this kind of calibration to every individual metallicity bin ranging from [Fe/H] {approx} -3.0 to [Fe/H] {approx} 0.0 by using field red giant stars with 0.4 {<=} (g - r){sub 0} {<=} 1.0. The metallicity-dependent calibrations give CH(G) = 1.625(g - r){sub 0} - 1.174(g - r){sup 2}{sub 0} + 0.060[Fe/H] - 0.830 for -3.0 < [Fe/H] {<=} -1.2 and CH(G) = 0.953(g - r){sub 0} - 0.655(g - r){sup 2}{sub 0} + 0.060[Fe/H] - 0.650 for -1.2 < [Fe/H] < 0.0. The calibrations are valid for the SDSS spectroscopic data set, and they cannot be applied blindly to other data sets. With the two calibrations, a significant number of the contaminating stars (AGB and RHB stars) were excluded and thus a clear sample of red giant stars is obtained by selecting stars within {+-}0.05 mag of the calibration. The sample is published online and it is expected that this large and clean sample of RGB stars will provide new information on the formation and evolution of the Galaxy.

  15. Intermolecular C-H Bond Activation Promoted by a Titanium Alkylidyne Brad C. Bailey, Hongjun Fan, Erich W. Baum, John C. Huffman, Mu-Hyun Baik,* and

    E-Print Network [OSTI]

    Baik, Mu-Hyun

    Intermolecular C-H Bond Activation Promoted by a Titanium Alkylidyne Brad C. Bailey, Hongjun Fan to perform intermolecular activation of inert C-H bonds.3-7 We now report that transient titanium alkylidynes an energy profile for the C-H bond activation reaction. Recently, our group reported the synthesis

  16. 2902 J. Phys. Chem. 1984,88, 2902-2905 combination of the resultant CH3 + LiH fragments to form

    E-Print Network [OSTI]

    Huppert, Herbert

    of these two parts but with less C-H bonding. Registry No. Li, 7439-93-2;CH4,74-82-8;CH,LiH, 89922 and Dynamic Stability Criteria during Free Diffusion in a Ternary System Herbert E. Huppert* and Mark A systemsfor which the main diffusion terms greatly exceed the cross-diffusionterms. The results

  17. CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Margaret Torn

    This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

  18. CH-{\\pi} interaction-induced deep orbital deformation in a benzene-methane weak binding system

    E-Print Network [OSTI]

    Li, Jianfu

    2015-01-01T23:59:59.000Z

    The nonbonding interaction between benzene and methane, called CH-{\\pi} interaction, plays an important role in physical, chemical, and biological fields. CH-{\\pi} interaction can decrease the system total energy and promote the formation of special geometric configurations. This work investigates systemically the orbital distribution and composition of the benzene-methane complex for the first time using ab initio calculation based on different methods and basis sets. Surprisingly, we find strong deformation in HOMO-4 and LUMO+2 induced by CH-{\\pi} interaction, extending the general view that nonbonding interaction does not cause orbital change of molecules.

  19. REMARQUES SUR LE MMOIRE DE MM. NAGAOKA ET HONDA; Par CH.-ED. GUILLAUME.

    E-Print Network [OSTI]

    Boyer, Edmond

    621 REMARQUES SUR LE M�MOIRE DE MM. NAGAOKA ET HONDA; Par CH.-ED. GUILLAUME. 11 est facile de voir que le plissement des courbes d'aimantation et d'allongement constaté par MM. Nagaoka et Honda et Honda indique un point singulier des alliages, ou s'il s'agit d'un fait fortuit. J'ajou- terai que

  20. Synthesis and spectroscopic characterization of the d{sup 0}transition metal-alkyl-alkene complex Cp{sup *}{sub 2}YCH{sub 2}CH{sub 2}C(CH{sub 3}){sub 2} CH=CH{sub 2}

    SciTech Connect (OSTI)

    Casey, C.P.; Hallenbeck, S.L.; Pollock, D.W.; Landis, C.R. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-27T23:59:59.000Z

    We have investigated the reaction of yttrium hydride dimer (Cp{sup *} {sub 2}YH){sub 2} (2) with 3,3-dimethyl-1,4-pentadiene in an effort to generate a stable d{sup 0} transition metal-alkyl-alkene complex. Intramolecular alkene insertion is thermodynamically disfavored by the 26 kcal mol{sup -1} strain in the resulting methylcyclobutyl complex. Nonlocal DFT calculations of H{sub 2}SiCp{sub 2}Zr(CH{sub 3} )(CH{sub 2}=CH{sub 2}){sup +} indicate that ethylene is strongly polarized and asymmetrically bonded to the d{sup 0} metal center. Jordan`s X-ray structure of zirconium(IV) pentallyloxo complex 1 showed asymmetric bonding of the alkene ligand to Zr with a bond length difference of 0.21 A (2.68 and 2.89 A). The similarity of the {sup 1}H and {sup 13}C NMR chemical shifts of the complexed alkenes of 3 and 5 with those reported by Jordan for 1 suggests that the complexed alkenes of the chelate complexes 3 and 5 also are bound asymmetrically to the d{sup 0} yttrium center and that the internal alkene carbon is positively polarized. 18 refs., 1 fig.

  1. Shape-based peak identification for ChIP-Seq Valerie Hower, Steven N. Evans, and Lior Pachter

    E-Print Network [OSTI]

    Evans, Steven N.

    Shape-based peak identification for ChIP-Seq Valerie Hower, Steven N. Evans, and Lior PachterSeq [27] and MACS [29] using two published data sets. #12;2 Valerie Hower, Steven N. Evans, and Lior

  2. A crossed molecular beam study of the O(/sup 1/D/sub 2/)+CH/sub 4/ reaction

    SciTech Connect (OSTI)

    Casavecchia, P.; Buss, R.J.; Sibener, S.J.; Lee, Y.T.

    1980-12-15T23:59:59.000Z

    A cross molecular beam experiment was performed to study the O(/sup 1/D/sub 2/)+CH/sub 4/ reaction. The results show that hydrogen atom elimination reaction greatly exceeds molecular hydrogen elimination. (AIP)

  3. Abstract. --The density matrix formalism is applied to the interpretation of Mossbauer spectra of single crystals of K3Fe(CN) taken with polarized y-radiation to find the average electric hyper-

    E-Print Network [OSTI]

    Boyer, Edmond

    Abstract. -- The density matrix formalism is applied to the interpretation of Mossbauer spectra Hamiltonian of the Mossbauer nucleus. Experimental results are given for 57 Fe nuclei in the monoclinic$/^)P' \\/ Mossbauer study ofdilute and concentrated K3Fe(CN)6 /

  4. http://www.staradvertiser.com/newspremium/20130824_Small_school_stands_tall_as_science_powerhouse_.html?id=220927791&c=n Page 1 of 3 Aug 28, 2013 07:39:07PM MDT

    E-Print Network [OSTI]

    http://www.staradvertiser.com/newspremium/20130824_Small_school_stands_tall_as_science_powerhouse_.html?id=220927791&c=n Page 1 of 3 Aug 28, 2013 07:39:07PM MDT Small school stands tall as science powerhouse POSTED roughly 2,000 feet, then transmitted data to Earth as it aero-braked and fell at prescribed speeds before

  5. The Author(s) 2013. This article is published with open access at Springerlink.com csb.scichina.com www.springer.com/scp email: chenhuopo@mail.iap.ac.cn

    E-Print Network [OSTI]

    .scichina.com www.springer.com/scp email: chenhuopo@mail.iap.ac.cn Article Atmospheric Science doi: 10.1007/s11434 Academy of Sciences, Beijing 100029, China Received July 1, 2012; accepted September 12, 2012 Projection in China and the associated atmospher- ic circulation patterns using the Couple Model Intercomparison

  6. ch_1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon3 TheDiscovery

  7. ch_10

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon3 TheDiscovery0

  8. ch_11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon3 TheDiscovery00

  9. ch_12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon3 TheDiscovery00.0

  10. ch_13

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon3

  11. ch_2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.0 B B ackgr

  12. ch_2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.0 B B ackgr4

  13. ch_2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.0 B B ackgr410

  14. ch_3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.0 B B

  15. ch_3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.0 B B13

  16. ch_3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.0 B B135

  17. ch_3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.0 B B1353-34

  18. ch_3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.0 B B1353-3447

  19. ch_4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.0 B

  20. ch_4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.0 B8, INEEL

  1. ch_4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.0 B8, INEEL18

  2. ch_4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.0 B8,

  3. ch_4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.0 B8,40

  4. ch_4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.0 B8,4047

  5. ch_4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.0 B8,404758

  6. ch_4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.0 B8,40475871

  7. ch_5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.0 B8,404758710

  8. ch_5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.0

  9. ch_5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.044

  10. ch_5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.044HLW &

  11. ch_5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.044HLW &25

  12. ch_5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.044HLW

  13. ch_5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.044HLW160

  14. ch_6

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.044HLW160 6.0

  15. ch_7

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.044HLW160 6.00

  16. ch_8

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.044HLW160

  17. ch_9

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.044HLW160.0

  18. ch_9

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30 2.044HLW160.0

  19. ch_9

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 MesabaCarbon30

  20. Electron Transfer to SF6 and Oriented CH3Br Sean A. Harris, Susan D. Wiediger, and Philip R. Brooks*

    E-Print Network [OSTI]

    Brooks, Philip R.

    ARTICLES Electron Transfer to SF6 and Oriented CH3Br Sean A. Harris, Susan D. Wiediger, and Philip in collisions of unoriented SF6 and oriented CH3Br. For lab energies 5-30 eV, Br- is the only ion observed from the same energetic threshold for forming Br- . SF5 - , SF6 - , and F- ions are observed from SF6 and O2

  1. Intrinsic vs. extrinsic inelastic scattering contributions in kappa-(BEDT-TTF){sub 2}Cu[N(CN){sub 2}]Br - transport measurements under hydrostatic pressure.

    SciTech Connect (OSTI)

    Strack, C.; Akinci, C.; Paschenko, V.; Wolf, B.; Uhrig, E.; Assmus, W.; Schreuer, J.; Wiehl, L.; Schlueter, J.; Wosnitza, J.; Schweitzer, D.; Lang , M.; Materials Science Division; J.W. Goethe-Universitat Frankfurt; Inst.fur Festkorperphysik; Univ. Stuttgart

    2006-12-05T23:59:59.000Z

    Interlayer-resistivity measurements have been performed on a variety of single crystals of the quasi-two-dimensional organic superconductor {kappa}-(BEDT-TTF){sub 2}Cu[N(CN){sub 2}]Br. These crystals, which have been synthesized along two somewhat different routes, reveal strongly sample-dependent resistivity profiles: while the majority of samples shows a more or less pronounced {rho}(T) maximum around 90 K with a semiconducting behavior above, some crystals remain metallic at all temperatures T {le} 300 K. In the absence of significant differences in the crystals' structural parameters and chemical compositions, as proved by high-resolution X-ray and electron-probe-microanalysis, these results indicate that real structure phenomena, i.e. disorder and/or defects, may strongly affect the inelastic scattering. Comparative resistivity measurements under He-gas pressure on two crystals with strongly differing {rho}(T) profiles indicate that these additional, sample-dependent scattering contributions are characterized by an extraordinarily strong pressure response which is highly non-monotonous as a function of temperature. No correlations have been found between the strength of these scattering contributions and other characteristic properties such as the glass transition at T{sub g} = 77 K, the temperature T* {approx} 40 K, where the temperature dependence of the resistivity changes rather abruptly, or the superconducting transition temperature T{sub c}.

  2. Vibrational relaxation of matrix-isolated CH/sub 3/F and HCl

    SciTech Connect (OSTI)

    Young, L.

    1981-08-01T23:59:59.000Z

    Kinetic and spectroscopic studies have been performed on CH/sub 3/F and HCl as a function of host matrix and temperature. Temporally and spectrally resolved infrared fluorescence was used to monitor the populations of both the initially excited state and the lower lying levels which participate in the relaxation process. For CH/sub 3/F, relaxation from any of the levels near 3.5 ..mu.., i.e. the CH stretching fundamentals or bend overtones, occurs via rapid (< 5 ns) V ..-->.. V transfer to 2..nu../sub 3/ with subsequent relaxation of the ..nu../sub 3/ (CF stretch) manifold. Lifetimes of 2..nu../sub 3/ and ..nu../sub 3/ were determined through overtone, ..delta..V = 2, and fundamental fluorescence. These lifetimes show a dramatic dependence on host lattice, an increase of two orders of magnitude in going from Xe and Ar matrices. Lifetimes depend only weakly on temperature. The relaxation of 2..nu../sub 3/ and ..nu../sub 3/ is consistent with a model in which production of a highly rotationally excited guest via collisions with the repulsive wall of the host is the rate limiting step. For HCl, lifetimes of v = 1,2,3 have been determined. In all hosts, the relaxation is non-radiative. For a given vibrational state, v, the relaxation rate increases in the series k(Ar) < k(Kr) < k(Xe). The dependence of the relaxation rate; on v is superlinear in all matrices, the deviation from linearity increasng in the order Ar < Kr < Xe. The relaxation rates become more strongly temperature dependent with increasing vibrational excitation. The results are consistent with a mechanism in which complex formation introduces the anisotropy necessary to induce a near resonant V ..-->.. R transition in the rate limiting step.

  3. Estimation of mass transport parameters of gases for quantifying CH{sub 4} oxidation in landfill soil covers

    SciTech Connect (OSTI)

    Im, J.; Moon, S.; Nam, K.; Kim, Y.-J. [Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul (Korea, Republic of); Kim, J.Y. [Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul (Korea, Republic of)], E-mail: jaeykim@snu.ac.kr

    2009-02-15T23:59:59.000Z

    Methane (CH{sub 4}), which is one of the most abundant anthropogenic greenhouse gases, is produced from landfills. CH{sub 4} is biologically oxidized to carbon dioxide, which has a lower global warming potential than methane, when it passes through a cover soil. In order to quantify the amount of CH{sub 4} oxidized in a landfill cover soil, a soil column test, a diffusion cell test, and a mathematical model analysis were carried out. In the column test, maximum oxidation rates of CH{sub 4} (V{sub max}) showed higher values in the upper part of the column than those in the lower part caused by the penetration of O{sub 2} from the top. The organic matter content in the upper area was also higher due to the active microbial growth. The dispersion analysis results for O{sub 2} and CH{sub 4} in the column are counter-intuitive. As the upward flow rate of the landfill gas increased, the dispersion coefficient of CH{sub 4} slightly increased, possibly due to the effect of mechanical dispersion. On the other hand, as the upward flow rate of the landfill gas increased, the dispersion coefficient of O{sub 2} decreased. It is possible that the diffusion of gases in porous media is influenced by the counter-directional flow rate. Further analysis of other gases in the column, N{sub 2} and CO{sub 2}, may be required to support this hypothesis, but in this paper we propose the possibility that the simulations using the diffusion coefficient of O{sub 2} under the natural condition may overestimate the penetration of O{sub 2} into the soil cover layer and consequently overestimate the oxidation of CH{sub 4}.

  4. CN ENGINEERING CHALLENGES David Ferryman

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    Railway Engineering Challenges Weakest component in track is thermite welds ­ Half the impact strength

  5. Source attributions of pollution to the Western Arctic during the NASA ARCTAS field campaign

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    ocean uptake of acetonitrile (CH 3 CN) in the atmospherie,and NBBB) with observed acetonitrile (CH 3 CN) (Fig. 4c andbiomass burning tracer of acetonitrile. Our tagged CO simu-

  6. CH spectroscopy for carbon chemical erosion analysis in high density low temperature hydrogen plasma

    SciTech Connect (OSTI)

    Westerhout, J.; Rooij, G. J. van [FOM Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, P. O. Box 1207, 3430 BE Nieuwegein (Netherlands); Lopes Cardozo, N. J. [FOM Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, P. O. Box 1207, 3430 BE Nieuwegein (Netherlands); Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven (Netherlands); Rapp, J. [FOM Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, P. O. Box 1207, 3430 BE Nieuwegein (Netherlands); Institut fuer Energieforschung--Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ, Trilateral Euregio Cluster, D-52425 Juelich (Germany)

    2009-10-12T23:59:59.000Z

    The CH A-X molecular band is measured upon seeding the hydrogen plasma in the linear plasma generator Pilot-PSI [electron temperature T{sub e}=0.1-2.5 eV and electron density n{sub e}=(0.5-5)x10{sup 20} m{sup -3}] with methane. Calculated inverse photon efficiencies for these conditions range from 3 up to >10{sup 6} due to a steeply decreasing electron excitation cross section. The experiments contradict the calculations and show a constant effective inverse photon efficiency of {approx}100 for T{sub e}<1 eV. The discrepancy is explained as the CH A level is populated through dissociative recombination of the molecular ions formed by charge exchange. Collisional de-excitation is observed for n{sub e}>5x10{sup 20} m{sup -3} and 0.1 eV

  7. CHIRON: a package for ChPT numerical results at two loops

    E-Print Network [OSTI]

    Johan Bijnens

    2014-12-02T23:59:59.000Z

    This document describes the package CHIRON which includes two libraries, chiron itself and jbnumlib. CHIRON is a set of routines useful for two-loop numerical results in Chiral Perturbation Theory (ChPT). It includes programs for the needed one- and two-loop integrals as well as routines to deal with the ChPT parameters. The present version includes everything needed for the masses, decay constants and quark-antiquark vacuum-expectation-values. An added routine calculates consistent values for the masses and decay constants when the pion and kaon masses are varied. In addition a number of finite volume results are included: one-loop tadpole integrals, two-loop sunset integrals and the results for masses and decay constants. The numerical routine library jbnumlib contains the numerical routines used in chiron. Many are to a large extent simple C++ versions of routines in the CERNLIB numerical library. Notable exceptions are the dilogarithm and the Jacobi theta function implementations. This paper describes what is included in CHIRON v0.50.

  8. CO2 and CH4 Fluxes across Polygon Geomorphic Types, Barrow, Alaska, 2006-2010

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tweedie,Craig; Lara, Mark

    Carbon flux data are reported as Net Ecosystem Exchange (NEE), Gross Ecosystem Exchange (GEE), Ecosystem Respiration (ER), and Methane (CH4) flux. Measurements were made at 82 plots across various polygon geomorphic classes at research sites on the Barrow Environmental Observatory (BEO), the Biocomplexity Experiment site on the BEO, and the International Biological Program (IBP) site a little west of the BEO. This product is a compilation of data from 27 plots as presented in Lara et al. (2012), data from six plots presented in Olivas et al. (2010); and from 49 plots described in (Lara et al. 2014). Measurements were made during the peak of the growing seasons during 2006 to 2010. At each of the measurement plots (except Olivas et al., 2010) four different thicknesses of shade cloth were used to generate CO2 light response curves. Light response curves were used to normalize photosynthetically active radiation that is diurnally variable to a peak growing season average ~400 umolm-2sec-1. At the Olivas et al. (2010) plots, diurnal patterns were characterized by repeated sampling. CO2 measurements were made using a closed-chamber photosynthesis system and CH4 measurements were made using a photo-acoustic multi-gas analyzer. In addition, plot-level measurements for thaw depth (TD), water table depth (WTD), leaf area index (LAI), and normalized difference vegetation index (NDVI) are summarized by geomorphic polygon type.

  9. Cooperative, Multicentered CH/ Interaction-Controlled Supramolecular Self-Assembly Processes

    SciTech Connect (OSTI)

    Li, Qing [ORNL; Han, Chengbo [North Carolina State University; Horton, Scott R [ORNL; Fuentes-Cabrera, Miguel A [ORNL; Sumpter, Bobby G [ORNL; Lu, Wenchang [North Carolina State University; Bernholc, J. [North Carolina State University; Maksymovych, Petro [ORNL; Pan, Minghu [ORNL

    2012-01-01T23:59:59.000Z

    Supramolecular self-assembly on well-defined surfaces provides access to a multitude of nanoscale architectures, including clusters of distinct symmetry and size. The driving forces underlying supramolecular structures generally involve both graphoepitaxy and weak directional nonconvalent interactions. Here we show that functionalizing a benzene molecule with an ethyne group introduces attractive interactions in a 2D geometry, which would otherwise be dominated by intermolecular repulsion. Furthermore, the attractive interactions enable supramolecular self-assembly, wherein a subtle balance between very weak CH/{pi} bonding and molecule-surface interactions produces a well-defined 'magic' dimension and chirality of supramolecular clusters. The nature of the process is corroborated by extensive scanning tunneling microscopy/spectroscopy (STM/S) measurements and ab initio calculations, which emphasize the cooperative, multicenter characters of the CH/{pi} interaction. This work points out new possibilities for chemical functionalization of {pi}-conjugated hydrocarbon molecules that may allow for the rational design of supramolecular clusters with a desired shape and size.

  10. CH3-ReO3 on gamma-Al2O3: understanding its structure, initiation,and reactivity in olefin metathesis

    SciTech Connect (OSTI)

    Salameh, Alain; Joubert, Jerome; Baudouin, Anne; Lukens, Wayne; Delbecq, Francoise; Sautet, Philippe; Basset, Jean Marie; Coperet,Christophe

    2007-01-20T23:59:59.000Z

    Me-ReO3 on gamma-alumina: understanding the structure, theinitiation and thereactivity of a highly active olefin metathesiscatalyst Heterolytic splitting of the C-H bond of the methyl group ofCH3ReO3 on AlsO reactive sites of alumina as a way to generate the activesite of CH3ReO3 supported on gamma-Al203.

  11. Infrared diode laser studies of the products from the reaction CH{sub 2}({tilde X}{sup 3}B{sub 1}) + O{sub 2} and from the near-UV photolysis of CH{sub 3}NCS

    SciTech Connect (OSTI)

    Alvarez, R.A.

    1993-12-01T23:59:59.000Z

    Absolute yields of CO, CO{sub 2}, and H{sub 2}CO formed in reaction of triplet methylene ({tilde X} {sup 3}B{sub 1} {triple_bond} CH{sub 2}) with O{sub 2} were determined using a flash kinetic spectrometer. CH{sub 2} radicals were generated by excimer laser photolysis of ketene and product formation was monitored by time-resolved infrared diode laser absorption. Reaction was carried out in a static gas cell at room temperature at 1--25 torr. Measured product yields were CO, 0.34 {plus_minus} 0.06; CO{sub 2}, 0.40 {plus_minus} 0.08 H{sub 2}CO, 0.16 {plus_minus} 0.04. Rate constants for production of CO and CO{sub 2} were equivalent to the published rate constant for removal of CH{sub 2}. Indirect evidence indicated that yield of OH is 0.30 {plus_minus} 0.05. Ultraviolet spectrum of methyl isothiocyanate (CH{sub 3}NCS {triple_bond} MITC) and quantum yield for dissociation into methyl isocyanide (CH{sub 3}NC) and atomic sulfur at 308 nm, {Phi} 0.98 {plus_minus} 0.24, were measured. MITC is widely used as a fumigant and readily enters the atmosphere during and after application. Results indicate that photodissociation by sunlight is an effective pathway for removal of MITC from atmosphere. A mechanism is proposed to account for the observed formation of methyl isocyanate (CH{sub 3}NCO) as a secondary product in controlled laboratory studies.

  12. Antiferromagnetic ordering in a novel five-connected 3D polymer {Cu2(2,5-Me2pyz)[N(CN)2]4}nn (2,5-Me2pyz=2,5-dimethylpyrazine)y

    E-Print Network [OSTI]

    Gao, Song

    D interpenetrating network and a b-form with a 2D sheet structure.9 These polymers, however, exhibit networks. It is also a two-fold interpenetrated network (Fig. 2) that is closely related to a recentlyAntiferromagnetic ordering in a novel five-connected 3D polymer {Cu2(2,5-Me2pyz)[N(CN)2]4}nn (2

  13. Analysis of the Christensen et al. Clauser-Horne (CH)-Inequality-Based Test of Local Realism

    E-Print Network [OSTI]

    Donald A. Graft

    2015-01-03T23:59:59.000Z

    The Clauser-Horne (CH) inequality can validly test aspects of locality when properly applied. This paper analyzes a recent CH-based EPRB experiment, the Christensen et al. experiment. Full details of the data analysis applied to the experiment are given. It is shown that the experiment confirms locality and disconfirms the quantum joint prediction. Additionally, the paper contributes to promulgation of robust and correct data analysis by describing the important degrees of freedom that affect the analysis, and that must be addressed in the analysis of any experiment.

  14. Liu Shao-Ch'i and "People's War": A Report on the Creation of Base Areas in 1938

    E-Print Network [OSTI]

    Schwarz, Henry G.

    1969-01-01T23:59:59.000Z

    and the methods they used in dealing with those problems. The document is a report by Liu Shao-ch'i on the creation of Chin-Ch'a-Chi, formally the Shansi-Chahar-Hopei Border region, and other resistance cen ters behind Japanese lines. It was said to have been... provinces of Hopei, Chahar, Suiyiian, Shan tung, and Shansi. Only the East Hopei Autonomous Council 5 under General Yin Ju-keng materialized from the Japanese ef forts. Along the northern periphery of North China, bordering on the Gobi desert...

  15. Detection of Class I Methanol (CH3OH) Maser Candidates in Supernova Remnants

    E-Print Network [OSTI]

    Pihlström, Y M; Frail, D A; Claussen, M J; Mesler, R A; McEwen, B C

    2013-01-01T23:59:59.000Z

    We have used the Karl G. Jansky Very Large Array (VLA) to search for 36 GHz and 44 GHz methanol (CH3OH) lines in a sample of 21 Galactic supernova remnants (SNRs). Mainly the regions of the SNRs with 1720 MHz OH masers were observed. Despite the limited spatial extent covered in our search, methanol masers were detected in both G1.4-0.1 and W28. Additional masers were found in SgrAEast. More than 40 masers were found in G1.4-0.1 which we deduce are due to interactions between the SNR and at least two separate molecular clouds. The six masers in W28 are associated with the molecular cloud that is also associated with the OH maser excitation. We discuss the possibility that the methanol maser may be more numerous in SNRs than the OH maser, but harder to detect due to observational constraints.

  16. Final Report for DOE Project DE-FC07-99CH11010

    SciTech Connect (OSTI)

    Jed Randall; Robert Kean

    2003-10-22T23:59:59.000Z

    Department of Energy award number DE-FC07-99CH11010, Enhanced Utilization of Corn Based Biomaterials, supported a technology development program sponsored by Cargill Dow LLC from September 30, 1999 through June 30, 2003. The work involved fundamental scientific studies on poly lactic acid (PLA), a new environmentally benign plastic material from renewable resources. DOE funds supported academic research at the Colorado School of Mines and the National Renewable Energy Laboratory (NREL), and industry cost share was directed towards applied research into new product development utilizing the fundamental information generated by the academic partners. Under the arrangement of the grant, the fundamental information is published so that other companies can utilize it in evaluating the applicability of PLA in their own products. The overall project objective is to increase the utilization of PLA, a renewable resource based plastic, currently produced from fermented corn sugar.

  17. Theoretical study on collision dynamics of H{sup +} + CH{sub 4} at low energies

    SciTech Connect (OSTI)

    Gao, Cong-Zhang [The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China) [The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Laboratoire de Physique Théorique-IRSAMC, Université Paul Sabatier, F-31062 Toulouse Cedex, France and CNRS, UMR5152, F-31062 Toulouse Cedex (France); Wang, Jing [The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China) [The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Wang, Feng [Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China)] [Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zhang, Feng-Shou, E-mail: fszhang@bnu.edu.cn [The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China) [The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000 (China)

    2014-02-07T23:59:59.000Z

    In this work we make an investigation on collision dynamics of H{sup +} + CH{sub 4} at 30 eV by using time-dependent density functional theory coupled with molecular dynamics approach. All possible reactions are presented based on 9 incident orientations. The calculated fragment intensity is in nice agreement with experimental results. The mechanism of reaction transition for dissociation and proton exchange processes is explained by the intra-molecule energy transfer. However, the energy loss of the proton is in poor agreement with experimental results. The discrepancy is attributed to the mean-field treatment of potential surface. We also studied the dependence on initial velocity of both proton and methane. In addition, we find that for dynamical evolution a different self-interaction correction (SIC) may lead to different results, but with respect to the position of rainbow angle, average-density SIC seems to have reasonable correction.

  18. Detection of class I methanol (CH{sub 3}OH) maser candidates in supernova remnants

    SciTech Connect (OSTI)

    Pihlström, Y. M.; Mesler, R. A.; McEwen, B. C. [Department of Physics and Astronomy, University of New Mexico, MSC07 4220, Albuquerque, NM 87131 (United States); Sjouwerman, L. O.; Frail, D. A.; Claussen, M. J., E-mail: ylva@unm.edu [National Radio Astronomy Observatory, P.O. Box 0, Lopezville Road 1001, Socorro, NM 87801 (United States)

    2014-04-01T23:59:59.000Z

    We have used the Karl G. Jansky Very Large Array to search for 36 GHz and 44 GHz methanol (CH{sub 3}OH) lines in a sample of 21 Galactic supernova remnants (SNRs). Mainly the regions of the SNRs with 1720 MHz OH masers were observed. Despite the limited spatial extent covered in our search, methanol masers were detected in both G1.4–0.1 and W28. Additional masers were found in Sgr A East. More than 40 masers were found in G1.4–0.1, which we deduce are due to interactions between the SNR and at least two separate molecular clouds. The six masers in W28 are associated with the molecular cloud that is also associated with the OH maser excitation. We discuss the possibility that the methanol maser may be more numerous in SNRs than the OH maser, but harder to detect due to observational constraints.

  19. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    SciTech Connect (OSTI)

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13T23:59:59.000Z

    Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach that has seen widespread success involves the use of a proximal heteroatom that serves as a directing group for the selective functionalization of a specific C-H bond. In a survey of examples of heteroatom-directed Rh catalysis, two mechanistically distinct reaction pathways are revealed. In one case, the heteroatom acts as a chelator to bind the Rh catalyst, facilitating reactivity at a proximal site. In this case, the formation of a five-membered metallacycle provides a favorable driving force in inducing reactivity at the desired location. In the other case, the heteroatom initially coordinates the Rh catalyst and then acts to stabilize the formation of a metal-carbon bond at a proximal site. A true test of the utility of a synthetic method is in its application to the synthesis of natural products or complex molecules. Several groups have demonstrated the applicability of C-H bond functionalization reactions towards complex molecule synthesis. Target-oriented synthesis provides a platform to test the effectiveness of a method in unique chemical and steric environments. In this respect, Rh-catalyzed methods for C-H bond functionalization stand out, with several syntheses being described in the literature that utilize C-H bond functionalization in a key step. These syntheses are highlighted following the discussion of the method they employ.

  20. Ecologia Balkanica http://eb.bio.uni-plovdiv.bg

    E-Print Network [OSTI]

    Mollov, Ivelin Aldinov

    Park "Central Balkan" (Bulgaria), during spring, summer and autumn seasons of 2010-2011. A number, subalpine, alpine, "Central Balkan" National park. Introduction The "Central Balkan" National Park lies in the heart of Bulgaria, nestled in the central and higher portions of the Balkan Range. The Park contains

  1. Ecologia Balkanica http://eb.bio.uni-plovdiv.bg

    E-Print Network [OSTI]

    Mollov, Ivelin Aldinov

    and Opportunities of Urbanization ­ Structure of Two Populations of the Balkan Wall Lizard Podarcis tauricus (Pallas and some features of two urban metapopulations of the Balkan Wall Lizard (Podarcis tauricus (Pallas, 1814 of Plovdiv (South Bulgaria). In both study sites, the Balkan Wall lizard inhabits exclusively the interior

  2. Advanced Lighting Program Development (BG9702800) Final Report

    SciTech Connect (OSTI)

    Rubinstein, Francis; Johnson, Steve

    1998-02-01T23:59:59.000Z

    The report presents a long-range plan for a broad-based, coordinated research, development and market transformation program for reducing the lighting energy intensities in commercial and residential buildings in California without compromising lighting quality. An effective program to advance lighting energy efficiency in California must be based on an understanding that lighting is a mature field and the lighting industry has developed many specialized products that meet a wide variety of light needs for different building types. Above all else, the lighting field is diverse and there are applications for a wide range of lighting products, systems, and strategies. Given the range of existing lighting solutions, an effective energy efficient lighting research portfolio must be broad-based and diverse to match the diversity of the lighting market itself. The belief that there is one solution--a magic bullet, such as a better lamp, for example--that will propel lighting efficiency across all uses to new heights is, in the authors' opinion, an illusion. A multi-path program is the only effective means to raising lighting efficiency across all lighting applications in all building types. This report presents a list of 27 lighting technologies and concepts (key activities) that could form the basis of a coordinated research and market transformation plan for significantly reducing lighting energy intensities in California buildings. The total 27 key activities into seven broad classes as follows: Light sources; Ballasts; Luminaires; Lighting Controls; Lighting Systems in Buildings; Human Factors and Education. Each of the above technology classes is discussed in terms of background, key activities, and the energy savings potential for the state. The report concludes that there are many possibilities for targeted research, development, and market transformation activities across all sectors of the building lighting industry. A concerted investment by the state to foster efficiency improvements in lighting systems in commercial and residential buildings would have a major positive impact on energy use and environmental quality in California.

  3. Tuning MPI on BG/Q | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z

  4. APSEC Keynote, Dec 2012, BG Ryder Blended Program Analysis

    E-Print Network [OSTI]

    Ryder, Barbara G.

    , without running the program § Allows checking of specific program properties § Dynamic program analysis, property validation, program understanding, test case generation... § Dynamic Analysis § Input: trace/ components § E.g., personal financial managers, e-commerce applications, information records managers

  5. Biomass Gas Electric LLC BG E | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina:EnergyPark,BioJetMadison,BioflameBioilDataE Jump

  6. Prerequisite Chain for CH E courses The chemical engineering department has revised the current list of prerequisites according to the map

    E-Print Network [OSTI]

    Maranas, Costas

    Prerequisite Chain for CH E courses The chemical engineering department has revised the currentth semester 7th semester 8th semester PROPOSED PREREQUISITES prerequisite prerequisite or concurrent except CH E 300. 3. Math 230 and 251 cover material that is used in several chemical engineering courses

  7. UCOWRJournal of Contemporary Water researCh & eduCation Universities CoUnCil on Water resoUrCes

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    of flooding and cost of protection. van Dantzig's 1956 paper described this risk-based calculation. HeUrnal of Contemporary Water researCh & edUCation issUe 141, pages 1-16, marCh 2009 Dutch Flood Policy Innovations of California - Davis F lood risk management is an important part of life in the Netherlands. The Netherlands

  8. Effects of Collision and Vibrational Energy on the Reaction of CH3CHO+() with C2D4 Ho-Tae Kim, Jianbo Liu, and Scott L. Anderson*

    E-Print Network [OSTI]

    Anderson, Scott L.

    , we calculated the structures and energetics of 13 different complexes that potentially could serve vibrational state. REMPI through different vibrational levels of the B~ electronic state is used to produce CH dynamics with increasing energy. For the CH3CHO+- C2H4 system, there is an important direct mechanism even

  9. CH O Hydrogen Bonds at Protein-Protein Interfaces*S Received for publication, May 8, 2002, and in revised form, July 8, 2002

    E-Print Network [OSTI]

    Luhua, Lai

    CH O Hydrogen Bonds at Protein-Protein Interfaces*S Received for publication, May 8, 2002, a statistical potential has been de- veloped to quantitatively describe the CH O hydrogen bonding interaction-protein interaction studies. The conventional hydrogen bonds of the type X­H Y (where X and Y N or O) have been widely

  10. CB26CH23-Ideker ARI 26 June 2010 20:15 A Decade of Systems Biology

    E-Print Network [OSTI]

    advances in soft- ware tools that allow biologists to explore system-wide models and to formulate newCB26CH23-Ideker ARI 26 June 2010 20:15 R E V I E W S IN A D V A N CE A Decade of Systems Biology) Abstract Systems biology provides a framework for assembling models of biolog- ical pathways from

  11. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    with a project management system that closely linked the field crews to the engineering staff which developedPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA. Availability This report is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory

  12. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    to the general public from: National Technical Information Service U.S. Department of Commerce 5285 Port Royal of the computer control system for the LPI. I. INTRODUCTION The National Spherical Torus Experiment (NSTXPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA

  13. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    copies of this report from: U.S. Department of Energy Office of Scientific and Technical Information DOE how these are provided by the candidate PBX-M NBI system. I. INTRODUCTION The National CompactPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA

  14. Resonance enhanced multiphoton ionization probing of H atoms and CH3 radicals in a hot lament chemical vapour deposition reactor

    E-Print Network [OSTI]

    Bristol, University of

    - lished route for forming polycrystalline diamond ®lms, which are ®nding ever increasing roles reactor used for diamond chemical vapour deposition (CVD). Parameters varied include the hydrocarbon (CH4 to reinforce the consensus view that H atom production during diamond CVD in a hot ®lament reactor arises

  15. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    electric fields generated by rf-induced fast ion loss will be utilized to drive poloidal rotationPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA Electric Fields on ICRF Waves C.K. Phillips, J.C. Hosea, M. Ono, and J.R. Wilson June 2001 #12;PPPL Reports

  16. TpPt(IV)Me(H)2 Forms a -CH4 Complex That Is Kinetically Resistant to Methane Liberation

    E-Print Network [OSTI]

    Keinan, Ehud

    Jolla, California 92037, and Department of Chemistry and Institute of Catalysis Science and Technology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel Received February 21, 2001 heating at 55-70 °C in CH3OH for several hours. However, when 1 was heated at the same temperatures

  17. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMAAccess: Interactive Statistics and Graphics for Plasma Physics Databases by W. Davis and D. Mastrovito October 2003 on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports web site

  18. Communication: Spectroscopic characterization of an alkyl substituted Criegee intermediate syn-CH{sub 3}CHOO through pure rotational transitions

    SciTech Connect (OSTI)

    Nakajima, Masakazu; Endo, Yasuki, E-mail: endo@bunshi.c.u-tokyo.ac.jp [Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan)] [Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2014-01-07T23:59:59.000Z

    An alkyl-substituted Criegee intermediate syn-CH{sub 3}CHOO was detected in the gas phase through Fourier-transform microwave spectroscopy. Observed pure rotational transitions show a small splitting corresponding to the A/E components due to the threefold methyl internal rotation. The rotational constants and the barrier height of the hindered methyl rotation were determined to be A = 17?586.5295(15) MHz, B = 7133.4799(41) MHz, C = 5229.1704(40) MHz, and V{sub 3} = 837.1(17) cm{sup ?1}. High-level ab initio calculations which reproduce the experimentally determined values well indicate that the in-plane C–H bond in the methyl moiety is trans to the C–O bond, and other two protons are directed to the terminal oxygen atom for the most stable structure of syn-CH{sub 3}CHOO. The torsional barrier of the methyl top is fairly large in syn-CH{sub 3}CHOO, implying a significant interaction between the terminal oxygen and the protons of the methyl moiety, which may be responsible for the high production yields of the OH radical from energized alkyl-substituted Criegee intermediates.

  19. Gibbs and Helmholtz energies of formation of sI clathrate hydrates from CO$_2$, CH$_4$ and water

    E-Print Network [OSTI]

    K. S. Glavatskiy; T. J. H. Vlugt; S. Kjelstrup

    2013-07-26T23:59:59.000Z

    We determine thermodynamic stability conditions in terms of Helmholtz and Gibbs energies for sI clathrate hydrates with CH$_4$ and CO$_2$ at 278 K. Helmholtz energies are relevant for processing from porous rocks (constant volume), while Gibbs energies are relevant for processing from layers on the ocean floor (constant pressure). We define three steps leading to hydrate formation, and find Helmholtz energy differences from molecular simulations for two of them using grand-canonical Monte Carlo simulations at constant temperature and volume; while the third step was calculated from literature data. The Gibbs energy change for the same steps are also determined. From the variations in the total Helmholtz and Gibbs energies we suggest thermodynamic paths for exchange of CH$_4$ by CO$_2$ in the isothermal hydrate, for constant volume or pressure, respectively. We show how these paths for the mixed hydrate can be understood from single-component occupancy isotherms, where CO$_2$, but not CH$_4$, can distinguish between large and small cages. The strong preference for CH$_4$ for a range of compositions can be explained by these.

  20. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    energy sources. As fossil fuels become less and less available as an energy option, the transmission o fPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA. Availability This report is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory

  1. Information Retrieval and Situation Theory Th.W.Ch. Huibers M. Lalmas and C.J. van Rijsbergen

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Information Retrieval and Situation Theory Th.W.Ch. Huibers M. Lalmas and C.J. van Rijsbergen of information has made it a matter of survival for companies to have at their disposal good information on a theory of information, Situation Theory, which provides a powerful arsenal of concepts, which is useful

  2. Information Retrieval and Situation Theory Th.W.Ch. Huibers M. Lalmas and C.J. van Rijsbergen

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Information Retrieval and Situation Theory Th.W.Ch. Huibers M. Lalmas and C.J. van Rijsbergen of information has made it a matter of survival for companies to have at their disposal good information should be based on a theory of information, Situation Theory, which provides a powerful arsenal

  3. Assessment of kinetic modeling for lean H2/CH4/O2/diluent flames at high pressures

    E-Print Network [OSTI]

    Ju, Yiguang

    : Hydrogen; Methane; Syngas; Flame speed; Chemical mechanism 1. Introduction The H2/O2 reaction system CO, CO2, H2O, CH4 and other small hydrocarbons (synthetic gas or "syngas") from coal or biomass gasification [2]. Typical syngas mixtures can contain significant amounts of small molecular weight

  4. 40 CFR Ch. I (7105 Edition)Pt. 194 1,2,4-Trichlorobenzene (Benzene, 1,2,4-

    E-Print Network [OSTI]

    36 40 CFR Ch. I (7­1­05 Edition)Pt. 194 Toxaphene 1,2,4-Trichlorobenzene (Benzene, 1,2,4- trichloro (Benzene, 1,3,5-trinitro-) Tris(1-aziridinyl)phosphine sulfide (Aziridine, 1,1,1phosphinothioylidyne

  5. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    /FW for on-axis current drive and a Lower Hybrid system for off-axis. Transport projections are presentedPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA agency thereof. Availability This report is posted on the U.S. Department of Energy's Princeton Plasma

  6. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    ://www.ntis.gov/ordering.htm #12;A Lower Hybrid Current Drive System for Alcator C-Mod. S. Bernabei, J.C. Hosea, D. Loesser, J, P. Woskov, PSFC, MIT. Abstract. A Lower Hybrid Current Drive system is being constructed jointlyPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA

  7. Induction of ovulation in deeply anestrous mares by different doses of a gonadotropin-releasing hormone analogue (CH 690030)

    E-Print Network [OSTI]

    Chen, Fang-Jane Jennifer

    1993-01-01T23:59:59.000Z

    A total of 54 mares in seasonal anestrous were assigned to 5 groups to receive implants containing one of the 5 doses (0, 0.9, 1.8, 3.6, and 5.4 mg/head in group order) of a GnRH analogue (CH 690030 or Goserelin) on January 28. Five mares...

  8. Mixing, Lyapunov instability, and the approach to equilibrium in a hard-sphere gas Ch. Dellago and H. A. Posch

    E-Print Network [OSTI]

    Dellago, Christoph

    Mixing, Lyapunov instability, and the approach to equilibrium in a hard-sphere gas Ch. Dellago, Austria Received 31 July 1996 We present maximum Lyapunov exponents 1 and related Kolmogorov time of a one-particle distribution. At low densities the Lyapunov time 1/ 1 is much smaller than

  9. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    and granite mining operations in South Africa and Europe, has existed for more than 25 years. When miningPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports web site

  10. Gas Hydrate Equilibria for CO2-N2 and CO2-CH4 gas mixtures Experimental studies and Thermodynamic Modelling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Gas Hydrate Equilibria for CO2-N2 and CO2-CH4 gas mixtures ­ Experimental studies and Thermodynamic of experimental data on the phase equilibrium of gas hydrates in the presence of binary gas mixtures comprising CO of the gas phase as well as the hydrate phase without the need to sample the hydrate. The experimental

  11. 126 VV--,,,, "" sasho.chom@gmail.com, koychev@fmi.uni-sofia.bg, alexander_grigorov@fmi.uni-sofia.bg

    E-Print Network [OSTI]

    Koychev, Ivan

    Auth ­ CI, Blowfish bcrypt . - Solr-php-client ( Apache Solr). - Rest CodeIgniter (API , , , (), . Java, SOLR Tomcat #12;130 VV-- ,,,, "" . Lucene Java . REST . Apache), . . C++, , (API

  12. Electrophilic, Ambiphilic, and Nucleophilic C-H bond Activation: Understanding the electronic continuum of C-H bond activation through transition-state and reaction pathway interaction energy decompositions

    SciTech Connect (OSTI)

    Ess, Daniel H; Goddard, William A; Periana, Roy A

    2010-01-01T23:59:59.000Z

    The potential energy and interaction energy profiles for metal- and metal?ligand-mediated alkane C?H bond activation were explored using B3LYP density functional theory (DFT) and the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA). The set of complexes explored range from late transition metal group 10 (Pt and Pd) and group 11 (Au) metal centers to group 7?9 (Ir, Rh, Ru, and W) metal centers as well as a group 3 Sc complex. The coordination geometries, electron metal count (d{sup 8}, d{sup 6}, d{sup 4}, and d{sup 0}), and ligands (N-heterocycles, O-donor, phosphine, and Cp*) are also diverse. Quantitative analysis using ALMO-EDA of both directions of charge-transfer stabilization (occupied to unoccupied orbital stabilization) energies between the metal?ligand fragment and the coordinated C?H bond in the transition state for cleavage of the C?H bond allows classification of C?H activation reactions as electrophilic, ambiphilic, or nucleophilic on the basis of the net direction of charge-transfer energy stabilization. This bonding pattern transcends any specific mechanistic or bonding paradigm, such as oxidative addition, ?-bond metathesis, or substitution. Late transition metals such as Au(III), Pt(II), Pd(II), and Rh(III) metal centers with N-heterocycle, halide, or O-donor ligands show electrophilically dominated reaction profiles with forward charge-transfer from the C?H bond to the metal, leading to more stabilization than reverse charge transfer from the metal to the C?H bond. Transition states and reaction profiles for d{sup 6} Ru(II) and Ir(III) metals with Tp and acac ligands were found to have nearly equal forward and reverse charge-transfer energy stabilization. This ambiphilic region also includes the classically labeled electrophilic cationic species Cp*(PMe{sub 3})Ir(Me). Nucleophilic character, where the metal to C?H bond charge-transfer interaction is most stabilizing, was found in metathesis reactions with W(II) and Sc(III) metal center complexes in reactions as well as late transition metal Ir(I) and Rh(I) pincer complexes that undergo C?H bond insertion. Comparison of pincer ligands shows that the PCP ligand imparts more nucleophilic character to an Ir metal center than a deprotonated PNP ligand. The PCP and POCOP ligands do not show a substantial difference in the electronics of C?H activation. It was also found that Rh(I) is substantially more nucleophilic than Ir(I). Lastly, as a qualitative approximation, investigation of transition-state fragment orbital energies showed that relative frontier orbital energy gaps correctly reflect electrophilic, ambiphilic, or nucleophilic charge-transfer stabilization patterns.

  13. Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation

    SciTech Connect (OSTI)

    Lewis, Jared; Bergman, Robert; Ellman, Jonathan

    2008-02-04T23:59:59.000Z

    Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct funtionalization of nitrogen heterocycles through C-H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes their work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods. They initially discovered an intramolecular Rh-catalyzed C-2-alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. They then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, they discovered that a novel substrate-derived Rh-N-heterocyclic carbene (NHC) complex was involved as an intermediate. They then synthesized analogous Rh-NHC complexes directly by treating precursors to the intermediate [RhCl(PCy{sub 3}){sub 2}] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazolein, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy{sub 3}){sub 2} fragment coordinates to the heterocycle before intramolecular activation of the C-H bond occurs. The resulting Rh-H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid co-catalysts accelerate the alkylation, they developed conditions that efficiently and intermolecularly alkylate a variety of heterocycles, including azoles, azolines, dihydroquinazolines, pyridines, and quinolines, with a wide range of functionalized olefins. They demonstrated the utility of this methodology in the synthesis of natural products, drug candidates, and other biologically active molecules. In addition, they developed conditions to directly arylate these heterocycles with aryl halides. The initial conditions that used PCy{sub 3} as a ligand were successful only for aryl iodides. However, efforts designed to avoid catalyst decomposition led to the development of ligands based on 9-phosphabicyclo[4.2.1]nonane (Phoban) that also facilitated the coupling of aryl bromides. They then replicated the unique coordination environment, stability, and catalytic activity of this complex using the much simpler tetrahydrophosphepine ligands and developed conditions that coupled aryl bromides bearing diverse functional groups without the use of a glovebox or purified reagents. With further mechanistic inquiry, they anticipate that researchers will better understand the details of the aforementioned Rh-catalyzed C-H bond functionalization reactions, resulting in the design of more efficient and robust catalysts, expanded substrate scope, and new transformations.

  14. Iron(IV)hydroxide pKa and the Role of Thiolate Ligation in C-H Bond

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 Investigation Peer ReviewIron is the Key to

  15. Thermochemical Insight into the Reduction of CO to CH3OH with [Re(CO)]+ and [Mn(CO)]+ Complexes

    SciTech Connect (OSTI)

    Wiedner, Eric S.; Appel, Aaron M.

    2014-05-22T23:59:59.000Z

    To gain insight into thermodynamic barriers for reduction of CO into CH3OH, free energies for reduction of [CpRe(PPh3)(NO)(CO)]+ into CpRe(PPh3)(NO)(CH2OH) have been determined from experimental measurements. Using model complexes, the free energies for the transfer of H+, H–, and e– have been determined. A pKa of 10.6 was estimated for [CpRe(PPh3)(NO)(CHOH)]+ by measuring the pKa for the analogous [CpRe(PPh3)(NO)(CMeOH)]+. The hydride donor ability (?G°H–) of CpRe(PPh3)(NO)(CH2OH) was estimated to be 58.0 kcal mol–1, based on calorimetry measurements of the hydride transfer reaction between CpRe(PPh3)(NO)(CHO) and [CpRe(PPh3)(NO)(CHOMe)]+ to generate the methylated analog, CpRe(PPh3)(NO)(CH2OMe). Cyclic voltammograms recorded on CpRe(PPh3)(NO)(CMeO), CpRe(PPh3)(NO)(CH2OMe), and [CpRe(PPh3)(NO)(CHOMe)]+ displayed either a quasireversible oxidation (neutral species) or reduction (cationic species). These potentials were used as estimates for the oxidation of CpRe(PPh3)(NO)(CHO) or CpRe(PPh3)(NO)(CH2OH), or the reduction of [CpRe(PPh3)(NO)(CHOH)]+. Combination of the thermodynamic data permits construction of three-dimensional free energy landscapes under varying conditions of pH and PH2. The free energy for H2 addition (?G°H2) to [CpRe(PPh3)(NO)(CO)]+ (+15 kcal mol–1) was identified as the most significant thermodynamic impediment for the reduction of CO. DFT computations indicate that ?G°H2 varies by only 4.3 kcal mol–1 across a series of [CpXRe(L)(NO)(CO)]+, while the experimental ?G°H– values for the analogous series of CpRe(PPh3)(NO)(CHO) varies by 12.9 kcal mol–1. The small range of ?G°H2 values is attributed to a minimal change in the C–O bond polarization upon modification of the ancillary ligands, as determined from the computed atomic charges. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  16. Discovery of Interstellar Propylene (CH_2CHCH_3): Missing Links in Interstellar Gas-Phase Chemistry

    E-Print Network [OSTI]

    Marcelino, N; Agundez, M; Roueff, E; Gerin, M; Martín-Pintado, J; Mauersberger, R; Thum, C

    2007-01-01T23:59:59.000Z

    We report the discovery of propylene (also called propene, CH_2CHCH_3) with the IRAM 30-m radio telescope toward the dark cloud TMC-1. Propylene is the most saturated hydrocarbon ever detected in space through radio astronomical techniques. In spite of its weak dipole moment, 6 doublets (A and E species) plus another line from the A species have been observed with main beam temperatures above 20 mK. The derived total column density of propylene is 4 10^13 cm^-2, which corresponds to an abundance relative to H_2 of 4 10^-9, i.e., comparable to that of other well known and abundant hydrocarbons in this cloud, such as c-C_3H_2. Although this isomer of C_3H_6 could play an important role in interstellar chemistry, it has been ignored by previous chemical models of dark clouds as there seems to be no obvious formation pathway in gas phase. The discovery of this species in a dark cloud indicates that a thorough analysis of the completeness of gas phase chemistry has to be done.

  17. Discovery of Interstellar Propylene (CH_2CHCH_3): Missing Links in Interstellar Gas-Phase Chemistry

    E-Print Network [OSTI]

    N. Marcelino; J. Cernicharo; M. Agundez; E. Roueff; M. Gerin; J. Martin-Pintado; R. Mauersberger; C. Thum

    2007-07-09T23:59:59.000Z

    We report the discovery of propylene (also called propene, CH_2CHCH_3) with the IRAM 30-m radio telescope toward the dark cloud TMC-1. Propylene is the most saturated hydrocarbon ever detected in space through radio astronomical techniques. In spite of its weak dipole moment, 6 doublets (A and E species) plus another line from the A species have been observed with main beam temperatures above 20 mK. The derived total column density of propylene is 4 10^13 cm^-2, which corresponds to an abundance relative to H_2 of 4 10^-9, i.e., comparable to that of other well known and abundant hydrocarbons in this cloud, such as c-C_3H_2. Although this isomer of C_3H_6 could play an important role in interstellar chemistry, it has been ignored by previous chemical models of dark clouds as there seems to be no obvious formation pathway in gas phase. The discovery of this species in a dark cloud indicates that a thorough analysis of the completeness of gas phase chemistry has to be done.

  18. CH{sub 4}-CO{sub 2} reforming over Ni-substituted barium hexaaluminate catalysts

    SciTech Connect (OSTI)

    Gardner, Todd H. [U.S. DOE; Spivey, James J. [ORISE; Kugler, Edwin L.; Pakhare, Devendra

    2013-03-30T23:59:59.000Z

    A series of Ni-substituted barium hexaaluminate catalysts, Ba{sub 0.75}Ni{sub y}Al{sub 12?y}O{sub 19??} (y = 0.4, 0.6 and 1.0), were tested for CO{sub 2} reforming of CH{sub 4} at temperatures between 200 and 900 °C. Temperature programmed surface reaction results show that the reaction lights-off in a temperature range between 448 and 503 °C with a consistent decrease in light-off temperature with increasing Ni substitution. Isothermal runs performed at 900 °C show near equilibrium conversion and stable product concentrations for 18 h on all catalysts. Temperature programmed oxidation of the used catalysts show that the amount of carbon deposited on the catalyst increases with Ni substitution. High resolution XRD of the used Ba{sub 0.75}Ni{sub 0.4}Al{sub 11.6}O{sub 19??} catalyst shows a statistically significant contraction of the unit cell which is the result of NiO reduction from the lattice. XRD of the used catalyst also confirms the presence of graphitic carbon. XPS and ICP measurements of the as prepared catalysts show that lower levels of Ni substitution result in an increasing proportion of Ba at the surface.

  19. CH4-CO2 reforming over Ni-substituted barium hexaaluminate catalysts

    SciTech Connect (OSTI)

    Gardner, Todd H. [U.S. DOE; Spivey, James J. [Louisiana State University; Kugler, Edwin L. [WVU; Pakhare, Devendra [Louisiana State University

    2013-01-01T23:59:59.000Z

    A series of Ni-substituted barium hexaaluminate catalysts, Ba0.75NiyAl12?yO19?? (y = 0.4, 0.6 and 1.0), were tested for CO2 reforming of CH4 at temperatures between 200 and 900 ?C. Temperature programmed surface reaction results show that the reaction lights-off in a temperature range between 448 and 503 ?C with a consistent decrease in light-off temperature with increasing Ni substitution. Isothermal runs performed at 900 ?C show near equilibrium conversion and stable product concentrations for 18 h on all catalysts. Temperature programmed oxidation of the used catalysts show that the amount of carbon deposited on the catalyst increases with Ni substitution. High resolution XRD of the used Ba0.75Ni0.4Al11.6O19?? catalyst shows a statistically significant contraction of the unit cell which is the result of NiO reduction from the lattice. XRD of the used catalyst also confirms the presence of graphitic carbon. XPS and ICP measurements of the as prepared catalysts show that lower levels of Ni substitution result in an increasing proportion of Ba at the surface.

  20. OH and CH luminescence in opposed flow methane oxy-flames

    SciTech Connect (OSTI)

    De Leo, Maurizio; Saveliev, Alexei; Kennedy, Lawrence A. [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Zelepouga, Serguei A. [Gas Technology Institute, Des Plaines, IL 60018 (United States)

    2007-06-15T23:59:59.000Z

    Emission spectroscopy is a 2-D nonintrusive diagnostic technique that offers spatially resolved data for combustion optimization and control. The UV and visible chemiluminescence of the excited radicals CH(A{sup 2}{delta},B{sup 2}{sigma}{sup -}) and OH(A{sup 2}{sigma}{sup +}) is studied experimentally and numerically in opposed-flow diffusion flames of methane and oxygen-enriched air. The oxidized oxygen content is varied from 21 to 100% while the range of the studied strain rates spans from 20 to 40 s{sup -1}. The spectrally resolved imaging is obtained by two different methods: scattering through a grating monochromator and interposition of interference filters along the optical path. Absolute measured chemiluminescence intensities, coupled with a numerical model based on the opposed flow flame code, are used to evaluate the chemical kinetics of the excited species. The predictions of the selected model are in good agreement with the experimental data over the range of the studied flame conditions. (author)

  1. Solvent dependent branching between C-I and C-Br bond cleavage following 266 nm excitation of CH{sub 2}BrI

    SciTech Connect (OSTI)

    Anderson, Christopher P.; Spears, Kenneth G.; Wilson, Kaitlynn R.; Sension, Roseanne J. [Department of Chemistry and Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Chemistry and Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2013-11-21T23:59:59.000Z

    It is well known that ultraviolet photoexcitation of halomethanes results in halogen-carbon bond cleavage. Each halogen-carbon bond has a dominant ultraviolet (UV) absorption that promotes an electron from a nonbonding halogen orbital (n{sub X}) to a carbon-halogen antibonding orbital (?*{sub C-X}). UV absorption into specific transitions in the gas phase results primarily in selective cleavage of the corresponding carbon-halogen bond. In the present work, broadband ultrafast UV-visible transient absorption studies of CH{sub 2}BrI reveal a more complex photochemistry in solution. Transient absorption spectra are reported spanning the range from 275 nm to 750 nm and 300 fs to 3 ns following excitation of CH{sub 2}BrI at 266 nm in acetonitrile, 2-butanol, and cyclohexane. Channels involving formation of CH{sub 2}Br + I radical pairs, iso-CH{sub 2}Br-I, and iso-CH{sub 2}I-Br are identified. The solvent environment has a significant influence on the branching ratios, and on the formation and stability of iso-CH{sub 2}Br-I. Both iso-CH{sub 2}Br-I and iso-CH{sub 2}I-Br are observed in cyclohexane with a ratio of ?2.8:1. In acetonitrile this ratio is 7:1 or larger. The observation of formation of iso-CH{sub 2}I-Br photoproduct as well as iso-CH{sub 2}Br-I following 266 nm excitation is a novel result that suggests complexity in the dissociation mechanism. We also report a solvent and concentration dependent lifetime of iso-CH{sub 2}Br-I. At low concentrations the lifetime is >4 ns in acetonitrile, 1.9 ns in 2-butanol and ?1.4 ns in cyclohexane. These lifetimes decrease with higher initial concentrations of CH{sub 2}BrI. The concentration dependence highlights the role that intermolecular interactions can play in the quenching of unstable isomers of dihalomethanes.

  2. DISCOVERY OF THE FIRST METHANOL (CH{sub 3}OH) MASER IN THE ANDROMEDA GALAXY (M31)

    SciTech Connect (OSTI)

    Sjouwerman, Lorant O.; Murray, Claire E. [National Radio Astronomy Observatory, P.O. Box 0, Lopezville Rd. 1001, Socorro, NM 87801 (United States); Pihlstroem, Ylva M. [Department of Physics and Astronomy, University of New Mexico, MSC07 4220, Albuquerque, NM 87131 (United States); Fish, Vincent L. [Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886 (United States); Araya, Esteban D., E-mail: lsjouwer@nrao.ed [Physics Department, Western Illinois University, 1 University Circle, Macomb, IL 61455 (United States)

    2010-12-01T23:59:59.000Z

    We present the first detection of a 6.7 GHz Class II methanol (CH{sub 3}OH) maser in the Andromeda galaxy (M31). The CH{sub 3}OH maser was found in a VLA survey during the fall of 2009. We have confirmed the methanol maser with the new EVLA, in operation since 2010 March, but were unsuccessful in detecting a water maser at this location. A direct application for this methanol maser is the determination of the proper motion of M31, such as was previously obtained with water masers in M33 and IC10. Unraveling the three-dimensional velocity of M31 would solve for the biggest unknown in the modeling of the dynamics and evolution of the Local Group of galaxies.

  3. The Breathing Orbital Valence Bond Method in Diffusion Monte Carlo: C-H Bond Dissociation ofAcetylene

    SciTech Connect (OSTI)

    Domin, D.; Braida, Benoit; Lester Jr., William A.

    2008-05-30T23:59:59.000Z

    This study explores the use of breathing orbital valence bond (BOVB) trial wave functions for diffusion Monte Carlo (DMC). The approach is applied to the computation of the carbon-hydrogen (C-H) bond dissociation energy (BDE) of acetylene. DMC with BOVB trial wave functions yields a C-H BDE of 132.4 {+-} 0.9 kcal/mol, which is in excellent accord with the recommended experimental value of 132.8 {+-} 0.7 kcal/mol. These values are to be compared with DMC results obtained with single determinant trial wave functions, using Hartree-Fock orbitals (137.5 {+-} 0.5 kcal/mol) and local spin density (LDA) Kohn-Sham orbitals (135.6 {+-} 0.5 kcal/mol).

  4. Characteristics of molecular hydrogen and CH* radicals in a methane plasma in a magnetically enhanced capacitive RF discharge

    SciTech Connect (OSTI)

    Avtaeva, S. V.; Lapochkina, T. M. [Kyrgyz-Russian Slavic University (Kyrgyzstan)

    2007-09-15T23:59:59.000Z

    The parameters of a methane-containing plasma in an asymmetric RF capacitive discharge in an external magnetic field were studied using optical emission spectroscopy. The power deposited in the discharge was 90 W and the gas pressure and magnetic field were varied in the ranges 1-5 Pa and 50-200 G, respectively. The vibrational and rotational temperatures of hydrogen molecules and CH* radicals were measured as functions of the magnetic field and methane pressure. The ratio between the densities of atomic and molecular hydrogen was estimated. The processes responsible for the excitation of molecular hydrogen and CH* radicals in a methane-containing plasma in an RF capacitive discharge are analyzed.

  5. Electron Transport Coefficients and Scattering Cross Sections in CH4, HBr and in Mixtures of He and Xe

    SciTech Connect (OSTI)

    Sasic, Olivera M. [Institute of Physics, POB 68, 11080 Belgrade (Serbia and Montenegro); Faculty of Transport and Traffic Engineering, Belgrade (Serbia and Montenegro)

    2006-12-01T23:59:59.000Z

    We have applied a standard swarm procedure in order to obtain electron scattering cross sections and transport coefficients that provide a data base for plasma modeling. In case of CH4 the dissociative excitation cross sections from binary collision experiments were renormalized by fitting the measured excitation coefficients with our calculations. In case of HBr we have produced a complete set of cross sections based on available data from the literature, with some extrapolations. We have also tested the cross sections in He-Xe mixtures and the application of Blanc's law and common mean energy procedure in calculating drift velocities in by comparison with recent measurements. Finally, a well tested Monte Carlo code was used in wide range of both DC and RF electric and magnetic fields in order to calculate a number of transport coefficients in case of CH4 and HBr.

  6. Effect of Spin-Crossover-Induced Pore Contraction on CO{sub 2}-Host Interactions in the Porous Coordination Polymers [Fe(pyrazine)M(CN){sub 4}] (M = Ni, Pt)

    SciTech Connect (OSTI)

    Culp, Jeffrey T.; Chen, De-Li; Liu, Jinchen; Chirdon, Danielle; Kauffman, Kristi; Goodman, Angela; Johnson, J. Karl

    2013-02-01T23:59:59.000Z

    Variable-temperature in situ ATR-FTIR spectra are presented for the porous spin-crossover compounds [Fe(pyrazine)- Ni(CN){sub 4}] and [Fe(pyrazine)Pt(CN){sub 4}] under CO{sub 2} pressures of up to 8 bar. Significant shifts in the ?{sub 3} and ?{sub 2} IR absorption bands of adsorbed CO{sub 2} are observed as the host materials undergo transition between low- and high-spin states. Computational models used to determine the packing arrangement of CO{sub 2} within the pore structures show a preferred orientation of one of the adsorbed CO{sub 2} molecules with close O=C=O···H contacts with the pyrazine pillar ligands. The interaction is a consequence of the commensurate distance of the inter-pyrazine separations and the length of the CO{sub 2} molecule, which allows the adsorbed CO{sub 2} to effectively bridge the pyrazine pillars in the structure. The models were used to assign the distinct shifts in the IR absorption bands of the adsorbed CO{sub 2} that arise from changes in the O=C=O···H contacts that strengthen and weaken in correlation with changes in the Fe–N bond lengths as the spin state of Fe changes. The results indicate that spin-crossover compounds can function as a unique type of flexible sorbent in which the pore contractions associated with spin transition can affect the strength of CO{sub 2}–host interactions.

  7. Supplementary Figure 1: ChR2-EYFP expression after fear conditioning recapitulates endogenous c-fos expression.

    E-Print Network [OSTI]

    Schnitzer, Mark

    -fos expression. The c-fos-tTA mice were injected with AAV9-TRE-ChR2-EYFP targeting the DG and kept on Dox for a month prior to training. Then, they were taken off Dox for two days to open a window of activity­positive cells do not overlap. (a) DG from experimental mice kept off Dox for two days and then subjected to fear

  8. Marc A. Meyers Y.Z.Tang, C.-H. Lu,T. Remington, S. Zhao, E. Hahn UCSD

    E-Print Network [OSTI]

    Nemat-Nasser, Sia

    Marc A. Meyers Y.Z.Tang, C.-H. Lu,T. Remington, S. Zhao, E. Hahn UCSD E. M. Bringa, C. Ruestes, U (transmission) Meyers,Wark, Remington, Ravichandran et al., Acta Mat, 2001 #12;0 100 200 300 400 500 600 1.0E+03 Diffraction during Shock Compression Meyers,Wark, Remington, Ravichandran et al., Acta Mat, 2001 (12)f = (1

  9. Resolving the Dusty Circumstellar Structure of the Enigmatic Symbiotic Star CH Cygni with the MMT Adaptive Optics System

    E-Print Network [OSTI]

    Beth A. Biller; Laird M. Close; Aigen Li; Massimo Marengo; John H. Bieging; Phil M. Hinz; William F. Hoffmann; Guido Brusa; Doug Miller

    2006-04-14T23:59:59.000Z

    We imaged the symbiotic star CH Cyg and two PSF calibration stars using the unique 6.5m MMT deformable secondary adaptive optics system. Our high-resolution (FWHM=0.3"), very high Strehl (98%+-2%) mid-infrared (9.8 and 11.7 um) images of CH Cyg allow us to probe finer length scales than ever before for this object. CH Cyg is significantly extended compared to our unresolved PSF calibration stars (Mu UMa and Alpha Her) at 9.8 and 11.7 um. We estimated the size of the extension by convolving a number of simple Gaussian models with the Mu UMa PSF and determining which model provided the best fit to the data. Adopting the Hipparcos distance for this object of 270 pc, we found a nearly Gaussian extension with a FWHM at 9.8 um of ~40.5+-2.7 AU (0.15+-0.01") and a FWHM at 11.7 um of 45.9+-2.7 AU (0.17+-0.01"). After subtracting out the Gaussian component of the emission (convolved with our PSF), we found a faint \\~0.7" asymmetric extension which peaks in flux ~0.5" north of the stars. This extension is roughly coincident with the northern knotlike feature seen in HST WFPC2 images obtained in 1999.

  10. Dynamics of excess electrons in atomic and molecular clusters

    E-Print Network [OSTI]

    Young, Ryan Michael

    2011-01-01T23:59:59.000Z

    Time-Resolved Dynamics in Acetonitrile Cluster Anions (CH 3Time-resolved dynamics in acetonitrile clusters anions (CH 3resolved dynamics in acetonitrile clusters anions (CH 3 CN)

  11. Tensor analysis applied to symmetrical components

    E-Print Network [OSTI]

    Iriarte, Modesto

    1949-01-01T23:59:59.000Z

    + dbms+ b%g) ? (c e9 +$h~ + k ~b) (&~) qk-4h $q-dk dh- &'j ch- bk b& a'k -&Q bg-~ (7e) provided &8 0 ~ Eaoh tern is understood to be nultiplied by the soalar ks seen, froa what has been stated, in order to find the inverse of a entre it nust...

  12. New way of healing : experienced counsellors’ perceptions of the influence of ch’i-related exercises on counselling practice in Taiwan 

    E-Print Network [OSTI]

    Liou, Chin-Ping

    2014-07-01T23:59:59.000Z

    This study examines how Taiwanese senior counsellors with substantial experience of ch’i-related exercise (CRE) perceived the influence of their regular CRE on their counselling practice. I am interested in the perceived influence of CRE on both...

  13. A Highly Reactive Mononuclear Non-Heme Manganese(IV)?Oxo Complex That Can Activate the Strong C?H Bonds of Alkanes

    SciTech Connect (OSTI)

    Wu, Xiujuan; Seo, Mi Sook; Davis, Katherine M.; Lee, Yong-Min; Chen, Junying; Cho, Kyung-Bin; Pushkar, Yulia N.; Nam, Wonwoo (Ewha); (Purdue)

    2012-03-15T23:59:59.000Z

    A mononuclear non-heme manganese(IV)-oxo complex has been synthesized and characterized using various spectroscopic methods. The Mn(IV)-oxo complex shows high reactivity in oxidation reactions, such as C-H bond activation, oxidations of olefins, alcohols, sulfides, and aromatic compounds, and N-dealkylation. In C-H bond activation, the Mn(IV)-oxo complex can activate C-H bonds as strong as those in cyclohexane. It is proposed that C-H bond activation by the non-heme Mn(IV)-oxo complex does not occur via an oxygen-rebound mechanism. The electrophilic character of the non-heme Mn(IV)-oxo complex is demonstrated by a large negative {rho} value of {approx}4.4 in the oxidation of para-substituted thioanisoles.

  14. Spatial and temporal patterns of CO[subscript 2] and CH[subscript 4] fluxes in China's croplands in response to multifactor environmental changes

    E-Print Network [OSTI]

    REN, WEI

    The spatial and temporal patterns of CO[subscript 2] and CH[subscript 4] fluxes in China's croplands were investigated and attributed to multifactor environmental changes using the agricultural module of the Dynamic Land ...

  15. Room Temperature Copper(II)-Catalyzed Oxidative Cyclization of Enamides to 2,5-Disubstituted Oxazoles via Vinylic C–H Functionalization

    E-Print Network [OSTI]

    Cheung, Chi Wai

    A copper(II)-catalyzed oxidative cyclization of enamides to oxazoles via vinylic C–H bond functionalization at room temperature is described. Various 2,5-disubstituted oxazoles bearing aryl, vinyl, alkyl, and heteroaryl ...

  16. The Reaction of bis(1,2,4-tri-t-butylcyclopentadienyl)ceriumbenzyl, Cp'2CeCH2Ph with Methylhalides: a Metathesis Reaction that does not proceed by a Metathesis Transition State

    SciTech Connect (OSTI)

    Werkema, Evan; Andersen, Richard; Maron, Laurent; Eisenstein, Odile

    2009-09-02T23:59:59.000Z

    The experimental reaction between [1,2,4-(Me3C)3C5H2]2CeCH2Ph and CH3X, X = F, Cl, Br, and I, yields the metathetical exchange products, [1,2,4-(Me3C)3C5H2]2CeX and CH3CH2Ph. The reaction is complicated by the equilibrium between the benzyl derivative and the metallacycle [[1,2,4-(Me3C)3C5H2] [(Me3C)2C5H2C(CH3)2CH2]Ce, plus toluene since the metallacycle reacts with CH3X. Labelling studies show that the methyl group of the methylhalide is transferred intact to the benzyl group. The mechanism, as revealed by DFT calculations on (C5H5)2CeCH2Ph and CH3F, does not proceed by way of a four-center mechanism, (sigma-bond metathesis) but a lower barrier process involves a haptotropic shift of the Cp2Ce fragment so that at the transition state the para-carbon of the benzene ring is attached to the Cp2Ce fragment while the CH2 fragment of the benzyl group attacks CH3F that is activated by coordination to the metal ion. As a result the mechanism is classified as an associative interchange process.

  17. Anisotropic contribution to the van der Waals and the Casimir-Polder energies for CO$_2$ and CH$_4$ molecules near surfaces and thin films

    E-Print Network [OSTI]

    Thiyam, Priyadarshini; Shajesh, K V; Persson, Clas; Schaden, Martin; Brevik, Iver; Parsons, Drew F; Milton, Kimball A; Malyi, Oleksandr I; Boström, Mathias

    2015-01-01T23:59:59.000Z

    In order to understand why carbon dioxide (CO$_2$) and methane (CH$_4$) molecules interact differently with surfaces, we investigate the Casimir-Polder energy of a linearly polarizable CO$_2$ molecule and an isotropically polarizable CH$_4$ molecule in front of an atomically thin gold film and an amorphous silica slab. We quantitatively analyze how the anisotropy in the polarizability of the molecule influences the van der Waals contribution to the binding energy of the molecule.

  18. Intermolecular CH bond activation of benzene and pyridines by a vanadium(III) alkylidene including a stepwise conversion of benzene to

    E-Print Network [OSTI]

    McQuade, D. Tyler

    Intermolecular C­H bond activation of benzene and pyridines by a vanadium(III) alkylidene including a stepwise conversion of benzene to a vanadium-benzyne complex Jose G. Andino,a Uriah J. Kilgore,a Maren Pink of benzene and pyridine is observed with (PNP)V(CH2tBu)2 (1), and in the case of benzene, the formation

  19. Free Choice and Contextually Permitted Actions F.Dignum \\Lambda J.J.Ch.Meyer y R.J.Wieringa z

    E-Print Network [OSTI]

    Dignum, Frank

    Free Choice and Contextually Permitted Actions F.Dignum \\Lambda J.­J.Ch.Meyer y R.J.Wieringa z, The Netherlands, e­mail:roelw@cs.vu.nl This research of J.­J.Ch.Meyer and R.J.Wieringa is partially supported between actions and states, McCarty [McC83], Khosla and Maibaum [KM87] and Meyer [Mey88] inde­ pendently

  20. Infrared absorption of gaseous CH{sub 2}BrOO detected with a step-scan Fourier-transform absorption spectrometer

    SciTech Connect (OSTI)

    Huang, Yu-Hsuan [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Lee, Yuan-Pern, E-mail: yplee@mail.nctu.edu.tw [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China)

    2014-10-28T23:59:59.000Z

    CH{sub 2}BrOO radicals were produced upon irradiation, with an excimer laser at 248 nm, of a flowing mixture of CH{sub 2}Br{sub 2} and O{sub 2}. A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to record temporally resolved infrared (IR) absorption spectra of reaction intermediates. Transient absorption with origins at 1276.1, 1088.3, 961.0, and 884.9 cm{sup ?1} are assigned to ?{sub 4} (CH{sub 2}-wagging), ?{sub 6} (O–O stretching), ?{sub 7} (CH{sub 2}-rocking mixed with C–O stretching), and ?{sub 8} (C–O stretching mixed with CH{sub 2}-rocking) modes of syn-CH{sub 2}BrOO, respectively. The assignments were made according to the expected photochemistry and a comparison of observed vibrational wavenumbers, relative IR intensities, and rotational contours with those predicted with the B3LYP/aug-cc-pVTZ method. The rotational contours of ?{sub 7} and ?{sub 8} indicate that hot bands involving the torsional (?{sub 12}) mode are also present, with transitions 7{sub 0}{sup 1}12{sub v}{sup v} and 8{sub 0}{sup 1}12{sub v}{sup v}, v = 1–10. The most intense band (?{sub 4}) of anti-CH{sub 2}BrOO near 1277 cm{sup ?1} might have a small contribution to the observed spectra. Our work provides information for directly probing gaseous CH{sub 2}BrOO with IR spectroscopy, in either the atmosphere or laboratory experiments.

  1. Solid-state infrared photoacoustic spectra of group 6B metal mixed carbonyl-t-butylisocyanide complexes, M(CO)[sub 6[minus]n](CN[sup t]Bu)[sub n](M = Cr, Mo, W; n = 1-3)

    SciTech Connect (OSTI)

    Li, Hongqi; Butler, I.S. (McGill Univ., Montreal, Quebec (Canada))

    1993-02-01T23:59:59.000Z

    Solid-state mid- and near-IR photoacoustic (PA) spectra have been measured at room temperature for the group 6B metal(0) mixed carbonyl-t-butylisocryanide complexes M(CO)[sub 6[minus]n](CN[sup t]Bu)[sub n] (M = Cr, Mo, W; n= 1-3). Vibrational assignments are proposed for many of the observed bands. The PA spectra in the near-IR region (4600-3600 cm[sup [minus]1]), where the binary v(CN) and v(CO) overtones and combinations absorb, are useful spectral fingerprints for these organometallic complexes. 20 refs., 3 figs., 3 tabs.

  2. C-H surface diamond field effect transistors for high temperature (400?°C) and high voltage (500?V) operation

    SciTech Connect (OSTI)

    Kawarada, H., E-mail: kawarada@waseda.jp [Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Institute of Nano-Science and Nano-Engineering, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Kagami Memorial Laboratory for Material Science and Technology, Waseda University, Shinjuku, Tokyo 169-0051 (Japan); Tsuboi, H.; Naruo, T.; Yamada, T.; Xu, D.; Daicho, A.; Saito, T. [Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Hiraiwa, A. [Institute of Nano-Science and Nano-Engineering, Waseda University, Shinjuku, Tokyo 169-8555 (Japan)

    2014-07-07T23:59:59.000Z

    By forming a highly stable Al{sub 2}O{sub 3} gate oxide on a C-H bonded channel of diamond, high-temperature, and high-voltage metal-oxide-semiconductor field-effect transistor (MOSFET) has been realized. From room temperature to 400?°C (673?K), the variation of maximum drain-current is within 30% at a given gate bias. The maximum breakdown voltage (V{sub B}) of the MOSFET without a field plate is 600?V at a gate-drain distance (L{sub GD}) of 7 ?m. We fabricated some MOSFETs for which V{sub B}/L{sub GD}?>?100?V/?m. These values are comparable to those of lateral SiC or GaN FETs. The Al{sub 2}O{sub 3} was deposited on the C-H surface by atomic layer deposition (ALD) at 450?°C using H{sub 2}O as an oxidant. The ALD at relatively high temperature results in stable p-type conduction and FET operation at 400?°C in vacuum. The drain current density and transconductance normalized by the gate width are almost constant from room temperature to 400?°C in vacuum and are about 10 times higher than those of boron-doped diamond FETs.

  3. Adsorption Kinetics of CO2, CH4, and their Equimolar Mixture on Coal from the Black Warrior Basin, West-Central Alabama

    SciTech Connect (OSTI)

    Gruszkiewicz, Miroslaw {Mirek} S [ORNL; Naney, Michael {Mike} T [ORNL; Blencoe, James {Jim} G [ORNL; Cole, David R [ORNL; Pashin, Jack C. [Geological Survey of Alabama; Carroll, Richard E. [Geological Survey of Alabama

    2009-01-01T23:59:59.000Z

    Laboratory experiments were conducted to investigate the adsorption kinetic behavior of pure and mixed gases (CO2, CH4, approximately equimolar CO2 + CH4 mixtures, and He) on a coal sample obtained from the Black Warrior Basin at the Littleton Mine (Twin Pine Coal Company), Jefferson County, west-central Alabama. The sample was from the Mary Lee coal zone of the Pottsville Formation (Lower Pennsylvanian). Experiments with three size fractions (45-150 m, 1-2 mm, and 5-10 mm) of crushed coal were performed at 40 C and 35 C over a pressure range of 1.4 6.9 MPa to simulate coalbed methane reservoir conditions in the Black Warrior Basin and provide data relevant for enhanced coalbed methane recovery operations. The following key observations were made: (1) CO2 adsorption on both dry and water-saturated coal is much more rapid than CH4 adsorption; (2) water saturation decreases the rates of CO2 and CH4 adsorption on coal surfaces, but it appears to have minimal effects on the final magnitude of CO2 or CH4 adsorption if the coal is not previously exposed to CO2; (3) retention of adsorbed CO2 on coal surfaces is significant even with extreme pressure cycling; and (4) adsorption is significantly faster for the 45-150 m size fraction compared to the two coarser fractions.

  4. S-OO bond dissociation energies and enthalpies of formation of the thiomethyl peroxyl radicals CH{sub 3}S(O){sub n}OO (n=0,1,2)

    SciTech Connect (OSTI)

    Salta, Zoi; Kosmas, Agnie Mylona [Department of Chemistry, University of Ioannina, Ioannina 45110 (Greece); Lesar, Antonija [Department of Physical and Organic Chemistry, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana (Slovenia)

    2014-10-06T23:59:59.000Z

    Optimized geometries, S-OO bond dissociation energies and enthalpies of formation for a series of thiomethyl peroxyl radicals are investigated using high level ab initio and density functional theory methods. The results show that the S-OO bond dissociation energy is largest in the methylsulfonyl peroxyl radical, CH{sub 3}S(O){sub 2}OO, which contains two sulfonic type oxygen atoms followed by the methylthiyl peroxyl radical, CH{sub 3}SOO. The methylsulfinyl peroxyl radical, CH{sub 3}S(O)OO, which contains only one sulfonic type oxygen shows the least stability with regard to dissociation to CH{sub 3}S(O)+O{sub 2}. This stabilization trend is nicely reflected in the variations of the S-OO bond distance which is found to be shortest in CH{sub 3}S(O){sub 2}OO and longest in CH{sub 3}S(O)OO.

  5. Unusual defect physics in CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cell absorber

    SciTech Connect (OSTI)

    Yin, Wan-Jian, E-mail: wanjian.yin@utoledo.edu; Shi, Tingting; Yan, Yanfa, E-mail: yanfa.yan@utoledo.edu [Department of Physics and Astronomy and Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, Ohio 43606 (United States)

    2014-02-10T23:59:59.000Z

    Thin-film solar cells based on Methylammonium triiodideplumbate (CH{sub 3}NH{sub 3}PbI{sub 3}) halide perovskites have recently shown remarkable performance. First-principle calculations show that CH{sub 3}NH{sub 3}PbI{sub 3} has unusual defect physics: (i) Different from common p-type thin-film solar cell absorbers, it exhibits flexible conductivity from good p-type, intrinsic to good n-type depending on the growth conditions; (ii) Dominant intrinsic defects create only shallow levels, which partially explain the long electron-hole diffusion length and high open-circuit voltage in solar cell. The unusual defect properties can be attributed to the strong Pb lone-pair s orbital and I p orbital antibonding coupling and the high ionicity of CH{sub 3}NH{sub 3}PbI{sub 3}.

  6. Complete Phase I Tests As Described in the Multi-lab Test Plan for the Evaluation of CH3I Adsorption on AgZ

    SciTech Connect (OSTI)

    Bruffey, S. H. [ORNL; Jubin, R. T. [ORNL

    2014-09-30T23:59:59.000Z

    Silver-exchanged mordenite (AgZ) has been identified as a potential sorbent for iodine present in the off-gas streams of a used nuclear fuel reprocessing facility. In such a facility, both elemental and organic forms of iodine are released from the dissolver in gaseous form. These species of iodine must be captured with high efficiency for a facility to avoid radioactive iodine release above regulatory limits in the gaseous effluent of the plant. Studies completed at Idaho National Laboratory (INL) examined the adsorption of organic iodine in the form of CH3I by AgZ. Upon breakthrough of the feed gas through the sorbent bed, elemental iodine was observed in the effluent stream, despite the fact that the only source of iodine in the system was the CH3I in the feed gas.1 This behavior does not appear to have been reported previously nor has it been independently confirmed. Thus, as a result of these prior studies, multiple knowledge gaps relating to the adsorption of CH3I by AgZ were identified, and a multi-lab test plan, including Oak Ridge National Laboratory (ORNL), INL, Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories, was formulated to address each in a systematic way.2 For this report, the scope of work for ORNL was further narrowed to three thin-bed experiments that would characterize CH3I adsorption onto AgZ in the presence of water, NO, and NO2. Completion of these three-thin bed experiments demonstrated that organic iodine in the form of CH3I was adsorbed by reduced silver mordenite (Ag0Z) to a 50% higher loading than that of I2 when adsorbed from a dry air stream. Adsorption curves suggest different adsorption mechanisms for I2 and CH3I. In the presence of NO and NO2 gas, the loading of CH3I onto Ag0Z is suppressed and may be reversible. Further, the presence of NO and NO2 gas appears to oxidize CH3I to I2; this is indicated by an adsorption curve similar to that of I2 on Ag0Z. Finally, the loss of organic iodine loading capacity by Ag0Z in the presence of NOx is unaffected by the addition of water vapor to the gas stream; no marked additional loss in capacity or retention was observed.

  7. The CH3CHOO `Criegee Intermediate' and its anion: Isomers, Infrared spectra, and W3-F12 energetics

    E-Print Network [OSTI]

    Kettner, Marcus; McKinley, Allan; Wild, Duncan

    2015-01-01T23:59:59.000Z

    For the CH3CHOO Criegee intermediates (ethanal-oxide) and analogous anions, we obtain heats of formations and electron affinities at CCSDT(Q)/CBS level of theory by means of the high-level W3-F12 thermochemical protocol. The electron affinities amount to 0.20 eV and 0.35 eV for the cis and trans isomer, respectively. Neutral cis and trans isomers are separated by 14.1 kJ/mol, the anions are almost isoenergetic (0.4 kJ/mol separation). Harmonic vibrational frequencies are presented at CCSD(T)/aug'-cc-pVTZ level of theory. Since the synthesis of these species in gas-phase experiments might be possible in the near future, we include a predicted photoelectron spectrum.

  8. In situ quantification of CH4 bubbling events from a peat soil using a new infrared laser spectrometer Sbastien Gogo Christophe Guimbaud Fatima Laggoun-Dfarge Valry Catoire Claude Robert

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 In situ quantification of CH4 bubbling events from a peat soil using a new infrared laser in May 2009, in Sphagnum and Betula plots, and in a wet artificially bared peat area with Eriophorum of increased CH4 production and accumulation in peat. In May, bubbling was higher at nighttime (65.5%) than

  9. Oxidation Kinetics of Pure and Blended Methyl Octanoate/n-Nonane/Methylcyclohexane: Measurements and Modeling of OH*/CH* Chemiluminescence, Ignition Delay Times and Laminar Flame Speeds

    E-Print Network [OSTI]

    Rotavera, Brandon Michael

    2012-07-16T23:59:59.000Z

    and for the three constituents were obtained by monitoring excited-state OH or CH transitions, A2Epsilon+ -> X2Pi or A2Delta -> X2Pi, respectively, behind reflected shock waves using a heated shock tube facility. Dilute conditions of 99% Ar (vol.) were maintained...

  10. Research by BNL investigators was performed under the auspices of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.

    E-Print Network [OSTI]

    of Energy under Contract No. DE-AC02-98CH10886. BNL-60909 Use of five zone tracer model to diagnose. Goodrich , and D. Leonard American Industrial Hygiene Conference & Exposition, Kansas City, May 20-26, 1995 was measured at 12.9 ± 1.6 ACH. The affected clinical Laboratory area was noted to be most negative relative

  11. Kinetic Study in a Microwave-Induced Plasma Afterglow of the Cu(2S) Atom Reaction with CH3Cl in the Temperature Range 389-853 K

    E-Print Network [OSTI]

    Nguyen, Minh Tho

    carried out in a fast-flow reactor. The gas phase copper atoms were generated using the microwave chloride was carried out in a fast-flow reactor. The microwave-induced plasma (MIP) afterglow technique will be repeated here. The Cu + CH3Cl reaction has been investigated in a quartz fast-flow reactor with an internal

  12. Research by BNL investigators was performed under the auspices of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.

    E-Print Network [OSTI]

    of Energy under Contract No. DE-AC02-98CH10886. BNL-63565 THE PHOTOCHEMICAL FORMATION OF OZONE: RESULTS FROM UV measurements from an Eppley radiometer. For j(NO2) levels greater than 0.005 s-1 the gross O3 production rate observed in the air masses passing the site averaged 38 ppbvh-1 , but were highly variable

  13. Measurement and modeling of Ar/H2/CH4 arc jet discharge chemical vapor deposition reactors II: Modeling of the spatial dependence of expanded

    E-Print Network [OSTI]

    Bristol, University of

    and used to deposit thin films of polycrystalline diamond. This reactor has been the subject of many prior of micro- and nanocrystalline diamond and diamondlike carbon films. The model incorporates gas activation-containing radical species incident on the growing diamond surface C atoms and CH radicals within this reactor

  14. Deproto-metallation using mixed lithium-zinc and lithium-copper bases and computed CH acidity of 2-substituted quinolines

    E-Print Network [OSTI]

    Boyer, Edmond

    Deproto-metallation using mixed lithium-zinc and lithium-copper bases and computed CH acidity of 2 corresponding iodo derivatives or 2-chlorophenyl ketones using the lithium-zinc or the lithium using the lithium-zinc base. With 3-pyridyl, 2-furyl and 2-thienyl substituents, the reaction took place

  15. AgriculturAl lAnd ApplicAtion of Biosolids in VirginiA: production And chArActeristics of Biosolids

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    AgriculturAl lAnd ApplicAtion of Biosolids in VirginiA: production And chArActeristics of Biosolids to permit these materials to be safely land-applied. The term was introduced by the wastewater treatment treatment of domestic wastewater. Biosolids comprise the solids that are removed from the wastewater

  16. Sulfur addition to microwave activated CH4/CO2 gas mixtures used for diamond CVD: growth studies and gas phase investigations

    E-Print Network [OSTI]

    Bristol, University of

    with H2S additions of 0­5000 ppm to a 51% CH4/49% CO2 plasma, with growth carried out for two different to deteriorate with increased H2S addition, as investigated by scanning electron microscopy (SEM) and laser Raman spectroscopy (LRS). H2S addition also appears to alter the resistivity of films, as measured by the four

  17. Universities CoUnCil on Water resoUrCes JoUrnal of Contemporary Water researCh & edUCation

    E-Print Network [OSTI]

    Wolf, Aaron

    than one billion people already lack access to safe drinking water (Gleick 1999; Loftus 2009) and more than 2.4 billion lack access to sanitation worldwide (World Health Organization 2000). Globally, waterUniversities CoUnCil on Water resoUrCes JoUrnal of Contemporary Water researCh & edUCation iss

  18. Temporal and spatial evolution of laser ablated plasma from YBa,Ch.& S. S. Harilal, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan

    E-Print Network [OSTI]

    Harilal, S. S.

    to local heating and drilling, the sample was rotated about an axis parallel to the laser beam. LaserTemporal and spatial evolution of laser ablated plasma from YBa,Ch.& S. S. Harilal, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan Laser Division, Department of Physics, Cochin

  19. J. Phys. Chem. 1995, 99, 1633-1636 1633 Negative Ion Zero Electron Kinetic Energy Spectroscopy of I-*CH3I

    E-Print Network [OSTI]

    Neumark, Daniel M.

    J. Phys. Chem. 1995, 99, 1633-1636 1633 Negative Ion Zero Electron Kinetic Energy Spectroscopy of I: October IO,1994@ The negative ion zero electron kinetic energy (ZEKE) spectrum of I-H3I is presented ion zero electron kinetic energy (ZEKE) spectrum of I-CH3I in which we observe that the neutralcomplex

  20. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    , California 92186 3 Columbia University, New York, New York 10027 Abstract Plasma shape control using realPrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports

  1. Time-Resolved Quantitative Measurement of OH HO2 and CH2O in Fuel Oxidation Reactions by High Resolution IR Absorption Spectroscopy.

    SciTech Connect (OSTI)

    Huang, Haifeng; Rotavera, Brandon; Taatjes, Craig A.

    2014-08-01T23:59:59.000Z

    Combined with a Herriott-type multi-pass slow flow reactor, high-resolution differential direct absorption spectroscopy has been used to probe, in situ and quantitatively, hydroxyl (OH), hydroperoxy (HO 2 ) and formaldehyde (CH 2 O) molecules in fuel oxidation reactions in the reactor, with a time resolution of about 1 micro-second. While OH and CH 2 O are probed in the mid-infrared (MIR) region near 2870nm and 3574nm respectively, HO 2 can be probed in both regions: near-infrared (NIR) at 1509nm and MIR at 2870nm. Typical sensitivities are on the order of 10 10 - 10 11 molecule cm -3 for OH at 2870nm, 10 11 molecule cm -3 for HO 2 at 1509nm, and 10 11 molecule cm -3 for CH 2 O at 3574nm. Measurements of multiple important intermediates (OH and HO 2 ) and product (CH 2 O) facilitate to understand and further validate chemical mechanisms of fuel oxidation chemistry.

  2. BENDIX SYSTEMS DIVISION ANN A R8 oR, M1CH NO. REV.NO. Solar Wind Programming for

    E-Print Network [OSTI]

    Rathbun, Julie A.

    experiment program decommutates its own data, organizes it, processes it, and prepares it for output. Specifically, for Solar Wind, there is provision (using sense switches) for allowing or inhibiting the outputBENDIX SYSTEMS DIVISION ANN A R8 oR, M1CH NO. REV.NO. Solar Wind Programming for I I DPS 2000

  3. Research by BNL investigators was performed under the auspices of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.

    E-Print Network [OSTI]

    of Energy under Contract No. DE-AC02-98CH10886. BNL-61220 The Whitehouse Effect: Shortwave radiative forcing and Visual Air Quality, Snowbird, UT, Sept. 26-30, pp. 403-409, Air and Waste Management Association-atmosphere system both directly, by scattering light and, indirectly, by increasing the reflectivity of clouds

  4. Research by BNL investigators was performed under the auspices of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.

    E-Print Network [OSTI]

    suspended in air) scatter solar radiation and also serve as nuclei of cloud droplets. Industrial activities of Energy under Contract No. DE-AC02-98CH10886. BNL-64585 (Abstract) THE WHITEHOUSE EFFECT: CLIMATIC EFFECTS of planetary albedo under cloud-free conditions and also to greater concentration of cloud droplets, resulting

  5. SANDIA REPORT SAND2014-19199 Unlimited Release Printed October...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurements of clean and soiled glass divided by the area determined by image analysis. PSD Particle size distribution ACN Acetonitrile, (CH 3 CN) a high volatility solvent...

  6. Advances in Zero-Field Nuclear Magnetic Resonance Spectroscopy

    E-Print Network [OSTI]

    Theis, Thomas

    2012-01-01T23:59:59.000Z

    systems: fully labeled acetonitrile Comparable strength offor fully labeled acetonitrile Significance of near-zero-near-zero-field spectra for acetonitrile-2 ( 13 CH 3 CN) are

  7. Control of structure and reactivity by ligand design : applications to small molecule activation by low-valent uranium complexes

    E-Print Network [OSTI]

    Lam, Oanh Phi

    2010-01-01T23:59:59.000Z

    methylene chloride and acetonitrile solvent molecules aremethylene chloride CH 3 CN acetonitrile calcd calculated xiiand co-crystallized benzene and acetonitrile are omitted for

  8. Reactive nitrogen, ozone and ozone production in the Arctic troposphere and the impact of stratosphere-troposphere exchange

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    Automo- bile emissions of acetonitrile: Assessments of itsCO for combustion plumes, acetonitrile (CH 3 CN) for biomassbiomass burning pollution. Acetonitrile is typically used as

  9. Emission and chemistry of organic carbon in the gas and aerosol phase at a sub-urban site near Mexico City in March 2006 during the MILAGRO study

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    and ocean uptake of acetonitrile (CH3CN) in the atmosphere,Automo- bile emissions of acetonitrile: Assessment of itsusing the measurements of acetonitrile. Previous es- timates

  10. CH2M Hill Hanford Group, Inc. Standards and Requirements Identification Document (SRID) Requirements Management System and Requirements Specification

    SciTech Connect (OSTI)

    JOHNSON, A.L.

    2000-11-30T23:59:59.000Z

    The current Tank Farm Contractor (TFC) for the U. S. Department of Energy, Office of River Protection (ORP), River Protection Project (RPP), CH2M Hill Hanford Group, Inc. (CHG), will use a computer based requirements management system. The system will serve as a tool to assist in identifying, capturing, and maintaining the Standards/Requirements Identification Document (S/RID) requirements and links to implementing procedures and other documents. By managing requirements as one integrated set, CHG will be able to carry out its mission more efficiently and effectively. CHG has chosen the Dynamic Object Oriented Requirements System (DOORS{trademark}) as the preferred computer based requirements management system. Accordingly, the S/RID program will use DOORS{trademark}. DOORS{trademark} will replace the Environmental Requirements Management Interface (ERMI) system as the tool for S/RID data management. The DOORS{trademark} S/RID test project currently resides on the DOORSTM test server. The S/RID project will be migrated to the DOORS{trademark} production server. After the migration the S/RID project will be considered a production project and will no longer reside on the test server.

  11. Thermogravimetric Analysis of Modified Hematite by Methane (CH{sub 4}) for Chemical-Looping Combustion: A Global Kinetics Mechanism

    SciTech Connect (OSTI)

    Monazam, Esmail R.; Breault, Ronald W.; Siriwardane, Ranjani; Miller, Duane D.

    2013-10-01T23:59:59.000Z

    Iron oxide (Fe{sub 2}O{sub 3}) or in its natural form (hematite) is a potential material to capture CO{sub 2} through the chemical-looping combustion (CLC) process. It is known that magnesium (Mg) is an effective methyl cleaving catalyst and as such it has been combined with hematite to assess any possible enhancement to the kinetic rate for the reduction of Fe{sub 2}O{sub 3} with methane. Therefore, in order to evaluate its effectiveness as a hematite additive, the behaviors of Mg-modified hematite samples (hematite –5% Mg(OH){sub 2}) have been analyzed with regard to assessing any enhancement to the kinetic rate process. The Mg-modified hematite was prepared by hydrothermal synthesis. The reactivity experiments were conducted in a thermogravimetric analyzer (TGA) using continuous stream of CH{sub 4} (5, 10, and 20%) at temperatures ranging from 700 to 825 {degrees}C over ten reduction cycles. The mass spectroscopy analysis of product gas indicated the presence of CO{sub 2}, H{sub 2}O, H{sub 2} and CO in the gaseous product. The kinetic data at reduction step obtained by isothermal experiments could be well fitted by two parallel rate equations. The modified hematite samples showed higher reactivity as compared to unmodified hematite samples during reduction at all investigated temperatures.

  12. Direct Observation of Long Electron-Hole Diffusion Distance beyond 1 Micrometer in CH3NH3PbI3 Perovskite Thin Film

    E-Print Network [OSTI]

    Li, Yu; Li, Yunlong; Wang, Wei; Bian, Zuqiang; Xiao, Lixin; Wang, Shufeng; Gong, Qihuang

    2015-01-01T23:59:59.000Z

    In high performance perovskite based on CH3NH3PbI3, the formerly reported short charge diffusion distance is a confliction to thick working layer in solar cell devices. We carried out a study on charge diffusion in spin-coated CH3NH3PbI3 perovskite thin film by transient fluorescent spectroscopy. A thickness-dependent fluorescent lifetime was found. This effect correlates to the defects at crystal grain boundaries. By coating the film with electron or hole transfer layer, PCBM or Spiro-OMeTAD respectively, we observed the charge transfer directly through the fluorescent decay. One-dimensional diffusion model was applied to obtain long charge diffusion distances, which is ~1.3 micron for electrons and ~5.2 micron for holes. This study gives direct support to the high performance of perovskite solar cells.

  13. * Corresponding author. Tel.: #41-1-4451474, Fax: #41-1-4451499. E-mail address: tiwari@iqe.phys.ethz.ch (A.N. Tiwari).

    E-Print Network [OSTI]

    Romeo, Alessandro

    @iqe.phys.ethz.ch (A.N. Tiwari). Solar Energy Materials & Solar Cells 67 (2001) 311}321 In#uence of CdS growth process than of those grown on HVE-CdS. The structural and electrical properties of CdTe/CdS solar cells at 803C using a solution of Cd salt, ammonia and thiourea. The thickness of the HVE-CdS was varied

  14. El laberinto de la indigenidad: Cómo se determina quién es indígena maya ch’orti’ en Guatemala, Honduras y El Salvador

    E-Print Network [OSTI]

    Metz, Brent

    2012-01-01T23:59:59.000Z

    idioma primero y privilegiado de Dios. Dios prefiere oraciones en ch’orti’. Las fuerzas de la naturaleza personificadas en santos, como las cuatro direcciones, el sol, la tierra, el agua y el viento, son fundamentales en la visión tradicional del..., una dieta con altos porcentajes de maíz y frijoles cocinados con recetas antiguas, trabajo agrícola sin maquinaria, baja educación e incluso menosprecio hacia ella, el uso de yerbas medicinales y la producción de artesanías utilitarias. La raíz de...

  15. Bio390 Study Questions for S-N Ch. 2 --Blood 1. Know S-N's list of 10 general functions/properties of blood.

    E-Print Network [OSTI]

    Prestwich, Ken

    effects of temperature, pH, CO2, PO4 2-, and ionic strength on the ability of hemoglobin to bind oxygenBio390 Study Questions for S-N Ch. 2 -- Blood Spring '01 1. Know S-N's list of 10 general functions/properties tends to decrease as body size increases. How does a relatively high P50 serve as an adaptation in small

  16. Intermolecular C?H bond activation of benzene and pyridines by a vanadium(III) alkylidene including a stepwise conversion of benzene to a vanadium-benzyne complex

    SciTech Connect (OSTI)

    Andino, José G.; Kilgore, Uriah J.; Pink, Maren; Ozarowski, Andrew; Krzystek, J.; Telser, Joshua; Baik, Mu-Hyun; Mindiola, Daniel J. (Roosevelt); (FSU); (Indiana)

    2012-01-20T23:59:59.000Z

    Breaking of the carbon-hydrogen bond of benzene and pyridine is observed with (PNP)V(CH{sub 2}tBu){sub 2} (1), and in the case of benzene, the formation of an intermediate benzyne complex (C) is proposed, and indirect proof of its intermediacy is provided by identification of (PNP)VO({eta}{sup 2}-C{sub 6}H{sub 4}) in combination with DFT calculations.

  17. A QUANTUM BAND MODEL OF THE {nu}{sub 3} FUNDAMENTAL OF METHANOL (CH{sub 3}OH) AND ITS APPLICATION TO FLUORESCENCE SPECTRA OF COMETS

    SciTech Connect (OSTI)

    Villanueva, G. L.; DiSanti, M. A.; Mumma, M. J. [Solar System Exploration Division, Mailstop 690.3, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Xu, L.-H., E-mail: Geronimo.Villanueva@nasa.gov [Department of Physics and Centre for Laser, Atomic, and Molecular Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5 (Canada)

    2012-03-01T23:59:59.000Z

    Methanol (CH{sub 3}OH) radiates efficiently at infrared wavelengths, dominating the C-H stretching region in comets, yet inadequate quantum-mechanical models have imposed limits on the practical use of its emission spectra. Accordingly, we constructed a new line-by-line model for the {nu}{sub 3} fundamental band of methanol at 2844 cm{sup -1} (3.52 {mu}m) and applied it to interpret cometary fluorescence spectra. The new model permits accurate synthesis of line-by-line spectra for a wide range of rotational temperatures, ranging from 10 K to more than 400 K. We validated the model by comparing simulations of CH{sub 3}OH fluorescent emission with measured spectra of three comets (C/2001 A2 LINEAR, C/2004 Q2 Machholz and 8P/Tuttle) acquired with high-resolution infrared spectrometers at high-altitude sites. The new model accurately describes the complex emission spectrum of the {nu}{sub 3} band, providing distinct rotational temperatures and production rates at greatly improved confidence levels compared with results derived from earlier fluorescence models. The new model reconciles production rates measured at infrared and radio wavelengths in C/2001 A2 (LINEAR). Methanol can now be quantified with unprecedented precision and accuracy in astrophysical sources through high-dispersion spectroscopy at infrared wavelengths.

  18. Alternative current conduction mechanisms of organic-inorganic compound [N(CH{sub 3}){sub 3}H]{sub 2}ZnCl{sub 4}

    SciTech Connect (OSTI)

    Ben Bechir, M., E-mail: mohamedbenbechir@hotmail.fr; Karoui, K.; Guidara, K.; Ben Rhaiem, A. [Laboratory of Condensed Matter, Faculty of Sciences, University of Sfax, BP1171, 3018 Sfax (Tunisia); Tabellout, M. [LUNAM Université, Université du Maine, CNRS UMR 6283, Institut des Molécules et Matériaux du Mans (IMMM), Avenue Olivier Messiaen, F-72085, Le Mans Cedex 09 (France)

    2014-04-21T23:59:59.000Z

    [N(CH{sub 3}){sub 3}H]{sub 2}ZnCl{sub 4} has been studied by X-ray powder diffraction patterns, differential scanning calorimetry (DSC), and impedance spectroscopy. The [N(CH{sub 3}){sub 3}H]{sub 2}ZnCl{sub 4} hybrid compound is crystallized at room temperature (T ? 300?K) in the orthorhombic system with Pnma space group. Five phase transitions (T{sub 1}?=?255?K, T{sub 2}?=?282?K, T{sub 3}?=?302?K, T{sub 4}?=?320?K, and T{sub 5}?=?346?K) have been proved by DSC measurements. The electrical technique was measured in the 10{sup ?1}-10{sup 7}?Hz frequency range and 233–363?K temperature interval. The frequency dependence of alternative current (AC) conductivity is interpreted in terms of Jonscher's law. The AC electrical conduction in [N(CH{sub 3}){sub 3}H]{sub 2}ZnCl{sub 4} is analyzed by different processes, which can be attributed to several models: the correlated barrier hopping model in phase I, the overlapping large polaron tunneling model in phase II, the quantum mechanical tunneling model in phase IV, and the non-overlapping small polaron tunneling model in phases III, V, and VI. The conduction mechanism is studied with the help of Elliot's theory, and the Elliot's parameters are determined.

  19. Alternative current conduction mechanisms of organic-inorganic compound [N(CH{sub 3}){sub 3}H]{sub 2}CuCl{sub 4}

    SciTech Connect (OSTI)

    Ben Bechir, M., E-mail: mohamedbenbechir@hotmail.fr; Karoui, K.; Guidara, K.; Ben Rhaiem, A. [Laboratory of Condensed Matter, Faculty of Sciences, University of Sfax, BP1171, 3018 Sfax (Tunisia); Tabellout, M. [LUNAM Université, Université du Maine, CNRS UMR 6283, Institut des Molécules et Matériaux du Mans (IMMM), Avenue Olivier Messiaen, F-72085 Le Mans Cedex 09 (France)

    2014-05-28T23:59:59.000Z

    The [N(CH{sub 3}){sub 3}H]{sub 2}CuCl{sub 4} single crystal has been analyzed by X-ray powder diffraction patterns, differential scanning calorimetry (DSC), and electrical impedance spectroscopy. [N(CH{sub 3}){sub 3}H]{sub 2}CuCl{sub 4} crystallizes at room temperature in the monoclinic system with P2{sub 1}/{sub C} space group. Three phase transitions at T{sub 1}?=?226?K, T{sub 2}?=?264?K, and T{sub 3}?=?297?K have been evidenced by DSC measurements. The electrical technique was measured in the 10{sup ?1}–10{sup 7}?Hz frequency range and 203–313?K temperature intervals. The frequency dependence of alternative current (AC) conductivity is interpreted in terms of Jonscher's law (developed). The AC electrical conduction in [N(CH{sub 3}){sub 3}H]{sub 2}CuCl{sub 4} compound is studied by two processes which can be attributed to a hopping transport mechanism: the correlated barrier hopping model in phases I, II, and III, the non-overlapping small polaron tunneling model in phase IV. The conduction mechanism is interpreted with the help of Elliot's theory, and the Elliot's parameters are found.

  20. Numerical studies of gas production from several CH4-hydrate zones at the Mallik Site, Mackenzie Delta, Canada

    SciTech Connect (OSTI)

    Moridis, George J.; Collett, Timothy S.; Dallimore, Scott R.; Satoh, Tohru; Hancock, Steven; Weatherill, Brian

    2002-05-08T23:59:59.000Z

    The Mallik site represents an onshore permafrost-associated gas hydrate accumulation in the Mackenzie Delta, Northwest Territories, Canada. A gas hydrate research well was drilled at the site in 1998. The objective of this study is the analysis of various gas production scenarios from several gas-hydrate-bearing zones at the Mallik site. The TOUGH2 general-purpose simulator with the EOSHYDR2 module were used for the analysis. EOSHYDR2 is designed to model the non-isothermal CH{sub 4} release, phase behavior and flow under conditions typical of methane-hydrate deposits by solving the coupled equations of mass and heat balance, and can describe any combination of gas hydrate dissociation mechanisms. Numerical simulations indicated that significant gas hydrate production at the Mallik site was possible by drawing down the pressure on a thin free-gas zone at the base of the hydrate stability field. Gas hydrate zones with underlying aquifers yielded significant gas production entirely from dissociated gas hydrate, but large amounts of produced water. Lithologically isolated gas-hydrate-bearing reservoirs with no underlying free gas or water zones, and gas-hydrate saturations of at least 50% were also studied. In these cases, it was assumed that thermal stimulation by circulating hot water in the well was the method used to induce dissociation. Sensitivity studies indicated that the methane release from the hydrate accumulations increases with gas-hydrate saturation, the initial formation temperature, the temperature of the circulating water in the well, and the formation thermal conductivity. Methane production appears to be less sensitive to the rock and hydrate specific heat and permeability of the formation.

  1. Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2-C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    methyl tertiary- butyl ether (MTBE) and its effect on plasmaand three VOCs (propyne, furan, MTBE) remained below their 3Ethanol Acetone MEK MAC MVK MTBE Furan CH 3 OH C 2 H 5 OH C

  2. Metal alkoxides. Models for metal oxides. 15. Carbon-carbon and carbon-hydrogen bond activation in the reactions between ethylene and ditungsten hexaalkoxides: W sub 2 (OCH sub 2 -t-Bu) sub 6 (. eta. sup 2 -C sub 2 H sub 4 ) sub 2 , W sub 2 (OR) sub 6 (CH sub 2 ) sub 4 (. eta. sup 2 -C sub 2 H sub 4 ), and W sub 2 (OR) sub 6 (. mu. -CCH sub 2 CH sub 2 CH sub 2 ) (where r = CH sub 2 -t-Bu, i-Pr, c-C sub 5 h sub 9 , and c-C sub 6 H sub 11 ). Preparations, properties, structures, and reaction mechanisms

    SciTech Connect (OSTI)

    Chisholm, M.H.; Huffman, J.C.; Hampden-Smith, M.J. (Indiana Univ., Bloomington (USA))

    1989-07-05T23:59:59.000Z

    W{sub 2}(OR){sub 6} (M {triple bond}M) compounds and ethylene (1 atm, 22{degree}C) react in alkane and aromatic hydrocarbon solvents to give W{sub 2}(OR){sub 6}({mu}-CCH{sub 2}CH{sub 2}CH{sub 2}) compounds and ethane, where R = i-Pr, c-C{sub 5}H{sub 9}, c-C{sub 6}H{sub 11}, and CH{sub 2}-t-Bu. Under comparable conditions, W{sub 2}(O-t-Bu){sub 6} and ethylene fail to react. In the formation of W{sub 2}(OR){sub 6}({mu}-CCH{sub 2}CH{sub 2}CH{sub 2}) compounds, the intermediates W{sub 2}(OCH{sub 2}-t-Bu){sub 6}({eta}{sup 2}-C{sub 2}H{sub 4}){sub 2} and W{sub 2}(OR){sub 6}(CH{sub 2}){sub 4}({eta}{sup 2}-C{sub 2}H{sub 4}), where R = C-C{sub 5}H{sub 9}, i-Pr, and CH{sub 2}-t-Bu, have been characterized. For R = i-Pr and CH{sub 2}-t-Bu, the intermediates are shown to be formed reversibly from W{sub 2}(OR){sub 6} and ethylene. The compound W{sub 2}(O-i-Pr){sub 6}(CH{sub 2}){sub 4}({eta}{sup 2}-C{sub 2}H{sub 4}) has been fully characterized by an X-ray study and found to contain a metallacyclopentane ring and a W-{eta}{sup 2}-C{sub 2}H{sub 4} moiety, one at each metal center. The pyridine adduct W{sub 2}(O-i-Pr){sub 6}({mu}-CCH{sub 2}CH{sub 2}ch{sub 2})(py) has been fully characterized and shown to contain a novel 1,6-dimetallabicyclo(3.1.0)hex-1(5)-ene organometallic core. All compounds have been characterized by {sup 13}C and {sup 1}H NMR studies. Various aspects of the reaction pathway have been probed by the use of isotopically labeled ethylenes, and a proposed general scheme is compared to previous studies of ethylene activation at mononuclear metal centers and carbonyl dinuclear and cluster compounds.

  3. CH7 Windows Introduction

    E-Print Network [OSTI]

    Collette. Sébastien

    4 Server · Account lockout security ­ Protection contre les attaques sur les mots de passe Windows NT 4 Server · Account lockout security ­ Protection contre les attaques sur les mots de passe

  4. CH Packaging Maintenance Manual

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2002-01-02T23:59:59.000Z

    This procedure provides instructions for performing inner containment vessel (ICV) and outer containment vessel (OCV) maintenance and periodic leakage rate testing on the following packaging seals and corresponding seal surfaces using a nondestructive helium (He) leak test. In addition, this procedure provides instructions for performing ICV and OCV structural pressure tests.

  5. CH Packaging Program Guidance

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2002-03-04T23:59:59.000Z

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT Shipping Package, and directly related components. This document complies with the minimum requirements as specified in TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event there is a conflict between this document and the SARP or C of C, the SARP and/or C of C shall govern. C of Cs state: ''each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application.'' They further state: ''each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application.'' Chapter 9.0 of the SAR P charges the WIPP Management and Operation (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with 10 CFR 71.11. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. This document details the instructions to be followed to operate, maintain, and test the TRUPACT-II and HalfPACT packaging. The intent of these instructions is to standardize these operations. All users will follow these instructions or equivalent instructions that assure operations are safe and meet the requirements of the SARPs.

  6. CH Packaging Program Guidance

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-02-28T23:59:59.000Z

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: "each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." They further state: "each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP charges the Waste Isolation Pilot Plant (WIPP) management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.

  7. Pub-3000: CH45

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70COMMUNITY AEROSOL INLET J.-L.Pseudogaps,Pu Qian Pu Qian45

  8. Experimental densities, entropies and energies for pure H?S and equimolar mixtures of H?S/CH? and H?S/CO? between 300 and 500 K

    E-Print Network [OSTI]

    Liu, Chung Hsiu

    1985-01-01T23:59:59.000Z

    and temperature data for H 5, H 5/CH and H S/CO were 2 2 4 2 2 measured between 300 and 500 K and 0 to 60 MPa using the Burnett- coupled isochoric technique. Second and third virial coefficients, densities, entropies and energies were derived from the pressure..., M , which has temperature and pressure R as independent variables, is defined in a similar fashion M (T, P) = M(T, P) ? M (T, P) (20) The density and pressure residual functions are related as follows 0 M (T, P) ? M (T, p) = ( -ln 2 if M=V or H...

  9. Preparation of Single Phase Films of CH3NH3Pb(I1-xBrx)3 with Sharp Optical Band Edges

    E-Print Network [OSTI]

    Sadhanala, Aditya; Deschler, Felix; Thomas, Tudor H; Dutton, Siân E.; Goedel, Karl C.; Hanusch, Fabian C.; Lai, May L.; Steiner, Ullrich; Bein, Thomas; Docampo, Pablo; Cahen, David; Friend, Richard H.

    2014-07-09T23:59:59.000Z

    ?inorganic perovskite (CH3NH3PbI3?xClx) solar cells now show photovoltaic (PV) performance1?4 approaching 18%,5,6 and high charge-carrier mobilities.7 Perovskite films have also shown promising photoluminescence quantum efficiencies (PLQEs) of more than 70% and lasing... .; Grat?zel, M.; Mhaisalkar, S.; Sum, T. C. Low-Temperature Solution- Processed Wavelength-Tunable Perovskites for Lasing. Nat. Mater. 2014, 13, 476?480. (9) Deschler, F.; Price, M.; Pathak, S.; Klintberg, L. E.; Jarausch, D.- D.; Higler, R.; Hu?ttner, S...

  10. Assessment of Standard Force Field Models against High-Quality ab initio Potential Curves for Prototypes of pi-pi, CH/pi, and SH/pi Interactions

    SciTech Connect (OSTI)

    Sumpter, Bobby G [ORNL; Sherrill, David [Georgia Institute of Technology; Sinnokrot, Mutasem O [University of Jordan; Marshall, Michael S. [Georgia Institute of Technology; Hohenstein, Edward G. [Georgia Institute of Technology; Walker, Ross [San Diego Supercomputer Center; Gould, Ian R [ORNL

    2009-01-01T23:59:59.000Z

    Several popular force fields, namely, CHARMM, AMBER, OPLS-AA, and MM3, have been tested for their ability to reproduce highly accurate quantum mechani- cal potential energy curves for noncovalent interactions in the benzene dimer, the benzene-CH4 complex, and the benzene-H2S complex. All of the force fields are semi-quantitatively correct, but none of them is consistently reliable quantitatively. Re-optimization of Lennard-Jones parameters and symmetry-adapted perturbation theory analysis for the benzene dimer suggests that better agreement cannot be expected unless more flexible functional forms (particularly for the electrostatic contributions)are employed for the empirical force fields.

  11. Synthesis, properties, and asymmetric catalysis of chiral cyclophanes and their metal complexes

    E-Print Network [OSTI]

    Choi, So-Young Amy

    2006-01-01T23:59:59.000Z

    Spirobiindane Derivatives. Compd Solv. i MeOH MeOH UV ? mµof Spirobiindanol Compd Solv. (+)-(R)-6 MeOH (-)-(S)-6 MeOH2 ) CH 3 CN (+)-(R)-2 a) Solv. CH 3 CN CD 264 a a ? mµ 225

  12. pubs.acs.org/ICPublished on Web 11/15/2010r 2010 American Chemical Society Inorg. Chem. 2010, 49, 1126711269 11267

    E-Print Network [OSTI]

    Weston, Ken

    storage, and displays5 and in medicinal diagnostics.6 Over the past decade, great attention was devoted-based SCO systems [Fe(btz)2- (CH3CN)2](ClO4)2 3 nCH3CN [btz=2-hydroxy-1-(tetrazol-1-yl)- 3-(tetrazol-2-yl)propane

  13. Supplementary Material for: Second-generation products contribute substantially to the particle-phase organic material produced by

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    between m/z 100 and 1000 was carried out by direct infusion of a 15 mM sodium formate solution in 9:1 CH3CN-H2O. A 0.4 µM leucine enkephalin solution in 50:50 CH3CN-H2O was continuously infused through

  14. Spectroscopic analysis of H{sub 2}/CH{sub 4} microwave plasma and fast growth rate of diamond single crystal

    SciTech Connect (OSTI)

    Derkaoui, N.; Rond, C., E-mail: rond@lspm.cnrs.fr; Hassouni, K.; Gicquel, A. [Laboratoire des Sciences des Procédés et des Matériaux (LSPM), UPR3407 CNRS, Université Paris 13, 99 Avenue Jean Baptiste Clément, 93430 Villetaneuse (France)

    2014-06-21T23:59:59.000Z

    One of the best ways to increase the diamond growth rate is to couple high microwave power to the plasma. Indeed, increasing the power density leads to increase gas temperature the atomic hydrogen density in the plasma bulk, and to produce more hydrogen and methyl at the diamond surface. Experimental and numerical approaches were used to study the microwave plasma under high power densities conditions. Gas temperature was measured by optical emission spectroscopy and H-atom density using actinometry. CH{sub 3}-radical density was obtained using a 1D model that describes temperatures and plasma composition from the substrate to the top of the reactor. The results show that gas temperature in the plasma bulk, atomic hydrogen, and methyl densities at the diamond surface highly increase with the power density. As a consequence, measurements have shown that diamond growth rate also increases. At very high power density, we measured a growth rate of 40??m/h with an H-atom density of 5 × 10{sup 17} cm{sup ?3} which corresponds to a H{sub 2} dissociation rate higher than 50%. Finally, we have shown that the growth rate can be framed between a lower and an upper limit as a function depending only on the maximum of H-atom density measured or calculated in the plasma bulk. The results also demonstrated that increasing fresh CH{sub 4} by an appropriate injection into the boundary layer is a potential way to increase the diamond growth rates.

  15. Differentiation of O-H and C-H Bond Scission Mechanisms of Ethylene Glycol on Pt and Ni/Pt Using Theory and Isotopic Labeling Experiments

    SciTech Connect (OSTI)

    Salciccioli, Michael; Yu, Weiting; Barteau, Mark A; Chen, Jingguang; Vlachos, Dion G.

    2011-05-25T23:59:59.000Z

    Understanding and controlling bond-breaking sequences of oxygenates on transition metal catalysts can greatly impact the utilization of biomass feedstocks for fuels and chemicals. The decomposition of ethylene glycol, as the simplest representative of biomass-derived polyols, was studied via density functional theory (DFT) calculations to identify the differences in reaction pathways between Pt and the more active Ni/Pt bimetallic catalyst. Comparison of the computed transition states indicated three potentially feasible paths from ethylene glycol to C1 oxygenated adsorbates on Pt. While not important on Pt, the pathway to 1,2-dioxyethylene (OCH?CH?O) is favored energetically on the Ni/Pt catalyst. Temperature-programmed desorption (TPD) experiments were conducted with deuterated ethylene glycols for comparison with DFT results. These experiments confirmed that decomposition of ethylene glycol on Pt proceeds via initial O–H bond cleavage, followed by C–H and the second O–H bond cleavages, whereas on the Ni/Pt surface, both O–H bonds are cleaved initially. The results are consistent with vibrational spectra and indicate that tuning of the catalyst surface can selectively control bond breaking. Finally, the significant mechanistic differences in decomposition of polyols compared to that of monoalcohols and hydrocarbons serve to identify general trends in bond scission sequences.

  16. Origin of graphitic filaments on improving the electron field emission properties of negative bias-enhanced grown ultrananocrystalline diamond films in CH{sub 4}/Ar plasma

    SciTech Connect (OSTI)

    Sankaran, K. J.; Tai, N. H., E-mail: inanlin@mail.tku.edu.tw, E-mail: nhtai@mse.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Huang, B. R.; Saravanan, A. [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Lin, I. N., E-mail: inanlin@mail.tku.edu.tw, E-mail: nhtai@mse.nthu.edu.tw [Department of Physics, Tamkang University, Tamsui 251, Taiwan (China)

    2014-10-28T23:59:59.000Z

    Microstructural evolution of bias-enhanced grown (BEG) ultrananocrystalline diamond (UNCD) films has been investigated using microwave plasma enhanced chemical vapor deposition in gas mixtures of CH{sub 4} and Ar under different negative bias voltages ranging from ?50 to ?200?V. Scanning electron microscopy and Raman spectroscopy were used to characterize the morphology, growth rate, and chemical bonding of the synthesized films. Transmission electron microscopic investigation reveals that the application of bias voltage induced the formation of the nanographitic filaments in the grain boundaries of the films, in addition to the reduction of the size of diamond grains to ultra-nanosized granular structured grains. For BEG-UNCD films under ?200?V, the electron field emission (EFE) process can be turned on at a field as small as 4.08?V/?m, attaining a EFE current density as large as 3.19?mA/cm{sup 2} at an applied field of 8.64?V/?m. But the films grown without bias (0?V) have mostly amorphous carbon phases in the grain boundaries, possessing poorer EFE than those of the films grown using bias. Consequently, the induction of nanographitic filaments in grain boundaries of UNCD films grown in CH{sub 4}/Ar plasma due to large applied bias voltage of ?200?V is the prime factor, which possibly forms interconnected paths for facilitating the transport of electrons that markedly enhance the EFE properties.

  17. Biogeosciences, 1, 101111, 2004 www.biogeosciences.net/bg/1/101/

    E-Print Network [OSTI]

    Boyer, Edmond

    the mechanisms of carbon sequestration and introduce rapid changes in both CO2 flux and in the ecosystems that are subject to climate change. 1 Introduction The fate of carbon transported to coastal margins is a sub- ject and transport atmospheric CO2 to the interior of the ocean in the forms of organic and inorganic carbon (Walsh

  18. Biogeosciences, 2, 189204, 2005 www.biogeosciences.net/bg/2/189/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    : inorganic carbon ex- port also implies that the net atmospheric CO2 sequestration by the biological pump carbon, nitrogen, phosphorus, silica and calcium in the supernatant of the collection cups. At the base for carbon and ni- trogen dissolved concentrations account for 30 (±8)% and 47(±11)% of total fluxes

  19. Biogeosciences, 1, 133146, 2004 www.biogeosciences.net/bg/1/133/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    µmol m-2 s-1. Net annual sequestration of carbon was es- timated at 160 gCm-2 in 2001. Applying cost to the sequestration of carbon may be another explanation for the slow growth of these forests-1-133 European Geosciences Union Biogeosciences Net ecosystem exchange of carbon dioxide and water of far eastern

  20. Biogeosciences, 1, 3361, 2004 www.biogeosciences.net/bg/1/33/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of the world's oceans caused by eutrophication and pollution problems resulting from in- creased anthropogenic and anthropogenic perturbations of their environment. Because the eutrophication-induced biological production has to the next. Further- more, one realizes that the study of the eutrophication prob- lems and their impacts