Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bethel valley burial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Bethel Valley Watershed  

Broader source: Energy.gov (indexed) [DOE]

study to find soluble contamination sources that contribute to the contamination of surface and ground waters. Once the remediation activities required by the Bethel Valley...

2

Bethel Valley Watershed | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing,Energy and NaturalBethel Valley Watershed. Topics include: * The

3

Oak Ridge Environmental Management Program Completes Work at Bethel Valley  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy Second Quarter4,(National31Department of EnergyUse |Burial

4

Oak Ridge Environmental Management Program Completes Work at...  

Broader source: Energy.gov (indexed) [DOE]

Environmental Management Program Completes Work at Bethel Valley Burial Grounds Oak Ridge Environmental Management Program Completes Work at Bethel Valley Burial Grounds September...

5

Design/installation and structural integrity assessment under the Federal Facility Agreement for Bethel Valley low-level waste collection and transfer system upgrade for Building 2026 (High Radiation Level Analytical Laboratory) and Building 2099 (Monitoring and Control Station) at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

This document presents a Design/Installation and Structural Integrity Assessment for a replacement tank system for portions of the Bethel Valley Low-Level Waste (LLW) System, located at the Oak Ridge Reservation, Oak Ridge, Tennessee. This issue of the assessment covers the design aspects of the replacement tank system, and certifies that the design has sufficient structural integrity and is acceptable for the storing or treating of hazardous and/or radioactive substances. This document will be reissued at a future date and will then include the assessment of the installation of the replacement tank system. The present issue identifies specific activities that must be completed during the fabrication, installation, and testing of the replacement tank system in order to provide assurance that the final installation complies with governing requirements.

Not Available

1994-11-01T23:59:59.000Z

6

Design/installation and structural integrity assessment under the Federal Facility Agreement for Bethel Valley Low-Level Waste Collection and Transfer System upgrade for Building 2026 (High Radiation Level Analytical Laboratory) and Building 2099 (Monitoring and Control Station) at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

This document presents a Design/Installation and Structural Integrity Assessment for a replacement tank system for portions of the Bethel Valley Low Level Waste (LLW) System, located at the Oak Ridge Reservation, Oak Ridge, Tennessee. This issue of the assessment covers the design aspects of the replacement tank system, and certifies that the design has sufficient structural integrity and is acceptable for the storing or treating of hazardous and/or radioactive substances. The present issue identifies specific activities that must be completed during the fabrication, installation, and testing of the replacement tank system in order to provide assurance that the final installation complies with governing requirements. Portions of the LLW system are several decades old, or older, and do not comply with current environmental protection regulations. Several subsystems of the LLW system have been designated to receive a state-of-the-art replacement and refurbishment. One such subsystem serves Building 2026, the High Radiation Level Analytical Laboratory. This assessment focuses on the scope of work for the Building 2026 replacement LLW Collection and Transfer System, including the provision of a new Monitoring and Control Station (Building 2099) to receive, store, and treat (adjust pH) low level radioactive waste.

Not Available

1994-10-01T23:59:59.000Z

7

Predynastic Burials  

E-Print Network [OSTI]

prédynastique In ancient Egypt, the primary evidence for thefrom burials. In Upper Egypt, there is a clear trend overIn Aspects of early Egypt, ed. Jeffrey Spencer, pp. 1 - 15.

Stevenson, Alice

2009-01-01T23:59:59.000Z

8

PRESOLICITATION Category: A. Owner: Department of Energy, Oak Ridge National Laboratory -UT Battelle LLC (DOE Contractor), Oak Ridge National Laboratory, Bethel  

E-Print Network [OSTI]

PRESOLICITATION Category: A. Owner: Department of Energy, Oak Ridge National Laboratory - UT Battelle LLC (DOE Contractor), Oak Ridge National Laboratory, Bethel Valley Road P.O. Box 2008, Oak Ridge-Battelle), the management and operating contractor for the United States Department of Energy's Oak Ridge National

Hively, Lee M.

9

Bethel, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey: EnergyBerthoud, Colorado:774°Bethel is a town in

10

www.vacet.org E. WES BETHEL (LBNL), CHRIS JOHNSON (UTAH), KEN JOY (UC DAVIS), SEAN AHERN (ORNL), VALERIO PASCUCCI (LLNL),  

E-Print Network [OSTI]

www.vacet.org E. WES BETHEL (LBNL), CHRIS JOHNSON (UTAH), KEN JOY (UC DAVIS), SEAN AHERN (ORNL (LLNL) E. WES BETHEL (LBNL), CHRIS JOHNSON (UTAH), KEN JOY (UC DAVIS), SEAN AHERN (ORNL), VALERIO

Utah, University of

11

Kamacite blocking temperatures and applications to lunar magnetism Ian Garrick-Bethell a,  

E-Print Network [OSTI]

Kamacite blocking temperatures and applications to lunar magnetism Ian Garrick-Bethell a magnetism iron paleomagnetism The long-term stability of remanent magnetization is a requirement for paleomagnetic studies. Here we present calculations that predict the magnetic relaxation times of single domain

Weiss, Benjamin P.

12

An indigenous origin for the South Pole Aitken basin thorium anomaly Ian Garrick-Bethell and Maria T. Zuber  

E-Print Network [OSTI]

An indigenous origin for the South Pole Aitken basin thorium anomaly Ian Garrick-Bethell and Maria high abundance of thorium as determined by Apollo and Lunar Prospector gamma-ray spectroscopy that the anomaly is the result of convergence of thorium-enriched ejecta from the Imbrium impact. Examination

Zuber, Maria

13

Quantifying breakage parameters of fragile archaeological components to determine the feasibility of site burial  

E-Print Network [OSTI]

, 1968) ~ The Cahokia site, located in the broad alluvial plain, east of St. Louis, within the Mississippi River Valley known as the American Bottom, is without a doubt 35 the largest prehistoric site in North America north of central Mexico (Fowler...QUANTIFYING BREAKAGE PARAMETERS OF FRAGILE ARCHAEOLOGICAL COMPONENTS TO DETERMINE THE FEASIBILITY OF SITE BURIAL A Thesis by Forest Paul Rushmore III Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment...

Rushmore, Forest Paul

1988-01-01T23:59:59.000Z

14

The Iceman as a Burial  

E-Print Network [OSTI]

accepted as a catastrophe context, reconstructions adopted the style of forensic investigations and the find was presented as an isolated case, without connections with the archaeological context of the Alpine and peri-Alpine Copper Age sites... on an earlier draft and Roberto Micheli for ethnohistorical information on winter funerals in the Tyrolean valleys. The Spatstat library of the R environment for statistical computing (Baddeley & Turner 2005; Baddeley et al. 2005; R Development Core Team 2008...

Frayer, David W.; Vanzetti, A.; Vidale, M.; Gallinaro, M.; Bondioli, Luca

2010-09-01T23:59:59.000Z

15

Burial container subsidence load stress calculations  

SciTech Connect (OSTI)

This document captures the supporting analyses conducted to determine if the LLCE (Long-Length Contaminated Equipment) burial containers are structurally adequate under different trench closure scenarios. The LLCE is equipment that was inside tank farm tanks.

Veith, E.M.

1995-11-01T23:59:59.000Z

16

Recommendation 195: Mitigation of Contamination in Bear Creek Burial Grounds  

Broader source: Energy.gov [DOE]

The ORSSAB requests DOE provide possible remedial actions to mitigate releases of contamination from Bear Creek Burial Grounds.

17

Residential Burial in Global Perspective Ron L. Adams  

E-Print Network [OSTI]

1 Residential Burial in Global Perspective Ron L. Adams Simon Fraser University and Stacie M. King important parts of archaeological anal- yses, rarely has residential burial ­ the practice of burying contexts in which residential burial has occurred and discuss the different ways that archaeologists have

Scheiber, Laura L.

18

Updated Subsurface Data Base For Bear Creek Valley, Chestnut Ridge, And Parts Of Bethel Valley On The U.S. Department of Energy Oak Ridge Reservation  

SciTech Connect (OSTI)

This document represents a compilation of location, construction, and hydrologic information relating to boreholes, groundwater monitoring wells, and surface water locations that have been installed/established at the Y-12 National Security Complex (Y-12) through August 2013. To date, a total of 1422 boreholes and wells have been installed in and around the Y-12 area. Of those, 835 existing boreholes and wells continue to be utilized for groundwater monitoring programs, research, remedial investigations, plume characterization and delineation studies, and various other hydrogeologic endeavors. In addition, 215 surface water locations, such as rivers, streams, seeps, springs, lakes, ponds, and building sumps are included in this database. General data about boreholes and wells included in the database are survey coordinates, survey system, elevations, alternative names and well status. Surface water location information (Appendix I) includes name, alias, functional area, northing and easting coordinates, survey system, map number and sampling history. Tabulated construction data include total depth, completion method, borehole diameter, casing and screen materials, casing and screen diameters, casing and screen depths, filter pack depths, open-hole intervals, and open-hole diameters. Hydrogeological data summarized in this document include the aquifer monitored by the completion interval, depth to weathered and fresh bedrock, formations penetrated, well sampling history, and whether rock core and geophysical logs were obtained. This document (which is the sixth revision to Y/TS–881 and the ninth overall update of a previous compilation) is published on a regular basis by the Y-12 Groundwater Protection Program (GWPP), which serves as custodian of drilling records and well construction data for the network of wells and other groundwater monitoring stations at Y-12. The tabulations in this database are arranged in appendices of like information. An example application of the data compiled in this document would be the evaluation of the suitability of wells for continued use in groundwater investigations and monitoring studies. Other uses may include: the siting of hydrogeological characterization activities, background evaluations of sites prior to initiation of new drilling activities, and hydrogeological review of selected sites prior to the initiation of remedial actions or new construction activity. Existing boreholes, wells, and surface water locations are presented on a series of maps (Appendix K). Boreholes and wells that have been plugged and abandoned, destroyed, could not be located, or otherwise are of unknown status/condition appear on a second series of maps of identical coverage (Appendix L).

none,

2013-12-01T23:59:59.000Z

19

SRS Burial Ground Complex: Remediation in Progress  

SciTech Connect (OSTI)

Closure of the various areas in the Burial Ground Complex (BGC) represents a major step in the reduction of risk at the Savannah River Site (SRS) and a significant investment of resources. The Burial Ground Complex occupies approximately 195 acres in the central section of the SRS. Approximately 160 acres of the BGC consists of hazardous and radioactive waste disposal sites that require remediation. Of these source acres, one-third have been remediated while two-thirds are undergoing interim or final action. These restoration activities have been carried out in a safe and cost effective manner while minimizing impact to operating facilities. Successful completion of these activities is in large part due to the teamwork demonstrated by the Department of Energy, contractor/subcontractor personnel, and the regulatory agencies. The experience and knowledge gained from the closure of these large disposal facilities can be used to expedite closure of similar facilities.

Griffin, M. [Westinghouse Savannah River Company, AIKEN, SC (United States); Crapse, B.; Cowan, S.

1998-01-21T23:59:59.000Z

20

Cleanup Verification Package for the 618-8 Burial Ground  

SciTech Connect (OSTI)

This cleanup verification package documents completion of remedial action for the 618-8 Burial Ground, also referred to as the Solid Waste Burial Ground No. 8, 318-8, and the Early Solid Waste Burial Ground. During its period of operation, the 618-8 site is speculated to have been used to bury uranium-contaminated waste derived from fuel manufacturing, and construction debris from the remodeling of the 313 Building.

M. J. Appel

2006-08-10T23:59:59.000Z

Note: This page contains sample records for the topic "bethel valley burial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Catastrophic Animal Mortality Management (Burial Method) Technical Guidance  

E-Print Network [OSTI]

-farm methods include burial, composting, and incineration. Incinerators and composters are excellent options with catastrophic events. Composting and incineration should not be relied on for catastrophic mortality handling

Mukhtar, Saqib

22

Cleanup Verification Package for the 118-F-1 Burial Ground  

SciTech Connect (OSTI)

This cleanup verification package documents completion of remedial action for the 118-F-1 Burial Ground on the Hanford Site. This burial ground is a combination of two locations formerly called Minor Construction Burial Ground No. 2 and Solid Waste Burial Ground No. 2. This waste site received radioactive equipment and other miscellaneous waste from 105-F Reactor operations, including dummy elements and irradiated process tubing; gun barrel tips, steel sleeves, and metal chips removed from the reactor; filter boxes containing reactor graphite chips; and miscellaneous construction solid waste.

E. J. Farris and H. M. Sulloway

2008-01-10T23:59:59.000Z

23

118-K-1 Burial Ground - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrincetonOPT Optics MetrologyDepartment118-K-1 Burial

24

Long-length contaminated equipment burial containers fabrication process procedures  

SciTech Connect (OSTI)

These special process procedures cover the detailed step-by-step procedures required by the supplier who will manufacture the Long-Length Contaminated Equipment (LLCE) Burial Container design. Also included are detailed step-by-step procedures required by the disposal process for completion of the LLCE Burial Containers at Hanford.

McCormick, W.A., Fluor Daniel Hanford

1997-03-11T23:59:59.000Z

25

Fire hazards analysis for solid waste burial grounds  

SciTech Connect (OSTI)

This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation.

McDonald, K.M.

1995-09-28T23:59:59.000Z

26

Remedial investigation work plan for Bear Creek Valley Operable Unit 1 (S-3 Ponds, Boneyard/Burnyard, Oil Landfarm, Sanitary Landfill 1, and the Burial Grounds, including Oil Retention Ponds 1 and 2) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text  

SciTech Connect (OSTI)

The intent and scope of the work plan are to assemble all data necessary to facilitate selection of remediation alternatives for the sites in Bear Creek Valley Operable Unit 1 (BCV OU 1) such that the risk to human health and the environment is reduced to acceptable levels based on agreements with regulators. The ultimate goal is to develop a final Record Of Decision (ROD) for all of the OUs in BCV, including the integrator OU. However, the initial aim of the source OUs is to develop a ROD for interim measures. For source OUs such as BCV OU 1, data acquisition will not be carried out in a single event, but will be carried out in three stages that accommodate the schedule for developing a ROD for interim measures and the final site-wide ROD. The three stages are as follows: Stage 1, Assemble sufficient data to support decisions such as the need for removal actions, whether to continue with the remedial investigation (RI) process, or whether no further action is required. If the decision is made to continue the RI/FS process, then: Stage 2, Assemble sufficient data to allow for a ROD for interim measures that reduce risks to the human health and the environment. Stage 3, Provide input from the source OU that allows a final ROD to be issued for all OUs in the BCV hydrologic regime. One goal of the RI work plan will be to ensure that sampling operations required for the initial stage are not repeated at later stages. The overall goals of this RI are to define the nature and extent of contamination so that the impact of leachate, surface water runoff, and sediment from the OU I sites on the integrator OU can be evaluated, the risk to human health and the environment can be defined, and the general physical characteristics of the subsurface can be determined such that remedial alternatives can be screened.

Not Available

1993-09-01T23:59:59.000Z

27

Packaging design criteria modified fuel spacer burial box. Revision 1  

SciTech Connect (OSTI)

Various Hanford facilities must transfer large radioactively contaminated items to burial/storage. Presently, there are eighteen Fuel Spacer Burial Boxes (FSBBs) available on the Hanford Site for transport of such items. Previously, the FSBBS were transported from a rail car to the burial trench via a drag-off operation. To allow for the lifting of the boxes into the burial trench, it will be necessary to improve the packagings lifting attachments and provide structural reinforcement. Additional safety improvements to the packaging system will be provided by the addition of a positive closure system and package ventilation. FSBBs that are modified in such a manner are referred to as Modified Fuel Spacer Burial Boxes (MFSBs). The criteria provided by this PDC will be used to demonstrate that the transfer of the MFSB will provide an equivalent degree of safety as would be provided by a package meeting offsite transportation requirements. This fulfills the onsite transportation safety requirements implemented in WHC-CM-2-14, Hazardous Material Packaging and Shipping. A Safety Analysis Report for Packaging (SARP) will be prepared to evaluate the safety of the transfer operation. Approval of the SARP is required to authorize transfer. Criteria are also established to ensure burial requirements are met.

Stevens, P.F.

1994-09-13T23:59:59.000Z

28

Multibeam Observations of Mine Scour and Burial near Clearwater, Florida, Including a Test of the VIMS 2D Mine Burial Model  

E-Print Network [OSTI]

of the VIMS 2D Mine Burial Model by Monica L. Wolfson A thesis submitted in partial fulfillment Comparison of A3 Multibeam Observations to the VIMS 2D Burial Model Comparison of F8 Multibeam Observations to the VIMS 2D Burial Model

New Hampshire, University of

29

Email: branstetterm@ornl.gov One Bethel Valley Road Phone: 865-574-0813 P.O. Box 2008, MS-6301  

E-Print Network [OSTI]

on Climate Change (IPCC) scenario simulation results, and researches biofuel-climate interactions the potential threats and responses to global climate change. #12;

30

Email: normanmr@ornl.gov One Bethel Valley Road Phone: 865-576-1757 P.O. Box 2008, MS-6301  

E-Print Network [OSTI]

with the Oak Ridge Leadership Computing Facility 3 (OLCF3) readiness for Community Earth System Model

31

Email: evanskj@ornl.gov One Bethel Valley Road Phone: 865-576-6517 P.O. Box 2008, MS-6301  

E-Print Network [OSTI]

System Model (CESM) can provide sub-global climate change prediction. This will occur by building-resolution climate simulations with an active atmosphere and land surface within the DOE-funded Community Earth

32

Email: evanskj@ornl.gov One Bethel Valley Road Phone: 865-576-6517 P.O. Box 2008, MS-6301  

E-Print Network [OSTI]

Predicting Ice Sheet and Climate Evolution at Extreme Scales (PISCEES) is an Earth System Modeling project in the Community Ice Sheet Model and Community Earth System Model. Using improved estimates of ice sheet initial, running the Community Ice Sheet Model in standalone mode and coupled to the Community Earth System Model

33

Email: jhack@ornl.gov One Bethel Valley Road Phone: 865-574-6334 P.O. Box 2008, MS-6301  

E-Print Network [OSTI]

://climatemodeling.science.energy.gov/projects/multiscale-accurate-efficient-and- scale-aware-models-earth-system Project Description MULTISCALE is a SciDAC Earth System Modeling project atmospheric and oceanic parameterizations into the Community Earth System Model (CESM). The ORNL contribution

34

Email: evanskj@ornl.gov One Bethel Valley Road Phone: 865-576-6517 P.O. Box 2008, MS-6301  

E-Print Network [OSTI]

for the Computational Earth Sciences group and a member of the Earth Systems Modeling Group in the Climate Change Science Institute at ORNL. She develops high-resolution global Earth system models and investigates global for the Community Ice Sheet Model within the Community Earth System Model (CESM). Evans earned her Ph

35

Email: worleyph@ornl.gov One Bethel Valley Road Phone: 865-574-3128 P.O. Box 2008, MS-6301  

E-Print Network [OSTI]

, and optimization for scientific computing, especially for applications in earth system modeling, fusion energy on the performance evaluation and optimization of the Community Earth System Model (CESM) and on the development

36

Email: forrest@climatemodeling.org One Bethel Valley Road Phone: 865-576-7680 P.O. Box 2008, MS-6301  

E-Print Network [OSTI]

- with a highly efficient computational approach. The resulting upgrades to the Community Earth System Model (CESM://www.scidac.gov/bioenv/bioenv.html Project Description The ACES4BGC Project seeks to advance the predictive capabilities of Earth System Models (ESMs) by reducing two of the largest sources of uncertainty - aerosols and biospheric feedbacks

37

Cleanup Verification Package for the 118-F-6 Burial Ground  

SciTech Connect (OSTI)

This cleanup verification package documents completion of remedial action for the 118-F-6 Burial Ground located in the 100-FR-2 Operable Unit of the 100-F Area on the Hanford Site. The trenches received waste from the 100-F Experimental Animal Farm, including animal manure, animal carcasses, laboratory waste, plastic, cardboard, metal, and concrete debris as well as a railroad tank car.

H. M. Sulloway

2008-10-02T23:59:59.000Z

38

Low-Level Burial Grounds Waste Analysis Plan  

SciTech Connect (OSTI)

The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage and/or disposal at the Low-Level Burial Grounds which are located in the 200 East and West Areas of the Hanford Facility, Richland, Washington. This WAP documents the methods used to characterize, obtain and analyze representative samples of waste managed at this unit.

ELLEFSON, M.D.

2000-03-02T23:59:59.000Z

39

Melton Valley Watershed  

Broader source: Energy.gov (indexed) [DOE]

watershed. Wastes disposed in Melton Valley reside at a variety of locations, including solid waste landfills, trenches, liquid waste tanks and pipelines, surface structures,...

40

Report on waste burial charges. Escalation of decommissioning waste disposal costs at low-level waste burial facilities, Revision 4  

SciTech Connect (OSTI)

One of the requirements placed upon nuclear power reactor licensees by the U.S. Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised periodically, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC. The sources of information to be used in the escalation formula are identified, and the values developed for the escalation of radioactive waste burial costs, by site and by year, are given. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analyses, or they may use an escalation rate at least equal to the escalation approach presented herein. This fourth revision of NUREG-1307 contains revised spreadsheet results for the disposal costs for the reference PWR and the reference BWR and the ratios of disposal costs at the Washington, Nevada, and South Carolina sites for the years 1986, 1988, 1991 and 1993, superseding the values given in the May 1993 issue of this report. Burial cost surcharges mandated by the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) have been incorporated into the revised ratio tables for those years. In addition, spreadsheet results for the disposal costs for the reference reactors and ratios of disposal costs at the two remaining burial sites in Washington and South Carolina for the year 1994 are provided. These latter results do not include any LLRWPAA surcharges, since those provisions of the Act expired at the end of 1992. An example calculation for escalated disposal cost is presented, demonstrating the use of the data contained in this report.

Not Available

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "bethel valley burial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Report on waste burial charges: Escalation of decommissioning waste disposal costs at Low-Level Waste Burial facilities. Revision 5  

SciTech Connect (OSTI)

One of the requirements placed upon nuclear power reactor licensees by the US Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised periodically, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC. The sources of information to be used in the escalation formula are identified, and the values developed for the escalation of radioactive waste burial costs, by site and by year, are given. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analyses, or they may use an escalation rate at least equal to the escalation approach presented herein. This fifth revision of NUREG-1307 contains revised spreadsheet results for the disposal costs for the reference PWR and the reference BWR and the ratios of disposal costs at the Washington, Nevada, and South Carolina sites for the years 1986, 1988, 1991, 1993, and 1994, superseding the values given in the June 1994 issue of this report. Burial cost surcharges mandated by the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) have been incorporated into the revised ratio tables for those years. In addition, spreadsheet results for the disposal costs for the reference reactors and ratios of disposal costs at the two remaining burial sites in Washington and South Carolina for the year 1995 are provided. These latter results do not include any LLRWPAA surcharges, since those provisions of the Act expired at the end of 1992. An example calculation for escalated disposal cost is presented, demonstrating the use of the data contained in this report.

NONE

1995-08-01T23:59:59.000Z

42

The Tradeoffs of Fused Memory Hierarchies in Heterogeneous Computing Architectures  

E-Print Network [OSTI]

Oak Ridge National Laboratory 1 Bethel Valley Road Oak Ridge, TN 37831 kys@ornl.gov Jeremy S. Meredith Oak Ridge National Laboratory 1 Bethel Valley Road Oak Ridge, TN 37831 jsmeredith@ornl.gov Seyong Lee Oak Ridge National Laboratory 1 Bethel Valley Road Oak Ridge, TN 37831 lees2@ornl.gov Dong Li Oak

43

Cleanup Verification Package for the 118-B-1, 105-B Solid Waste Burial Ground  

SciTech Connect (OSTI)

This cleanup verification package documents completion of remedial action, sampling activities, and compliance criteria for the 118-B-1, 105-B Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-B Reactor and P-10 Tritium Separation Project and also received waste from the 105-N Reactor. The burial ground received reactor hardware, process piping and tubing, fuel spacers, glassware, electrical components, tritium process wastes, soft wastes and other miscellaneous debris.

J. M. Capron

2008-01-21T23:59:59.000Z

44

E-Print Network 3.0 - age temperature burial Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

or phenological differences may... ERDC TN-EMRRP-EI-03 September 2008 Short-Term Sediment Burial Effects on the Seagrass Phyllospadix... outfalls (Littler and Murray 1975) and...

45

E-Print Network 3.0 - ancient human burials Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Medicine 78 WORKING WITH THE HISTORIC ENVIRONMENT BPG NOTE 14 Summary: , d) an ancient coppice stool, e) WWII military training trenches, f) former railway line, g) burial... ....

46

Closure Plan for Active Low Level Burial Grounds  

SciTech Connect (OSTI)

This plan has been prepared in response to direction from the U.S. Department of Energy. The purpose of the plan is to define approaches that will be implemented to ensure protection of the public and the environment when active Low-Level Burial Grounds (LLBGs) at the Hanford Site are closed. Performance assessments for active burial grounds in the 200 East and West 200 Areas provide current estimates of potential environmental contamination and doses to the ''maximum exposed individual'' from burial ground operation and closure and compare dose estimates to performance objective dose limits for the facilities. This is an Operational Closure Plan. The intent of the guidance in DOE Order 435.1 is that this plan will be a living document, like the facility performance assessments, and will be revised periodically through the operational life of the LLBGs to reflect updated information on waste inventory. management practices, facility transition planning, schedule dates, assessments of post-closure performance, and environmental consequences. Out year dates identified in this plan are tentative. A Final Closure Plan will be prepared in the future when the timing and extent of closure-related activities for LLBGs can be established with greater certainty. After current operations at the LLBGs are concluded, this plan proposes transitioning of these facilities to the Environmental Restoration Program. This action will enable the Environmental Restoration Program to design and implement consistent and coordinated final remedial actions for active and inactive LLBGs. Active and inactive burial grounds in the 200 West and 200 East Areas are commingled. This plan describes approaches that will be implemented during Interim Closure, Final Closure, and Institutional Control Periods to prepare LLBGs for surface barriers, and the construction of barriers, as well as the scope of inspection, monitoring and maintenance practices that will be performed during and after closure. Environmental monitoring is briefly discussed in this plan. However, a more comprehensive discussion of monitoring issues is provided in a separate performance assessment monitoring plan for LLBGs. Supporting information is provided regarding the geography, climate, hydrogeology, geochemistry and land-use practices of adjacent land areas.

SKELLY, W.A.

2000-11-16T23:59:59.000Z

47

Geologic setting of the low-level burial grounds  

SciTech Connect (OSTI)

This report describes the regional and site specific geology of the Hanford Sites low-level burial grounds in the 200 East and West Areas. The report incorporates data from boreholes across the entire 200 Areas, integrating the geology of this area into a single framework. Geologic cross-sections, isopach maps, and structure contour maps of all major geological units from the top of the Columbia River Basalt Group to the surface are included. The physical properties and characteristics of the major suprabasalt sedimentary units also are discussed.

Lindsey, K.A.; Jaeger, G.K. [CH2M Hill Hanford, Inc., Richland, WA (United States); Slate, J.L. [Associated Western Universities Northwest, Richland, WA (United States); Swett, K.J.; Mercer, R.B. [Westinghouse Hanford Co., Richland, WA (United States)

1994-10-13T23:59:59.000Z

48

The Application of GPR in Florida for Detecting Forensic Burials  

SciTech Connect (OSTI)

A study was performed at the University of Florida to measure ground penetrating radar(GPR) performance for detecting forensic burials. In controlled scenarios, 24 burials were constructed with pig cadavers. Two soils were utilized to represent two of the most common soil orders in Florida: an Entisol and an Ultisol. Graves were monitored on a monthly basis for time periods up to 21 months with grid data acquired with pulsed and swept-frequency GPR systems incorporating several different frequency antennas. A small subset of the graves was excavated to assess decomposition and relate to the GPR images during the test. The grave anomalies in the GPR depth profiles became less distinctive over time due to body decomposition and settling of the disturbed soil (backfill) as it compacted. Soil type was a major factor. Grave anomalies became more difficult to recognize over time for deep targets that were within clay. Forensic targets that were in sandy soil were recognized for the duration of this study. Time elapsed imagery will be presented to elucidate the changes, or lack thereof, of grave anomalies over the duration of this study. Further analysis was performed using Synthetic Aperture Radar (SAR) reconstruction of images in 2-D and 3-D.

S. K. Koppenjan; J. J. Schultz; S. Ono; H. Lee

2003-01-01T23:59:59.000Z

49

Green Valley Galaxies  

E-Print Network [OSTI]

The "green valley" is a wide region separating the blue and the red peaks in the ultraviolet-optical color magnitude diagram, first revealed using GALEX UV photometry. The term was coined by Christopher Martin in 2005. Green valley highlights the discriminating power of UV to very low relative levels of ongoing star formation, to which the optical colors, including u-r, are insensitive. It corresponds to massive galaxies below the star-forming "main" sequence, and therefore represents a critical tool for the study of the quenching of star formation and its possible resurgence in otherwise quiescent galaxies. This article reviews the results pertaining to morphology, structure, environment, dust content and gas properties of green valley galaxies in the local universe. Their relationship to AGN is also discussed. Attention is given to biases emerging from defining the "green valley" using optical colors. We review various evolutionary scenarios and we present evidence for a new, quasi-static view of the green ...

Salim, Samir

2015-01-01T23:59:59.000Z

50

Dying Green A Film Screening and Panel Discussion about Green Burial  

E-Print Network [OSTI]

Dying Green A Film Screening and Panel Discussion about Green Burial March 20, 2014 6:00pm ­ 8:00pm to rest. The "Green Burial" movement is catching on in the U.S., and green cemetery options are now and panel discussion of the award-winning documentary, Dying Green (2011). Panel participants include Joshua

Virginia Tech

51

Burial of terrestrial organic matter in marine sediments: A re-assessment  

E-Print Network [OSTI]

Burial of terrestrial organic matter in marine sediments: A re-assessment David J. Burdige being buried in marine sediments may be of terrestrial origin, with the majority of this terrestrial organic matter (TOM) burial occurring in muddy, deltaic sediments. These calculations further suggest

Burdige, David

52

Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir  

E-Print Network [OSTI]

Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir Sebastian. Wehrli (2012), Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir; revised 25 November 2011; accepted 30 November 2011; published 4 January 2012. [1] Organic carbon (OC

Wehrli, Bernhard

53

Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source  

E-Print Network [OSTI]

Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment : deposited OC) in a diverse set of 27 different sediments from 11 lakes, focusing on the potential effects burial efficiency was high (mean 48%), and it was particularly high in sediments receiving high input

Wehrli, Bernhard

54

Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground  

SciTech Connect (OSTI)

This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes.

M. J. Appel and J. M. Capron

2007-07-25T23:59:59.000Z

55

618-10 Burial Ground Trench Remediation and 618-10 and 618-11 Burial Ground Nonintrusive Characterization of Vertical Pipe Units Lessons Learned  

SciTech Connect (OSTI)

A “lessons learned” is a noteworthy practice or innovative approach that is captured and shared to promote repeat application, or an adverse work practice/experience that is captured and shared to avoid reoccurrence. This document provides the lessons learned identified by the 618-10 Burial Ground trench remediation and the 618-10 and 618-11 Burial Ground nonintrusive characterization of the vertical pipe units (VPUs).

Darby, J. W.

2012-06-28T23:59:59.000Z

56

CHALLENGES WITH RETRIEVING TRANSURANIC WASTE FROM THE HANFORD BURIAL GROUNDS  

SciTech Connect (OSTI)

The U.S. DOE's Hanford Reservation produced plutonium and other nuclear materials for the nation's defense starting in World War II. The defense mission generated wastes that were either retrievably stored (i.e. retrievably stored waste) and/or disposed of in burial grounds. Challenges have emerged from retrieving suspect TRU waste including adequacy of records, radiological concerns, container integrity, industrial hygiene and safety issues, the lack of processing/treatment facilities, and the integration of regulatory requirements. All retrievably stored waste is managed as mixed waste and assumed to be TRU waste, unless documented otherwise. Mixed waste is defined as radioactive waste that contains hazardous constituents. The Atomic Energy Act governs waste with radionuclides, and the Resource Conservation and Recovery Act (RCRA) governs waste with hazardous constituents. Waste may also be governed by the Toxic Substances Control Act (TSCA), and a portion may be managed under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). In 1970, TRU waste was required to be placed in 20-year retrievable storage and segregated from other Waste. Prior to that date, segregation did not occur. Because of the changing definition of TRU over the years, and the limitations of early assay equipment, all retrievably stored waste in the burial grounds is managed as suspect TRU. Experience has shown that some of this waste will be characterized as low-level (non-TRU) waste after assay. The majority of the retrieved waste is not amenable to sampling due to waste type and/or radiological issues. Key to waste retrieval and disposition are characterization, historical investigation and research, knowledge of past handling and packaging, as well as a broad understanding and application of the regulations.

SWAN, R.J.; LAKES, M.E.

2007-08-06T23:59:59.000Z

57

Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Appendices  

SciTech Connect (OSTI)

Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 2 (Appendices) contains the detailed analyses and data needed to support the results given in Volume 1.

None

1980-06-01T23:59:59.000Z

58

Effect of soil erosion on the long-term stability of FUSRAP near-surface waste-burial sites  

SciTech Connect (OSTI)

Decontamination of FUSRAP sites could result in the generation of large volumes (in excess of 400,000 m/sup 3/) of low-activity radioactive wastes (primarily contaminated soil and building materials) requiring subsequent disposal. It is likely that near-surface burial will be seriously considered as an option for disposal of these materials. A number of factors - including soil erosion - could adversely affect the long-term stability of a near-surface waste-burial site. The majority of FUSRAP sites are located in the humid eastern United States, where the principal cause of erosion is the action of water. This report examines the effect of soil erosion by water on burial-site stability based on analysis of four hypothetical near-surface burial sites. The Universal Soil Loss Equation was employed to estimate average annual soil loss from burial sites and the 1000-year effects of soil loss on the soil barrier (burial trench cap) placed over low-activity wastes. Results suggest that the land use of the burial site and the slope gradient of the burial trench cap significantly affect the rate of soil erosion. The development of measures limiting the potential land use of a burial site (e.g., mixing large rocks into the burial trench cap) may be required to preserve the integrity of a burial trench for long periods of time.

Knight, M.J.

1983-04-01T23:59:59.000Z

59

Low-level waste shallow burial assessment code  

SciTech Connect (OSTI)

PRESTO (Prediction of Radiation Exposures from Shallow Trench Operationns) is a computer code developed under United States Environmental Protection Agency funding to evaluate possible health effects from radionuclide releases from shallow, radioctive-waste disposal trenches and from areas contaminated with operational spillage. The model is intended to predict radionuclide transport and the ensuing exposure and health impact to a stable, local population for a 1000-year period following closure of the burial grounds. Several classes of submodels are used in PRESTO to represent scheduled events, unit system responses, and risk evaluation processes. The code is modular to permit future expansion and refinement. Near-surface transport mechanisms considered in the PRESTO code are cap failure, cap erosion, farming or reclamation practices, human intrusion, chemical exchange within an active surface soil layer, contamination from trench overflow, and dilution by surface streams. Subsurface processes include infiltration and drainage into the trench, the ensuing solubilization of radionuclides, and chemical exchange between trench water and buried solids. Mechanisms leading to contaminated outflow include trench overflow and downwad vertical percolation. If the latter outflow reaches an aquifer, radiological exposure from irrigation or domestic consumption is considered. Airborne exposure terms are evaluated using the Gaussian plume atmospheric transport formulation as implemented by Fields and Miller (1980).

Fields, D.E.; Little, C.A.; Emerson, C.J.

1981-01-01T23:59:59.000Z

60

Assessment of microbial processes on radionuclide mobility in shallow land burial. [West Valley, NY; Beatty, Nevada; Maxey Flats, Kentucky  

SciTech Connect (OSTI)

The impact of microbial metabolism of the organic substituents of low level radioactive wastes on radionuclide mobility in disposal sites, the nature of the microbial transformations involved in this metabolism and the effect of the prevailing environmental parameters on the quantities and types of metabolic intermediates accumulated were examined. Since both aerobic and anaerobic periods can occur during trench ecosystem development, oxidation capacities of the microbial community in the presence and absence of oxygen were analyzed. Results of gas studies performed at three commercial low level radioactive waste disposal sites were reviewed. Several deficiencies in available data were determined. Further research needs are suggested. This assessment has demonstrated that the biochemical capabilities expressed within the low level radioactive waste disposal site are common to a wide variety of soil bacteria. Hence, assuming trenches would not be placed in sites with such extreme abiotic conditions that all microbial activity is precluded, the microbial populations needed for colonization and decomposition of the organic waste substances are readily provided from the waste itself and from the soil of existing and any proposed disposal sites. Indeed, considering the ubiquity of occurrence of the microorganisms responsible for waste decomposition and the chemical nature of the organic waste material, long-term prevention of biodecomposition is difficult, if not impossible.

Colombo, P.; Tate, R.L. III; Weiss, A.J.

1982-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "bethel valley burial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Vegetation uptake from burial ground alpha waste trenches  

SciTech Connect (OSTI)

This study was conducted as part of an evaluation of the potential radiological consequences of reinhabiting the SRS burial ground. The objective was to determine the uptake of buried, low-level, transuranic waste from unlined earthen trenches by forest vegetation. Two tree plots were established in 1979. One plot was put over a trench containing alpha waste and the other in an area without trenches. When the tree seedlings were sampled during 1979 and 1980, and analysized for {sup 239}Pu and {sup 238}Pu, there was only a small difference in radionuclude concentration between trees planted over the trench and those planted on the control plot because of the limited root intrusion into the trench by the seedlings. However, when trees were sample in 1986, 1987, and 1988 and analyzed for {sup 241}Am, {sup 238}Pu, {sup 239}Pu, and {sup 237}Np activity, the average activity of all of these isotopes was significantly higher over the trenches than in the control plot. These measurements indicate that tree roots will extract transuranic isotopes from buried, low-level waste. The amount of radioisotopes moved from the trenches to the surface is small and the level in the trees is low enough that dose from exposure will be small. The long term effects of transport of radioisotopes from the trenches to the surface soil was evaluated by estimating the accumulation in the surface soil. Transuranic activity in selected food crops was calculated using the soil activity and the literature derived concentration factors. In all cases, the activity of the transuranic isotopes in the edible portion of the plants was quite low. The activity in the leaf tissue was much higher than in the seed. However, it should be noted that in only one case was the activity higher than the naturally occurring activity of {sup 40}K in the pine foliage.

Murphy, C.E. Jr.; Tuckfield, R.C.

1989-01-01T23:59:59.000Z

62

Field demonstration of in situ grouting of radioactive solid waste burial trenches with polyacrylamide. [Polyacrylamide  

SciTech Connect (OSTI)

Demonstrations of in situ grouting with polyacrylamide were carried out on two undisturbed burial trenches and one dynamically compacted burial trench in Solid Waste Storage Area (SWSA) 6 at Oak Ridge National Laboratory (ORNL). The injection of polyacrylamide was achieved quite facilely for the two undisturbed burial trenches which were filled with grout, at typical pumping rates of 95 L/min, in several batches injected over several days. The compacted burial trench, however, failed to accept grout at more than 1.9 L/min even when pressure was applied. Thus, it appears that burial trenches, stabilized by dynamic compaction, have a permeability too low to be considered groutable. The water table beneath the burial trenches did not respond to grout injections indicating a lack of hydrologic connection between fluid grout and the water table which would have been observed if the grout failed to set. Because grout set times were adjusted to less than 60 min, the lack of hydrologic connection was not surprising. Postgrouting penetration testing revealed that the stability of the burial trenches was increased from 26% to 79% that measured in the undisturbed soil surrounding the trenches. In situ permeation tests on the grouted trenches indicated a significant reduction in hydraulic conductivity of the trench contents from a mean of 2.1 {times} 10{sup {minus}3} to 1.85 {times} 10{sup {minus}5} cm/s. Preliminary observations indicated that grouting with polyacrylamide is an excellent method for both improved stability and hydrologic isolation of radioactive waste and its incidental hazardous constituents.

Spalding, B.P.; Fontaine, T.A.

1990-01-01T23:59:59.000Z

63

Pennsylvania Nuclear Profile - Beaver Valley  

U.S. Energy Information Administration (EIA) Indexed Site

Beaver Valley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

64

Case Study - Sioux Valley Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

periods. This detailed billing cannot be done with conventional meters. Critical Peak Pricing Lowers Peak Demands and Electric Bills in South Dakota and Minnesota Sioux Valley...

65

Songs From Happy Valley and Other Stories  

E-Print Network [OSTI]

RIVERSIDE Songs From Happy Valley and Other Stories A Thesisv TABLE OF CONTENTS Songs From Happy Valley The X-Ray SpecsMatch Game vi Songs From Happy Valley Thursday, October 13,

Nagel, Lisa W.

2013-01-01T23:59:59.000Z

66

Thanksgiving Goodwill: West Valley Demonstration Project Food...  

Broader source: Energy.gov (indexed) [DOE]

Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides...

67

Enforcement Documents - West Valley Demonstration Project | Department...  

Broader source: Energy.gov (indexed) [DOE]

Services - EA-1999-09 Issued to West Valley Nuclear Services, related to a High-Level Radioactive Waste Contamination Event at the West Valley Demonstration...

68

Valley Forge Corporate Center  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear Guide Remote55 Jefferson Ave. Valley Forge

69

Valley Forge Corporate Center  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear Guide Remote55 Jefferson Ave. Valley Forge April

70

California Valley Solar Ranch Biological Assessment  

Broader source: Energy.gov [DOE]

Biological Assessment for the California Valley Solar Ranch Project San Luis Obispo County, California

71

Design/installation and structural integrity assessment of Bethel Valley low-level waste collection and transfer system upgrade for Building 3092 (Central Off-Gas Scrubber Facility) at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

This document describes and assesses planned modifications to be made to the Building 3092 Central Off-Gas Scrubber Facility of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in responsible to the requirements of 40CFR264 Subpart J, relating to environmental protection requirements for buried tank systems. The modifications include the provision of a new scrubber recirculation tank in a new, below ground, lines concrete vault, replacing and existing recirculation sump that does not provide double containment. A new buried, double contained pipeline is provided to permit discharge of spent scrubber recirculation fluid to the Central Waste Collection Header. The new vault, tank, and discharge line are provided with leak detection and provisions to remove accumulated liquid. New scrubber recirculation pumps, piping, and accessories are also provided. This assessment concludes that the planned modifications comply with applicable requirements of 40CFR264 Subpart J, as set forth in Appendix F to the Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation.

NONE

1995-01-01T23:59:59.000Z

72

Design/Installation and Structural Integrity Assessment of the Bethel Valley Low-Level Waste Collection and Transfer System Upgrade for Building 3544 (Process Waste Treatment Plant) at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This document describes and assesses planned modifications to be made to the Building 3544 Process Waste Treatment Plant of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in response to the requirements of the Federal Facility Agreement (FFA) relating to environmental protection requirements for tank systems. The modifications include the provision of a new double contained LLW line replacing an existing buried line that does not provide double containment. This new above ground, double contained pipeline is provided to permit discharge of treated process waste fluid to an outside truck loading station. The new double contained discharge line is provided with leak detection and provisions to remove accumulated liquid. An existing LLW transfer pump, concentrated waste tank, piping and accessories are being utilized, with the addition of a secondary containment system comprised of a dike, a chemically resistant internal coating on the diked area surfaces and operator surveillance on a daily basis for the diked area leak detection. This assessment concludes that the planned modifications comply with applicable requirements of Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation.

NONE

1996-12-01T23:59:59.000Z

73

Karren L. More, Ph.D. Leader, Microscopy Group Oak Ridge National Laboratory 1 Bethel Valley Rd. Building 4515, MS 6064 Oak Ridge, TN 37831-6064 (865) 574-7788 morekl1@ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation forTechnologiesDialysis Provider3Karl T. MuellerMicrotomy

74

Karren L. More, Ph.D. Leader, Microscopy Group Oak Ridge National Laboratory 1 Bethel Valley Rd. Building 4515, MS 6064 Oak Ridge, TN 37831-6064 (865) 574-7788 morekl1@ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathan Pershingrelocates 18-tonOperationsKarinaSTEM

75

Karren L. More, Ph.D. Leader, Microscopy Group Oak Ridge National Laboratory 1 Bethel Valley Rd. Building 4515, MS 6064 Oak Ridge, TN 37831-6064 (865) 574-7788 morekl1@ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathan Pershingrelocates 18-tonOperationsKarinaSTEMCurrent

76

Karren L. More, Ph.D. Leader, Microscopy Group Oak Ridge National Laboratory 1 Bethel Valley Rd. Building 4515, MS 6064 Oak Ridge, TN 37831-6064 (865) 574-7788 morekl1@ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathan Pershingrelocates

77

Karren L. More, Ph.D. Leader, Microscopy Group Oak Ridge National Laboratory 1 Bethel Valley Rd. Building 4515, MS 6064 Oak Ridge, TN 37831-6064 (865) 574-7788 morekl1@ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathan Pershingrelocates Local Electrode Atom Probe (LEAP

78

Karren L. More, Ph.D. Leader, Microscopy Group Oak Ridge National Laboratory 1 Bethel Valley Rd. Building 4515, MS 6064 Oak Ridge, TN 37831-6064 (865) 574-7788 morekl1@ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathan Pershingrelocates Local Electrode Atom Probe

79

Karren L. More, Ph.D. Leader, Microscopy Group Oak Ridge National Laboratory 1 Bethel Valley Rd. Building 4515, MS 6064 Oak Ridge, TN 37831-6064 (865) 574-7788 morekl1@ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathan Pershingrelocates Local Electrode Atom Probe Cold

80

Karren L. More, Ph.D. Leader, Microscopy Group Oak Ridge National Laboratory 1 Bethel Valley Rd. Building 4515, MS 6064 Oak Ridge, TN 37831-6064 (865) 574-7788 morekl1@ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathan Pershingrelocates Local Electrode Atom Probe

Note: This page contains sample records for the topic "bethel valley burial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Karren L. More, Ph.D. Leader, Microscopy Group Oak Ridge National Laboratory 1 Bethel Valley Rd. Building 4515, MS 6064 Oak Ridge, TN 37831-6064 (865) 574-7788 morekl1@ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathan Pershingrelocates Local Electrode Atom ProbeSTEM

82

Karren L. More, Ph.D. Leader, Microscopy Group Oak Ridge National Laboratory 1 Bethel Valley Rd. Building 4515, MS 6064 Oak Ridge, TN 37831-6064 (865) 574-7788 morekl1@ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathan Pershingrelocates Local Electrode Atom ProbeSTEM

83

Karren L. More, Ph.D. Leader, Microscopy Group Oak Ridge National Laboratory 1 Bethel Valley Rd. Building 4515, MS 6064 Oak Ridge, TN 37831-6064 (865) 574-7788 morekl1@ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathan Pershingrelocates Local Electrode Atom ProbeSTEMCold

84

Karren L. More, Ph.D. Leader, Microscopy Group Oak Ridge National Laboratory 1 Bethel Valley Rd. Building 4515, MS 6064 Oak Ridge, TN 37831-6064 (865) 574-7788 morekl1@ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathan Pershingrelocates Local Electrode Atom

85

Passive Neutron Non-Destructive Assay for Remediation of Radiological Waste at Hanford Burial Grounds- 13189  

SciTech Connect (OSTI)

The Hanford burial grounds contains a broad spectrum of low activity radioactive wastes, transuranic (TRU) wastes, and hazardous wastes including fission products, byproduct material (thorium and uranium), plutonium and laboratory chemicals. A passive neutron non-destructive assay technique has been developed for characterization of shielded concreted drums exhumed from the burial grounds. This method facilitates the separation of low activity radiological waste containers from TRU waste containers exhumed from the burial grounds. Two identical total neutron counting systems have been deployed, each consisting of He-3 detectors surrounded by a polyethylene moderator. The counts are processed through a statistical filter that removes outliers in order to suppress cosmic spallation events and electronic noise. Upon completion of processing, a 'GO / NO GO' signal is provided to the operator based on a threshold level equivalent to 0.5 grams of weapons grade plutonium in the container being evaluated. This approach allows instantaneous decisions to be made on how to proceed with the waste. The counting systems have been set up using initial on-site measurements (neutron emitting standards loaded into surrogate waste containers) combined with Monte Carlo modeling techniques. The benefit of this approach is to allow the systems to extend their measurement ranges, in terms of applicable matrix types and container sizes, with minimal interruption to the operations at the burial grounds. (authors)

Simpson, A.; Pitts, M. [Pajarito Scientific Corporation, 2976 Rodeo Park Drive East, Santa Fe, NM 87505 (United States)] [Pajarito Scientific Corporation, 2976 Rodeo Park Drive East, Santa Fe, NM 87505 (United States); Ludowise, J.D.; Valentinelli, P. [Washington Closure Hanford, 2620 Fermi Ave., Richland, WA 99354 (United States)] [Washington Closure Hanford, 2620 Fermi Ave., Richland, WA 99354 (United States); Grando, C.J. [ELR Consulting, Inc., 15247 Wilbur Rd., La Conner, WA 98257 (United States)] [ELR Consulting, Inc., 15247 Wilbur Rd., La Conner, WA 98257 (United States); Haggard, D.L. [WorleyParsons Polestar, 601 Williams Blvd., Richland, WA 99354 (United States)] [WorleyParsons Polestar, 601 Williams Blvd., Richland, WA 99354 (United States)

2013-07-01T23:59:59.000Z

86

Preliminary fire hazard analysis for the PUTDR and TRU trenches in the Solid Waste Burial Ground  

SciTech Connect (OSTI)

This document represents the Preliminary Fire Hazards Analysis for the Pilot Unvented TRU Drum Retrieval effort and for the Transuranic drum trenches in the low level burial grounds. The FHA was developed in accordance with DOE Order 5480.7A to address major hazards inherent in the facility.

Gaschott, L.J.

1995-06-16T23:59:59.000Z

87

Geologic Descriptions for the Solid-Waste Low Level Burial Grounds  

SciTech Connect (OSTI)

This document provides the stratigraphic framework and six hydrogeologic cross sections and interpretations for the solid-waste Low Level Burial Grounds on the Hanford Site. Four of the new cross sections are located in the 200 West Area while the other two are located within the 200 East Area. The cross sections display sediments of the vadose zone and uppermost unconfined aquifer.

Bjornstad, Bruce N.; Lanigan, David C.

2007-09-23T23:59:59.000Z

88

Stream-bed scour, egg burial depths, and the influence of salmonid spawning on bed surface  

E-Print Network [OSTI]

Stream-bed scour, egg burial depths, and the influence of salmonid spawning on bed surface mobility-Hames, and Thomas P. Quinn Abstract: Bed scour, egg pocket depths, and alteration of stream-bed surfaces by spawning chum salmon (Onchorhynchus keta) were measured in two Pacific Northwest gravel-bedded streams. Close

Montgomery, David R.

89

Oil and Gas CDT Anomalous compaction and lithification during early burial in  

E-Print Network [OSTI]

Oil and Gas CDT Anomalous compaction and lithification during early burial in sedimentary basins training in a range of skills will mean opportunities for academic, government or Oil and Gas sector (e geoscience for oil and gas). References & Further Reading Neagu, R.C. Cartwright, J., Davies R.J. & Jensen L

Henderson, Gideon

90

The dead do not dress: contribution of forensic anthropology experiments to burial practices analysis  

E-Print Network [OSTI]

The dead do not dress: contribution of forensic anthropology experiments to burial practices Forensic Unit Laboratory of Anatomy, Biomechanics and Organogenesis (LABO), Université Libre de Bruxelles of human decomposition, and thus on the final arrangement of bones (in both forensic and archaeological

Paris-Sud XI, Université de

91

Valley Electric Association- Net Metering  

Broader source: Energy.gov [DOE]

The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

92

Retrofitting the Tennessee Valley Authority  

E-Print Network [OSTI]

As the flagship of the New Deal, the Tennessee Valley Authority (TVA) was a triumph of regional and environmental design that has since fallen on hard times. When writer James Agee toured the region in 1935, he described ...

Zeiber, Kristen (Kristen Ann)

2013-01-01T23:59:59.000Z

93

Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds  

SciTech Connect (OSTI)

This report provides the final hazard categorization for the remediation of six 300-FF-2 Operable Unit Burial Grounds, the 618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 sites.

J. D. Ludowise; K. L. Vialetti

2008-05-12T23:59:59.000Z

94

EA-1203: Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to widen and operate the unused Trench 33 in the 218-W-5 Low-Level Burial Ground at the U.S. Department of Energy's Richland Operations...

95

Burial diagenesis and timing of reservoir development, North Haynesville Field, Louisiana  

E-Print Network [OSTI]

of MASTER OF SCIENCE December 1982 Major Subject: Geology BURIAL DIAGENESIS AND TIMING OF RESERVOIR DEVELOPMENT, NORTH HAYNESVILLE FIELD, LOUISIANA A Thesis by HARRIS BENJAMIN HULL Approved as to style and content by: syne M. Ahr (Chairman...'s encouragement and support also was greatly appreciated. TABLE OF CONTFNTS Page INTRODUCTION Reg'onal Geology Present Status Methods SMACKOVER ROCK PROPERTIES 13 Composition Sedimentary Structures Microfacies 13 28 29 DEPOSITIONAL ENVIRONMENTS 38...

Hull, Harris Benjamin

1982-01-01T23:59:59.000Z

96

Radionuclide contaminant analysis of rodents at a waste burial site, Los Alamos National Laboratory  

SciTech Connect (OSTI)

Small mammals were sampled at two waste burial sites (Sites 1 and 2) at Area G, TA-54, and a control site outside Area G (Site 3) to identify radionuclides that are present within surface and subsurface soils at waste burial sites, to compare the amount of radionuclide uptake by small mammals at waste burial sites to a control site, and to identify the primary mode of contamination to small mammals, either through surface contact or ingestion/inhalation. Three composite samples of at least five animals per sample were collected at each site. Pelts and carcasses of each animal were separated and analyzed independently. Samples were analyzed for americium ({sup 241}Am), strontium ({sup 90}Sr), plutonium ({sup 238}Pu and {sup 239}Pu), total uranium (U), and examined by gamma spectroscopy (including cesium [{sup 137}Cs]). Significantly higher (parametric t-test at p = 0.05) levels of total U, {sup 241}Am, {sup 238}Pu, and potassium ({sup 40}K) were detected in pelts as compared to the carcasses of small mammals at TA-54. Concentrations of other measured radionuclides in carcasses were nearly equal to or exceeded the mean concentrations in the pelts. The results show higher concentrations in pelts compared to carcasses which is similar to what has been found at waste burial/contaminated sites outside of Los Alamos National Laboratory. Site 1 had significantly higher (alpha = 0.05, P = 0.0095) total U concentrations in carcasses than Sites 2 and 3. Site 2 had significantly higher (alpha = 0.05, P = 0.0195) {sup 239}Pu concentrations in carcasses than either Site 1 or Site 3.

Biggs, J.R.; Bennett, K.D.; Fresquez, P.R. [Los Alamos National Lab., NM (United States). Environment, Safety, and Health Div.

1996-12-31T23:59:59.000Z

97

Transuranic element uptake and cycling in a forest over an old burial ground  

SciTech Connect (OSTI)

The consequences of returning the Savannah River Site (SRS) burial ground area to general public access at the time of completion of the SRS mission is being investigated. This study includes evaluation of the radiological impact to inhabitants of the area under a number of scenarios that include the return of the land to farming or forestry use with or without exhumation of the buried waste.

Murphy, C.E. Jr.; Tuckfield, J.C.

1992-07-01T23:59:59.000Z

98

Transuranic element uptake and cycling in a forest over an old burial ground  

SciTech Connect (OSTI)

The consequences of returning the Savannah River Site (SRS) burial ground area to general public access at the time of completion of the SRS mission is being investigated. This study includes evaluation of the radiological impact to inhabitants of the area under a number of scenarios that include the return of the land to farming or forestry use with or without exhumation of the buried waste.

Murphy, C.E. Jr.; Tuckfield, J.C.

1992-01-01T23:59:59.000Z

99

Hanford facility dangerous waste permit application, low-level burial grounds  

SciTech Connect (OSTI)

The Hanford Facility Dangerous Plaste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, `operating` treatment, storage, and/or disposal units, such as the Low-Level Burial Grounds (this document, DOE/RL-88-20).

Engelmann, R.H.

1997-08-12T23:59:59.000Z

100

The validity of analytical methods for predicting self burial of offshore pipelines  

E-Print Network [OSTI]

penetration of ~. D H drostatic ressure test hase, - Prior to placing a pipeline into service, it is necessary to perform a pressure test to insure that the structural integrity of the pipe was maintained during construction and to check for leaks...THE VALIDITY OF ANALYTICAL METHODS FOR PREDICTING SELF BURIAL OF OFFSHORE PIPELINES A Thesis by THOMAS KENWOOD HAMILTON Submitted to the Graduate College of Texas AEM University in partial fulfillment of the requirement for the degree...

Hamilton, Thomas Kenwood

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "bethel valley burial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001  

SciTech Connect (OSTI)

A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA) led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)

Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.; Martin, David W. [Washington Closure Hanford, LLC, Richland, WA 99354 (United States)] [Washington Closure Hanford, LLC, Richland, WA 99354 (United States)

2013-07-01T23:59:59.000Z

102

Performance Assessment Monitoring Plan for the Hanford Site Low-Level Burial Grounds  

SciTech Connect (OSTI)

The U.S. Department of Energy Order 435.1, Radioactive Waste Management, requires a disposal authorization statement authorizing operation (or continued operation) for low-level waste disposal facilities. In fulfillment of these requirements, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area burial grounds and the 200 West Area burial grounds. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area low-level burial grounds be written and approved by the Richland Operations Office. As a result of a record of decision for the Hanford Site Solid Waste Program and acceptance of the Hanford Site Solid Waste Environmental Impact Statement, the use of the low-level burial ground (LLBG) as a disposal facility for low-level and mixed low-level wastes has been restricted to lined trenches and the Navy reactor-compartment trench only. Hence, as of July 2004, only the two lined trenches in burial ground 218-W-5 (trenches 31 and 34, see Appendix A) and the Navy reactor-compartment trench in burial ground 218 E 12B (trench 94) are allowed to receive waste. When the two lined trenches are filled, the LLBG will cease to operate except for reactor compartment disposal at trench 94. Remaining operational lifetime of the LLBG is dependent on waste volume disposal rates. Existing programs for air sampling and analyses and subsidence monitoring are currently adequate for performance assessment at the LLBG. The waste disposal authorization for the Hanford Site is based (in part) on the post-closure performance assessments for the LLBG. In order to maintain a useful link between operational monitoring (e.g., Resource Conservation and Recovery Act [RCRA], Comprehensive Environmental Response, Compensation, and Liability Act, and State Waste Discharge Permits), constituents, monitoring frequencies, and boundaries require regular review and comparison. The annual reports discussed here are the primary sources for these reviews. The pathways of interest are air and groundwater for both operational and post-closure conditions at the LLBG, with groundwater considered to be the most significant long-term exposure pathway. Constituents that contributed at least 0.1% of the total relative hazard were selected as target analytes for monitoring. These are technetium-99, uranium, and iodine-129. Because of its environmental unavailability, carbon 14 was removed from the list of constituents. Given the potential uncertainties in inventories at the 200 Area LLBG and the usefulness of tritium as a contaminant indicator, tritium will be monitored as a constituent of concern at all burial grounds. Preexisting contamination plumes in groundwater beneath low-level waste management areas are attributed to other past-practice liquid waste disposal sites. Groundwater and air will be sampled and analyzed for radiogenic components. Subsidence monitoring will also be performed on a regular basis. The existing near-facility and surveillance air monitoring programs are sufficient to satisfy the performance assessment monitoring. Groundwater monitoring will utilize the existing network of wells at the LLBG, and co-sampling with RCRA groundwater monitoring, to be sampled semiannually. Installation of additional wells is currently underway to replace wells that have gone dry.

None

2006-03-30T23:59:59.000Z

103

Valley County Secondary Data Analysis  

E-Print Network [OSTI]

Infarction prevalence (Heart Attack) 5.5% 4.1% 6.0% All Sites Cancer 472.3 455.5 543.2 1 Community Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. Diabetes 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Valley County Secondary Data Analysis July 23, 2012 2

Maxwell, Bruce D.

104

Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities  

SciTech Connect (OSTI)

The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together) buried in three rows in the northeast comer. In addition, five eight-foot diameter caissons are located at the west end of the center row of the drum storage units. Initially, wastes disposed to the caissons and drum storage units were from the 325 and 327 building hot cells. Later, a small amount of remote-handled (RH) waste from the 309 building Plutonium Recycle Test Reactor (PRTR) cells, and the newly built 324 building hot cells, was disposed at the site.

Hladek, K.L.

1997-10-07T23:59:59.000Z

105

Mechanically and optically controlled graphene valley filter  

SciTech Connect (OSTI)

We theoretically investigate the valley-dependent electronic transport through a graphene monolayer modulated simultaneously by a uniform uniaxial strain and linearly polarized light. Within the Floquet formalism, we calculate the transmission probabilities and conductances of the two valleys. It is found that valley polarization can appear only if the two modulations coexist. Under a proper stretching of the sample, the ratio of the light intensity and the light frequency squared is important. If this quantity is small, the electron transport is mainly contributed by the valley-symmetric central band and the conductance is valley unpolarized; but when this quantity is large, the valley-asymmetric sidebands also take part in the transport and the valley polarization of the conductance appears. Furthermore, the degree of the polarization can be tuned by the strain strength, light intensity, and light frequency. It is proposed that the detection of the valley polarization can be realized utilizing the valley beam splitting. Thus, a graphene monolayer can be used as a mechanically and optically controlled valley filter.

Qi, Fenghua; Jin, Guojun, E-mail: gjin@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

2014-05-07T23:59:59.000Z

106

Hydrogeology of the 200 Areas low-level burial grounds: An interim report: Volume 2, Appendixes  

SciTech Connect (OSTI)

This report presents information derived form the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. Volume 1 contains the main text. This Volume contains the appendixes, including data and supporting information that verify content and results found in the main text.

Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.; Wallace, D.W.; Newcomer, D.R.; Schramke, J.A.; Chamness, M.A.; Cline, C.S.; Airhart, S.P.; Wilbur, J.S.

1989-01-01T23:59:59.000Z

107

Status of corrective measures technology for shallow land burial at arid sites  

SciTech Connect (OSTI)

The field research program involving corrective measure technologies for arid shallow land burial sites is described. Soil erosion and infiltration of water into a simulated trench cap with various surface treatments was measured and compared with similar data from agricultural systems across the United States. Report of field testing of biointrusion barriers continues at a closed-out waste disposal site at Los Alamos. Final results of an experiment designed to determine the effects of subsidence on the performance of a cobble-gravel biobarrier system are reported, as well as the results of hydrologic modeling activities involving biobarrier systems. 11 refs., 10 figs.

Abeele, W.V.; Nyhan, J.W.; Drennon, B.J.; Lopez, E.A.; Herrera, W.J.; Langhorst, G.J.

1985-01-01T23:59:59.000Z

108

Shallow meteoric alteration and burial diagenesis of massive dolomite in the Castle Reef Formation, northwest Montana  

E-Print Network [OSTI]

), Sawmill Creek (SC), Half Dome Crag (HDC), Morningstar Mountain (MM), Mount Field (MF), Gateway Pass (GP), North Fork of Dupuyer Creek (NFD), South Fork of Dupuyer Creek (SFD), Volcano Reef (VR), North Fork of Teton River (NFT), Teton River (TR), Cave...SHALLOW METEORIC ALTERATION AND BURIAL DIAGENESIS OF MASSIVE DOLOM I TE I N THE CASTLE REEF FORMAT I ON ~ NORTHWEST MONTANA A Thesis by PHILIP MARK WHITSITT Submitted to the Office of Graduate Studies of Texas A&M University in partial...

Whitsitt, Philip Mark

1989-01-01T23:59:59.000Z

109

Predynastic Burials  

E-Print Network [OSTI]

sites in the vicinity of Wadi Hof, Helwan. Archa?ologischecemeteries of Maadi and Wadi Digla. ArchäologischeMaadi and associated cemetery Wadi Digla (Rizkana and Seeher

Stevenson, Alice

2009-01-01T23:59:59.000Z

110

Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds  

SciTech Connect (OSTI)

This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project.

J. D. Ludowise

2006-12-12T23:59:59.000Z

111

Identification of technical problems encountered in the shallow land burial of low-level radioactive wastes  

SciTech Connect (OSTI)

A review of problems encountered in the shallow land burial of low-level radioactive wastes has been made in support of the technical aspects of the National Low-Level Waste (LLW) Management Research and Development Program being administered by the Low-Level Waste Management Program Office, Oak Ridge National Laboratory. The operating histories of burial sites at six major DOE and five commercial facilities in the US have been examined and several major problems identified. The problems experienced st the sites have been grouped into general categories dealing with site development, waste characterization, operation, and performance evaluation. Based on this grouping of the problem, a number of major technical issues have been identified which should be incorporated into program plans for further research and development. For each technical issue a discussion is presented relating the issue to a particular problem, identifying some recent or current related research, and suggesting further work necessary for resolving the issue. Major technical issues which have been identified include the need for improved water management, further understanding of the effect of chemical and physical parameters on radionuclide migration, more comprehensive waste records, improved programs for performance monitoring and evaluation, development of better predictive capabilities, evaluation of space utilization, and improved management control.

Jacobs, D.G.; Epler, J.S.; Rose, R.R.

1980-03-01T23:59:59.000Z

112

Interim Action Proposed Plan for the old radioactive waste burial ground (643-E)  

SciTech Connect (OSTI)

This Interim Action Proposed (IAPP) is issued by the U.S. Department of Energy (DOE), which functions as the lead agency for SRS remedial activities, and with concurrence by the U.S. Environmental Protection Agency (EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC). The purpose of this IAPP is to describe the preferred interim remedial action for addressing the Old Radioactive Waste Burial Ground (ORWBG) unit located in the Burial Ground Complex (BGC) at the Savannah River Site (SRS) in Aiken, South Carolina. On December 21, 1989, SRS was included on the National Priorities List (NPL). In accordance with Section 120 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), DOE has negotiated a Federal Facility Agreement (FFA, 1993) with EPA and SCDHEC to coordinate remedial activities at SRS. Public participation requirements are listed in Sections 113 and 117 of CERCLA. These requirements include establishment of an Administrative Record File that documents the selection of remedial alternatives and allows for review and comment by the public regarding those alternatives. The SRS Public Involvement Plan (PIP) (DOE, 1994) is designed to facilitate public involvement in the decision-making process for permitting closure, and the selection of remedial alternatives. Section 117(a) of CERCLA, 1980, as amended, requires publication of a notice of any proposed remedial action.

McFalls, S.

1995-12-01T23:59:59.000Z

113

Hydrogeology of the 200 Areas low-level burial grounds: An interim report: Volume 1, Text  

SciTech Connect (OSTI)

This report presents information derived from the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. This volume contains the main text. Volume 2 contains the appendixes, including data and supporting information that verify content and results found in the main text. This report documents information collected by the Pacific Northwest Laboratory at the request of Westinghouse Hanford Company. Presented in this report are the preliminary interpretations of the hydrogeologic environment of six low-level burial grounds, which comprise four waste management areas (WMAs) located in the 200 Areas of the Hanford Site. This information and its accompanying interpretations were derived from sampling and testing activities associated with the construction of 35 ground-water monitoring wells as well as a multitude of previously existing boreholes. The new monitoring wells were installed as part of a ground-water monitoring program initiated in 1986. This ground-water monitoring program is based on requirements for interim status facilities in compliance with the Resource Conservation and Recovery Act (1976).

Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.; Wallace, D.W.; Newcomer, D.R.; Schramke, J.A.; Chamness, M.A.; Cline, C.S.; Airhart, S.P.; Wilbur, J.S.

1989-01-01T23:59:59.000Z

114

Research Program at Maxey Flats and Consideration of Other Shallow Land Burial Sites  

SciTech Connect (OSTI)

The Maxey Flats research program is a multidisciplinary, multilaboratory program with the objectives to define the radiochemical and chemical composition of leachates in the burial trenches, define the areal distribution of radionuclides on the site and the factors responsible for this distribution, define the concentrations of radionuclides in vegetation both on and offsite and the uptake of radionuclides by representative agricultural crops, define the atmospheric pathways for radionuclide transport and the mechanisms involved, determine the subsurface migration rates of radionuclides and the chemical, physical, biological, and hydrogeological factors which affect this migration. and evaluate the engineering practices which influence the seepage of surface waters into the burial trenches. The program was initiated in 1979 and a research meeting was held at the Nuclear Regulatory Commission Headquarters on July 16, 1980, to report the research findings of each of the participating laboratories and universities. Important observations from the research are included in the Summary and the results reported for each of the research efforts are summarized in the individual reports that are combined to form this document.

,

1981-03-01T23:59:59.000Z

115

Innovation and Social Capital in Silicon Valley  

E-Print Network [OSTI]

Innovation and Social Capital in Silicon Valley * BRIEpath from social capital to innovation has been identified.social capital has for economic development and innovation.

Kenney, Martin; Patton, Donald

2003-01-01T23:59:59.000Z

116

Valley Electric Association- Solar Water Heating Program  

Broader source: Energy.gov [DOE]

Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA...

117

Enterprise Assessments Review, West Valley Demonstration Project...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

conducted an independent oversight review of activity-level implementation of the radiation protection program at the West Valley Demonstration Project. The onsite review was...

118

Independent Oversight Review, West Valley Demonstration Project...  

Office of Environmental Management (EM)

West Valley Demonstration Project - December 2014 3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report EA-1552: Final Environmental Assessment...

119

Roaring Fork Valley- Energy Efficient Appliance Program  

Broader source: Energy.gov [DOE]

The Aspen Community Office for Resource Efficiency (CORE) promotes renewable energy, energy efficiency and green building techniques in western Colorado's Roaring Fork Valley. For customers who...

120

Independent Activity Report, West Valley Demonstration Project...  

Broader source: Energy.gov (indexed) [DOE]

July 2012 Operational Awareness Oversight of the West Valley Demonstration Project HIAR WVDP-2012-07-30 This Independent Activity Report documents an operational awareness...

Note: This page contains sample records for the topic "bethel valley burial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Santa Clara Valley Transportation Authority and San Mateo County...  

Energy Savers [EERE]

Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results Santa Clara Valley Transportation Authority and San...

122

azapa valley northern: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dry Valley lakes, Antarctica Environmental Sciences and Ecology Websites Summary: evaluation of silicon biogeochemistry in the Taylor Valley lakes, Southern Victoria Land, was...

123

Geothermometry At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

Home Exploration Activity: Geothermometry At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal...

124

Conceptual Model At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

Conceptual Model At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique...

125

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal...  

Open Energy Info (EERE)

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Abstract Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble...

126

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal...  

Open Energy Info (EERE)

Activity: Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Exploration Activity Details Location Indian Valley Hot Springs Geothermal Area...

127

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Gradient Holes At Long Valley Caldera Geothermal Area (Conservation, 2009) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal...

128

Silicon Valley Power and Oklahoma Municipal Power Authority Win...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind...

129

Modeling-Computer Simulations At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique...

130

Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area (Iovenitti, Et Al., 2013) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique...

131

Exploratory Well At Long Valley Caldera Geothermal Area (Smith...  

Open Energy Info (EERE)

Home Exploration Activity: Exploratory Well At Long Valley Caldera Geothermal Area (Smith & Rex, 1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area...

132

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...  

Open Energy Info (EERE)

Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area...

133

Deformation of the Long Valley Caldera, California: Inferences...  

Open Energy Info (EERE)

Activities (2) Ground Gravity Survey At Long Valley Caldera Geothermal Area (Battaglia, Et Al., 2003) Modeling-Computer Simulations At Long Valley Caldera Geothermal Area...

134

AMF Deployment, Ganges Valley, India  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smartHistory:CONTR.l\CTIndia Ganges Valley

135

Union Valley | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New EnergyofDEVELOPMENTEnergy 1n n d d e eUnion Valley

136

Town of Portola Valley 765 Portola Roac  

E-Print Network [OSTI]

, Ca 95814-5514 Re: Town of Portola Valley Green Building Ordinance No. 2010-386 and the Building Efficiency Standards as part of the implementation of our local green building energy ordinance. As the town to the Portola Valley Town Council, the Green Building Ordinance and the Energy Cost Effective Study as explained

137

Atmospheric dispersion in mountain valleys and basins  

SciTech Connect (OSTI)

The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ventilation rate'' of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

Allwine, K.J.

1992-01-01T23:59:59.000Z

138

Atmospheric dispersion in mountain valleys and basins  

SciTech Connect (OSTI)

The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ``ventilation rate`` of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

Allwine, K.J.

1992-01-01T23:59:59.000Z

139

EA-1276: Widening Trench 36 of the 218-E-12B Low-level Burial Ground, Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to widen and operate unused Trench 36 in the 218-E-12B Low-Level Burial Ground for disposal of low-level waste at the U.S. Department of...

140

A summary of ecological investigations at the burial ground complex, Savannah River Site - 1994  

SciTech Connect (OSTI)

This report summarizes the results of three ecological investigations that were conducted in 1994 at the Burial Ground Complex (BGC) at the Savannah River Site (SRS). The three topics of study included remote sensing, aquatic toxicity testing, and qualitative surveys of herpetofauna and small mammals. Interim reports from each investigation are included in the appendices (A, B, and C). The objectives of the remote sensing effort were to compile historical aerial photography of the BGC and to develop a land use/cover map of the complex using recent aerial imagery. The goal of the aquatic toxicity testing was to determine if surface waters were toxic to aquatic biota whereas the objectives of the vertebrate surveys were to identify the species diversity and relative abundances of amphibians, reptiles, and small mammals inhabiting the study area.

Friday, G.P.; Hartman, G.D.; Mackey, H.E. Jr.; Riley, R.S.; Roach, J.L.; Specht, W.L.; Westbury, H.M.; Wike, L.D.

1994-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "bethel valley burial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Development of technology for the design of shallow land burial facilities at arid sites  

SciTech Connect (OSTI)

The Los Alamos field research program involving technology development for arid shallow land burial (SLB) sites is described. Field data are presented for an integrated field experiment, which was designed to test individual SLB component experiments related to erosion control, biobarriers, and subsurface capillary and migration barriers. Field tests of biointrusion barriers at waste disposal sites and in experimental plots are reported. The results of a joint DOE/NRC experiment to evaluate leaching and transport of sorbing (Cs, Sr, Li) and nonsorbing (I, Br) solutes in sandy silt backfill are presented for steady-state and unsteady-state flow conditions. A capillary barrier experiment performed in a large caisson (3-m diameter, 6.1 m deep) is described and a year's worth of field data is presented.

Nyhan, J.W.; Abeele, W.V.; Drennon, B.J.; Herrera, W.J.; Lopez, E.A.; Langhorst, G.J.; Stallings, E.A.; Walker, R.D.; Martinez, J.L.

1985-01-01T23:59:59.000Z

142

West Valley Demonstration Project Site Environmental Report Calendar Year 2000  

SciTech Connect (OSTI)

The annual site environmental monitoring report for the West Valley Demonstration Project nuclear waste management facility.

NONE

2001-08-31T23:59:59.000Z

143

Analysis of the NAN Ruin (LA15049) burial patterns: an examination of Mimbres social structure  

E-Print Network [OSTI]

. Application of the Superordinate/Subordinate Model to mortuary data recovered from the NAN Ruin, a Mimbres Indian village site located in the Mimbres Valley, has shown that this model is not particularly conclusive for identification of ephemeral rank... by the Superordinate/Subordinate Model. Though the NAN Ruin data did not fit neatly into che patterns listed in the Peebles and Kus model, data analysis comparisons made with it suggest that the NAN Ruin villagers (and, by extension, other Nimbres villages) very...

Ham, Elizabeth Jane

1989-01-01T23:59:59.000Z

144

Valley and electric photocurrents in 2D silicon and graphene  

SciTech Connect (OSTI)

We show that the optical excitation of multi-valley systems leads to valley currents which depend on the light polarization. The net electric current, determined by the vector sum of single-valley contributions, vanishes for some peculiar distributions of carriers in the valley and momentum spaces forming a pure valley current. We report on the study of this phenomenon, both experimental and theoretical, for graphene and 2D electron channels on the silicon surface.

Tarasenko, S. A.; Ivchenko, E. L. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Olbrich, P.; Ganichev, S. D. [Terahertz Center, University of Regensburg, 93040 Regensburg (Germany)

2013-12-04T23:59:59.000Z

145

The Peachtree Valley and Valley Town mission : a baptist recategorization of a Cherokee landscape.  

E-Print Network [OSTI]

??Peachtree Valley in Clay county, North Carolina has a long history of diversity in plant, animal, and human habitation. The Cherokee, who have inhabited the… (more)

Owen, James Anthony

2012-01-01T23:59:59.000Z

146

VALMET-A valley air pollution model  

SciTech Connect (OSTI)

Following a thorough analysis of meteorological data obtained from deep valleys of western Colorado, a modular air-pollution model has been developed to simulate the transport and diffusion of pollutants released from an elevated point source in a well-defined mountain valley during the nighttime and morning transition periods. This initial version of the model, named VALMET, operates on a valley cross section at an arbitrary distance down-valley from a continuous point source. The model has been constructed to include parameterizations of the major physical processes that act to disperse pollution during these time periods. The model has not been fully evaluated. Further testing, evaluations, and development of the model are needed. Priorities for further development and testing are provided.

Whiteman, C.D.; Allwine, K.J.

1983-09-01T23:59:59.000Z

147

SAVE THE DATE!!! The Silicon Valley  

E-Print Network [OSTI]

SAVE THE DATE!!! The Silicon Valley 3rd Annual Social Innovation Leadership Forum 2014 (SILF 2014 towards a better tomorrow... Register for the event today! The Social Innovation Leadership Forum (SILF

Su, Xiao

148

25055 W. Valley Parkway Olathe, Kansas 66061  

E-Print Network [OSTI]

25055 W. Valley Parkway Suite 106 Olathe, Kansas 66061 Evans Enterprises is growing, or a person we need to reach out to. Our company website is below, and I am happy to answer any questions you

Dyer, Bill

149

Poudre Valley REA- Photovoltaic Rebate Program  

Broader source: Energy.gov [DOE]

Poudre Valley REC is providing rebates to their residential customers who install photovoltaic (PV) systems on their homes. This rebate program was timed to coincide with the Colorado Governor's...

150

City of Sunset Valley- PV Rebate Program  

Broader source: Energy.gov [DOE]

The City of Sunset Valley offers rebates to local homeowners who install photovoltaic (PV) systems on their properties. The local rebate acts as an add-on to the PV rebates that are offered by...

151

Performance Assessment Monitoring Plan for the Hanford Site Low Level Waste Burial Grounds  

SciTech Connect (OSTI)

As directed by the U.S. Department of Energy (DOE), Richland Operations Office (DOE-RL), Fluor Hanford, Inc. will implement the requirements of DOE Order 435.1, Radioactive Waste Management, as the requirements relate to the continued operation of the low-level waste disposal facilities on the Hanford Site. DOE Order 435.1 requires a disposal authorization statement authorizing operation (or continued operation) of a low-level waste disposal facility. The objective of this Order is to ensure that all DOE radioactive waste is managed in a manner that protects the environment and personnel and public health and safety. The manual (DOE Order 435.1 Manual) implementing the Order states that a disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980 documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility. Failure to obtain a disposal authorization statement shall result in shutdown of an operational disposal facility. In fulfillment of the requirements of DOE Order 435.1, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area and the 200 West Area Low-Level Burial Grounds. The disposal authorization statement constitutes approval of the performance assessment and composite analysis, authorizes operation of the facility, and includes conditions that the disposal facility must meet. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area Low-Level Burial Grounds be written and approved by the DOE-RL. The monitoring plan is to be updated and implemented within 1 year following issuance of the disposal authorization statement to incorporate and implement conditions specified in the statement. The plan must meet the following criteria. The site-specific performance assessment and composite analysis shall be used to determine the media, locations, radionuclides, and other substances monitored. The environmental monitoring program shall be designed to include measuring and evaluating releases, migration of radionuclides, disposal unit subsidence, and changes in disposal facility and disposal site parameters that may affect long-term performance. The environmental monitoring programs shall be capable of detecting changing trends in performance to allow application of any necessary corrective action before exceeding the performance objectives stated in the order.

SONNICHSEN, J.C.

2000-11-15T23:59:59.000Z

152

Pumpernickel Valley Geothermal Project Thermal Gradient Wells  

SciTech Connect (OSTI)

The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well – Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

Z. Adam Szybinski

2006-01-01T23:59:59.000Z

153

Wind Generation Feasibility Study in Bethel, AK  

SciTech Connect (OSTI)

This report studies the wind resources in the Yukon-Kuskokwim Health Corporation (YKHC) region, located in southwestern Alaska, and the applicability of wind generation technologies to YKHC facilities.

Tom Humphrey, YKHC; Lance Kincaid, EMCOR Energy & Technologies

2004-07-31T23:59:59.000Z

154

Bethel, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio JumpVentures JumpGermany: Energy

155

Bethel Energy LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey: EnergyBerthoud, Colorado:774° Loading map...Energy LLC

156

Bethel Utilities Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey: EnergyBerthoud, Colorado:774° Loading

157

Bethel, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey: EnergyBerthoud, Colorado:774°

158

Meteorological Data Report for YKHC Bethel, Alaska  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbH Jump to: navigation,Metalysis Jump to:Dec 2005 WindPROYKHC

159

Bethel-ASCR-Requirements-CaseStudy.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for a JobBernard Matthew Poelker,8BestData

160

Geohydrology of the 218-W-5 Burial Ground, 200-West Area, Hanford Site  

SciTech Connect (OSTI)

Construction a disposal facility for solid, mixed low-level radioactive and hazardous wastes at the Hanford Site in southeastern Washington State (Figure 1) is planned. A site-specific performance assessment for each new disposal facility to ensure that wastes will be isolated from the environment is required. To demonstrate the adequacy of the facility for isolating the wastes, computer codes are used to simulate the physical processes that could cause the waste to migrate to underground water supplies or to the land's surface. The purpose of this report is provide a compilation and interpretation of geologic and hydrologic data available use in the performance assessment modeling. A variety of data are needed to model flow and transport from a solid-waste burial trench. These data include soil water content, soil moisture potential, saturated and unsaturated hydraulic conductivity, and phase mineralogy of the soils and sediments within the vadose zone. The hydrologic data that are critical for quantifying the water storage and transport properties for unsaturated soils require a characterization of the heterogeneities of various soil layers and the moisture characteristic curves for these layers. Hydraulic properties and mineralogic data for the saturated sediments are also important for modelling the flow and transport of wastes in the unconfined aquifer. This report begins with a discussion of the procedures and methods used to gather data both in the field and in the laboratory. This is followed by a summary of the geology, including the stratigraphic framework, lithofacies, and mineralogic/geochemical characteristics of the suprabasalt sediments. The hydrology of the region of the site is discussed next. In this discussion, the characteristics of the uppermost aquifer(s), unsaturated zone, and the various hydrogeologic units are presented. 54 refs., 39 figs., 11 tabs.

Bjornstad, B.N.

1990-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "bethel valley burial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Tuesday, March 13, 2007 POSTER SESSION I: MARS VALLEY NETWORKS  

E-Print Network [OSTI]

Regions and Multiple Water Release Events in Valley Networks of the Libya Montes Region on Mars [#1729] We investigate a valley network in the western Libya Montes region, which originates in a highland mountain

Rathbun, Julie A.

162

A Home for Everyone San Joaquin Valley Housing  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 C. Kings County . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 D. Madera related to growth and development and lead to improved outcomes for California's cities and counties Joaquin Valley . . . . . . . . . . . . . . . . . . . . . 53 APPENDICES: DATA TABLES FOR VALLEY COUNTIES A

Tipple, Brett

163

Valley wins High School Science Bowl | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Valley wins High School Science Bowl West Des Moines Valley defeated Bettendorf 72-32 in the championship match to win the 25th Ames LaboratoryIowa State University Regional High...

164

Tesla Demonstration for Happy Valley Elementary Tuesday, November 20th  

E-Print Network [OSTI]

Tesla Demonstration for Happy Valley Elementary Tuesday, November 20th Schedule Load Time: 11: ___________________________________________________________ Contact: Chris McGriff, cmcgriff@santacruz.k12.ca.us Address: Happy Valley Elementary School, Branciforte

California at Santa Cruz, University of

165

Core Holes At Long Valley Caldera Geothermal Area (Lachenbruch...  

Open Energy Info (EERE)

Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

166

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

167

The Lower Rio Grande Valley Regional Public Transportation Coordination Plan  

E-Print Network [OSTI]

KFH GROUP, INC. THE LOWER RIO GRANDE VALLEY REGIONAL PUBLIC TRANSPORTATION COORDINATION PLAN Developed for: Lower Rio Grande Valley Regional Transportation Coordination Plan Committee By: KFH Group, Incorporated... Page BACKGROUND..............................................................................................................................1 PLAN PROCESS...

Lower Rio Grande Valley Development Council

2006-11-30T23:59:59.000Z

168

Global Energy Partners, LLC 500 Ygnacio Valley Road, Suite 450  

E-Print Network [OSTI]

Global Energy Partners, LLC 500 Ygnacio Valley Road, Suite 450 Walnut Creek, CA 94596 P: 925. This report was prepared by Global Energy Partners, LLC 500 Ygnacio Valley Blvd., Suite 450 Walnut Creek, CA

169

Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds  

SciTech Connect (OSTI)

This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site. A material at risk calculation was performed that determined the radiological inventory for each burial ground to be Hazard Category 3.

J.D. Ludowise

2009-06-17T23:59:59.000Z

170

Modeling-Computer Simulations At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wisian & Blackwell, 2004) Exploration...

171

Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration Activity Details...

172

Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson, 1985) Exploration Activity Details...

173

WEST VALLEY DEMONSTRATION PROJECT SITE ENVIRONMENTAL REPORT CALENDARY YEAR 2001  

SciTech Connect (OSTI)

THE ANNUAL (CALENDAR YEAR 2001) SITE ENVIRONMENTAL MONITORING REPORT FOR THE WEST VALLEY DEMONSTRATION PROJECT NUCLEAR WASTE MANAGEMENT FACILITY.

NONE

2002-09-30T23:59:59.000Z

174

Silicon Valley Power- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Silicon Valley Power offers rebates to residential customers for the purchase of a variety of energy efficient products including:

175

The Valley Fever Corridor Year 2 Fundraising Status  

E-Print Network [OSTI]

Marianne Stephens Ray Thurston Valley of the Sun Boston Terrier Club Mark Whitaker Nickel $500The Valley Fever Corridor Year 2 Fundraising Status Goal = $85,000 Updated: 2/15/2011 *The Valley Fever Clinic Titanium $5,000 or more: Anonymous Shirley and Ken Cole Heller Foundation

Arizona, University of

176

San Joaquin Valley Unified Air Pollution Control District  

E-Print Network [OSTI]

#12;San Joaquin Valley Unified Air Pollution Control District Best Available Control Technology.4.2 #12;San Joaquin Valley Air Pollution Control Distri RECEIVED ~ 2 ED ECEIVED www.valleyalr.org SJVAPCD-2370·(661)326-6900"FAX(661)326-6985 #12;San Joaquin Valley Unified Air Pollution Control District TITLE V MODIFICATION

177

Golden Valley County Secondary Data Analysis  

E-Print Network [OSTI]

Infarction prevalence (Heart Attack) 4.3% 4.1% 6.0% All Sites Cancer 510.8 455.5 543.2 1 Community County1 Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. Unintentional Injuries** 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Golden Valley County Secondary Data

Maxwell, Bruce D.

178

Potential hydrologic characterization wells in Amargosa Valley  

SciTech Connect (OSTI)

More than 500 domestic, agricultural, and monitoring wells were identified in the Amargosa Valley. From this list, 80 wells were identified as potential hydrologic characterization wells, in support of the US Department of Energy (DOE) Underground Test Area/Remedial Investigation and Feasibility Study (UGTA/RIFS). Previous hydrogeologic studies have shown that groundwater flow in the basin is complex and that aquifers may have little lateral continuity. Wells located more than 10 km or so from the Nevada Test Site (NTS) boundary may yield data that are difficult to correlate to sources from the NTS. Also, monitoring well locations should be chosen within the guidelines of a hydrologic conceptual model and monitoring plan. Since these do not exist at this time, recompletion recommendations will be restricted to wells relatively close (approximately 20 km) to the NTS boundary. Recompletion recommendations were made for two abandoned agricultural irrigation wells near the town of Amargosa Valley (previously Lathrop Wells), for two abandoned wildcat oil wells about 10 km southwest of Amargosa Valley, and for Test Well 5 (TW-5), about 10 km east of Amargosa Valley.

Lyles, B.; Mihevc, T.

1994-09-01T23:59:59.000Z

179

NNSS Soils Monitoring: Plutonium Valley (CAU366)  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

Miller Julianne J.,Mizell Steve A.,Nikolich George, Campbell Scott

2012-02-01T23:59:59.000Z

180

Quantum pumping of valley current in strain engineered graphene  

SciTech Connect (OSTI)

We studied the generation of valley dependent current by adiabatic quantum pumping in monolayer graphene in the presence of electric potential barriers, ferromagnetic field and strain. The pumped currents in the two valleys have same magnitudes and opposite directions; thus, a pure valley current is generated. The oscillation of the pumped pure valley current is determined by the Fabry-Perot resonances formed in the structure. In our calculation, the pumped pure valley current can be as high as 50?nA, which is measurable using present technologies. The proposed device is useful for the development of graphene valleytronic devices.

Wang, Jing [Department of Physics, University of Science and Technology of China, Hefei (China) [Department of Physics, University of Science and Technology of China, Hefei (China); Department of Physics and Materials Science and Centre for Functional Photonics, City University of Hong Kong, Hong Kong and City University of Hong Kong Shenzhen Research Institute, Shenzhen (China); Chan, K. S., E-mail: apkschan@cityu.edu.hk, E-mail: zjlin@ustc.edu.cn [Department of Physics and Materials Science and Centre for Functional Photonics, City University of Hong Kong, Hong Kong and City University of Hong Kong Shenzhen Research Institute, Shenzhen (China); Lin, Zijing, E-mail: apkschan@cityu.edu.hk, E-mail: zjlin@ustc.edu.cn [Department of Physics, University of Science and Technology of China, Hefei (China)] [Department of Physics, University of Science and Technology of China, Hefei (China)

2014-01-06T23:59:59.000Z

Note: This page contains sample records for the topic "bethel valley burial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Development and Application of a Paleomagnetic/Geochemical Method for Constraining the Timing of Burial Diagenetic and Fluid  

SciTech Connect (OSTI)

Studies of diagenesis caused by fluid migration or other events are commonly hindered by a lack of temporal control. Our results to date demonstrate that a paleomagnetic/geochemical approach can be used to date fluid migration as well as burial diagenetic events. Our principal working hypothesis is that burial diagenetic processes (e.g., maturation of organic-rich sediments and clay diagenesis) and the migration of fluids can trigger the authigenesis of magnetic mineral phases. The ages of these events can be constrained by comparing chemical remanent magnetizations (CRMs) to independently established Apparent Polar Wander Paths. While geochemical (e.g. stable isotope and organic analyses) and petrographic studies provide important clues for establishing these relationships, the ultimate test of this hypothesis requires the application of independent dating methods to verify the paleomagnetic ages. Towards this end, we have used K-Ar dating of illitization as an alternative method for constraining the ages of magnetic mineral phases in our field areas.

Elmore, Richard D.; Engel, Michael H.

2005-03-10T23:59:59.000Z

182

Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds  

SciTech Connect (OSTI)

This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

K. L. Vialetti

2008-05-20T23:59:59.000Z

183

Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds  

SciTech Connect (OSTI)

This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

T. J. Rodovsky

2007-04-12T23:59:59.000Z

184

Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds  

SciTech Connect (OSTI)

This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

T. J. Rodovsky

2006-12-06T23:59:59.000Z

185

E-Print Network 3.0 - actively articulated suspension Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COATINGS: FORMATION OF MULLITE COATINGS ON SiC Summary: COLLOIDAL SUSPENSION Beth L. Armstrong Oak Ridge National Laboratory Bethel Valley Road, P.O. Box 2008, Oak... with...

186

E-Print Network 3.0 - active suspension design Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COATINGS: FORMATION OF MULLITE COATINGS ON SiC Summary: COLLOIDAL SUSPENSION Beth L. Armstrong Oak Ridge National Laboratory Bethel Valley Road, P.O. Box 2008, Oak... with...

187

ITP Industrial Distributed Energy: Assessment of Large Combined...  

Broader source: Energy.gov (indexed) [DOE]

Summary Report: Assessment of Large Combined Heat and Power Market ORNL Subcontract 4000021456 Task 2 Submitted to: Oak Ridge National Laboratory P.O. Box 2008 1 Bethel Valley Road...

188

Hudson Valley Clean Energy Office and Warehouse  

High Performance Buildings Database

Rhinebeck, NY Hudson Valley Clean Energy's new head office and warehouse building in Rhinebeck, New York, achieved proven net-zero energy status on July 2, 2008, upon completing its first full year of operation. The building consists of a lobby, meeting room, two offices, cubicles for eight office workers, an attic space for five additional office workers, ground- and mezzanine-level parts and material storage, and indoor parking for three contractor trucks.

189

Sequachee Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa, Mallorca: EnergySecondarySequachee Valley

190

North Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) JumpNorth Haven, Maine:Ohio:Pole,NorthNorth Valley Geothermal

191

Melton Valley Watershed | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies | DepartmentADVISORYFinalMelton Valley

192

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska: Energy ResourcesLualualei Valley

193

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska: Energy ResourcesLualualei ValleyJump to:

194

Clean Cities: Rogue Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley Clean Cities Coalition

195

Phase 1 report on the Bear Creek Valley treatability study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

Bear Creek Valley (BCV) is located within the US Department of Energy (DOE) Oak Ridge Reservation and encompasses multiple waste units containing hazardous and radioactive wastes associated with past operations at the adjacent Oak Ridge Y-12 Plant. The BCV Remedial Investigation determined that disposal of wastes at the S-3 Site, Boneyard/Burnyard (BYBY), and Bear Creek Burial Grounds (BCBG) has caused contamination of both deep and shallow groundwater. The primary contaminants include uranium, nitrate, and VOCs, although other metals such as aluminum, magnesium, and cadmium persist. The BCV feasibility study will describe several remedial options for this area, including both in situ and ex situ treatment of groundwater. This Treatability Study Phase 1 Report describes the results of preliminary screening of treatment technologies that may be applied within BCV. Four activities were undertaken in Phase 1: field characterization, laboratory screening of potential sorbents, laboratory testing of zero valent iron products, and field screening of three biological treatment systems. Each of these activities is described fully in technical memos attached in Appendices A through G.

NONE

1997-04-01T23:59:59.000Z

196

VALMET: a valley air pollution model. Final report. Revision 1  

SciTech Connect (OSTI)

An air quality model is described for predicting air pollution concentrations in deep mountain valleys arising from nocturnal down-valley transport and diffusion of an elevated pollutant plume, and the fumigation of the plume on the valley floor and sidewalls after sunrise. Included is a technical description of the model, a discussion of the model's applications, the required model inputs, sample calculations and model outputs, and a full listing of the FORTRAN computer program. 55 refs., 27 figs., 6 tabs.

Whiteman, C.D.; Allwine, K.J.

1985-04-01T23:59:59.000Z

197

Citrus Production in the Lower Rio Grande Valley of Texas.  

E-Print Network [OSTI]

LIE?ARY, A t r: COLLEGE, CAvrus. TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR COLLEGE STATION, BRAZOS COUNTY, TEXAS - BULLETIN NO. 419 DIVISION OF HORTICULTURE Citrus Production in the Lower Rio Grande Valley of Texas... of Agriculture. . Citrus fruit production in the Lower Rio Grande Valley, especially grapefruit, has increased at a rather rapid rate dur- ing the past few years. More than 5,000,000 citrus trees were set in orchard form in the Lower Rio Grande Valley up...

Traub, Hamilton Paul; Friend, W. H. (William Heartsill)

1930-01-01T23:59:59.000Z

198

Santa Clara Valley Transportation Authority and San Mateo County...  

Energy Savers [EERE]

Santa Clara Valley Transportation Authority and San Mateo County Transit District Fuel Cell Transit Buses: Preliminary Evaluation Results vtaprelimevalresults.pdf More...

199

Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith,...

200

Geographic Information System At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

over the Dixie Valley hydrothermal convection system, and if so, are they related with soil geochemical, vegetal-spectral, soil spectral, and biogeochemical anomalies. Other goals...

Note: This page contains sample records for the topic "bethel valley burial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Verdigris Valley Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are available for room air conditioners, electric water...

202

West Valley Demonstration Project - North Plateau Strontium-90...  

Office of Environmental Management (EM)

Demonstration Project - North Plateau Strontium-90 West Valley Demonstration Project - North Plateau Strontium-90 January 1, 2014 - 12:00pm Addthis US Department of Energy...

203

Field Mapping At Long Valley Caldera Geothermal Area (Sorey ...  

Open Energy Info (EERE)

Sorey & Farrar, 1998) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Long Valley Caldera Geothermal Area (Sorey & Farrar, 1998)...

204

Static Temperature Survey At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Static Temperature Survey Activity...

205

Compound and Elemental Analysis At Long Valley Caldera Geothermal...  

Open Energy Info (EERE)

Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Long Valley Caldera Geothermal...

206

Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area (Farrar, Et...

207

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1998 -...

208

Non-Double-Couple Microearthquakes At Long Valley Caldera, California...  

Open Energy Info (EERE)

Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Jump to: navigation, search OpenEI Reference LibraryAdd to library...

209

Water geochemistry study of Indian Wells Valley, Inyo and Kern...  

Open Energy Info (EERE)

Final report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Water geochemistry study of Indian Wells Valley, Inyo and Kern Counties, California....

210

Water Sampling At Valley Of Ten Thousand Smokes Region Area ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992)...

211

Poudre Valley REA- Commercial Lighting Rebate Program (Colorado)  

Broader source: Energy.gov [DOE]

Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy Cooperative, offers a variety of lighting rebates to commercial customers. Rebates are available on commercial lighting...

212

Magic Valley Electric Cooperative- ENERGY STAR Builders Program (Texas)  

Broader source: Energy.gov [DOE]

Magic Valley Electric Cooperative's (MVEC) ENERGY STAR Builders Program offers a variety of incentives to builders of energy efficiency homes within MVEC service territory. Incentives are provided...

213

Injectivity Test At Long Valley Caldera Geothermal Area (Morin...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley Caldera Geothermal Area (Morin, Et Al., 1993) Exploration Activity...

214

Injectivity Test At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

Details Location Long Valley Caldera Geothermal Area Exploration Technique Injectivity Test Activity Date 1999 - 1999 Usefulness not useful DOE-funding Unknown Notes A second...

215

Ground Gravity Survey At Dixie Valley Geothermal Area (Allis...  

Open Energy Info (EERE)

Activity Details Location Dixie Valley Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1999 - 2000 Usefulness not indicated DOE-funding Unknown...

216

Core Analysis At Long Valley Caldera Geothermal Area (Pribnow...  

Open Energy Info (EERE)

Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Core Analysis Activity Date - 2003 Usefulness useful DOE-funding Unknown Notes "Here we...

217

Kennebec Valley Community College's State of the Art Solar Lab  

Broader source: Energy.gov [DOE]

Fairfield, Maine's Kennebec Valley Community College has opened a state of the art lab to teach participants from throughout the Northeast how to install solar systems.

218

Numerical Modeling At Dixie Valley Geothermal Area (McKenna ...  

Open Energy Info (EERE)

McKenna & Blackwell, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Dixie Valley Geothermal Area (McKenna &...

219

Lobbyist Disclosure Form - Silicon Valley | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lobbyist Disclosure Form - Silicon Valley.pdf More Documents & Publications Lobbyist Disclosure Form - AltEn Lobbyist Disclosure Form - First Solar Interested Parties - Shipp...

220

Wabash Valley Power Association- Residential Energy Efficiency Program (Illinois)  

Broader source: Energy.gov [DOE]

Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Ohio, Michigan, Missouri, and...

Note: This page contains sample records for the topic "bethel valley burial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Core Holes At Long Valley Caldera Geothermal Area (Eichelberger...  

Open Energy Info (EERE)

Eichelberger, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Long Valley Caldera Geothermal Area (Eichelberger, Et...

222

Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan...  

Open Energy Info (EERE)

Mallan, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan, Et Al.,...

223

Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance...  

Open Energy Info (EERE)

Hermance, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance, Et...

224

Numerical Modeling At Dixie Valley Geothermal Area (Iovenitti...  

Open Energy Info (EERE)

Iovenitti, Et Al., 2013) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Dixie Valley Geothermal Area (Iovenitti, Et Al.,...

225

Yellowstone Valley Electric Cooperative- Residential/Commercial Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The Yellowstone Valley Electric Cooperative offers rebates to residential and commercial members for purchasing energy efficient add-on heat pumps, geothermal heat pumps, water heaters, dishwashers...

226

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...  

Open Energy Info (EERE)

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

227

Wabash Valley Power Association- Commercial and Industrial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Michigan, Missouri, Ohio and Illinois...

228

Cumberland Valley Electric Cooperative- Energy Efficiency and Renewable Energy Program  

Broader source: Energy.gov [DOE]

Cumberland Valley Electric offers a number of programs to promote energy conservation. This program offers rebates for air source heat pumps, building insulation (including windows and doors), and...

229

Magic Valley Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Magic Valley Electric Cooperative's Value Incentive Program (VIP) offers consumers incentives for the installation of new central heat pump systems, dual fuel heating systems, central air...

230

Lower Valley Energy- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Lower Valley Energy offers numerous rebates for residential customers who wish to increase the energy efficiency of eligible homes. Rebates are available for weatherization measures, water heaters,...

231

Wabash Valley Power Association- Residential Energy Efficiency Program (Indiana)  

Broader source: Energy.gov [DOE]

Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Ohio, Michigan, Missouri, and...

232

Guadalupe Valley Electric Cooperative- Conservation Plan 7 Loan Program  

Broader source: Energy.gov [DOE]

Guadalupe Valley Electric Cooperative offers an incentive for members to increase the energy efficiency of existing homes and facilities through the Conservation Plan 7 Loan Program. The loan...

233

Geothermometry At Long Valley Caldera Geothermal Area (Mariner...  

Open Energy Info (EERE)

L. Sorey, Robert H. Mariner, Alfred H. Truesdell (1979) Chemical and Isotopic Prediction of Aquifer Temperatures in the Geothermal System at Long Valley, California Michael...

234

Zena conservation easement protects habitat in Willamette Valley...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

central Willamette Valley for fi sh and wildlife habitat mitigation. Located in the Eola Hills about eight miles northwest of Salem (see map), this property provides refuge for...

235

Modeling-Computer Simulations At Long Valley Caldera Geothermal...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Battaglia, Et Al., 2003)...

236

Modeling-Computer Simulations At Long Valley Caldera Geothermal...  

Open Energy Info (EERE)

Modeling-Computer Simulations Activity Date - 2003 Usefulness not indicated DOE-funding Unknown Notes Several fluid-flow models presented regarding the Long Valley Caldera....

237

Modeling-Computer Simulations At Long Valley Caldera Geothermal...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Tempel, Et Al., 2011) Exploration...

238

Modeling-Computer Simulations At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wannamaker, Et Al., 2006) Exploration...

239

Technical Services Contract Awarded for West Valley Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

- The U.S. Department of Energy (DOE) today awarded a task order to Safety and Ecology Corporation of Knoxville, Tennessee, for technical services at the West Valley...

240

Minnesota Valley Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Minnesota Valley Electric Cooperative (MVEC) offers financial incentives to encourage energy efficiency within the residential sector. Rebates are available for a variety of equipment including air...

Note: This page contains sample records for the topic "bethel valley burial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Sulphur Springs Valley EC- Residential Energy Efficiency Loan Program  

Broader source: Energy.gov [DOE]

Sulphur Springs Valley Electric Cooperative (SSVEC) is a Touchstone Energy Cooperative. SSVEC offers the Member Loan Program to residential customers to improve the energy efficiency of eligible...

242

Sulphur Springs Valley EC- Residential Energy Efficiency Rebate  

Broader source: Energy.gov [DOE]

Sulphur Springs Valley Electric Cooperative (SSVEC) is a Touchstone Energy Cooperative. SSVEC's residential rebate program offers a $500 rebate for the installation of 15 SEER or higher electric...

243

Core Analysis At Long Valley Caldera Geothermal Area (Smith ...  

Open Energy Info (EERE)

Smith & Suemnicht, 1991) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Core Analysis Activity Date 1985 - 1988 Usefulness useful...

244

Exploration and Development at Dixie Valley, Nevada- Summary...  

Open Energy Info (EERE)

at Dixie Valley, Nevada- Summary of Doe Studies Authors David D. Blackwell, Richard P. Smith and Maria C. Richards Conference Thirty-Second Workshop on Geothermal Reservoir...

245

Idaho Owyhee Lemhi Custer Valley Elmore Butte Blaine Cassia  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Owyhee Lemhi Custer Valley Elmore Butte Blaine Cassia Boise Clark Bonner Ada Shoshone Bingham Caribou Clearwater Fremont Power Adams Latah Twin Falls Bonneville Lincoln Oneida...

246

Micro-Earthquake At Long Valley Caldera Geothermal Area (Foulger...  

Open Energy Info (EERE)

Et Al., 2004) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Micro-Earthquake Activity Date - 2004 Usefulness not indicated...

247

Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish...

248

Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Additional References Retrieved from "http:en.openei.orgwindex.php?titleGeothermalLiteratureReviewAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid510804...

249

Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Additional References Retrieved from "http:en.openei.orgwindex.php?titleModeling-ComputerSimulationsAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid387627...

250

Static Temperature Survey At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Additional References Retrieved from "http:en.openei.orgwindex.php?titleStaticTemperatureSurveyAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid511143...

251

Golden Valley Electric Association- Sustainable Natural Alternative Power (SNAP) Program  

Broader source: Energy.gov [DOE]

Golden Valley Electric Association's (GVEA) SNAP program encourages members to install renewable energy generators and connect them to the utility's electrical distribution system by offering an...

252

Conservation tillage production systems compared in San Joaquin Valley cotton  

E-Print Network [OSTI]

in San Joaquin Valley cotton by Jeffrey P. Mitchell, Danielfor 25% or more of overall cotton production costs. Thesesuccessfully elsewhere in the Cotton Belt may be a viable

Mitchell, Jeffrey; Munk, Dan; Prys, Bob; Klonsky, Karen; Wroble, Jon; De Moura, Rich

2006-01-01T23:59:59.000Z

253

antarctic dry valley: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UK b Department of Geological Sciences and Institute.V. All rights reserved. Keywords: Uranium isotopes; Dry Valleys; Antarctica; Weathering; Lake chemistry 1 isotopes. The supply...

254

antarctic dry valleys: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UK b Department of Geological Sciences and Institute.V. All rights reserved. Keywords: Uranium isotopes; Dry Valleys; Antarctica; Weathering; Lake chemistry 1 isotopes. The supply...

255

Ground Gravity Survey At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Battaglia, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Long Valley Caldera Geothermal Area (Battaglia,...

256

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1978 - 1985 Usefulness useful DOE-funding Unknown...

257

Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds  

SciTech Connect (OSTI)

This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied.

Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H. [Westinghouse Hanford Co., Richland, WA (United States); Serne, R.J.; Cantrell, K.J. [Pacific Northwest Lab., Richland, WA (United States)

1995-06-01T23:59:59.000Z

258

E-Print Network 3.0 - aburra valley caused Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

distribution of air pollutants in an Alpine valley Motivation: High air... pollution in Alpine valleys during wintertime Only sparse routine measurements available...

259

Water Sampling At Long Valley Caldera Geothermal Area (McKenzie...  

Open Energy Info (EERE)

Water Sampling At Long Valley Caldera Geothermal Area (McKenzie & Truesdell, 1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique...

260

West Valley Site History, Cleanup Status, and Role of the West...  

Office of Environmental Management (EM)

of the West Valley Citizen Task Force More Documents & Publications EIS-0337: Draft Environmental Impact Statement EIS-0337: Final Environmental Impact Statement West Valley...

Note: This page contains sample records for the topic "bethel valley burial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Structural Analysis of Southern Dixie Valley using LiDAR and...  

Open Energy Info (EERE)

Structural Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle Aerial Photography, NAS Fallon Geothermal Exploration Project, Dixie Valley, Nevada Jump to: navigation,...

262

E-Print Network 3.0 - antelope valley california Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Antelope Valley Solar Ranch One Maricopa Sun Solar... Complex Project T-Squared Inc. California Valley Solar Ranch Topaz Solar Farm Lost Hills Synapse Solar 2... Kramer...

263

Petrophysical rock classification in the Cotton Valley tight-gas sandstone reservoir with a clustering  

E-Print Network [OSTI]

Petrophysical rock classification in the Cotton Valley tight-gas sandstone reservoir classification method with field data acquired in the Cotton Valley tight-gas sandstone reservoir located

Torres-Verdín, Carlos

264

Environmental Assessment : Happy Valley [Substation Project].  

SciTech Connect (OSTI)

The proposed Happy Valley project consists of construction of a new BPA customer service 69-kV substation south of Sequim in Clallam County, Washington. A tie line, to be constructed by the customer as part of this project, will link the new BPA facility to the existing customer's transmission system in the area. This project responds to rapid load growth in the Olympic Peninsula, and will strengthen the existing BPA system and interconnected utility systems. It will reduce transmission losses presently incurred, especially on the BPA system supplying power to the Olympic Peninsula. This report describes the potential environmental impact of the proposed actions. 2 figs., 1 tab.

United States. Bonneville Power Administration.

1982-05-01T23:59:59.000Z

265

Powell Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilips ColorLoading map...ClimatePowder RiverValley

266

Lighthouse Solar Diablo Valley | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolar (Texas) Jump to: navigation, searchValley

267

All Valley Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy Focus AreaValley Solar Jump to:

268

Boone Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio JumpVenturesCoral CapitalBoilersBoone Valley

269

Dixie Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor,DiscountDiversified EnergyDixieDixie Valley

270

Dixie Valley Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor,DiscountDiversified EnergyDixieDixie ValleyDixie

271

Valley, Nebraska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpen Energy Information Valley View Hot Springs

272

Antelope Valley Neset | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperimentsInformation Anson County, NorthAntarisValley

273

Minnesota Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area Energy Efficiency,Grid RenewableMini-GridAgencyValley

274

Valley View Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip:Scale Solar IncVairexVallesValley View

275

Pumpernickel Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakum County Place:PulteGroup JumpValley

276

Whirlwind Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to:Westview, Florida:WheatleyWheeler, New York:Whippany, NewValley

277

Valley Electric Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy NowNew HampshireValero Refining Company - NJ JumpValley

278

Aire Valley Environmental | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowattOpen Energy Information 2008)Aire Valley

279

Tees Valley Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County,Tees Valley Biofuels Jump to: navigation,

280

Surprise Valley Electric Co-Op Trinity Shasta Lake  

E-Print Network [OSTI]

Cove California Electric Utility Service Areas California Energy Commission Systems Assessment-Op PacifiCorp Trinity Shasta Lake Redding PG&E Area served by both Surprise Valley Electric Co-Op & Pacific Vernon Aha MacavAzusa Pasadena Glendale Burbank City and County of S.F. Palo Alto Silicon Valley Power

Note: This page contains sample records for the topic "bethel valley burial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

TFC-0004- In the Matter of Tri-Valley CARES  

Broader source: Energy.gov [DOE]

Tri-Valley CARES filed an Appeal from a determination that the National Nuclear Security Administration (NNSA) issued on June 2, 2010. In that determination, NNSA denied in part a request for information that Tri-Valley CARES had submitted on September 8, 2008, pursuant to the Freedom of Information Act (FOIA), 5 U.S.C. § 552.

282

Hoopa Valley Small Scale Hydroelectric Feasibility Project  

SciTech Connect (OSTI)

This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

Curtis Miller

2009-03-22T23:59:59.000Z

283

Long-Term Performance of Transuranic Waste Inadvertently Disposed in a Shallow Land Burial Trench at the Nevada Test Site  

SciTech Connect (OSTI)

In 1986, 21 m3 of transuranic (TRU) waste was inadvertently disposed in a shallow land burial trench at the Area 5 Radioactive Waste Management Site on the Nevada Test Site. U.S. Department of Energy (DOE) TRU waste must be disposed in accordance with Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standard for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes. The Waste Isolation Pilot Plant is the only facility meeting these requirements. The National Research Council, however, has found that exhumation of buried TRU waste for disposal in a deep geologic repository may not be warranted when the effort, exposures, and expense of retrieval are not commensurate with the risk reduction achieved. The long-term risks of leaving the TRU waste in-place are evaluated in two probabilistic performance assessments. A composite analysis, assessing the dose from all disposed waste and interacting sources of residual contamination, estimates an annual total effective dose equivalent (TEDE) of 0.01 mSv, or 3 percent of the dose constraint. A 40 CFR 191 performance assessment also indicates there is reasonable assurance of meeting all requirements. The 40 CFR 191.15 annual mean TEDE for a member of the public is estimated to reach a maximum of 0.055 mSv at 10,000 years, or approximately 37 percent of the 0.15 mSv individual protection requirement. In both assessments greater than 99 percent of the dose is from co-disposed low-level waste. The simulated probability of the 40 CFR 191.13 cumulative release exceeding 1 and 10 times the release limit is estimated to be 0.0093 and less than 0.0001, respectively. Site characterization data and hydrologic process modeling support a conclusion of no groundwater pathway within 10,000 years. Monte Carlo uncertainty analysis indicates that there is reasonable assurance of meeting all regulatory requirements. Sensitivity analysis indicates that the results are insensitive to TRU waste-related parameters. Limited quantities of TRU waste in a shallow land burial trench can meet DOE performance objectives for disposal of TRU waste and contribute negligibly to disposal site risk. Leaving limited quantities of buried TRU waste in-place may be preferred over retrieval for disposal in a deep geologic repository.

Gregory J. Shott; Vefa Yucel

2009-07-16T23:59:59.000Z

284

A study of the effect of weathering, silt content, and depth of burial on physical properties of shales from North-Central Texas  

E-Print Network [OSTI]

of the Agricultural and Mechanical College of Texas in Partial fulfillment of the requireaents for the degree of MASTER OF SCIENCE' Nays 1$58 Major Sub)acti Geology A BTUDX OF THF. FFFECT OF WEATHERING, SILT COBTFNTi AND DEPTH OF BURIAL ON PHTSICAL PBOPERTIFS.... Eussell, Professor of Geology, and of Gerald V. Carroll, Lssoclate Professor of Geology, both at the Agricultural and Mechanical College of Texas. issistance furnished by Bruce G. %hippie, Jr. while collecting the samples vas helpful. Expenses inourred...

Wilson, Edmon Doak

1958-01-01T23:59:59.000Z

285

Final Hazard Categorization and Auditable Safety Analysis for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds  

SciTech Connect (OSTI)

This report presents the initial hazard categorization, final hazard categorization and auditable safety analysis for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

T. J. Rodovsky

2006-03-01T23:59:59.000Z

286

Airborne particles in the San Joaquin Valley may affect human health  

E-Print Network [OSTI]

graphics for nonreaders, created for the event. The San Joaquin Valley Unified Air Pollution Control

2010-01-01T23:59:59.000Z

287

Passive solar homes in Delaware Valley  

SciTech Connect (OSTI)

This paper examines ten single family residences in the Delaware Valley area which include passive solar design features. The study identifies successful and failed solar features of the houses, evaluates solar performance of a few houses, and examines occupants satisfaction with their houses. The study described in this paper includes the following: description of the overall passive solar design and listing of solar features used in each house, survey of each house in its present condition documenting changes to the original design (if any), summary of occupant questionnaire and interviews of house owners regarding their evaluation of house performance. Owners in this study retained positive attitude to their homes in spite of the problems with some solar features. Modifications to the solar features have been significant, but in no case was the solar aspect abandoned.

Kendig, J. [New Jersey Inst. of Tech., Princeton, NJ (United States)

1997-12-31T23:59:59.000Z

288

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical...  

Open Energy Info (EERE)

the geothermal systems in the Ethiopian Rift Valley. Aluto-Langano is a water-dominated gas-rich geothermal field, with a maximum temperature close to 360C, in the Lakes...

289

Silicon Valley Power- Commercial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Silicon Valley Power (SVP) offers a variety rebates to its business customers, capped at a maximum total incentive of $500,000 per customer per year. Rebates are available for the following:

290

Red River Valley REA- Heat Pump Loan Program  

Broader source: Energy.gov [DOE]

The Red River Valley Rural Electric Association (RRVREA) offers a loan program to its members for air-source and geothermal heat pumps. Loans are available for geothermal heat pumps at a 5% fixed...

291

LA Rooftop Solar Project Goes Online in San Fernando Valley ...  

Broader source: Energy.gov (indexed) [DOE]

Incentive Programs, Florida SunShot Rooftop Challenge Awardees The California Valley Solar Ranch has a capacity of 250 MW -- enough energy to power the equivalent of every home...

292

Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Valley Caldera Michael L. Sorey, B. Mack Kennedy, William C. Evans, Christopher D. Farrar (1990) Increases in 3He4He in Fumarolic Gas Associated with the 1989 Earthquake Swarm...

293

Hydrologic and Geochemical Monitoring in Long Valley Caldera...  

Open Energy Info (EERE)

show distinct responses to the Chalfant Valley earthquakes. Authors Christopher D. Farrar, M.L. Sorey, S.A. Rojstaczer, A.C. Steinemann and M.D. Clark Published U.S. Geological...

294

Satellite imagery can support water planning in the Central Valley  

E-Print Network [OSTI]

area, Merced County County Fresno Kings Merced Sutter Timethe study area Merced County. Kings, Merced and Sutter (fig.counties are par- ticularly important to the agricultural economy of the Central Valley: Fresno, Fresno Kings

Zhong, Liheng; Hawkins, Tom; Holland, Kyle; Gong, Peng; Biging, Gregory S

2009-01-01T23:59:59.000Z

295

Silicon Valley Power- Solar Electric Buy Down Program  

Broader source: Energy.gov [DOE]

Silicon Valley Power (SVP) offers incentives for the installation of new grid-connected solar electric (photovoltaic, or PV) systems. Incentive levels will step down over the life of the program as...

296

Boulder Valley School District (Colorado) Power Purchase Agreement...  

Broader source: Energy.gov (indexed) [DOE]

Boulder Valley School District completed a power purchase agreement to install 1.4 MW of solar PV that are expected to reduce electricity bills in 14 schools by about 10% over the...

297

Present State of the Hydrothermal System in Long Valley Caldera...  

Open Energy Info (EERE)

Valley caldera to be delineated. The model consists of two principal zones in which hot water flows laterally from west to east at depths less than 1 km within and around the...

298

Quaternary Glaciations in the Lago Pueyrredón Valley, Argentina   

E-Print Network [OSTI]

This thesis develops a better knowledge of the extent and timing of glaciations in southern Argentina throughout the Quaternary. It provides a detailed understanding of successive major glacial outlet lobes in the Lago Pueyrredón valley...

Hein, Andrew S.

299

Incidental-to-Reprocessing Evaluation for the West Valley Demonstratio...  

Energy Savers [EERE]

West Valley Demonstration Project Concentrator Feed Makeup Tank and Melter Feed Hold Tank 1 Introduction The U.S. Department of Energy (DOE) is providing responses to the comments...

300

Microsoft Word - Finely_NorthValley_CX.docx  

Broader source: Energy.gov (indexed) [DOE]

Manager - KEWM-4 Proposed Action: Finely Creek and North Valley Creek property funding Fish and Wildlife Project No. and Contract No.: 2002-003-00, BPA-58888 Categorical Exclusion...

Note: This page contains sample records for the topic "bethel valley burial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Golden Valley Electric Association- Commercial Lighting Retrofit Rebate Program  

Broader source: Energy.gov [DOE]

BusBusiness $ense is a Golden Valley Electric Association (GVEA) program designed to increase the efficiency with which energy is used on GVEA's system. It provides rebates of up to $20,000 to...

302

Subsurface Electrical Measurements at Dixie Valley, Nevada, Using...  

Open Energy Info (EERE)

Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Single-Well and Surface-to-Well Induction Logging Jump to: navigation, search OpenEI Reference LibraryAdd to...

303

Compound and Elemental Analysis At Valley Of Ten Thousand Smokes...  

Open Energy Info (EERE)

DOE-funding Unknown References T. E. C. Keith, J. M. Thompson, R. A. Hutchinson, L. D. White (1992) Geochemistry Of Waters In The Valley Of Ten Thousand Smokes Region, Alaska...

304

New River Geothermal Research Project, Imperial Valley, California...  

Open Energy Info (EERE)

Share 9,339,420.00 Total Project Cost 14,339,420.00 Principal Investigator(s) Stuart Johnson Location of Project Imperial Valley, CA About the Area The shallow New River thermal...

305

Moreno Valley Electric Utility- Solar Electric Incentive Program  

Broader source: Energy.gov [DOE]

Moreno Valley Electric Utility provides rebates to its electric customers for the purchase of photovoltaic (PV) systems. System must be on the same premises as the customer to qualify. Systems 30...

306

Ohio River Valley Water Sanitation Commission (Multiple States)  

Broader source: Energy.gov [DOE]

The Ohio River Valley Water Sanitation Commission (ORSANCO), was established on June 30, 1948 to control and abate pollution in the Ohio River Basin. ORSANCO is an interstate commission...

307

Duncan Valley Electric Cooperative- SunWatts Rebate Program (Arizona)  

Broader source: Energy.gov [DOE]

Duncan Valley Electric Cooperative is providing rebates to for the purchase of renewable energy systems through its SunWatts program. Photovoltaic (PV) and wind energy systems 10 kilowatts (kW) or...

308

Sulphur Springs Valley EC- SunWatts Loan Program  

Broader source: Energy.gov [DOE]

Sulphur Springs Valley Electric Cooperative (SSVEC) has a loan program that allows its members to finance a portion of a photovoltaic (PV) or small wind system. Loans are available in an amount of...

309

The Owens Valley Fault Zone Eastern California and Surface Faulting...  

Open Energy Info (EERE)

base of the Alabama Hills and follows the floor of Owens Valley northward to the Poverty Hills, where it steps 3 km to the left and continues northwest across Crater Mountain...

310

City of Sunset Valley- Solar Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

The City of Sunset Valley offers rebates to local homeowners who install solar water heating systems on their properties. The local rebate acts as an add-on to the solar water heating rebates that...

311

Structure of The Dixie Valley Geothermal System, a "Typical"...  

Open Energy Info (EERE)

Dixie Valley Geothermal System, a "Typical" Basin and Range Geothermal System, From Thermal and Gravity Data Jump to: navigation, search OpenEI Reference LibraryAdd to library...

312

Hydrothermal system in Southern Grass Valley, Pershing County, Nevada  

SciTech Connect (OSTI)

Southern Grass Valley is a fairly typical extensional basin in the Basin and Range province. Leach Hot Springs, in the southern part of the valley, represents the discharge end of an active hydrothermal flow system with an estimated deep aquifer temperature of 163 to 176/sup 0/C. Results of geologic, hydrologic, geophysical and geochemical investigations are discussed in an attempt to construct an internally consistent model of the system.

Welch, A.H.; Sorey, M.L.; Olmsted, F.H.

1981-01-01T23:59:59.000Z

313

Seismicity related to geothermal development in Dixie Valley, Nevada  

SciTech Connect (OSTI)

A ten-station seismic network was operated in and around the Dixie Valley area from January 1980 to November 1981; three of these stations are still in operation. Data from the Dixie Valley network were analyzed through 30 Jun 1981, and results of analysis were compared with analysis of somewhat larger events for the period 1970-1979. The seismic cycle in the Western Great Basic, the geologic structural setting, and the instrumentation are also described.

Ryall, A.S.; Vetter, U.R.

1982-07-08T23:59:59.000Z

314

The effect of fractures, faults, and sheared shale zones on the hydrology of Bear Creek Burial Grounds A-South, Oak Ridge, Tennessee  

E-Print Network [OSTI]

Previous hydrologic models of flow in Bear Creek Valley have presented lateral flow as occurring through the Nolichucky Shale in parallel to strike fractures within thin carbonate beds; the effects of faults were not considered. This study presents...

Hollon, Dwight Mitchell

1997-01-01T23:59:59.000Z

315

Atmospheric Radiation Measurment (ARM) Data from the Ganges Valley, India for the Ganges Valley Aerosol Experiment (GVAX)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

In 2011 and 2012, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective was to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region. During the Indian Ocean Experiment (INDOEX) field studies, aerosols from the Ganges Valley region were shown to affect cloud formation and monsoon activity over the Indian Ocean. The complex field study used the ARM Mobile Facility (AMF) to measure radiative, cloud, convection, and aerosol characteristics over the mainland. The resulting data set captured pre-monsoon to post-monsoon conditions to establish a comprehensive baseline for advancements in the study of the effects of atmospheric conditions of the Ganges Valley.

316

Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 6: Appendix G -- Baseline ecological risk assessment report  

SciTech Connect (OSTI)

This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix G contains ecological risks for fish, benthic invertebrates, soil invertebrates, plants, small mammals, deer, and predator/scavengers (hawks and fox). This risk assessment identified significant ecological risks from chemicals in water, sediment, soil, and shallow ground water. Metals and PCBs are the primary contaminants of concern.

NONE

1996-09-01T23:59:59.000Z

317

Closure certification report for the Bear Creek burial grounds B area and walk-in pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

On July 5, 1993, the revised RCRA Closure Plan for the Bear Creek Burial Grounds B Area and Walk-In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, DOE/OR/01-1100&D3 and Y/ER-53&D3, was approved by the Tennessee Department of Environment and Conservation (TDEC). The closure activities described in that closure plan have been performed. The purpose of this document is to summarize the closure activities for B Area and Walk-In Pits (WIPs), including placement of the Kerr Hollow Quarry debris at the WIPs.

Not Available

1994-06-01T23:59:59.000Z

318

Remaining Sites Verification Package for 132-H-1, 116-H Reactor Stack Burial Site, Waste Site Reclassification Form 2006-053  

SciTech Connect (OSTI)

The 132-H-1 waste site includes the 116-H exhaust stack burial trench and the buried stack foundation (which contains an embedded vertical 15-cm (6-in) condensate drain line). The 116-H reactor exhaust stack and foundation were decommissioned and demolished using explosives in 1983, with the rubble buried in situ beneath clean fill at least 1 m (3.3 ft) thick. Residual concentrations support future land uses that can be represented by a rural-residential scenario and pose no threat to groundwater or the Columbia River based on RESRAD modeling.

L. M. Dittmer

2007-06-26T23:59:59.000Z

319

Effects of valley meteorology on forest pesticide spraying  

SciTech Connect (OSTI)

Pacific Northwest Laboratory conducted this study for the Missoula Technology and Development Center of the US Department of Agriculture's Forest Service. The purpose of the study was to summarize recent research on valley meteorology during the morning transition period and to qualitatively evaluate the effects of the evolution of valley temperature inversions and wind systems on the aerial spraying of pesticides in National Forest areas of the western United States. Aerial spraying of pesticides and herbicides in forests of the western United States is usually accomplished in the morning hour after first light, during the period known to meteorologists as the morning transition period.'' This document describes the key physical processes that occur during the morning transition period on undisturbed days and the qualitative effects of these processes on the conduct of aerial spraying operations. Since the timing of valley meteorological events may be strongly influenced by conditions that are external to the valley, such as strong upper-level winds or the influence of clouds on the receipt of solar energy in the valley, some remarks are made on the qualitative influence of these processes. Section 4 of this report suggests ways to quantify some of the physical processes to provide useful guidance for the planning and conduct of spraying operations. 12 refs., 9 figs.

Whiteman, C.D.

1990-04-01T23:59:59.000Z

320

West Valley facility spent fuel handling, storage, and shipping experience  

SciTech Connect (OSTI)

The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

Bailey, W.J.

1990-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "bethel valley burial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Results of the Flowmeter-Injection Test in the Long Valley Exploratory...  

Open Energy Info (EERE)

Results of the Flowmeter-Injection Test in the Long Valley Exploratory Well (Phase II), Long Valley, California Jump to: navigation, search OpenEI Reference LibraryAdd to library...

322

VWZ-0011 - In the Matter of West Valley Nuclear Services Co....  

Office of Environmental Management (EM)

- In the Matter of West Valley Nuclear Services Co., Inc. VWZ-0012 - In the Matter of Lucy B. Smith VWA-0033 - In the Matter of Gretencord v. West Valley Nuclear Services Co., Inc....

323

EM Employees at West Valley Help Beat Goal for Food Banks  

Broader source: Energy.gov [DOE]

WEST VALLEY, N.Y. – EM employees and their contractor counterparts at the West Valley Demonstration Project (WVDP) have supported their local food banks for several years, and this year was no exception.

324

Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: 2. Modeling results  

E-Print Network [OSTI]

After completing a 9-month field experiment studying air pollution and meteorology in the Kathmandu Valley, Nepal, we set up the mesoscale meteorological model MM5 to simulate the Kathmandu Valley's meteorology with a ...

Panday, Arnico K.

325

The diurnal cycle of air pollution in the Kathmandu Valley, Nepal  

E-Print Network [OSTI]

This dissertation describes the most comprehensive study to date of the diurnal cycle of air pollution in the Kathmandu Valley, Nepal -- a bowl-shaped mountain valley of two million people with a growing air pollution ...

Panday, Arnico Kumar

2006-01-01T23:59:59.000Z

326

West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2004  

SciTech Connect (OSTI)

Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2004. The report summarizes the environmental protection program at the West Valley Demonstration Project for CY 2004.

West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

2005-09-30T23:59:59.000Z

327

EA-1840: California Valley Solar Ranch Project in San Luis Obispo...  

Broader source: Energy.gov (indexed) [DOE]

0: California Valley Solar Ranch Project in San Luis Obispo County, CA EA-1840: California Valley Solar Ranch Project in San Luis Obispo County, CA August 3, 2011 EA-1840: Final...

328

DOCUMENTATION OF A TORNADIC SUPERCELL THUNDERSTORM IN THE SAN JOAQUIN VALLEY, CALIFORNIA  

E-Print Network [OSTI]

DOCUMENTATION OF A TORNADIC SUPERCELL THUNDERSTORM IN THE SAN JOAQUIN VALLEY, CALIFORNIA A thesis read Documentation of a Tornadic Supercell Thunderstorm in the San Joaquin Valley, California ___________________________________________ Erwin Seibel Professor of Oceanography #12;iv DOCUMENTATION OF A TORNADIC SUPERCELL THUNDERSTORM

329

Preliminary Open File Report: Geological and Geophysical Studies in Grass Valley, Nevada  

E-Print Network [OSTI]

component. The 3 shaded areas in Figure 51 correspond toValley area that is seismically active (Figure 51). The

Beyer, H.

2010-01-01T23:59:59.000Z

330

RCRA closure plan for the Bear Creek Burial Grounds B Area and Walk- In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

In June 1987, the RCRA Closure/Postclosure Plan for the Bear Creek Burial Grounds (BCBG) was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review and approval. TDEC modified and issued the plan approved on September 30, 1987. Subsequently, this plan was modified again and approved as Y/TS-395, Revised RCRA Closure Plan for the Bear Creek Burial Grounds (February 29, 1988). Y/TS-395 was initially intended to apply to A Area, C-West, B Area, and the Walk-In Pits of BCBG. However, a concept was developed to include the B Area (non-RCRA regulated) in the Walk-In Pits so that both areas would be closed under one cap. This approach included a tremendous amount of site preparation with an underlying stabilization base of 16 ft of sand for blast protection. The plan was presented to the state of Tennessee on March 8, 1990, and the Department of Energy was requested to review other unique alternatives to close the site. This amended closure plan goes further to include inspection and maintenance criteria along with other details.

Not Available

1993-01-01T23:59:59.000Z

331

West Valley Demonstration Project site environmental report, calendar year 1999  

SciTech Connect (OSTI)

This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1999 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

None Available

2000-06-01T23:59:59.000Z

332

West Valley Demonstration Project site environmental report, calendar year 1997  

SciTech Connect (OSTI)

This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1997 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

None

1998-06-01T23:59:59.000Z

333

West Valley Demonstration Project site environmental report calendar year 1998  

SciTech Connect (OSTI)

This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1998 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

NONE

1999-06-01T23:59:59.000Z

334

DOE Awards Small Business Contract for West Valley NY Services  

Broader source: Energy.gov [DOE]

CINCINNATI – The Department of Energy (DOE) today awarded a task order (contract) to Chenega Global Services, LLC of Anchorage, Alaska, for administrative and technical support services at the West Valley Demonstration Project, West Valley, New York. The contract has a one-year performance period with a value of $1.3 million, and contains two one-year extension options with a total value of $4.12 million. Chenega Global Services is a certified small and disadvantaged business under the Small Business Administration.

335

Vitrification facility at the West Valley Demonstration Project  

SciTech Connect (OSTI)

This report is a description of the West Valley Demonstration Project`s vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project`s background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing.

DesCamp, V.A.; McMahon, C.L.

1996-07-01T23:59:59.000Z

336

File:LongValley Strat.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy0).pdfLongValley Regional.pdf Jump to:LongValley

337

Clean Cities: Valley of the Sun Clean Cities coalition (Phoenix)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue ValleyValley of the Sun Clean

338

Valley-Dependent Brewster Angles and Goos-Hanchen Effect in Strained Graphene Zhenhua Wu,1  

E-Print Network [OSTI]

Valley-Dependent Brewster Angles and Goos-Ha¨nchen Effect in Strained Graphene Zhenhua Wu,1 F. Zhai local strains in graphene can be tailored to generate a valley- polarized current. By suitable be used to construct a valley filter in graphene without the need for any external fields. DOI: 10

339

[Having a] Life in the Happy Valley 1.2 Cris Pedregal Martin  

E-Print Network [OSTI]

[Having a] Life in the Happy Valley ­ 1.2 Cris Pedregal Martin Department of Computer Science known as ``The Happy Valley,'' henceforth simply ``the Valley.'' Specifically, we discuss food, cultural will strongly influence your well­being, your happiness, and ultimately your ability to function aca­ demically

Massachusetts at Amherst, University of

340

The Diurnal Cycle of Air Pollution In the Kathmandu Valley, Nepal  

E-Print Network [OSTI]

1 The Diurnal Cycle of Air Pollution In the Kathmandu Valley, Nepal by Arnico K. Panday A OF AIR POLLUTION IN THE KATHMANDU VALLEY, NEPAL by Arnico K. Panday Submitted to the Department of Earth study to date of the diurnal cycle of air pollution in the Kathmandu Valley, Nepal ­ a bowl

Note: This page contains sample records for the topic "bethel valley burial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

February 17, 2005 Traffic: See current conditions on all Valley freeways  

E-Print Network [OSTI]

° Flagstaff 34° |Traffic Weather Site search| | | | | |Front Page Valley & State Sports Business Arizona Wheels Yes Ahwatukee Chandler Gilbert Glendale/Peoria Mesa Phoenix Scottsdale Southwest Valley Sun CitiesFebruary 17, 2005 Traffic: See current conditions on all Valley freeways PHOENIX 56° Tucson 53

McGraw, Kevin J.

342

STAND DYNAMICS IN TILIO-ACERION WOODLANDS OF THE CLYDE VALLEY  

E-Print Network [OSTI]

STAND DYNAMICS IN TILIO-ACERION WOODLANDS OF THE CLYDE VALLEY BY RICHARD THOMPSON AND ANDREW PEACE: Thompson, R (2005), Stand dynamics in Tilio-Acerion woodlands of the Clyde Valley. Highland Birchwoods, Munlochy #12;STAND DYNAMICS IN TILIO-ACERION WOODLANDS OF THE CLYDE VALLEY by Richard Thompson* and Andrew

343

WATER COMMODIFICATION IN THE LOWER RIO GRANDE VALLEY, TEXAS  

E-Print Network [OSTI]

The lower Rio Grande Valley of Texas is one of the poorest regions with the largest population lacking suitable water supply in the entire United States. The region is characterized by low-income, rural and peri-urban communities called ?colonias...

Hernandez, Manuel

2011-05-06T23:59:59.000Z

344

WATER COMMODIFICATION IN THE LOWER RIO GRANDE VALLEY, TEXAS  

E-Print Network [OSTI]

The lower Rio Grande Valley of Texas is one of the poorest regions with the largest population lacking suitable water supply in the entire United States. The region is characterized by low-income, rural and peri-urban communities called colonias...

Garcia, Bianca 1989-

2011-05-06T23:59:59.000Z

345

Kelly Services 1600 Valley River Drive, Suite 170  

E-Print Network [OSTI]

Kelly Services® 1600 Valley River Drive, Suite 170 Eugene, OR 97401 Phone: 541.687.9558 Fax: 541 put them on our payroll Experience 1946 ­ Present Kelly Services, Troy, MI We are a global, single to achieve results. We transform workforce challenges into opportunities. 1957 ­ Present Kelly Services

Oregon, University of

346

Sustainability of irrigated agriculture in the San Joaquin Valley, California  

E-Print Network [OSTI]

productivity and sustainability. Currently, there is a good understanding of the fundamental soil hydrological scale and at the long term, so that the sustainability of alternative management strategies canSustainability of irrigated agriculture in the San Joaquin Valley, California Gerrit Schoups* , Jan

Vrugt, Jasper A.

347

Charlotte-Mecklenburg Storm Water Hidden Valley Ecological Garden  

E-Print Network [OSTI]

Charlotte-Mecklenburg Storm Water Hidden Valley Ecological Garden Stream and Floodplain Restoration Project Report of 2005 Project Activities to Mecklenburg County Storm Water Services and Water Quality habitat is often inhibited by a lack of organic matter in the soils of restoration project sites, organic

348

West Valley transfer cart control system design description  

SciTech Connect (OSTI)

Detail design of the control system for the West Valley Nuclear Services Vitrification Facility transfer cart has been completed by Oak Ridge National Laboratory. This report documents the requirements and describes the detail design of that equipment and control software. Copies of significant design documents including analysis and testing reports and design drawings are included in the Appendixes.

Bradley, E.C.; Crutcher, R.I.; Halliwell, J.W.; Hileman, M.S.; Moore, M.R.; Nodine, R.N.; Ruppel, F.R.; Vandermolen, R.I.

1993-01-01T23:59:59.000Z

349

Dixie Valley Binary Cycle Production Data 2013 YTD  

SciTech Connect (OSTI)

Proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for Jan 2013-September 2013

Lee, Vitaly

2013-10-18T23:59:59.000Z

350

The Ranero Hydrothermal Dolomites (Albian, Karrantza Valley, Northwest Spain)  

E-Print Network [OSTI]

The Ranero Hydrothermal Dolomites (Albian, Karrantza Valley, Northwest Spain): Implications Recherche Développement, Carbonate Sedimentology Group, avenue Larribau s/n, 64018 Pau Cedex - France e'Espagne) sont présentées dans cette étude. Les corps dolomitiques sont encaissés dans des carbonates de

Paris-Sud XI, Université de

351

ASM Dinner MeetingASM Dinner MeetingASM Dinner MeetingASM Dinner Meeting ASM Ottawa Valley ChapterASM Ottawa Valley ChapterASM Ottawa Valley ChapterASM Ottawa Valley Chapter  

E-Print Network [OSTI]

Fund awarded a grant for a new Reactor Materials Research Labora- tory (RMTL) at Queen's University electron microscopes, in­ and ex-situ mechanical testing equipment, and a radiation detection researchASM Dinner MeetingASM Dinner MeetingASM Dinner MeetingASM Dinner Meeting ASM Ottawa Valley Chapter

Ellis, Randy

352

Skagit Valley Research Collection / Ian E. Efford (collector)  

E-Print Network [OSTI]

Skagit Valley Research Collection / Ian E. Efford (collector) Compiled by Christopher Hives (1997 of Creation / Physical Description o Collector's Biographical Sketch o Scope and Content o Notes File List-1982. 13 cm of textual records. 35 photographs. Collector's Biographical Sketch Ian Efford was an ecologist

Handy, Todd C.

353

EIS-0434: Hualapai Valley Solar Interconnection Project, Arizona  

Broader source: Energy.gov [DOE]

Hualapai Valley Solar, LLC, proposes to construct, operate and maintain a 340-megawatt, solar-powered generating facility in Mohave County, near Kingman, Ariz. The proposed project would use concentrating solar-power-trough technology to capture the sun's heat to make steam, which would power a traditional steam turbine generator.

354

Citrus Variety Trends in the Lower Rio Grande Valley.  

E-Print Network [OSTI]

Citrus Variety Trends in the Lower Rio Grande Valley CONTENTS ......................................................................................................... Digest ...... 3... thousands of citrus trees and the growers were faced with a tremendous replanting program, which, in turn, had focused interest on varieties. Fruit production figures, yields per acre, and monetary returns per acre for five varieties of grapefruit...

Alderman, D. C. (DeForest Charles)

1951-01-01T23:59:59.000Z

355

Charlotte-Mecklenburg Stormwater Hidden Valley Ecological Garden  

E-Print Network [OSTI]

Charlotte-Mecklenburg Stormwater Hidden Valley Ecological Garden Stream and Floodplain Restoration cells within a stream and floodplain restoration of a segment of Little Sugar Creek in Mecklenburg Assessment of Little Sugar Creek Restoration 2 Stream Ambient Water Quality Monitoring 2 Stream Habitat

356

CX-011196: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Easement to Tennessee Valley Authority for Bethel Valley Substation and Transmission Line Feeds and Clearing of Trees within the Project Area at the Oak Ridge National Laboratory CX(s) Applied: B1.24, B4.11, B4.12 Date: 09/12/2013 Location(s): Tennessee Offices(s): Oak Ridge Office

357

Land Tenure and Reform in Haiti Amber Bethell  

E-Print Network [OSTI]

the island of Hispaniola in 1492. The wealth of the colony came from gold exports. The original inhabitants was almost extinct. The French were given the western 1/3 of Hispaniola in 1697 because the gold was mostly

Onsrud, Harlan J.

358

DOE/EA-1366; Environmental Assessment Santiam-Bethel Transmission...  

Broader source: Energy.gov (indexed) [DOE]

ask for the document by name. The document is also available at the BPA, Environment, Fish and Wildlife Home Page: www.efw.bpa.govcgi-binPSANEPASUMMARIES...

359

Alaska Native Village Renewable Energy Project Development Workshop in Bethel  

Broader source: Energy.gov [DOE]

Presented by the DOE Office of Indian Energy with support from DOE’s National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

360

National Strategy for the Arctic Region Tribal Consultation Session: Bethel  

Broader source: Energy.gov [DOE]

DOE is seeking input from federally recognized Alaska Native Tribes and Alaska Native corporations on a 10-year implementation plan as part of the National Strategy for the Arctic Region, as well...

Note: This page contains sample records for the topic "bethel valley burial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

National Strategy for the Arctic Region Stakeholder Outreach Meeting: Bethel  

Broader source: Energy.gov [DOE]

DOE is seeking input from federally recognized Alaska Native Tribes and Alaska Native corporations on a 10-year implementation plan as part of the National Strategy for the Arctic Region, as well...

362

Village of Bethel, Ohio (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpenVerona, NewViking-McBain BiomassBeach City

363

National Strategy for the Arctic Region Tribal Consultation Session: Bethel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational Science Foundation, LakeAnchorage| Department||

364

Bethel Acres, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey: EnergyBerthoud, Colorado:

365

Bethel Census Area, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey: EnergyBerthoud, Colorado:774° Loading map...

366

Bethel Island, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey: EnergyBerthoud, Colorado:774° Loading map...Energy

367

Bethel Park, Pennsylvania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey: EnergyBerthoud, Colorado:774° Loading map...EnergyURI

368

DOE/EA-1366; Environmental Assessment Santiam-Bethel Transmission...  

Broader source: Energy.gov (indexed) [DOE]

of BPA's Santiam-Albany No.1 230-kV line or an outage of BPA's Albany 230115-kV transformer would also overload the line. An overload could damage electrical equipment...

369

Workplan/RCRA Facility Investigation/Remedial Investigation Report for the Old Radioactive Waste Burial Ground 643-E, S01-S22 - Volume I - Text and Volume II - Appendices  

SciTech Connect (OSTI)

This document presents the assessment of environmental impacts resulting from releases of hazardous substances from the facilities in the Old Radioactive Waste Burial Ground 643-E, including Solvent Tanks 650-01E to 650-22E, also referred to as Solvent Tanks at the Savannah River Site, Aiken, South Carolina.

Conner, K.R.

2000-12-12T23:59:59.000Z

370

Final West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York  

SciTech Connect (OSTI)

The purpose of the ''Final West Valley Demonstration Project Waste Management Environmental Impact Statement'' is to provide information on the environmental impacts of the Department of Energy's proposed action to ship radioactive wastes that are either currently in storage, or that will be generated from operations over the next 10 years, to offsite disposal locations, and to continue its ongoing onsite waste management activities. Decommissioning or long-term stewardship decisions will be reached based on a separate EIS that is being prepared for that decisionmaking. This EIS evaluates the environmental consequences that may result from actions to implement the proposed action, including the impacts to the onsite workers and the offsite public from waste transportation and onsite waste management. The EIS analyzes a no action alternative, under which most wastes would continue to be stored onsite over the next 10 years. It also analyzes an alternative under which certain wastes would be shipped to interim offsite storage locations prior to disposal. The Department's preferred alternative is to ship wastes to offsite disposal locations.

N /A

2004-01-16T23:59:59.000Z

371

Vertical Extraction Process Implemented at the 118-K-1 Burial Ground for Removal of Irradiated Reactor Debris from Silo Structures - 12431  

SciTech Connect (OSTI)

The primary objective of a remediation project is the safe extraction and disposition of diverse waste forms and materials. Remediation of a solid waste burial ground containing reactor hardware and irradiated debris involves handling waste with the potential to expose workers to significantly elevated dose rates. Therefore, a major challenge confronted by any remediation project is developing work processes that facilitate compliant waste management practices while at the same time implementing controls to protect personnel. Traditional burial ground remediation is accomplished using standard excavators to remove materials from trenches and other excavation configurations often times with minimal knowledge of waste that will be encountered at a specific location. In the case of the 118-K-1 burial ground the isotopic activity postulated in historic documents to be contained in vertical cylindrical silos was sufficient to create the potential for a significant radiation hazard to project personnel. Additionally, certain reported waste forms posed an unacceptably high potential to contaminate the surrounding environment and/or workers. Based on process knowledge, waste management requirements, historic document review, and a lack of characterization data it was determined that traditional excavation techniques applied to remediation of vertical silos would expose workers to unacceptable risk. The challenging task for the 118-K-1 burial ground remediation project team then became defining an acceptable replacement technology or modification of an existing technology to complete the silo remediation. Early characterization data provided a good tool for evaluating the location of potential high exposure rate items in the silos. Quantitative characterization was a different case and proved difficult because of the large diameter of the silos and the potential for variable density of attenuating soils and waste forms in the silo. Consequently, the most relevant information supporting job planning and understanding of the conditions was the data obtained from the gross gamma meter that was inserted into each casing to provide a rough estimate of dose rates in the tubes. No added value was realized in attempting to quantify the source term and/or associate the isotopic activity with a particular actual waste form (e.g., sludge). Implementing the WRM system allowed monitoring of worker and boundary exposure rates from a distance, maintaining compliance with ALARA principles. This system also provided the project team early knowledge of items being removed that had high exposure rates associated with them, thus creating an efficient method of acknowledging an issue and arriving at a solution prior to having an upset condition. An electronic dosimeter with telemetry capability replaced the excavator mounted AMP-100 system approximately half way through remediation of the silos. Much higher connectivity efficiency was derived from this configuration. Increasing the data feed efficiency additionally led to less interruption of the remediation effort. Early in system testing process a process handicap on the excavator operator was acknowledged. A loss of depth perception resulted when maneuvering the excavator and bucket using the camera feed to an in-cab monitor. Considerable practice and mock-up testing allowed this handicap to be overcome. The most significant equipment failures involved the cable connection to the camera mounted between the clamshell bucket jaws and the video splitter in the excavator cab. Rotation of the clamshell bucket was identified as the cause of cable connection failures because of the cyclic twisting motion and continuous mechanical jarring of the connection. In-cab vibration was identified as the culprit in causing connection failures of the video splitter. While these failures were repaired, substantial production time was lost. Ultimately, the decision was made to purchase a second cable and higher quality video splitter eliminate the down time. An engineering improvement for future operations would be i

Teachout, Douglas B. [Vista Engineering Technologies, LLC, Richland, Washington, 99352 (United States); Adamson, Clinton J.; Zacharias, Ames [Washington Closure Hanford, LLC, Richland, Washington, 99352 (United States)

2012-07-01T23:59:59.000Z

372

Bakken and other Devonian-Mississippian petroleum source rocks, northern Rocky Mtns.-Williston basin: Depositional and burial history and maturity estimations  

SciTech Connect (OSTI)

The three-member Devonian-Mississippian Bakken-Exshaw organic-rich shaly facies is widely distributed in the northern U.S. and southern Canadian Cordillera. Equivalent facies are also present as far south as Utah and Nevada. Paleogeographically, these rocks thin markedly or pinchout to the west approximately along the Devonian-Mississippian carbonate reef-mound belt of the Cordilleran shelf margin. Although these rocks reach maximum organic richness approximately at the Devonian-Carboniferous transition, similar but somewhat less organic-rich Bakken-like beds are also present in underlying Upper Devonian and overlying Lower Carboniferous carbonate depositional cycles. At least ten cycles are identified in the underlying Duperow and Jefferson Formations, characterized by basal organic-rich Bakken-like shale or shaly carbonate that grades upward into carbonate mound or reefal beds, overlain by evaporite or solution breccia. Cycles in the overlying Lodgepole and Mission Canyon Formations, as many as 10-12 in number, are similar except that the carbonates are composed of algal-oolith, crinoid, or mixed skeletal beds, and end-cycle evaporitic units are less prevalent in the lower cycles. These dark shaly beds are the most important source of hydrocarbon reserves in Montana and the Williston basin. Maximum net thickness of the Devonian-Mississippian organic-rich facies is in the Williston basin. However, variable thicknesses of these potential source rocks is present in parts of Montana as far west as the thrust belt. Burial history studies suggest that in some areas these rocks are probably thermally immature. However, in much of the area original burial depths are sufficient for them to reach the thermally mature stage, and therefore are of importance to further exploration efforts in the Devonian-Mississippian Madison-Duperow-Jefferson Formations.

Peterson, J.A. [Univ. of Montana, Missoula, MT (United States)

1996-06-01T23:59:59.000Z

373

A simulation of the Neolithic transition in the Indus valley  

E-Print Network [OSTI]

The Indus Valley Civilization (IVC) was one of the first great civilizations in prehistory. This bronze age civilization flourished from the end of the the fourth millennium BC. It disintegrated during the second millennium BC, this decline is despite much research effort not yet well understood. Less research has been devoted on the becoming of this great civilization which shows continuous cultural precursors at least since the seventh millennium BC. To understand the decline, we believe it is necessary to investigate better the precursors and the rise of the IVC, i.e. the establishment of agriculture, dense populations and technological developments between 8000 and 3000 years BC. We employ a huge dataset of $>10000$ archaeologically typed artifacts, still our capability to investigate the system is hindered by poorly resolved chronology, and by a lack of field work in the intermediate areas between the Indus valley and Mesopotamia. We thus employ a complementary, numerical simulation based approach to dev...

Lemmen, Carsten

2011-01-01T23:59:59.000Z

374

Ambient Radon-222 Monitoring in Amargosa Valley, Nevada  

SciTech Connect (OSTI)

As part of a program to characterize and baseline selected environmental parameters in the region around the proposed repository at Yucca Mountain, Nevada, ambient radon-222 monitoring was conducted in the rural community of Amargosa Valley, the community closest to the proposed repository site. Passive integrating radon monitors and a continuous radon monitoring instrument were deployed adjacent to the Community Environmental Monitoring Program (CEMP) (http://www.cemp.dri.edu/index.html) station located in the Amargosa Valley Community Center near the library. The CEMP station provided real-time ambient gamma exposure and meteorological data used to correct the integrated radon measurements as well as verify meteorological data collected by the continuous radon monitoring instrument. Additionally, different types of environmental enclosures that housed the monitors and instrument were used to determine if particular designs influenced the ambient radon measurements.

L.H. Karr; J.J. Tappen; D. Shafer; K.J. Gray

2008-06-05T23:59:59.000Z

375

Case histories of West Valley spent fuel shipments: Final report  

SciTech Connect (OSTI)

In 1983, NRC/FC initiated a study on institutional issues related to spent fuel shipments originating at the former spent fuel processing facility in West Valley, New York. FC staff viewed the shipment campaigns as a one-time opportunity to document the institutional issues that may arise with a substantial increase in spent fuel shipping activity. NRC subsequently contracted with the Aerospace Corporation for the West Valley Study. This report contains a detailed description of the events which took place prior to and during the spent fuel shipments. The report also contains a discussion of the shipment issues that arose, and presents general findings. Most of the institutional issues discussed in the report do not fall under NRC's transportation authority. The case histories provide a reference to agencies and other institutions that may be involved in future spent fuel shipping campaigns. 130 refs., 7 figs., 19 tabs.

Not Available

1987-01-01T23:59:59.000Z

376

Radiation safety at the West Valley Demonstration Project  

SciTech Connect (OSTI)

This is a report on the Radiation Safety Program at the West Valley Demonstration Project (WVDP). This Program covers a number of activities that support high-level waste solidification, stabilization of facilities, and decontamination and decommissioning activities at the Project. The conduct of the Program provides confidence that all occupational radiation exposures received during operational tasks at the Project are within limits, standards, and program requirements, and are as low as reasonably achievable.

Hoffman, R.L.

1997-05-06T23:59:59.000Z

377

Citrus Varieties for the Lower Rio Grande Valley.  

E-Print Network [OSTI]

Lf BRARY, /A & NI COLLEGE, b TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR, College Station, Texas CITRUS VARIETIES FOR THE LOWER RIO GRANDE VALLEY Mr. H. FRIEND AND J. F. WOOD Division of Horticulture LIBRARY \\gxict... perishable nature of this type of fruit. Limes and lemons may be grown by persons who are financially able to equip their orchards with heaters. There are many types of citrus fruits that may be grown as ornamentals or for special purposes, but none...

Wood, J. F. (John Fielding); Friend, W. H. (William Heartsill)

1941-01-01T23:59:59.000Z

378

Guide for Citrus Production in the Lower Rio Grande Valley.  

E-Print Network [OSTI]

8-1002 December 1963 CONTENTS 3 VALLEY CITRUS AND ITS POTENTIAL 4 Comparison to Other Areas 4 General Description of Climate 6 SELECTING A SITE 6 Soil Factors 6 Water Quality 7 Water Availability 7 Topography Factors 8 IRRIGATION..., SALINITY, AND DRAINAGE 8 lrrigation Systems for Citrus Groves 10 Salinity Problems 10 Drainage Problems 12 KINDS OF CITRUS AND THEIR VALUE 12 Grapefruit Varieties 12 Orange Varieties 13 Tangerines and Tangelos 13 Limes, Lemons and Miscellaneous...

Maxwell, Norman P. (Norman Paul); Bailey, Morris A.

1963-01-01T23:59:59.000Z

379

Surprise Valley Electrification Corp. (Oregon) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place: MissouriPrograms |IllinoisCPASurprise Valley

380

North Valley, New Mexico: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) JumpNorth Haven, Maine:Ohio:Pole,NorthNorth Valley

Note: This page contains sample records for the topic "bethel valley burial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NGEN Partners LLC (Silicon Valley) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area EnergyMohawkaccrediationNASA-SurfaceNEPA HomeValley)

382

Green Valley, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslands RenewableGreatwood,GreenFalls,Group0456097°Valley

383

Yazoo Valley Elec Power Assn | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats Geothermal AreaarticleWoodWildlifeValley Elec

384

Chariton Valley Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuoCatalyst RenewablesChad-IAEA CooperationChariton Valley

385

Imperial Valley, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISIIrrigation District (Redirected fromValley,

386

UMTRA project water sampling and analysis plan, Monument Valley, Arizona  

SciTech Connect (OSTI)

The Monument Valley Uranium Mill Tailings Remedial Action (UMTRA) Project site in Cane Valley is a former uranium mill that has undergone surface remediation in the form of tailings and contaminated materials removal. Contaminated materials from the Monument Valley (Arizona) UMTRA Project site have been transported to the Mexican Hat (Utah) UMTRA Project site for consolidation with the Mexican Hat tailings. Tailings removal was completed in February 1994. Three geologic units at the site contain water: the unconsolidated eolian and alluvial deposits (alluvial aquifer), the Shinarump Conglomerate (Shinarump Member), and the De Chelly Sandstone. Water quality analyses indicate the contaminant plume has migrated north of the site and is mainly in the alluvial aquifer. An upward hydraulic gradient in the De Chelly Sandstone provides some protection to that aquifer. This water sampling and analysis plan recommends sampling domestic wells, monitor wells, and surface water in April and September 1994. The purpose of sampling is to continue periodic monitoring for the surface program, evaluate changes to water quality for site characterization, and provide data for the baseline risk assessment. Samples taken in April will be representative of high ground water levels and samples taken in September will be representative of low ground water levels. Filtered and nonfiltered samples will be analyzed for plume indicator parameters and baseline risk assessment parameters.

Not Available

1994-04-01T23:59:59.000Z

387

Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1  

SciTech Connect (OSTI)

This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

Not Available

1994-08-01T23:59:59.000Z

388

Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 3: Appendix D -- Nature and extent of contamination report  

SciTech Connect (OSTI)

This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix D describes the nature and extent of contamination in environmental media and wastes.

NONE

1996-09-01T23:59:59.000Z

389

Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 5: Appendix F -- Baseline human health risk assessment report  

SciTech Connect (OSTI)

This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix F documents potential risks and provides information necessary for making remediation decisions. A quantitative analysis of the inorganic, organic, and radiological site-related contaminants found in various media is used to characterize the potential risks to human health associated with exposure to these contaminants.

NONE

1996-09-01T23:59:59.000Z

390

Universal conductance fluctuations as a direct probe to valley coherence and universality class of disordered graphene  

SciTech Connect (OSTI)

We demonstrate that the universal conductance fluctuations (UCF) can be used as a direct probe to study the valley quantum states in disordered graphene. The UCF magnitude in graphene is suppressed by a factor of four at high carrier densities where the short-range disorder essentially breaks the valley degeneracy of the K and K' valleys, leading to a density dependent crossover of symmetry class from symplectic near the Dirac point to orthogonal at high densities.

Kochat, Vidya; Pal, Atindra Nath; Ghosh, Arindam [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India)

2013-12-04T23:59:59.000Z

391

Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendix A -- Waste sites, source terms, and waste inventory report; Appendix B -- Description of the field activities and report database; Appendix C -- Characterization of hydrogeologic setting report  

SciTech Connect (OSTI)

This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix A includes descriptions of waste areas and estimates of the current compositions of the wastes. Appendix B contains an extensive database of environmental data for the Bear Creek Valley Characterization Area. Information is also presented about the number and location of samples collected, the analytes examined, and the extent of data validation. Appendix C describes the hydrogeologic conceptual model for Bear Creek Valley. This model is one of the principal components of the conceptual site models for contaminant transport in BCV.

NONE

1996-09-01T23:59:59.000Z

392

Voluntary Protection Program Onsite Review, West Valley Demonstration Project- November 2009  

Broader source: Energy.gov [DOE]

Evaluation to determine whether West Valley Demonstration Project is continuing to perform at a level deserving DOE-VPP Star recognition.

393

Voluntary Protection Program Onsite Review, West Valley Demonstration Project- June 2008  

Broader source: Energy.gov [DOE]

Evaluation to determine whether West Valley Demonstration Project is continuing to perform at a level deserving DOE-VPP Star recognition.

394

Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration...

395

E-Print Network 3.0 - anomaly imperial valley Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commission Collection: Energy Storage, Conversion and Utilization 66 Camp Pendleton Kings Canyon Summary: Valley National Park Fort Irwin Mojave National Preserve Mono County...

396

Golden Valley Electric Association- Residential Energy Efficiency Rebate Program for Builders  

Broader source: Energy.gov [DOE]

Golden Valley Electric Association’s (GVEA) Builder $ense program targets home builders who install electrical energy efficiency measures during construction of residential buildings. Newly...

397

Ohio Valley Gas Corporation- Residential and Small Commercial Natural Gas Incentive Program  

Broader source: Energy.gov [DOE]

Ohio Valley Gas Corporation (OVG) offers rebates to its residential and small commercial customers for the purchase of energy efficient equipment and appliances. The program's rebate offering...

398

Edmonton skyline along North Saskatchewan River valley Canada's `Little Brother' Metropolis Grows Up  

E-Print Network [OSTI]

Edmonton Edmonton skyline along North Saskatchewan River valley Canada's `Little Brother urban vibe, explore life across the North Saskatchewan River. Old Strathcona, Edmon- ton's Brooklyn

Machel, Hans

399

Minnesota Valley Electric Cooperative-Residential Energy Resource Conservation Loan Program  

Broader source: Energy.gov [DOE]

Minnesota Valley Electric Cooperative offers low-interest loans to help residential customers finance energy efficiency improvements through the Energy Conservation Loan Program. ERC Loans can be...

400

Pearl River Valley Electric Power Association- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the residential sector. Rebates are available for heat...

Note: This page contains sample records for the topic "bethel valley burial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Minnesota Valley Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Minnesota Valley Electric Cooperative (MVEC) offers incentives to encourage commercial and industrial customers to increase the energy efficiency of facilities. Rebates are offered for the...

402

Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Additional References Retrieved from "http:en.openei.orgwindex.php?titleThermalAnd-OrNearInfraredAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid386621...

403

Aquaculture in the Imperial Valley -- A geothermal success story  

SciTech Connect (OSTI)

The Salton Sea and Imperial Valley area of southern California has long been recognized as a hot spot of geothermal development. In the geothermal industry, this area has for some time been synonymous with electric power generation projects. Starting with the first plant in East Mesa in 1979, geothermal power has increased over the years to the present 400+ MW of installed capacity in the three primary areas of Salton Sea, Heber and East Mesa. Although most in the industry are aware of the millions of kilowatt-hours annually produced in this desert oasis of development, they remain surprisingly uninformed about the Valley`s other geothermal industry -- aquaculture. At present, there are approximately 15 fish farming (or aquaculture) operations clustered, for the most part, around the Salton Sea. All of these farms use geothermal fluids to control the temperature of the fish culture facilities so as to produce larger fish in a shorter period of time and to permit winter production which would otherwise not be possible. In aggregate, these farms produce on the order of 10,000,000 lbs of fish per year most of which is sold into the California market. Principle species are catfish, striped bass and tilapia. For the past several years, tilapia has been the fastest growing part of the aquaculture industry. In 1996, the total US consumption of tilapia was 62,000 lbs. Of this, only 16,000,000 lbs (26%) was domestically produced and the balance imported. The primary market for the fish on the West Coast is among the Asian-American populations in the major cities. Fish are shipped and sold liver at the retail level.

Rafferty, K. [Geo-Heat Center, Klamath Falls, OR (United States)

1999-03-01T23:59:59.000Z

404

The Pahrump Valley Museum Yucca Mountain History Exhibit - 12389  

SciTech Connect (OSTI)

As part of its management of the Yucca Mountain project, the Department of Energy maintained several information centers to provide public access to information about the status of the Yucca Mountain project. Those information centers contained numerous displays, historical information, and served as the location for the Department's outreach activities. As the Department of Energy dealt with reduced budgets in 2009 following the Obama Administration's intent to terminate the program, it shut down its information centers. Nye County considered it important to maintain a public information center where people would be able to find information about what was happening with the Yucca Mountain project. Initially the Nye County assumed responsibility for the information center in Pahrump; eventually the County made a decision to move that information center into an expansion of the existing Pahrump Valley Museum. Nye County undertook an effort to update the information about the Yucca Mountain project and modernize the displays. A parallel effort to create a source of historical information where people could find out about the Yucca Mountain project was undertaken. To accompany the Yucca Mountain exhibits in the Pahrump Valley Museum, Nye County also sponsored a series of interviews to document, through oral histories, as much information about the Yucca Mountain project as could be found in these interviews. The paper presents an overview of the Yucca Mountain exhibits in the Pahrump Valley Museum, and the accompanying oral histories. An important conclusion that can be drawn from the interviews is that construction of a repository in Nevada should have been conceptualized as but the first step in transforming the economy of central Nevada by turning part of the Nevada National Security Site and adjoining area into a world-class energy production and energy research center. (authors)

Voegele, Michael; McCracken, Robert [Consultant, Nye County Nuclear Waste Repository Project Office (United States); Herrera, Troy [Sambooka Group, Reno, NV. (United States)

2012-07-01T23:59:59.000Z

405

Tomato Varieties and Fertilizers for the Lower Rio Grand Valley.  

E-Print Network [OSTI]

, 1931. **In roopc.ration with U. S. Drpartmcnt of Agriculture. Tomato production is one of the leading truck-gardening enterprises in the Lower Rio Grande VaIley. The annual pro- duction of tomatoes has increased from 946 cars in 1926-27 to 2..., 1931 TOMATO VARIETIES AND FERTILIZERS FOR THE LOWER RIO GRANDE VALLEY W. H. FRIEND The production of tomatoes during the late spring and early summer is one of the most important trucking enterprises of the irrigated por- tions of the counties...

Friend, W. H. (William Heartsill)

1931-01-01T23:59:59.000Z

406

Superior Valley photovoltaic power processing and system controller evaluation  

SciTech Connect (OSTI)

Sandia National Laboratories, sponsored by the US Department of Energy`s Office of Energy Management, conducts the photovoltaic balance-of-system program. Under this program, Sandia supports the Department of Defense Strategic Environmental Research Development Plan, SERDP, which is advancing the use of photovoltaics in operational DoD facilities. This report details the acceptance testing of the first of these photovoltaic hybrid systems: the Superior Valley photovoltaic-diesel hybrid system. This is the first of several photovoltaic installations for the Department of Defense. The system hardware tested at Sandia included an inverter, maximum power trackers, and a system controller.

Bonn, R.; Ginn, J.; Zirzow, J.; Sittler, G.

1995-11-01T23:59:59.000Z

407

Silicon Valley Clean Tech Alliance | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa, Mallorca:up DataBus asShirley,Valley Clean

408

Sioux Valley SW Elec Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa, Mallorca:up DataBusSimply Efficient JumpValley

409

Suwannee Valley Elec Coop Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place: MissouriProgramsCentral AsiaLand-useSuwannee Valley

410

Concho Valley Elec Coop Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) | Open Energy Information1988) |Concho Valley Elec

411

West Valley Demonstration Project Waste Incidental to Reprocessing Evaluation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradleyBudgetFurnacesLES'Nuclear FacilityWest Valley

412

Valley View, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpen Energy Information Valley View Hot Springs Pool

413

Magic Valley Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJunoMedanos EnergyM CommunicationsGDC PowerValley

414

Valley wins 2015 Science Bowl | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlongUpdatesValley wins 2015 Science Bowl West Des Moines

415

Moapa Valley, Nevada: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to: navigation, search Name:Moapa Valley is a

416

Searles Valley, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyA JumpSeagoville, Texas:Searles Valley,

417

Smith Creek Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement,SmartestEnergy Ltd Jump to:Creek Valley

418

DOE - Office of Legacy Management -- South Valley Superfund Site - 021  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborneSavannahIllinois SiteSouth Valley

419

DOE - Office of Legacy Management -- Tennessee Valley Authority - AL 01  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site - MO 02SuttonTennessee Valley

420

Yucca Valley, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin:YBR Solar JumpPetroleumYucca Valley,

Note: This page contains sample records for the topic "bethel valley burial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

West Puente Valley, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name:Perrine, Florida: EnergyPointValley,

422

West Valley Demonstration Project Waste Management Final Environmental Impact Statement  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartment ofAnnouncement | DepartmentofWest ValleyWVDP Waste

423

West Valley Demonstration Project Waste Management Final Environmental Impact Statement  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartment ofAnnouncement | DepartmentofWest ValleyWVDP

424

Canadian Valley Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacility | Open EnergySolar Inc CSI Jump to: navigation,Valley Elec

425

Canton Valley, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacility | Open EnergySolar Inc CSICorporation JumpCanton Valley,

426

File:LongValley Regional.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy0).pdfLongValley Regional.pdf Jump to:

427

Caney Valley El Coop Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder,Research JumpEnergy InformationForkValley

428

Cherry Valley, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information onChemithon EnterprisesGrove, Ohio: EnergyValley,

429

NRG Solar (California Valley Solar Ranch) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,FermiJoshuaAugust1 | Energy Efficiency and|Solar (California Valley

430

Spring Valley, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland, Illinois:5717551°FarmsSESLogMills isValley is a

431

Spring Valley, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland, Illinois:5717551°FarmsSESLogMills isValley is aYork:

432

Spring Valley, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland, Illinois:5717551°FarmsSESLogMills isValley is

433

Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area (Iovenitti,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County,Tees Valley BiofuelsEnergyInformation 6Et

434

Teleseismic-Seismic Monitoring At Long Valley Caldera Geothermal Area  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County,Tees Valley(Newman, Et Al., 2006) | Open

435

Temperature Data From Wells in Long Valley Caldera, California | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County,Tees Valley(Newman,Telluric

436

Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformation Dixie Valley Geothermal Area (Reed, 2007) JumpG,

437

Hybla Valley, Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy ResourcesPark,is aHy9 Jump to:Hybla Valley,

438

Clean Cities: Silicon Valley Clean Cities (San Jose) coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley Clean CitiesSanSilicon

439

Indian Valley Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: Eden Prairie, Minnesota Zip: 55344ESMAPIndianValley Hot

440

Field evaluation of two shallow land burial trench cap designs for long-term stabilization and closure of waste repositories at Los Alamos, New Mexico  

SciTech Connect (OSTI)

The results from several field experiments on methods to control soil erosion, biointrusion, and water infiltration were used to design and test a burial site cover which improves the ability of the disposal site to isolate the wastes. The performance of the improved cover design in managing water and biota at the disposal site was compared with a more conventional design widely used in the industry. The conventional trench cover design consists of 15 cm of sandy loam topsoil over 75 cm of sandy silt backfill, whereas the improved trench cover design consists of 75 cm of topsoil over a minimum of 25 cm of gravel and 90 cm of river cobble. Each plot was lined with an impermeable liner to allow for mass balance calculation of water dynamics and contains hydrologic tracer ions (iodide and bromide) to demonstrate movement of water through the various zones of the trench cap. Cesium was emplaced beneath the trench cap to indicate root penetration through the trench cap, observed by sampling plant samples collected on the plots and assaying them for cesium. The field data are summarized and discussed in terms of its usefulness for waste management decisions. 67 refs., 44 figs., 4 tabs.

Nyhan, J.; Drennon, B.; Hakonson, T.

1989-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "bethel valley burial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Assessment of the geothermal resources of Carson-Eagle valleys and Big Smoky Valley, Nevada. First annual report, May 1, 1979-May 30, 1980  

SciTech Connect (OSTI)

Two geothermal investigations were completed in three Nevada locations. The regions studied were selected from areas outlined as having direct utilization potential (Trexler and others, 1979) and included the Carson-Eagle Valley, Bis Smoky Valley and Caliente. Studies were organized around the completion of a group of tasks in each area. These tasks included: geologic reconnaissance, gravity surveys, aerial photography, fluid sampling and analysis, shallow depth temperature probe surveys, soil mercury surveys, shallow electrical resistivity measurements, and temperature gradient hole drilling. Goals of the project were to provide regional information about the nature and extent of the resources and to offer a critical evaluation of the techniques employed. Results from the work in the Carson-Eagle Valley and Big Smoky Valley are presented. (MHR)

Trexler, D.T.; Koenig, B.A.; Flynn, T.; Bruce, J.L.

1980-01-01T23:59:59.000Z

442

MAGNETOTELLURIC INVESTIGATIONS IN THE GEOTHERMAL FIELDS OF SATLUJ-SPITI, BEAS-PARBATI VALLEYS IN  

E-Print Network [OSTI]

Although, many countries are utiliszing the geothermal energy for power generation, India is yet to joinMAGNETOTELLURIC INVESTIGATIONS IN THE GEOTHERMAL FIELDS OF SATLUJ-SPITI, BEAS- PARBATI VALLEYS.NGRI-2008-EXP-637 MAGNETOTELLURIC INVESTIGATIONS IN GEOTHERMAL FIELDS OF SATLUJ-SPITI, BEAS- PARBATI VALLEYS

Harinarayana, T.

443

Electric Vehicle Charging in Smart Grid: Optimality and Valley-filling Algorithms  

E-Print Network [OSTI]

different settings. Index Terms--Optimal power flow, electric vehicle charging, valley-filling, onlineForReview Only 1 Electric Vehicle Charging in Smart Grid: Optimality and Valley-filling Algorithms, IEEE. Abstract--Electric vehicles (EVs) offer an attractive long-term solution to reduce the dependence

Tan, Chee Wei

444

Indra Prasad Paneru Livelihood strategy and occupational vulnerability of street ice cream vendors in Kathmandu Valley  

E-Print Network [OSTI]

Indra Prasad Paneru Livelihood strategy and occupational vulnerability of street ice cream vendors in Kathmandu Valley Livelihood strategy and occupational vulnerability of street ice cream vendors in Kathmandu-cream vendors of Kathmandu valley, Case study of Jawalakhel, Ratnapark area and Balaju area' explores

Richner, Heinz

445

COMMUNITY AND EDAPHIC ANALYSIS OF MIXED OAK FORESTS IN RIDGE AND VALLEY PROVINCE OF CENTRAL PENNSYLVANIA  

E-Print Network [OSTI]

COMMUNITY AND EDAPHIC ANALYSIS OF MIXED OAK FORESTS IN RIDGE AND VALLEY PROVINCE OF CENTRAL). In this study, mixed oak stands on nine different physiographic units in the Ridge and Valley Province PENNSYLVANIA Gregory J. Nowacki and Marc D. Abrams 1 Abstract: Forty-two relatively undisturbed mixed oak

Abrams, Marc David

446

EIS-0267: BPA/Lower Valley Transmission System Reinforcement Project, Wyoming  

Broader source: Energy.gov [DOE]

This EIS analyzes BPA and LVPL proposal to construct a new 115-kV line from BPA’s Swan Valley Substation near Swan Valley in Bonneville County, Idaho about 58 km (36 miles) east to BPA’s Teton Substation near Jackson in Teton County, Wyoming.

447

Major element chemistry in inner alpine snowpacks (Aosta Valley Region, NW Italy) Gianluca Filippa a,  

E-Print Network [OSTI]

Centre on Natural Risks in Mountain and Hilly Enviroments) Università degli Studi di Torino, via L. Da. In the Aosta Valley, local biogenic pollution rather than long-range transport may contribute substantially of strong anthropogenic pollution or dust deposition. Due to the fact that inner alpine valleys cover a non

Williams, Mark W.

448

Technical Services Contract Awarded for West Valley Demonstration Project Support Services  

Broader source: Energy.gov [DOE]

Cincinnati - The U.S. Department of Energy (DOE) today awarded a task order to Safety and Ecology Corporation of Knoxville, Tennessee, for technical services at the West Valley Demonstration Project, West Valley, New York. The task order has a three-year performance period with a $1.3 million value.

449

Microseismic mapping of a Cotton Valley hydraulic fracture using decimated downhole arrays J.T. Rutledge  

E-Print Network [OSTI]

Microseismic mapping of a Cotton Valley hydraulic fracture using decimated downhole arrays J three hydraulic fracture operations in the Cotton Valley gas field of East Texas. Two 48-level, 3 a consortia of operators and service companies conducted an extensive hydraulic fracture imaging demonstration

450

Climatology of katabatic winds in the McMurdo dry valleys, southern Victoria Land, Antarctica  

E-Print Network [OSTI]

Climatology of katabatic winds in the McMurdo dry valleys, southern Victoria Land, Antarctica of katabatic winds largely controls winter (June to August) temperatures, increasing 1°C per 1% increase of katabatic winds in the McMurdo dry valleys, southern Victoria Land, Antarctica, J. Geophys. Res., 109, D

Fountain, Andrew G.

451

Basal melting of snow on early Mars: A possible origin of some valley Michael H. Carr  

E-Print Network [OSTI]

that valley networks could have formed as a result of basal melting of thick snow and ice deposits. Depending in part by basal melting of the south polar cap [Clifford, 1987], this cannot be the only mechanismBasal melting of snow on early Mars: A possible origin of some valley networks Michael H. Carr U. S

Head III, James William

452

SURVEY AND ASSESSMENT OF THE "ALAMOSA MARSHES" AREA, SAN LUIS VALLEY, COLORADO  

E-Print Network [OSTI]

SURVEY AND ASSESSMENT OF THE "ALAMOSA MARSHES" AREA, SAN LUIS VALLEY, COLORADO Colorado Natural Heritage Program College of Natural Resources, 8002 Campus Delivery Colorado State University Fort Collins, Colorado 80523-8002 #12;SURVEY AND ASSESSMENT OF THE "ALAMOSA MARSHES" AREA, SAN LUIS VALLEY, COLORADO

453

ELSEVIER Geomorphology 14 (1995) 109-121 Hypsometric forcing of stagnant ice margins: Pleistocene valley  

E-Print Network [OSTI]

ELSEVIER Geomorphology 14 (1995) 109-121 Hypsometric forcing of stagnant ice margins: Pleistocene December 1994 Abstract Topographic and sedimentological evidence indicates that stagnant ice conditions position for a stagnant ice margin to develop during valley glacier retreat. In the first model, valley

Small, Eric

1995-01-01T23:59:59.000Z

454

Seepage Test Loss Results The Main Canal Valley Municipal Utility District No. 2  

E-Print Network [OSTI]

TR-326 2008 Seepage Test Loss Results The Main Canal Valley Municipal Utility District No. 2 Eric Leigh Texas AgriLife Extension Associate, Biological and Agricultural Engineering, College Station Guy... Fipps Texas AgriLife Extension Professor and Extension Agricultural Engineer, Biological and Agricultural Engineering, College Station January 21, 2004 SEEPAGE LOSS TEST RESULTS THE MAIN CANAL VALLEY MUNICIPAL UTILITY DISTRICT...

Leigh, E.; Fipps, G.

455

Quantifying Activated Floodplains on a Lowland Regulated River: Its Application to Floodplain Restoration in the Sacramento Valley  

E-Print Network [OSTI]

by Philip B. Williams, Elizabeth Andrews, Jeff J. Opperman,Valley Philip B. Williams 1 , Elizabeth Andrews 1 , Jeff J.

Williams, Philip B.; Andrews, Elizabeth; Opperman, Jeff J.; Bozkurt, Setenay; Moyle, Peter B.

2009-01-01T23:59:59.000Z

456

Commercial production of ethanol in the San Luis Valley, Colorado. Final report  

SciTech Connect (OSTI)

The commercial feasibility of producing between 76 and 189 million liters (20 to 50 million gallons) of ethanol annually in the San Luis Valley, Colorado using geothermal energy as the primary heat source was assessed. The San Luis Valley is located in south-central Colorado. The valley is a high basin situated approximately 2316 meters (7600 feet) above sea level which contains numerous warm water wells and springs. A known geothermal resource area (IGRA) is located in the east-central area of the valley. The main industry in the valley is agriculture, while the main industry in the surrounding mountains is lumber. Both of these industries can provide feedstocks for the production of ethanol.

Hewlett, E.M.; Erickson, M.V.; Ferguson, C.D.; Boswell, B.S.; Walter, K.M.; Hart, M.L.; Sherwood, P.B.

1983-07-01T23:59:59.000Z

457

Ganges Valley Aerosol Experiment: Science and Operations Plan  

SciTech Connect (OSTI)

The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 9–12 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 6–12 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile emissions; and dust. The extended AMF deployment will enable measurements under different regimes of the climate and aerosol abundance—in the wet monsoon period with low aerosol loading; in the dry, hot summer with aerosols dispersed throughout the atmospheric column; and in the cool, dry winter with aerosols confined mostly to the boundary later and mid-troposphere. Each regime, in addition, has its own distinct radiative and atmospheric dynamic drivers. The aircraft operational phase will assist in characterizing the aerosols at times when they have been observed to be at the highest concentrations. A number of agencies in India will collaborate with the proposed field study and provide support in terms of planning, aircraft measurements, and surface sites. The high concentration of aerosols in the upper Ganges Valley, together with hypotheses involving several possible mechanisms with direct impacts on the hydrologic cycle of the region, gives us a unique opportunity to generate data sets that will be useful both in understanding the processes at work and in providing answers regarding the effects of aerosols on climate in a region where the perturbation is the highest.

Kotamarthi, VR

2010-06-21T23:59:59.000Z

458

NNSS Soils Monitoring: Plutonium Valley (CAU366) FY2012  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events. Field measurements at the T-4 Atmospheric Test Site (CAU 370) suggest that radionuclide-contaminated soils may have migrated along a shallow ephemeral drainage that traverses the site (NNSA/NSO, 2009). (It is not entirely clear how contaminated soils got into their present location at the T-4 Site, but flow to the channel has been redirected and the contamination does not appear to be migrating at present.) Aerial surveys in selected portions of the Nevada National Security Site (NNSS) also suggest that radionuclide-contaminated soils may be migrating along ephemeral channels in Areas 3, 8, 11, 18, and 25 (Colton, 1999). In Area 11, several low-level airborne surveys of the Plutonium Valley Dispersion Sites (CAU 366) show plumes of Americium 241 (Am-241) extending along ephemeral channels (Figure 1, marker numbers 5 and 6) below Corrective Action Site (CAS) 11-23-03 (marker number 3) and CAS 11 23-04 (marker number 4) (Colton, 1999). Plutonium Valley in Area 11 of the NNSS was selected for the study because of the aerial survey evidence suggesting downstream transport of radionuclide-contaminated soil. The aerial survey (Figure 1) shows a well defined finger of elevated radioactivity (marker number 5) extending to the southwest from the southernmost detonation site (marker number 4). This finger of contamination overlies a drainage channel mapped on the topographic base map used for presentation of the survey data suggesting surface runoff as a likely cause of the contaminated area. Additionally, instrumenting sites strongly suspected of conveying soil from areas of surface contamination offers the most efficient means to confirm that surface runoff may transport radioactive contamination as a result of ambient precipitation/runoff events. Closure plans being developed for the CAUs on the NNSS may include post-closure monitoring for possible release of radioactive contaminants. Determining the potential for transport of radionuclide-contaminated soils under ambient meteorological conditions will facilitate an appropriate closure design and post-closure monitoring program.

Julianne J Miller, Steve A. Mizell, George Nikolich, Greg McCurdy, and Scott Campbell

2013-01-01T23:59:59.000Z

459

Geologic Results from the Long Valley Exploratory Well  

SciTech Connect (OSTI)

As a deep well in the center of a major Quaternary caldera, the Long Valley Exploratory Well (LVEW) provides a new perspective on the relationship between hydrothermal circulation and a large crustal magma chamber. It also provides an important test of models for the subsurface structure of active continental calderas. Results will impact geothermal exploration, assessment, and management of the Long Valley resource and should be applicable to other igneous-related geothermal systems. Our task is to use the cuttings and core from LVEW to interpret the evolution of the central caldera region, with emphasis on evidence of current hydrothermal conditions and circulation. LVEW has reached a depth of 2313 m, passing through post-caldera extrusives and the intracaldera Bishop Tuff to bottom in the Mt. Morrison roof pendant of the Sierran basement. The base of the section of Quaternary volcanic rocks related to Long Valley Caldera was encountered at 1800 m of which 1178 m is Bishop Tuff. The lithologies sampled generally support the classic view of large intercontinental calderas as piston-cylinder-like structures. In this model, the roof of the huge magma chamber, like an ill-fitting piston, broke and sank 2 km along a ring fracture system that simultaneously and explosively leaked magma as Bishop Tuff. Results from LVEW which support this model are the presence of intact basement at depth at the center of the caldera, the presence of a thick Bishop Tuff section, and textural evidence that the tuff encountered is not near-vent despite its central caldera location. An unexpected observation was the presence of rhyolite intrusions within the tuff with a cumulative apparent thickness in excess of 300 m. Chemical analyses indicate that these are high-silica, high-barium rhyolites. Preliminary {sup 40}Ar/{sup 39}Ar analyses determined an age of 626 {+-} 38 ka (this paper). These observations would indicate that the intrusions belong to the early post-collapse episode of volcanism and are contemporaneous with resurgence of the caldera floor. If they are extensive sills rather than dikes, a possibility being investigated through relogging of core from neighboring wells, they were responsible for resurgence. A {sup 40}Ar/{sup 39}Ar age of 769 {+-} 14 ka from Bishop Tuff at 820 m depth conforms with tuff ages from outside the caldera and indicates an absence of shallow hydrothermal activity (>300 C) persisting after emplacement. Work is proceeding on investigating hydrothermal alteration deeper in the well. This alteration includes sulfide+quartz fracture fillings, calcite+quartz replacement of feldspars, and disseminated pyrite in both the tuff and basement. Electron microprobe analysis of phases are being conducted to determine initial magmatic and subsequent hydrothermal conditions.

McConnell, Vicki S.; Eichelberger, John C.; Keskinen, Mary J.; Layer, Paul W.

1992-03-24T23:59:59.000Z

460

VALDRIFT 1.0: A valley atmospheric dispersion model with deposition  

SciTech Connect (OSTI)

VALDRIFT version 1.0 is an atmospheric transport and diffusion model for use in well-defined mountain valleys. It is designed to determine the extent of ddft from aedal pesticide spraying activities, but can also be applied to estimate the transport and diffusion of various air pollutants in valleys. The model is phenomenological -- that is, the dominant meteorological processes goveming the behavior of the valley atmosphere are formulated explicitly in the model, albeit in a highly parameterized fashion. The key meteorological processes treated are: (1) nonsteady and nonhomogeneous along-valley winds and turbulent diffusivities, (2) convective boundary layer growth, (3) inversion descent, (4) noctumal temperature inversion breakup, and (5) subsidence. The model is applicable under relatively cloud-free, undisturbed synoptic conditions and is configured to operate through one diumal cycle for a single valley. The inputs required are the valley topographical characteristics, pesticide release rate as a function of time and space, along-valley wind speed as a function of time and space, temperature inversion characteristics at sunrise, and sensible heat flux as a function of time following sunrise. Default values are provided for certain inputs in the absence of detailed observations. The outputs are three-dimensional air concentration and ground-level deposition fields as a function of time.

Allwine, K.J.; Bian, X.; Whiteman, C.D.

1995-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "bethel valley burial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Exploration ofr geothermal resources in Dixie Valley, Nevada  

SciTech Connect (OSTI)

A case history of SUNEDCO's exploratory efforts, which ultimately led to the drilling and discovery of the Dixie Valley goethermal field, is presented. The geochemistry from three active lot springs in the area: Dixie Hot Springs, South Hot Springs, and Hyder Hot Springs, was examined. Two heat flow drilling programs were conducted at Dixie Hot Springs consisting of 45 temperature gradient holes ranging in depth from 30 to 1500 ft. From this program a heat-flow anomaly was mapped extending along the Stillwater Range front in which temperature gradients are greater than 100/sup 0/c/Km. in 1978, the number 1 SW Lamb well was drilled on a 152 acre farmout from Chevron. The well was completed as a geothermal producer in a zone of fractured volcanic rocks. Since then, five additional geothermal producing wells were completed within the anomalous area. (MJF)

Parchman, W.L.; Knox, J.W.

1981-06-01T23:59:59.000Z

462

Elk Valley Rancheria Energy Efficiency and Alternatives Analysis  

SciTech Connect (OSTI)

Elk Valley Rancheria; Tribe; renewable energy; energy options analysis. The Elk Valley Rancheria, California ('Tribe') is a federally recognized Indian tribe located in Del Norte County, California, in the northwestern corner of California. The Tribe, its members and Tribal enterprises are challenged by increasing energy costs and undeveloped local energy resources. The Tribe currently lacks an energy program. The Tribal government lacked sufficient information to make informed decisions about potential renewable energy resources, energy alternatives and other energy management issues. To meet this challenge efficiently, the Tribe contracted with Frank Zaino and Associates, Inc. to help become more energy self-sufficient, by reducing their energy costs and promoting energy alternatives that stimulate economic development. Frank Zaino & Associates, Inc. provided a high level economic screening analysis based on anticipated electric and natural gas rates. This was in an effort to determine which alternative energy system will performed at a higher level so the Tribe could reduce their energy model by 30% from alternative fuel sources. The feasibility study will identify suitable energy alternatives and conservation methods that will benefit the Tribe and tribal community through important reductions in cost. The lessons learned from these conservation efforts will yield knowledge that will serve a wider goal of executing energy efficiency measures and practices in Tribal residences and business facilities. Pacific Power is the provider of electrical power to the four properties under review at $ 0.08 per Kilowatt-hour (KWH). This is a very low energy cost compared to alternative energy sources. The Tribe used baseline audits to assess current and historic energy usage at four Rancheria owned facilities. Past electric and gas billing statements were retained for review for the four buildings that will be audited. A comparative assessment of the various energy usages will determine the demand, forecast future need and identify the differences in energy costs, narrowing the focus of the work and defining its scope. The Tribe's peak demand periods will help determine the scope of need for alternative energy sources. The Tribe's Energy Efficiency and Alternatives Analysis report included several system investigations which include fuel cells, wind turbines, solar panels, hydro electric, ground source heat pumps, bio mass, cogeneration & energy conservation and implementation for the existing properties. The energy analysis included site visits to collect and analyze historical energy usage and cost. The analysis also included the study of the building systems for the Elk Valley Casino, Elk Valley Rancheria administration complex, United Indian Health Service/Small Community Center complex and the Tribal Gaming Commission Offices. The analysis involved identifying modifications, performing an engineering economic analysis, preparation of a rank ordered list of modifications and preparation of a report to provide recommendations and actions for the Tribe to implement.

Ed Wait, Elk Valley Rancheria; Frank Ziano & Associates, Inc.

2011-11-30T23:59:59.000Z

463

Tennessee Valley and Eastern Kentucky Wind Working Group  

SciTech Connect (OSTI)

In December 2009, the Southern Alliance for Clean Energy (SACE), through a partnership with the Appalachian Regional Commission, EKPC, Kentucky's Department for Energy Development and Independence, SACE, Tennessee's Department of Environment and Conservation, and TVA, and through a contract with the Department of Energy, established the Tennessee Valley and Eastern Kentucky Wind Working Group (TVEKWWG). TVEKWWG consists of a strong network of people and organizations. Working together, they provide information to various organizations and stakeholders regarding the responsible development of wind power in the state. Members include representatives from utility interests, state and federal agencies, economic development organizations, non-government organizations, local decision makers, educational institutions, and wind industry representatives. The working group is facilitated by the Southern Alliance for Clean Energy. TVEKWWG supports the Department of Energy by helping educate and inform key stakeholders about wind energy in the state of Tennessee.

Katie Stokes

2012-05-03T23:59:59.000Z

464

Valley pair qubits in double quantum dots of gapped graphene  

E-Print Network [OSTI]

The rise of graphene opens a new door to qubit implementation, as discussed in the recent proposal of valley pair qubits in double quantum dots of gapped graphene (Wu et al., arXiv: 1104.0443 [cond-mat.mes-hall]). The work here presents the comprehensive theory underlying the proposal. It discusses the interaction of electrons with external magnetic and electric fields in such structures. Specifically, it examines a strong, unique mechanism, i.e., the analogue of the 1st-order relativistic effect in gapped graphene. This mechanism is state mixing free and allows, together with the electrically tunable exchange coupling, a fast, all-electric manipulation of qubits via electric gates, in the time scale of ns. The work also looks into the issue of fault tolerance in a typical case, yielding at 10oK a long qubit coherence time (~O(ms)).

G. Y. Wu; N. -Y. Lue; L. Chang

2011-07-03T23:59:59.000Z

465

Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

NONE

1996-03-01T23:59:59.000Z

466

Chiltern Woodland Burial Park Chiltern Woodland Burial Park  

E-Print Network [OSTI]

opportunity to restore the brownfield areas and re-establish the ancient semi-natural woodland. Chiltern

467

CORONARY HEART DISEASE RISK STRATIFICATION IN FULL-TIME MIAMI VALLEY HOSPITAL EMPLOYEES.  

E-Print Network [OSTI]

??Streng, Vicki. M.S. College of Science and Mathematics, Department of Biological Sciences, Wright State University, 2006. Coronary Heart Disease Risk Stratification in Full-time Miami Valley… (more)

Streng, Vicki K.

2006-01-01T23:59:59.000Z

468

Pollution Prevention Plan for the Y-12 Analytical Chemistry Organization Off-Site Union Valley Facility  

SciTech Connect (OSTI)

The Y-12 Analytical Chemistry Organization (ACO) Off-Site Union Valley Facility (Union Valley Facility) is managed by Babcock and Wilcox Technical Services Y-12, L.L.C. (B and W Y-12) through the Y-12 National Security Complex organization. Accordingly, the Y-12 Pollution Prevention Program encompasses the operations conducted at the Union Valley Facility. The Y-12 Program is designed to fully comply with state, federal and U.S. Department of Energy (DOE) requirements concerning waste minimization/pollution prevention as documented in the Y-12 Pollution Prevention Program Plan. The Program is formulated to reduce the generation and toxicity of all Y-12 wastes in all media, including those wastes generated by the Union Valley Facility operations. All regulatory and DOE requirements are met by the Y-12 Program Plan.

Jackson, J. G.

2010-03-01T23:59:59.000Z

469

The sprawl of the wild : a new infrastructural landscape in Silicon Valley  

E-Print Network [OSTI]

California faces an immediate and dire water shortage. The San Joaquin River Delta water supply system - which provides Silicon Valley with most of its fresh water - periodically draws down water delivery due to drought ...

Flynn, Kathleen M. (Kathleen Michele)

2008-01-01T23:59:59.000Z

470

PROFESSIONAL SERVICE Chair Technical and Economic Committee, CVSALTS Central Valley Salinity Coalition, (2008  

E-Print Network [OSTI]

-2008 Berkeley Laboratory Delegate, White House Conference on Industrial Ecology Department of Energy, Water-Energy, Central Valley Salinity Coalition, CVSALTS SOCIAL/CIVIC Yolo Polo Club Sutter Buttes Polo Club Wine

Quinn, Nigel

471

E-Print Network 3.0 - ancient buried valleys Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

marvel at the Step Pyramid of Zozer. Admire the iconic Pyramids... endless Valley of the Kings and Queens before embarking on a cruise of the Nile River. Continue... 's tomb and...

472

Water Management Strategies for the San Joaquin Valley and San Francisco Bay Area  

E-Print Network [OSTI]

i Water Management Strategies for the San Joaquin Valley and San Francisco Bay Area: an Engineering in Water Resource Management ............. 3 CALVIN Model Overview ...................................................... 26 Changes in Delivery and Scarcity Costs .................................. 35 Environmental Water

Lund, Jay R.

473

Owens Corning and Silicon Valley Power Partner to Make Energy Savings a Reality (Brochure)  

SciTech Connect (OSTI)

This case study describes how the Owens Corning plant in Santa Clara, California, participated in Save Energy Now energy assessments and used Silicon Valley Power utility incentives to save $252,000.

Not Available

2009-03-01T23:59:59.000Z

474

Metadata for PoroTomo Project Subtask 3.2 DAS at Garner Valley  

SciTech Connect (OSTI)

Metadata for the data collected at the NEES@UCSB Garner Valley Downhole Array field site on September 10-12, 2013 as part of the larger PoroTomo project.

Chelsea Lancelle

2013-09-10T23:59:59.000Z

475

Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: Observations  

E-Print Network [OSTI]

During the dry season of 2004–2005 we carried out field measurements of air pollution and meteorology in the Kathmandu Valley, Nepal, a bowl-shaped urban basin in the Himalayan foothills of Nepal. We measured the trace ...

Panday, Arnico K.

476

Microsoft Word - Swan%20Valley%20-%20Palisades%20Communication...  

Broader source: Energy.gov (indexed) [DOE]

Swan Valley - Palisades Communication Upgrade Budget Information: Work Order 00253530 Task 03 Categorical Exclusions Applied (from Subpart D, 10 C.F.R. Part 1021: B1.7...

477

Control on (234 U) in lake water: A study in the Dry Valleys  

E-Print Network [OSTI]

.V. All rights reserved. Keywords: Uranium isotopes; Dry Valleys; Antarctica; Weathering; Lake chemistry 1 isotopes. The supply of 234 U is therefore limited by decay of 238 U, suggesting that the two uranium

Henderson, Gideon

478

A Transient Model of the Geothermal System of the Long Valley...  

Open Energy Info (EERE)

Transient Model of the Geothermal System of the Long Valley Caldera, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Transient...

479

Metadata for PoroTomo Project Subtask 3.2 DAS at Garner Valley  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Metadata for the data collected at the NEES@UCSB Garner Valley Downhole Array field site on September 10-12, 2013 as part of the larger PoroTomo project.

Chelsea Lancelle

480

Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada  

SciTech Connect (OSTI)

Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

2003-08-14T23:59:59.000Z

Note: This page contains sample records for the topic "bethel valley burial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Wind Regimes in Complex Terrain of the Great Valley of Eastern Tennessee  

SciTech Connect (OSTI)

This research was designed to provide an understanding of physical wind mechanisms within the complex terrain of the Great Valley of Eastern Tennessee to assess the impacts of regional air flow with regard to synoptic and mesoscale weather changes, wind direction shifts, and air quality. Meteorological data from 2008 2009 were analyzed from 13 meteorological sites along with associated upper level data. Up to 15 ancillary sites were used for reference. Two-step complete linkage and K-means cluster analyses, synoptic weather studies, and ambient meteorological comparisons were performed to generate hourly wind classifications. These wind regimes revealed seasonal variations of underlying physical wind mechanisms (forced channeled, vertically coupled, pressure-driven, and thermally-driven winds). Synoptic and ambient meteorological analysis (mixing depth, pressure gradient, pressure gradient ratio, atmospheric and surface stability) suggested up to 93% accuracy for the clustered results. Probabilistic prediction schemes of wind flow and wind class change were developed through characterization of flow change data and wind class succession. Data analysis revealed that wind flow in the Great Valley was dominated by forced channeled winds (45 67%) and vertically coupled flow (22 38%). Down-valley pressure-driven and thermally-driven winds also played significant roles (0 17% and 2 20%, respectively), usually accompanied by convergent wind patterns (15 20%) and large wind direction shifts, especially in the Central/Upper Great Valley. The behavior of most wind regimes was associated with detectable pressure differences between the Lower and Upper Great Valley. Mixing depth and synoptic pressure gradients were significant contributors to wind pattern behavior. Up to 15 wind classes and 10 sub-classes were identified in the Central Great Valley with 67 joined classes for the Great Valley at-large. Two-thirds of Great Valley at-large flow was defined by 12 classes. Winds flowed on-axis only 40% of the time. The Great Smoky Mountains helped create down-valley pressure-driven winds, downslope mountain breezes, and divergent air flow. The Cumberland Mountains and Plateau were associated with wind speed reductions in the Central Great Valley, Emory Gap Flow, weak thermally-driven winds, and northwesterly down sloping. Ridge-and-valley terrain enhanced wind direction reversals, pressure-driven winds, as well as locally and regionally produced thermally-driven flow.

Birdwell, Kevin R [ORNL

2011-05-01T23:59:59.000Z

482

Study of the moisture-fertility requirements of cotton in the Brazos River Valley, 1957  

E-Print Network [OSTI]

LIBRARY II a III COLLEI:. e& 7EXAs STUDY OF THE MOISTURE-FERTILITY REQUIREMENTS OF COTTON IN THE BRAZOS RIVER VALLEY - 1957 A Thesis by CARROLL VIAYNE KEESE Submitted to the Graduate School of the Agricultural and Mechanical College... of Texas in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1958 Major Sub]ect: Agricultural Engineering STUDY OF THE MOISTURE-FERTILITY REQUIREMENTS OF COTTON IN THE BRAVOS RIVER VALLEY - 1957 A Thesis by CARROLL...

Keese, Carroll Wayne

1958-01-01T23:59:59.000Z

483

Analysis of consumer lending problems of the banks in the central Texas Brazos Valley area  

E-Print Network [OSTI]

to significant new profits for RVA bankers. A oonsuner loan of $1, 000 at seven poroont interest, repaid in twelve nonthly inetallnonto, aotuallr earns interest of 12. 9 yeroont for the lender. Therefore& surplus lendable funds now held hF BVA 1 banks... eonsuaor loanso %hat nininun siss (dollar anount) oonsunor loan Sraaos Vallqf Area bankers oonsider to bo profitable. $. Tho nethods and prooeduros used hf Breaos Valley Area bankers in asking oonsunor loansi 6. Vhat steps Sraaos Valley Area banks oan...

Old, William Donald

1963-01-01T23:59:59.000Z

484

Economies of size in municipal water treatment technologies: Texas lower Rio Grande Valley  

E-Print Network [OSTI]

ECONOMIES OF SIZE IN MUNICIPAL WATER TREATMENT TECHNOLOGIES: TEXAS LOWER RIO GRANDE VALLEY A Thesis by CHRISTOPHER NEIL BOYER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2008 Major Subject: Agricultural Economics ECONOMIES OF SIZE IN MUNICIPAL WATER TREATMENT TECHNOLOGIES: TEXAS LOWER RIO GRANDE VALLEY A Thesis by CHRISTOPHER NEIL BOYER Submitted to the Office of Graduate Studies...

Boyer, Christopher Neil

2008-10-10T23:59:59.000Z

485

Greenhouse space allocation in the ornamental foliage industry in the Rio Grande Valley of Texas  

E-Print Network [OSTI]

GREENHOUSE SPACE ALLOCATION IN THE ORNAMENTAL FOLIAGE INDUSTRY IN THE RIO GRANDE VALLEY OF TEXAS A Thesis by BRENDA DEA LANG KRAFKA Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1986 Major Subject: Agricultural Economics GREENHOUSE SPACE ALLOCATION IN THE ORNAMENTAL FOLIAGE INDUSTRY IN THE RIO GRANDE VALLEY OF TEXAS A Thesis by BRENDA DEA LANG KRAFKA Approved as to style and content by...

Krafka, Brenda Dea Lang

1986-01-01T23:59:59.000Z

486

Geothermal systems of the Mono Basin-Long Valley region, eastern California and western Nevada  

SciTech Connect (OSTI)

The region that includes Mono Basin, Long Valley, the Bridgeport-Bodie Hills area, and Aurora, in eastern California and western Nevada was studied to determine the possible causes and interactions of the geothermal anomalies in the Mono Basin-Long Valley region as a whole. A special goal of the study was to locate possible shallow bodies of magma and to determine their influence on the hydrothermal systems in the region. (ACR)

Higgins, C.T.; Flynn, T.; Chapman, R.H.; Trexler, D.T.; Chase, G.R.; Bacon, C.F.; Ghusn, G. Jr.

1985-01-01T23:59:59.000Z

487

The geology of the basal sandstone-mudstone unit of the Blackhawk Landslide, Lucerne Valley, California  

E-Print Network [OSTI]

THE GEOLOGY OF THE BASAL SANDSTONE-MUDSTONE UNIT OF THE BLACKHAWK LANDSLIDE, LUCERNE VALLEY, CALIFORNIA A Thesis by JERRY LINN KUZIOR Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 1983 Major Subject: Geology THE GEOLOGY OF THE BASAL SANDSTONE-MUDSTONE UNIT OF THE BLACKHANK LANDSLIDE, LUCERNE VALLEY, CALIFORNIA A Thesis by JERRY LINN KUZIOR Approved as to style and content by: Brann Jo...

Kuzior, Jerry Linn

1983-01-01T23:59:59.000Z

488

Environmental Assessment and Finding of No Significant Impact: Widening Trench 36 of the 218-E-12B Low-Level Burial Ground, Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

This environmental assessment was prepared to assess potential environmental impacts associated with the proposed action to widen and operate unused Trench 36 in the 218-E-12B Low-Level Burial Ground for disposal of low-level waste. Information contained herein will be used by the Manager, U.S. Department of Energy, Richland Operations Office, to determine if the Proposed Action is a major federal action significantly affecting the quality of the human environment. If the Proposed Action is determined to be major and significant, an environmental impact statement will be prepared. If the Proposed Action is determined not to be major and significant, a Finding of No Significant Impact will be issued and the action may proceed. Criteria used to evaluate significance can be found in Title 40, Code of Federal Regulations 1508.27. This environmental assessment was prepared in compliance with the ''National Environmental Policy Act of1969'', as amended, the Council on Environmental Quality Regulations for Implementing the Procedural Provisions of ''National Environmental Policy Act'' (Title 40, Code of Federal Regulations 1500-1508), and the U.S. Department of Energy Implementing Procedures for ''National Environmental Polio Act'' (Title 10, Code of Federal Regulations 1021). The following is a description of each section of this environmental assessment. (1) Purpose and Need for Action. This section provides a brief statement concerning the problem or opportunity the U.S, Department of Energy is addressing with the Proposed Action. Background information is provided. (2) Description of the Proposed Action. This section provides a description of the Proposed Action with sufficient detail to identify potential environmental impacts. (3) Alternatives to the Proposed Action. This section describes reasonable,alternative actions to the Proposed Action, which addresses the Purpose and Need. A No Action Alternative, as required by Title 10, Code of Federal Regulations 1021, also is described. (4) Affected Environment. This section provides a brief description of the locale in which the Proposed Action would take place. (5) Environmental Impacts. This section describes the range of environmental impacts, beneficial and adverse, of the Proposed Action. Impacts of alternatives briefly are discussed. (6) Permits and Regulatory Requirements. This section provides a brief description of permits and regulatory requirements for the Proposed Action. (7) Organizations Consulted. This section lists any outside groups, agencies, or individuals contacted as part of the environmental assessment preparation and/or review. (8) References. This section provides a list of documents used to contribute information or data in preparation of this environmental assessment.

N /A

1999-02-11T23:59:59.000Z

489

Environmental Assessment and Finding of No Significant Impact: Interim Measures for the Mixed Waste Management Facility Groundwater at the Burial Ground Complex at the Savannah River Site  

SciTech Connect (OSTI)

The U. S. Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed interim measures for the Mixed Waste Management Facility (MW) groundwater at the Burial Ground Complex (BGC) at the Savannah River Site (SRS), located near Aiken, South Carolina. DOE proposes to install a small metal sheet pile dam to impound water around and over the BGC groundwater seepline. In addition, a drip irrigation system would be installed. Interim measures will also address the reduction of volatile organic compounds (VOCS) from ''hot-spot'' regions associated with the Southwest Plume Area (SWPA). This action is taken as an interim measure for the MWMF in cooperation with the South Carolina Department of Health and Environmental Control (SCDHEC) to reduce the amount of tritium seeping from the BGC southwest groundwater plume. The proposed action of this EA is being planned and would be implemented concurrent with a groundwater corrective action program under the Resource Conservation and Recovery Act (RCRA). On September 30, 1999, SCDHEC issued a modification to the SRS RCRA Part B permit that adds corrective action requirements for four plumes that are currently emanating from the BGC. One of those plumes is the southwest plume. The RCRA permit requires SRS to submit a corrective action plan (CAP) for the southwest plume by March 2000. The permit requires that the initial phase of the CAP prescribe a remedy that achieves a 70-percent reduction in the annual amount of tritium being released from the southwest plume area to Fourmile Branch, a nearby stream. Approval and actual implementation of the corrective measure in that CAP may take several years. As an interim measure, the actions described in this EA would manage the release of tritium from the southwest plume area until the final actions under the CAP can be implemented. This proposed action is expected to reduce the release of tritium from the southwest plume area to Fourmile Branch between 25 to 35 percent. If this proposed action is undertaken and its effectiveness is demonstrated, it may become a component of the final action in the CAP. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended; the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR 1500-1508); and the DOE Regulations for Implementing NEPA (10 CFR 1021). NEPA requires the assessment of environmental consequences of Federal actions that may affect the quality of the human environment. Based on the potential for impacts described herein, DOE will either publish a Finding of No Significant Impact (FONSI) or prepare an environmental impact statement (EM).

N /A

1999-12-08T23:59:59.000Z

490

Graphene quantum dots for valley-based quantum computing: A feasibility study  

E-Print Network [OSTI]

At the center of quantum computing1 realization is the physical implementation of qubits - two-state quantum information units. The rise of graphene2 has opened a new door to the implementation. Because graphene electrons simulate two-dimensional relativistic particles with two degenerate and independent energy valleys,3 a novel degree of freedom (d.o.f.), namely, the valley state of an electron, emerges as a new information carrier.4 Here, we expand the Loss-DiVincenzo quantum dot (QD) approach in electron spin qubits,5,6 and investigate the feasibility of double QD (DQD) structures in gapful graphene as "valley qubits", with the logic 0 / 1 states represented by the "valley" singlet / triplet pair. This generalization is characterized by 1) valley relaxation time ~ O(ms), and 2) electric qubit manipulation on the time scale ~ ns, based on the 1st-order "relativistic effect" unique in graphene. A potential for valley-based quantum computing is present.

G. Y. Wu; N. -Y. Lue; L. Chang

2011-04-21T23:59:59.000Z

491

New fission valley for /sup 258/Fm and nuclei beyond  

SciTech Connect (OSTI)

Experimental results on the fission properties of nuclei close to /sup 264/Fm show sudden and large changes with a change of only one or two neutrons or protons. The nucleus /sup 258/Fm, for instance, undergoes symmetric fission with a half-life of about 0.4 ms and a kinetic energy peaked at about 235 MeV whereas /sup 256/Fm undergoes asymmetric fission with a half-life of about 3 h and a kinetic energy peaked at about 200 MeV. Qualitatively, these sudden changes hve been postulated to be due to the emergence of fragment shells in symmetric fission products close to /sup 132/Sn. A quantitative calculation that shows where high-kinetic-energy symmetric fission occurs and why it is associated with a sudden and large decrease in fission half-lives. The study is based on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. The implications of the new fission valley on the stability of the heaviest elements is discussed. 33 refs., 12 figs.

Moeller, P.; Nix, J.R.; Swiatecki, W.J.

1986-01-01T23:59:59.000Z

492

Gravity and fault structures, Long Valley caldera, California  

SciTech Connect (OSTI)

The main and catastrophic phase of eruption in Long Valley occurred 0.73 m.y. ago with the eruption of over 600 km/sup 3/ of rhyolitic magma. Subsequent collapse of the roof rocks produced a caldera which is now elliptical in shape, 32 km east-west by 17 km north-south. The caldera, like other large Quarternary silicic ash-flow volcanoes that have been studied by various workers, has a nearly coincident Bouguer gravity low. Earlier interpretations of the gravity anomaly have attributed the entire anomaly to lower density rocks filling the collapsed structure. However, on the basis of many additional gravity stations and supporting subsurface data from several new holes, a much more complex and accurate picture has emerged of caldera structure. From a three-dimensional inversion of the residual Bouguer gravity data we can resolve discontinuities that seem to correlate with extensions of pre-caldera faults into the caldera and faults associated with the ring fracture. Some of these faults are believed related to the present-day hydrothermal upflow zone and the zone of youngest volcanic activity within the caldera.

Carle, S.F.; Goldstein, N.E.

1987-07-01T23:59:59.000Z

493

Environmental analysis of the operation of Oak Ridge National Laboratory (X-10 site)  

SciTech Connect (OSTI)

An environmental analysis of the operation of the Oak Ridge National Laboratory (ORNL) facilities in Bethel Valley and Melton Valley was conducted to present to the public information concerning the extent to which recognizable effects, or potential effects, on the environment may occur. The analysis addresses current operations of the ORNL X-10 site and completed operations that may continue to have residual effects. Solid wastes from ORNL operations at the Y-12 site which are transported to the X-10 site for burial (e.g., Biology Division animal wastes) are included as part of X-10 site operation. Socioeconomic effects are associated primarily with the communities where employees live and with the Knoxville Bureau of Economic Analysis economic area as a whole. Therefore, ORNL employees at both Y-12 and X-10 sites are included in the ORNL socioeconomic impact analysis. An extensive base of environmental data was accumulated for this report. Over 80 reports related to ORNL facilities and/or operations are cited as well as many open-literature citations. Environmental effects of the operation of ORNL result from operational discharges from the onsite facilities; construction and/or modification of facilities, transportation to and from the site of persons, goods and services; socioeconomic impacts to the local, regional, and general population; and accidental discharges if they should occur. Operational discharges to the environnment are constrained by federal, state, and local regulations and by criteria established by the US Department of Energy to minimize adverse impacts. It is the purpose of this document to evaluate the operation of the ORNL insofar as impacts beyond the site boundary may occur or have the potential for occurrence.

Boyle, J.W.; Blumberg, R.; Cotter, S.J.

1982-11-01T23:59:59.000Z

494

Santa Clara Valley Transportation Authority and San Mateo County Transit District; Fuel Cell Transit Buses: Preliminary Evaluation Results  

SciTech Connect (OSTI)

Report provides preliminary results from an evaluation of prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority (VTA) in San Jose, California.

Eudy, L.; Chandler, K.

2006-03-01T23:59:59.000Z

495

Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results  

SciTech Connect (OSTI)

This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority in San Jose, California.

Chandler, K.; Eudy, L.

2006-11-01T23:59:59.000Z

496

Lead (Pb) adsorption study by batch equilibrium tests with unconsolidated material: Eldorado Paulista city (Ribeira Valley - SP).  

E-Print Network [OSTI]

??The known history of contamination by galena (PbS) mining liabilities from Ribeira Valley region (SP) provides importance to the Pb adsorption study in order to… (more)

Bianca de Carvalho Munhoz Silva

2013-01-01T23:59:59.000Z

497

Dr. Brian White is the Superintendent of Schools for the Chartiers Valley School District. Shortly after beginning at Chartiers Valley in August 2010, Dr. White implemented a strategic planning process that engaged the members of  

E-Print Network [OSTI]

Dr. Brian White is the Superintendent of Schools for the Chartiers Valley School District. Shortly after beginning at Chartiers Valley in August 2010, Dr. White implemented a strategic planning process, Dr. White held several positions at the Beaver Area School District. He began as an assistant

Sibille, Etienne

498

Front-end planning and evaluation for West Valley Demonstration Project completion  

SciTech Connect (OSTI)

In December 1988, the U.S. Department of Energy and the New York State Energy Research and Development Authority announced their intent to prepare a joint environmental impact statement (EIS) to evaluate alternatives for West Valley Demonstration Project (WVDP) completion and closure and/or long-term maintenance of the Western New York Nuclear Service Center (WNYNSC) in West Valley, New York. Planning was initiated for the eventual closure of the site, even though vitrification of the high-level waste (HLW) stored at the site was, at that time, a number of years in the future. West Valley Nuclear Services Company (WVNSC), the WVDP management and operations contractor, and their architect/engineer, Raytheon Nuclear Incorporated, were authorized to develop characterization studies and engineering evaluations of closure alternatives for the various facilities of the WNYNSC. This paper presents a summary of the status of that effort, including the resolution of unique problems.

Gramling, J.; Sharma, V. [West Valley Nuclear Services Company, West Valley, NY (United States); Marschke, S. [Raytheon Nuclear, Inc., New York, NY (United States)

1995-12-31T23:59:59.000Z

499

A High-Resolution Aeromagnetic Survey to Identify Buried Faults at Dixie Valley, Nevada  

SciTech Connect (OSTI)

Preliminary results from a high-resolution aeromagnetic survey (200m line spacing) acquired in Dixie Valley early in 2002 provide confirmation of intra-basin faulting based on subtle surface indications. In addition the data allow identification of the locations and trends of many faults that have not been recognized at the surface, and provide a picture of intrabasin faulting patterns not possible using other techniques. The data reveal a suite of northeasterly-trending curving and branching faults that surround a relatively coherent block in the area of Humboldt Salt Marsh, the deepest part of the basin. The producing reservoir occurs at the north end of this coherent block, where rampart faults from the northwest side of the valley merge with anthithetic faults from the central and southeast parts of the valley.

Smith, Richard Paul; Grauch, V. J. S.; Blackwell, David D.

2002-09-01T23:59:59.000Z

500

Soil Biology & Biochemistry 38 (2006) 30653082 Soil carbon turnover in the McMurdo Dry Valleys, Antarctica  

E-Print Network [OSTI]

Soil Biology & Biochemistry 38 (2006) 3065­3082 Soil carbon turnover in the McMurdo Dry Valleys Valleys are among the most inhospitable soil environments on Earth due to climate and substrate because likely sources of organic matter are 102 ­104 yrs old and in situ soil respiration is typically

Wall, Diana

2006-01-01T23:59:59.000Z