Sample records for beryllium petition date

  1. About Beryllium

    Broader source: Energy.gov [DOE]

    Information on what is Beryllium, the symptoms and health hazards associated with Beryllium contamination.

  2. Beryllium Testing

    Broader source: Energy.gov [DOE]

    Beryllium is a naturally occurring metal and is not radioactive. Because of its properties, beryllium has been part of the atomic energy and nuclear weapons industries since the 1940s.

  3. Beryllium Manufacturing Processes

    SciTech Connect (OSTI)

    Goldberg, A

    2006-06-30T23:59:59.000Z

    This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product. Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61 cm high), may be cut or machined into parts or be thermomechanically processed to develop the desired microstructure, properties, and shapes. Vacuum hot-isostatic pressing and cold-isostatic pressing (CIP) followed by sintering and possibly by a final HIP'ing (CIP/Sinter/HIP) are important in their use for the production of near net-shaped parts. For the same starting powder, a HIP'ed product will have less anisotropy than that obtained for a VHP'ed product. A schematic presentation illustrating the difference between VHP'ing and HIP'ing is shown in Figure I-1. The types of powders and the various beryllium grades produced from the consolidated powders and their ambient-temperature mechanical properties were presented in the consolidation report referred to above. Elevated-temperature properties and the effect of processing variables on mechanical properties are described in the mechanical properties report. Beryllium can also be deposited as coatings as well as freestanding forms. The microstructure, properties, and various methods used that are related to the deposition of beryllium are discussed in the report on beryllium coatings.

  4. Beryllium disease

    SciTech Connect (OSTI)

    Not Available

    1991-12-20T23:59:59.000Z

    After two workers at the nuclear weapons plant at Oak Ridge National Laboratory in Tennessee were diagnosed earlier this year with chronic beryllium disease (CBD), a rare and sometimes fatal scarring of the lungs, the Department of Energy ordered up a 4-year probe. Now, part of that probe has begun - tests conducted by the Oak Ridge Associated Universities' Center for Epidemiological Research measuring beryllium sensitivity in 3,000 people who've been exposed to the metal's dust since Manhattan Project managers opened the Y-12 plant at Oak Ridge in 1943. Currently, 119 Y-12 employees process beryllium, which has a number of industrial uses, including rocket heat shields and nuclear weapon and electrical components. The disease often takes 20 to 25 years to develop, and the stricken employees haven't worked with beryllium for years. There is no cure for CBD, estimated to strike 2% of people exposed to the metal. Anti-inflammatory steroids alleviate such symptoms as a dry cough, weight loss, and fatigue. Like other lung-fibrosis diseases that are linked to lung cancer, some people suspect CBD might cause some lung cancer. While difficult to diagnose, about 900 cases of CBD have been reported since a Beryllium Case Registry was established in 1952. The Department of Energy (DOE) estimates that about 10,000 DOE employees and 800,000 people in private industry have worked with beryllium.

  5. Method for welding beryllium

    DOE Patents [OSTI]

    Dixon, Raymond D. (Los Alamos, NM); Smith, Frank M. (Espanola, NM); O'Leary, Richard F. (Los Alamos, NM)

    1997-01-01T23:59:59.000Z

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon.

  6. Beryllium weldability

    SciTech Connect (OSTI)

    Hill, M.A.; Damkroger, B.K.; Dixon, R.D. (Los Alamos National Lab., NM (USA)); Robertson, E. (Air Force Office of Scientific Research, Washington, DC (USA))

    1990-01-01T23:59:59.000Z

    Welding processes and metallurgical considerations for beryllium welding are discussed in this review. The primary difficulties of welding beryllium are hot cracking, cracking at defects, and ductility limitation or thermally induced cracking. Solutions to these welding problems include control of the Fe/Al ratio in the base metal to reduce hot cracking, minimization of the BeO content and starting grain size to limit cracking at defects and ductility limitation cracking, and optimization of the welding process and process variables. 25 refs., 9 figs., 2 tabs.

  7. Interim Chronic Beryllium Disease

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-12-08T23:59:59.000Z

    Establishes Departmental expectations for addressing chronic beryllium disease throughout the Department until a Departmental rule on beryllium is promulgated. This Notice was replaced by final rule 10 CFR Part 850, Chronic Beryllium Disease Prevention Program, published December 8, 1999.

  8. Defense programs beryllium good practice guide

    SciTech Connect (OSTI)

    Herr, M.

    1997-07-01T23:59:59.000Z

    Within the DOE, it has recently become apparent that some contractor employees who have worked (or are currently working) with and around beryllium have developed chronic beryllium disease (CBD), an occupational granulomatous lung disorder. Respiratory exposure to aerosolized beryllium, in susceptible individuals, causes an immunological reaction that can result in granulomatous scarring of the lung parenchyma, shortness of breath, cough, fatigue, weight loss, and, ultimately, respiratory failure. Beryllium disease was originally identified in the 1940s, largely in the fluorescent light industry. In 1950, the Atomic Energy Commission (AEC) introduced strict exposure standards that generally curtailed both the acute and chronic forms of the disease. Beginning in 1984, with the identification of a CBD case in a DOE contractor worker, there was increased scrutiny of both industrial hygiene practices and individuals in this workforce. To date, over 100 additional cases of beryllium-specific sensitization and/or CBD have been identified. Thus, a disease previously thought to be largely eliminated by the adoption of permissible exposure standards 45 years ago is still a health risk in certain workforces. This good practice guide forms the basis of an acceptable program for controlling workplace exposure to beryllium. It provides (1) Guidance for minimizing worker exposure to beryllium in Defense Programs facilities during all phases of beryllium-related work, including the decontamination and decommissioning (D&D) of facilities. (2) Recommended controls to be applied to the handling of metallic beryllium and beryllium alloys, beryllium oxide, and other beryllium compounds. (3) Recommendations for medical monitoring and surveillance of workers exposed (or potentially exposed) to beryllium, based on the best current understanding of beryllium disease and medical diagnostic tests available. (4) Site-specific safety procedures for all processes of beryllium that is likely to generate dusts, mists, fumes, or small particulates. A beryllium exposure control program should minimize airborne concentrations, the potential for and spread of contamination, the number of times individuals are exposed to beryllium, and the number of employees who may be potentially exposed.

  9. Method for welding beryllium

    DOE Patents [OSTI]

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1997-04-01T23:59:59.000Z

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs.

  10. DEPARTMENT OF GEOLOGY & GEOPHYSICS UNDERGRADUATE STUDENT PETITION

    E-Print Network [OSTI]

    Johnson, Cari

    . If the cause of this petition is to prevent delay in graduation, record on page 2 your project schedule for each semester until your expected date of graduation.) _____________________________________________________________________________________________' _____________________________________________________________________________________________' _____________________________________________________________________________________________' _____________________________________________________________________________________________' _____________________________________________________________________________________________' Current graduation: ______________________________ Revised graduation: ____________________________ Month

  11. Date

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revised: 6122014 Template Reviewed: 6122014 Operated for the U.S. Department of Energy by Sandia Corporation P.O. Box 5800 MS-1461 Albuquerque, New Mexico 87185-1461 Date...

  12. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThird QuarterintoCurrent June 20105-01 DATE:22 DATE:

  13. ENDANGERED SPECIES PETITION MANAGEMENT GUIDANCE

    E-Print Network [OSTI]

    . . . . . . . . . . . . . . . . 3 a. Petitions to List, Reclassify, or Delist Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 A. Petitions to List, Reclassify, or Delist Species

  14. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThird QuarterintoCurrent June 20105-01 DATE: October

  15. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThird QuarterintoCurrent June 20105-01 DATE:

  16. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE TOForm3-12 DATE:

  17. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE TOForm3-12 DATE:3

  18. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE TOForm3-12 DATE:34

  19. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE09 DATE: October 22,

  20. DATE:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31, 2013 DATE: 01/31/2013 x

  1. DATE:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31, 2013 DATE: 01/31/2013

  2. DATE:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31, 2013 DATE:

  3. DATE:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31, 2013 DATE:8:05 am, Mar

  4. DATE:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31, 2013 DATE:8:05 am, Mar0

  5. Beryllium pressure vessels for creep tests in magnetic fusion energy

    SciTech Connect (OSTI)

    Neef, W.S.

    1990-07-20T23:59:59.000Z

    Beryllium has interesting applications in magnetic fusion experimental machines and future power-producing fusion reactors. Chief among the properties of beryllium that make these applications possible is its ability to act as a neutron multiplier, thereby increasing the tritium breeding ability of energy conversion blankets. Another property, the behavior of beryllium in a 14-MeV neutron environment, has not been fully investigated, nor has the creep behavior of beryllium been studied in an energetic neutron flux at thermodynamically interesting temperatures. This small beryllium pressure vessel could be charged with gas to test pressures around 3, 000 psi to produce stress in the metal of 15,000 to 20,000 psi. Such stress levels are typical of those that might be reached in fusion blanket applications of beryllium. After contacting R. Powell at HEDL about including some of the pressure vessels in future test programs, we sent one sample pressure vessel with a pressurizing tube attached (Fig. 1) for burst tests so the quality of the diffusion bond joints could be evaluated. The gas used was helium. Unfortunately, budget restrictions did not permit us to proceed in the creep test program. The purpose of this engineering note is to document the lessons learned to date, including photographs of the test pressure vessel that show the tooling necessary to satisfactorily produce the diffusion bonds. This document can serve as a starting point for those engineers who resume this task when funds become available.

  6. ORISE: Worker Health Studies - Beryllium Testing Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    procedures are performed according to the protocol specified by the U.S. Department of Energy. Featured Video Beryllium Awareness Video WATCH: Beryllium Awareness Video (15:10)...

  7. Technical Basis for PNNL Beryllium Inventory

    SciTech Connect (OSTI)

    Johnson, Michelle Lynn

    2014-07-09T23:59:59.000Z

    The Department of Energy (DOE) issued Title 10 of the Code of Federal Regulations Part 850, “Chronic Beryllium Disease Prevention Program” (the Beryllium Rule) in 1999 and required full compliance by no later than January 7, 2002. The Beryllium Rule requires the development of a baseline beryllium inventory of the locations of beryllium operations and other locations of potential beryllium contamination at DOE facilities. The baseline beryllium inventory is also required to identify workers exposed or potentially exposed to beryllium at those locations. Prior to DOE issuing 10 CFR 850, Pacific Northwest Nuclear Laboratory (PNNL) had documented the beryllium characterization and worker exposure potential for multiple facilities in compliance with DOE’s 1997 Notice 440.1, “Interim Chronic Beryllium Disease.” After DOE’s issuance of 10 CFR 850, PNNL developed an implementation plan to be compliant by 2002. In 2014, an internal self-assessment (ITS #E-00748) of PNNL’s Chronic Beryllium Disease Prevention Program (CBDPP) identified several deficiencies. One deficiency is that the technical basis for establishing the baseline beryllium inventory when the Beryllium Rule was implemented was either not documented or not retrievable. In addition, the beryllium inventory itself had not been adequately documented and maintained since PNNL established its own CBDPP, separate from Hanford Site’s program. This document reconstructs PNNL’s baseline beryllium inventory as it would have existed when it achieved compliance with the Beryllium Rule in 2001 and provides the technical basis for the baseline beryllium inventory.

  8. The INEL beryllium multiplication experiment

    SciTech Connect (OSTI)

    Smith, J.R.; King, J.J.

    1991-03-01T23:59:59.000Z

    The experiment to measure the multiplication of 14-MeV neutrons in bulk beryllium has been completed. The experiment consists of determining the ratio of {sup 56}Mn activities induced in a large manganese bath by a central 14-MeV neutron source, with and without a beryllium sample surrounding the source. In the manganese bath method a neutron source is placed at the center of a totally-absorbing aqueous solution of MnSo{sub 4}. The capture of neutrons by Mn produces a {sup 56}Mn activity proportional to the emission rate of the source. As applied to the measurement of the multiplication of 14- MeV neutrons in bulk beryllium, the neutron source is a tritium target placed at the end of the drift tube of a small deuteron accelerator. Surrounding the source is a sample chamber. When the sample chamber is empty, the neutrons go directly to the surrounding MnSO{sub 4} solution, and produce a {sup 56}Mn activity proportional to the neutron emission rate. When the chamber contains a beryllium sample, the neutrons first enter the beryllium and multiply through the (n,2n) process. Neutrons escaping from the beryllium enter the bath and produce a {sup 56}Mn activity proportional to the neutron emission rate multiplied by the effective value of the multiplication in bulk beryllium. The ratio of the activities with and without the sample present is proportional to the multiplication value. Detailed calculations of the multiplication and all the systematic effects were made with the Monte Carlo program MCNP, utilizing both the Young and Stewart and the ENDF/B-VI evaluations for beryllium. Both data sets produce multiplication values that are in excellent agreement with the measurements for both raw and corrected values of the multiplication. We conclude that there is not real discrepancy between experimental and calculated values for the multiplication of neutrons in bulk beryllium. 12 figs., 11 tabs., 18 refs.

  9. Beryllium usage in fusion blankets and beryllium data needs. [None

    SciTech Connect (OSTI)

    Moir, R.W.

    1988-04-06T23:59:59.000Z

    Increasing numbers of designers are choosing beryllium for fusion reactor blankets because it, among all nonfissile materials, produces the highest number (2.5 neutron in an infinite media) of neutrons per 14-MeV incident neutron. In amounts of about 20 cm of equivalent solid density, it can be used to produce fissile material, to breed all the tritium consumed in ITER from outboard blankets only, and in designs to produce Co-60. The problem is that predictions of neutron multiplication in beryllium are off by some 10 to 20% and appear to be on the high side, which means that better multiplication measurements and numerical methods are needed. The n,2n reactions result in two helium atoms, which cause radiation damage in the form of hardening at low temperatures (<300/degree/C) and swelling at high temperatures (>300/degree/C). The usual way beryllium parts are made is by hot pressing the powder. A lower cost method is to cold press and then sinter. There is no radiation damage data on this form of beryllium. The issues of corrosion, safety relative to the release of the tritium built-up inside beryllium, and recycle of used beryllium are also discussed. 10 figs.

  10. Beryllium Related Matter

    SciTech Connect (OSTI)

    Gaylord, R F

    2008-12-23T23:59:59.000Z

    In recent months, LLNL has identified, commenced, and implemented a series of interim controls, compensatory measures, and initiatives to ensure worker safety, and improve safety processes with regards to potential worker exposure to beryllium. Many of these actions have been undertaken in response to the NNSA Independent Review (COR-TS-5/15/2008-8550) received by LLNL in November of 2008. Others are the result of recent discoveries, events or incidents, and lessons learned, or were scheduled corrective actions from earlier commitments. Many of these actions are very recent in nature, or are still in progress, and vary in the formality of implementation. Actions are being reviewed for effectiveness as they progress. The documentation of implementation, and review of effectiveness, when appropriate, of these actions will be addressed as part of the formal Corrective Action Plan addressing the Independent Review. The mitigating actions taken fall into the following categories: (1) Responses to specific events/concerns; (2) Development of interim controls; (3) Review of ongoing activities; and (4) Performance improvement measures.

  11. Processing Irradiated Beryllium For Disposal

    SciTech Connect (OSTI)

    T. J. Tranter; R. D. Tillotson; N. R. Mann; G. R. Longhurst

    2005-11-01T23:59:59.000Z

    The purpose of this research was to develop a process for decontaminating irradiated beryllium that will allow it to be disposed of through normal radwaste channels. Thus, the primary objectives of this ongoing study are to remove the transuranic (TRU) isotopes to less than 100 nCi/g and remove {sup 60}Co, and {sup 137}Cs, to levels that will allow the beryllium to be contact handled. One possible approach that appears to have the most promise is aqueous dissolution and separation of the isotopes by selected solvent extraction followed by precipitation, resulting in a granular form for the beryllium that may be fixed to prevent it from becoming respirable and therefore hazardous. Beryllium metal was dissolved in nitric and fluorboric acids. Isotopes of {sup 241}Am, {sup 239}Pu, {sup 85}Sr, and {sup 137}Cs were then added to make a surrogate beryllium waste solution. A series of batch contacts was performed with the spiked simulant using chlorinated cobalt dicarbollide (CCD) and polyethylene glycol diluted with sulfone to extract the isotopes of Cs and Sr. Another series of batch contacts was performed using a combination of octyl (phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) in tributyl phosphate (TBP) diluted with dodecane for extracting the isotopes of Pu and Am. The results indicate that greater than 99.9% removal can be achieved for each isotope with only three contact stages.

  12. Petition of Nancy Smith for Clemency OHIO PAROLE BOARD

    E-Print Network [OSTI]

    Papautsky, Ian

    Petition of Nancy Smith for Clemency OHIO PAROLE BOARD APPLICATION AND MEMORANDUM IN SUPPORT, Justin Sommers, Davis Polk & Wardwell LLP CC: Dennis Will, Lorain County Prosecutor Re: Nancy Smith Date respectfully to urge the grant of a pardon, or alternatively a commutation of sentence, to Nancy Smith, a woman

  13. Neutron irradiation of beryllium pebbles

    SciTech Connect (OSTI)

    Gelles, D.S.; Ermi, R.M. [Pacific Northwest National Lab., Richland, WA (United States); Tsai, H. [Argonne National Lab., IL (United States)

    1998-03-01T23:59:59.000Z

    Seven subcapsules from the FFTF/MOTA 2B irradiation experiment containing 97 or 100% dense sintered beryllium cylindrical specimens in depleted lithium have been opened and the specimens retrieved for postirradiation examination. Irradiation conditions included 370 C to 1.6 {times} 10{sup 22} n/cm{sup 2}, 425 C to 4.8 {times} 10{sup 22} n/cm{sup 2}, and 550 C to 5.0 {times} 10{sup 22} n/cm{sup 2}. TEM specimens contained in these capsules were also retrieved, but many were broken. Density measurements of the cylindrical specimens showed as much as 1.59% swelling following irradiation at 500 C in 100% dense beryllium. Beryllium at 97% density generally gave slightly lower swelling values.

  14. Beryllium Technology Research in the United States

    SciTech Connect (OSTI)

    Glen R. Longhurst; Robert A. Anderl; M. Kay Adleer-Flitton; Gretchen E. Matthern; Troy J. Tranter; Kendall J. Hollis

    2005-02-01T23:59:59.000Z

    While most active research involving beryllium in the United States remains tied strongly to biological effects, there are several areas of technology development in the last two years that should be mentioned. (1) Beryllium disposed of in soil vaults at the Idaho National Laboratory (INL) Radioactive Waste Management Complex (RWMC) has been encapsulated in-situ by high-temperature and pressure injection of a proprietary wax based material to inhibit corrosion. (2) A research program to develop a process for removing heavy metals and cobalt from irradiated beryllium using solvent extraction techniques has been initiated to remove components that prevent the beryllium from being disposed of as ordinary radioactive waste. (3) The JUPITER-II program at the INL Safety and Tritium Applied Research (STAR) facility has addressed the REDOX reaction of beryllium in molten Flibe (a mixture of LiF and BeF2) to control tritium, particularly in the form of HF, bred in the Flibe by reactions involving both beryllium and lithium. (4) Work has been performed at Los Alamos National Laboratory to produce beryllium high heat flux components by plasma spray deposition on macro-roughened substrates. Finally, (5) corrosion studies on buried beryllium samples at the RWMC have shown that the physical form of some of the corroded beryllium is very filamentary and asbestos-like. This form of beryllium may exacerbate the contraction of chronic beryllium disease.

  15. Worker Environment Beryllium Characterization Study

    SciTech Connect (OSTI)

    NSTec Environment, Safety, Health & Quality

    2009-12-28T23:59:59.000Z

    This report summarizes the conclusion of regular monitoring of occupied buildings at the Nevada Test Site and North Las Vegas facility to determine the extent of beryllium (Be) contamination in accordance with Judgment of Needs 6 of the August 14, 2003, “Minnema Report.”

  16. Beryllium - A Unique Material in Nuclear Applications

    SciTech Connect (OSTI)

    T., A. Tomberlin

    2004-11-01T23:59:59.000Z

    Beryllium, due to its unique combination of structural, chemical, atomic number, and neutron absorption cross section characteristics, has been used successfully as a neutron reflector for three generations of nuclear test reactors at the Idaho National Engineering and Environmental Laboratory (INEEL). The Advanced Test Reactor (ATR), the largest test reactor in the world, has utilized five successive beryllium neutron reflectors and is scheduled for continued operation with a sixth beryllium reflector. A high radiation environment in a test reactor produces radiation damage and other changes in beryllium. These changes necessitate safety analysis of the beryllium, methods to predict performance, and appropriate surveillances. Other nuclear applications also utilize beryllium. Beryllium, given its unique atomic, physical, and chemical characteristics, is widely used as a “window” for x-rays and gamma rays. Beryllium, intimately mixed with high-energy alpha radiation emitters has been successfully used to produce neutron sources. This paper addresses operational experience and methodologies associated with the use of beryllium in nuclear test reactors and in “windows” for x-rays and gamma rays. Other nuclear applications utilizing beryllium are also discussed.

  17. The Corrosion / Electrochemistry of Beryllium and Beryllium Weldments in Aqueous Chloride Environments

    E-Print Network [OSTI]

    The Corrosion / Electrochemistry of Beryllium and Beryllium Weldments in Aqueous Chloride Environments submitted by: Mary Ann Hill, Darryl P. Butt, R. Scott Lillard Materials Corrosion year. Our goals for FY '96 were two-fold: 1) develop a sensor for monitoring the corrosion of beryllium

  18. Beryllium Use in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Glen R. Longhurst

    2007-12-01T23:59:59.000Z

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) began operation in 1967. It makes use of a unique serpentine fuel core design and a beryllium reflector. Reactor control is achieved with rotating beryllium cylinders to which have been fastened plates of hafnium. Over time, the beryllium develops rather high helium content because of nuclear transmutations and begins to swell. The beryllium must be replaced at nominally 10-year intervals. Determination of when the replacement is made is by visual observation using a periscope to examine the beryllium surface for cracking and swelling. Disposition of the irradiated beryllium was once accomplished in the INL’s Radioactive Waste Management Complex, but that is no longer possible. Among contributing reasons are high levels of specific radioactive contaminants including transuranics. The INL is presently considering disposition pathways for this irradiated beryllium, but presently is storing it in the canal adjacent to the reactor. Numerous issues are associated with this situation including (1) Is there a need for ultra-low uranium material? (2) Is there a need to recover tritium from irradiated beryllium either because this is a strategic material resource or in preparation for disposal? (3) Is there a need to remove activation and fission products from irradiated beryllium? (4) Will there be enough material available to meet requirements for research reactors (fission and fusion)? In this paper will be discussed the present status of considerations on these issues.

  19. MANAGING BERYLLIUM IN NUCLEAR FACILITY APPLICATIONS

    SciTech Connect (OSTI)

    R. Rohe; T. N. Tranter

    2011-12-01T23:59:59.000Z

    Beryllium plays important roles in nuclear facilities. Its neutron multiplication capability and low atomic weight make it very useful as a reflector in fission reactors. Its low atomic number and high chemical affinity for oxygen have led to its consideration as a plasma-facing material in fusion reactors. In both applications, the beryllium and the impurities in it become activated by neutrons, transmuting them to radionuclides, some of which are long-lived and difficult to dispose of. Also, gas production, notably helium and tritium, results in swelling, embrittlement, and cracking, which means that the beryllium must be replaced periodically, especially in fission reactors where dimensional tolerances must be maintained. It has long been known that neutron activation of inherent iron and cobalt in the beryllium results in significant {sup 60}Co activity. In 2001, it was discovered that activation of naturally occurring contaminants in the beryllium creates sufficient {sup 14}C and {sup 94}Nb to render the irradiated beryllium 'Greater-Than-Class-C' for disposal in U.S. radioactive waste facilities. It was further found that there was sufficient uranium impurity in beryllium that had been used in fission reactors up to that time that the irradiated beryllium had become transuranic in character, making it even more difficult to dispose of. In this paper we review the extent of the disposal issue, processes that have been investigated or considered for improving the disposability of irradiated beryllium, and approaches for recycling.

  20. ORISE: Worker Health Studies - Testing Beryllium Vendor Populations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge Institute for Science Education Beryllium Testing Vendor Populations When former employees at 25 closed U.S. Department of Energy (DOE) beryllium vendor companies needed...

  1. Sandia National Laboratories: Beryllium High Heat Flux Testing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system, controls, and blast gun) is now used for electron beam test system vacuum vessel beryllium decontamination and has shortened the beryllium clean-up procedure from...

  2. Process for synthesis of beryllium chloride dietherate

    DOE Patents [OSTI]

    Bergeron, Charles (Baton Rouge, LA); Bullard, John E. (Kendall Park, NJ); Morgan, Evan (Lynchburg, VA)

    1991-01-01T23:59:59.000Z

    A low temperature method of producing beryllium chloride dietherate through the addition of hydrogen chloride gas to a mixture of beryllium metal in ether in a reaction vessel is described. A reflux condenser provides an exit for hydrogen produced form the reaction. A distillation condenser later replaces the reflux condenser for purifying the resultant product.

  3. BERYLLIUM MEASUREMENT IN COMMERCIALLY AVAILABLE WET WIPES

    SciTech Connect (OSTI)

    Youmans-Mcdonald, L.

    2011-02-18T23:59:59.000Z

    Analysis for beryllium by fluorescence is now an established method which is used in many government-run laboratories and commercial facilities. This study investigates the use of this technique using commercially available wet wipes. The fluorescence method is widely documented and has been approved as a standard test method by ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The procedure involves dissolution of samples in aqueous ammonium bifluoride solution and then adding a small aliquot to a basic hydroxybenzoquinoline sulfonate fluorescent dye (Berylliant{trademark} Inc. Detection Solution Part No. CH-2) , and measuring the fluorescence. This method is specific to beryllium. This work explores the use of three different commercial wipes spiked with beryllium, as beryllium acetate or as beryllium oxide and subsequent analysis by optical fluorescence. The effect of possible interfering metals such as Fe, Ti and Pu in the wipe medium is also examined.

  4. Postirradiation examination of beryllium pebbles

    SciTech Connect (OSTI)

    Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01T23:59:59.000Z

    Postirradiation examinations of COBRA-1A beryllium pebbles irradiated in the EBR-II fast reactor at neutron fluences which generated 2700--3700 appm helium have been performed. Measurements included density change, optical microscopy, scanning electron microscopy, and transmission electron microscopy. The major change in microstructure is development of unusually shaped helium bubbles forming as highly non-equiaxed thin platelet-like cavities on the basal plane. Measurement of the swelling due to cavity formation was in good agreement with density change measurements.

  5. Beryllium Program Information - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.Program Information About Us Beryllium Program

  6. THE IDAHO NATIONAL LABORATORY BERYLLIUM TECHNOLOGY UPDATE

    SciTech Connect (OSTI)

    Glen R. Longhurst

    2007-12-01T23:59:59.000Z

    A Beryllium Technology Update meeting was held at the Idaho National Laboratory on July 18, 2007. Participants came from the U.S., Japan, and Russia. There were two main objectives of this meeting. One was a discussion of current technologies for beryllium in fission reactors, particularly the Advanced Test Reactor and the Japan Materials Test Reactor, and prospects for material availability in the coming years. The second objective of the meeting was a discussion of a project of the International Science and Technology Center regarding treatment of irradiated beryllium for disposal. This paper highlights discussions held during that meeting and major conclusions reached

  7. Chronic Beryllium Disease Prevention Program Report

    SciTech Connect (OSTI)

    Lee, S

    2012-03-29T23:59:59.000Z

    This document describes how Lawrence Livermore National Laboratory (LLNL) meets the requirements and management practices of federal regulation 10 CFR 850, 'Chronic Beryllium Disease Prevention Program (CBDPP).' This revision of the LLNL CBDPP incorporates clarification and editorial changes based on lessons learned from employee discussions, observations and reviews of Department of Energy (DOE) Complex and commercial industry beryllium (Be) safety programs. The information is used to strengthen beryllium safety practices at LLNL, particularly in the areas of: (1) Management of small parts and components; and (2) Communication of program status to employees. Future changes to LLNL beryllium activities and on-going operating experience will be incorporated into the program as described in Section S, 'Performance Feedback.'

  8. Chronic beryllium disease: Diagnosis and management

    SciTech Connect (OSTI)

    Rossman, M.D. [Hospital of the Univ. of Pennsylvania, Philadelphia, PA (United States)

    1996-10-01T23:59:59.000Z

    Chronic beryllium disease is predominantly a pulmonary granulomatosis that was originally described in 1946. Symptoms usually include dyspnea and cough. Fever, anorexia, and weight loss are common. Skin lesions are the most common extrathoracic manifestation. Granulomatous hepatitis, hypercalcemia, and kidney stones can also occur. Radiographic and physiologic abnormalities are similar to those in sarcoidosis. While traditionally the pathologic changes included granulomas and cellular interstitial changes, the hallmark of the disease today is the well-formed granuloma. Immunologic studies have demonstrated a cell-mediated response to beryllium that is due to an accumulation of CD4{sup +} T cells at the site of disease activity. Diagnosis depends on the demonstration of pathologic changes (i.e., granuloma) and evidence that the granuloma was caused by a hypersensitivity to beryllium (i.e., positive lung proliferative response to beryllium). Using these criteria, the diagnosis of chronic beryllium disease can now be made before the onset of clinical symptoms. Whether, with early diagnosis, the natural course of this condition will be the same as when it was traditionally diagnosed is not known. Currently, corticosteroids are used to treat patients with significant symptoms or evidence of progressive disease. 21 refs.

  9. Analysis of tritium transport in irradiated beryllium

    SciTech Connect (OSTI)

    Cho, S.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)

    1994-12-31T23:59:59.000Z

    Analysis of the beryllium tritium release results with simple analytical models indicated that tritium behavior in Be is not dominated by one simple mechanism, but by a combination of several mechanisms including surface processes and helium bubbles. A model was developed and the initial version of the model included tritium diffusion in the beryllium and the beryllium oxide, second order desorption at the solid/gas interface and diffusion through interconnected porosity. Fundamental data, tritium diffusion and desorption coefficients for Be and BeO, were derived from experimental data using the model. Beryllium is a metal to which one can generally apply the concepts of diffusion, solubility, surface processes and traps. Tritium transport in the irradiated beryllium is affected by processes occurring in the bulk, He bubbles, the bulk/surface and surface/gas interfaces. There are two types of solid/gas surfaces in the irradiated Be. One is the surface at the pure Be/He bubble interface where no oxide layer exists and the other is the surface at the BeO layer/purge gas interface. Although the material characteristics of the Be and BeO layer are different and have different activation barriers, the surface processes can be applied to both interfaces.

  10. Summary of beryllium specifications, current and historical

    SciTech Connect (OSTI)

    Abeln, S.P.; Kyed, P.

    1990-12-28T23:59:59.000Z

    This report summarizes beryllium properties included in producer, Department of Energy, and government specifications. The specifications are divided into two major categories: current and historical. Within each category the data are arranged primarily according to increasing purity and secondarily by increasing tensile properties. Qualitative comments on formability and weldability are included. Also, short summaries of powder production and consolidation techniques are provided.

  11. Neutron irradiation of beryllium: Recent Russian results

    SciTech Connect (OSTI)

    Gelles, D.S. [Pacific Northwest Lab., Richland, VA (United States)

    1992-12-31T23:59:59.000Z

    Results on postirradiation tensile and compression testing, swelling and bubble growth during annealing for various grades of beryllium are presented. It is shown that swelling at temperatures above 550{degrees}C is sensitive to material condition and response is correlated with oxygen content. Swelling on the order of 15% can be expected at 700{degrees}C for doses on the order of 10{sup 22} n/cm{sup 2}. Bubble growth response depends on irradiation fluence.

  12. Neutron counter based on beryllium activation

    SciTech Connect (OSTI)

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.; Paducha, M. [Institute of Plasma Physics and Laser Microfusion (IPPLM), Hery 23, 01-497 Warsaw (Poland); Scholz, M.; Igielski, A. [Institute of Nuclear Physics PAS (IFJPAN), Radzikowskiego 152, 31-342 Krakow (Poland); Karpinski, L. [Faculty of Electrical Engineering, Rzeszow University of Technology, Pola 2, 35-959 Rzeszow (Poland); Pytel, K. [National Centre for Nuclear Research (NCBJ), Soltana 7, 05-400 Otwock - Swierk (Poland)

    2014-08-21T23:59:59.000Z

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, ?){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting ?{sup ?} particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of ?–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known ?–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of ?{sup ?} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  13. Beryllium-7 labeled carbon particles and method of making

    DOE Patents [OSTI]

    Richards, P.; Mausner, L.F.; Prach, T.F.

    1987-11-17T23:59:59.000Z

    Beryllium-7 labeled carbon particles made from the proton irradiation of carbon materials, preferably from dry carbon black are disclosed. Such particles are useful as gamma emitting radiotracers.

  14. Beryllium-7 labeled carbon particles and method of making

    DOE Patents [OSTI]

    Richards, P.; Mausner, L.F.; Prach, T.F.

    1985-04-29T23:59:59.000Z

    Beryllium-7 labeled carbon particles made from the proton irradiation of carbon materials, preferably from dry carbon black are disclosed. Such particles are useful as gamma emitting radiotracers.

  15. Beryllium-7 labeled carbon particles and method of making

    DOE Patents [OSTI]

    Richards, Powell (New Bern, NC); Mausner, Leonard F. (Stony Brook, NY); Prach, Thomas F. (Port Jefferson, NY)

    1987-01-01T23:59:59.000Z

    Beryllium-7 labeled carbon particles made from the proton irradiation of carbon materials, preferably from dry carbon black are disclosed. Such particles are useful as gamma emitting radiotracers.

  16. DATE Aug 15 2011 RECD. Aug 15 2011

    E-Print Network [OSTI]

    to Sections 1207 and 1236.5 ofTitle 20 ofthe California Code of Regulations, Solar Point Resources, IncDATE Aug 15 2011 RECD. Aug 15 2011 DOCKET 11-CAI-03 BEFORE THE ENERGY RESOURCES CONSERVAn. ll-CAI-03 (Proceeding initiated July 26, 2011) PETITION TO INTERVENE BY SOLAR POINT RESOURCES, INC

  17. Hydrodynamic instabilities in beryllium targets for the National Ignition Facility

    SciTech Connect (OSTI)

    Yi, S. A., E-mail: austinyi@lanl.gov; Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Kline, J. L.; Batha, S. H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, D. S.; Hammel, B. A.; Milovich, J. L.; Salmonson, J. D.; Kozioziemski, B. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-09-15T23:59:59.000Z

    Beryllium ablators offer higher ablation velocity, rate, and pressure than their carbon-based counterparts, with the potential to increase the probability of achieving ignition at the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We present here a detailed hydrodynamic stability analysis of low (NIF Revision 6.1) and high adiabat NIF beryllium target designs. Our targets are optimized to fully utilize the advantages of beryllium in order to suppress the growth of hydrodynamic instabilities. This results in an implosion that resists breakup of the capsule, and simultaneously minimizes the amount of ablator material mixed into the fuel. We quantify the improvement in stability of beryllium targets relative to plastic ones, and show that a low adiabat beryllium capsule can be at least as stable at the ablation front as a high adiabat plastic target.

  18. STATEMENT OF CONSIDERATIONS PETITION BY WESTINGHOUSE ELECTRIC...

    Broader source: Energy.gov (indexed) [DOE]

    of the waiver petition and in view of the objectives and considerations set forth in 10 CFR 784 , all of which have been considered, it is recommended that the requested waiver be...

  19. Beryllium Program Performance Assessments - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.Program Information About Us Beryllium

  20. Beryllium Program Points of Contact - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.Program Information About Us BerylliumProgram

  1. DOE Petitions for NRC Review in Yucca Mountain Proceeding | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Petitions for NRC Review in Yucca Mountain Proceeding DOE Petitions for NRC Review in Yucca Mountain Proceeding April 12, 2010 - 10:16am Addthis The United States Department of...

  2. Radiation effects in beryllium used for plasma protection

    SciTech Connect (OSTI)

    Gelles, D.S. [Pacific Northwest Lab., Richland, WA (United States); Dalle Donne, M. [Kernforschungszentrum Karlsruhe (Germany); Sernyaev, G.A. [SF NIKIET, Zarechnyi (Russian Federation); Kawamura, H. [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Blanket Irradiation and Analysis Lab.

    1993-09-01T23:59:59.000Z

    Beryllium is presently a leading candidate material for fusion reactor first wall coating and divertor applications. This paper reviews the literature on beryllium, emphasizing the effects of irradiation on essential properties. Swelling and embrittlement experiments as a function of irradiation temperature and dose, and as a function of neutron spectrum are described, and the results are quantified, where possible. Effects of impurity content are also reported, from which optimum composition specifications can be defined. Microstructural information has also been obtained to elucidate the processes controlling the property changes. The available information indicates that beryllium divertors can be expected to embrittle quickly and may need frequent replacement.

  3. Status Report, Department of Energy's Chronic Beryllium Disease...

    Broader source: Energy.gov (indexed) [DOE]

    of 10 C.F.R. Part 850, Chronic Beryllium Disease Prevention Program, at the Department of Energy (DOE). The report is based on the results of evaluations of the effectiveness of...

  4. Development of pressurized tube specimen for creep testing of beryllium

    SciTech Connect (OSTI)

    Neef, W.S.; Moir, R.W. (Lawrence Livermore National Lab., CA (USA)); Opperman, E.K. (Westinghouse Hanford Co., Richland, WA (USA)); Hamilton, M.L. (Pacific Northwest Lab., Richland, WA (USA))

    1990-12-01T23:59:59.000Z

    The purpose of this work was to demonstrate that creep tests could be performed on beryllium in the same pressurized tube geometry as is commonly used in the FFTF/MOTA.

  5. Development of Biomarkers for Chronic Beryllium Disease in Mice

    SciTech Connect (OSTI)

    Gordon, Terry

    2013-01-25T23:59:59.000Z

    Beryllium is a strategic metal, indispensable for national defense programs in aerospace, telecommunications, electronics, and weaponry. Exposure to beryllium is an extensively documented occupational hazard that causes irreversible, debilitating granulomatous lung disease in as much as 3 - 5% of exposed workers. Mechanistic research on beryllium exposure-disease relationships has been severely limited by a general lack of a sufficient CBD animal model. We have now developed and tested an animal model which can be used for dissecting dose-response relationships and pathogenic mechanisms and for testing new diagnostic and treatment paradigms. We have created 3 strains of transgenic mice in which the human antigen-presenting moiety, HLA-DP, was inserted into the mouse genome. Each mouse strain contains HLA-DPB1 alleles that confer different magnitude of risk for chronic beryllium disease (CBD): HLA-DPB1*0401 (odds ratio = 0.2), HLA-DPB1*0201 (odds ratio = 15), HLA-DPB1*1701 (odds ratio = 240). Our preliminary work has demonstrated that the *1701 allele, as predicted by human studies, results in the greatest degree of sensitization in a mouse ear swelling test. We have also completed dose-response experiments examining beryllium-induced lung granulomas and identified susceptible and resistant inbred strains of mice (without the human transgenes) as well as quantitative trait loci that may contain gene(s) that modify the immune response to beryllium. In this grant application, we propose to use the transgenic and Â?normal inbred strains of mice to identify biomarkers for the progression of beryllium sensitization and CBD. To achieve this goal, we propose to compare the sensitivity and accuracy of the lymphocyte proliferation test (blood and bronchoalveolar lavage fluid) with the ELISPOT test in the three HLA-DP transgenic mice strains throughout a 6 month treatment with beryllium particles. Because of the availability of high-throughput proteomics, we will also identify changes in potential protein biomarkers in beryllium-treated mice. We will correlate these findings with the ability of the transgenic mice to develop a beryllium-specific adaptive immune response in blood and bronchoalveolar lavage (BAL) fluid. We will also determine whether beryllium-responsive CD4+ T cells in blood and BAL correlate with the onset of granuloma formation. Thus, we will provide the scientific community with biomarkers of sensitization and disease progression for CBD. These biomarkers will serve as critical tools for development of improved industrial hygiene and therapeutic interventions.

  6. 2013 Beryllium-Associated Worker Registry Summary | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated Worker Registry Summary 2013 Beryllium-Associated Worker

  7. Radiocarbon Dating

    SciTech Connect (OSTI)

    Buchholz, B A

    2007-12-20T23:59:59.000Z

    Radiocarbon dating can be used to determine the age of objects that contain components that were once alive. In the case of human remains, a radiocarbon date can distinguish between a crime scene and an archeological site. Documents, museum artifacts and art objects can be dated to determine if their age is correct for the historical context. A radiocarbon date does not confirm authenticity, but it can help identify a forgery.

  8. INCIDENT # CHARGE SECTION OF NYS PENAL LAW DISPOSITION TYPE REPORTED TO PLACE OF OCCURRENCE DATE & TIME OF OCCURRENCE DATE & TIME REPORTED 1304224 None

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    INCIDENT # CHARGE SECTION OF NYS PENAL LAW DISPOSITION TYPE REPORTED TO PLACE OF OCCURRENCE DATE Public Safety Department Music Building 6442 Kissena Blvd., Flushing, NY 11367 April 29, 2013 2:15PM Building 6660 Kissena Blvd., Flushing, NY 11367 May 1, 2013 12:15PM May 1, 2013 2:50PM 1305279 None Petit

  9. Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project

    SciTech Connect (OSTI)

    Reynolds, T. D.; Easterling, S. D.

    2010-10-01T23:59:59.000Z

    This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

  10. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    SciTech Connect (OSTI)

    Ulrickson, M.A. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Manly, W.D. [Oak Ridge National Lab., TN (United States); Dombrowski, D.E. [Brush Wellman, Inc., Cleveland, OH (United States)] [and others

    1995-08-01T23:59:59.000Z

    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers.

  11. Risk-based approach for controlling beryllium exposure in a manufacturing environment

    SciTech Connect (OSTI)

    Gilmore, W. E. (Walter E.); Clawson, C. D. (Chris D.); Ellis, K. K. (Kimberly K.)

    2003-01-01T23:59:59.000Z

    There are many diverse uses for beryllium in both military and industrial applications. Unfortunately, there are certain worker health risks associated with the manufacture and production of beryllium products. Respiratory illnesses due to prolonged contact with beryllium particulate are of paramount concern. However, these health risks can be controlled provided that the appropriate protective measures to prevent worker exposure from beryllium are in place. But it is no1 always a straightforward process to identify exactly what the beryllium protective measures should be in order to realize a true risk savings. Without prudent attention to a systematic inquiry and suitable evaluative criteria, a program for controlling beryllium health risks can be lacking in completeness and overall effectiveness. One approach that took into account the necessary ingredients for risk-based determination of beryllium protective measures was developed for a beryllium operation at a Department of Energy (DOE) facility. The methodological framework that was applied at this facility, as well as a discussion of the final beryllium protective measures that were determined by this approach will be presented. Regulatory aspects for working with beryllium, as well as a risk-assessment strategy for ranking beryllium-handling activities with respect to exposure potential will also be discussed. The presentation will conclude with a synopsis of lessons-learned as gleaned from this case study, as well as providing the participants with a constructive blueprint that can be adapted to other processes involving beryllium.

  12. STATEMENT OF CONSIDERATIONS PETITION FOR ADVANCE WAIVER OF PATENT...

    Broader source: Energy.gov (indexed) [DOE]

    in its waiver petition, Petitioner has significant experience in the area of silicon carbide based amplifiers. In fact, such amplifiers were first demonstrated over 10 years ago...

  13. Middle Pleistocene glaciation in Patagonia dated by cosmogenic-nuclide measurements on outwash gravels

    E-Print Network [OSTI]

    Middle Pleistocene glaciation in Patagonia dated by cosmogenic-nuclide measurements on outwash beryllium-10 Last Glacial Maximum The well-preserved glacial record in Argentine Patagonia offers a ~1 Ma in other parts of Patagonia. © 2009 Elsevier B.V. All rights reserved. 1. Introduction The aim

  14. CHAPTER 7. BERYLLIUM ANALYSIS BY NON-PLASMA BASED METHODS

    SciTech Connect (OSTI)

    Ekechukwu, A

    2009-04-20T23:59:59.000Z

    The most common method of analysis for beryllium is inductively coupled plasma atomic emission spectrometry (ICP-AES). This method, along with inductively coupled plasma mass spectrometry (ICP-MS), is discussed in Chapter 6. However, other methods exist and have been used for different applications. These methods include spectroscopic, chromatographic, colorimetric, and electrochemical. This chapter provides an overview of beryllium analysis methods other than plasma spectrometry (inductively coupled plasma atomic emission spectrometry or mass spectrometry). The basic methods, detection limits and interferences are described. Specific applications from the literature are also presented.

  15. Method for removal of beryllium contamination from an article

    DOE Patents [OSTI]

    Simandl, Ronald F.; Hollenbeck, Scott M.

    2012-12-25T23:59:59.000Z

    A method of removal of beryllium contamination from an article is disclosed. The method typically involves dissolving polyisobutylene in a solvent such as hexane to form a tackifier solution, soaking the substrate in the tackifier to produce a preform, and then drying the preform to produce the cleaning medium. The cleaning media are typically used dry, without any liquid cleaning agent to rub the surface of the article and remove the beryllium contamination below a non-detect level. In some embodiments no detectible residue is transferred from the cleaning wipe to the article as a result of the cleaning process.

  16. DATE: TO:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE09 DATE:28 - DATE:

  17. DATE: TO:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE09 DATE:28 - DATE:41

  18. Ultrasonic evaluation of beryllium-copper diffusion bonds

    SciTech Connect (OSTI)

    Jamieson, E.E.

    2000-06-08T23:59:59.000Z

    A study was performed to compare the effectiveness of several advanced ultrasonic techniques when used to determine the strength of diffusion bonded beryllium-copper, which heretofore have each been applied to only a few material systems. The use of integrated backscatter calculations, frequency domain reflection coefficients, and time-of-flight variance was compared in their ability to characterize the bond strength in a series of beryllium-copper diffusion bond samples having a wide variation in bond quality. Correlation of integrated backscatter calculations and time-of-flight variance with bond strength was good. Some correlation of the slope of the frequency based reflection coefficient was shown for medium and high strength bonds, while its Y-intercept showed moderate correlation for all bond strengths.

  19. Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors

    SciTech Connect (OSTI)

    Ilas, Dan [ORNL

    2013-10-01T23:59:59.000Z

    An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averaging procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.

  20. Shockless compression and release behavior of beryllium to 110?GPa

    SciTech Connect (OSTI)

    Brown, J. L.; Knudson, M. D.; Alexander, C. S.; Asay, J. R. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2014-07-21T23:59:59.000Z

    A magnetohydrodynamic loading technique was used to shocklessly compress beryllium to peak longitudinal stresses of 19–110?GPa and, subsequently, unload in order to determine both the compressive response and also the shear stress supported upon release. Loading strain rates were on the order of 10{sup 6?}s{sup ?1}, while the unloading rates were nearly constant at 3?×?10{sup 5?}s{sup ?1}. Velocimetry was used to monitor the ramp and release behavior of a beryllium/lithium fluoride window interface. After applying window corrections to infer in situ beryllium velocities, a Lagrangian analysis was employed to determine the material response. The Lagrangian wavespeed-particle velocity response is integrated to generate the stress-strain path, average change in shear stress over the elastic unloading, and estimates of the shear modulus at peak compression. These data are used to infer the pressure dependence of the flow strength at the unloading rate. Comparisons to several strength models reveal good agreement to 45?GPa, but the data indicate 20%–30% higher strength near 100?GPa.

  1. Boron nitride protective coating of beryllium window surfaces

    SciTech Connect (OSTI)

    Gmuer, N.F.

    1991-12-01T23:59:59.000Z

    The use of beryllium windows on white synchrotron radiation beamlines is constrained by the fact that the downstream surfaces of these windows should not be exposed to ambient atmosphere. They should, rather, be protected by a tail-piece under vacuum or containing helium atmosphere. This tailpiece is typically capped by Kapton (3M Corporation, St. Paul, MN) or aluminum foil. The reason for such an arrangement is due to the health risk associated with contaminants (BeO) which from on the exposed beryllium window surfaces and due to possible loss of integrity of the windows. Such a tail-piece may, however, add unwanted complications to the beamline in the form of vacuum pumps or helium supplies and their related monitoring systems. The Kapton windows may burn through in the case of high intensity beams and lower energy radiation may be absorbed in the case of aluminum foil windows. A more ideal situation would be to provide a coating for the exposed beryllium window surface, sealing it off from the atmosphere, thus preventing contamination and/or degradation of the window, and eliminating the need for helium or vacuum equipment.

  2. The beryllium quandary: will the lower exposure limits spur new developments in sampling and analysis?

    SciTech Connect (OSTI)

    Brisson, Michael

    2013-06-03T23:59:59.000Z

    At the time this article was written, new rulemakings were under consideration at OSHA and the U.S. Department of Energy (DOE) that would propose changes to occupational exposure limits for beryllium. Given these developments, it’s a good time to review the tools and methods available to IHs for assessing beryllium air and surface contamination in the workplace—what’s new and different, and what’s tried and true. The article discusses limit values and action levels for beryllium, problematic aspects of beryllium air sampling, sample preparation, sample analysis, and data evaluation.

  3. E-Print Network 3.0 - americium-beryllium ambe source Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for: americium-beryllium ambe source Page: << < 1 2 3 4 5 > >> 1 FINAL REPORT Task Order 1345 Summary: density and water content are typically measured with an...

  4. Beryllium Science: US-UK agreement on the use of Atomic Energy for mutual defense

    SciTech Connect (OSTI)

    Hanafee, J.E. (ed.)

    1988-02-19T23:59:59.000Z

    Twenty-seven papers are presented on beryllium supply, production, fabrication, safe handling, analysis, powder technology, and coatings. Separate abstracts have been prepared for the individual papers. (DLC)

  5. DATE: PAGE:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE09 DATE:

  6. STATEMENT OF CONSIDERATIONS PETITION FOR ADVANCE WAIVER OF PATENT...

    Broader source: Energy.gov (indexed) [DOE]

    of the waiver petition and in view of the objectives and considerations set forth in 10 CFR 784, all of which have been considered, it is recommended that the requested waiver be...

  7. Calculation of two-centre two-electron integrals over Slater-type orbitals revisited. III. Case study of the beryllium dimer

    E-Print Network [OSTI]

    Micha? Lesiuk; Micha? Przybytek; Monika Musia?; Bogumi? Jeziorski; Robert Moszynski

    2015-01-20T23:59:59.000Z

    In this paper we present results of ab-initio calculations for the beryllium dimer with basis set of Slater-type orbitals (STOs). Nonrelativistic interaction energy of the system is determined using the frozen-core full configuration interaction calculations combined with high-level coupled cluster correction for inner-shell effects. Newly developed STOs basis sets, ranging in quality from double to sextuple zeta, are used in these computations. Principles of their construction are discussed and several atomic benchmarks are presented. Relativistic effects of order ${\\alpha}^2$ are calculated perturbatively by using the Breit-Pauli Hamiltonian and are found to be significant. We also estimate the leading-order QED effects. Influence of the adiabatic correction is found to be negligible. Finally, the interaction energy of the beryllium dimer is determined to be 929.0$\\,\\pm\\,$1.9 $cm^{-1}$, in a very good agreement with the recent experimental value. The results presented here appear to be the most accurate ab-initio calculations for the beryllium dimer available in the literature up to date and probably also one of the most accurate calculations for molecular systems containing more than four electrons.

  8. E-Print Network 3.0 - au petit animal Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    petit animal Search Powered by Explorit Topic List Advanced Search Sample search results for: au petit animal Page: << < 1 2 3 4 5 > >> 1 RENDEZ VOUS AU JARDIN A la dcouverte du...

  9. CEQ 's Response to a Petition for Rulemaking and Issuance of...

    Broader source: Energy.gov (indexed) [DOE]

    's Response to a Petition for Rulemaking and Issuance of Guidance to Require Inclusion of Climate Change Analyses in NEPA Documents CEQ 's Response to a Petition for Rulemaking and...

  10. CAMPAIGNING, CANVASSING AND PETITION DRIVES ON THE MICHIGAN STATE UNIVERSITY CAMPUS

    E-Print Network [OSTI]

    Liu, Taosheng

    CAMPAIGNING, CANVASSING AND PETITION DRIVES ON THE MICHIGAN STATE UNIVERSITY CAMPUS - GUIDELINES - Michigan State University encourages students to be informed about and participate in the political process campaigning, canvassing and petitioning drives on the Michigan State University campus. These statements

  11. DOE - Office of Legacy Management -- Beryllium Corp - PA 39

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home »Hill - NJ 0-04 BellCityBeryllium

  12. Fracture testing and performance of beryllium copper alloy C 17510

    SciTech Connect (OSTI)

    Murray, H.A.; Zatz, I.J. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Ratka, J.O. (Brush Wellman, Inc., Cleveland, OH (United States))

    1992-01-01T23:59:59.000Z

    A series of test programs was undertaken on copper beryllium alloy C 17510 for several variations in material process and chemistry. These variations in C 17510 were primarily optimized for combinations of strength and conductivity. While originally intended for use as cyclically loaded high-field, high-strength conductors in fusion energy research, material testing of C 17510 has indicated that it is an attractive and economical alternative for a host of other structural, mechanical and electrical applications. ASTM tests performed on three variations of C 17510 alloys included both J-integral and plane strain fracture toughness testing (E813, E399) and fatigue crack growth rate tests (E647), as well as verifying tensile, hardness, Charpy, and other well defined mechanical properties. Fracture testing was performed at both room and liquid nitrogen temperatures, which bound the thermal environment anticipated for the fusion components being designed. Fatigue crack propagation stress ratios ranged from nominal zero to minus one at each temperature.

  13. Fracture testing and performance of beryllium copper alloy C 17510

    SciTech Connect (OSTI)

    Murray, H.A.; Zatz, I.J. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Ratka, J.O. [Brush Wellman, Inc., Cleveland, OH (United States)

    1992-12-01T23:59:59.000Z

    A series of test programs was undertaken on copper beryllium alloy C 17510 for several variations in material process and chemistry. These variations in C 17510 were primarily optimized for combinations of strength and conductivity. While originally intended for use as cyclically loaded high-field, high-strength conductors in fusion energy research, material testing of C 17510 has indicated that it is an attractive and economical alternative for a host of other structural, mechanical and electrical applications. ASTM tests performed on three variations of C 17510 alloys included both J-integral and plane strain fracture toughness testing (E813, E399) and fatigue crack growth rate tests (E647), as well as verifying tensile, hardness, Charpy, and other well defined mechanical properties. Fracture testing was performed at both room and liquid nitrogen temperatures, which bound the thermal environment anticipated for the fusion components being designed. Fatigue crack propagation stress ratios ranged from nominal zero to minus one at each temperature.

  14. Validation of NCSSHP for highly enriched uranium systems containing beryllium

    SciTech Connect (OSTI)

    Krass, A.W.; Elliott, E.P.; Tollefson, D.A.

    1994-09-29T23:59:59.000Z

    This document describes the validation of KENO V.a using the 27-group ENDF/B-IV cross section library for highly enriched uranium and beryllium neutronic systems, and is in accordance with ANSI/ANS-8.1-1983(R1988) requirements for calculational methods. The validation has been performed on a Hewlett Packard 9000/Series 700 Workstation at the Oak Ridge Y-12 Plant Nuclear Criticality Safety Department using the Oak Ridge Y-12 Plant Nuclear Criticality Safety Software code package. Critical experiments from LA-2203, UCRL-4975, ORNL-2201, and ORNL/ENG-2 have been identified as having the constituents desired for this validation as well as sufficient experimental detail to allow accurate construction of KENO V.a calculational models. The results of these calculations establish the safety criteria to be employed in future calculational studies of these types of systems.

  15. Optical properties and structure of beryllium lead silicate glasses

    SciTech Connect (OSTI)

    Zhidkov, I. S., E-mail: i.s.zhidkov@urfu.ru [Ural Federal University, Mira Str. 19, Yekaterinburg, 620002, Russia and Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Str. 18, 620990 Yekaterinburg (Russian Federation); Zatsepin, A. F.; Cholakh, S. O.; Kuznetsova, Yu. A. [Ural Federal University, Mira Str. 19, Yekaterinburg, 620002 (Russian Federation)

    2014-10-21T23:59:59.000Z

    Luminescence and optical properties and structural features of (BeO){sub x}(PbO?SiO{sub 2}){sub 1?x} glasses (x = 0 ÷ 0.3) are investigated by means of optical absorption and photoluminescence spectroscopy and X-ray diffraction. The regularities of the formation of the optical absorption edge and static disorder are studied. It is shown that the optical absorption and luminescence are determined by transitions between localized states of lead ions. The impact of beryllium oxide on optical and luminescence properties and electronic structure of bands tails is discussed. The presence of two different concentration ranges with various short-range order structure and band tails nature has been established.

  16. E-Print Network 3.0 - aluminium chloride beryllium Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    49 Chemicals Requiring Designated Areas The OSHA Laboratory Standard 29 CFR 1910.1450 mandates that an employer's Summary: -52-9 Beryl Ore 7440-41-7 Beryllium...

  17. Dynamic failure prediction of cross-rolled beryllium sheets subjected to vibration loads

    E-Print Network [OSTI]

    Serna, Oscar R.

    1996-01-01T23:59:59.000Z

    DYNAMIC FAILURE PREDICTION OF CROSS-ROLLED BERYLLIUM SHEETS SUBJECTED TO VIBRATION LOADS A Thesis OSCAR R. SERNA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1996 Major Subject; Civil Engineering DYNAMIC FAILURE PREDICTION OF CROSS-ROLLED BERYLLIUM SHEETS SUBJECTED TO VIBRATION LOADS A Thesis by OSCAR R. SERNA Submitted to Texas ARM University in partial fulfillment...

  18. E-Print Network 3.0 - avant-projet petite centrale Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fonctionnelles, associes au petit nombre de sources disponibles sur le march... Eclairage. 7 En France, le Laboratoire Central des Ponts et Chausses, le CRAI de l'Ecole...

  19. DEPARTMENT OF ARCHITECTURE CURRICULUM PETITION TO: CURRICULUM COMMITTEE, DEPARTMENT OF ARCHITECTURE

    E-Print Network [OSTI]

    DEPARTMENT OF ARCHITECTURE ­ CURRICULUM PETITION TO: CURRICULUM COMMITTEE, DEPARTMENT OF ARCHITECTURE School of Architecture & Allied Arts 210 Lawrence Hall University of Oregon (541) 346-3656 Eugene

  20. Application of RIMS to the Study of Beryllium ChronologyApplication of RIMS to the Study of Beryllium Chronology in Early Solar System Condensatesin Early Solar System Condensates

    E-Print Network [OSTI]

    Grossman, Lawrence

    - tion events from the first days of the early solar system. SIMS analyses use large analytical spot of Beryllium Chronology in Early Solar System Condensatesin Early Solar System Condensates K. B. Knight1 of Be decay products shows potential for addressing early solar system events.Resonant Ionization (RIMS

  1. Beryllium fabrication/cost assessment for ITER (International Thermonuclear Experimental Reactor)

    SciTech Connect (OSTI)

    Beeston, J.M. (Beeston (J.M.), Garrison, UT (USA)); Longhurst, G.R. (EG and G Idaho, Inc., Idaho Falls, ID (USA)); Parsonage, T. (Brush Wellman, Inc., Elmore, OH (USA))

    1990-06-01T23:59:59.000Z

    A fabrication and cost estimate of three possible beryllium shapes for the International Thermonuclear Experimental Reactor (ITER) blanket is presented. The fabrication method by hot pressing (HP), cold isostatic pressing plus sintering (CIP+S), cold isostatic pressing plus sintering plus hot isostatic pressing (CIP+S+HIP), and sphere production by atomization or rotary electrode will be discussed. Conventional hot pressing blocks of beryllium with subsequent machining to finished shapes can be more expensive than production of a net shape by cold isostatic pressing and sintering. The three beryllium shapes to be considered here and proposed for ITER are: (1) cubic blocks (3 to 17 cm on an edge), (2) tubular cylinders (33 to 50 mm i.d. by 62 mm o.d. by 8 m long), and (3) spheres (1--5 mm dia.). A rough cost estimate of the basic shape is presented which would need to be refined if the surface finish and tolerances required are better than the sintering process produces. The final cost of the beryllium in the blanket will depend largely on the machining and recycling of beryllium required to produce the finished product. The powder preparation will be discussed before shape fabrication. 10 refs., 6 figs.

  2. Separation of Transmutation - and Fission-Produced Radioisotopes from Irradiated Beryllium

    SciTech Connect (OSTI)

    Troy J. Tranter; RIchard D. Tillotson; Nick R. Mann; Glen R. Longhurst

    2011-11-01T23:59:59.000Z

    The primary objective of this study was to test the effectiveness of a two-step solvent extraction-precipitation process for separating transmutation and fission products from irradiated beryllium. Beryllium metal was dissolved in nitric and fluoroboric acids. Isotopes of 241Am, 239Pu, 85Sr, 60Co, and 137Cs were then added to make a surrogate beryllium waste solution. A series of batch contacts was performed with the spiked simulant using chlorinated cobalt dicarbollide and polyethylene glycol diluted with sulfone to extract the isotopes of Cs and Sr. Another series of batch contacts was performed using a combination of octyl (phenyl)-N,Ndiisobutylcarbamoylmethylphosphine oxide in tributyl phosphate diluted with dodecane for extracting the isotopes of Pu and Am. The 60Co was separated by first forming a cobalt complex and then selectively precipitating the beryllium as a hydroxide. The results indicate that greater than 99.9% removal can be achieved for each radionuclide. Transuranic isotope contamination levels are reduced to less than 100 nCi/g, and sources of high beta-gamma radiation (60Co, 137Cs, and 90Sr) are reduced to levels that will allow the beryllium to be contact handled. The separation process may be applicable to a recycle or waste disposition scenario.

  3. Petit Jean Electric Coop Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: Energy Resources JumpPerryman,Petersburg, Michigan:Petit Jean

  4. A Comparison of Magnesium and Beryllium Acceptors in GaN Grown by rf-Plasma Assisted Molecular Beam Epitaxy

    E-Print Network [OSTI]

    Myers, Tom

    A Comparison of Magnesium and Beryllium Acceptors in GaN Grown by rf-Plasma Assisted Molecular Beam Evans and Associates, Sunnyvale, CA 94086 ABSTRACT Step-doped structures of both magnesium and beryllium activation energy of approximately 100 meV. INTRODUCTION While magnesium is currently the most

  5. Rev. Oct. 2013--Gen. Ed. Cmte. Guidelines and Checklist for Submitting General Education Petitions

    E-Print Network [OSTI]

    Tennessee, University of

    is entered into DARS by catalog year. Transfer courses must be listed on the academic history before an approved petition can be entered into DARS. Petitions do not alter the transcript. ALL information, concentration, etc.) cannot be keyed into DARS. Please note: UTK courses that are not on the list of designated

  6. Accelerated Status Exceptionally promising current UCI undergraduate Engineering students may petition for streamlined admission directly

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Accelerated Status Exceptionally promising current UCI undergraduate Engineering students may numbered 200-289. How to Petition: Students are required to submit an Accelerated Status Petition Form) to the Graduate Student Affairs Office (5400 Engineering Hall). Students may join the Accelerated Status at any

  7. Accelerated Status Exceptionally promising current UCI undergraduate Engineering students may petition for streamlined admission directly

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Accelerated Status Exceptionally promising current UCI undergraduate Engineering students may numbered 200-289. How to Petition: Students are required to submit an Accelerated Status Petition Form) to the Graduate Student Affairs Office (305 Rockwell Engineering Center). Students may join the Accelerated Status

  8. AN EMBEDDED SYSTEM FOR SMALL-SCALED AUTONOMOUS David Vissi`ere and Nicolas Petit

    E-Print Network [OSTI]

    AN EMBEDDED SYSTEM FOR SMALL-SCALED AUTONOMOUS VEHICLES David Vissi`ere and Nicolas Petit D.vissiere@dga.defense.gouv.fr, nicolas.petit@cas.ensmp.fr Keywords: Embedded systems, autonomous vehicles, UAVs. Abstract: We consider and a control architecture for a group of hetero- geneous autonomous vehicles. To conduct this research, we

  9. Selective effect of the metallocarcinogen beryllium on hormonal regulation of gene expression in cultured cells

    SciTech Connect (OSTI)

    Perry, S.T.; Kulkarni, S.B.; Lee, K.L.; Kenney, F.T.

    1982-02-01T23:59:59.000Z

    Effects of the metallocarcinogen beryllium on regulation of gene expression were assessed by analysis of hormonal regulation of synthesis of tyrosine aminotransferase in beryllium-treated hepatoma cell cultures. Cell growth was not affected by exposure of the cells to 1 ..mu..M BeSO/sub 4/ throughout their 4- to 5-day growth cycle. In cells pretreated in this way, the induction by glucocorticoids was specifically impaired, the extent of induced enzyme synthesis being reduced about 50%. Inductions by insulin or cyclic adenosine 3':5'-monophosphate were not influenced by the metal. The results suggest that low concentrations of beryllium selectively interfere with regulatory mechanisms controlling transcriptional events in gene expression.

  10. Fundamental hydrogen interactions with beryllium : a magnetic fusion perspective.

    SciTech Connect (OSTI)

    Wampler, William R. (Sandia National Laboratories, Albuquerque, NM); Felter, Thomas E.; Whaley, Josh A.; Kolasinski, Robert D.; Bartelt, Norman Charles

    2012-03-01T23:59:59.000Z

    Increasingly, basic models such as density functional theory and molecular dynamics are being used to simulate different aspects of hydrogen recycling from plasma facing materials. These models provide valuable insight into hydrogen diffusion, trapping, and recombination from surfaces, but their validation relies on knowledge of the detailed behavior of hydrogen at an atomic scale. Despite being the first wall material for ITER, basic single crystal beryllium surfaces have been studied only sparsely from an experimental standpoint. In prior cases researchers used electron spectroscopy to examine surface reconstruction or adsorption kinetics during exposure to a hydrogen atmosphere. While valuable, these approaches lack the ability to directly detect the positioning of hydrogen on the surface. Ion beam techniques, such as low energy ion scattering (LEIS) and direct recoil spectroscopy (DRS), are two of the only experimental approaches capable of providing this information. In this study, we applied both LEIS and DRS to examine how hydrogen binds to the Be(0001) surface. Our measurements were performed using an angle-resolved ion energy spectrometer (ARIES) to probe the surface with low energy ions (500 eV - 3 keV He{sup +} and Ne{sup +}). We were able to obtain a 'scattering maps' of the crystal surface, providing insight on how low energy ions are focused along open surface channels. Once we completed a characterization of the clean surface, we dosed the sample with atomic hydrogen using a heated tungsten capillary. A distinct signal associated with adsorbed hydrogen emerged that was consistent with hydrogen residing between atom rows. To aid in the interpretation of the experimental results, we developed a computational model to simulate ion scattering at grazing incidence. For this purpose, we incorporated a simplified surface model into the Kalypso molecular dynamics code. This approach allowed us to understand how the incident ions interacted with the surface hydrogen, providing confirmation of the preferred binding site.

  11. Fracture testing and performance of beryllium copper alloy C17510

    SciTech Connect (OSTI)

    Murray, H.A.; Zatz, I.J.

    1994-05-01T23:59:59.000Z

    When a literature search and discussion with manufacturers revealed that there was virtually no existing data related to the fracture properties and behavior of copper beryllium alloy C17510, a series of test programs was undertaken to ascertain this information for several variations in material processing and chemistry. These variations in C17510 were primarily optimized for combinations of strength and conductivity. While originally intended for use as cyclically loaded high-field, high-strength conductors in fusion energy research, material testing of C17510 has indicated that it is an attractive and economical alternative for a host of other structural, mechanical and electrical applications. ASTM tests performed on three variations of C17510 alloys included both J-integral and plane strain fracture toughness testing and fatigue crack growth rate tests, as well as verifying tensile, hardness, Charpy, and other well defined mechanical properties. Fracture testing was performed at both room and liquid nitrogen temperatures, which bound the thermal environment anticipated for the fusion components being designed. Fatigue crack propagation stress ratios ranged from nominal zero to minus one at each temperature. In order to confirm the test results, duplicate and independent test programs were awarded to separate facilities with appropriate test experience, whenever possible. The primary goal of the test program, to determine and bound the fracture toughness and Paris constants for C17510,was accomplished. In addition, a wealth of information was accumulated pertaining to crack growth characteristics, effects of directionality and potential testing pitfalls. The paper discusses the test program and its findings in detail.

  12. Calculation and Experiment of Adding Top Beryllium Shims for Iran MNSR

    SciTech Connect (OSTI)

    Ebadati, Javad; Rezvanifard, Mehdi; Shahabi, Iraj [Esfahan Nuclear Technology Center - ENTC (Iran, Islamic Republic of)

    2006-07-01T23:59:59.000Z

    Miniature Neutron Source Reactor which is called MNSR were put into operation on June 1994 in Esfahan Nuclear Technology Center (ENTC). At that time the excess reactivity at the cold condition was 3.85 mk. After 7 years of operation and fuel consumption the reactivity was reduced to 2.90 mk. To compensate this reduction and upgrade the reactor, Beryllium Shim were used at the top of the core. This paper discusses the steps for this accurate and sensitive task. Finally a layer of 1.5 mm Beryllium were added to restore the reactor life. (authors)

  13. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: Petitions, delistings, and variances (40 CFR part 260, subpart C) updated as of July 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The module reviews the regulations governing rulemaking petitions, specifies who may petition EPA to modify or revoke any provision in 40 CFR Parts 260 through 265 and 268, and what may be changed through the petition process. It lists the different components of a petition, and the steps in the petitioning, review, and decision process. It also specifies the applicability of equivalent methods and states the information needed for this type of petition. It describes the process in petitioning for a new or equivalent method. It specifies the purpose of delisting, what can be delisted, and the implications of a delisting petition. It outlines the delisting procedures and provides citations for them. It cites the federal registers that describe the EPA`s composite model for landfills (EPACML) which EPA currently uses as a tool in evaluating delisting petitions and identifies the types of variances granted.

  14. Evaluation of HEU-Beryllium Benchmark Experiments to Improve Computational Analysis of Space Reactors

    SciTech Connect (OSTI)

    John D. Bess; Keith C. Bledsoe; Bradley T. Rearden

    2011-02-01T23:59:59.000Z

    An assessment was previously performed to evaluate modeling capabilities and quantify preliminary biases and uncertainties associated with the modeling methods and data utilized in designing a nuclear reactor such as a beryllium-reflected, highly-enriched-uranium (HEU)-O2 fission surface power (FSP) system for space nuclear power. The conclusion of the previous study was that current capabilities could preclude the necessity of a cold critical test of the FSP; however, additional testing would reduce uncertainties in the beryllium and uranium cross-section data and the overall uncertainty in the computational models. A series of critical experiments using HEU metal were performed in the 1960s and 1970s in support of criticality safety operations at the Y-12 Plant. Of the hundreds of experiments, three were identified as fast-fission configurations reflected by beryllium metal. These experiments have been evaluated as benchmarks for inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments (IHECSBE). Further evaluation of the benchmark experiments was performed using the sensitivity and uncertainty analysis capabilities of SCALE 6. The data adjustment methods of SCALE 6 have been employed in the validation of an example FSP design model to reduce the uncertainty due to the beryllium cross section data.

  15. ITER-like wall sliced beryllium tiles The JET Enhanced Performance 2 (EP2) shutdown

    E-Print Network [OSTI]

    ITER-like wall sliced beryllium tiles Background The JET Enhanced Performance 2 (EP2) shutdown and remote handling equipment. JET remote handling systems #12;Outcome The EP2 shutdown was successful of the remote handling system are compatible with the required component manipulation. Pre EP2 shutdown Mid

  16. Implementation Guide for use with 10 CFR Part 850, Chronic Beryllium Disease Prevention Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-04T23:59:59.000Z

    The Department of Energy (DOE) has established regulatory requirements for the Chronic Beryllium Disease Prevention Program (CBDPP) in Title 10 of the Code of Federal Regulations (CFR), Part 850 (10 CFR 850) [64 Federal Register (FR) 68854]. Cancels DOE G 440.1-7. Certified 9-23-10.

  17. Progress on a Cavity with Beryllium Walls for Muon Ionization Cooling Channel R&D.

    SciTech Connect (OSTI)

    Bowring, D.L.; DeMello, A.J.; Lambert, A.R.; Li, D.; Virostek,, S.; Zisman, M.; Kaplan, D.; Palmer, R.B.

    2012-05-20T23:59:59.000Z

    The Muon Accelerator Program (MAP) collaboration is working to develop an ionization cooling channel for muon beams. An ionization cooling channel requires the operation of high-gradient, normal-conducting RF cavities in multi-Tesla solenoidal magnetic fields. However, experiments conducted at Fermilab?s MuCool Test Area (MTA) show that increasing the solenoidal field strength reduces the maximum achievable cavity gradient. This gradient limit is characterized by an RF breakdown process that has caused significant damage to copper cavity interiors. The damage may be caused by field-emitted electrons, focused by the solenoidal magnetic field onto small areas of the inner cavity surface. Local heating may then induce material fatigue and surface damage. Fabricating a cavity with beryllium walls would mitigate this damage due to beryllium?s low density, low thermal expansion, and high electrical and thermal conductivity. We address the design and fabrication of a pillbox RF cavity with beryllium walls, in order to evaluate the performance of high-gradient cavities in strong magnetic fields.

  18. Irradiated Beryllium Disposal Workshop, Idaho Falls, ID, May 29-30, 2002

    SciTech Connect (OSTI)

    Longhurst, Glen Reed; Anderson, Gail; Mullen, Carlan K; West, William Howard

    2002-07-01T23:59:59.000Z

    In 2001, while performing routine radioactive decay heat rate calculations for beryllium reflector blocks for the Advanced Test Reactor (ATR), it became evident that there may be sufficient concentrations of transuranic isotopes to require classification of this irradiated beryllium as transuranic waste. Measurements on samples from ATR reflector blocks and further calculations confirmed that for reflector blocks and outer shim control cylinders now in the ATR canal, transuranic activities are about five times the threshold for classification. That situation implies that there is no apparent disposal pathway for this material. The problem is not unique to the ATR. The High Flux Isotope Reactor at Oak Ridge National Laboratory, the Missouri University Research Reactor at Columbia, Missouri and other reactors abroad must also deal with this issue. A workshop was held in Idaho Falls Idaho on May 29-30, 2002 to acquaint stakeholders with these findings and consider a path forward in resolving the issues attendant to disposition of irradiated material. Among the findings from this workshop were (1) there is a real potential for the US to be dependent on foreign sources for metallic beryllium within about a decade; (2) there is a need for a national policy on beryllium utilization and disposition and for a beryllium coordinating committee to be assembled to provide guidance on that policy; (3) it appears it will be difficult to dispose of this material at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico due to issues of Defense classification, facility radioactivity inventory limits, and transportation to WIPP; (4) there is a need for a funded DOE program to seek resolution of these issues including research on processing techniques that may make this waste acceptable in an existing disposal pathway or allow for its recycle.

  19. Validation of FSP Reactor Design with Sensitivity Studies of Beryllium-Reflected Critical Assemblies

    SciTech Connect (OSTI)

    John D. Bess; Margaret A. Marshall

    2013-02-01T23:59:59.000Z

    The baseline design for space nuclear power is a fission surface power (FSP) system: sodium-potassium (NaK) cooled, fast spectrum reactor with highly-enriched-uranium (HEU)-O2 fuel, stainless steel (SS) cladding, and beryllium reflectors with B4C control drums. Previous studies were performed to evaluate modeling capabilities and quantify uncertainties and biases associated with analysis methods and nuclear data. Comparison of Zero Power Plutonium Reactor (ZPPR)-20 benchmark experiments with the FSP design indicated that further reduction of the total design model uncertainty requires the reduction in uncertainties pertaining to beryllium and uranium cross-section data. Further comparison with three beryllium-reflected HEU-metal benchmark experiments performed at the Oak Ridge Critical Experiments Facility (ORCEF) concluded the requirement that experimental validation data have similar cross section sensitivities to those found in the FSP design. A series of critical experiments was performed at ORCEF in the 1960s to support the Medium Power Reactor Experiment (MPRE) space reactor design. The small, compact critical assembly (SCCA) experiments were graphite- or beryllium-reflected assemblies of SS-clad, HEU-O2 fuel on a vertical lift machine. All five configurations were evaluated as benchmarks. Two of the five configurations were beryllium reflected, and further evaluated using the sensitivity and uncertainty analysis capabilities of SCALE 6.1. Validation of the example FSP design model was successful in reducing the primary uncertainty constituent, the Be(n,n) reaction, from 0.28 %dk/k to 0.0004 %dk/k. Further assessment of additional reactor physics measurements performed on the SCCA experiments may serve to further validate FSP design and operation.

  20. DOE - Office of Legacy Management -- Rocky Flats Petition

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*. . : '* FEB 1972. :NewArchivePetition

  1. REPLACEMENT/STALE DATED CHEQUE REQUEST FORM Date: ____________________________ Student Number: _________________________

    E-Print Network [OSTI]

    Sinnamon, Gordon J.

    REPLACEMENT/STALE DATED CHEQUE REQUEST FORM Date: ____________________________ Student: _________________________ Cheque Date: _____________________ CHEQUE AMOUNT: ________________________ REASON FOR REPLACEMENT Building at the address below. Please indicate how you would like to receive your replacement cheque

  2. Dating the Vinland Map

    ScienceCinema (OSTI)

    None

    2013-07-17T23:59:59.000Z

    Scientists from Brookhaven National Laboratory, the University of Arizona, and the Smithsonian Institution used carbon-dating technology to determine the age of a controversial parchment that might be the first-ever map of North America.

  3. Oregon - OAR 860-025-0030 - Petition for CPCN for Construction...

    Open Energy Info (EERE)

    - OAR 860-025-0030 - Petition for CPCN for Construction of Overhead Transmission Lines Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  4. Impact of trail use on the soils and vegetation of Petit Jean State Park, Arkansas

    E-Print Network [OSTI]

    Walter, Elizabeth Anne

    1981-01-01T23:59:59.000Z

    (Magill & Nord, 1963). STUDY AREA Petit Jean State Park is located on Petit Jean Mountain. This is one flat-topped ridge among many such ridges along the Arkansas River Valley. It is located in the southwest corner of Conway County, Arkansas... closed canopy E. A sparse ground vegetative cover II. Upland Woodland exhibited the following biotic and physical characteristics (Fig. 5): A. A ridge top or exposed slope location B. A drier environment than that along streams C. An oak...

  5. Sampling for Beryllium Surface Contamination using Wet, Dry and Alcohol Wipe Sampling

    SciTech Connect (OSTI)

    Kerr, Kent

    2004-12-17T23:59:59.000Z

    This research project was conducted at the National Nuclear Security Administration's Kansas City Plant, operated by Honeywell Federal Manufacturing and Technologies, in conjunction with the Safety Sciences Department of Central Missouri State University, to compare relative removal efficiencies of three wipe sampling techniques currently used at Department of Energy facilities. Efficiencies of removal of beryllium contamination from typical painted surfaces were tested by wipe sampling with dry Whatman 42 filter paper, with water-moistened (Ghost Wipe) materials, and by methanol-moistened wipes. Test plates were prepared using 100 mm X 15 mm Pyrex Petri dishes with interior surfaces spray painted with a bond coat primer. To achieve uniform deposition over the test plate surface, 10 ml aliquots of solution containing 1 beryllium and 0.1 ml of metal working fluid were transferred to the test plates and subsequently evaporated. Metal working fluid was added to simulate the slight oiliness common on surfaces in metal working shops where fugitive oil mist accumulates over time. Sixteen test plates for each wipe method (dry, water, and methanol) were processed and sampled using a modification of wiping patterns recommended by OSHA Method 125G. Laboratory and statistical analysis showed that methanol-moistened wipe sampling removed significantly more (about twice as much) beryllium/oil-film surface contamination as water-moistened wipes (p< 0.001), which removed significantly more (about twice as much) residue as dry wipes (p <0.001). Evidence for beryllium sensitization via skin exposure argues in favor of wipe sampling with wetting agents that provide enhanced residue removal efficiency.

  6. Nuclear Transmutations in HFIR's Beryllium Reflector and Their Impact on Reactor Operation and Reflector Disposal

    SciTech Connect (OSTI)

    Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL; Proctor, Larry Duane [ORNL

    2012-01-01T23:59:59.000Z

    The High Flux Isotope Reactor located at the Oak Ridge National Laboratory utilizes a large cylindrical beryllium reflector that is subdivided into three concentric regions and encompasses the compact reactor core. Nuclear transmutations caused by neutron activation occur in the beryllium reflector regions, which leads to unwanted neutron absorbing and radiation emitting isotopes. During the past year, two topics related to the HFIR beryllium reflector were reviewed. The first topic included studying the neutron poison (helium-3 and lithium-6) buildup in the reflector regions and its affect on beginning-of-cycle reactivity. A new methodology was developed to predict the reactivity impact and estimated symmetrical critical control element positions as a function of outage time between cycles due to helium-3 buildup and was shown to be in better agreement with actual symmetrical critical control element position data than the current methodology. The second topic included studying the composition of the beryllium reflector regions at discharge as well as during decay to assess the viability of transporting, storing, and ultimately disposing the reflector regions currently stored in the spent fuel pool. The post-irradiation curie inventories were used to determine whether the reflector regions are discharged as transuranic waste or become transuranic waste during the decay period for disposal purposes and to determine the nuclear hazard category, which may affect the controls invoked for transportation and temporary storage. Two of the reflector regions were determined to be transuranic waste at discharge and the other region was determined to become transuranic waste in less than 2 years after being discharged due to the initial uranium content (0.0044 weight percent uranium). It was also concluded that all three of the reflector regions could be classified as nuclear hazard category 3 (potential for localized consequences only).

  7. ORISE: Beryllium Testing and Surveillance for the U.S. Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohnSecurityControlsOMBRadiationHowdesignedBeryllium

  8. Beryllium Sampling and Analysis Within the DOE Complex and Opportunities for Standardization

    SciTech Connect (OSTI)

    BRISSON, MICHAEL

    2005-01-25T23:59:59.000Z

    Since the U. S. Department of Energy (DOE) published the DOE Beryllium Rule (10 CFR 850) in 1999, DOE sites have been required to measure beryllium on air filters and wipes for worker protection and for release of materials from beryllium-controlled areas. Measurements in the nanogram range on a filter or wipe are typically required. Industrial hygiene laboratories have applied methods from various analytical compendia, and a number of issues have emerged with sampling and analysis practices. As a result, a committee of analytical chemists, industrial hygienists, and laboratory managers was formed in November 2003 to address the issues. The committee developed a baseline questionnaire and distributed it to DOE sites and other agencies in the U.S. and U.K. The results of the questionnaire are presented in this paper. These results confirmed that a wide variety of practices were in use in the areas of sampling, sample preparation, and analysis. Additionally, although these laboratories are generally accredited by the American Industrial Hygiene Association (AIHA), there are inconsistencies in performance among accredited labs. As a result, there are significant opportunities for development of standard methods that could improve consistency. The current availabilities and needs for standard methods are further discussed in a companion paper.

  9. Influence of Atomic Physics on EDGE2D-EIRENE Simulations of JET Divertor Detachment with Carbon and Beryllium/Tungsten Plasma-Facing Components

    E-Print Network [OSTI]

    Influence of Atomic Physics on EDGE2D-EIRENE Simulations of JET Divertor Detachment with Carbon and Beryllium/Tungsten Plasma-Facing Components

  10. Target Particle and Heat Loads in Low-Triangularity L-mode Plasmas in JET with Carbon and Beryllium/Tungsten Walls

    E-Print Network [OSTI]

    Target Particle and Heat Loads in Low-Triangularity L-mode Plasmas in JET with Carbon and Beryllium/Tungsten Walls

  11. DATE: TO: FROM: SUBJECT:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE09 DATE:284~ DATE:

  12. MSW Informational Session Dates . . .

    E-Print Network [OSTI]

    Saldin, Dilano

    MSW Informational Session Dates . . . Please RSVP . . . Space is limited so we ask that you call: Enderis Hall 115 Friday, December 7, 2012 11:30 a.m. to 1 p.m. Location: Enderis Hall 115 The MSW invites you to attend one of three MSW informational sessions. While the admissions packet contains most

  13. Procedure No: Approval Date

    E-Print Network [OSTI]

    : Redding City Council Resolution: 10/15/2013 Date: 10/15/2013 #12;RPS-001 RPS ENFORCEMENT PROGRAM 1 2 TABLE: ................................................................ 5 D. Portfolio Balance Requirement Reduction: ................................................. 6 3 in California to acquire 33 percent of their annual unmet energy needs from renewable resources by 2020

  14. Create Date: Create Time

    E-Print Network [OSTI]

    provisions. AB 0074 Ch. 666 Assembly Member Ma Public event action plans and cooperative agreements. AB 0080 Ch. 138 Assembly Member Fong Presidential primary: election date. AB 0082 Ch. 92 * Assembly Assembly Member Fong Elections: new citizens. AB 0089 Ch. 390 * Assembly Member Hill County employees

  15. POLICIES AND PROCESSES FOR THE APPROVAL OF OFFICE OF THE REGISTRAR Departmental Head Advisor Approved Petitions and Forms

    E-Print Network [OSTI]

    Tullos, Desiree

    Advisor Approved Petitions and Forms The College of Agricultural Sciences distributes approval for the following Office of the Registrar petitions and forms to the departmental head advisors, only. Please note that some forms contain sections requiring college head advisor approval, and some have time limitations

  16. Results of the radiological and beryllium verification survey at the Sacandaga Site, Glenville, New York (SY002V)

    SciTech Connect (OSTI)

    Foley, R.D.; Cottrell, W.D.; Johnson, C.A.

    1994-09-01T23:59:59.000Z

    At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted an independent verification radiological and non-radioactive beryllium survey at the Sacandaga Site, located on Sacandaga Road, Glenville, New York following limited remediation of the site by Allwash of Syracuse, Inc. At the time of this survey, only building P was still standing. A small concrete structure at the east of the property had been demolished and the debris hauled away, leaving only a pit. The purpose of the survey, conducted between April and August 1993, was to confirm the success of the remedial actions performed to remove any beryllium concentrations or radioactive materials in excess of the identified guidelines. The verification survey included surface gamma scans and gamma readings at 1 meter indoors and outdoors, alpha and beta scans inside building P, and the collection of soil, dust and debris samples and smears for radionuclide and beryllium analyses. Results of the survey demonstrated that all radiological and beryllium measurements on the property were within applicable DOE guidelines. Based on all data collected. the Sacandaga Site, Glenville, New York, conforms to all applicable radiological and non-radioactive beryllium guidelines established for this site by DOE and approved by the State of New York.

  17. Results of the radiological and beryllium verification survey at the Peek Street Site, Schenectady, New York (SY001V)

    SciTech Connect (OSTI)

    Foley, R.D.; Johnson, C.A.; Carrier, R.F.; Allred, J.F.

    1994-10-01T23:59:59.000Z

    At the request of the U.S. Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted an independent verification radiological and non-radioactive beryllium survey at the Peek Street site, located at 425 Peek Street, Schenectady, New York. The purpose of the survey, conducted during 1993 and continuing through January 1994, was to confirm the success of the remedial actions performed to remove any beryllium concentrations or radioactive materials in excess of the identified guidelines. The verification survey included surface gamma scans and gamma readings at one meter indoors and outdoors, alpha and beta scans inside the structure, and the collection of soil, dust and debris samples and smears for radionuclide and beryllium analyses. Results of the survey demonstrated that all radiological and beryllium measurements on the property were within applicable DOE guidelines. Based on all data collected, the industrial property at 425 Peek Street and the adjacent state-owned bike path in Schenectady, New York, conforms to all applicable radiological and non-radioactive beryllium guidelines established for this site by DOE and approved by the State of New York.

  18. Beryllium Health and Safety Committee Data Reporting Task Force White Paper #2 -- Uses of Uncensored Data

    SciTech Connect (OSTI)

    MacQueen, D H

    2007-10-10T23:59:59.000Z

    On December 8, 1999, the Department of Energy (DOE) published Title 10 CFR 850 (hereafter referred to as the Rule) to establish a chronic beryllium disease prevention program (CBDPP) to: (1) reduce the number of workers currently exposed to beryllium in the course of their work at DOE facilities managed by DOE or its contractors; (2) minimize the levels of, and potential for, exposure to beryllium; and (3) establish medical surveillance requirements to ensure early detection of the disease. On January 4, 2001, DOE issued DOE G 440.1-7A, Implementation Guide for use with 10 CFR 850, Chronic Beryllium Disease Prevention Program, to assist line managers in meeting their responsibilities for implementing the CBDPP. That guide describes methods and techniques that DOE considers acceptable in complying with the Rule. In 2005 a draft DOE Technical Standard ''Management of Items and Areas Containing Low Levels of Beryllium'' (SAFT 0103; hereafter referred to as the ''TS'') was circulated for comment (http://www.hss.energy.gov/NuclearSafety/techstds/tsdrafts/saft-0103.pdf). DOE technical standards are voluntary consensus standards developed when industry standards do not exist (see http://www.hss.energy.gov/NuclearSafety/techstds/index.html for more information). DOE does not require its field elements to implement DOE technical standards, but field elements may choose to adopt these standards to meet specific needs. This beryllium TS is intended to provide best practices and lessons learned for manageing items and areas that contain low levels of beryllium, which has been a costly and technically challenging component of CBDPPs. The TS is also intended to provide guidance for determining if the Rule's housekeeping and release criteria are met. On challenge the TS addressed was the statistical interpretation of data sets with non-detected results, a topic for which no strong consensus exists. Among the many comments on the draft TS was a suggestion that certain of the statistical comparisons described in the TS could be better implemented if analytical results, even when below a reporting limit, were to be reported by analytical laboratories. See Appendix 1 for a review of terminology related to reporting limits. The Beryllium Health and Safety Committee (BHSC) formed a Sampling and Analysis Subcommittee (SAS) in 2003. The SAS established a working group on accreditation and reporting limits. By 2006 it had become evident that the issues extended to data reporting as a whole. The SAS proposed to the BHSC the formation of a Data Reporting Task Force (DRTF) to consider issues related to data reporting. The BHSC Board agreed, and requested that the DRTF generate a white paper, to be offered by the BHSC to potential interested parties such as the DOE policy office that is responsible for beryllium health and safety policy. It was noted that additional products could include detailed guidance and potentially a journal article in the future. The SAS proposed that DRTF membership represent the affected disciplines (chemists, industrial hygiene professionals and statisticians, and the DOE office that is responsible for beryllium health and safety policy). The BHSC Board decided that DRTF membership should come from DOE sites, since the focus would be on reporting in the context of the TS and the Rule. The DRTF came into existence in late 2006. The DRTF membership includes industrial hygienists, analytical chemists and laboratory managers, members of the regulatory and oversight community, and environmental statisticians. A first White Paper, ''Summary of Issues and Path Forward'', was reviewed by the BHSC in March 2007 and issued by the DRTF in June 2007. It describes the charter of the DRTF, introduces some basic terminology (reproduced here in Appendix 1), lays out the issues the DRTF is expected to address, and describes a path forward for the DRTF's work. This first White Paper is available through the BHSC web site. This White Paper presents recommendations developed by the DRTF following the process laid out in that first White Pap

  19. No-migration variance petition: Draft. Volume 4, Appendices DIF, GAS, GCR (Volume 1)

    SciTech Connect (OSTI)

    NONE

    1995-05-31T23:59:59.000Z

    The Department of Energy is responsible for the disposition of transuranic (TRU) waste generated by national defense-related activities. Approximately 2.6 million cubic feet of the se waste have been generated and are stored at various facilities across the country. The Waste Isolation Pilot Plant (WIPP), was sited and constructed to meet stringent disposal requirements. In order to permanently dispose of TRU waste, the DOE has elected to petition the US EPA for a variance from the Land Disposal Restrictions of RCRA. This document fulfills the reporting requirements for the petition. This report is volume 4 of the petition which presents details about the transport characteristics across drum filter vents and polymer bags; gas generation reactions and rates during long-term WIPP operation; and geological characterization of the WIPP site.

  20. Trace-level beryllium analysis in the laboratory and in the field: State of the art, challenges, and opportunities

    SciTech Connect (OSTI)

    BRISSON, MICHAEL

    2006-03-30T23:59:59.000Z

    Control of workplace exposure to beryllium is a growing issue in the United States and other nations. As the health risks associated with low-level exposure to beryllium are better understood, the need increases for improved analytical techniques both in the laboratory and in the field. These techniques also require a greater degree of standardization to permit reliable comparison of data obtained from different locations and at different times. Analysis of low-level beryllium samples, in the form of air filters or surface wipes, is frequently required for workplace monitoring or to provide data to support decision-making on implementation of exposure controls. In the United States and the United Kingdom, the current permissible exposure level is 2 {micro}g/m{sup 3} (air), and the United States Department of Energy has implemented an action level of 0.2 {micro}g/m{sup 3} (air) and 0.2 {micro}g/100 cm{sup 2} (surface). These low-level samples present a number of analytical challenges, including (1) a lack of suitable standard reference materials, (2) unknown robustness of sample preparation techniques, (3) interferences during analysis, (4) sensitivity (sufficiently low detection limits), (5) specificity (beryllium speciation), and (6) data comparability among laboratories. Additionally, there is a need for portable, real-time (or near real-time) equipment for beryllium air monitoring and surface wipe analysis that is both laboratory-validated and field-validated in a manner that would be accepted by national and/or international standards organizations. This paper provides a review of the current analytical requirements for trace-level beryllium analysis for worker protection, and also addresses issues that may change those requirements. The current analytical state of the art and relevant challenges facing the analytical community will be presented, followed by suggested criteria for real-time monitoring equipment. Recognizing and addressing these challenges will present opportunities for laboratories, research and development organizations, instrument manufacturers, and others.

  1. DATE AUG 26 2009 RECD SEP 02 2009

    E-Print Network [OSTI]

    CONSERVATION AND DEVELOPMENT COMMISSION In the Matter of: SACRAMENTO POWER AUTHORITY CAMPBELL COGENERATION Authority (SPA), the owner/ operator of the SPA Campbell Cogeneration Project, submitted a petition's petition to modify the Campbell Cogeneration project Air Quality COCs. #12;August26,2009 ENERGY COMMISSION

  2. Single and double photoionization of beryllium below 40 eV

    SciTech Connect (OSTI)

    Wehlitz, R.; Bluett, J.B. [Synchrotron Radiation Center, UW-Madison, Stoughton, Wisconsin 53589 (United States); Lukic, D. [Institute of Physics, 11001 Belgrade (Serbia and Montenegro)

    2005-01-01T23:59:59.000Z

    We have measured the double-to-single photoionization ratio of beryllium (1s{sup 2}2s{sup 2}) between 28 and 40 eV and determined the relative single- and double-photoionization cross sections. In this energy region only simultaneous but not sequential emission of both 2s electrons can take place. We also compare our data with recent theoretical calculations and find good agreement with our data. The previously found scaling law for the double-to-single photoionization ratio is confirmed with high accuracy.

  3. A Lithium-Beryllium Method for the Detection of Solar Neutrinos

    E-Print Network [OSTI]

    A. V. Kopylov; I. V. Orekhov; V. V. Petukhov; A. E. Solomatin

    2009-10-20T23:59:59.000Z

    A method for the detection of solar neutrino has been developed using the laboratory bench installations. The efficiency of the extraction of beryllium from lithium as high as 96.4{%} has been achieved, and it was shown that lithium losses during the extraction were less than 1{%}. The prospects of a full-scale experiment with a 10-t lithium detector consisting of twenty 500-kg lithium modules are discussed. The technical solutions formulated on the basis of this study enable to make design of a pilot lithium installation containing 500 kg of metallic lithium

  4. Broadly tunable chromium-doped beryllium aluminate lasers and operation thereof

    SciTech Connect (OSTI)

    Jenssen, H.P.; Morris, R.C.; Peterson, O.G.; Walling, J.C.

    1981-06-09T23:59:59.000Z

    A high power, broadly wavelength-tunable laser is provided which comprises as the laser medium particular single crystals of chromium-doped beryllium aluminate (BeAl/sub 2/O/sub 4/:Cr/sup 3 +/) having the chrysoberyl structure, means for exciting the laser medium and tuning means. The laser may be operated over a broad temperature range from cryogenic temperatures to elevated temperatures. Elevated temperatures are preferred, however, since they result in higher laser gain. Emission is in a spectral range from red to infrared, and the laser is useful in the fields of defense, communications, isotope separation, photochemistry, etc.

  5. Undergraduate Petition for Consideration of Exception to School of Music Policy

    E-Print Network [OSTI]

    of Undergraduate Studies Date Director, School of Music Date Notification Sent: DARS Exception Entered: #12;

  6. DATE: TO: FROM:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE09 DATE:28 -21 .

  7. DATE: TO: FROM:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE09 DATE:28 -21 .2

  8. DATE: TO: FROM:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE09 DATE:28 -21

  9. DATE: TO: FROM:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE09 DATE:28 -21175

  10. DATE: TO: FROM:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE09 DATE:28 -21175-7'

  11. DATE: TO: POLICY FLASH

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE09 DATE:284~POLICY

  12. DATE: TO: FROM:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE09 DATE:28 -

  13. Date | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CXBasin Jump to:Date" Showing 48

  14. Graphite and Beryllium Reflector Critical Assemblies of UO2 (Benchmark Experiments 2 and 3)

    SciTech Connect (OSTI)

    Margaret A. Marshall; John D. Bess

    2012-11-01T23:59:59.000Z

    INTRODUCTION A series of experiments was carried out in 1962-65 at the Oak Ridge National Laboratory Critical Experiments Facility (ORCEF) for use in space reactor research programs. A core containing 93.2 wt% enriched UO2 fuel rods was used in these experiments. The first part of the experimental series consisted of 252 tightly-packed fuel rods (1.27-cm triangular pitch) with graphite reflectors [1], the second part used 252 graphite-reflected fuel rods organized in a 1.506-cm triangular-pitch array [2], and the final part of the experimental series consisted of 253 beryllium-reflected fuel rods in a 1.506-cm-triangular-pitch configuration and in a 7-tube-cluster configuration [3]. Fission rate distribution and cadmium ratio measurements were taken for all three parts of the experimental series. Reactivity coefficient measurements were taken for various materials placed in the beryllium reflected core. All three experiments in the series have been evaluated for inclusion in the International Reactor Physics Experiment Evaluation Project (IRPhEP) [4] and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbooks, [5]. The evaluation of the first experiment in the series was discussed at the 2011 ANS Winter meeting [6]. The evaluations of the second and third experiments are discussed below. These experiments are of interest as benchmarks because they support the validation of compact reactor designs with similar characteristics to the design parameters for a space nuclear fission surface power systems [7].

  15. Procedure for calibration of a portable, real-time beryllium aerosol monitor based on laser-induced breakdown spectroscopy

    E-Print Network [OSTI]

    Killough, David Thomas

    2012-06-07T23:59:59.000Z

    Spectroscopy (LIPS), is an analytical method whereby atmospheric components and contaminants may be analyzed in real-time or near real-time directly in the workplace. A transportable beryllium air monitor system based on LIBS has been developed at the Los...

  16. AN INTERSTELLAR ORIGIN FOR THE BERYLLIUM 10 IN CALCIUM-RICH, ALUMINUM-RICH INCLUSIONS S. J. Desch1

    E-Print Network [OSTI]

    Connolly Jr, Harold C.

    , Brooklyn, NY 11235; and American Museum of Natural History, Department of Earth and Planetary Sciences, Central Park West at 79th Street, New York, NY 10024; and Rutgers University, Department of Geological into calcium-rich, aluminum-rich inclusions (CAIs) at the birth of our solar system. Beryllium 10 is unique

  17. Waste Isolation Pilot Plant No-Migration Variance Petition. Revision 1, Volume 1

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    The purpose of the WIPP No-Migration Variance Petition is to demonstrate, according to the requirements of RCRA {section}3004(d) and 40 CFR {section}268.6, that to a reasonable degree of certainty, there will be no migration of hazardous constituents from the facility for as long as the wastes remain hazardous. The DOE submitted the petition to the EPA in March 1989. Upon completion of its initial review, the EPA provided to DOE a Notice of Deficiencies (NOD). DOE responded to the EPA`s NOD and met with the EPA`s reviewers of the petition several times during 1989. In August 1989, EPA requested that DOE submit significant additional information addressing a variety of topics including: waste characterization, ground water hydrology, geology and dissolution features, monitoring programs, the gas generation test program, and other aspects of the project. This additional information was provided to EPA in January 1990 when DOE submitted Revision 1 of the Addendum to the petition. For clarity and ease of review, this document includes all of these submittals, and the information has been updated where appropriate. This document is divided into the following sections: Introduction, 1.0: Facility Description, 2.0: Waste Description, 3.0; Site Characterization, 4.0; Environmental Impact Analysis, 5.0; Prediction and Assessment of Infrequent Events, 6.0; and References, 7.0.

  18. La nouvelle norme ISO/IEC 29110 pour les trs petits organismes

    E-Print Network [OSTI]

    Laporte, Claude Y.

    La nouvelle norme ISO/IEC 29110 pour les très petits organismes Claude Y. Laporte, ing., M école d'ingénieurs canadienne lauréate du Trophée ISO 2011 pour l'enseignement supérieur en normalisation · L'École de technologie supérieure est la lauréate du Trophée ISO pourlauréate du Trophée ISO

  19. University of California, Berkeley College of Engineering PETITION FOR ADMISSION TO THE DEPARTMENT OF CIVIL ENGINEERING

    E-Print Network [OSTI]

    Alvarez-Cohen, Lisa

    : Fluid Mechanics · CE 111: Environmental Engineering Three of the following courses · CE 101: FluidUniversity of California, Berkeley College of Engineering PETITION FOR ADMISSION TO THE DEPARTMENT OF CIVIL ENGINEERING UNDERGRADUATE MINOR IN ENVIRONMENTAL ENGINEERING To be completed by the student after

  20. Earth Day Save the Date

    Broader source: Energy.gov (indexed) [DOE]

    Save the Date April 22, 2014 Forrestal & Germantown Working together to reduce our environmental footprint... * USPS, USDA, EPA, and GSA will join DOE this year * DOE Program...

  1. Date Created: March 2008 Date Amended: March 2009

    E-Print Network [OSTI]

    Subramanian, Sriram

    Date Created: March 2008 Date Amended: March 2009 DYSLEXIA POLICY.doc- 1 - DYSLEXIA POLICY 1 (both written and spoken) reading, memory and organisation associated with the terms dyslexia, dyspraxia this document the term `dyslexia' will be used in a comprehensive way to refer to all of the above. The College

  2. Type Policy Title Here Effective Date: [Insert Date

    E-Print Network [OSTI]

    Salzman, Daniel

    Type Policy Title Here Effective Date: [Insert Date] Policy Statement [Type Statement Text Here] Reason(s) for the Policy [Type Reason Text Here] Primary Guidance to Which This Policy Responds [Type Primary Policy Here ­ If there is NOT a Primary Policy indicate that] Responsible University Office

  3. Absolute Time Radiometric Dating: the source of the dates on

    E-Print Network [OSTI]

    Kammer, Thomas

    Absolute Time Radiometric Dating: the source of the dates on the Geologic Time Scale Radiometric.g. uranium to lead. · The parent element is radioactive, the daughter element is stable. · The decay rate nucleosynthesis. Common Radioactive Elements, Parents and Daughters · Carbon-14, C14 Nitrogen-14, N14 · Uranium

  4. 2014-06-23 Issuance: Energy Conservation Standards for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration

    Broader source: Energy.gov [DOE]

    This document is the agency response to the Energy Conservation Standards for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration.

  5. Supplementary radiological and beryllium characterization of the facility at 425 Peek Street, Schenectady, New York

    SciTech Connect (OSTI)

    Foley, R.D.; Allred, J.F.; Carrier, R.F.

    1994-10-01T23:59:59.000Z

    At the request of the Office of Naval Reactors through the Office of Remedial Action and Waste Technology, a radiological survey of the Peek Street industrial facility, the adjacent state-owned bike path, and two nearby residential properties was conducted by Oak Ridge National Laboratory (ORNL) in November 1989. The results indicated small isolated areas that exceeded DOE guidelines. These areas totaled approximately 0.2 m{sup 2} of floor area and approximately 3 m{sup 2} of wall area inside the building, and two small areas totaling approximately 5 m{sup 2} outside the building. A small section of one of these areas extended beyond the fence on the east side of the industrial property onto the state-owned property. No residual radioactive material or elevated radiation levels were detected on any portion of the paved section of the bike path or the residential properties adjacent to the site. Because the elevated radiation levels were localized and limited in extent, any credible use scenario, including current use conditions, indicated that no significant radiation exposures would accrue to individuals frequenting the area. Samples were also analyzed for elemental beryllium since that material had formerly been used at the site. In conjunction with the planned remediation at the facility, a supplementary characterization survey was performed to further define the areas containing beryllium in excess of the identified guidelines. Additional radiological characterization of Ra-226, Th-232, and U-238 was also performed in areas that were largely inaccessible prior to the remediation efforts.

  6. Neutron flux and energy characterization of a plutonium-beryllium isotopic neutron source by Monte Carlo simulation with verification by neutron activation analysis.

    E-Print Network [OSTI]

    Harvey, Zachary R

    2010-01-01T23:59:59.000Z

    ??The purpose of this research was to characterize the neutron energy distribution and flux emitted from the UNLV plutonium-beryllium source, serial number MRC-N-W PuBe 453.… (more)

  7. Dates Fact Sheet.cdr

    Broader source: Energy.gov (indexed) [DOE]

    minimizing interference to the critical functions of the control systems To find out more about DATES, contact: SRI International Alfonso Valdes 650.859.4976 alfonso.valdes@sri.com...

  8. Massachusetts Beryllium Screening Program for Former Workers of Wyman-Gordon, Norton Abrasives, and MIT/Nuclear Metals

    SciTech Connect (OSTI)

    Pepper, L.D.

    2008-05-21T23:59:59.000Z

    The overall objective of this project was to provide medical screening to former workers of Wyman-Gordon Company, Norton Abrasives, and MIT/Nuclear Metals (NMI) in order to prevent and minimize the health impact of diseases caused by site related workplace exposures to beryllium. The program was developed in response to a request by the U.S. Department of Energy (DOE) that had been authorized by Congress in Section 3162 of the 1993 Defense Authorization Act, urging the DOE to â??carry out a program for the identification and ongoing evaluation of current and former DOE employees who are subjected to significant health risks during such employment." This program, funded by the DOE, was an amendment to the medical surveillance program for former DOE workers at the Nevada Test Site (NTS). This programâ??s scope included workers who had worked for organizations that provided beryllium products or materials to the DOE as part of their nuclear weapons program. These organizations have been identified as Beryllium Vendors.

  9. ORALLOY (93.15 235U) METAL ANNULI WITH BERYLLIUM CORE

    SciTech Connect (OSTI)

    John D. Bess; Leland M. Montierth; Raymond L. Reed; John T. Mihalczo

    2010-09-01T23:59:59.000Z

    A variety of critical experiments were constructed of enriched uranium metal during the 1960s and 1970s at the Oak Ridge Critical Experiments Facility (ORCEF) in support of criticality safety operations at the Y-12 Plant. The purposes of these experiments included the evaluation of storage, casting, and handling limits for the Y-12 Plant and providing data for verification of calculation methods and cross-sections for nuclear criticality safety applications. These included solid cylinders of various diameters, annuli of various inner and outer diameters, two and three interacting cylinders of various diameters, and graphite and polyethylene reflected cylinders and annuli. Of the hundreds of delayed critical experiments, two were performed that consisted of uranium metal annuli with a solid beryllium metal core. The outer diameter of the annuli was approximately 13 or 15 inches with an inner diameter of 7 inches. The diameter of the core was approximately 7 inches. The critical height of the configurations was approximately 5 and 4 inches, respectively. The uranium annuli consisted of multiple stacked rings with diametral thicknesses of approximately 2 inches apiece and varying heights. The 15-inch experiment was performed on June 4, 1963, and the 13-inch experiment on July 12, 1963 by J. T. Mihalczo and R. G. Taylor (Ref. 1) with accompanying logbook. Both detailed and simplified model specifications are provided in this evaluation. Both of these fast-spectra experiments were determined to represent acceptable benchmarks. The calculated eigenvalues for both the detailed and simple models are within approximately 0.6% of the benchmark values, but significantly greater than 3s from the benchmark value because the uncertainty in the benchmark is very small: <±0.0004 (1s). There is significant variability between results using different neutron cross section libraries, the greatest being a ?keff of ~0.67%. Unreflected and unmoderated experiments with the same highly enriched uranium metal parts were performed at the Oak Ridge Critical Experiments Facility in the 1960s and are evaluated in HEU MET FAST 051. Thin graphite reflected (2 inches or less) experiments also using the same highly enriched uranium metal parts are evaluated in HEU MET FAST 071. Polyethylene-reflected configurations are evaluated in HEU-MET-FAST-076. A stack of highly enriched metal discs with a thick beryllium reflector is evaluated in HEU-MET-FAST-069.

  10. ORALLOY (93.2 235U) METAL CYLINDER WITH BERYLLIUM TOP REFLECTOR

    SciTech Connect (OSTI)

    John D. Bess; Leland M. Montierth; Raymond Reed; John T. Mihalczo

    2010-09-01T23:59:59.000Z

    A variety of critical experiments were constructed of enriched uranium metal during the 1960s and 1970s at the Oak Ridge Critical Experiments Facility (ORCEF) in support of criticality safety operations at the Y-12 Plant. The purposes of these experiments included the evaluation of storage, casting, and handling limits for the Y-12 Plant and providing data for verification of calculation methods and cross-sections for nuclear criticality safety applications. These included solid cylinders of various diameters, annuli of various inner and outer diameters, two and three interacting cylinders of various diameters, and graphite and polyethylene reflected cylinders and annuli. Of the hundreds of delayed critical experiments, one experiment was comprised of a stack of approximately 7-inch-diameter metal discs. The bottom of the stack consisted of uranium with an approximate height of 4-1/8 inches. The top of the stack consisted of beryllium with an approximate height of 5-9/16 inches. This experiment was performed on August 20, 1963 by J. T. Mihalczo and R. G. Taylor (Ref. 1) with accompanying logbook. Both detailed and simplified model specifications are provided in this evaluation. This fast-spectra experiment was determined to represent an acceptable benchmark. The calculated eigenvalues for both the detailed and simple models are within approximately 0.5% of the benchmark values, but significantly greater than 3s from the benchmark value because the uncertainty in the benchmark is very small: ±0.0002 (1s). There is significant variability between results using different neutron cross section libraries, the greatest being a ?keff of ~0.65% . Unreflected and unmoderated experiments with the same highly enriched uranium metal parts were performed at the Oak Ridge Critical Experiments Facility in the 1960s and are evaluated in HEU MET FAST 051. Thin graphite reflected (2 inches or less) experiments also using the same highly enriched uranium metal parts are evaluated in HEU MET FAST 071. Polyethylene-reflected configurations are evaluated in HEU-MET-FAST-076. Highly enriched metal annuli with beryllium cores are evaluated in HEU-MET-FAST-059.

  11. Selection of Russian Plutonium Beryllium Sources for Inclusion in the Nuclear Mateirals Information Program Archive

    SciTech Connect (OSTI)

    Narlesky, Joshua E [Los Alamos National Laboratory; Padilla, Dennis D [Los Alamos National Laboratory; Watts, Joe [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    Throughout the 1960s and 1970s, the former Soviet Union produced and exported Plutonium-Beryllium (PuBe) neutron sources to various Eastern European countries. The Russian sources consist of an intermetallic compound of plutonium and beryllium encapsulated in an inner welded, sealed capsule and consisting of a body and one or more covers. The amount of plutonium in the sources ranges from 0.002 g up to 15 g. A portion of the sources was originally exported to East Germany. A portion of these sources were acquired by Los Alamos National Laboratory (LANL) in the late 1990s for destruction in the Offsite Source Recovery Program. When the OSRP was canceled, the remaining 88 PuBe neutron sources were packaged and stored in a 55-gal drum at T A-55. This storage configuration is no longer acceptable for PuBe sources, and the sources must either be repackaged or disposed of. Repackaging would place the sources into Hagan container, and depending on the dose rates, some sources may be packaged individually increasing the footprint and cost of storage. In addition, each source will be subject to leak-checking every six months. Leaks have already been detected in some of the sources, and due to the age of these sources, it is likely that additional leaks may be detected over time, which will increase the overall complexity of handling and storage. Therefore, it was decided that the sources would be disposed of at the Waste Isolation Pilot Plant (WIPP) due to the cost and labor associated with continued storage at TA-55. However, the plutonium in the sources is of Russian origin and needs to be preserved for research purposes. Therefore, it is important that a representative sample of the sources retained and archived for future studies. This report describes the criteria used to obtain a representative sample of the sources. Nine Russian PuBe neutron sources have been selected out of a collection of 77 sources for inclusion in the NMIP archive. Selection criteria were developed so that the largest sources that are representative of the collection are included. One representative source was chosen for every 20 sources in the collection, and effort was made to preserve sources unique to the collection. In total, four representative sources and five unique sources were selected for the archive. The archive samples contain 40 grams of plutonium with an isotopic composition similar to that of weapon grade material and three grams of plutonium with an isotopic composition similar to that of reactor grade plutonium.

  12. A Comparison of "Total Dust" and Inhalable Personal Sampling for Beryllium Exposure.

    SciTech Connect (OSTI)

    Carter, C M

    2012-04-25T23:59:59.000Z

    In 2009, the American Conference of Governmental Industrial Hygienists (ACGIH) reduced the Beryllium (Be) 8-hr Time Weighted Average Threshold Limit Value (TLV-TWA) from 2.0 {micro}g/m{sup 3} to 0.05 {micro}g/m{sup 3} with an inhalable 'I' designation in accordance with ACGIH's particle size-selective criterion for inhalable mass. Currently, per the Department of Energy (DOE) requirements, the Lawrence Livermore National Laboratory (LLNL) is following the Occupational Health and Safety Administration (OSHA) Permissible Exposure Limit (PEL) of 2.0 {micro}g/m{sup 3} as an 8-hr TWA, which is also the 2005 ACGIH TLV-TWA, and an Action Level (AL) of 0.2 {micro}g/m{sup 3} and sampling is performed using the 37mm (total dust) sampling method. Since DOE is considering adopting the newer 2009 TLV guidelines, the goal of this study was to determine if the current method of sampling using the 37mm (total dust) sampler would produce results that are comparable to what would be measured using the IOM (inhalable) sampler specific to the application of high energy explosive work at LLNL's remote experimental test facility at Site 300. Side-by-side personal sampling using the two samplers was performed over an approximately two-week period during chamber re-entry and cleanup procedures following detonation of an explosive assembly containing Beryllium (Be). The average ratio of personal sampling results for the IOM (inhalable) vs. 37-mm (total dust) sampler was 1.1:1 with a P-value of 0.62, indicating that there was no statistically significant difference in the performance of the two samplers. Therefore, for the type of activity monitored during this study, the 37-mm sampling cassette would be considered a suitable alternative to the IOM sampler for collecting inhalable particulate matter, which is important given the many practical and economic advantages that it presents. However, similar comparison studies would be necessary for this conclusion to be applied to other types of activities, where earlier studies have shown that the IOM sampler tends to collect higher concentrations of Be compared to the 37-mm cassette, which could complicate compliance with what is already an extremely low exposure limit.

  13. Electron transport properties of bis[2-(2-hydroxyphenyl)-pyridine]beryllium investigated by impedance spectroscopy

    SciTech Connect (OSTI)

    Wang, Yanping; Chen, Jiangshan; Huang, Jinying; Ma, Dongge, E-mail: mdg1014@ciac.jl.cn, E-mail: dongls@ciac.jl.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Changchun 130022 (China); Dong, Lisong, E-mail: mdg1014@ciac.jl.cn, E-mail: dongls@ciac.jl.cn [Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Changchun 130022 (China); Chen, Hui [Department of Science, Shenyang University of Chemical Technology, Shenyang 110142 (China)

    2014-06-14T23:59:59.000Z

    The electron transport properties of bis[2-(2-hydroxyphenyl)-pyridine] beryllium (Bepp{sub 2}) are investigated by impedance spectroscopy over a frequency range of 10?Hz to 13?MHz. The Cole-Cole plots demonstrate that the Bepp{sub 2}-based device can be represented by a single parallel resistance R{sub p} and capacitance C{sub p} network with a series resistance R{sub s}. The current-voltage characteristics and the variation of R{sub p} with applied bias voltage indicate the electron conduction of space-charge-limited current with exponential trap distributions in Bepp{sub 2}. It can be seen that the electron mobility exhibits strong field-dependence in low electric field region and almost saturate in high electric field region. It is experimentally found that Bepp{sub 2} shows dispersion transport and becomes weak as the electric field increases. The activation energy is determined to be 0.043?eV by temperature-dependent conductivity, which is consistent with the result obtained from the temperature-dependent current density characteristics. The electron mobility reaches the orders of 10{sup ?6}–10{sup ?5} cm{sup 2} V{sup ?1} s{sup ?1}, depending on the electric field.

  14. Packaging and Disposal of a Radium-beryllium Source using Depleted Uranium Polyethylene Composite Shielding

    SciTech Connect (OSTI)

    Keith Rule; Paul Kalb; Pete Kwaschyn

    2003-02-11T23:59:59.000Z

    Two, 111-GBq (3 Curie) radium-beryllium (RaBe) sources were in underground storage at the Brookhaven National Laboratory (BNL) since 1988. These sources originated from the Princeton Plasma Physics Laboratory (PPPL) where they were used to calibrate neutron detection diagnostics. In 1999, PPPL and BNL began a collaborative effort to expand the use of an innovative pilot-scale technology and bring it to full-scale deployment to shield these sources for eventual transport and burial at the Hanford Burial site. The transport/disposal container was constructed of depleted uranium oxide encapsulated in polyethylene to provide suitable shielding for both gamma and neutron radiation. This new material can be produced from recycled waste products (depleted uranium and polyethylene), is inexpensive, and can be disposed with the waste, unlike conventional lead containers, thus reducing exposure time for workers. This paper will provide calculations and information that led to the initial design of the shielding. We will also describe the production-scale processing of the container, cost, schedule, logistics, and many unforeseen challenges that eventually resulted in the successful fabrication and deployment of this shield. We will conclude with a description of the final configuration of the shielding container and shipping package along with recommendations for future shielding designs.

  15. PACKAGING AND DISPOSAL OF A RADIUM BERYLLIUM SOURCE USING DEPLETED URANIUM POLYETHYLENE COMPOSITE SHIELDING.

    SciTech Connect (OSTI)

    RULE,K.; KALB,P.; KWASCHYN,P.

    2003-02-23T23:59:59.000Z

    Two, 111 GBq (3 Curie) radium-beryllium (RaBe) sources were in underground storage at the Brookhaven National Laboratory (BNL) since 1988. These sources originated from Princeton Plasma Physics Laboratory (PPPL) where they were used to calibrate neutron detection diagnostics. In 1999, PPPL and BNL began a collaborative effort to expand the use of an innovative pilot-scale technology and bring it to full-scale deployment to shield these sources for eventual transport and burial at the Hanford Burial site. The transport/disposal container was constructed of depleted uranium oxide encapsulated in polyethylene to provide suitable shielding for both gamma and neutron radiation. This new material can be produced from recycled waste products (DU and polyethylene), is inexpensive, and can be disposed with the waste, unlike conventional lead containers, thus reducing exposure time for workers. This paper will provide calculations and information that led to the initial design of the shielding. We will also describe the production-scale processing of the container, cost, schedule, logistics, and many unforeseen challenges that eventually resulted in the successful fabrication and deployment of this shield. We will conclude with a description of the final configuration of the shielding container and shipping package along with recommendations for future shielding designs.

  16. Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Ignition Facility

    SciTech Connect (OSTI)

    Simakov, Andrei N., E-mail: simakov@lanl.gov; Wilson, Douglas C.; Yi, Sunghwan A.; Kline, John L.; Batha, Steven H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, Daniel S.; Milovich, Jose L.; Salmonson, Jay D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)] [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-02-15T23:59:59.000Z

    For indirect drive inertial confinement fusion, Beryllium (Be) ablators offer a number of important advantages as compared with other ablator materials, e.g., plastic and high density carbon. In particular, the low opacity and relatively high density of Be lead to higher rocket efficiencies giving a higher fuel implosion velocity for a given X-ray drive; and to higher ablation velocities providing more ablative stabilization and reducing the effect of hydrodynamic instabilities on the implosion performance. Be ablator advantages provide a larger target design optimization space and can significantly improve the National Ignition Facility (NIF) [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)] ignition margin. Herein, we summarize the Be advantages, briefly review NIF Be target history, and present a modern, optimized, low adiabat, Revision 6 NIF Be target design. This design takes advantage of knowledge gained from recent NIF experiments, including more realistic levels of laser-plasma energy backscatter, degraded hohlraum-capsule coupling, and the presence of cross-beam energy transfer.

  17. Measurement of the Melting Point Temperature of Several Lithium-Sodium-Beryllium Fluoride Salt (Flinabe) Mixtures

    SciTech Connect (OSTI)

    McDonald, J.M; Nygren, R.E.; Lutz, T.J.; Tanaka, T.J; Ulrickson, M.A.; Boyle, T.J.; Troncosa, K.P. [Sandia National Laboratories (United States)

    2005-04-15T23:59:59.000Z

    The molten salt Flibe, a combination of lithium and beryllium fluorides studied for molten salt fission reactors, has been proposed as a breeder and coolant for fusion applications. The melting points of 2LiF-BeF{sub 2} and LiF-BeF{sub 2} are 460 deg. C and 363 deg. C, but LiF-BeF{sub 2} is rather viscous and has less lithium for breeding. In the Advanced Power Extraction (APEX) Program, concepts with a free flowing liquid for the first wall and blanket were investigated. Flinabe (a mixture of LiF, BeF{sub 2} and NaF) was selected for a molten salt design because a melting temperature below 350 deg. C appeared possible and this provided an attractive operating temperature window for a reactor. To confirm that a ternary salt with a low melting temperature existed, several combinations of the fluoride salts, LiF, NaF and BeF{sub 2}, were melted in a stainless steel crucible under vacuum. One had an apparent melting temperature of 305 deg. C. The test system, preparation of the mixtures, melting procedures and temperature curves for the melting and cooling are presented along with the apparent melting points. Thermal modeling of the salt pool and crucible is reported in an accompanying paper.

  18. Helium-cooled, FLiBe-breeder, beryllium-multiplier blanket for MINIMARS

    SciTech Connect (OSTI)

    Moir, R.W.; Lee, J.D.

    1986-06-01T23:59:59.000Z

    We adapted the helium-cooled, FLiBe-breeder blanket to the commercial tandem-mirror fusion-reactor design, MINIMARS. Vanadium was used to achieve high performance from the high-energy-release neutron-capture reactions and from the high-temperature operation permitted by the refractory property of the material, which increases the conversion efficiency and decreases the helium-pumping power. Although this blanket had the highest performance among the MINIMARS blankets designs, measured by Mn/sub th/ (blanket energy multiplication times thermal conversion efficiency), it had a cost of electricity (COE) 18% higher than the University of Wisconsin (UW) blanket design (42.5 vs 35.9 mills/kW.h). This increased cost was due to using higher-cost blanket materials (beryllium and vanadium) and a thicker blanket, which resulted in higher-cost central-cell magnets and the need for more blanket materials. Apparently, the high efficiency does not substantially affect the COE. Therefore, in the future, we recommend lowering the helium temperature so that ferritic steel can be used. This will result in a lower-cost blanket, which may compensate for the lower performance resulting from lower efficiency.

  19. Experimental Investigation and Analysis of the Effective Thermal Properties of Beryllium Packed Beds

    SciTech Connect (OSTI)

    Abou-Sena, A.; Ying, A.; Abdou, M. [University of California at Los Angeles (United States)

    2003-07-15T23:59:59.000Z

    Beryllium, in its pebble form, has been proposed in various blanket concepts to serve different purposes. Thermal property data for such a heterogeneous packed bed is needed, particularly data on the impact of compression forces on its magnitude and consequent temperature profile. The objectives of this work are to obtain and quantify experimental data on the effective thermal conductivity of a Be-He packed bed, on the interface heat conductance between Be and SiC, and on the effects of externally applied pressure on these effective thermal properties. The effective thermal conductivity of a Be-He pebble bed increases as the bed mean temperature increases. The values of effective thermal conductivity vary from 2.15 to 3.00 W/m.K for bed mean temperature ranges from 90 to 420 deg C. Similar temperature effects are seen in the Be/SiC interface heat conductance, as the values of interface heat conductance range from 1140 to 2200 W/m{sup 2}.K. In addition, effective thermal conductivity increases remarkably with the increase of applied pressure (by a factor of 2.53 at 2 MPa), while it remains higher than the initial value by {approx}0.3 W/m.K when external pressure is released (hysteresis effect)

  20. DATE

    Broader source: Energy.gov (indexed) [DOE]

    replacement of conductors of the same nominal voltage, poles, circuit breakers, transformers, capacitors, crossarms, insulators, and downed transmission lines N. Routine...

  1. DATE:

    Office of Legacy Management (LM)

    (w 39 fusrap6 I FROM: Ed Mitchellzm SUBJECT: Elimination Recommendation for American Machine and Foundry in New York City The purpose of this note is to provide the following...

  2. DATE:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corporations Section 743 Any Payment for the Election for a Federal Office or to a Political Committee Section 3003 Reporting on Conference Spending 2 The FAL addresses the...

  3. DATE:

    Energy Savers [EERE]

    Corporations * Section 735 Any Payment for the Election for a Federal Office or to a Political Committee * Section 742 Reporting on Conference Spending The FAL addresses the...

  4. DATE:

    Energy Savers [EERE]

    Letter (AL) 2013-08 and Financial Assistance Letter (FAL) 2013-05 provide Contracting Officers with notice of the recently passed, Whistleblower Protection Enhancement...

  5. Date

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory during July 30 th to August 2 nd , 2012. As the NDE technical lead for the piping fatigue task, I hosted a full day workshop on August 2 nd , 2012. A summary of...

  6. DATE

    Broader source: Energy.gov (indexed) [DOE]

    Anticipated work, however, will not adversely impact the original structure of the building. Generating and Managing Waste: Wooden material wastes would be generated from...

  7. DATE

    Broader source: Energy.gov (indexed) [DOE]

    the subcontractor will be required to follow all applicable requirements (training, abatement requirements, control methods, sampling, etc.). Immediately west of MFC-TR-1 there...

  8. DATE

    Broader source: Energy.gov (indexed) [DOE]

    2 SECTION A. Project Title: INL - Off-Road ATV Use In Support of Engineering Surveys SECTION B. Project Description The proposed action will allow for off-road ATV use near T-24...

  9. DATE

    Broader source: Energy.gov (indexed) [DOE]

    unit will be specified to meet ASHRAE 90.1, "Energy Standard for Buildings Except Low-Rise Residential Buildings" or "DOE Energy Star" as appropriate. SECTION D. Determine the...

  10. DATE

    Broader source: Energy.gov (indexed) [DOE]

    These activities will require Infrastructure upgrades (office space, potable water, wastewater treatment, communications, etc.) to accommodate the increasing number of personnel...

  11. DATE

    Broader source: Energy.gov (indexed) [DOE]

    and seepage testing. This EC also evaluates impacts for the transfer of wastewater in the current lagoons to the Central Facilities Area (CFA) Sewage Treatment Ponds...

  12. DATE

    Broader source: Energy.gov (indexed) [DOE]

    These activities will require infrastructure upgrades (office space, potable water, wastewater treatment, communications, etc.) to accommodate the increasing number of personnel...

  13. DATE

    Broader source: Energy.gov (indexed) [DOE]

    necessary on-site and sent off-site for disposal. The on-site treatment will be macroencapsulation, which will be performed with the use of either commercially available HDPE...

  14. DATE:

    Office of Environmental Management (EM)

    has been revised. The subject form has been posted on the DOE Financial Assistance web page on the Recipients Page under the Financial Assistance Forms and Information for...

  15. Date:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledo SiteTonawanda North SiteD&Dir^0 0 039 1

  16. DATE

    Broader source: Energy.gov (indexed) [DOE]

    in nuclear reactors). SECTION C. Environmental Aspects Potential Sources of Impact 1. Air Pollutants - Fugitive dust may be generated during maintenance activities. All fugitive...

  17. DATE

    Broader source: Energy.gov (indexed) [DOE]

    fan controls to limited air flow capable of maintaining Radiological Control-required air flows necessary for contamination control. 5. Drain and isolate steam, condensate, and...

  18. DATE

    Broader source: Energy.gov (indexed) [DOE]

    200K SECTION C. Environmental Aspects Potential Sources of Impact 1. Air Pollutants - Fugitive emissions will be generated from breaking up the concrete pads around the...

  19. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining » CybersecurityD D D1

  20. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining » CybersecurityD D D112

  1. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining » CybersecurityD D D11242

  2. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining » CybersecurityD D

  3. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining » CybersecurityD D8

  4. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining » CybersecurityD D809

  5. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining » CybersecurityD D8090

  6. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining » CybersecurityD D80901

  7. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining » CybersecurityD D809012

  8. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining » CybersecurityD D8090123

  9. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining » CybersecurityD D80901234

  10. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining » CybersecurityD

  11. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining » CybersecurityD6 SECTION

  12. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining » CybersecurityD6 SECTION7

  13. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining » CybersecurityD6

  14. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining » CybersecurityD609-001

  15. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining » CybersecurityD609-00102

  16. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining » CybersecurityD609-001023

  17. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining »

  18. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining »ICP-12-003 SECTION A.

  19. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining »ICP-12-003 SECTION A. CX

  20. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining »ICP-12-003 SECTION A.

  1. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining »ICP-12-003 SECTION

  2. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining »ICP-12-003 SECTION1

  3. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining »ICP-12-003 SECTION12

  4. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining »ICP-12-003 SECTION122 CX

  5. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining »ICP-12-003 SECTION122 CX4

  6. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining »ICP-12-003 SECTION122

  7. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining »ICP-12-003 SECTION1226

  8. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining »ICP-12-003 SECTION12267

  9. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining »ICP-12-003 SECTION12267CX

  10. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining »ICP-12-003

  11. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining »ICP-12-0030 SECTION A.

  12. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining »ICP-12-0030 SECTION A.EC

  13. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining »ICP-12-0030 SECTION A.EC2

  14. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining »ICP-12-0030 SECTION

  15. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining »ICP-12-0030 SECTION4

  16. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining »ICP-12-0030 SECTION45

  17. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining »ICP-12-0030 SECTION4516

  18. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining »ICP-12-0030 SECTION45162

  19. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining »ICP-12-0030 SECTION45162

  20. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining »ICP-12-0030

  1. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTraining »ICP-12-0030Environmental

  2. Date

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINL is aID Service First DOIDataDTNTemplate

  3. DATE

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2Consolidated Edison5 by ISA -ofDATA REPORT ON SPOUSE/COHABITANT DATACX

  4. DATE

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2Consolidated Edison5 by ISA -ofDATA REPORT ON SPOUSE/COHABITANT

  5. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE TOForm gathers

  6. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE TOForm gathers53

  7. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE TOForm gathers53 61

  8. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE TOForm gathers53

  9. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE TOForm gathers535

  10. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE TOForm gathers5357

  11. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE TOForm

  12. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE TOForm3-12

  13. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE TOForm3-1222

  14. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE TOForm3-12222- 38

  15. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE TOForm3-12222- 3819

  16. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE TOForm3-12222-

  17. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE TOForm3-12222-4

  18. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE TOForm3-12222-48

  19. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE TOForm3-12222-489

  20. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE

  1. DATE:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVE r.x-L* ..-*.. 6<*.

  2. DATE:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVE r.x-L* ..-*..

  3. DATE:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVE r.x-L* ..-*..OOE F 1325.3

  4. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012 FYCustomer-CommentsloadvancesMarchCAES-061

  5. DATE:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_BayoRECORD OF^_.Ther-tin

  6. VALIDATION OF ANALYTICAL METHODS AND INSTRUMENTATION FOR BERYLLIUM MEASUREMENT: REVIEW AND SUMMARY OF AVAILABLE GUIDES, PROCEDURES, AND PROTOCOLS

    SciTech Connect (OSTI)

    Ekechukwu, A

    2009-05-27T23:59:59.000Z

    Method validation is the process of evaluating whether an analytical method is acceptable for its intended purpose. For pharmaceutical methods, guidelines from the United States Pharmacopeia (USP), International Conference on Harmonisation (ICH), and the United States Food and Drug Administration (USFDA) provide a framework for performing such valications. In general, methods for regulatory compliance must include studies on specificity, linearity, accuracy, precision, range, detection limit, quantitation limit, and robustness. Elements of these guidelines are readily adapted to the issue of validation for beryllium sampling and analysis. This document provides a listing of available sources which can be used to validate analytical methods and/or instrumentation for beryllium determination. A literature review was conducted of available standard methods and publications used for method validation and/or quality control. A comprehensive listing of the articles, papers and books reviewed is given in the Appendix. Available validation documents and guides are listed therein; each has a brief description of application and use. In the referenced sources, there are varying approches to validation and varying descriptions of the valication process at different stages in method development. This discussion focuses on valication and verification of fully developed methods and instrumentation that have been offered up for use or approval by other laboratories or official consensus bodies such as ASTM International, the International Standards Organization (ISO) and the Association of Official Analytical Chemists (AOAC). This review was conducted as part of a collaborative effort to investigate and improve the state of validation for measuring beryllium in the workplace and the environment. Documents and publications from the United States and Europe are included. Unless otherwise specified, all referenced documents were published in English.

  7. Dynamic response of materials on subnanosecond time scales, and beryllium properties for inertial confinement fusion

    SciTech Connect (OSTI)

    Swift, Damian C.; Tierney, Thomas E.; Luo Shengnian; Paisley, Dennis L.; Kyrala, George A.; Hauer, Allan; Greenfield, Scott R.; Koskelo, Aaron C.; McClellan, Kenneth J.; Lorenzana, Hector E.; Kalantar, Daniel; Remington, Bruce A.; Peralta, Pedro; Loomis, Eric [Los Alamos National Laboratory, MS E526, Los Alamos, New Mexico 87545 (United States); Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Arizona State University, Tempe, Arizona 85287 (United States)

    2005-05-15T23:59:59.000Z

    During the past few years, substantial progress has been made in developing experimental techniques capable of investigating the response of materials to dynamic loading on nanosecond time scales and shorter, with multiple diagnostics probing different aspects of the behavior. These relatively short time scales are scientifically interesting because plastic flow and phase changes in common materials with simple crystal structures--such as iron--may be suppressed, allowing unusual states to be induced and the dynamics of plasticity and polymorphism to be explored. Loading by laser-induced ablation can be particularly convenient: this technique has been used to impart shocks and isentropic compression waves from {approx}1 to 200 GPa in a range of elements and alloys, with diagnostics including line imaging surface velocimetry, surface displacement (framed area imaging), x-ray diffraction (single crystal and polycrystal), ellipsometry, and Raman spectroscopy. A major motivation has been the study of the properties of beryllium under conditions relevant to the fuel capsule in inertial confinement fusion: magnetically driven shock and isentropic compression shots at Z were used to investigate the equation of state and shock melting characteristics, complemented by laser ablation experiments to investigate plasticity and heterogeneous response from the polycrystalline microstructure. These results will help to constrain acceptable tolerances on manufacturing, and possible loading paths, for inertial fusion ignition experiments at the National Ignition Facility. Laser-based techniques are being developed further for future material dynamics experiments, where it should be possible to obtain high quality data on strength and phase changes up to at least 1 TPa.

  8. Predicting the sensitivity of the beryllium/scintillator layer neutron detector using Monte Carlo and experimental response functions

    SciTech Connect (OSTI)

    Styron, J. D., E-mail: jdstyro@sandia.gov; Cooper, G. W.; Carpenter, Ken; Bonura, M. A. [Department of Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Ruiz, C. L.; Hahn, K. D.; Chandler, G. A.; Nelson, A. J.; Torres, J. A.; McWatters, B. R. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2014-11-15T23:59:59.000Z

    A methodology for obtaining empirical curves relating absolute measured scintillation light output to beta energy deposited is presented. Output signals were measured from thin plastic scintillator using NIST traceable beta and gamma sources and MCNP5 was used to model the energy deposition from each source. Combining the experimental and calculated results gives the desired empirical relationships. To validate, the sensitivity of a beryllium/scintillator-layer neutron activation detector was predicted and then exposed to a known neutron fluence from a Deuterium-Deuterium fusion plasma (DD). The predicted and the measured sensitivity were in statistical agreement.

  9. Fracture toughness of CIP-HIP (cold isostatic pressed - hot isostatic pressed) beryllium at elevated temperatures. Final report, 13 May 1980-13 February 1981

    SciTech Connect (OSTI)

    Barker, L.M.; Jones, A.H.

    1986-04-01T23:59:59.000Z

    The fracture toughness of CIP-HIP (cold isostatic pressed-hot isostatic pressed) beryllium was determined using the short-bar fracture-toughness (K/sub IcSB/) method. The K/sub IcSB/ value measured was 10.96 MPa x the square root of m at room temperature. This falls well within the expected range of 9 to 12 MPa x the square root of m as observed from previous fracture toughness measurements of beryllium. Toughness increased rapidly between 400 F and 500 F reaching a value of 16.7 MPa x the square root of m at 500 F.

  10. Exhibit 2B-Petition for Advance Waiver of Patent Rights UT-B Contracts Div Page 1 of 4

    E-Print Network [OSTI]

    Pennycook, Steve

    's patent waiver regulations at 10 CFR part 784. You must request waivers by using the attached DOE form PETITION FOR ADVANCE WAIVER OF PATENT RIGHTS UNDER 10 C.F.R. PART 784 DOE WAIVER NO. __________ (To.S.C. 202, 203 and 204, as well as other provisions that may be required in accordance with 10 C.F.R. 784

  11. Evaluation of Model based Tracking with TrakMark Dataset Antoine Petit Guillaume Caron Hideaki Uchiyama Eric Marchand

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Evaluation of Model based Tracking with TrakMark Dataset Antoine Petit Guillaume Caron Hideaki in the INRIA La- gadic team with a TrakMark dataset. Since these methods are based on a 3D model based approach, we selected a dataset named "Con- ference Venue Package 01" that includes a 3D textured model

  12. Accelerated Status Exceptionally promising UCI undergraduate Engineering students may, during their junior, senior, or fifth year, petition

    E-Print Network [OSTI]

    George, Steven C.

    Accelerated Status Exceptionally promising UCI undergraduate Engineering students may, during an Accelerated Status Petition Form, as well as the Faculty Advisor Recommendation Form and Letter (in a signed join the Accelerated Status at any time during junior, senior, or 5th year. It is recommended to join

  13. Accelerated Status Exceptionally promising UCI undergraduate Engineering students may, during their junior, senior, or fifth year, petition

    E-Print Network [OSTI]

    George, Steven C.

    Accelerated Status Exceptionally promising UCI undergraduate Engineering students may, during Engineering graduate course numbered 200-289. How to Petition: Students are required to submit an Accelerated the Accelerated Status at any time during junior, senior, or 5th year. It is recommended to join as early

  14. Distributed delay model for density wave dynamics in gas lifted wells Laure Sin`egre, Nicolas Petit

    E-Print Network [OSTI]

    Distributed delay model for density wave dynamics in gas lifted wells Laure Sin`egre, Nicolas Petit in the tubing D. dynamical choking is used to stabilise the density wave instability. In this paper, we propose instabilities cause production losses. One of these instabilities, referred to as the "density-wave

  15. VALIDATION OF ANALYTICAL METHODS AND INSTRUMENTATION FOR BERYLLIUM MEASUREMENT: REVIEW AND SUMMARY OF AVAILABLE GUIDES, PROCEDURES, AND PROTOCOLS

    SciTech Connect (OSTI)

    Ekechukwu, A.

    2008-12-17T23:59:59.000Z

    This document proposes to provide a listing of available sources which can be used to validate analytical methods and/or instrumentation for beryllium determination. A literature review was conducted of available standard methods and publications used for method validation and/or quality control. A comprehensive listing of the articles, papers, and books reviewed is given in Appendix 1. Available validation documents and guides are listed in the appendix; each has a brief description of application and use. In the referenced sources, there are varying approaches to validation and varying descriptions of validation at different stages in method development. This discussion focuses on validation and verification of fully developed methods and instrumentation that have been offered up for use or approval by other laboratories or official consensus bodies such as ASTM International, the International Standards Organization (ISO) and the Association of Official Analytical Chemists (AOAC). This review was conducted as part of a collaborative effort to investigate and improve the state of validation for measuring beryllium in the workplace and the environment. Documents and publications from the United States and Europe are included. Unless otherwise specified, all documents were published in English.

  16. Measurement of the melting point temperature of several lithium-sodium-beryllium fluoride salt (FLINABE) mixtures.

    SciTech Connect (OSTI)

    Boyle, Timothy J.; Troncosa, Kenneth P.; Nygren, Richard Einar; Lutz, Thomas Joseph; McDonald, Jimmie M.; Tanaka, Tina Joan; Ulrickson, Michael Andrew

    2004-09-01T23:59:59.000Z

    The molten salt Flibe, a combination of lithium and beryllium flourides, was studied for molten salt fission reactors and has been proposed as a breeder and coolant for the fusion applications. 2LiF-BeF{sub 2} melts at 460 C. LiF-BeF{sub 2} melts at a lower temperature, 363 C, but is rather viscous and has less lithium breeder. In the Advanced Power Extraction (APEX) Program, concepts with a free flowing ternary molten salt for the first wall surface and blanket were investigated. The molten salt (FLiNaBe, a ternary mixture of LiF, BeF2 and NaF) salt was selected because a melting temperature below 350 C that would provide an attractive operating temperature window for a reactor application appeared possible. This information came from a Russian binary phase diagram and a US ternary phase diagram in the 1960's that were not wholly consistent. To confirm that a ternary salt with a low melting temperature existed, several combinations of the fluoride salts, LiF, NaF and, BeF{sub 2}, were melted in a small stainless steel crucible under vacuum. The proportions of the three salts were selected to yield conglomerate salts with as low a melting temperature as possible. The temperature of the salts and the crucible were recorded during the melting and subsequent re-solidification using a thermocouple directly in the salt pool and two thermocouples embedded in the crucible. One mixture had an apparent melting temperature of 305 C. Particular attention was paid to the cooling curve of the salt temperature to observe evidence of any mixed intermediate phases between the fully liquid and fully solid states. The clarity, texture, and thickness were observed and noted as well. The test system, preparation of the mixtures, and the melting procedure are described. The temperature curves for the melting and cooling of each of the mixtures are presented along with the apparent melting points. Thermal modeling of the salt pool and crucible was also done and is reported in a separate paper.

  17. DATE: TO: FROM: POLICY FLASH

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE09 DATE:28

  18. DATE: TO: FROM: POLICY FLASH

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE09 DATE:284

  19. DATE: TO: FROM: POLICY FLASH

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2Consolidated Edison5 by ISA -ofDATA REPORT ON7 DATE: May54 7

  20. The Passivity and Breakdown of Beryllium in Aqueous Solutions M.A. Hill, D.P. Butt, and R.S. Lillard

    E-Print Network [OSTI]

    .S. Lillard Materials Corrosion and Environmental Effects Laboratory Materials Science and Technology Division, the presence of the fluoride increased the passive current density of beryllium, but had no effect. It is an attractive engineering material for nuclear applications due to its low neutron cross section

  1. Vehicle arrived for disposal Date Disposal of Asset form approved (copy required) Date

    E-Print Network [OSTI]

    Botea, Adi

    Colour Engine (ltrs) Fuel (ulp/diesel) Transmission (auto/manual) Compliance date Kilometres Additions

  2. Beyond chemical accuracy: The pseudopotential approximation in diffusion Monte Carlo calculations of the HCP to BCC phase transition in beryllium

    E-Print Network [OSTI]

    Shulenburger, Luke; Desjarlais, M P

    2015-01-01T23:59:59.000Z

    Motivated by the disagreement between recent diffusion Monte Carlo calculations and experiments on the phase transition pressure between the ambient and beta-Sn phases of silicon, we present a study of the HCP to BCC phase transition in beryllium. This lighter element provides an oppor- tunity for directly testing many of the approximations required for calculations on silicon and may suggest a path towards increasing the practical accuracy of diffusion Monte Carlo calculations of solids in general. We demonstrate that the single largest approximation in these calculations is the pseudopotential approximation. After removing this we find excellent agreement with experiment for the ambient HCP phase and results similar to careful calculations using density functional theory for the phase transition pressure.

  3. Analyses of engineering-oriented neutronics integral experiments utilizing beryllium in various configurations with 14 MeV point source

    SciTech Connect (OSTI)

    Youssef, M.; Abdou, M.; Kumar, A. [Univ. of California, Los Angeles, CA (United States)] [and others

    1994-12-31T23:59:59.000Z

    The analysis of integral experiments on tritium breeding rate (TPR), in-system spectrum, and several reaction rates inside a Li{sub 2}O test assembly were performed in a closed geometry with a 14 MeV point source in which beryllium has been extensively utilized as a neutron multiplier. This activity was part of the USDOE/JAERI Collaborative Program on Fusion Blanket Neutronics with the objective of verifying the present neutron transport codes and databases in predicting key design parameters such as TPR. The test assembly itself (with dimension of {approximately}87 cm x {approximately}87 cm x 60 cm) is located at one end of a Li{sub 2}CO{sub 3} enclosure and the neutron point source is located at a distance of {approximately}78 cm from the assembly. The enclosure is surrounded from the outside by polyethylene layer (5 cm-thick) to minimize the neutron wall-room effect.

  4. Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions

    SciTech Connect (OSTI)

    Pestryakov, Efim V [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation); Alimpiev, A I [Design Technological Institute of Monocrystals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation); Matrosov, V N [Belorussian State Polytechnical Academy, Minsk-107 (Belarus)

    2001-08-31T23:59:59.000Z

    The physical and laser properties of beryllium-containing BeAl{sub 2}O{sub 4}, BeAl{sub 6}O{sub 10}, Be{sub 3}Al{sub 2}Si{sub 6}O{sub 18}, and BeLaAl{sub 11}O{sub 19} oxide crystals doped with chromium and titanium ions are studied. The Cr{sup 3+}:BeAl{sub 2}O{sub 4}, Cr{sup 3+}:BeAl{sub 6}O{sub 10}, and Ti{sup 3+}:BeAl{sub 2}O{sub 4} crystals were shown to compare favourably in physical and laser properties with the well-known laser media and to be candidates for femtosecond laser systems. (lasers and amplifiers)

  5. STARTUP REACTIVITY ACCOUNTABILITY ATTRIBUTED TO ISOTOPIC TRANSMUTATIONS IN THE IRRADIATED BERYLLIUM REFLECTOR OF THE HIGH FLUX ISTOTOPE REACTOR

    SciTech Connect (OSTI)

    Chandler, David [ORNL] [ORNL; Maldonado, G Ivan [ORNL] [ORNL; Primm, Trent [ORNL] [ORNL

    2010-01-01T23:59:59.000Z

    The objective of this study is to develop a methodology to predict the reactivity impact as a function of outage time between cycles of 3He, 6Li, and other poisons in the High Flux Isotope Reactor s (HFIR) beryllium reflector. The reactivity worth at startup of the HFIR has been incorrectly predicted in the past after the reactor has been shut-down for long periods of time. The incorrect prediction was postulated to be due to the erroneous calculation of 3He buildup in the beryllium reflector. It is necessary to develop a better estimate of the start-of-cycle symmetric critical control element positions since if the estimated and actual symmetrical critical control element positions differ by more than $1.55 in reactivity (approximately one-half inch in control element startup position), HFIR is to be shutdown and a technical evaluation is performed to resolve the discrepancy prior to restart. 3He is generated and depleted during operation, but during an outage, the depletion of 3He ceases because it is a stable isotope. 3He is born from the radioactive decay of tritium, and thus the concentration of 3He increases during shutdown. The computer program SCALE, specifically the TRITON and CSAS5 control modules including the KENO V.A, COUPLE, and ORIGEN functional modules were utilized in this study. An equation relating the down time (td) to the change in symmetric control element position was generated and validated against measurements for approximately 40 HFIR operating cycles. The newly-derived correlation was shown to improve accuracy of predictions for long periods of down time.

  6. Delisting petition for 300-M saltstone (treated F006 sludge) from the 300-M liquid effluent treatment facility

    SciTech Connect (OSTI)

    Not Available

    1989-04-04T23:59:59.000Z

    This petition seeks exclusion for stabilized and solidified sludge material generated by treatment of wastewater from the 300-M aluminum forming and metal finishing processes. The waste contains both hazardous and radioactive components and is classified as a mixed waste. The objective of this petition is to demonstrate that the stabilized sludge material (saltstone), when properly disposed, will not exceed the health-based standards for the hazardous constituents. This petition contains sampling and analytical data which justify the request for exclusion. The results show that when the data are applied to the EPA Vertical and Horizontal Spread (VHS) Model, health-based standards for all hazardous waste constituents will not be exceeded during worst case operating and environmental conditions. Disposal of the stabilized sludge material in concrete vaults will meet the requirements pertaining to Waste Management Activities for Groundwater Protection at the Savannah River Site in Aiken, S.C. Documents set forth performance objectives and disposal options for low-level radioactive waste disposal. Concrete vaults specified for disposal of 300-M saltstone (treated F006 sludge) assure that these performance objectives will be met.

  7. !Y-Y-2000062! J:\\Registration,Readmits,Spec. programs\\Data (Forms, Reports, Etc.)\\Registrar Forms and Petitions\\Word Docs\\Partial Fee Reduction_Barcoded.doc

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    and Petitions\\Word Docs\\Partial Fee Reduction_Barcoded.doc Revised 5/26/2011 SS REQUEST FOR PARTIAL FEE Educational Fee and must be submitted to the Office of the Registrar. A petition for a deficit load should to a complete withdraw from the University. 2. Approval for partial fee reduction is not automatic. To qualify

  8. PURCHASE REQUEST FORM (Rev. 8/6/14) Vendor: Date: Date Required

    E-Print Network [OSTI]

    Eustice, Ryan

    PURCHASE REQUEST FORM (Rev. 8/6/14) Shortcode Vendor: Date: Date Required: Vendor # (if known attachments/quotes from the Vendor to CEE-Purchasing@umich.edu. For Non-M-Marketsite orders only. Once

  9. Summer Academy Scholarship Application Name: Date

    E-Print Network [OSTI]

    Schaefer, Marcus

    Summer Academy Scholarship Application Name: Date: Address: City: State: Zip Code: Please for this scholarship? In the spirit of St. Vincent DePaul, Summer Academy scholarships are distributed based on both Date Apply online to the Summer Academy before submitting your scholarship application. You must first

  10. Range Creek Calibrated Dates Beta-202190

    E-Print Network [OSTI]

    Provancher, William

    Range Creek Calibrated Dates 0 200 400 600 800 1000 1200 1400 Beta-202190 Beta-175753 Beta-175755 Beta-235067 Beta-202189 Beta-214831 Beta-202188 Beta-202191 Beta-203630 Beta-214832 Beta-175754 Beta a Carbon-14 calibrated date (95% CI) between 1000 and 1200 C.E. (Figure 5: Beta-235067). The calibrated

  11. Absolute Time Radiometric Dating: the source

    E-Print Network [OSTI]

    Kammer, Thomas

    Absolute Time Radiometric Dating: the source of the dates on the Geologic Time Scale #12 as an element changes to another element, e.g. uranium to lead. · The parent element is radioactive · Carbon-14, C14 Nitrogen-14, N14 · Uranium-235, U235 Lead-207, Pb207 · Potassium-40, K40 Argon-40, Ar40

  12. Exact Location : Date of Accident : AM PM

    E-Print Network [OSTI]

    Swaddle, John

    SSN Cell Phone Home Phone Work Phone Exact Location : Date of Accident : AM PM Date accident treatment provided? Yes No Where Was time lost from work? Yes No If yes, how long? Could this accident have the following information as soon as it relates to your work related accident/injury/illness within 72 hours

  13. STATE OF CALIFORNIA NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor DATE: February 25, 2011

    E-Print Network [OSTI]

    ) submitted a petition to amend various Conditions of Certification for the Gilroy Cogeneration Project (GCP, as currently written. BACKGROUND The Gilroy Cogeneration facility is a 115 MW cogeneration facility in Santa

  14. Characterization of a Sealed Americium-Beryllium (AmBe) Source by Inductively Coupled Plasma Mass Spectrometry

    SciTech Connect (OSTI)

    James Sommers; Marcos Jimenez; Mary Adamic; Jeffrey Giglio; Kevin Carney

    2009-12-01T23:59:59.000Z

    Two Americium-Beryllium neutron sources were dismantled, sampled (sub-sampled) and analyzed via inductively coupled plasma mass spectrometry (ICP-MS). Characteristics such as “age” since purification, actinide content, trace metal content and inter and intra source composition were determined. The “age” since purification of the two sources was determined to be 25.0 and 25.4 years, respectively. The systematic errors in the “age” determination were ± 4 % 2s. The amount and isotopic composition of U and Pu varied substantially between the sub-samples of Source 2 (n=8). This may be due to the physical means of sub-sampling or the way the source was manufactured. Source 1 was much more consistent in terms of content and isotopic composition (n=3 sub-samples). The Be-Am ratio varied greatly between the two sources. Source 1 had an Am-Be ratio of 6.3 ± 52 % (1s). Source 2 had an Am-Be ratio of 9.81 ± 3.5 % (1s). In addition, the trace element content between the samples varied greatly. Significant differences were determined between Source 1 and 2 for Sc, Sr, Y, Zr, Mo, Ba and W.

  15. SAVE THE DATE!!! The Silicon Valley

    E-Print Network [OSTI]

    Su, Xiao

    SAVE THE DATE!!! The Silicon Valley 3rd Annual Social Innovation Leadership Forum 2014 (SILF 2014 towards a better tomorrow... Register for the event today! The Social Innovation Leadership Forum (SILF

  16. Oklahoma 4-H Enrollment Form Today's Date: ___________________

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    - wind, electric, hydro, solar, gas, oil, coal, etc. EOklahoma 4-H Enrollment Form Today's Date: ___________________ Personal Information First Name student/child to receive direct electric/USP communications from 4-H / OCES staff for educational

  17. Version Date: July 2012 COPYRIGHT & TRADEMARKS

    E-Print Network [OSTI]

    WEB Clock Version Date: July 2012 #12;COPYRIGHT & TRADEMARKS Copyright © 1998, 2011, Oracle and Guide WEB Clock Page iii Table of Contents WEB Clock ........................................................................................................................ 1 WEB Clock Procedure

  18. MRSEC TRAVEL APPROVAL REQUEST FORM Name: __________________________________________________ Date: ____________________

    E-Print Network [OSTI]

    Rubloff, Gary W.

    : __________________________________________________________________ __________________________________________________________________________________ VERY IMPORTANT: Please attach the abstract(s) for your presentation. Abstract(s) must cite that your work was supported by the NSF-MRSEC at the University of Maryland, DMR # 0520471. Departure Date

  19. RESIDENTIAL BURGLARY DATE: November 25, 2014

    E-Print Network [OSTI]

    Rose, Michael R.

    RESIDENTIAL BURGLARY DATE: November 25, 2014 INCIDENT / LOCATION: Residential Burglary in Vista Del 22, 2014, at approximately 11:07 pm, the UCI Police Department received a report of a residential

  20. NO. REV. NO. Systems Division DATE

    E-Print Network [OSTI]

    Rathbun, Julie A.

    -~ NO. REV. NO. EATM-15 PAGE OF ~ Systems Division DATE EASEP /PSEP Solar Panel Development Design+"'--.:L'_;;;J....;::::::..··-=·~::!!:!!!e::...._ K. Hsi #12;NO. REV. NO. EATM-15 EASEP/PSEP Solar Panel Development ~ Systems Division Design of the EASE-PSEP Solar Panel Array~PA::G:,:E:..::=l=~o:F~=2=7= DATE 20 Nov. 1968 1. 0 SUMMARY Electrical power

  1. 2014 NEJC Save the Date (Spanish) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2014 NEJC Save the Date (Spanish) 2014 NEJC Save the Date (Spanish) 2014 National Environmental Justice Conference and Training Program Save the Date, March 26 to 28, 2014 Save the...

  2. 2014 NEJC Save the Date (English) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    4 NEJC Save the Date (English) 2014 NEJC Save the Date (English) 2014 National Environmental Justice Conference and Training Program Save the Date, March 26 to 28, 2014 Save the...

  3. Chronological information and uncertainty Radiocarbon dating & calibration -Paula Reimer

    E-Print Network [OSTI]

    Sengun, Mehmet Haluk

    naked body'. Robert Boyle 1663 Includes ­ Thermoluminescence (TL), Optically stimulated luminescenceSUPRA-net: Chronological information and uncertainty Radiocarbon dating & calibration - Paula Tephrochronology ­ David Lowe U series dating ­ David Richards* Combining multiple dating techniques ­ Andrew

  4. NEMA Lighting, CCE Overview and Update presentation, dated 05...

    Broader source: Energy.gov (indexed) [DOE]

    Equipment-- AHRI Annual Meeting CCE Overview and Update Presenation, dated April 13, 2011 NEMA Distribution Transformers, CCE Overview and Update presentation, dated 05242011...

  5. SAVE THE DATE - 2015 National Environmental Justice Conference...

    Broader source: Energy.gov (indexed) [DOE]

    EJ Save the Date More Documents & Publications 2014 NEJC Save the Date (English) ITP Aluminum: Technical Working Group on Inert Anode Technologies Leadership Transition Program...

  6. Experimental Investigations on Pulsed Nd:YAG Laser Welding of C17300 Copper-Beryllium and 49Ni-Fe Soft Magnetic Alloys

    SciTech Connect (OSTI)

    Mousavi, S. A. A. Akbari [School of Metallurgy and Materials Engineering, School of Engineering University of Tehran, Tehran (Iran, Islamic Republic of); School of Metallurgy and Materials Engineering, School of Engineering University of Tehran, Tehran (Iran, Islamic Republic of); Ebrahimzadeh, H. [School of Metallurgy and Materials Engineering, School of Engineering University of Tehran, Tehran (Iran, Islamic Republic of)

    2011-01-17T23:59:59.000Z

    Copper-beryllium and soft magnetic alloys must be joined in electrical and electro-mechanical applications. There is a high difference in melting temperatures of these alloys which cause to make the joining process very difficult. In addition, copper-beryllium alloys are of age hardenable alloys and precipitations can brittle the weld. 49Ni-Fe alloy is very hot crack sensitive. Moreover, these alloys have different heat transfer coefficients and reflection of laser beam in laser welding process. Therefore, the control of welding parameters on the formation of adequate weld puddle composition is very difficult. Laser welding is an advanced technique for joining of dissimilar materials since it can precisely control and adjust the welding parameters. In this study, a 100W Nd:YAG pulsed laser machine was used for joining 49Ni-Fe soft magnetic to C17300 copper-beryllium alloys. Welding of samples was carried out autogenously by changing the pulse duration, diameter of beam, welding speed, voltage and frequency. The spacing between samples was set to almost zero. The ample were butt welded. It was required to apply high voltage in this study due to high reflection coefficient of copper alloys. Metallography, SEM analysis, XRD and microhardness measurement was used for survey of results. The results show that the weld strength depends upon the chemical composition of the joints. To change the wells composition and heat input of the welds, it was attempted to deviate the laser focus away from the weld centerline. The best strength was achieved by deviation of the laser beam away about 0.1mm from the weld centerline. The result shows no intermetallic compounds if the laser beam is deviated away from the joint.

  7. Experimental Measurement of the Interface Heat Conductance Between Nonconforming Beryllium and Type 316 Stainless Steel Surfaces Subjected to Nonuniform Thermal Deformations

    SciTech Connect (OSTI)

    Abelson, Robert Dean; Abdou, Mohamed A. [University of California, Los Angeles (United States)

    2001-03-15T23:59:59.000Z

    In fusion blanket designs that employ beryllium as a neutron multiplier, the interface conductance h plays a key role in evaluating the blanket's thermal profile. Therefore, an extensive experimental program was conducted to measure the magnitude of h between nonconforming beryllium and Type 316 stainless steel surfaces subjected to nonuniform thermal deformations. The magnitude of h was measured as a function of relevant environmental, surface, and geometric parameters, including surface roughness, contact pressure, gas pressure, gas type, and magnitude and direction of heat flow. The results indicate the following: (a) Decreasing the interfacial surface roughness from 6.28 to 0.28 {mu}m, in 760 Torr of helium, increased the magnitude of h by up to 100%; however, increasing the surface roughness reduced the dependence of h on the magnitude of the contact pressure. (b) The interface conductance was significantly higher for measurements made in helium gas as opposed to air. Additionally, the sensitivity of h to the gas pressure was significantly greater for runs conducted in helium and/or with smoother surfaces. This sensitivity was reduced in air and/or with roughened surfaces, and it was essentially nonexistent for the 6.25-{mu}m specimen for air pressures exceeding 76 Torr. (c) For runs conducted in vacuum, the interface conductance was more sensitive to heat flux than when runs were conducted in 760 Torr of helium. (d) The interface conductance was found to be dependent on the direction of heat flux. When the specimens were arranged so that heat flowed from the steel to the beryllium disk, the magnitude of h was generally greater than in the opposite direction.

  8. La nouvelle norme ISO/IEC 29110La nouvelle norme ISO/IEC 29110 pour les trs petits organismesp p g

    E-Print Network [OSTI]

    Québec, Université du

    La nouvelle norme ISO/IEC 29110La nouvelle norme ISO/IEC 29110 pour les très petits organismesp p g étudiants www.etsmtl.ca Page 2 #12;Une école d'ingénieurs canadienne lauréate du Trophée ISO 2011 pourlauréate du Trophée ISO 2011 pour l'enseignement supérieur en normalisation · L'École de technologie

  9. Votre t petit prix !!! Depuis 60 ans au service des vacances familles et enfants, Vacances Pour Tous propose une autre ide des vacances !

    E-Print Network [OSTI]

    Arleo, Angelo

    4 Mai 2012 Votre été à petit prix !!! Depuis 60 ans au service des vacances familles et enfants, Vacances Pour Tous propose une autre idée des vacances ! Nos équipes vous proposent des vacances en villages vacances, locations, campings en France et à l'étranger mais aussi le plus grand choix de

  10. PETITION FOR ASSIGNMENT OF PATENT RIGHTS TO INVENTOR The undersigned Inventor(s), an employee(s) of The Pennsylvania State University, seeks to have

    E-Print Network [OSTI]

    Lee, Dongwon

    PETITION FOR ASSIGNMENT OF PATENT RIGHTS TO INVENTOR The undersigned Inventor(s), an employee(s) of The Pennsylvania State University, seeks to have the patent rights covering the Invention described in PSU Inv. Disc. No. _________ (which patent rights are described in Appendix A) (hereafter "Patent Rights

  11. Computational Age Dating of Special Nuclear Materials

    SciTech Connect (OSTI)

    None

    2012-06-30T23:59:59.000Z

    This slide-show presented an overview of the Constrained Progressive Reversal (CPR) method for computing decays, age dating, and spoof detecting. The CPR method is: Capable of temporal profiling a SNM sample; Precise (compared with known decay code, such a ORIGEN); Easy (for computer implementation and analysis). ? We have illustrated with real SNM data using CPR for age dating and spoof detection. If SNM is pure, may use CPR to derive its age. If SNM is mixed, CPR will indicate that it is mixed or spoofed.

  12. Date of Birth Declaration Office of the Registrar

    E-Print Network [OSTI]

    Yavuz, Deniz

    that shows your birth date. (Examples: Driver's License, Birth Certificate, Passport, court or other legalDate of Birth Declaration Office of the Registrar http://registrar.wisc.edu OFFICE USE ONLY Date Date of Birth Month: Day: Year: By my signature, I hereby claim that my correct day of birth

  13. Radiocarbon dating of ancient rock paintings

    SciTech Connect (OSTI)

    Ilger, W.A.; Hyman, M.; Rowe, M.W. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry; Southon, J. [Lawrence Livermore National Lab., CA (United States)

    1995-06-20T23:59:59.000Z

    This report presents progress made on a technique for {sup 14}C dating pictographs. A low-temperature oxygen plasma is used coupled with high-vacuum technologies to selectively remove C-containing material in the paints without contamination from inorganic carbon from rock substrates or accretions.

  14. Date: April 1, 2013 Citizenship: Israel, USA

    E-Print Network [OSTI]

    Levit, Anna

    , Haifa, Israel Marital status: Married, four daughters, four grandchildren Web site: http://iew3.technion.Sc. Industrial Engineering and Management Faculty of Industrial Engineering and Management Technion, IIT, Haifa Laboratory, Technion, IIT, Haifa, Israel. 2009 - date Visiting Professor, Engineering Systems Division

  15. CURRICULUM VITAE DATE PREPARED: September 5, 2007

    E-Print Network [OSTI]

    Boas, David

    CURRICULUM VITAE DATE PREPARED: September 5, 2007 PART I: General Information Education 2000- Organization for Human Brain Mapping (OHBM), Member HMS Curriculum Vitae Page 1 of 14 #12;2005- Society for Neuroscience (SFN), Member HMS Curriculum Vitae Page 2 of 14 #12;Part II: Research, Teaching

  16. Proposed Start Date: Title of Project

    E-Print Network [OSTI]

    Rhode Island, University of

    Proposed Start Date: Title of Project: 1 Department:Principal Investigator(s): 1. College: Phone/ Email: 5 6 7 8 Does project involve: Human subjects? No Yes VertebrateAnimals? No Yes Radioactive understand and agree to comply with the URI policies and procedures for misconduct, conflict of interest

  17. SAVE THE DATE! Saskatchewan Epidemiology Association

    E-Print Network [OSTI]

    Saskatchewan, University of

    SAVE THE DATE! Saskatchewan Epidemiology Association Annual Fall Symposium & Workshop November 9 look forward to presentations by: Saskatchewan's Chief Medical Health Officer, Dr. Moira Mc of Regina ­ expert in climate change on the prairies Saskatchewan-based veterinarian ­ name to be announced

  18. DATE: AUGUST 10, 2011 UNIVERSITY OF VICTORIA

    E-Print Network [OSTI]

    Herwig, Falk

    DATE: AUGUST 10, 2011 UNIVERSITY OF VICTORIA FACULTY CURRICULUM VITAE NAME BRUNT JOHN HOWARD TO APPOINTMENT AT UNIVERSITY OF VICTORIA 2004-2007 Vice-President (Academic and Provost), University of Northern British Columbia 1999-2004 Associate Vice-President Research, University of Victoria 1997-2004 Professor

  19. Date: --20 1. Name (BLOCK LETTERS)

    E-Print Network [OSTI]

    Bandyopadhyay, Antar

    Date: - - 20 1. Name (BLOCK LETTERS) : 2. E-Mail ID : 3. Contact Number : +91_____________________ 4. Unit: Eco. & PLANNING STAT-MATH SQC & OR 5. Category you belong : Faculty Visiting Scientist Research Scholar (JRF/SRF/SDP) Student M. Stat MSQE Technical Staff (JTA/STA) Project Staff 6. Duration

  20. Queen's University Environmental Health & Safety Date Issued

    E-Print Network [OSTI]

    Graham, Nick

    Queen's University Environmental Health & Safety Date Issued: November 27, 2013 Page No.: 1: The Department of Environmental Health & Safety 1.0 Introduction Queen's University acknowledges that the use of the Aboriginal culture and heritage. This standard operating procedure outlines the University's guidelines

  1. AMS Internship Program Student Application Date: ______________________

    E-Print Network [OSTI]

    Pulfrey, David L.

    AMS Internship Program ­ Student Application Date: ______________________ Full Name: Student Number the following questions in as much detail as possible. Applications [form +resume] for summer internships are due March 4th 1) Why are you interested in the Internship Program? What do you expect to gain from

  2. SPRU Wednesday Seminar Date 3 July 2012

    E-Print Network [OSTI]

    Sussex, University of

    's electricity sector has to date been inextricably bound up with its dependence on abundant coal resources. This is taking place alongside a reconfiguration of stakeholders traditional to the country's coal, the country's second largest coal producer and the largest black owned company on the Johannesburg Stock

  3. 2011 TRAINING DATES January 10-12

    E-Print Network [OSTI]

    2011 TRAINING DATES January 10-12 March 1-3 April 11-13 June 7-9 July 26-28 September 6-8 November: Tools and Functionality Professional Development Training Course OVERVIEW ArcGIS Desktop II: Tools come- first serve basis. · The workshop registration cost is $650. Payment is due prior to the training

  4. A new approach and computational algorithm for sensitivity/uncertainty analysis for SED and SAD with applications to beryllium integral experiments

    SciTech Connect (OSTI)

    Song, P.M.; Youssef, M.Z.; Abdou, M.A. (Univ. of California, Los Angeles (United States))

    1993-04-01T23:59:59.000Z

    A new approach for treating the sensitivity and uncertainty in the secondary energy distribution (SED) and the secondary angular distribution (SAD) has been developed, and the existing two-dimensional sensitivity/uncertainty analysis code, FORSS, was expanded to incorporate the new approach. The calculational algorithm was applied to the [sup 9]Be(n,2n) cross section to study the effect of the current uncertainties in the SED and SAD of neutrons emitted from this reaction on the prediction accuracy of the tritium production rate from [sup 6]Li(T[sub 6]) and [sup 7]Li(T[sub 7]) in an engineering-oriented fusion integral experiment of the US Department of Energy/Japan Atomic Energy Research Institute Collaborative Program on Fusion Neutronics in which beryllium was used as a neutron multiplier. In addition, the analysis was extended to include the uncertainties in the integrated smooth cross sections of beryllium and other materials that constituted the test assembly used in the experiment. This comprehensive two-dimensional cross-section sensitivity/uncertainty analysis aimed at identifying the sources of discrepancies between calculated and measured values for T[sub 6] and T[sub 7].

  5. HANFORD SITE BERYLLIUM QUESTIONNAIRE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky LearningGetGraphene'sEMSLonly)EnergyP.Oc tBD-8800-804(10/12)

  6. Beryllium FAQs - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I. Ben-Zvi,BenefitsBerkeleyGWDiagnosticFAQs About

  7. Beryllium Program - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBESEnergy Department to Provide $75 Million

  8. Nuclear Speed-Dating | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohnSecurityControls |NavyNuclear Speed-Dating Nuclear

  9. DATE: TO: FROM: SUBJECT: SUMMARY: POLICY FLASH

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site |Documents D.O.E. RACE09 DATE:284~

  10. Property:Modification date | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProceduresFY JumpThisModification date Jump to: navigation,

  11. Student ID Number Date of birth Cell Phone

    E-Print Network [OSTI]

    Pantaleone, Jim

    Name Student ID Number Date of birth Cell Phone New Housing Student Current Housing Student All's phone Crime 2 Information about charges or crime convicted of Date of conviction Court convicted in Sentence received Probation dates Probation officer's name Probation officer's phone Consent: I authorize

  12. Title/Loc/Date: Slide # 1 Jo EllisMonaghan

    E-Print Network [OSTI]

    Ellis-Monaghan, Joanna

    Title/Loc/Date: Slide # 1 Jo Ellis­Monaghan e­mail: joellis@emba.uvm.edu website: http://academics.smcvt.edu/jellis­monaghan #12; Title/Loc/Date: Slide # 2 29(59,(:# . First some problems (network reliability, scheduling; Title/Loc/Date: Slide # 3 6RPH#3UHOLPLQDULHV# # 'HOHWLRQ

  13. 2012 -2013 BIRTH DATE VERIFICATION STUDENT NAME: SPU ID

    E-Print Network [OSTI]

    Nelson, Tim

    an official copy of your Birth Certificate, Passport, or Driver's License with this form and we will update2012 - 2013 BIRTH DATE VERIFICATION STUDENT NAME: SPU ID: The date of birth reported on your Free Application for Federal Student Aid (FAFSA) does not match the date of birth reported in one of the following

  14. 2013 -2014 BIRTH DATE VERIFICATION STUDENT NAME: SPU ID

    E-Print Network [OSTI]

    Nelson, Tim

    an official copy of your Birth Certificate, Passport, or Driver's License with this form and we will update2013 - 2014 BIRTH DATE VERIFICATION STUDENT NAME: SPU ID: The date of birth reported on your Free Application for Federal Student Aid (FAFSA) does not match the date of birth reported in one of the following

  15. Dietetic Internship Program Deadlines for the January 2015 Start Date

    E-Print Network [OSTI]

    Hemmers, Oliver

    Dietetic Internship Program Deadlines for the January 2015 Start Date Application Deadline to change). Check back for specific due date. Internship Dates January 12, 2015 to August 17, 2015 (subject (Dietetic Internship Centralized Application Services). Go to https://portal.dicas.org for more information

  16. UPS 300.019 Effective Date: 3-25-08

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 300.019 Effective Date: 3-25-08 UPS 300.019 ACADEMIC RESPONSIBILITY FOR MISSED INSTRUCTION DUE of the absence. Given prior notice, instructors are encouraged to allow students to make up class work, complete-25-08 EFFECTIVE DATE: March 25, 2008 Supersedes: UPS 300.019 dated 6-19-02 and ASD 07-177 University Policy

  17. UPS 420.105 Effective Date: 4-14-14

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 420.105 Effective Date: 4-14-14 UPS 420.105 RIGHT OF NON-COMPLIANCE, RISK ACTIVITIES Certain EFFECTIVE DATE: April 14, 2014 Supersedes: UPS 420.105 dated 10-3-75 and ASD 14-35 University Policy

  18. UPS 420.105 Effective Date: 10-3-75

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 420.105 Effective Date: 10-3-75 UPS 420.105 RIGHT OF NON-COMPLIANCE, RISK ACTIVITIES Certain, or both. EFFECTIVE DATE: October 3, 1975 Supersedes: UPS 420.105 dated 12-15-74 and FCD 74-175 University

  19. Characteristics of the WWR-K test core and the LEU LTAS to be placed in the central experimental beryllium device.

    SciTech Connect (OSTI)

    Arinkin, F.; Chakrov, P.; Chekushina, L.; Gizatulin,, Sh.; Koltochnik, S.; Hanan, N.; Garner, P.; Nuclear Engineering Division; Kazakhstan Ministry of Energy and Mineral Resources

    2010-03-01T23:59:59.000Z

    In 2010 life test of three LEU (19.7%) lead test assemblies (LTA) is expected in the existing WWR-K reactor core with regular WWR-C-type fuel assemblies and a smaller core with a beryllium insert. Preliminary analysis of test safety is to be carried out. It implies reconstruction of the reactor core history for last three years, including burnup calculation for each regular fuel assembly (FA), as well as calculation of characteristics of the test core. For the planned configuration of the test core a number of characteristics have been calculated. The obtained data will be used as input for calculations on LTA test core steady-state thermal hydraulics and on transient analysis.

  20. CONTRACTOR HAZARDOUS MATERIALS INVENTORY REPORT Project Name: ORNL Y-12 Project Begin Date: Estimated Project End Date

    E-Print Network [OSTI]

    Pennycook, Steve

    CONTRACTOR HAZARDOUS MATERIALS INVENTORY REPORT Project Name: ORNL Y-12 Project Begin Date: Phone Numbers: Project Manager: Field Representative: SHEST Representative: List of Hazardous Materials: Estimated Project End Date: Contractor/Service Subcontractor Name: Contractor/Service Subcontractor Address

  1. STATE OF CALIFORNIA NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor DATE: November 1, 2011

    E-Print Network [OSTI]

    TO: Interested Parties FROM: Mary Dyas, Compliance Project Manager SUBJECT: KERN RIVER COGENERATION River Cogeneration Company filed a petition with the California Energy Commission (Energy Commission) to amend the Energy Commission's Final Decision for the Kern River Cogeneration project. Staff prepared

  2. STATE OF CALIFORNIA NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor DATE: March 25, 2013

    E-Print Network [OSTI]

    TO: Interested Parties FROM: Craig Hoffman, Compliance Project Manager SUBJECT: GILROY COGENERATION a revised petition with the California Energy Commission requesting to modify the Gilroy Cogeneration the district. The Gilroy Cogeneration Project is a 115-megawatt, natural gas-fired power plant located

  3. DATE OF INITIAL ADOPTION AND EFFECTIVE DATE 5/21/2008 APPLICABILITY/ACCOUNTABILITY

    E-Print Network [OSTI]

    Glebov, Leon

    of access control and security protection, whether in storage or in transit. Further defined in UCF policy 4, and process information that is essential to the academic, research, and administrative functions, mainframes, data storage systems, and similar SUBJECT: Effective Date: Policy Number: 5/13/2014 4-002.1 Use

  4. Luminescence Dating `I also brought it [a diamond] to some

    E-Print Network [OSTI]

    Sengun, Mehmet Haluk

    Includes ­ Thermoluminescence (TL), Optically stimulated luminescence (OSL), infrared stimulatedLuminescence Dating `I also brought it [a diamond] to some kind of glimmering light by taking

  5. FEI Program Session: Date: CHRIS Code: Session Number:

    Broader source: Energy.gov (indexed) [DOE]

    OPM Federal Executive Institute - DOE CHRIS Codes: (Program Tuition Cost - 19,875.00) *Program Calendar for Fiscal Year 2015 FEI Program Session: Date: CHRIS Code: Session Number:...

  6. Date Set for Closure of Russian Nuclear Weapons Plant - NNSA...

    National Nuclear Security Administration (NNSA)

    Date Set for Closure of Russian Nuclear Weapons Plant - NNSA Is Helping Make It Happen | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission...

  7. Assessing the potential for luminescence dating in the Mojave Desert, California

    E-Print Network [OSTI]

    Roder, Belinda J.

    2012-01-01T23:59:59.000Z

    dating is that stimulated by heat, called thermoluminescence (TL).thermoluminescence (TL). Below, I provide an introduction to this dating

  8. CRITICAL CONFIGURATION FOR BERYLLIUM REFLECTED ASSEMBLIES OF U(93.15)O2 FUEL RODS (1.506-CM PITCH AND 7-TUBE CLUSTERS)

    SciTech Connect (OSTI)

    Margaret A. Marshall

    2012-05-01T23:59:59.000Z

    A series of critical experiments were completed in 1962-1965 at Oak Ridge National Laboratory’s Critical Experiments Facility in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950’s efforts were made to study “power plants for the production of electrical power in space vehicles”. The MPRE program was a part of those efforts and studied the feasibility of a stainless steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in [fiscal years] 1964, 1965, and 1966. A summary of the program’s effort was compiled in 1967. The delayed critical experiments were a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of 253 unmoderated stainless steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were made to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. “The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector.” The first two experiments in the series were evaluated in HEU-COMP-FAST-001 (SCCA-FUND-EXP-001) and HEU-COMP-FAST-002 (SCCA-FUND-EXP-002). The first experiment had the 253 fuel tubes packed tightly into a 22.87 cm outside diameter (OD) core tank (References 1 and 2). The second experiment in the series, performed in early 1963, had the 253 fuel tubes at a 1.506-cm triangular lattice in a 25.96 cm OD core tank and graphite reflectors on all sides. The third set of experiments in the series, performed in mid-1963, which is studied in this evaluation, used beryllium reflectors. The beryllium reflected system was the preferred reactor configuration for this application because of the small thickness of the reflector. The two core configurations had the 253 fuel tubes at a 1.506-cm triangular lattice and arranged in 7-tube clusters. The experiments have been determined to represent acceptable benchmark experiments. Information for this evaluation was compiled from published reports on all three parts of the experimental series (Reference 1-5) and the experimental logbook as well as from communication with the experimenter, John T. Mihalczo.

  9. Commitcoin: Carbon dating commitments with bitcoin

    E-Print Network [OSTI]

    Jeremy Clark; Er Essex

    Abstract. In the standard definition of a commitment scheme, the sender commits to a message and immediately sends the commitment to the recipient interested in it. However the sender may not always know at the time of commitment who will become interested in verifying it. Further, when the interested party does emerge, it could be critical to establish when the commitment was made. Employing a proof of work protocol at commitment time will later allow anyone to “carbon date ” when the commitment was made, approximately, without trusting any external parties. We present CommitCoin, an instantiation of this approach that harnesses the existing processing power of the Bitcoin peer-to-peer network; a network used to mint and trade digital cash. 1 Introductory Remarks Consider the scenario where Alice makes an important discovery. It is important to her that she receives recognition for her breakthrough, however she would also like to keep it a secret until she can establish a suitable infrastructure for monetizing it. By forgoing publication of her discovery, she risks Bob independently making the same discovery and publicizing it as his own. Folklore suggests that Alice might mail herself a copy of her discovery and leave the letter sealed, with the postal service’s timestamp intact, for a later resolution time. If Bob later claims the same discovery, the

  10. 2014-09-23 Issuance: Energy Conservation Standard for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration Notice of Public Meeting

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of public meeting regarding energy conservation standards for walk-in coolers and freezers; Air-Conditioning, Heating, & Refrigeration Institute petition for reconsideration, as issued by the Deputy Assistant Secretary for Energy Efficiency on September 23, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  11. Revised Date September 18, 2013 Capital Project Planning

    E-Print Network [OSTI]

    . Identify Funding Funding Source(s) 2. Cost Estimate Information (from preliminary estimate form): 3_- Project Name Cost Estimate Low Range High Range #12;Revised Date ­ January 25, 2013 Priority RankingRevised Date ­ September 18, 2013 Capital Project Planning Project Approval Form All capital

  12. An early date for cattle from Namaqualand, South Africa

    E-Print Network [OSTI]

    An early date for cattle from Namaqualand, South Africa: implications for the origins of herding did cattle come to South Africa? Radiocarbon dates on a newly found cow horn indicates a time, the authors favour immigrants moving along a western route through Namibia. Keywords: South Africa

  13. LSPE SAFE/ ARM SLIDE DATE 28 March 197

    E-Print Network [OSTI]

    Rathbun, Julie A.

    : ..'; I ~ ··,~ ' . LSPE SAFE/ ARM SLIDE NO. ATM-1088 REV. NO. PAGE OF- DATE 28 March 197 FAILURE/ ARM SLIDE FAILURE EVALUATION REPORT TABLE OF CONTENTS PURPOSE BACKGROUND DESCRIPTION OF FAILURE with Slides Having PAGI i DATE 0, Page 1 1 3 3 3 12 15 16 Larger Fillet Radius 16 6. 2 Slide Tests With 10

  14. Computer Engineering Graduate Handbook Dated: February 06, 2014

    E-Print Network [OSTI]

    de Lijser, Peter

    Computer Engineering Graduate Handbook Dated: February 06, 2014 MASTER OF SCIENCE IN COMPUTER ENGINEERING Computer Engineering Program College of Engineering & Computer Science California State University-278-5987 Fax: 657-278-5804 http://www.fullerton.edu/ecs/cpe #12;Computer Engineering Graduate Handbook Dated

  15. Assessment of the suitability of zircons for thermoluminescence dating

    E-Print Network [OSTI]

    Donoghue, Joseph

    Assessment of the suitability of zircons for thermoluminescence dating H.J. van Esa, *, H.W. den for experiments by thermoluminescence (TL) and by Laser Ablation ICP-MS to study the role of rare earth elements can- didate for detrital sediment dating by thermolumines- cence (TL). Other important advantages

  16. ROBOTIC MASTERS PLAN OF STUDY FORM NAME: DATE

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    ROBOTIC MASTERS PLAN OF STUDY FORM NAME: DATE PENN ID #: ADVISOR: Expected Graduation Date/FUNDAMENTALS OF AI MEAM 520/ROBOTICS & AUTOMATION MEAM 620/MOTION PLANNING ESE 500/LINEAR SYSTEMS ESE 505 NUMBER & TITLE SEMESTER R RO OB BO OT TI IC CS S E EL LE EC CT TI IV VE ES S (2) COURSE NUMBER & TITLE

  17. COS NUV TA1 Mirror Specification Date: December 8, 1999

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    Letter ECO No. Description Check Approved Date - Initial Release EW 8-13-99 A COS-024 Changes specified in ECO Original Release THE UNIVERSITY OF COLORADO Name Date At Boulder Drawn: E. Wilkinson 8...................................................................................................... 4 3.5 Shipping & Handling...................................

  18. 2014 BRUIN WOODS SUMMER STAFF APPLICATION Name Birth Date

    E-Print Network [OSTI]

    Williams, Gary A.

    2014 BRUIN WOODS SUMMER STAFF APPLICATION Name Birth Date School Address Home Address Phone # ( ) E, Activities and Awards SKILLS, CERTIFICATES & QUALIFICATIONS CAMP SKILLS: On a scale of "0" (no knowledge_____________________________________________________________________________ CERTIFICATIONS (List expiration dates and certifying organizations) Lifeguard Boating Certification Archery

  19. 2012 BRUIN WOODS SUMMER STAFF APPLICATION Name Birth Date

    E-Print Network [OSTI]

    Grether, Gregory

    2012 BRUIN WOODS SUMMER STAFF APPLICATION Name Birth Date School Address Home Address Phone # ( ) E, Activities and Awards SKILLS, CERTIFICATES & QUALIFICATIONS CAMP SKILLS: On a scale of 0 (no knowledge) to 3_____________________________________________________________________________ CERTIFICATIONS (List expiration dates and certifying organizations) Lifeguard Boating Certification NRA Riflery

  20. 2013 BRUIN WOODS SUMMER STAFF APPLICATION Name Birth Date

    E-Print Network [OSTI]

    Williams, Gary A.

    2013 BRUIN WOODS SUMMER STAFF APPLICATION Name Birth Date School Address Home Address Phone # ( ) E, Activities and Awards SKILLS, CERTIFICATES & QUALIFICATIONS CAMP SKILLS: On a scale of "0" (no knowledge_____________________________________________________________________________ CERTIFICATIONS (List expiration dates and certifying organizations) Lifeguard Boating Certification NRA Riflery

  1. UPS 210.100 Effective Date: 3-28-84

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 210.100 Effective Date: 3-28-84 University Policy Statement California State University, Fullerton UPS 210.100 AFFIRMATIVE ACTION POLICY I. PREAMBLE California State University, Fullerton. #12;UPS 210.100 Page 2 of 2 UPS 210.100 Effective Date: 3-28-84 III. DEPARTMENTAL RESPONSIBILITY All

  2. Form Date 4/4/01 Refrigerant Service Order Form

    E-Print Network [OSTI]

    Russell, Lynn

    Recovery Unit ID # : Added Lbs oz Lbs oz Lbs oz Startup Charge Net Refrigerant Added: Lbs oz Parts UsedForm Date 4/4/01 Refrigerant Service Order Form Service ID: Owner: Work Order #: Building: Date: Issued: Completed: Equipment ID: Technicians: Location: Model: Manufact: Serial #: Refrigerant Type

  3. UPS 450.400 Effective Date: 6-14-04

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 450.400 Effective Date: 6-14-04 UPS 450.400 OPEN UNIVERSITY ENROLLMENT POLICY I. OBJECTIVES A University. University Policy Statement California State University, Fullerton #12;UPS 450.400 Page 2 of 3 UPS 450.400 Effective Date: 6-14-04 B. Each semester, all students enrolling through Open University

  4. Date | 1Refrigeration and Air Conditioning EMA Education and Training Date | 2Refrigeration and Air Conditioning EMA Education and Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Date | 1Refrigeration and Air Conditioning EMA Education and Training #12;Date | 2Refrigeration operating pressure (MOP) 5. De-humidifying (Te control) 6. Defrost funtions 7. Loss of charge detection (LOC control) 6. Defrost funtions 7. Loss of charge detection (LOC) 8. Bleed function 9. Sensor placement tips

  5. Accelerator mass spectrometry: from nuclear physics to dating

    SciTech Connect (OSTI)

    Kutschera, W.

    1982-01-01T23:59:59.000Z

    The discussion reviews the use of accelerators originally intended for nuclear physics to do high resolution mass spectrometry for the purpose of isotope dating and age estimation of materials. (GHT)

  6. LBNL Conflict of Interest Advisory Committee (COIAC) Meeting Dates*

    E-Print Network [OSTI]

    LBNL Conflict of Interest Advisory Committee (COIAC) Meeting Dates* June 11, 2014 July 9, 2014 Aug Integrity Office Charter The LBNL Conflict of Interest Advisory Committee (COIAC or committee) acts

  7. NUIN Individual Development Plans (IDP) Student Matriculation Year Advisor Date

    E-Print Network [OSTI]

    Contractor, Anis

    NUIN Individual Development Plans (IDP) Student Matriculation Year Advisor Date Progress during: Summary of Coursework Progress (The Advisor should complete this section) Student's progress in this area): #12;Summary of Research Progress (The Advisor should complete this section) Student's progress

  8. FIXED PRICE RESIDUAL FUNDS POLICY Policy dated March 29, 1999

    E-Print Network [OSTI]

    Weston, Ken

    FIXED PRICE RESIDUAL FUNDS POLICY Policy dated March 29, 1999 After completion of all deliverables required under a fixed-price award, after costs in fulfilling the requirements of the award have been

  9. Site Name: Granite Rock Date: 2005-2007, 2009

    E-Print Network [OSTI]

    McPhee-Shaw, Erika

    Site Name: Granite Rock Date: 2005-2007, 2009 Partners/Collaborators: CC&R Description: Work-native plants identified on Granite Rock site: Bristly Ox Tongue Picris echioides Bull Thistle Cirsium vulgare

  10. DATE A DAtabase of TIM Barrel 2.1 Introduction......................................................................................

    E-Print Network [OSTI]

    Babu, M. Madan

    24 DATE ­ A DAtabase of TIM Barrel Enzymes 2.1 Introduction...................................................................................... 2.2 Objective and salient features of the database .................................... 2.2.1 Choice on the database............................................... 2.4 Features

  11. INTRODUCTION What is research, but a blind date with knowledge.

    E-Print Network [OSTI]

    Minnesota, University of

    CHAPTER 1 INTRODUCTION What is research, but a blind date with knowledge. -Will Henry The purpose for this thesis. Rationale for Study Through many generations of experimentation and theory-building, physics has

  12. COS Coating Reflectivity Specification Date: August 2, 1999

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    Letter ECO No. Description Check Approved Date Initial Release EW 5-25-99 A COS-012 Revision A Original...................................................................................................... 4 5. Shipping & Handling .............................................................................................. 5 5.1 Shipping

  13. Publish date: 06/27/2011 ECE 3311: Electronics I

    E-Print Network [OSTI]

    Gelfond, Michael

    Publish date: 06/27/2011 ECE 3311: Electronics I Credit / Contact hours: 3 / 3 Course coordinator, Oxford University Press 2010. (Recommended) Catalog description: Introduction to electronic devices, amplifiers, and electronic systems. Principles of electronic circuit design and analysis. Pre

  14. UPS 300.003 Effective Date: 1-28-13

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 300.003 Effective Date: 1-28-13 UPS 300.003 University-wide Student Learning Outcomes Preamble New UPS Source: Executive Committee ASD 12-146 With Campus-wide collaboration Academic Senate approved

  15. Paleomagnetic Secular Variation (PSV), 137Cs, and Hg dating techniques

    E-Print Network [OSTI]

    Fountain, Andrew G.

    Portland State University Department of Geology #12;Hg-Mercury contamination dating http fission of Uranium-235 · Due to nuclear weapons testing · Highly water soluble (spreads quickly) · Half

  16. Shock wave compression of hexagonal-close-packed metal single crystals: Time-dependent, anisotropic elastic-plastic response of beryllium

    SciTech Connect (OSTI)

    Winey, J. M.; Gupta, Y. M. [Institute for Shock Physics and Department of Physics, Washington State University, Pullman, Washington 99164 (United States)

    2014-07-21T23:59:59.000Z

    Understanding and modeling the response of hcp metals to high stress impulsive loading is challenging because the lower crystal symmetry, compared to cubic metals, results in a significantly more complex material response. To gain insight into the inelastic deformation of hcp metals subjected to high dynamic stresses, shock wave compression of single crystals provides a useful approach because different inelastic deformation mechanisms can be examined selectively by shock compression along different crystal orientations. As a representative example, we report, here, on wave propagation simulations for beryllium (Be) single crystals shocked along the c-axis, a-axis, and several low-symmetry directions to peak stresses reaching 7?GPa. The simulations utilized a time-dependent, anisotropic material model that incorporated dislocation dynamics, deformation twinning, and shear cracking based descriptions of inelastic deformation. The simulation results showed good overall agreement with measured wave profiles for all the different crystal orientations examined [Pope and Johnson, J. Appl. Phys. 46, 720 (1975)], including features arising from wave mode coupling due to the highly anisotropic inelastic response of Be. This good agreement demonstrates that the measured profiles can be understood in terms of dislocation slip along basal, prismatic, and pyramidal planes, together with deformation twinning along (101{sup ¯}2) planes. Our results show that the response of shocked Be single crystals involves the simultaneous operation of multiple, distinct inelastic deformation mechanisms for all orientations except the c-axis. For shocked c-axis Be, the measured wave profiles do not provide good discrimination between pyramidal slip and other inelastic deformation mechanisms, such as shear cracking. The findings presented here provide insight into the complex inelastic deformation response of shocked Be single crystals and are expected to be useful for other hcp crystals. More broadly, the present work demonstrates the potential of shock wave propagation along low-symmetry directions to examine, and discriminate between, different inelastic deformation mechanisms in crystalline solids.

  17. N du march Objet Date du march Attributaires Code postal

    E-Print Network [OSTI]

    Naud Frédéric

    N° du marché Objet Date du marché Attributaires Code postal attributaire Procédure 06029/1 Travaux marché Objet Date du marché Attributaires Code postal attributaire Procédure 07001/1 Restructuration des/01/2007 FOURQUET SARL 01801 A.O.O. 07012/2 Réaménagement du parc de l'Université Lot n° 1 : travaux d'abattage 06

  18. UPS 102.001 Effective Date: 5-11-12

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 102.001 Effective Date: 5-11-12 UPS 102.001 THE FACULTY DEVELOPMENT CENTER (FDC) IN SUPPORT Board membership shall be as specified in UPS 100.001 Academic Senate Bylaws [BL 11-8]. (b) Functions Statement #12;UPS 102.001 Effective Date: 5-11-12 UPS 102.001 Page 2 of 2 · Review, assess and evaluate

  19. UPS 292.000 Effective Date: 5-6-12

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 292.000 Effective Date: 5-6-12 UPS 292.000 FACULTY LEADERSHIP IN COLLEGIAL GOVERNANCE AWARD contributions to the principle and practice of shared governance. Up to five letters of support may be made part Statement #12;UPS 292.000 Page 2 of 2 UPS 292.000 Effective Date: 5-6-12 c. The nominee's record of service

  20. Date submitted to IS: REQUEST FOR CERTIFICATION OF ATTENDANCE FOR NON-

    E-Print Network [OSTI]

    Information About You: LAST NAME: _________________ First Name: __________ Date: ______ Solar I.D. #: _____________________ Date of Birth: ___________ Semester First Entered Stony Brook: ________ Passport No

  1. Evaluation of Cadmium Ratio and Foil Activation Measurements For Beryllium Reflected Assemblies of U(93.15)O2 Fuel Rods (1.506-cm pitch and 7-tube clusters)

    SciTech Connect (OSTI)

    Margaret A. Marshall

    2014-12-01T23:59:59.000Z

    A series of small, compact critical assembly (SCCA) experiments were completed from 1962 to 1965 at Oak Ridge National Laboratory’s Critical Experiments Facility (ORCEF) in support of the Medium-Power Reactor Experiments (MPRE) program. Initial experiments, performed in November and December of 1962, consisted of a core of un-moderated stainless-steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were performed to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. The graphite reflectors were then changed to beryllium reflectors. For the beryllium reflected assemblies, the fuel was in 1.506-cm-triangular and 7-tube clusters leading to two critical configurations. Once the critical configurations had been achieved, various measurements of reactivity, relative axial and radial activation rates of 235U, and cadmium ratios were performed. The cadmium ratio, reactivity, and activation rate measurements, performed on the 1.506-cm-array critical configuration, have been evaluated and are described in this paper.

  2. California Institute of Technology Request for Employee Clearance Prior to Termination Date

    E-Print Network [OSTI]

    Faraon, Andrei

    California Institute of Technology Date: Request for Employee Clearance Prior to Termination Date/Supervisor Name: Phone Number: Termination Date: International Scholar Services Library Lock and Key Shop P by employee. The following departments will be notified by Human Resources after the termination date: Campus

  3. PAGE 1 OF 1Revised 12/09/2013 Anticipated date of graduation Major Advisor's name

    E-Print Network [OSTI]

    Blei, Ron

    PAGE 1 OF 1Revised 12/09/2013 Anticipated date of graduation Major Advisor's name Department to your advisor. Once the form has been signed off by the advisor and department head, it should funding source to be used: Approvals: Advisor's name Advisor's signature Date Date Date Department head

  4. UPS 100.601 1 Effective Date: 7-7-06

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 100.601 1 Effective Date: 7-7-06 UPS 100.601 PROCEDURES FOR DEPARTMENT/PROGRAM NAME CHANGES I California State University, Fullerton #12;UPS 100.601 UPS 100.601 2 Effective Date: 7-7-06 E. If opposition. Source: University Curriculum Committee EFFECTIVE DATE: July 7, 2006 Supersedes UPS 100.601 dated 10

  5. Construction or Extended Operation of Nuclear Plant (Vermont)

    Broader source: Energy.gov [DOE]

    Any petition for approval of construction of a nuclear energy generating plant within the state, or any petition for approval of the operation of a nuclear energy generating plant beyond the date...

  6. Cultural Diversity Procedures Commencement Date: 20 November, 2002

    E-Print Network [OSTI]

    initiatives to enhance diversity in education and employment; (ii) The provision of human resource management University Plans. 5.4.2 The monitoring of grievances and complaints related to cultural diversity issues Planning and Management Committee Review Date Sep 1, 2011 #12;REVISION HISTORY Revision Ref. No. Approved

  7. Math 110 Homework Assignment 21 due date: Mar. 18, 2013

    E-Print Network [OSTI]

    Roth, Mike

    Math 110 Homework Assignment 21 due date: Mar. 18, 2013 1. Consider a fish population with adult fish and young fish where the transition from one year's population to the next is 0.7 0.2 3 0 representing a 70% adult survival rate from year to year, a 20% survival rate for young fish, and the fact

  8. Publish date: 06/27/2011 ECE 4345: Pulsed Power

    E-Print Network [OSTI]

    Gelfond, Michael

    (gas, vacuum, liquid, solid, and surface) - 3 hours High power switching (closing and opening) - 5Publish date: 06/27/2011 ECE 4345: Pulsed Power Credit / Contact hours: 3 / 3 Course coordinator: Hermann Krompholz Textbook(s) and/or other required material: Pai and Zhang, Introduction to High Power

  9. Finance 2nd Option Worksheet 2010 -2012 Name: Date: UNOFFICIAL

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Finance 2nd Option Worksheet 2010 - 2012 Name: Date: UNOFFICIAL Fall Credits Spring Credits ECNS 3 Spring only BFIN 456 Entrp Finance 3 Fall/Spring BFIN 452 Int'l Finance 3 Spring only BFIN 466/2012 Senior-Level Option Courses Finance Restricted Electives (9 crds required) Form can be found online

  10. Finance 2nd Option Worksheet 2012 -2014 Name: Date: UNOFFICIAL

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Finance 2nd Option Worksheet 2012 - 2014 Name: Date: UNOFFICIAL Fall Credits Spring Credits ECNS 3 Spring only BFIN 456 Entrp Finance 3 Fall/Spring BFIN 452 Int'l Finance 3 Spring only BFIN 466/2012 Senior-Level Option Courses Finance Restricted Electives (9 crds required) Form can be found online

  11. DATE: May 23, 2003 TO: ALL LBNL EMPLOYEES

    E-Print Network [OSTI]

    Knowles, David William

    DATE: May 23, 2003 TO: ALL LBNL EMPLOYEES SUBJECT: Employee Information for Individuals government contractor, LBNL is required to take affirmative action to hire and promote individuals may be notified. The information may also be made available to government official investigating LBNL

  12. Safety Peer Exchange for Tribal Governments Save the Date!

    E-Print Network [OSTI]

    Hartman, Chris

    Safety Peer Exchange for Tribal Governments Save the Date! December 9 and 10, 2014 Please mark your calendars for the Tribal Road Safety Peer Exchange sponsored by the FHWA Office of Safety in cooperation safety. The draft agenda includes: DAY 1 ­ Tuesday December 9, 2014 (8am to 5pm) Presentations o Tribal

  13. BOARD MTG. DATE: 12/1/11 AGENDA REPORT

    E-Print Network [OSTI]

    BOARD MTG. DATE: 12/1/11 AGENDA REPORT TITLE: Adoption of Renewable Energy Resource Procurement to develop a procurement plan for the purchase of 20% of its electricity from renewable resources by calendar the attached Renewable Energy Resources Procurement Plan (Exhibit 2) 2. Adopt the attached Renewable Portfolio

  14. BOARD TEST SHEET HDI LINK CARD NO. DATE

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    BOARD TEST SHEET HDI LINK CARD NO. DATE: Changes on card as delivered from loading company at the rear edge of the board. Verify that all mounting screws are loaded. Crowbar Overvoltage Trip Test Test high limit. Use bench top power supply with test clips on ends of leads. Clip supply leads directly

  15. FMEA for Solar Cell Array DATE 23 Jan, 1969

    E-Print Network [OSTI]

    Rathbun, Julie A.

    " .- Astronaut Handle Central Station ·~ Solar Panel Deployment Linkage Eas~ ALSEPAXES z Carrying Handle Antenna Positioning Mechanism Antenna Mast _ Outboard Solar Panel "B" PSEP Deployed Configuration N'"CJtx w Pl >!'...t. 3 15 PAGE OF DATE 23 Jan. 1969 The solar panels are assembled by bonding a thin sheet of G-1 0 glass

  16. SAVE THE DATE! Canadian Orthopaedic Foot & Ankle Society Symposium

    E-Print Network [OSTI]

    Michelson, David G.

    SAVE THE DATE! Canadian Orthopaedic Foot & Ankle Society Symposium 2015 ANNUAL SYMPOSIUM January 30 focused on treating foot and ankle conditions. DRAFT Schedule: 0700-1000 MEETING 1000-1500 LUNCH/SKI BREAK of British Columbia - Department of Orthopaedics, B.C.'s Foot and Ankle Clinic based at Providence Health

  17. DENDROCHRONOLOGICAL DATING OF THE CHIEF JOHN ROSS HOUSE, ROSSVILLE, GEORGIA

    E-Print Network [OSTI]

    Grissino-Mayer, Henri D.

    Donald, grandfather of Chief John Ross, for his Cherokee bride. This construction date first emerged in the 1950s principal chiefof the Cherokee before the tribe'sforced removal during the Trail of Tears. Using structure was reportedly built in 1797 by John McDonald, grandfa- ther of Chief John Ross, for his Cherokee

  18. DATE OCT 07 2011 RECD. OCT 07 2011

    E-Print Network [OSTI]

    DATE OCT 07 2011 RECD. OCT 07 2011 DOCKET 11-CAI-03 BEFORE THE ENERGY RESOURCES CONSERVATION. Kane Attorney for ENERGY SAVING PROS, LLC., dba ENERGYPROS #12;BEFORE THE ENERGY RESOURCES CONSERVATION/5/2011)ENERGY COMMISSION STAFF COMPLAINANT RESPONDENT California Solar Systems 1411 Rusch Court California

  19. UCPath Project Status Report Report Date August 23, 2013

    E-Print Network [OSTI]

    Russell, Lynn

    unfilled critical positions. Development of UCPath Center operating procedures. UCPath project health check1 UCPath Project Status Report Report Date August 23, 2013 Project Director Anthony Lo Anthony.Lo@ucop.edu Executive Sponsors Nathan Brostrom Peter Taylor Project Summary Tony Lo has resigned as Project Director

  20. Building Name: ____________________________________________ Address: __________________________________________ Completed by: ___________________________________________ Date: ______________ File Number: ___________________

    E-Print Network [OSTI]

    Forms 192 Page 2 of 4 AIR HANDLING UNIT s Unit identification Area served Outdoor Air Intake, Mixing operating mode) s Damper control sequence (describe) s Condition of dampers and controls (note date) Fans air s Actual temperatures supply air mixed air return air outdoor air Coils s Heating fluid discharge

  1. Electrical Safety Program Date of last revision: August 2014

    E-Print Network [OSTI]

    Stuart, Steven J.

    1 Electrical Safety Program Date of last revision: August 2014 #12;2 Table of Contents Table ............................................................................................................... 19 Table 1 ­ Approach Boundaries to Energized Electrical Conductors and Circuit Parts for Shock.) ............................................................................................................................ 21 Table 1a Approach Boundariesa to Energized Electrical Conductors or Circuit Parts for Shock

  2. Date [Rev 10/99] Name [MODEL LETTER OF INTENT

    E-Print Network [OSTI]

    Baker, Chris I.

    Date [Rev 10/99] Name [MODEL LETTER OF INTENT] Title Company Name Address Reference: Proposed CRADA CRADA Dear _____________________: Per our discussions, this Letter of Intent confirms our understanding and Development Agreement (CRADA) by the CRADA Subcommittee and approval by the Director, National Institute

  3. HONORARY DEGREES AWARDED -MAY 1960 TO PRESENT Name Date Awarded

    E-Print Network [OSTI]

    deYoung, Brad

    BROWN, George Malcolm (D.Sc.) September 1969 BROWNE, Norah (LL.D.) May 1987 BROWNE, The Hon. William, Dennis (D.Sc.) May 1980 CHEYNE, Alexander Campbell (D.Litt.) October 1983 CHISLETT, Albert Edgar (LL.DHONORARY DEGREES AWARDED - MAY 1960 TO PRESENT Name Date Awarded ADAM, Mike (LL.D.) May 2006 AITKEN

  4. Date: June 12, 2007 To: Pacific Northwest Demand Response Project

    E-Print Network [OSTI]

    Date: June 12, 2007 To: Pacific Northwest Demand Response Project From: Rich Sedano/RAP and Chuck, 2007 meeting of the Pacific Northwest Demand Response Project, we agreed to form three Working Groups for the evaluation of cost-effectiveness of Demand Response resources. One potential outcome would be for state

  5. Scholarship Updated (date) Illinois State Wild Turkey Scholarship

    E-Print Network [OSTI]

    Karonis, Nicholas T.

    Scholarship Updated (date) Illinois State Wild Turkey Scholarship Scholarship source: Illinois State Wild Turkey Federation Address: Dr. Robert E. Reich, Chair Illinois State Wild Turkey Federation: The Illinois state wild turkey federation is awarding scholarships to 1 st , 2 nd , 3 rd , and 4 th year

  6. Date: 12/6/2014 Page 1 of 2

    E-Print Network [OSTI]

    Brierley, Andrew

    activities by: 2.1. audit and assessment of buildings within NERC estate in order to provide Display EnergyNERC ISSUE: 6 Date: 12/6/2014 Page 1 of 2 NERC NERC Energy Policy Document Control Sheet Document Title Energy Policy Author(s) J Emmerson/J Eacott Document Status Original /agreed document Document

  7. Queen's University Environmental Health & Safety Date Issued: Page No.

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    Queen's University Environmental Health & Safety Date Issued: Page No.: 1 Document No.: SOP-CHEM-04 of Environmental Health & Safety 1.0 Introduction The Mold Prevention Assessment and Remediation Procedures were developed by the Department of Environmental Health & Safety in accordance with the University's Policy

  8. UNCORRECTED PROOF Date: 12:15 Thursday 21 June 2012

    E-Print Network [OSTI]

    Jiggins, Francis

    sensitivity, six additional species of flies were found to be infected with sigma viruses (Longdon et alUNCORRECTED PROOF Date: 12:15 Thursday 21 June 2012 File: Rhabdoviruses 3P 8The Sigma Viruses of Drosophila Ben Longdon, Lena Wilfert and Francis M. Jiggins Abstract The sigma virus of Drosophila

  9. Forestry Internship Summer 2013 June -August (flexible dates)

    E-Print Network [OSTI]

    Mazzotti, Frank

    Forestry Internship ­ Summer 2013 June - August (flexible dates) Plum Creek is the largest, private landowner in the United States with approximately 6 million acres in 19 states. We are seeking forestry to learn forestry practices from a company with a reputation for excellence earned by years of hard work

  10. Policy Framework Policy Commencement Date: 14 March 2012

    E-Print Network [OSTI]

    Policy Framework Policy Commencement Date: 14 March 2012 Category: Strategic Management 1. PURPOSE To manage the development and maintenance of a robust and responsive policy framework that aligns the University's practices with its strategic objectives. 2. POLICY STATEMENT The Policy Framework consists

  11. DATE 13 Janual'y 1969 PSEP Power Transient Analysis

    E-Print Network [OSTI]

    Rathbun, Julie A.

    will probably not exceed 29 volts during sunrise. SOLAR PANEL CHARACTERISTICS The time dependence of the solar;DATE The solar panel array I-V curves are shown in Figure 3. These curves show an open circuit voltage the system. Any degradation of the solar panel could delay first day operation of EASEP until very near

  12. Date: May 1, 2010 To: Penn State University Learning Factory

    E-Print Network [OSTI]

    Demirel, Melik C.

    output vs. time graph. However, we could not obtain solar tracking data for the same. Another problemDate: May 1, 2010 To: Penn State University Learning Factory From: Harris 1 - Automated Solar Charge Station team Class: EE403W - Spring 2010 Subject: Project Recap We were assigned to design a solar

  13. ELECTRONIC VERSION 1.93 Dated December 2011

    E-Print Network [OSTI]

    ELECTRONIC VERSION 1.93 Dated December 2011 Photovoltaic Power Systems And the 2005 National) as they apply to photovoltaic (PV) power systems. The design requirements for the balance-of-systems components in a PV system are addressed, including conductor selection and sizing, overcurrent protection device

  14. Application for Degree or Certificate Last Name: Date of Birth

    E-Print Network [OSTI]

    Adams, Mark

    Application for Degree or Certificate Last Name: Date of Birth: First Name: Email: Middle Name: UNI" section at http://registrar.columbia.edu. Degree or Certificate for Which You Are Applying School: Grad Year: Month: Select: Feb, May, June (HS only), or Oct Department: Degree or Certificate: Undergraduates

  15. Business Continuity Management Policy Commencement Date: 27 April, 2010

    E-Print Network [OSTI]

    Business Continuity Management Policy Commencement Date: 27 April, 2010 Category: Strategic Management 1. PURPOSE 1.1 To assist the University to conduct and maintain Business Continuity Planning (BCP activities as soon as possible following an emergency or critical incident. 1.2 Create a culture of Business

  16. Original article Influence of cutting methods and dates

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ilex L) coppice M Ducrey M Turrel INRA, Station de Sylviculture Méditerranéenne, Avenue A Vivaldi, F the stools initial- ly had large and numerous shoots. Quercus ilex L / coppice / stump sprout / cuttingL/ taillis / rejets de souche / méthode de coupe / date d'exploitation #12;INTRODUCTION Coppice regeneration

  17. NOTICE OF REGULATION REPEAL Date: July 1, 2010

    E-Print Network [OSTI]

    Wu, Shin-Tson

    . James Fenton, Director, Florida Solar Energy Center COMMENTS CONCERNING THE REGULATION REPEAL SHOULDNOTICE OF REGULATION REPEAL Date: July 1, 2010 REGULATION TITLE: REGULATION NO.: Solar Thermal OF THE PROPOSED REGULATION REPEAL: UCF-8.002 Solar Thermal Collector and PV Module Testing Standards. (1

  18. NOTICE OF REGULATION REPEAL Date: July 1, 2010

    E-Print Network [OSTI]

    Wu, Shin-Tson

    , Florida Solar Energy Center COMMENTS CONCERNING THE REGULATION REPEAL SHOULD BE SUBMITTED WITHIN 14 DAYSNOTICE OF REGULATION REPEAL Date: July 1, 2010 REGULATION TITLE: REGULATION NO.: Solar Thermal REGULATION REPEAL: UCF-8.003 Solar Thermal Collector and PV Module Certification. (1) The Center shall

  19. NOTICE OF REGULATION REPEAL Date: July 1, 2010

    E-Print Network [OSTI]

    Wu, Shin-Tson

    . James Fenton, Director, Florida Solar Energy Center COMMENTS CONCERNING THE REGULATION REPEAL SHOULDNOTICE OF REGULATION REPEAL Date: July 1, 2010 REGULATION TITLE: REGULATION NO.: Solar Thermal OF THE PROPOSED REGULATION REPEAL: UCF-8.005 Solar Thermal and Photovoltaic System Standards and Certification

  20. UPS 210.050 Effective Date: 6-16-04

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 210.050 Effective Date: 6-16-04 University Policy Statement California State University, Fullerton UPS 210.050 PERSONNEL POLICY FOR FULL-TIME TEMPORARY FACULTY 1. DEFINITIONS A. In this document UPS documents, temporary faculty have the same rights and responsibilities as do tenure track faculty

  1. UPS 240.200 Effective Date: 9-19-94

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 240.200 Effective Date: 9-19-94 University Policy Statement California State University, Fullerton UPS 240.200 POLICY ON AMOROUS OR SEXUAL RELATIONSHIPS BETWEEN FACULTY, STAFF AND STUDENTS Amorous relationship will be deemed to have violated this policy. #12;UPS 240.200 Page 2 of 2 UPS 240.200 Effective

  2. UPS 300.018 Effective Date: 5-11-12

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 300.018 Effective Date: 5-11-12 UPS 300.018 WITHDRAWAL UNAUTHORIZED ­ ISSUANCE OF WU GRADE When, UPS 300.016 summarizes the campus policy on authorized withdrawals; the administrative grade of W in a class. Such reasons must be documented by the student, in accordance with UPS 300.016. In the first

  3. UPS 210.500 Effective Date: 1-30-13

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 210.500 Effective Date: 1-30-13 UPS 210.500 PROCEDURES: SEARCH COMMITTEES FOR ADMINISTRATIVE by UPS 210.007. A. The work of a search committee is confidential. It is similar in its functions temporary positions. C. Search committees created pursuant to UPS 210.007 shall follow these procedures. 1

  4. MINI-MUSEUM Schedule 2014 DATE TOPIC SPEAKER

    E-Print Network [OSTI]

    Shoubridge, Eric

    MINI-MUSEUM Schedule 2014 DATE TOPIC SPEAKER Oct 15 Dinosaurs and the origin of birds Prof. Hans amphibians Prof. David M. Green (Director, Redpath Museum) Oct. 29 Nov.5 Nov. 12 Pandora's Ballast Tank) Barbara Lawson (Curator of World Cultures, Redpath Museum) Nov. 19 Humans, evolution, and the future

  5. FAILURE MODES AND EFFECTS ANALYSIS Dated: May 27, 2010

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    1 NSTX FAILURE MODES AND EFFECTS ANALYSIS (FMEA) Revision 7 Dated: May 27, 2010 Prepared By: Name.07.13 09:11:02 -04'00' #12;NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-7 / p. 2 of 120 2 Table

  6. Revised 7/30/2012 STUDENT NAME: Date

    E-Print Network [OSTI]

    Barrash, Warren

    to be considered for resident fees are expected to read the Idaho Residency Law and Administrative Rules, complete (month/day/year) and types of assistance? From: To: From: To: IDAHO RESIDENCY DETERMINATION WORKSHEET by a state other than Idaho to attend an institution within Idaho? Yes No If yes, what were the dates

  7. What is a Beryllium Measurement? A Critical Look at Beryllium

    SciTech Connect (OSTI)

    Charles Davis; Dan Field; John Hess; Dan Jensen

    2006-03-01T23:59:59.000Z

    DOE workplaces strive to comply with the 10 CFR 850.31(b)(1) surface concentration release criterion. The usual planning considerations for demonstrating compliance are these: how many swipes, and where; which sample preparation and analytical methods; what reporting limits; and what sample statistic to compare with the criterion. We have reviewed swipe samples from hundreds of Nevada Test Site workplaces: office buildings; experimental facilities; forward area field units; shops; and tunnels. Our experiences have led us to a critical examination of the inner workings of the measurement process itself, involving details generally taken for granted when those usual questions are asked. In this presentation we dissect the ICP-AES Be measurement process. We discuss calibration options and how they impact the distributions of analytical results. We look at distributions of blank results obtained from different labs, and discuss their relevance to determining reporting limits. We examine the way measurements are made from spectra, how that process impacts our understanding of the actual statistical distributions of Be measurements, and how interferences can affect Be measurements. Our objective is to gain sufficient confidence in the measurement process so that the usual questions will make sense and the survey results will be credible. Based on our observations, we offer these recommendations: prepare calibration samples in digested blank swipes; force the calibration line through (0,0); base reporting limits on field blank measurement distributions rather than 40 CFR 236 calculations; use, but do not believe, the usual lognormal distribution assumption; and avoid the 234.861 nm emission line.

  8. Beryllium - HPMC Occupational Health Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I. Ben-Zvi,BenefitsBerkeleyGWDiagnostic

  9. Beryllium Health Advocates - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I. Ben-Zvi,BenefitsBerkeleyGWDiagnosticFAQsHealth

  10. Beryllium Program Feedback - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.

  11. Beryllium Related Links - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.Program Information About Us

  12. Beryllium Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for a JobBernard Matthew Poelker, 2011 The

  13. MATERIALS ENGINEERING KEYWORDS: beryllium, stainless

    E-Print Network [OSTI]

    Abdou, Mohamed

    SURFACES SUBJECTED TO NONUNIFORM THERMAL DEFORMATIONS ROBERT DEAN ABELSON and MOHAMED A. ABDOU* University.*E-mail: abdou@fusion.ucla.edu FUSION TECHNOLOGY VOL. 39 MAR. 2001 157 #12;To understand the interface

  14. Age Dating of Mixed SNM--Preliminary Investigations

    SciTech Connect (OSTI)

    Yuan, D., Guss, P. P., Yfantis, E., Klingensmith, A., Emer, D.

    2011-12-01T23:59:59.000Z

    Recently we investigated the nuclear forensics problem of age determination for mixed special nuclear material (SNM). Through limited computational mixing experiments and interactive age analysis, it was observed that age dating results are generally affected by the mixing of samples with different assays or even by small radioactive material contamination. The mixing and contamination can be detected through interactive age analysis, a function provided by the Decay Interaction, Visualization and Analysis (DIVA) software developed by NSTec. It is observed that for mixed SNM with two components, the age estimators typically fall into two distinct clusters on the time axis. This suggests that averaging or other simple statistical methods may not always be suitable for age dating SNM mixtures. Instead, an interactive age analysis would be more suitable for age determination of material components of such SNM mixtures. This work was supported by the National Center for Nuclear Security (NCNS).

  15. 2014 Smart Grid R&D Program Peer Review Meeting (Project Title) (Presenter's Name) (Presenter's Affiliation) (Date)

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated Worker Registry Summary 2013Evaluation32013 Smart Grid

  16. 2014 Smart Grid R&D Program Peer Review Meeting (Project Title) (Presenter's Name) (Presenter's Affiliation) (Date)

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated Worker Registry Summary 2013Evaluation32013 Smart Grid

  17. Material Safety Data Sheet Ashland Chemical Co. Date Prepared: 01/06/98

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Material Safety Data Sheet Ashland Chemical Co. Date Prepared: 01/06/98 Date Printed: 06/23/99 MSDS General or Generic ID: BLEND Company Emergency Telephone Number: Ashland Chemical Co. 1-800-ASHLAND (1

  18. E-Print Network 3.0 - art dating project Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dating project Search Powered by Explorit Topic List Advanced Search Sample search results for: art dating project Page: << < 1 2 3 4 5 > >> 1 Name List of Academic Credentials...

  19. Auditory Processing Disorders Pre-Screening Form Child's Name:____________________________ Date of Birth:_________________

    E-Print Network [OSTI]

    O'Toole, Alice J.

    Static Encephalopathy Syndrome (i.e. Down Syndrome, Velocardiofacial Syndrome, Pierre Robin Sequence: Diagnosis Date (mm/dd/yyyy) Diagnosis Date (mm/dd/yyyy) ADD/ADHD Anxiety Asperger's Syndrome Autism Behavior

  20. Creation Date: August 8, 2013 Version: 1 Edited by: Application Services -LB ITS Managed Document

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Creation Date: August 8, 2013 Version: 1 Edited by: Application Services - LB ITS Managed Document Date: August 8, 2013 Version: 1 Edited by: Application Services - LB ITS Managed Document PASSWORD

  1. Save the Date: 2014 SunShot Grand Challenge Summit, May 19-22...

    Broader source: Energy.gov (indexed) [DOE]

    Save the Date: 2014 SunShot Grand Challenge Summit, May 19-22, Anaheim, CA Save the Date: 2014 SunShot Grand Challenge Summit, May 19-22, Anaheim, CA January 9, 2014 - 10:02am...

  2. Petrophysics -The Integration of Reservoir Geosciences Date: 8th -11th September 2014

    E-Print Network [OSTI]

    Levi, Ran

    & Integrated Petrophyiscs and Uncertainty Management Date: 2nd - 7th February 2015 Reservoir SurveillancePetrophysics - The Integration of Reservoir Geosciences Date: 8th - 11th September 2014 Integrating Petrophysics and Seismic Data for Reservoir Characterisation GL55518 Reservoir Surveillance

  3. V I E W P O I N T Dating the Tree of Life

    E-Print Network [OSTI]

    Benton, Michael

    dates could be too old as a result of unaccounted-for variations in the rates of mo- lecular evolution

  4. Key Dates | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960 The Ernest OrlandoJohn B.Jorge LuisKayeKey Dates

  5. Key Dates | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960 The Ernest OrlandoJohn B.Jorge LuisKayeKey DatesKey

  6. Key Dates | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960 The Ernest OrlandoJohn B.Jorge LuisKayeKeyKey Dates

  7. Property:File/CreationDate | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProcedures Jump to: navigation, search PropertyCreationDate

  8. Property:Geothermal/AwardDate | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProcedures JumpGreenButtonIDGeochemistryAwardDate Jump to:

  9. Property:Geothermal/ProjectEndDate | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProceduresFY Jump to:Partner6Website JumpProjectEndDate Jump

  10. Property:Geothermal/ProjectStartDate | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProceduresFY Jump to:Partner6Website JumpProjectEndDate

  11. Property:NEPA DecisionDocumentDate | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProceduresFY JumpThisModification date Jump Jump to:Url

  12. Property:OpenEI/PublicationDate | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProceduresFY Description URLs toPublicationDate Jump to:

  13. Curtailment Date & Time Total Wind SCE Plus CSGI Reserves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012 FY 2013 FYCurtailment Date & Time Total

  14. Page 1 of 3 HR; Version: 16/Date: 1/12/09

    E-Print Network [OSTI]

    Knowles, David William

    Dates* of Visit to LBNL: - . * Berkeley Lab reserves the right to change dates at any times. (mm/dd/yy) - (mm/dd/yy) Do you plan to visit LBNL intermittently during your expected dates as stated above? Yes No (e.g. visit LBNL for 2 consecutive weeks, leave LBNL the following week, and return to LBNL for 3

  15. Creation Date: Mar 2014 Version: 1 Edited by: LB Application Services ITS Managed Document

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Creation Date: Mar 2014 Version: 1 Edited by: LB Application Services ITS Managed Document VIEW Date: Mar 2014 Version: 1 Edited by: LB Application Services ITS Managed Document VIEW CLIENT Date: Mar 2014 Version: 1 Edited by: LB Application Services ITS Managed Document VIEW CLIENT

  16. Change of Personal Details Form Current Name and Date of Birth

    E-Print Network [OSTI]

    from list below. Change of Name Change of Date of Birth (Primary) (Secondary) -Birth Certificate (or extract) -Citizenship Papers -Medicare Card -Passport -Birth Certificate (or Extract) -Valid DriversChange of Personal Details Form Current Name and Date of Birth Current Name Date of Birth Correct

  17. UPS 240.200 1 Effective Date: 9-19-94

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 240.200 1 Effective Date: 9-19-94 UPS 240.200 POLICY ON AMOROUS OR SEXUAL RELATIONSHIPS BETWEEN Policy Statement California State University, Fullerton #12;UPS 240.200 UPS 240.200 2 Effective Date: 9 of this policy. EFFECTIVE DATE: September 19, 1994 [New UPS] Supersedes ASD 94-115 #12;

  18. UPS 300.022 1 Effective Date: 3-3-14

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 300.022 1 Effective Date: 3-3-14 UPS 300.022 Assessment of Student Learning Outcomes DATE: March 3, 2014 Supersedes UPS 300.022 dated 8-16-2000 and ASD 13-171 University Policy Statement

  19. UPS 210.060 1 Effective Date: 1-10-00

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 210.060 1 Effective Date: 1-10-00 UPS 210.060 PERSONNEL POLICY FOR PART-TIME LECTURERS 1;UPS 210.060 UPS 210.060 2 Effective Date: 1-10-00 appropriate Vice President shall decide whether) Supersedes: UPS 210.060 dated September 20, 1999 and ASD 99-125 #12;

  20. Year of Birth Determination Using Radiocarbon Dating of Dental Enamel

    SciTech Connect (OSTI)

    Buchholz, B A; Spalding, K L

    2009-03-10T23:59:59.000Z

    Radiocarbon dating is typically an archaeological tool rather than a forensic one. Recently however, we have shown that the amount of radiocarbon present in tooth enamel, as a result of nuclear bomb testing during the cold war, is a remarkably accurate indicator of when a person is born. Enamel isolated from human teeth is processed to form graphite and carbon-14 ({sup 14}C) levels are measured using accelerator mass spectrometry. Since there is no turnover of enamel after it is formed, {sup 14}C levels in the enamel represent {sup 14}C levels in the atmosphere at the time of its formation. In this paper we describe the strategy used to determine the date of birth of an individual based on radiocarbon levels in tooth enamel, focusing on the methodology of this strategy. Year of birth information can significantly assist police investigators when the identity of a deceased individual is unknown. In such cases police will try to match particulars of the unidentified individual (which is often only gender and/or an estimate of age), with particulars from missing persons lists.

  1. TO BE COMPLETED BY DEPARTMENT/SCHOOL (see also page 2)

    E-Print Network [OSTI]

    & Professional Studies COURSE PERFORMANCE SUMMARY (CPS) PETITIONS MUST BE SUBMITTED TO: LA&PS Petitions, N 926 Ross, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3 STUDENTS: Please note that this CPS and dates are mandatory where requested. This information is essential for the Committee on Petitions

  2. ANALYSIS OF OUT OF DATE MCU MODIFIER LOCATED IN SRNL

    SciTech Connect (OSTI)

    Crawford, C.

    2014-10-22T23:59:59.000Z

    SRNL recently completed density measurements and chemical analyses on modifier samples stored in drums within SRNL. The modifier samples date back to 2008 and are in various quantities up to 40 gallons. Vendor information on the original samples indicates a shelf life of 5 years. There is interest in determining if samples that have been stored for more than the 5 year shelf life are still acceptable for use. The Modular Caustic Side Solvent Extraction Unit (MCU) Solvent component Cs-7SB [(2,2,3,3- tetraflouropropoxy)-3-(4-sec-butylphenoxy)-2-propanol, CAS #308362-88-1] is used as a diluent modifier to increase extractant solubility and provide physical characteristics necessary for diluent trimming.

  3. L{sub g}?=?100?nm In{sub 0.7}Ga{sub 0.3}As quantum well metal-oxide semiconductor field-effect transistors with atomic layer deposited beryllium oxide as interfacial layer

    SciTech Connect (OSTI)

    Koh, D., E-mail: dh.koh@utexas.edu, E-mail: Taewoo.Kim@sematech.org [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States); SEMATECH, Inc., Albany, New York 12203 (United States); Kwon, H. M. [Department of Electronics Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, T.-W., E-mail: dh.koh@utexas.edu, E-mail: Taewoo.Kim@sematech.org; Veksler, D.; Gilmer, D.; Kirsch, P. D. [SEMATECH, Inc., Albany, New York 12203 (United States); Kim, D.-H. [SEMATECH, Inc., Albany, New York 12203 (United States); GLOBALFOUNDRIES, Malta, New York 12020 (United States); Hudnall, Todd W. [Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, 78666 (United States); Bielawski, Christopher W. [Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712 (United States); Maszara, W. [GLOBALFOUNDRIES, Santa Clara, California 95054 (United States); Banerjee, S. K. [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States)

    2014-04-21T23:59:59.000Z

    In this study, we have fabricated nanometer-scale channel length quantum-well (QW) metal-oxide-semiconductor field effect transistors (MOSFETs) incorporating beryllium oxide (BeO) as an interfacial layer. BeO has high thermal stability, excellent electrical insulating characteristics, and a large band-gap, which make it an attractive candidate for use as a gate dielectric in making MOSFETs. BeO can also act as a good diffusion barrier to oxygen owing to its small atomic bonding length. In this work, we have fabricated In{sub 0.53}Ga{sub 0.47}As MOS capacitors with BeO and Al{sub 2}O{sub 3} and compared their electrical characteristics. As interface passivation layer, BeO/HfO{sub 2} bilayer gate stack presented effective oxide thickness less 1 nm. Furthermore, we have demonstrated In{sub 0.7}Ga{sub 0.3}As QW MOSFETs with a BeO/HfO{sub 2} dielectric, showing a sub-threshold slope of 100?mV/dec, and a transconductance (g{sub m,max}) of 1.1 mS/?m, while displaying low values of gate leakage current. These results highlight the potential of atomic layer deposited BeO for use as a gate dielectric or interface passivation layer for III–V MOSFETs at the 7?nm technology node and/or beyond.

  4. Detection and Analysis of Threats to the Energy Sector: DATES

    SciTech Connect (OSTI)

    Alfonso Valdes

    2010-03-31T23:59:59.000Z

    This report summarizes Detection and Analysis of Threats to the Energy Sector (DATES), a project sponsored by the United States Department of Energy and performed by a team led by SRI International, with collaboration from Sandia National Laboratories, ArcSight, Inc., and Invensys Process Systems. DATES sought to advance the state of the practice in intrusion detection and situational awareness with respect to cyber attacks in energy systems. This was achieved through adaptation of detection algorithms for process systems as well as development of novel anomaly detection techniques suited for such systems into a detection suite. These detection components, together with third-party commercial security systems, were interfaced with the commercial Security Information Event Management (SIEM) solution from ArcSight. The efficacy of the integrated solution was demonstrated on two testbeds, one based on a Distributed Control System (DCS) from Invensys, and the other based on the Virtual Control System Environment (VCSE) from Sandia. These achievements advance the DOE Cybersecurity Roadmap [DOE2006] goals in the area of security monitoring. The project ran from October 2007 until March 2010, with the final six months focused on experimentation. In the validation phase, team members from SRI and Sandia coupled the two test environments and carried out a number of distributed and cross-site attacks against various points in one or both testbeds. Alert messages from the distributed, heterogeneous detection components were correlated using the ArcSight SIEM platform, providing within-site and cross-site views of the attacks. In particular, the team demonstrated detection and visualization of network zone traversal and denial-of-service attacks. These capabilities were presented to the DistribuTech Conference and Exhibition in March 2010. The project was hampered by interruption of funding due to continuing resolution issues and agreement on cost share for four months in 2008. This resulted in delays in finalizing agreements with commercial partners, and in particular the Invensys testbed was not installed until December 2008 (as opposed to the March 2008 plan). The project resulted in a number of conference presentations and publications, and was well received when presented at industry forums. In spite of some interest on the part of the utility sector, we were unfortunately not able to engage a utility for a full-scale pilot deployment.

  5. E-Print Network 3.0 - abstract date structures Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UNIVERSITY Math-Science Seminar Summary: Technical University) Title: Optical and Electrochromic Properties of Sol-Gel Made Thin Films Date and Time... 80910 Istanbul, Turkey....

  6. Date: Thu, 19 Aug 93 09:41:25 EDT From: anich@cordmc.dnet.etn ...

    E-Print Network [OSTI]

    Date: Thu, 19 Aug 93 09:41:25 EDT From: anich@cordmc.dnet.etn.com (Steve Anich, Eaton Corporation, Milwaukee) From _Cooking Without Fat_ by George ...

  7. Action Plan and Status of Resolutions for LWRS Steering Committee Recommendations Dated August 13, 2009

    SciTech Connect (OSTI)

    Hongbin Zhang

    2009-08-01T23:59:59.000Z

    The resolutions to the recommendations from the Report of the Steering Committee for the LWRS Program Dated August 13, 2009 are documented.

  8. Report Date: Mar 31, 2003 Semi-Annual Technical Progress Report

    E-Print Network [OSTI]

    Schechter, David S.

    Report Date: Mar 31, 2003 Semi-Annual Technical Progress Report PREFERRED WATERFLOOD MANAGEMENT ........................................................................1 Development of Reservoir Management Database Software

  9. LEAM RELIABILITY PREDICTION ATM 978 I DATE 2-15-7 1

    E-Print Network [OSTI]

    Rathbun, Julie A.

    LEAM RELIABILITY PREDICTION ATM 978 I PAGE 1 OF DATE 2- 15-7 1 This ATM documents the Reliability. This preliminary ATM will be updated for CDR. Prepared by/ a~-·~W. Cooper LEAM Reliability Project Engineer o(" 1 8 #12;LEAM RELIABILITY PREDICTION ATM 978 J 2 P'AGE Of DATE 2-15-71 1. 0 INTRODUCTION This Reliability

  10. Date: 30 Octobre 2014........ PAGE 1 OF 2 CONFIDENTIEL CONTINENTAL Automotive S.A.

    E-Print Network [OSTI]

    Dobigeon, Nicolas

    Date: 30 Octobre 2014........ PAGE 1 OF 2 CONFIDENTIEL CONTINENTAL Automotive S.A. Proposition de 2015 Rémunération : 800 par mois (montant brut mensuel) Lieu: Continental Automotive France, 1 avenue.daurenjou@continental-corporation.com #12;Date: 30 Octobre 2014........ PAGE 2 OF 2 CONFIDENTIEL CONTINENTAL Automotive S.A. Internship

  11. Service Contract (Rev 1/8/06) No: Unit: Date Page 1 Contract Manager

    E-Print Network [OSTI]

    Service Contract (Rev 1/8/06) No: Unit: Date Page 1 Contract Manager: Agreement between) and any other regulation, statutory instrument or other #12;Service Contract (Rev 1/8/06) No: Unit: Date Page 2 Contract Manager: subordinate legislation made thereunder or pursuant thereto, and any codes

  12. Online Pipeline Transportation of Petroleum Products with no Due Dates 1

    E-Print Network [OSTI]

    Endler, Markus

    On­line Pipeline Transportation of Petroleum Products with no Due Dates 1 Ruy Luiz Milidi'u milidiu, 2001 Abstract: In this paper, we introduce a new model for pipeline transportation of petroleum products without due dates. We use a directed multigraph G where arcs represent pipes and nodes represent

  13. Creation Date: December, 2013 Version: 1 Edited by: LB Application Services -ITS Managed Document 1

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Creation Date: December, 2013 Version: 1 Edited by: LB Application Services - ITS Managed Document". #12;Creation Date: December, 2013 Version: 1 Edited by: LB Application Services - ITS Managed Document Version: 1 Edited by: LB Application Services - ITS Managed Document 3 Forwarding Your UNBC Email

  14. Petrophysics -The Integration of Reservoir Geosciences Date: 22nd -25th September 2014

    E-Print Network [OSTI]

    Levi, Ran

    & Integrated Petrophyiscs and Uncertainty Management Date: 2nd - 7th March 2015 Reservoir SurveillancePetrophysics - The Integration of Reservoir Geosciences Date: 22nd - 25th September 2014 Analysis GL5517 Integrating Petrophysics and Seismic Data for Reservoir Characterisation GL55518 Reservoir

  15. Petrophysics -The Integration of Reservoir Geosciences Date: 20th -23rd October 2014

    E-Print Network [OSTI]

    Levi, Ran

    & Integrated Petrophyiscs and Uncertainty Management Date: 21st - 26th March 2015 Reservoir SurveillancePetrophysics - The Integration of Reservoir Geosciences Date: 20th - 23rd October 2014 and Core Analysis GL5517 Integrating Petrophysics and Seismic Data for Reservoir Characterisation GL55518

  16. Thermoluminescence of ZrSiO4 (zircon): A new dating method?

    E-Print Network [OSTI]

    Donoghue, Joseph

    Thermoluminescence of ZrSiO4 (zircon): A new dating method? H.J. van Es a , D.I. Vainshtein a , A (TL) dating of sediments from the Quaternary. TL of zircon results predominantly from internal0168-583X(02)00627-4 #12;Heavily damaged grains significantly reduce the thermoluminescence (TL) light

  17. UCPath Project Status Report Report Date September 7, 2012 Project Director

    E-Print Network [OSTI]

    Talley, Lynne D.

    this transition. Project Status Project Management Start Date Finish Date Status Decisions, Issues and Risks 1 areas have been completed. The Management Workgroup has agreed to begin preliminary planning to convert the case management/knowledge management tool. The UCPath PMO has completed initial mapping of entry

  18. UPS 100.001 COVER PAGE Effective Date: 5-15-14

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 100.001 COVER PAGE Effective Date: 5-15-14 UPS 100.001 ACADEMIC SENATE BYLAWS #12;UPS 100.001 TOC i Effective Date: 5-15-14 UPS 100.001 ACADEMIC SENATE BYLAWS TABLE OF CONTENTS Pages I. ACADEMIC................................................................................................4 2. University Policy Statement (UPS

  19. UPS 300.004 1 Effective Date: 7-28-09

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 300.004 1 Effective Date: 7-28-09 UPS 300.004 POLICY ON COURSE OUTLINES Course outlines which to include examinations dates, "make up" policy (if any), required materials and equipment, penalties://www.fullerton.edu/senate/PDF/300/UPS300-021.pdf ); 8. Actions students should take in an emergency (http

  20. UPS 330.231 1 Effective Date: 8-17-09

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 330.231 1 Effective Date: 8-17-09 UPS 330.231 POLICY REGARDING THE USE OF DRUGS BY STUDENTS illegal use of alcohol is covered in UPS 330.232 University Policy Statement California State University, Fullerton #12;UPS 330.231 UPS 330.231 2 Effective Date: 8-17-09 and others. Students are encouraged to seek

  1. UPS 270.102 1 Effective Date: 10-16-02

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 270.102 1 Effective Date: 10-16-02 UPS 270.102 GRADUATE COMMITTEES AND ADVISERS I. Policies administration of the program. University Policy Statement California State University, Fullerton #12;UPS 270.102 UPS 270.102 2 Effective Date: 10-16-02 2. If a degree is entirely contained within a particular

  2. UPS 410.103 1 Effective Date: 6-17-08

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 410.103 1 Effective Date: 6-17-08 UPS 410.103 CURRICULUM GUIDELINES AND PROCEDURES: NEW for certificates and certificate programs are subject to UPS 410.115. II. TYPES OF PROGRAMS A. Majors 1. A major University, Fullerton #12;UPS 410.103 UPS 410.103 2 Effective Date: 6-17-08 4. These minimum course

  3. UPS 620.000 (formerly UPS 420.103) 1 Effective Date: 4-26-13

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 620.000 (formerly UPS 420.103) 1 Effective Date: 4-26-13 UPS 620.000 PROTECTION OF HUMAN Philanthropic Foundation (CSFPF), and the Associated Students, Inc. (ASI). University Policy Statement #12;UPS 620.000 Page 2 of 10 UPS 620.000 (formerly UPS 420.103) 2 Effective Date: 4-26-13 "Minimal risk" means

  4. UPS 410.115 1 Effective Date: 6-24-05

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 410.115 1 Effective Date: 6-24-05 UPS 410.115 ACADEMIC CREDIT CERTIFICATE PROGRAMS California State University, Fullerton #12;UPS 410.115 UPS 410.115 2 Effective Date: 6-24-05 D. Specific-off sheet similar in form and function to a graduate degree study plan. F. A mock-up of the certificate

  5. UPS 410.113 1 Effective Date: 2-18-05

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 410.113 1 Effective Date: 2-18-05 UPS 410.113 GUIDELINES FOR THE STRUCTURE AND ADMINISTRATION either as belonging to academic departments/divisions or to joint degree programs (cf. UPS 410.103, UPS University, Fullerton #12;UPS 410.113 UPS 410.113 2 Effective Date: 2-18-05 III. ADMINISTRATION

  6. UPS 210.200 1 Effective Date: 12-1-81

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 210.200 1 Effective Date: 12-1-81 UPS 210.200 PERFORMANCE REVIEW OF ADMINISTRATIVE PERSONNEL A not subject to UPS 210.000. These shall include the president, vice presidents, associate vice presidents #12;UPS 210.200 UPS 210.200 2 Effective Date: 12-1-81 3. Develop, in consultation with the incumbent

  7. UPS 450.000 1 Effective Date: 12-3-04

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 450.000 1 Effective Date: 12-3-04 UPS 450.000 GOALS, SCOPE, AND POLICY REGULATION FOR EXTENDED, Fullerton #12;UPS 450.000 UPS 450.000 2 Effective Date: 12-3-04 4. The workload for faculty teaching credit up to a maximum of 24 semester units may be used for degree purposes at the baccalaureate level

  8. UPS 210.050 1 Effective Date: 6-16-04

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 210.050 1 Effective Date: 6-16-04 UPS 210.050 PERSONNEL POLICY FOR FULL-TIME TEMPORARY FACULTY Agreement (CBA) and in provisions of other relevant UPS documents, temporary faculty have the same rights Statement California State University, Fullerton #12;UPS 210.050 UPS 210.050 2 Effective Date: 6-16-04 F

  9. UPS 610.000 1 Effective Date: 3-12-96

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 610.000 1 Effective Date: 3-12-96 UPS 610.000 CONFLICT OF INTEREST POLICY for EXTERNALLY FUNDED Policy Statement California State University, Fullerton #12;UPS 610.000 UPS 610.000 2 Effective Date: 3-12-96 UPS 610.000 CONFLICT OF INTEREST POLICY FOR EXTERNALLY FUNDED PROPOSALS I. Introduction and Purpose A

  10. UPS 450.200 1 Effective Date: 6-18-03

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 450.200 1 Effective Date: 6-18-03 UPS 450.200 POLICY ON SPECIAL SESSIONS Executive Order No Code Section 89708). University Policy Statement California State University, Fullerton #12;UPS 450.200 UPS 450.200 2 Effective Date: 6-18-03 B. Financing Special sessions are self-supporting with fees set

  11. Request for Proposals for the Hulka Energy Research Fellowship Announcement Date: February 10, 2014

    E-Print Network [OSTI]

    Rubloff, Gary W.

    processes, · renewable wind energy, · ocean thermal or wave energy or geothermal energy conversionRequest for Proposals for the Hulka Energy Research Fellowship Announcement Date: February 10, 2014 Proposal Due Date: March 12, 2014 Since 2008, Ms. Barbara Hulka has the Hulka Energy Research Fellowship

  12. Request for Proposals for the Hulka Energy Research Fellowship Announcement Date: October 22, 2014

    E-Print Network [OSTI]

    Rubloff, Gary W.

    processes, · renewable wind energy, · ocean thermal or wave energy or geothermal energy conversionRequest for Proposals for the Hulka Energy Research Fellowship Announcement Date: October 22, 2014 Proposal Due Date: January 6, 2015 Since 2008, Ms. Barbara Hulka has provided the Hulka Energy Research

  13. Pb-Pb dating of hydrocarbon migration into a bitumen-bearing ore deposit, North Wales

    SciTech Connect (OSTI)

    Parnell, J. (Queens's Univ., Belfast (Ireland)); Swainbank, I. (NERC Isotope Geology Centre, Nottingham (England))

    1990-10-01T23:59:59.000Z

    Previous attempts at U-Pb dating of uraniferous bitumens have had limited significance because of radioelement migration. Pb-Pb dating which can be undertaken regardless of recent lead migration, has been successfully applied to uraniferous solidified bitumen from the Ty Gwyn copper deposit, North Wales. Analyses of five bitumen samples with variable mixtures of radiogenic and common lead yield a {sup 207}Pb/{sup 206}Pb age of 248 {plus minus} 21 Ma (Early Triassic). This age is interpreted as the date of hydrocarbon migration into the deposit and is reasonably consistent with the timing of hydrocarbon generation calculated from the regional burial history. The Pb-Pb dating method could be applied to date uraniferous bitumens representing hydrocarbon migration in diverse geologic environments.

  14. Taylor, R. E. (1987). Radiocarbon Dating: An Archaeological Perspective. Academic Press, New York.

    E-Print Network [OSTI]

    Smith, Dan

    Taylor, R. E. (1987). Radiocarbon Dating: An Archaeological Perspective. Academic Press, New York Analysis for Global Science. CRC Press, Boca Raton, FL. Wagner, G. A. (1995). Age Determination of Young

  15. Last date modified 1/14/13 Location and Institution COLOMBIA -CALI

    E-Print Network [OSTI]

    Galles, David

    Last date modified 1/14/13 Location and Institution COLOMBIA - CALI PONTIFICIA will need a student visa to enter and study in Colombia. You must apply as soon

  16. Last date modified 6/26/13 Location and Institution COLOMBIA -CALI

    E-Print Network [OSTI]

    Galles, David

    Last date modified 6/26/13 Location and Institution COLOMBIA - CALI PONTIFICIA will need a student visa to enter and study in Colombia. You must apply as soon

  17. Last date modifed 2/26//13 Location and Institution COLOMBIA -BOGOTA

    E-Print Network [OSTI]

    Galles, David

    Last date modifed 2/26//13 Location and Institution COLOMBIA - BOGOTA PONTIFICIA/EUROPASSIST while abroad. Visa Requirements You will need a student visa to study in Colombia

  18. Last date modified 1/16/13 Location and Institution SPAIN -MADRID

    E-Print Network [OSTI]

    Galles, David

    Last date modified 1/16/13 Location and Institution SPAIN - MADRID ST. LOUIS/or Scholarships http://spain.slu in Spain. You must apply within 3 months prior to departure. Documents must

  19. Last date modified 1/15/13 Location and Institution EL SALVADOR -SAN SALVADOR

    E-Print Network [OSTI]

    Galles, David

    Last date modified 1/15/13 Location and Institution EL SALVADOR - SAN SALVADOR in Economic Development, Salvadoran Literature, El Salvador's Civil War, Political Science communities of El Salvador. Accommodation Students live in one of three community

  20. 2012 NYS Fair 4-H Robotics Challenge Team Name:________________ County: ___________ Date: __________

    E-Print Network [OSTI]

    Keinan, Alon

    2012 NYS Fair 4-H Robotics Challenge Team Name:________________ County: ___________ Date: __________ Team Members: Years at participating in 4-H Robotics Program _______ Level: A______ B_______ Excellent Great Good Comments Robot Design: Ability to withstand the rigors of competition; Easy to repair