Powered by Deep Web Technologies
Note: This page contains sample records for the topic "benefits improved electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Potential Benefits from Improved Energy Efficiency of Key Electrical Products:  

NLE Websites -- All DOE Office Websites (Extended Search)

8254 8254 Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India Michael McNeil, Maithili Iyer, Stephen Meyers, Virginie Letschert, James E. McMahon Environmental Energy Technologies Division Lawrence Berkeley National Laboratory University of California, Berkeley Berkeley, CA December 2005 This work was supported by the International Copper Association through the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. 2 ABSTRACT The goal of this project was to estimate the net benefits that cost-effective improvements in energy efficiency can bring to developing countries. The study focused on four major electrical products in the world's second largest developing country, India. These

2

Potential Benefits from Improved Energy Efficiency of Key Electrical...  

NLE Websites -- All DOE Office Websites (Extended Search)

the electricity costs paid by the consumer or, in the case of transformers, the costs of electricity generation. The price of the electricity that is saved at the margin is based...

3

Potential Benefits from Improved Energy Efficiency of KeyElectrical Products: The Case of India  

Science Conference Proceedings (OSTI)

The goal of this project was to estimate the net benefits that cost-effective improvements in energy efficiency can bring to developing countries. The study focused on four major electrical products in the world's second largest developing country, India. These products--refrigerators, room air conditioners, electric motors, and distribution transformers--are important targets for efficiency improvement in India and in other developing countries. India is an interesting subject of study because of it's size and rapid economic growth. Implementation of efficient technologies in India would save billions in energy costs, and avoid hundreds of megatons of greenhouse gas emissions. India also serves as an example of the kinds of improvement opportunities that could be pursued in other developing countries.

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert,Virginie; McMahon, James E.

2005-12-20T23:59:59.000Z

4

Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India  

E-Print Network (OSTI)

marginal electricity rates for the residential, commercial,residential and agricultural tariffs in line with the cost of electricity production. In particular, agricultural ratesresidential consumers would see a present (discounted) benefit of 1.9 billion dollars over the forecast period, based on a marginal electricity rate

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie; McMahon, James E.

2005-01-01T23:59:59.000Z

5

Improving Electricity Resource-Planning Processes by Consideringthe Strategic Benefits of Transmission  

SciTech Connect

Current methods of evaluating the economic impacts of new electricity transmission projects fail to capture the many strategic benefits of these projects, such as those resulting from their long life, dynamic changes to the system, access to diverse fuels, and advancement of public policy goals to integrate renewable-energy resources and reduce greenhouse gas emissions.

Budhraja, Vikram; Mobasheri, Fred; Ballance, John; Dyer, Jim; Silverstein, Alison; Eto, Joseph

2009-03-02T23:59:59.000Z

6

Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India  

E-Print Network (OSTI)

A: Calculating Marginal Electricity Rates An understandingof marginal electricity rates is crucial in assessingElectricity Rates .

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie; McMahon, James E.

2005-01-01T23:59:59.000Z

7

Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India  

E-Print Network (OSTI)

of electricity, and transmission and distribution losses asof electricity, and transmission and distribution losses astotal electricity consumption by distribution transformers

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie; McMahon, James E.

2005-01-01T23:59:59.000Z

8

Improving Electricity Resource-Planning Processes by Considering the Strategic Benefits of Transmission  

E-Print Network (OSTI)

benefits from the proposed transmission project c. Modifyingover time from the new transmission uses e. Assessing otherthe Strategic Benefits of Transmission Vikram Budhraja, Fred

Budhraja, Vikram

2010-01-01T23:59:59.000Z

9

Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India  

E-Print Network (OSTI)

on projections of electricity prices or avoided costs forthe projected marginal electricity price for households orfirst cost. Marginal Electricity Prices The consumer impacts

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie; McMahon, James E.

2005-01-01T23:59:59.000Z

10

Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India  

E-Print Network (OSTI)

operating cost (electricity bill), and DR is the consumerPrice $US Annual Electricity Bill Payback Period TotalRetail Price $US Annual Electricity Bill Payback Total Delta

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie; McMahon, James E.

2005-01-01T23:59:59.000Z

11

Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India  

E-Print Network (OSTI)

are much below the industrial electricity price. The high-estimate the price of electricity to industrial customers toprice at the 40 HP level for each state, weighted by the total industrial electricity

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie; McMahon, James E.

2005-01-01T23:59:59.000Z

12

Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India  

E-Print Network (OSTI)

to calculate national energy consumption and savings. Theto calculate national energy consumption and savings. Thenational electricity generation and primary energy consumption

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie; McMahon, James E.

2005-01-01T23:59:59.000Z

13

Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India  

E-Print Network (OSTI)

weighting each state’s rate by total commercial electricityrate is an average over all states, weighted by each state’s agricultural electricityrates are the average over all states for which tariffs were available, weighted by sectoral electricity

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie; McMahon, James E.

2005-01-01T23:59:59.000Z

14

Modeling Electric Vehicle Benefits Connected to Smart Grids  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Benefits Connected to Smart Grids Title Modeling Electric Vehicle Benefits Connected to Smart Grids Publication Type Conference Proceedings LBNL Report Number...

15

Alternative Fuels Data Center: Benefits and Considerations of Electricity  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Benefits and Benefits and Considerations of Electricity as a Vehicle Fuel to someone by E-mail Share Alternative Fuels Data Center: Benefits and Considerations of Electricity as a Vehicle Fuel on Facebook Tweet about Alternative Fuels Data Center: Benefits and Considerations of Electricity as a Vehicle Fuel on Twitter Bookmark Alternative Fuels Data Center: Benefits and Considerations of Electricity as a Vehicle Fuel on Google Bookmark Alternative Fuels Data Center: Benefits and Considerations of Electricity as a Vehicle Fuel on Delicious Rank Alternative Fuels Data Center: Benefits and Considerations of Electricity as a Vehicle Fuel on Digg Find More places to share Alternative Fuels Data Center: Benefits and Considerations of Electricity as a Vehicle Fuel on AddThis.com...

16

Potential Global Benefits of Improved Ceiling Fan Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Benefits of Improved Ceiling Fan Energy Efficiency Title Potential Global Benefits of Improved Ceiling Fan Energy Efficiency Publication Type Report LBNL Report Number...

17

Determining Benefits and Costs of Improved Water Heater Efficiencies  

NLE Websites -- All DOE Office Websites (Extended Search)

Determining Benefits and Costs of Improved Water Heater Efficiencies Determining Benefits and Costs of Improved Water Heater Efficiencies Title Determining Benefits and Costs of Improved Water Heater Efficiencies Publication Type Report LBNL Report Number LBNL-45618 Year of Publication 2000 Authors Lekov, Alexander B., James D. Lutz, Xiaomin Liu, Camilla Dunham Whitehead, and James E. McMahon Document Number LBNL-45618 Date Published May 4 Abstract Economic impacts on individual consumers from possible revisions to U.S. residential water heater energy-efficiency standards are examined using a life-cycle cost (LCC) analysis. LCC is the consumer's cost of purchasing and installing a water heater and operating it over its lifetime. This approach makes it possible to evaluate the economic impacts on individual consumers from the revised standards. The methodology allows an examination of groups of the population which benefit or lose from suggested efficiency standards. The results show that the economic benefits to consumers are significant. At the efficiency level examined in this paper, 35% of households with electric water heaters experience LCC savings, with an average savings of $106, while 4% show LCC losses, with an average loss of $40 compared to a pre-standard LCC average of $2,565. The remainder of the population (61%) are largely unaffected.

18

Costs and benefits of energy efficiency improvements in ceiling fans  

SciTech Connect

Ceiling fans contribute significantly to residential electricity consumption, especially in developing countries with warm climates. The paper provides analysis of costs and benefits of several options to improve the efficiency of ceiling fans to assess the global potential for electricity savings and green house gas (GHG) emission reductions. Ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terawatt hours per year could be saved and 25 million metric tons of carbon dioxide equivalent (CO2-e) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize potential savings.

Shah, Nihar; Sathaye, Nakul; Phadke, Amol; Letschert, Virginie [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division] [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division

2013-10-15T23:59:59.000Z

19

Improved Energy Efficiency and Environmental Benefits for Calcium ...  

Science Conference Proceedings (OSTI)

... Green Engineering and Environmental Stewardship. Presentation Title, Improved Energy Efficiency and Environmental Benefits for Calcium Treatment in Steel.

20

Benefits of Demand Response in Electricity Markets and Recommendations for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Response in Electricity Markets and Demand Response in Electricity Markets and Recommendations for Achieving Them. A report to the United States Congress Pursuant to Section 1252 of the Energy Policy Act of 2005 (February 2006) Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them. A report to the United States Congress Pursuant to Section 1252 of the Energy Policy Act of 2005 (February 2006) Most electricity customers see electricity rates that are based on average electricity costs and bear little relation to the true production costs of electricity as they vary over time. Demand response is a tariff or program established to motivate changes in electric use by end-use customers in response to changes in the price of electricity over time, or to give

Note: This page contains sample records for the topic "benefits improved electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Economic Benefits of Increasing Electric Grid Resilience to Weather Outages  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Benefits of Increasing Electric Grid Resilience to Weather Economic Benefits of Increasing Electric Grid Resilience to Weather Outages Economic Benefits of Increasing Electric Grid Resilience to Weather Outages In June 2011, President Obama released A Policy Framework for the 21st Century Grid which set out a four-pillared strategy for modernizing the electric grid. The initiative directed billions of dollars toward investments in 21st century smart grid technologies focused at increasing the grid's efficiency, reliability, and resilience, and making it less vulnerable to weather-related outages and reducing the time it takes to restore power after an outage occurs. Grid resilience is increasingly important as climate change increases the frequency and intensity of severe weather. Greenhouse gas emissions are elevating air and water temperatures around the world. Scientific research

22

Modeling Electric Vehicle Benefits Connected to Smart Grids  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Electric Vehicle Benefits Connected to Smart Grids Modeling Electric Vehicle Benefits Connected to Smart Grids Title Modeling Electric Vehicle Benefits Connected to Smart Grids Publication Type Conference Paper Year of Publication 2011 Authors Stadler, Michael, Chris Marnay, Ratnesh Sharma, Gonçalo Mendes, Maximillian Kloess, Gonçalo Cardoso, Olivier Mégel, and Afzal S. Siddiqui Conference Name 7th IEEE Vehicle Power and Propulsion Conference Date Published 09/2011 Publisher LBNL Conference Location Chicago, IL Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract Connecting electric storage technologies to smartgrids will have substantial implications in building energy systems. Local storage will enable demand response. Mobile storage devices in electric vehicles (EVs) are in direct competition with conventional stationary sources at the building. EVs will change the financial as well as environmental attractiveness of on-site generation (e.g. PV, or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions in 2020, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. The research shows that considering second life of EV batteries might be very beneficial for commercial buildings.

23

Benefits and costs of improved IEQ in offices  

NLE Websites -- All DOE Office Websites (Extended Search)

Benefits and costs of improved IEQ in offices Benefits and costs of improved IEQ in offices Title Benefits and costs of improved IEQ in offices Publication Type Journal Article Year of Publication 2011 Authors Fisk, William J., Douglas R. Black, and Gregory Brunner Journal Indoor Air Volume 21 Issue 3 Pagination 357-367 Keywords dampness and mold, health, ieq improvement, offices, temperature, ventilation Abstract This paper estimates some of the benefits and costs of implementing scenarios that improve indoor environmental quality (IEQ) in the stock of U.S. office buildings. The scenarios include increasing ventilation rates when they are below 10 or 15 L/s per person, adding outdoor-air economizers and controls when absent, eliminating winter indoor temperatures greater than 23 °C, and reducing dampness and mold problems. The estimated benefits of the scenarios analyzed are substantial in magnitude, including increased work performance, reduced sick building syndrome symptoms, reduced absence, and improved thermal comfort for millions of office workers. The combined potential annual economic benefit of a set of non-overlapping scenarios is approximately $20 billion. While the quantitative estimates have a high uncertainty, the opportunity for substantial benefits is clear. Some IEQ improvement measures will save energy while improving health or productivity, and implementing these measures should be the highest priority.

24

Modeling Electric Vehicle Benefits Connected to Smart Grids  

E-Print Network (OSTI)

Modeling Electric Vehicle Benefits Connected to Smart Grids Michael Stadler1,2 , Chris Marnay1 to be presented at the 7th IEEE Vehicle Power and Propulsion Conference Chicago, IL, Sept 6-9 2011 http, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement

25

Butler Rural Electric Cooperative - Energy Efficiency Improvement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Improvement Loan Program Butler Rural Electric Cooperative - Energy Efficiency Improvement Loan Program Eligibility Residential Savings For Home Weatherization...

26

ECONOMIC BENEFITS OF INCREASING ELECTRIC GRID RESILIENCE TO  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ECONOMIC BENEFITS OF ECONOMIC BENEFITS OF INCREASING ELECTRIC GRID RESILIENCE TO WEATHER OUTAGES Executive Office of the President August 2013 2 This report was prepared by the President's Council of Economic Advisers and the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability, with assistance from the White House Office of Science and Technology 3 Executive Summary Severe weather is the leading cause of power outages in the United States. Between 2003 and 2012, an estimated 679 widespread power outages occurred due to severe weather. Power outages close schools, shut down businesses and impede emergency services, costing the economy billions of dollars and disrupting the lives of millions of Americans. The resilience of

27

Potential benefits of geothermal electrical production from hydrothermal resources  

DOE Green Energy (OSTI)

The potential national benefits of geothermal electric energy development from the hydrothermal resources in the West are estimated for several different scenarios. The U.S. electrical economy is simulated by computer using a linear programming optimization technique. Under most of the scenarios, benefits are estimated at $2 to $4 billion over the next 50 years on a discounted present value basis. The electricity production from hydrothermal plants reaches 2 to 4 percent of the national total, which will represent 10 to 20 percent of the installed capacity in the West. Installed geothermal capacity in 1990 is estimated to be 9,000 to 17,000 Mw(e). The geothermal capacity should reach 28,000 to 65,000 Mw(e) by year 2015. The ''most likely'' scenario yields the lower values in the above ranges. Under this scenario geothermal development would save the utility industry $11 billion in capital costs (undiscounted); 32 million separative work units; 64,000 tons of U/sub 3/O/sub 8/; and 700 million barrels of oil. The most favorable scenario for geothermal energy occurs when fossil fuel prices are projected to increase at 5 percent/year. The benefits of geothermal energy then exceed $8 billion on a discounted present value basis. Supply curves were developed for hydrothermal resources based on the recent U.S. Geological Survey (USGS) resource assessment, resource characteristics, and projected power conversion technology and costs. Geothermal plants were selected by the optimizing technique to fill a need for ''light load'' plants. This infers that geothermal plants may be used in the future primarily for load-following purposes.

Bloomster, C.H.; Engel, R.L.

1976-06-01T23:59:59.000Z

28

Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology  

DOE Green Energy (OSTI)

This paper presents a comparison of the costs and benefits (reduced petroleum consumption) of plug-in hybrid electric vehicles relative to hybrid electric and conventional vehicles.

Markel, T.; Simpson, A.

2006-01-01T23:59:59.000Z

29

Cost-Benefit Analysis of Plug-In Hybrid-Electric Vehicle Technology (Presentation)  

DOE Green Energy (OSTI)

Presents a cost-benefit of analysis of plug-in hybrid electric vehicle technology, including potential petroleum use reduction.

Pesaran, A.; Markel, T.; Simpson, A.

2006-10-01T23:59:59.000Z

30

Modeling Electric Vehicle Benefits Connected to Smart Grids  

DOE Green Energy (OSTI)

Connecting electric storage technologies to smartgrids will have substantial implications in building energy systems. Local storage will enable demand response. Mobile storage devices in electric vehicles (EVs) are in direct competition with conventional stationary sources at the building. EVs will change the financial as well as environmental attractiveness of on-site generation (e.g. PV, or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions in 2020, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. The research shows that considering second life of EV batteries might be very beneficial for commercial buildings.

Stadler, Michael; Marnay, Chris; Mendes, Goncalo; Kloess, Maximillian; Cardoso, Goncalo; Mégel, Olivier; Siddiqui, Afzal

2011-07-01T23:59:59.000Z

31

Long-term average performance benefits of parabolic trough improvements  

DOE Green Energy (OSTI)

Improved parabolic trough concentrating collectors will result from better design, improved fabrication techniques, and the development and utilization of improved materials. The difficulty of achieving these improvements varies as does their potential for increasing parabolic trough performance. The purpose of this analysis is to quantify the relative merit of various technology advancements in improving the long-term average performance of parabolic trough concentrating collectors. The performance benefits of improvements are determined as a function of operating temperature for north-south, east-west, and polar mounted parabolic troughs. The results are presented graphically to allow a quick determination of the performance merits of particular improvements. Substantial annual energy gains are shown to be attainable. Of the improvements evaluated, the development of stable back-silvered glass reflective surfaces offers the largest performance gain for operating temperatures below 150/sup 0/C. Above 150/sup 0/C, the development of trough receivers that can maintain a vacuum is the most significant potential improvement. The reduction of concentrator slope errors also has a substantial performance benefit at high operating temperatures.

Gee, R.; Gaul, H.W.; Kearney, D.; Rabl, A.

1980-03-01T23:59:59.000Z

32

Modeling Electric Vehicle Benefits Connected to Smart Grids  

E-Print Network (OSTI)

Benefits Connected to Smart Grids M. Stadler 1,2,a , C.Benefits Connected to Smart Grids Michael Stadler , Chris

Stadler, Michael

2012-01-01T23:59:59.000Z

33

Economic benefits of decarbonising the global electricity sector  

E-Print Network (OSTI)

Conventional economic analyses of stringent climate change mitigation have generally concluded that economic austerity would result from carbon austerity. These analyses however rely critically on the assumption of an economic equilibrium, which dismisses established notions on behavioural heterogeneity, path dependence and technology transitions. Here we show that on the contrary, the decarbonisation of the electricity sector globally can lead to improvements in economic performance. By modelling the process of innovation-diffusion and non-equilibrium dynamics, we establish how climate policy instruments for emissions reductions alter economic activity through energy prices, government spending, enhanced investment and tax revenues. While higher electricity prices reduce income and output, this is over-compensated by enhanced employment generated by investments in new technology. We stress that the current dialogue on the impacts of climate policies must be revisited to reflect the real complex dynamics invo...

Mercure, J F; Foley, A; Chewpreecha, U; Pollitt, H; Holden, P B; Edwards, N R

2013-01-01T23:59:59.000Z

34

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network (OSTI)

energy efficiency improvements in California . 43 Commercialization Potential (not applicable) . .44 Recommendations 44 Benefits to California .. 45 References .. 46 Glossary

McKone, Thomas E.

2011-01-01T23:59:59.000Z

35

Prospects for improvement in geothermal well technology and their expected benefits  

DOE Green Energy (OSTI)

Performance restrictions on current geothermal drilling technology and their impact on drilling costs are reviewed, with the impact on electric power costs. Sensitivities of drilling costs to changes in drilling performance are analyzed. A programmatic goal for improving drilling performance is offered. The likely cost savings to the nation if the goal is attained are estimated though the use of a geothermal well drilling scenario for the 1978 to 1990 period, which was derived from DOE's geothermal power on-line scenario. The present worth of the expectd savings stream (benefit) is offered as a point of departure for justifying programmatic costs for improving drilling technology.

Not Available

1978-06-01T23:59:59.000Z

36

Cost-Benefit Analysis of Plug-in Hybrid Electric Vehicle Technology  

DOE Green Energy (OSTI)

This paper presents a comparison of vehicle purchase and energy costs, and fuel-saving benefits of plug-in hybrid electric vehicles relative to hybrid electric and conventional vehicles.

Simpson, A.

2006-11-01T23:59:59.000Z

37

NREL: Continuum Magazine - Maximizing the Benefits of Plug-in Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Maximizing the Benefits of Plug-in Electric Vehicles Maximizing the Benefits of Plug-in Electric Vehicles Issue 4 Print Version Share this resource Maximizing the Benefits of Plug-in Electric Vehicles Advancing electric vehicle charging options and grid readiness reduces oil consumption and vehicle emissions. A photo of two electric vehicles in a research facility. Enlarge image Electric vehicle charging stations in NREL's parking garage. Photo by Dennis Schroder, NREL Plug-in electric vehicles (PEVs)-including all-electric vehicles and plug-in hybrid electric vehicles-offer the opportunity to reduce oil consumption and vehicle emissions by drawing on power from the utility grid. When the grid uses electricity generated from clean, domestic energy sources, the emerging PEV infrastructure will increasingly maximize

38

Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology | Open  

Open Energy Info (EERE)

Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology Focus Area: Electricity Topics: Policy Impacts Website: www.nrel.gov/vehiclesandfuels/vsa/pdfs/40485.pdf Equivalent URI: cleanenergysolutions.org/content/cost-benefit-analysis-plug-hybrid-ele Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Fuel Efficiency Standards This paper presents a comparison of the costs and benefits of plug-in hybrid electric vehicles (PHEVs) relative to hybrid electric and conventional vehicles. A detailed simulation model is used to predict

39

Benefits of Demand Response in Electricity Markets and Recommendations...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

rates that are based on average electricity costs and bear little relation to the true production costs of electricity as they vary over time. Demand response is a tariff or...

40

Benefits  

NLE Websites -- All DOE Office Websites (Extended Search)

Options » Options » Benefits Benefits Explore the multiple dimensions of a career at LANL: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. Contact Current Employees (CRYPTOCard access) Retirees Competitive pay, work-life balance options, comprehensive benefits package We attract and retain exceptional talent with our competitive pay packages that provide fair and equitable compensation. We recognize and reward outstanding contributions through our various employee award programs. We support and nurture a culture focused on a work/life balance for all of our employees. Our benefits package Employees are eligible for a variety of health and retirement benefits. Health & wellness

Note: This page contains sample records for the topic "benefits improved electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A Review of Recent RTO Benefit-Cost Studies: Toward MoreComprehensive Assessments of FERC Electricity RestructuringPolicies  

Science Conference Proceedings (OSTI)

During the past three years, government and private organizations have issued more than a dozen studies of the benefits and costs of Regional Transmission Organizations (RTOs). Most of these studies have focused on benefits that can be readily estimated using traditional production-cost simulation techniques, which compare the cost of centralized dispatch under an RTO to dispatch in the absence of an RTO, and on costs associated with RTO start-up and operation. Taken as a whole, it is difficult to draw definitive conclusions from these studies because they have not examined potentially much larger benefits (and costs) resulting from the impacts of RTOs on reliability management, generation and transmission investment and operation, and wholesale electricity market operation. This report: (1) Describes the history of benefit-cost analysis of FERC electricity restructuring policies; (2)Reviews current practice by analyzing 11 RTO benefit-cost studies that were published between 2002 and 2004 and makes recommendations to improve the documentation of data and methods and the presentation of findings in future studies that focus primarily on estimating short-run economic impacts; and (3) Reviews important impacts of FERC policies that have been overlooked or incompletely treated by recent RTO benefit-cost studies and the challenges to crafting more comprehensive assessments of these impacts based on actual performance, including impacts on reliability management, generation and transmission investment and operation, and wholesale electricity market operation.

Eto, Joseph H.; Lesieutre, Bernard C.

2005-12-01T23:59:59.000Z

42

Eliminating Electricity Deficit through Energy Efficiency in India: An Evaluation of Aggregate Economic and Carbon Benefits  

SciTech Connect

Electricity demand has consistently exceeded available supply in India. While the electricity deficit varies across states, nationally it was estimated to be of the order of 12percent on peak and 11percent for electricity during 2008-09. This paper explores a demand-side focused potential for energy efficiency improvement to eliminate the electricity deficit compared to a business as usual (BAU) supply-side focused scenario. The limited availability of finance and other legal and administrative barriers have constrained the construction of new power plant capacity in India. As a result, under the BAU scenario, India continues to face an electricity deficit beyond the end of the Twelfth Five Year Plan. The demand-side cost-effective potential achieved through replacement of new electricity-using products, however, is large enough to eliminate the deficit as early as 2013 and subsequently reduce the future construction of power plants and thus reduce air pollutant emissions. Moreover, energy efficiency improvements cost a fraction of the cost for new supply and can lead to a substantial increase in India's economic output or gross domestic product (GDP). Eliminating the deficit permits businesses that have experienced electricity cutbacks to restore production. We estimate the size of the cumulative production increase in terms of the contribution to GDP at a $505 billion between 2009 and 2017, the end of India's Twelfth Five Year Plan, which may be compared with India's 2007-08 GDP of $911 billion. The economic output is influenced by the size of the electricity savings and rate of penetration of energy efficient technologies, and that of self-generation equipment and inverters used by businesses faced with electricity cuts. Generation and inverters are estimated to service 23percent of these customers in 2009, which increase to 48percent by 2020. The reduction in the construction and operation of new power plants reduces the cumulative CO2 emissions by 65 Mt, and those of sulfur dioxide and nitrogen oxides by 0.4 Mt each, while also reducing India's imports of coal and natural gas. By 2020, the cumulative GDP benefit increases to $608 billion, the CO2 savings expand to 333 Mt and SO2 and NOx to 2.1 Mt.

Sathaye, Jayant; Gupta, Arjun

2010-04-30T23:59:59.000Z

43

Eliminating Electricity Deficit through Energy Efficiency in India: An Evaluation of Aggregate Economic and Carbon Benefits  

SciTech Connect

Electricity demand has consistently exceeded available supply in India. While the electricity deficit varies across states, nationally it was estimated to be of the order of 12percent on peak and 11percent for electricity during 2008-09. This paper explores a demand-side focused potential for energy efficiency improvement to eliminate the electricity deficit compared to a business as usual (BAU) supply-side focused scenario. The limited availability of finance and other legal and administrative barriers have constrained the construction of new power plant capacity in India. As a result, under the BAU scenario, India continues to face an electricity deficit beyond the end of the Twelfth Five Year Plan. The demand-side cost-effective potential achieved through replacement of new electricity-using products, however, is large enough to eliminate the deficit as early as 2013 and subsequently reduce the future construction of power plants and thus reduce air pollutant emissions. Moreover, energy efficiency improvements cost a fraction of the cost for new supply and can lead to a substantial increase in India's economic output or gross domestic product (GDP). Eliminating the deficit permits businesses that have experienced electricity cutbacks to restore production. We estimate the size of the cumulative production increase in terms of the contribution to GDP at a $505 billion between 2009 and 2017, the end of India's Twelfth Five Year Plan, which may be compared with India's 2007-08 GDP of $911 billion. The economic output is influenced by the size of the electricity savings and rate of penetration of energy efficient technologies, and that of self-generation equipment and inverters used by businesses faced with electricity cuts. Generation and inverters are estimated to service 23percent of these customers in 2009, which increase to 48percent by 2020. The reduction in the construction and operation of new power plants reduces the cumulative CO2 emissions by 65 Mt, and those of sulfur dioxide and nitrogen oxides by 0.4 Mt each, while also reducing India's imports of coal and natural gas. By 2020, the cumulative GDP benefit increases to $608 billion, the CO2 savings expand to 333 Mt and SO2 and NOx to 2.1 Mt.

Sathaye, Jayant; Gupta, Arjun

2010-04-30T23:59:59.000Z

44

Benefits  

NLE Websites -- All DOE Office Websites (Extended Search)

23 What Does the U.S. Department of Energy Fossil Energy R&D Mean to America's Energy and Economic Future? Methodology for Estimating Research & Development (R&D) Benefits The primary tool used to estimate future R&D benefits is the National Energy Modeling System (NEMS) developed by the Energy Information Ad- ministration (EIA). Benefits are based on the differ- ence between certain parameters for NEMS runs made with and without the impacts of FE R&D. For cases with FE R&D, it is assumed that program R&D goals are met and funding is consistent with FY2004 appropriations and program plans. Multiple scenarios are used to examine the impact of se- lected regulatory and fuel energy price assump- tions. Other than inputs reflecting FE R&D goals

45

Could Your Home Benefit from a Small Wind Electric System? | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Could Your Home Benefit from a Small Wind Electric System? Could Your Home Benefit from a Small Wind Electric System? Could Your Home Benefit from a Small Wind Electric System? August 8, 2013 - 2:31pm Addthis A small wind electric system can be a clean, affordable way to power your home. | Photo courtesy of Thomas Fleckenstein, NREL 26476 A small wind electric system can be a clean, affordable way to power your home. | Photo courtesy of Thomas Fleckenstein, NREL 26476 Erik Hyrkas Erik Hyrkas Media Relations Specialist, Office of Energy Efficiency & Renewable Energy How can I participate? Check out these resources to figure out whether a small wind electric system is the right choice for you. Small residential wind turbines have been around for decades, and in recent years they have become a more affordable option due to tax credits and

46

The Benefits of Restructuring: It's Not Your Grandfather's Electric Utility Anymore  

Science Conference Proceedings (OSTI)

The key to achieving and maintaining most of the benefits from the emerging competitive market for electricity supply is to have a workably competitive wholesale generation market. By any objective measure, the PJM regional transmission organization is fulfilling its mission.

Switzer, Sheldon; Straub, Mary M.

2006-02-01T23:59:59.000Z

47

Improving the Reliability and Resiliency of the US Electric Grid...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improving the Reliability and Resiliency of the US Electric Grid: SGIG Article in Metering International, March 2012 Improving the Reliability and Resiliency of the US Electric...

48

Comparing the Benefits and Impacts of Hybrid Electric Vehicle Options  

Science Conference Proceedings (OSTI)

Download report 1000349 for FREE. This project continues the Hybrid Electric Vehicle Working Group (WG) study, in which EPRI has brought together representatives from the utility and automotive industries, the U.S. Department of Energy (DOE), other regulatory agencies, and university research organizations. The first study, "Assessment of Current Knowledge of Hybrid Vehicle Characteristics and Impacts" (EPRI report TR-113201), defined some of the ground rules for studying HEV technology. This stu...

2001-07-19T23:59:59.000Z

49

Long-term average performance benefits of parabolic trough improvements  

DOE Green Energy (OSTI)

Improved parabolic trough concentrating collectors will result from better design, improved fabrication techniques, and the development and utilization of improved materials. This analysis quantifies the relative merit of various technological advancements in improving the long-term average performance of parabolic trough concentrating collectors and presents them graphically as a function of operating temperature for north-south, east-west, and polar mounted parabolic troughs. Substantial annual energy gains (exceeding 50% at 350/sup 0/C) are shown to be attainable with improved parabolic troughs.

Gee, R.; Gaul, H.; Kearney, D.; Rabl, A.

1979-10-01T23:59:59.000Z

50

Benefits and costs of improved IEQ in offices  

NLE Websites -- All DOE Office Websites (Extended Search)

costs of implementing scenarios that improve indoor environmental quality (IEQ) in the stock of U.S. office buildings. The scenarios include increasing ventilation rates when they...

51

Electric Vehicles Could Benefit from 50% Improvements in Packaging...  

NLE Websites -- All DOE Office Websites (Extended Search)

surface. These results have significant implications for reducing the overall thermal resistance in power electronics packagesmodules. Immersion boiling combined with...

52

Determining benefits and costs of improved central air conditioner efficiencies  

SciTech Connect

Economic impacts on individual consumers from possible revisions to U.S. residential-type central air conditioner energy-efficiency standards are examined using a life-cycle cost (LCC) analysis. LCC is the consumer's cost of purchasing and installing a central air conditioner and operating it over its lifetime. This approach makes it possible to evaluate the economic impacts on individual consumers from the revised standards. The methodology allows an examination of groups of the population which benefit or lose from suggested efficiency standards. The results show that the economic benefits to consumers due to modest increases in efficiency are significant. For an efficiency increase of 20percent over the existing minimum standard (i.e., 12 SEER), 35percent of households with central air conditioners experience significant LCC savings, with an average savings of $453, while 25percent show significant LCC losses, with an average loss of $158 compared to apre-standard LCC average of $5,170. The remainder of the population (40percent) are largely unaffected.

Rosenquist, G.; Levok, A.; Chan, P.; McMahon, J.

2001-01-12T23:59:59.000Z

53

Determining benefits and costs of improved central air conditioner efficiencies  

SciTech Connect

Economic impacts on individual consumers from possible revisions to U.S. residential-type central air conditioner energy-efficiency standards are examined using a life-cycle cost (LCC) analysis. LCC is the consumer's cost of purchasing and installing a central air conditioner and operating it over its lifetime. This approach makes it possible to evaluate the economic impacts on individual consumers from the revised standards. The methodology allows an examination of groups of the population which benefit or lose from suggested efficiency standards. The results show that the economic benefits to consumers due to modest increases in efficiency are significant. For an efficiency increase of 20percent over the existing minimum standard (i.e., 12 SEER), 35percent of households with central air conditioners experience significant LCC savings, with an average savings of $453, while 25percent show significant LCC losses, with an average loss of $158 compared to apre-standard LCC average of $5,170. The remainder of the population (40percent) are largely unaffected.

Rosenquist, G.; Levok, A.; Chan, P.; McMahon, J.

2001-01-12T23:59:59.000Z

54

Estimated Farm Level Benefits of Improved Irrigation Efficiency  

E-Print Network (OSTI)

There are about 15 million acres of cropland in the U.S. that are irrigated from aquifers which are incurring declining water levels (sloggett). This is primarily in the Great Plains Region where irrigation water is pumped from the Ogallala Aquifer. Mining from the aquifer is estimated at 14 million acre feet per year (Frederick and Hanson). The declining groundwater supply increases pumping lift and reduces well yields. Concurrently, there has been a dramatic increase in the cost of energy for pumping since 1973. For example, in the Trans Pecos Region of Texas, natural gas prices increased 450% from 1972 to 1975. Energy has become one of the most important factors in irrigated crop production. A 1975 study showed that 53% of the total variable costs of producing corn in the Great Plains was energy related (Skold). The sensitivity of irrigated agriculture to increased fuel costs and declining groundwater levels has provided incentives for irrigated farmers to investigate alternative crop rotations and opportunities to improve irrigation water pumping and distributional efficiencies. The emphasis of this report is to estimate the value to an irrigated farmer on the Texas High Plains of improving irrigation water distribution efficiency. One means of improving the water use efficiency is to implement water conserving techniques. The main purpose of these techniques is to maximize crop production by minimizing the amount of water lost through the production systems. The major sources of water loss in a crop production system are runoff, percolation, and evaporation. Examples of water conserving techniques include terracing, furrow dams, reduced tillage, and crop rotations. In addition, improved irrigation application techniques can enhance the efficiency of water used for irrigation in the region. On-farm irrigation efficiency statewide for Texas has been estimated between 60 and 708 (Wyatt,1981). The implementation of advanced irrigation application techniques could potentially increase this efficiency up to 98% (Lyle & Bordovsky,1980). Furrow irrigation and sprinkler irrigation are the two major irrigation systems currently in use. Techniques designed to improve furrow efficiency include alternate furrow irrigation, furrow diking, and surge flow. Alternate furrow irrigation improves the timeliness of irrigation applications and increases lateral water movement thereby reducing deep percolation losses. Alternate furrow irrigation can be used with furrow diking or row dams on non-irrigated furrows to reduce rainfall runoff and soil erosion. The surge flow technique delivers large surges of water into the furrow on an intermittent cycle to reduce percolation losses at the upper end of the field. Sprinkler irrigation is the second major distribution system used for crop production primarily on mixed and sandy soils in the region. The use of these systems have increased tremendously over the past 25 years. This growth in the use of sprinkler irrigation systems is reflected in the increase for Texas from 668 thousand acres in 1958 to 2.2 million acres in 1979 (Texas Department of Water Resources). With the rapid rise in the relative price of energy during the 1970's, the emphasis of improving sprinkler efficiency has focused on both reducing their energy requirements and decreasing the amount of water lost through evaporation. One system which has been developed to meet these needs is the LEPA system or Low Energy Precision Application system (Lyle and Bordovsky,1980). This system operates by distributing water through drop tubes and low pressure emitters directly into the furrow as opposed to high pressure systems which utilize overhead sprinklers to distribute the water. In field trials of the LEPA system, measured application and distribution efficiencies averaged 98% and 96% respectively (Lyle et al., 1981).

Lee, John G.; Lacewell, Ronald D.; Ellis, John R.; Reneau, Duane R.

1984-06-10T23:59:59.000Z

55

Nuclear electric generation: Political, social, and economic cost and benefit to Indonesia. Master`s thesis  

SciTech Connect

Indonesia, the largest archipelagic country with a population the fourth biggest in the world, is now in the process of development. It needs a large quantity of energy electricity to meet the industrial and household demands. The currently available generating capacity is not sufficient to meet the electricity demand for the rapidly growing industries and the increasing population. In order to meet the future demand for electricity, new generating capacity is required to be added to the current capacity. Nuclear electricity generation is one possible alternative to supplement Indonesia`s future demand of electricity. This thesis investigates the possibility of developing nuclear electricity generation in Indonesia, considering the political, social, and economic cost and benefit to Indonesia.

Waliyo

1994-12-01T23:59:59.000Z

56

CPI anticipates price benefits in an open electricity market - but utilities `will erect roadblocks`  

SciTech Connect

Chemical manufacturers and industrial gas firms welcome the coming deregulation of electricity because the change offers them competitive choice in power supplies. They anticipate price benefits like those that have flowed from natural gas deregulation, which feed from manufacturers to bypass local utilities and shop for their own fuel supplies.

Pospisil, R.

1994-11-23T23:59:59.000Z

57

Benefits and Costs of Improved IEQ in U.S. Offices  

SciTech Connect

This paper estimates some of the benefits and costs of implementing scenarios that improve indoor environmental quality (IEQ) in the stock of U.S. office buildings. The scenarios include increasing ventilation rates when they are below 10 or 15 L/s per person, adding outdoor-air economizers and controls when absent, eliminating winter indoor temperatures greater than 23 oC, and reducing dampness and mold problems. The estimated benefits of the scenarios analyzed are substantial in magnitude, including increased work performance, reduced sick building syndrome symptoms, reduced absence, and improved thermal comfort for millions of office workers. The combined potential annual economic benefit of a set ofnon-overlapping scenarios is approximately $20 billion. While the quantitative estimates have a high uncertainty, the opportunity for substantial benefits is clear. Some IEQ improvement measures will save energy while improving health or productivity, and implementing these measures should be the highest priority.

Fisk, William J.; Black, Douglas; Brunner, Gregory

2011-06-01T23:59:59.000Z

58

Costs and benefits of automotive fuel economy improvement: A partial analysis  

SciTech Connect

This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer's surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer's surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

Greene, D.L. (Oak Ridge National Lab., TN (United States)); Duleep, K.G. (Energy and Environmental Analysis, Inc., Arlington, VA (United States))

1992-03-01T23:59:59.000Z

59

Costs and benefits of automotive fuel economy improvement: A partial analysis  

SciTech Connect

This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer`s surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer`s surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

Greene, D.L. [Oak Ridge National Lab., TN (United States); Duleep, K.G. [Energy and Environmental Analysis, Inc., Arlington, VA (United States)

1992-03-01T23:59:59.000Z

60

Costs and benefits of automotive fuel economy improvement: A partial analysis  

SciTech Connect

This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer's surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer's surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

Greene, D.L. (Oak Ridge National Lab., TN (United States)); Duleep, K.G. (Energy and Environmental Analysis, Inc., Arlington, VA (United States))

1992-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "benefits improved electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Pee Dee Electric Cooperative - Energy Efficient Home Improvement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficient Home Improvement Loan Program Pee Dee Electric Cooperative - Energy Efficient Home Improvement Loan Program Eligibility Residential Savings For Home Weatherization...

62

Reducing emissions from the electricity sector: the costs and benefits nationwide and for the Empire State  

Science Conference Proceedings (OSTI)

Using four models, this study looks at EPA's Clean Air Interstate Rule (CAIR) as originally proposed, which differs in only small ways from the final rule issued in March 2005, coupled with several approaches to reducing emissions of mercury including one that differs in only small ways from the final rule also issued in March 2005. This study analyzes what costs and benefits each would incur to New York State and to the nation at large. Benefits to the nation and to New York State significantly outweigh the costs associated with reductions in SO{sub 2}, NOx and mercury, and all policies show dramatic net benefits. The manner in which mercury emissions are regulated will have important implications for the cost of the regulation and for emission levels for SO{sub 2} and NOx and where those emissions are located. Contrary to EPA's findings, CAIR as originally proposed by itself would not keep summer emissions of NOx from electricity generators in the SIP region below the current SIP seasonal NOx cap. In the final CAIR, EPA added a seasonal NOx cap to address seasonal ozone problems. The CAIR with the seasonal NOx cap produces higher net benefits. The effect of the different policies on the mix of fuels used to supply electricity is fairly modest under scenarios similar to the EPA's final rules. A maximum achievable control technology (MACT) approach, compared to a trading approach as the way to achieve tighter mercury targets (beyond EPA's proposal), would preserve the role of coal in electricity generation. The evaluation of scenarios with tighter mercury emission controls shows that the net benefits of a maximum achievable control technology (MACT) approach exceed the net benefits of a cap and trade approach. 39 refs., 10 figs., 30 figs., 5 apps.

Karen Palmer; Dallas Butraw; Jhih-Shyang Shih

2005-06-15T23:59:59.000Z

63

Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Ice Electric Ice Resurfacers Improve Air Quality in Minnesota to someone by E-mail Share Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Facebook Tweet about Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Twitter Bookmark Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Google Bookmark Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Delicious Rank Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Digg Find More places to share Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on AddThis.com... Sept. 14, 2013

64

Renewable Electricity Benefits Quantification Methodology: A Request for Technical Assistance from the California Public Utilities Commission  

Science Conference Proceedings (OSTI)

The California Public Utilities Commission (CPUC) requested assistance in identifying methodological alternatives for quantifying the benefits of renewable electricity. The context is the CPUC's analysis of a 33% renewable portfolio standard (RPS) in California--one element of California's Climate Change Scoping Plan. The information would be used to support development of an analytic plan to augment the cost analysis of this RPS (which recently was completed). NREL has responded to this request by developing a high-level survey of renewable electricity effects, quantification alternatives, and considerations for selection of analytic methods. This report addresses economic effects and health and environmental effects, and provides an overview of related analytic tools. Economic effects include jobs, earnings, gross state product, and electricity rate and fuel price hedging. Health and environmental effects include air quality and related public-health effects, solid and hazardous wastes, and effects on water resources.

Mosey, G.; Vimmerstedt, L.

2009-07-01T23:59:59.000Z

65

Improvement of Electrical Resistivity by Inserting the Graphene Film ...  

Science Conference Proceedings (OSTI)

Presentation Title, Improvement of Electrical Resistivity by Inserting the Graphene Film between Al doped ZnO Thin Films. Author(s), Jeong Do Yang, Dong-Hee ...

66

Benefits and Challenges of Achieving a Mainstream Market for Electric Vehicles  

SciTech Connect

The Plug-in Hybrid electric Vehicle (PHEV) Market Introduction Study Final Report identified a range of policies, incentives and regulations designed to enhance the probability of success in commercializing PHEVs as they enter the automotive marketplace starting in 2010. The objective of the comprehensive PHEV Value Proposition study, which encompasses the PHEV Market Introduction Study, is to better understand the value proposition that PHEVs (as well as other plug-in electric vehicle platforms - PEVs) provide to the auto companies themselves, to the consumer and to the public at large as represented by the government and its public policies. In this report we use the more inclusive term PEVs, to include PHEVs, BEVs (battery electric vehicles that operate only on battery) and EREVs (extended range electric vehicles that combine battery electric vehicles with an internal combustion engine that charges the battery as needed). The objective of Taratec's contribution to Phase 2 of the PHEV Value Proposition Study is to develop a clear understanding of the benefits of PEVs to three stakeholders - auto original equipment manufacturers (OEMs), utilities, and the government - and of the technical and commercial challenges and risks to be overcome in order to achieve commercial success for these vehicles. The goal is to understand the technical and commercial challenges in moving from the 'early adopters' at the point of market introduction of these vehicles to a 'sustainable' mainstream market in which PEVs and other PEVs represent a normal, commercially available and attractive vehicle to the mainstream consumer. For the purpose of this study, that sustainable market is assumed to be in place in the 2030 timeframe. The principal focus of the study is to better understand the technical and commercial challenges in the transition from early adopters to a sustainable mainstream consumer market. Effectively, that translates to understanding the challenges to be overcome during the transition period - basically the middle years as the second and third generation of these vehicles are developed and come to market. The concern is to understand those things that in the near term would delay that transition. The study looked at identifying and then quantifying these technical and commercial risks and benefits from three perspectives: (1) The auto industry original equipment manufacturers (OEMs) themselves; (2) The utilities who will provide the electric 'fuel' that will fully or partially power the vehicles; and (3) The government, representing public policy interest in PEV success. By clarifying and quantifying these benefits and the technical and commercial risks that could delay the transition to a sustainable mainstream market, the study provides the basis for developing recommendations for government policies and support for PHEV and PEV development.

Ungar, Edward [Taratec Corporation; Mueller, Howard [Taratec Corporation; Smith, Brett [Center for Automotive Research

2010-08-01T23:59:59.000Z

67

Electricity and Natural Gas Efficiency Improvements for Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Title Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S....

68

Superconducting magnetic energy storage applications and benefits for electric utility power systems  

DOE Green Energy (OSTI)

Large SMES units are being studied for electric utility applications as diurnal, load-curve leveling and as transient stabilizer units. Such SMES units show promise of providing greater operating flexibility than pumped-hydro or other types of energy storage. This operating flexibility, together with its fast response capability to provide transient and dynamic stabilization benefits to a power system, are discussed. Small SMES units are being designed for dynamic stability applications on electric power systems for use when negatively damped system operating conditions are encountered. The 30-MJ, 10-MW SMES dynamic-stabilizer design is presented; and the status of the component development and fabrication contracts which have been placed with commercial manufacturers is discussed.

Turner, R.D.

1979-01-01T23:59:59.000Z

69

Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage : a study for the DOE Energy Storage Systems Program.  

DOE Green Energy (OSTI)

The work documented in this report was undertaken as part of an ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Electricity Storage Systems (ESS) Program. This study characterizes one especially attractive value proposition for modular electricity storage (MES): electric utility transmission and distribution (T&D) upgrade deferral. The T&D deferral benefit is characterized in detail. Also presented is a generalized framework for estimating the benefit. Other important and complementary (to T&D deferral) elements of possible value propositions involving MES are also characterized.

Eyer, James M. (Distributed Utility Associates, Inc., Livermore, CA)

2009-06-01T23:59:59.000Z

70

First Electric Cooperative - Home Improvement Loans | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Electric Cooperative - Home Improvement Loans First Electric Cooperative - Home Improvement Loans First Electric Cooperative - Home Improvement Loans < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate $15,000 Program Info State Arkansas Program Type Utility Loan Program Rebate Amount $500 - $15,000 Provider First Electric Cooperative First Electric Cooperative, a Touchstone Energy® Cooperative, serves over 85,000 member accounts throughout parts of seventeen counties in central and southeast Arkansas. The Home Improvement Loan Program allows members to borrow between $500 and $15,000 for energy efficiency home improvements

71

Butler Rural Electric Cooperative - Energy Efficiency Improvement Loan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Butler Rural Electric Cooperative - Energy Efficiency Improvement Butler Rural Electric Cooperative - Energy Efficiency Improvement Loan Program Butler Rural Electric Cooperative - Energy Efficiency Improvement Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Water Heating Maximum Rebate $25,000 Program Info State Ohio Program Type Utility Loan Program Rebate Amount up to $25,000 Provider Butler Rural Electric Cooperative, Inc. Butler Rural Electric Cooperative, Inc. provides low interest loans (3%) for members to make energy efficiency improvements in eligible homes. There is a $15 application fee for all loans plus additional closing costs

72

Pee Dee Electric Cooperative- Energy Efficient Home Improvement Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Pee Dee Electric Cooperative offers financing for members through the Energy Efficient Home Improvement Loan Program. Loans of up to $5,000, with repayment periods up to 72 months, can be used for...

73

IMPROVING ELECTRIC FRAUD DETECTION USING CLASS IMBALANCE STRATEGIES  

E-Print Network (OSTI)

. Analysis over consumers historical kWh load profile data from Uruguayan Elec- tric Company (UTE) showsIMPROVING ELECTRIC FRAUD DETECTION USING CLASS IMBALANCE STRATEGIES Mat´ias Di Martino, Federico, jmolinelli}@gmail.com Keywords: Electricity theft, Support vector machine, Optimum path forest, Unbalance

74

Eliminating Electricity Deficit through Energy Efficiency in India: An Evaluation of Aggregate Economic and Carbon Benefits  

E-Print Network (OSTI)

S. Das, (2006) Reducing Electricity Deficit through EnergyLV supply. Figure 12: Electricity Productivity (Commercialan interesting result. The electricity productivity in both

Sathaye, Jayant

2010-01-01T23:59:59.000Z

75

Eliminating Electricity Deficit through Energy Efficiency in India: An Evaluation of Aggregate Economic and Carbon Benefits  

E-Print Network (OSTI)

Business as Usual (BAU) Scenario 1 – Electricity Demand andEnergy Efficiency (SEE) Scenario 2– Electricity Demand andCA 94720 Abstract Electricity demand has consistently

Sathaye, Jayant

2010-01-01T23:59:59.000Z

76

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network (OSTI)

explicit analysis of emissions added by electrical energy toanalysis of the emissions added by electrical energy to

McKone, Thomas E.

2011-01-01T23:59:59.000Z

77

Power draw scheduling of electric and plug-in hybrid electric vehicles with unidirectional vehicle-to-grid benefits.  

E-Print Network (OSTI)

??This thesis addresses power scheduling aspects of electric and plug-in hybrid vehicles. The use of electric vehicles (EVs) as demand response resources and the unidirectional… (more)

Fasugba, McDavis A.

2011-01-01T23:59:59.000Z

78

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network (OSTI)

offsets the sizable electricity savings. References TitleElectricity and Natural Gas Efficiency Improvements forfueled by natural gas. Electricity consumption by a furnace

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

79

Coming Full Circle in Florida: Improving Electric Grid Reliability and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coming Full Circle in Florida: Improving Electric Grid Reliability Coming Full Circle in Florida: Improving Electric Grid Reliability and Resiliency Coming Full Circle in Florida: Improving Electric Grid Reliability and Resiliency May 2, 2013 - 11:16am Addthis Inside Florida Power & Light's Transmission Performance Diagnostic Center. | Photo courtesy of Florida Power & Light. Inside Florida Power & Light's Transmission Performance Diagnostic Center. | Photo courtesy of Florida Power & Light. In 2009, at the DeSoto Next Generation Solar Energy Center, President Obama announced the launch of the $3.4 billion Smart Grid Investment Grant program. In 2009, at the DeSoto Next Generation Solar Energy Center, President Obama announced the launch of the $3.4 billion Smart Grid Investment Grant program. Inside Florida Power & Light's Transmission Performance Diagnostic Center. | Photo courtesy of Florida Power & Light.

80

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network (OSTI)

WTE primary fuel powered electricity generating plants in a)WTE primary fuel powered electricity generating plants in a)plant generating electricity from a specific fuel-technology

McKone, Thomas E.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "benefits improved electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Assessing the Environmental Costs and Benefits of Households Electricity Consumption Management.  

E-Print Network (OSTI)

?? In this study the environmental costs and benefits of smart metering technology systems installed in households in Norway have been assessed. Smart metering technology… (more)

Segtnan, Ida Lund

2011-01-01T23:59:59.000Z

82

Electric motor systems in developing countries: Opportunities for efficiency improvement  

SciTech Connect

This report presents an overview of the current status and efficiency improvement potential of industrial motor systems in developing countries. Better management of electric motor systems is of particular relevance in developing countries, where improved efficiency can lead to increased productivity and slower growth in electricity demand. Motor systems currently consume some 65--80% of the industrial electricity in developing countries. Drawing on studies from Thailand, India, Brazil, China, Pakistan, and Costa Rica, we describe potential efficiency gains in various parts of the motor system, from the electricity delivery system through the motor to the point where useful work is performed. We report evidence of a significant electricity conservation potential. Most of the efficiency improvement methods we examine are very cost-effective from a societal viewpoint, but are generally not implemented due to various barriers that deter their adoption. Drawing on experiences in North America, we discuss a range of policies to overcome these barriers, including education, training, minimum efficiency standards, motor efficiency testing protocols, technical assistance programs, and financial incentives.

Meyers, S.; Monahan, P.; Lewis, P.; Greenberg, S. [Lawrence Berkeley Lab., CA (United States); Nadel, S. [American Council for an Energy-Efficient Economy, Washington, DC (United States)

1993-08-01T23:59:59.000Z

83

A Framework for Evaluating the Benefits and Costs of Investments in Electric Vehicle Infrastructure  

Science Conference Proceedings (OSTI)

Electric vehicles151including hybrid electric vehicles, plug-in hybrid electric vehicles, and battery-only vehicles151are desirable alternatives to vehicles powered by internal combustion engines because they produce considerably less or no direct emissions of greenhouse gases and other pollutants that are attributed to the transportation sector. However, they use electricity to charge their batteries, the generation of which consumes fossil fuels (in some cases, coal), which increases the emission of th...

2010-12-31T23:59:59.000Z

84

Consumer benefits of electricity-price-driven heat pump operation in future smart grids  

Science Conference Proceedings (OSTI)

This paper describes the financial benefits of consumers while applying different operating modes to their heat pump. In order to evaluate the different operating modes a single family house with heating system has been modeled and simulated with different ...

Christoph Molitor; Ferdinanda Ponci; Antonello Monti; Davide Cali; Dirk Muller

2011-11-01T23:59:59.000Z

85

Electricity and Natural Gas Efficiency Improvements for Residential Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

and Natural Gas Efficiency Improvements for Residential Gas and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Title Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Publication Type Report LBNL Report Number LBNL-59745 Year of Publication 2006 Authors Lekov, Alexander B., Victor H. Franco, Stephen Meyers, James E. McMahon, Michael A. McNeil, and James D. Lutz Document Number LBNL-59745 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract This paper presents analysis of the life-cycle costs for individual households and the aggregate energy and economic impacts from potential energy efficiency improvements in U.S. residential furnaces. Most homes in the US are heated by a central furnace attached to ducts for distributing heated air and fueled by natural gas. Electricity consumption by a furnace blower is significant, comparable to the annual electricity consumption of a major appliance. Since the same blower unit is also used during the summer to circulate cooled air in centrally air conditioned homes, electricity savings occur year round. Estimates are provided of the potential electricity savings from more efficient fans and motors. Current regulations require new residential gas-fired furnaces (not including mobile home furnaces) to meet or exceed 78% annual fuel utilization efficiency (AFUE), but in fact nearly all furnaces sold are at 80% AFUE or higher. The possibilities for higher fuel efficiency fall into two groups: more efficient non-condensing furnaces (81% AFUE) and condensing furnaces (90-96% AFUE). There are also options to increase the efficiency of the furnace blower. This paper reports the projected national energy and economic impacts of requiring higher efficiency furnaces in the future. Energy savings vary with climate, with the result that condensing furnaces offer larger energy savings in colder climates. The range of impacts for a statistical sample of households and the percent of households with net savings in life cycle cost are shown. Gas furnaces are somewhat unusual in that the technology does not easily permit incremental change to the AFUE above 80%. Achieving significant energy savings requires use of condensing technology, which yields a large efficiency gain (to 90% or higher AFUE), but has a higher cost. With respect to electricity efficiency design options, the ECM has a negative effect on the average LCC. The current extra cost of this technology more than offsets the sizable electricity savings.

86

OAK RIDGE NATIONAL LABORATORY SPALLATION NEUTRON SOURCE ELECTRICAL SYSTEMS AVAILABILITY AND IMPROVEMENTS  

Science Conference Proceedings (OSTI)

SNS electrical systems have been operational for 4 years. System availability statistics and improvements are presented for AC electrical systems, DC and pulsed power supplies and klystron modulators.

Cutler, Roy I [ORNL; Peplov, Vladimir V [ORNL; Wezensky, Mark W [ORNL; Norris, Kevin Paul [ORNL; Barnett, William E [ORNL; Hicks, Jim [ORNL; Weaver, Joey T [ORNL; Moss, John [ORNL; Rust, Kenneth R [ORNL; Mize, Jeffery J [ORNL; Anderson, David E [ORNL

2011-01-01T23:59:59.000Z

87

Enhancing the Benefit of the Chemical Mixture Methodology: A Report on Methodology Testing and Potential Approaches for Improving Performance  

SciTech Connect

Extensive testing shows that the current version of the Chemical Mixture Methodology (CMM) is meeting its intended mission to provide conservative estimates of the health effects from exposure to airborne chemical mixtures. However, the current version of the CMM could benefit from several enhancements that are designed to improve its application of Health Code Numbers (HCNs) and employ weighting factors to reduce over conservatism.

Yu, Xiao-Ying; Yao, Juan; He, Hua; Glantz, Clifford S.; Booth, Alexander E.

2012-01-01T23:59:59.000Z

88

Eliminating Electricity Deficit through Energy Efficiency in India: An Evaluation of Aggregate Economic and Carbon Benefits  

E-Print Network (OSTI)

energy efficiency equipment is expected to come from private industry while that for the supply-Supply with Energy Efficiency (SEE) Scenario 2– Electricity Demand and Availability . 16 Figure 11: Commercial and LV-MV Industry

Sathaye, Jayant

2010-01-01T23:59:59.000Z

89

Electric Cable Reel Rubber-Tired Gantry Cranes: Costs and Benefits  

Science Conference Proceedings (OSTI)

Port equipment manufacturers have responded to the increased focus on air quality control by creating a variety of cleaner equipment and making more electric equipment available to ports. Included in this equipment is the rubber-tired gantry (RTG) crane, which was historically available only with a diesel engine. Electric cable reel RTG cranes, relatively new to the U.S. market, may reduce port crane operating costs due to their lower energy costs, higher energy efficiencies, and longer equipment life. E...

2010-03-24T23:59:59.000Z

90

Optimal Transmission Switching in Electric Networks for Improved Economic Operations1  

E-Print Network (OSTI)

1 Optimal Transmission Switching in Electric Networks for Improved Economic Operations1 Emily. Abstract Growing demand for electric power seems to necessitate new transmission lines, but obstacles" bulk electric grid, one that is more controllable and flexible. Optimal transmission switching

Ferris, Michael C.

91

Relative efficiency benefits of wholesale and retail competition in electricity: An analysis and a research agenda  

SciTech Connect

A central issue in the debate over restructuring the electric power industry is the extent to which the market should be open to competition. One aspect of this debate is whether competition ought to be restricted to the whole sale power market or be extended to final retail consumers. This report begins to explore the potential differences in economic efficiency between wholesale and retail competition in the electric power industry. The two market-structure scenarios are defined and the factors responsible for differences in efficiency are described. The report also contains an assessment of the relative importance of the factors and recommendations for pursuing further research.

Bohi, D.R.; Palmer, K.L. [Resources for the Future, Inc., Washington, DC (United States)

1996-03-01T23:59:59.000Z

92

Cost Benefit Analysis Modeling Tool for Electric vs. ICE Airport Ground Support Equipment – Development and Results  

SciTech Connect

This report documents efforts to develop a computer tool for modeling the economic payback for comparative airport ground support equipment (GSE) that are propelled by either electric motors or gasoline and diesel engines. The types of GSE modeled are pushback tractors, baggage tractors, and belt loaders. The GSE modeling tool includes an emissions module that estimates the amount of tailpipe emissions saved by replacing internal combustion engine GSE with electric GSE. This report contains modeling assumptions, methodology, a user’s manual, and modeling results. The model was developed based on the operations of two airlines at four United States airports.

James Francfort; Kevin Morrow; Dimitri Hochard

2007-02-01T23:59:59.000Z

93

Electrical Core Transformer for Grid Improvement Incorporating Wire Magnetic Components  

SciTech Connect

The research reported herein adds to the understanding of oil-immersed distribution transformers by exploring and demonstrating potential improvements in efficiency and cost utilizing the unique Buswell approach wherein the unit is redesigned, replacing magnetic sheet with wire allowing for improvements in configuration and increased simplicity in the build process. Exploration of new designs is a critical component in our drive to assure reduction of energy waste, adequate delivery to the citizenry, and the robustness of U.S. manufacturing. By moving that conversation forward, this exploration adds greatly to our base of knowledge and clearly outlines an important avenue for further exploration. This final report shows several advantages of this new transformer type (outlined in a report signed by all of our collaborating partners and included in this document). Although materials development is required to achieve commercial potential, the clear benefits of the technology if that development were a given is established. Exploration of new transformer types and further work on the Buswell design approach is in the best interest of the public, industry, and the United States. Public benefits accrue from design alternatives that reduce the overall use of energy, but it must be acknowledged that new DOE energy efficiency standards have provided some assurance in that regard. Nonetheless the burden of achieving these new standards has been largely shifted to the manufacturers of oil-immersed distribution transformers with cost increasing up to 20% of some units versus 2006 when this investigation was started. Further, rising costs have forced the industry to look closely are far more expensive technologies which may threaten U.S. competitiveness in the distribution transformer market. This concern is coupled with the realization that many units in the nation's grid are beyond their optimal life which suggests that the nation may be headed for an infrastructure crisis that U.S. industry is ill prepared to handle which could further challenge U.S. competitiveness.

Harrie R. Buswell, PhD; Dennis Jacobs, PhD; Steve Meng

2012-03-26T23:59:59.000Z

94

The use - and misuse - of statistics in evaluating the benefits of restructured electricity markets  

SciTech Connect

Statistics have an important role to play in assessing market performance. Too often, though, numbers are used more to make a splash than to enlighten, and upon closer scrutiny, the underlying analyses lack credibility. It is time to move away from a battle of sound bites and toward serious evaluation of how well restructured wholesale electricity markets are working. (author)

Moody, Diane

2007-03-15T23:59:59.000Z

95

Locational-based Coupling of Electricity Markets: Benefits from Coordinating Unit Commitment and Balancing Markets  

E-Print Network (OSTI)

1 Country 2 QD A B C D QC 6 Fig. 2 Sequence of decisions and calculations in models 2.1. Notation Sets indexes H Nodes h I All generators i hI Generators at node h i XI Electricity sinks (in...

van der Weijde, Adriaan Hendrik; Hobbs, Benjamin F.

96

Regional Economic Benefits from Electric Transportation: Case Study of the Cleveland, Ohio Metropolitan Statistical Area  

Science Conference Proceedings (OSTI)

This study analyzes the economic impacts due to electric drive vehicle (EDVs) market penetration in the Cleveland metropolitan statistical area (MSA). Specifically, the study examines the economic impacts due to petroleum displacement and decreased pollution control compliance costs for local industry. The study applies a regional input-out put analysis to develop regional economic impact multipliers (REIMs) appropriate for EDV evaluation. These REIMs are integrated into a spreadsheet based Cleveland EDV...

2006-12-12T23:59:59.000Z

97

Penetration and air-emission-reduction benefits of solar technologies in the electric utilities  

DOE Green Energy (OSTI)

The results of a study of four solar energy technologies and the electric utility industry are reported. The purpose of the study was to estimate the penetration by federal region of four solar technologies - wind, biomass, phtovoltaics, and solar thermal - in terms of installed capacity and power generated. The penetration by these technologies occurs at the expense of coal and nuclear power. The displacement of coal plants implies a displacement of their air emissions, such as sulfur dioxide, oxides of nitrogen, and particulate matter. The main conclusion of this study is that solar thermal, photovoltaics, and biomass fail to penetrate significantly by the end of this century in any federal region. Wind energy penetrates the electric utility industry in several regions during the 1990s. Displaced coal and nuclear generation are also estimated by region, as are the corresponding reductions in air emissions. The small-scale penetration by the solar technologies necessarily limits the amount of conventional fuels displaced and the reduction in air emissions. A moderate displacement of sulfur dioxide and the oxides of nitrogen is estimated to occur by the end of this century, and significant lowering of these emissions should occur in the early part of the next century.

Sutherland, R.J.

1981-01-01T23:59:59.000Z

98

Using Forward Markets to Improve Electricity Market Design  

E-Print Network (OSTI)

Forward markets, both medium term and long term, complement the spot market for wholesale electricity. The forward markets reduce risk, mitigate market power, and coordinate new investment. In the medium term, a forward energy market lets suppliers and demanders lock in energy prices and quantities for one to three years. In the long term, a forward reliability market assures adequate resources are available when they are needed most. The forward markets reduce risk for both sides of the market, since they reduce the quantity of energy that trades at the more volatile spot price. Spot market power is mitigated by putting suppliers and demanders in a more balanced position at the time of the spot market. The markets also reduce transaction costs and improve liquidity and transparency. Recent innovations to the Colombia market illustrate the basic elements of the forward markets and their beneficial role. 1

Lawrence M. Ausubel; Peter Cramton

2010-01-01T23:59:59.000Z

99

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

Science Conference Proceedings (OSTI)

This study assesses for California how increasing end-use electrical energy efficiency from installing residential insulation impacts exposures and disease burden from power-plant pollutant emissions. Installation of fiberglass attic insulation in the nearly 3 million electricity-heated homes throughout California is used as a case study. The pollutants nitrous oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), fine particulate matter (PM2.5), benzo(a)pyrene, benzene, and naphthalene are selected for the assessment. Exposure is characterized separately for rural and urban environments using the CalTOX model, which is a key input to the US Environmental Protection Agency (EPA) Tool for the Reduction and Assessment of Chemicals and other environmental Impacts (TRACI). The output of CalTOX provides for urban and rural populations emissions-to-intake factors, which are expressed as an individual intake fraction (iFi). The typical iFi from power plant emissions are on the order of 10{sup -13} (g intake per g emitted) in urban and rural regions. The cumulative (rural and urban) product of emissions, population, and iFi is combined with toxic effects factors to determine human damage factors (HDFs). HDF are expressed as disability adjusted life years (DALYs) per kilogram pollutant emitted. The HDF approach is applied to the insulation case study. Upgrading existing residential insulation to US Department of Energy (DOE) recommended levels eliminates over the assmned 50-year lifetime of the insulation an estimated 1000 DALYs from power-plant emissions per million tonne (Mt) of insulation installed, mostly from the elimination of PM2.5 emissions. In comparison, the estimated burden from the manufacture of this insulation in DALYs per Mt is roughly four orders of magnitude lower than that avoided.

McKone, Thomas E.; Lobscheid, A.B.

2006-06-01T23:59:59.000Z

100

Energy storage for the electricity grid : benefits and market potential assessment guide : a study for the DOE Energy Storage Systems Program.  

DOE Green Energy (OSTI)

This guide describes a high-level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric-utility-related applications. The overarching theme addressed is the concept of combining applications/benefits into attractive value propositions that include use of energy storage, possibly including distributed and/or modular systems. Other topics addressed include: high-level estimates of application-specific lifecycle benefit (10 years) in $/kW and maximum market potential (10 years) in MW. Combined, these criteria indicate the economic potential (in $Millions) for a given energy storage application/benefit. The benefits and value propositions characterized provide an important indication of storage system cost targets for system and subsystem developers, vendors, and prospective users. Maximum market potential estimates provide developers, vendors, and energy policymakers with an indication of the upper bound of the potential demand for storage. The combination of the value of an individual benefit (in $/kW) and the corresponding maximum market potential estimate (in MW) indicates the possible impact that storage could have on the U.S. economy. The intended audience for this document includes persons or organizations needing a framework for making first-cut or high-level estimates of benefits for a specific storage project and/or those seeking a high-level estimate of viable price points and/or maximum market potential for their products. Thus, the intended audience includes: electric utility planners, electricity end users, non-utility electric energy and electric services providers, electric utility regulators and policymakers, intermittent renewables advocates and developers, Smart Grid advocates and developers, storage technology and project developers, and energy storage advocates.

Eyer, James M. (Distributed Utility Associates, Inc., Livermore, CA); Corey, Garth P. (KTech Corporation, Albuquerque, NM)

2010-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "benefits improved electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India  

E-Print Network (OSTI)

below the cost of production of 7.7 cents per kWh. Thus, the1 to 5.2 cents per kWh, well below the cost of electricitythe average cost of production was 7.7 cents per kWh. We

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie; McMahon, James E.

2005-01-01T23:59:59.000Z

102

Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India  

E-Print Network (OSTI)

from power losses assuming that the transformer is operatingas power delivery grows over time, each transformer isefficiency (5 Star) transformer models. Power loss ratings

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie; McMahon, James E.

2005-01-01T23:59:59.000Z

103

Improving Electricity Resource-Planning Processes by Considering the Strategic Benefits of Transmission  

E-Print Network (OSTI)

to equitable recovery of project costs. Our research hasrules, transmission project costs are spread over all userspercentage of total project cost. Experts in the management

Budhraja, Vikram

2010-01-01T23:59:59.000Z

104

Improving Electricity Resource-Planning Processes by Considering the Strategic Benefits of Transmission  

E-Print Network (OSTI)

Tehachapi wind and transmission line development, the 4.8-cost of the Tehachapi transmission line is estimated to be $14% of the cost of the transmission line. While it can be

Budhraja, Vikram

2010-01-01T23:59:59.000Z

105

Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India  

E-Print Network (OSTI)

generation, including hydroelectric and nuclear (which havefor nuclear and hydroelectric generation were assumed to belignite and 34% from hydroelectric, with the balance coming

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie; McMahon, James E.

2005-01-01T23:59:59.000Z

106

Improving Electricity Resource-Planning Processes by Considering the Strategic Benefits of Transmission  

E-Print Network (OSTI)

Gas Crisis: Reducing Natural Gas Prices through Increaseddemand drives natural gas prices down by one percent, thea potential decrease of natural gas price resulting from the

Budhraja, Vikram

2010-01-01T23:59:59.000Z

107

Improving Electricity Resource-Planning Processes by Considering the Strategic Benefits of Transmission  

E-Print Network (OSTI)

one percent drop in natural gas demand drives natural gasPrice elasticity of natural gas 1% demand reduction equals

Budhraja, Vikram

2010-01-01T23:59:59.000Z

108

Improving Electricity Resource-Planning Processes by Considering the Strategic Benefits of Transmission  

E-Print Network (OSTI)

Gas Crisis: Reducing Natural Gas Prices through Increaseda potential decrease of natural gas price resulting from theGas Crisis: Reducing Natural Gas Prices through Increased

Budhraja, Vikram

2010-01-01T23:59:59.000Z

109

Improving Electricity Resource-Planning Processes by Considering the Strategic Benefits of Transmission  

E-Print Network (OSTI)

Gas Crisis: Reducing Natural Gas Prices through Increasedlikelihood that natural gas prices will be below $5/MMBtu,demand drives natural gas prices down by one percent, the

Budhraja, Vikram

2010-01-01T23:59:59.000Z

110

A Review of Recent RTO Benefit-Cost Studies: Toward More Comprehensive Assessments of FERC Electricity Restructuring Policies  

E-Print Network (OSTI)

Administration. 2004. Electricity Transmission in aInterruptions to U.S. Electricity Customers. September. (Cost Models in Electricity Planning and Pricing. ”

Eto, Joseph H.; Lesieutre, Bernard C.

2005-01-01T23:59:59.000Z

111

A Review of Recent RTO Benefit-Cost Studies: Toward More Comprehensive Assessments of FERC Electricity Restructuring Policies  

E-Print Network (OSTI)

assessment of the electricity industry’s evolution. To aidsome aspects of electricity industry restructuring throughbegan restructuring the U.S. electricity industry in 1996 by

Eto, Joseph H.; Lesieutre, Bernard C.

2005-01-01T23:59:59.000Z

112

Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks  

DOE Green Energy (OSTI)

The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

Larry Slone; Jeffrey Birkel

2007-10-31T23:59:59.000Z

113

Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks  

Science Conference Proceedings (OSTI)

The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

Larry Slone; Jeffrey Birkel

2007-10-31T23:59:59.000Z

114

BENEFIT HIGHLIGHTS BENEFIT ELIGIBILITY  

E-Print Network (OSTI)

No benefit payable under the Plan can be assigned, transferred or subject to any lien, garnishment, pledge

115

A hybrid simulation-adaptive network based fuzzy inference system for improvement of electricity consumption estimation  

Science Conference Proceedings (OSTI)

This paper presents a hybrid adaptive network based fuzzy inference system (ANFIS), computer simulation and time series algorithm to estimate and predict electricity consumption estimation. The difficulty with electricity consumption estimation modeling ... Keywords: Adaptive network based fuzzy inference system, Computer simulation, Electricity consumption, Hybrid, Improvement, Time series

A. Azadeh; M. Saberi; A. Gitiforouz; Z. Saberi

2009-10-01T23:59:59.000Z

116

DOE Provides $4.3 Million to Improve Reliability of the U.S. Electric Grid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Provides $4.3 Million to Improve Reliability of the U.S. Provides $4.3 Million to Improve Reliability of the U.S. Electric Grid DOE Provides $4.3 Million to Improve Reliability of the U.S. Electric Grid August 21, 2009 - 3:47pm Addthis Innovative Synchrophasor Research Will Provide Better Real-Time Information WASHINGTON, DC - The Department of Energy's Office of Electricity and Energy Reliability today announced that it will provide $4.3 million for four projects that will use innovative synchrophasor research to improve the reliability and efficiency of our Nation's electricity grid. These awards are part of the Department's efforts to modernize the electric grid and enhance the security and reliability of the energy infrastructure. Synchrophasors are high-speed, real-time synchronized measurement devices used to diagnose the health of the electricity grid. With synchrophasor

117

Improving the Reliability and Resiliency of the US Electric Grid: SGIG  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improving the Reliability and Resiliency of the US Electric Grid: Improving the Reliability and Resiliency of the US Electric Grid: SGIG Article in Metering International, March 2012 Improving the Reliability and Resiliency of the US Electric Grid: SGIG Article in Metering International, March 2012 The quarterly magazine Metering International is a resource for information on trends and developments in the industry. Issue 1 2012 (March) featured an article on DOE's Smart Grid Investment Grant Program written by OE's Debbie Haught and Joseph Paladino. "Improving the Reliability and Resiliency of the US Electric Grid" is available for download below. Improving the Reliability and Resiliency of the US Electric Grid - SGIG Article in Metering International Issue 1 2012.pdf More Documents & Publications Smart Grid Investment Grant Program - Progress Report (October 2013)

118

A Review of Recent RTO Benefit-Cost Studies: Toward More Comprehensive Assessments of FERC Electricity Restructuring Policies  

E-Print Network (OSTI)

flow of electricity, possibly restricting desired trade. (freedom to trade, consumers would want more electricity, andelectricity industry restructuring, short-term wholesale trades

Eto, Joseph H.; Lesieutre, Bernard C.

2005-01-01T23:59:59.000Z

119

Study on the performance improvements of electrical domestic appliance factory  

E-Print Network (OSTI)

This thesis has two objectives. First, it aims to help TECHSOL electronics domestic appliance measure and analyze its current performance. Secondly, it is aimed to ascertain where a small improvement can result in significant ...

Kasan Hidayat, Andy Darwin

2007-01-01T23:59:59.000Z

120

A Method to Improve Voltage Holding Across Vacuum Electrical Gaps to  

NLE Websites -- All DOE Office Websites (Extended Search)

A Method to Improve Voltage Holding Across Vacuum Electrical Gaps to A Method to Improve Voltage Holding Across Vacuum Electrical Gaps to Improve the Performance and Reduce the Conditioning Time by Removing Bacteria, Fungi, and Other Microbial Organisms and Their Spores. -- . Inventor Larry Grisham. Disclosed is a method to potentially increase the performance of devices which employ electric field within a vacuum by increasing the magnitude of the electric field gradient which can be sustained, the reliability of the devices, and by reducing the conditioning time of devices such as charged particle accelerators when they are brought into operation. The disclosed method can be employed, for example, for devices requiring voltages across vacuum gaps, such as, but not limited to, charged particle accelerators, X-ray machines, vacuum tubes, and vacuum electrical breakers.

Note: This page contains sample records for the topic "benefits improved electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A Review of Recent RTO Benefit-Cost Studies: Toward More Comprehensive Assessments of FERC Electricity Restructuring Policies  

E-Print Network (OSTI)

the Creation of a Single MISO-PJM-SPP Power Market. ISO-NE/Power‘s Participation in PJM. SAIC. 2004. The Benefits andDominion Virginia Power Joining PJM. Henwood. 2004. Study of

Eto, Joseph H.; Lesieutre, Bernard C.

2005-01-01T23:59:59.000Z

122

Unique Carbon-Coated Cathodes Improve Electrical Conductivity (ANL-IN-09-043)  

Scientists at Argonne National Laboratory have developed a coating process for cathodes that improves their electrical conductivity. This procedure, which uses carbon precursors, has proved superior to conventional methods that involve high ...

123

Estimates of achievable potential for electricity efficiency improvements in U.S. residences  

E-Print Network (OSTI)

baseline electricity consumption forecast for the year 2010.Electricity-Efficiency Improvements in 2010 Discount Rate: 7% Forecast Year: 2010 Start Year: 1990 Baseline Energy Consumption for yearelectricity savings in the year 2010, which is 18% of the frozen efficiency baseline consumption forecast for that year.

Brown, Richard

1993-01-01T23:59:59.000Z

124

Toward More Comprehensive Assessments of FERC Electricity Restructuring Policies: A Review of Recent Benefit-Cost Studies of RTOs  

NLE Websites -- All DOE Office Websites (Extended Search)

Joseph Joseph H. Eto is a Staff Scientist at the Lawrence Berkeley National Laboratory, where he manages the program office for the Consortium for Electric Reliability Technology Solutions. Douglas R. Hale recently retired from the Department of Energy's Energy Information Administration, where he served as a senior economist most recently working in the areas of energy price risk management, modeling electricity transmission pricing, and electricity transmission data. Bernard C. Lesieutre is a Staff Scientist at the Lawrence Berkeley National Laboratory, where he conducts public-interest research on the electric power grid and electricity markets. The work described in this article was funded by the Office of Electricity Delivery and Energy Reliability of the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. This article is based on a longer technical report

125

Approach for Calculating OE Benefits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Customer Choices Improving Reliability, Resilency, Survivability of an Aging Infrastructure Annual Benefit ( millions) Custom er Utility Society Annual Benefit of Achieved...

126

Lightweight Buses With Electric Drive Improve Fuel Economy and Passenger Experience  

NLE Websites -- All DOE Office Websites (Extended Search)

Lightweight Buses With Electric Drive Improve Lightweight Buses With Electric Drive Improve Fuel Economy and Passenger Experience Background The standard, 40-foot diesel- powered transit bus is noisy, consumes a gallon of fuel for every three miles it travels, weighs 28,000 pounds, and contributes significantly to ur- ban air pollution. While hybrid electric buses do exist, they are very expensive, and typi- cally get just four miles to the gallon. Autokinetics and the Department of Energy Office of FreedomCAR and Vehicle Technologies Program saw sig- nificant room for improvement in hybrid electric buses-in terms of weight and noise reduction, better fuel economy, lower cost, and rider percep- tion-using lightweight body

127

Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-In Hybrid Electric Vehicles (Revised)  

SciTech Connect

Hybrid electric vehicles with the capability of being recharged from the grid may provide a significant decrease in oil consumption. These ''plug-in'' hybrids (PHEVs) will affect utility operations, adding additional electricity demand. Because many individual vehicles may be charged in the extended overnight period, and because the cost of wireless communication has decreased, there is a unique opportunity for utilities to directly control the charging of these vehicles at the precise times when normal electricity demand is at a minimum. This report evaluates the effects of optimal PHEV charging, under the assumption that utilities will indirectly or directly control when charging takes place, providing consumers with the absolute lowest cost of driving energy. By using low-cost off-peak electricity, PHEVs owners could purchase the drive energy equivalent to a gallon of gasoline for under 75 cents, assuming current national average residential electricity prices.

Denholm, P.; Short, W.

2006-10-01T23:59:59.000Z

128

Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-In Hybrid Electric Vehicles (Revised)  

DOE Green Energy (OSTI)

Hybrid electric vehicles with the capability of being recharged from the grid may provide a significant decrease in oil consumption. These ''plug-in'' hybrids (PHEVs) will affect utility operations, adding additional electricity demand. Because many individual vehicles may be charged in the extended overnight period, and because the cost of wireless communication has decreased, there is a unique opportunity for utilities to directly control the charging of these vehicles at the precise times when normal electricity demand is at a minimum. This report evaluates the effects of optimal PHEV charging, under the assumption that utilities will indirectly or directly control when charging takes place, providing consumers with the absolute lowest cost of driving energy. By using low-cost off-peak electricity, PHEVs owners could purchase the drive energy equivalent to a gallon of gasoline for under 75 cents, assuming current national average residential electricity prices.

Denholm, P.; Short, W.

2006-10-01T23:59:59.000Z

129

A Study on How the Electricity Market as a Whole and Consumers in Particular Could Benefit if More Consumers were to buy Electricity on Hourly Metering.  

E-Print Network (OSTI)

?? When consumers are able to buy electricity on an hourly instead of monthly basis, the demand side flexibility is likely to increase. One way… (more)

Lundström, Fredrik

2010-01-01T23:59:59.000Z

130

PESTICIDE BENEFITS PESTICIDE BENEFITS  

E-Print Network (OSTI)

-vectoring mosquitoes) separate from the risks and benefits of other pesticides (such as those used on field crops. Similarly, analysis of other pesticides will focus on the impacts on other user groups and related effects to determine whether the pesticide will remain effective for at least five years. EPA also requires

131

Toward More Comprehensive Assessments of FERC Electricity Restructuring Policies: A Review of Recent Benefit-Cost Studies of RTOs  

SciTech Connect

Definitive assessment of Federal Energy Regulatory Commission policies on regional transmission organizations is not currently possible because of uncertainties in the data and methods used in recent benefit-cost studies as well as lack of investigation of key impacts of the formation of RTOs. (author)

Eto, Joseph H.; Hale, Douglas R.; Lesieutre, Bernard C.

2006-12-15T23:59:59.000Z

132

An algorithmic game theory study of wholesale electricity markets based on central auction  

Science Conference Proceedings (OSTI)

The deregulation of the electricity markets produced significant economic benefits. Improving their efficiency is a prominent scientific challenge. We focus on wholesale electricity markets, in which generators sell electricity to a public agency by ...

Sofia Ceppi; Nicola Gatti

2010-12-01T23:59:59.000Z

133

Benefits of Using Mobile Transformers and Mobile Substations for Rapidly Restoring Electrical Service: a Report to the United States Congress Pursuant to Section 1816 of the Energy Policy Act of 2005 (August 2006)  

Energy.gov (U.S. Department of Energy (DOE))

Section 1816 of EPACT calls for a report on the benefits of using mobile transformers and mobile substations (MTS) to rapidly restore electrical service to areas subjected to blackouts as a result...

134

Comparing the Benefits and Impacts of Hybrid Electric Vehicle Options for Compact Sedan and Sport Utility Vehicles  

Science Conference Proceedings (OSTI)

Download report 1006892 for FREE. This study continues the Hybrid Electric Vehicle Working Group (WG) project in which EPRI brought together representatives of the utility and automotive industries, along with those of the U.S. Department of Energy (DOE), other regulatory agencies, and university research organizations. The study, the third in a series of three studies, examines the performance, energy economy, fuel cycle emissions, costs, and consumer acceptance for compact and sports utility hybrid ele...

2002-07-23T23:59:59.000Z

135

GAO-04-539 Department of Energy: Certain Postretirement Benefits for Contractor Employees Are Unfunded and Program Oversight Could Be Improved  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chairman, Subcommittee Chairman, Subcommittee on Energy and Water Development, Committee on Appropriations, House of Representatives April 2004 DEPARTMENT OF ENERGY Certain Postretirement Benefits for Contractor Employees Are Unfunded and Program Oversight Could Be Improved GAO-04-539 www.gao.gov/cgi-bin/getrpt?GAO-04-539. To view the full product, including the scope and methodology, click on the link above. For more information, contact Robert Martin at (202) 512-6131 or martinr@gao.gov. Highlights of GAO-04-539, a report to the Chairman, Subcommittee on Energy and Water Development, Committee on Appropriations, House of Representatives April 2004 DEPARTMENT OF ENERGY Certain Postretirement Benefits for Contractor Employees Are Unfunded and Program Oversight Could Be Improved

136

A project to improve the capabilities of minorities in energy fields and a cost benefit analysis of an ethyl alcohol plant  

DOE Green Energy (OSTI)

The project being reported in this document had three components: (1) a research project to carry out cost-benefit analysis of an ethyl alcohol plant at Tuskegee University, (2) seminars to improve the high-technology capabilities of minority persons, and (3) a class in energy management. The report provides a background on the three components listed above. The results from the research on the ethyl alcohol plant, are discussed, along with the seminars, and details of the energy management class.

Sara, T.S.; Jones, M. Jr.

1986-08-01T23:59:59.000Z

137

Improved Electrical Load Match In California By Combining Solar Thermal Power Plants with Wind Farms  

DOE Green Energy (OSTI)

California with its hydro, geothermal, wind, and solar energy is the second largest producer of renewable electricity in the United States (Washington state is the largest producer of renewable energy electricity due to high level of hydro power). Replacing fossil fuel electrical generation with renewable energy electrical generation will decrease the release of carbon dioxide into the atmosphere which will slow down the rapid increase in global warming (a goal of the California state government). However, in order for a much larger percentage of the total electrical generation in California to be from renewable energies like wind and solar, a better match between renewable energy generation and utility electrical load is required. Using wind farm production data and predicted production from a solar thermal power plant (with and without six hours of storage), a comparison was made between the renewable energy generation and the current utility load in California. On a monthly basis, wind farm generated electricity at the three major wind farm areas in California (Altamont Pass, east of San Francisco Bay area; Tehachapi Pass in the high desert between Tehachapi and Mojave; and San Gorgonio Pass in the low desert near Palm Springs) matches the utility load well during the highest electrical load months (May through September). Prediction of solar thermal power plant output also indicates a good match with utility load during these same high load months. Unfortunately, the hourly wind farm output during the day is not a very good match to the utility electrical load (i.e. in spring and summer the lowest wind speed generally occurs during mid-day when utility load is highest). If parabolic trough solar thermal power plants are installed in the Mojave Desert (similar to the 354 MW of plants that have been operating in Mojave Desert since 1990) then the solar electrical generation will help balance out the wind farm generation since highest solar generated electricity will be during mid-day. Adding six hours of solar thermal storage improved the utility load match significantly in the evening and reliability was also improved. Storage improves reliability because electrical production can remain at a high level even when there are lulls in the wind or clouds decrease the solar energy striking the parabolic trough mirrors. The solar energy from Mojave Desert and wind energy in the major wind farm areas are not a good match to utility load during the winter in California, but if the number of wind farms were increased east of San Diego, then the utility renewable energy match would be improved (this is because the wind energy is highest during the winter in this area). Currently in California, wind electrical generation only contributes 1.8% of total electricity and solar electrical generation only contributes 0.2%. Combining wind farms and solar thermal power plants with storage would allow a large percentage of the electrical load in California to be met by wind and solar energy due to a better match with utility load than by either renewable resource separately.

Vick, B. D.; Clark, R. N.; Mehos, M.

2008-01-01T23:59:59.000Z

138

Energy Conservation and Efficiency Improvement for the Electric Motors Operating in U.S. Oil Fields  

E-Print Network (OSTI)

Because of its versatility, electricity consumption continues to grow all over the world more rapidly than any other energy form. The portion of the United States' primary energy supply used as electricity has expanded from near zero at the turn of the century to 38 percent in 1987. Electric motors use as input about 64% of all electricity in the U.S. and many other countries. The cost of powering motors in the U.S. is estimated to be roughly $90 billion a year. In terms of primary energy input, motor energy use in the U.S. is comparable to all auto energy use. Electric motors are the largest users of energy in all mineral extraction activities. In oil fields, electric motors drive the pumping units used for lifting the oil and water to the surface. To find out actual efficiencies of operating motors in the oil fields, the University of Wyoming and the U.S. Department of Energy -Denver Support Office have been working for the last twelve months on two Naval Petroleum Reserve oil fields -one each in California and Wyoming. So far, actual motor loading of all operating oil fields motors has been determined by actual field measurements. We have also completed the analysis of economy of operation of existing motors and evaluating the candidate replacement motors. In this paper, we will present these results along with the methodologies and protocol developed for motor energy efficiency improvement in oil field applications.

Ula, S.; Cain, W.; Nichols, T.

1993-03-01T23:59:59.000Z

139

Do Generation Firms in Restructured Electricity Markets Have Incentives to Support Social-Welfare-Improving Transmission Investments? *  

E-Print Network (OSTI)

that generation firms have in restructured electricity markets for supporting long-term transmission investments electricity markets, have the incentives to fund or support incremental social-welfare-improving transmission.S. transmission system is under stress (Abraham, 2002). Growth of electricity demand and new generation capacity

140

Method and apparatus for improving the performance of a nuclear power electrical generation system  

SciTech Connect

A method and apparatus for improving the efficiency and performance a of nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "benefits improved electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Method and apparatus for improving the performance of a nuclear power electrical generation system  

DOE Patents (OSTI)

A method and apparatus for improving the efficiency and performance a of nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

1995-01-01T23:59:59.000Z

142

A design for improved performance of interior permanent magnet synchronous motor for hybrid electric vehicle  

Science Conference Proceedings (OSTI)

This paper investigates the layout of a magnet shape on the performance of an interior permanent magnet (IPM) synchronous motor. The motor is used in a hybrid electric vehicle. The IPM motor is a pancake shaped motor that has permanent magnets inside the rotor. The motor acts as a rotational electrodynamic machine between the engine and transmission. The main purpose of redesigning the shape of the magnet is to improve the motor performance

Seong Yeop Lim

2006-01-01T23:59:59.000Z

143

Electrical power generation: comparative risks and benefits. Final report, August 6, 1973--August 10, 1973. A one-week workshop for high school science teachers  

SciTech Connect

A live-in type workshop available for academic credit covering basic nuclear power generation and the tradeoffs and problems that exist between nuclear power and alternative means to generate electricity was held for 37 high- school teachers at the Madison campus for the University of Wisconsin. Significant improvements over last year's program included the distribution of a large amount of information and the distribution of two minicourse outlines on the subject of power and the environment entitled: The Environmental Impact of Electrical Power Generation: Nuclear and Fossil'' prepared by the Pennsylvania State Dept. of Education, and Science II Matter-Energy Interactions in Natural Systems'' prepared by Carl Pfeiffer of Monona Grove High School, Monona, Wisconsin. (MCW)

Carbon, M.W.; Hartwig, K.T.

1973-08-16T23:59:59.000Z

144

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network (OSTI)

transmission, and distribution of electricity and gas. Wedistribution chain, and the installation cost. Electricity and

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

145

NREL: Benefits  

NLE Websites -- All DOE Office Websites (Extended Search)

rooms Credit union and banking benefits Flexible schedules Business casual dress Free RTD Eco Pass A Great Location Our main campus in Golden, Colorado, located in the foothills...

146

Achieving A Long Term Business Impact by Improving the Energy Effectiveness and Reliability of Electric Motors  

E-Print Network (OSTI)

Over 100,000 electric motors drive the production equipment throughout a large chemical company. The energy-efficiency and reliability of these motors during their entire life have a decided impact on the company's manufacturing costs and production capability. The Corporate Motor Technology Team (CMTT) conceived and led a program to optimize the cost effectiveness and reliability of new motors and developed criteria to determine whether to repair or replace motors that fail. The higher energy efficiency of the electric motors offered by vendors today plays a crucial role in these decisions. The company's current motor specification, procurement, maintenance, repair and replacement practices are vastly improved and consistent across the corporation. The 1995 savings attributed to the higher energy efficiency of over 2000 motors installed the prior year amount to $570,000 and will continue to accrue year after year. So will the savings stemming from lower maintenance cost and reduced downtime.

Whelan, C. D.

1997-04-01T23:59:59.000Z

147

Modeling, simulation, and analysis of series hybrid electric vehicles for fuel economy improvement.  

E-Print Network (OSTI)

??A hybrid electric vehicle (HEV) combines a conventional internal combustion engine (ICE) propulsion system with an electric propulsion system. In a series HEV, an electric… (more)

Khandaker, Masuma

2011-01-01T23:59:59.000Z

148

Has Restructuring Improved Operating Efficiency at U.S. Electricity Generating Plants?  

E-Print Network (OSTI)

assesses the impact of electricity industry restructuring onand Knittel (2002), electricity industry studies typically96, "Restructuring the Electricity Industry," The Council of

Fabrizio, Kira; Rose, Nancy; Wolfram, Catherine

2004-01-01T23:59:59.000Z

149

Report on the feasibility study for improving electric motor service centers in Ghana  

Science Conference Proceedings (OSTI)

On March 3 and 4, 1998, a visit was made to Oak Ridge National Laboratory (ORNL) by two officials from Ghana: Mr. I.K. Mintah, Acting Executive Director, Technical Wing, Ministry of Mines and Energy (MOME) and Dr. A.K. Ofosu-Ahenkorah, Coordinator, Energy Efficiency and Conservation Program, MOME. As a result of this visit, Dr. John S. Hsu of ORNL was invited by MOME to visit the Republic of Ghana in order to study the feasibility of improving electric motor service centers in Ghana.

Hsu, J.S.; Jallouk, P.A.; Staunton, R.H.

1999-12-10T23:59:59.000Z

150

An Improved Limit on the Electric Dipole Moment of the Muon  

E-Print Network (OSTI)

Data from the muon g-2 experiment at Brookhaven National Lab has been analyzed to search for a muon electric dipole moment(EDM), which would violate parity and time reversal symmetries. An EDM would cause a tilt in the spin precession plane of the muons, resulting in a vertical oscillation in the position of electrons hitting the detectors. No signal has been observed. Based on this analysis, an improved limit of $2.8 \\times 10^{-19} e-cm(95% CL) is set on the muon EDM.

Ronald McNabb

2004-07-01T23:59:59.000Z

151

Estimates of achievable potential for electricity efficiency improvements in U.S. residences  

SciTech Connect

This paper investigates the potential for public policies to achieve electricity efficiency improvements in US residences. This estimate of achievable potential builds upon a database of energy-efficient technologies developed for a previous study estimating the technical potential for electricity savings. The savings potential and cost for each efficiency measure in the database is modified to reflect the expected results of policies implemented between 1990 and 2010. Factors included in these modifications are: the market penetration of efficiency measures, the costs of administering policies, and adjustments to the technical potential measures to reflect the actual energy savings and cost experienced in the past. When all adjustment factors are considered, this study estimates that policies can achieve approximately 45% of the technical potential savings during the period from 1990 to 2010. Thus, policies can potentially avoid 18% of the annual frozen-efficiency baseline electricity consumption forecast for the year 2010. This study also investigates the uncertainty in best estimate of achievable potential by estimating two alternative scenarios -- a

Brown, Richard

1993-05-01T23:59:59.000Z

152

Powering Electric Cooperatives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Network Research Network DOE Electricity Distribution System Workshop Forward Looking Panel September 2012 NRECA's Technical Focus * Over 900 Electric Cooperatives * Serve 42 million Americans in 47 States * Cover >70% of Nation's land mass * Own 42% of all Distribution Line * Totals 2.4 Million Line Miles Not for Profit, Consumer Owned, Consumer Controlled 2 Timely Energy Innovations Identify and Adopt Beneficial Technologies: * Improve Productivity * Enhance Service * Control Cost Choosing the Right Technologies Motivations & Methods Uncovering Smart Grid ROI Technology Investments Hinge on Cost Benefit Accelerate Beneficial Adoption Rate Precision Modular Evaluation Tool * Run cost-benefit analyses on smart grid investments, either

153

Electric  

U.S. Energy Information Administration (EIA)

Average Retail Price of Electricity to ... Period Residential Commercial Industrial ... or usage falling within specified limits by rate ...

154

Forthcoming, Utilities Policy, 2010. Using Forward Markets to Improve Electricity Market Design  

E-Print Network (OSTI)

Forward markets, both medium term and long term, complement the spot market for wholesale electricity. The forward markets reduce risk, mitigate market power, and coordinate new investment. In the medium term, a forward energy market lets suppliers and demanders lock in energy prices and quantities for one to three years. In the long term, a forward reliability market assures adequate resources are available when they are needed most. The forward markets reduce risk for both sides of the market, since they reduce the quantity of energy that trades at the more volatile spot price. Spot market power is mitigated by putting suppliers and demanders in a more balanced position at the time of the spot market. The markets also reduce transaction costs and improve liquidity and transparency. Recent innovations to the Colombia market illustrate the basic elements of the forward markets and their beneficial role. 1

Lawrence M. Ausubel; Peter Cramton

2010-01-01T23:59:59.000Z

155

Improving Grid Performance with Electric Vehicle Charging 2011San Diego Gas & Electric Company. All copyright and trademark rights reserved.  

E-Print Network (OSTI)

demand of 40 all-electric Advanced Energy PEV Usage Study vehicles as maximum kW demand at each 15 minute to a hairdryer) per PEV in the population · Instantaneous demand, 40 all-electric vehicles for one day (8 hour. 48 kW / 40 vehicles = 1.2 kW per EV in the population, at highest- load moment #12;Demand, Net

California at Davis, University of

156

Performance improvement of a solar heating system utilizing off-peak electric auxiliary  

DOE Green Energy (OSTI)

The design and construction of a heat pump system suitable for incorporating in a space solar heating system utilizing off-peak storage from the electric utility are described. The performance of the system is evaluated. The refrigerating capacity, heating capacity and compressor horsepower for a heat pump system using a piston type compressor are first determined. The heat pump design is also matched with the existing University of Toledo solar house heating system. The refrigerant is Freon-12 working between a condensing temperature of up to 172/sup 0/F and evaporator temperature between 0/sup 0/F and 75/sup 0/F. The heat pump is then installed. Performance indices for the heat pump and the heating system in general are defined and generated by the on-line computer monitoring system for the 1979/80 heating season operation. Monthly and seasonal indices such as heat pump coefficient of performance, collector efficiency, percent of heating load supplied by solar energy and individual components efficiencies in general are recorded. The data collected is then analyzed and compared with previously collected data. The improvement in the performance resulting from the addition of a piston type compressor with an external motor belt drive is then evaluated. Data collected points to the potentially improved operating performance of a solar heating system utilizing off-peak storage from the electric utility. Data shows that the seasonal percent of space heating load supplied by solar is 60% and the seasonal percent cost of space heating load supplied by solar is 82% with a solar collection coefficient of performance of 4.6. Data also indicates that such a system would pay for itself in 14 years when used in Northwest Ohio.

Eltimsahy, A.H.

1980-06-01T23:59:59.000Z

157

Electricity  

Energy.gov (U.S. Department of Energy (DOE))

Electricity is an essential part of modern life. The Energy Department is working to create technology solutions that will reduce our energy use and save Americans money.

158

NETL: Global Environmental Benefits  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Environmental Benefits Global Environmental Benefits Gasification Systems Global Environmental Benefits Environmental performance for future energy production systems is a much greater factor as emission standards tighten in the United States and worldwide. The outstanding environmental performance of gasification systems makes it an excellent technology for the clean production of electricity and other products. In addition, the reduction of CO2 emissions is one of the major challenges facing industry in response to global climate change. Other countries with coal reserves might potentially import technologies developed in the United States to enable low-cost gasification with carbon capture and EOR or sequestration. Not only will this benefit the U.S. gasification technology industry, but it will also result in a global environmental benefit through more affordable control of greenhouse gases (GHGs). See the U.S. Environmental Protection Agency (EPA) link below for a summary of the impact of fossil fuels without carbon capture on CO2 emissions, on the GHG contributions of different countries, and of the projected impact of developing countries to 2030:

159

Determining Benefits  

NLE Websites -- All DOE Office Websites (Extended Search)

various consumer products and directs DOE to create or amend energy standards for major household appliances. Any new or amended standard must achieve the maximum improvement in...

160

Toward More Comprehensive Assessments of FERC ElectricityRestructuring Policies: A Review of Recent Benefit-Cost Studies ofRTO's  

Science Conference Proceedings (OSTI)

Definitive assessment of Federal Energy Regulatory Commission policies on regional transmission organizations is not currently possible because of uncertainties in the data and methods used in recent benefit-cost studies as well as lack of investigation of key impacts of the formation of RTOs.

Eto, Joseph H.; Hale, Douglas R.; Lesieutre, Bernard C.

2006-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "benefits improved electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Improving the daylighting conditions of existing buildings : the benefits and limitations of integrating anidolic daylighting systems using the American classroom as a model  

E-Print Network (OSTI)

Awareness of the benefits of good daylighting has risen in recent years, and the designs of many new buildings take daylighting into consideration. However, the majority of our built environment is older than this recent ...

Kleindienst, Siân A. (Siân Alexandra)

2006-01-01T23:59:59.000Z

162

ELECTRIC  

Office of Legacy Management (LM)

ELECTRIC cdrtrokArJclaeT 3 I+ &i, y I &OF I*- j< t j,fci..- ir )(yiT E-li, ( -,v? Cl -p4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson...

163

Societal Benefits Charge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Societal Benefits Charge Societal Benefits Charge Societal Benefits Charge < Back Eligibility Agricultural Commercial Fed. Government General Public/Consumer Industrial Institutional Local Government Nonprofit Residential Schools State Government Utility Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Heating & Cooling Water Heating Wind Program Info State New Jersey Program Type Public Benefits Fund Provider New Jersey Board of Public Utilities New Jersey's 1999 electric-utility restructuring legislation created a "societal benefits charge" (SBC) to support investments in energy efficiency and "Class I" renewable energy. The SBC funds New Jersey's Clean Energy Program (NJCEP), a statewide initiative administered by the

164

ELECTRIC  

Office of Legacy Management (LM)

ELECTRIC ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A quantity of at lezst 5 grams would probably be sufficient for our purpose, and this was included in our 3@icntion for license to the Atonic Energy Coskqission.. This license has been approved, 2nd rre would Llp!Jreciate informztion as to how to ?r*oceed to obtain thit: m2teria.l.

165

Capital and Maintenance Projects for Efficiency Improvements  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) project developed a methodology to assess the costs and benefits of potential maintenance improvements to coal-fired power plants, refined the methodology developed in 2008 to assess the net annual benefit of potential capital improvements to these plants, and applied the methodologies to a hypothetical plant. The calculations are captured in two spreadsheets8212one for capital projects and the other for maintenance projects8212that are included in the report...

2009-10-13T23:59:59.000Z

166

Superconductivity for electric power systems: Program overview  

SciTech Connect

Largely due to government and private industry partnerships, electric power applications based upon high-temperature superconductivity are now being designed and tested only seven years after the discovery of the high-temperature superconductors. These applications offer many benefits to the national electric system including: increased energy efficiency, reduced equipment size, reduced emissions, increased stability/reliability, deferred expansion, and flexible electricity dispatch/load management. All of these benefits have a common outcome: lower electricity costs and improved environmental quality. The U.S. Department of Energy (DOE) sponsors research and development through its Superconductivity Program for Electric Power Systems. This program will help develop the technology needed for U.S. industries to commercialize high-temperature superconductive electric power applications. DOE envisions that by 2010 the U.S. electric power systems equipment industry will regain a major share of the global market by offering superconducting products that outperform the competition.

Not Available

1995-02-01T23:59:59.000Z

167

Improved electrical transport properties in p-type ZnO film by Rapid Dark thermal annealing process  

SciTech Connect

A rapid dark thermal annealing process at 800 deg. C of radio frequency sputtered P doped ZnO thin films have resulted in improved electrical transport properties with hole concentration of 1 x 1018 cm-3, mobility 4.37 cm2/Vs and resistivity 1.4 {Omega}-cm. X-ray photoelectron spectroscopy shows the presence of inactivated P in as-grown ZnO films.

Ghosh, Tushar; Basak, Durga [Department of Solid State Physics, Indian Association for the Cultivation of science, Jadavpur, Kolkata-700032 (India)

2012-06-05T23:59:59.000Z

168

Policy Drivers for Improving Electricity End-Use Efficiency in the U.S.: An Economic-Engineering Analysis  

E-Print Network (OSTI)

This paper estimates the economically achievable potential for improving electricity end-use efficiency in the U.S. The approach involves identifying a series of energy-efficiency policies aimed at tackling market failures, and then examining their impacts and cost-effectiveness using Georgia Tech’s version of the National Energy Modeling System (GT-NEMS). By estimating the policy-driven electricity savings and the associated levelized costs, a policy supply curve for electricity efficiency is produced. Each policy is evaluated individually and in an Integrated Policy scenario to examine policy dynamics. The Integrated Policy scenario demonstrates significant achievable potential: 261 TWh (6.5%) of electricity savings in 2020, and 457 TWh (10.2%) in 2035. All eleven policies examined were estimated to have lower levelized costs than average electricity retail prices. Levelized costs range from 0.5 – 8.0 cent/kWh, with the regulatory and information policies tending to be most cost-effective. Policy impacts on the power sector, carbon dioxide emissions, and energy intensity are also estimated to be significant. *Corresponding author:

Yu Wang; Marilyn A. Brown; Yu Wang

2013-01-01T23:59:59.000Z

169

Alternative Fuels Data Center: Biodiesel Benefits  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Benefits to Benefits to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Benefits on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Benefits on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Benefits on Google Bookmark Alternative Fuels Data Center: Biodiesel Benefits on Delicious Rank Alternative Fuels Data Center: Biodiesel Benefits on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Benefits on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Benefits and Considerations Biodiesel is a domestically produced, clean-burning, renewable substitute for petroleum diesel. Using biodiesel as a vehicle fuel increases energy security, improves public health and the environment, and provides safety

170

Public Benefits Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Benefits Programs Public Benefits Programs Public Benefits Programs < Back Eligibility Commercial General Public/Consumer Industrial Institutional Residential Utility Savings Category Other Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info State Pennsylvania Program Type Public Benefits Fund Provider Pennsylvania Public Utility Commission '''''Note: Currently, the four funds are not collecting revenue. The funds are transitioning toward a revolving loan and investment fund model in order to sustain their capital. ''''' Although Pennsylvania's December 1996 electricity restructuring law did not establish a clean-energy fund, four renewable and sustainable-energy

171

Productivity benefits of industrial energy efficiency measures  

E-Print Network (OSTI)

of costs and benefits of industrial energy efficiencyof the annual costs of an energy efficiency measure, therebyof cost- effectiveness of energy- efficiency improvement

Worrell, Ernst

2011-01-01T23:59:59.000Z

172

Approach for Calculating OE Benefits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reliability Reliability U.S. Department of Energy - 1000 Independence Ave., SW Washington, DC 20585 2007 Electricity Delivery and Energy Reliability Joe Paladino October 29, 2007 Approach for Calculating OE Benefits Challenges * Established benefits methodologies (e.g., NEMS and MARKAL) do not address some of the major benefits that OE's program will provide (e.g. reliability). * Much of OE's program is about transforming the way the T&D infrastructure operates rather than replacing components: - Some technologies need a high penetration or must be deployed as an entire system to yield benefits (e.g. PMUs or Distribution Automation). - Some programs within OE are not developing "widgets" that can be easily counted. - OE is developing tools/methodologies or funding demonstrations that

173

Hybrid energy storage systems and battery management for electric vehicles  

Science Conference Proceedings (OSTI)

Electric vehicles (EV) are considered as a strong alternative of internal combustion engine vehicles expecting lower carbon emission. However, their actual benefits are not yet clearly verified while the energy efficiency can be improved in many ways. ... Keywords: battery-supercapacitor hybrid, charging/discharging asymmetry, electric vehicle, regenerative braking

Sangyoung Park, Younghyun Kim, Naehyuck Chang

2013-05-01T23:59:59.000Z

174

Universal System Benefits Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Universal System Benefits Program Universal System Benefits Program Universal System Benefits Program < Back Eligibility Commercial General Public/Consumer Industrial Institutional Residential Utility Savings Category Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Wind Program Info State Montana Program Type Public Benefits Fund Provider Montana Public Service Commission Montana established the Universal System Benefits Program (USBP) in 1997 as part of its restructuring legislation. The USBP supports cost-effective energy conservation, low-income customer weatherization, renewable-energy projects and applications, research and development programs related to energy conservation and renewables, market transformation designed to encourage competitive markets for public purpose programs, and low-income

175

Estimation of Lightning Stroke Peak Current as a Function of Peak Electric Field and the Normalized Amplitude of Signal Strength: Corrections and Improvements  

Science Conference Proceedings (OSTI)

The authors have made connections and improvements to published equations relating the peak current and the peak electric field intensity for return strokes of cloud-to-ground lightning. The original published equations were derived from ...

Y. P. Liaw; D. R. Cook; D. L. Sisterson

1996-06-01T23:59:59.000Z

176

Building-level occupancy data to improve ARIMA-based electricity use forecasts  

Science Conference Proceedings (OSTI)

The energy use of an office building is likely to correlate with the number of occupants, and thus knowing occupancy levels should improve energy use forecasts. To gather data related to total building occupancy, wireless sensors were installed in a ... Keywords: energy forecast, occupancy, office buildings, sensors

Guy R. Newsham; Benjamin J. Birt

2010-11-01T23:59:59.000Z

177

Modified laser-annealing process for improving the quality of electrical P-N junctions and devices  

DOE Patents (OSTI)

The invention is a process for producing improved electrical-junction devices. The invention is applicable, for example, to a process in which a light-sensitive electrical-junction device is produced by: (1) providing a body of crystalline semiconductor material having a doped surface layer; (2) irradiating the layer with at least one laser pulse to effect melting of the layer; (3) permitting recrystallization of the melted layer; and (4) providing the resulting body with electrical contacts. In accordance with the invention, the fill-factor and open-circuit-voltage parameters of the device are increased by conducting the irradiation with the substrate as a whole at a selected elevated temperature, the temperature being selected to effect a reduction in the rate of the recrystallization but insufficient to effect substantial migration of impurities within the body. In the case of doped silicon substrates, the substrate may be heated to a temperature in the range of from about 200/sup 0/C to 500/sup 0/C.

Wood, R.F.; Young, R.T.

1982-02-19T23:59:59.000Z

178

Public Benefit Funds | Open Energy Information  

Open Energy Info (EERE)

Public Benefit Funds Public Benefit Funds Jump to: navigation, search Public benefit funds (PBF) are state-level programs typically developed during electric utility restructuring by some states in the late 1990s to ensure continued support for renewable energy resources, energy efficiency initiatives and low-income energy programs. These funds are most commonly supported through a very small surcharge on electricity consumption (e.g., $0.002/kWh). This charge is sometimes referred to as a system benefits charge (SBC). PBFs commonly support rebate programs for renewable energy systems, loan programs, research and development, and energy education programs. [1] Contents 1 Public Benefits Fund Incentives 2 References Public Benefits Fund Incentives CSV (rows 1 - 51) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

179

Discussion for Metrics and Benefits Data Collection  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Metrics and Benefits Analysis for Metrics and Benefits Analysis for the ARRA Smart Grid Programs Joe Paladino Office of Electricity Delivery and Energy Reliability U.S. Department of Energy OE Electricity Advisory Committee Meeting March 10, 2011 140 ARRA-Funded Smart Grid Projects 1 Customer Systems Customer Systems Customer Systems Customer Systems SGIG/SGDP/RDSI Areas of Smart Grid Technology Deployment Customer Systems Advance Metering Infrastructure Electric Distribution Systems Electric Transmission Systems * Displays * Portals * Energy management * Direct load controls * Smart meters * Data management * Back office integration * Switches * Feeder optimization * Equipment monitoring * Energy Storage * Wide area monitoring and visualization * Synchrophasor Technology * Energy Storage Customer Systems Equipment Manufacturing

180

Proceedings of the Neighborhood Electric Vehicle Workshop  

E-Print Network (OSTI)

the most affordable electric cars will likely offer lowersocietal activities. But electric car sponsors have foundthan fully capable electric cars • The Air Quality benefits

Lipman, Timothy

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "benefits improved electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Proceedings of the Neighborhood Electric Vehicle Workshop  

E-Print Network (OSTI)

the most affordable electric cars will likely offer lowersocietal activities. But electric car sponsors have foundless thanfully capable electric cars TheAir Quality benefits

Lipman, Timothy E.; Kurani, Kenneth S.; Sperling, Daniel

1994-01-01T23:59:59.000Z

182

Energy Basics: Hybrid Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel...

183

Methodologies for Determining Persistence of Commissioning Benefits  

E-Print Network (OSTI)

Studies on the persistence of commissioning benefits to date have used a variety of methods to evaluate this persistence. This paper proposes a consistent framework for describing and evaluating the persistence of commissioning benefits. It begins by splitting commissioning benefits into two broad categories: 1) benefits that inherently persist; and 2) benefits that may not persist. The study of persistence then considers only the benefits that may not persist. These benefits are critical, since the top five reasons cited for performing commissioning in both new buildings and existing buildings are benefits that may not persist. These benefits are then further divided into benefits that may be quantified and benefits that are generally difficult to quantify. This paper proposes that benefits that may be quantified should generally be evaluated for persistence using approaches that are already widely accepted and used for other purposes, with adaptations where needed. Specifically, it proposes that energy and water savings be evaluated using methods consistent with the International Performance Measurement and Verification Protocol (adapted with additional weather normalization), that comfort and indoor air quality improvements be evaluated using relevant standards, specifically ASHRAE Standard 55 and ASHRAE Standard 62, but goes further and proposes a methodology for economic quantification of these benefits as well. Finally, it is proposed that the persistence of measures whose benefit is difficult to quantify be evaluated simply by determining whether the measure is still in place or performing.

Claridge, D. E.

2006-01-01T23:59:59.000Z

184

Health benefits of particle filtration  

NLE Websites -- All DOE Office Websites (Extended Search)

Health benefits of particle filtration Health benefits of particle filtration Title Health benefits of particle filtration Publication Type Journal Article Year of Publication 2013 Authors Fisk, William J. Journal Indoor Air Date Published 02/12/2013 Abstract The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percentage improvement in health outcomes is typically modest, e.g., 7% to 25%. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

185

Improving Energy Efficiency of Auxiliaries  

DOE Green Energy (OSTI)

The summaries of this report are: Economics Ultimately Dictates Direction; Electric Auxiliaries Provide Solid Benefits. The Impact on Vehicle Architecture Will be Important; Integrated Generators With Combined With Turbo Generators Can Meet the Electrical Demands of Electric Auxiliaries; Implementation Will Follow Automotive 42V Transition; Availability of Low Cost Hardware Will Slow Implementation; Industry Leadership and Cooperation Needed; Standards and Safety Protocols Will be Important. Government Can Play an Important Role in Expediting: Funding Technical Development; Incentives for Improving Fuel Economy; Developing Standards, Allowing Economy of Scale; and Providing Safety Guidelines.

Carl T. Vuk

2001-12-12T23:59:59.000Z

186

Analysis of PG&E`s residential end-use metered data to improve electricity demand forecasts -- final report  

SciTech Connect

This report summarizes findings from a unique project to improve the end-use electricity load shape and peak demand forecasts made by the Pacific Gas and Electric Company (PG&E) and the California Energy Commission (CEC). First, the direct incorporation of end-use metered data into electricity demand forecasting models is a new approach that has only been made possible by recent end-use metering projects. Second, and perhaps more importantly, the joint-sponsorship of this analysis has led to the development of consistent sets of forecasting model inputs. That is, the ability to use a common data base and similar data treatment conventions for some of the forecasting inputs frees forecasters to concentrate on those differences (between their competing forecasts) that stem from real differences of opinion, rather than differences that can be readily resolved with better data. The focus of the analysis is residential space cooling, which represents a large and growing demand in the PG&E service territory. Using five years of end-use metered, central air conditioner data collected by PG&E from over 300 residences, we developed consistent sets of new inputs for both PG&E`s and CEC`s end-use load shape forecasting models. We compared the performance of the new inputs both to the inputs previously used by PG&E and CEC, and to a second set of new inputs developed to take advantage of a recently added modeling option to the forecasting model. The testing criteria included ability to forecast total daily energy use, daily peak demand, and demand at 4 P.M. (the most frequent hour of PG&E`s system peak demand). We also tested the new inputs with the weather data used by PG&E and CEC in preparing their forecasts.

Eto, J.H.; Moezzi, M.M.

1993-12-01T23:59:59.000Z

187

Public Benefits Fund | Open Energy Information  

Open Energy Info (EERE)

Public Benefits Fund Public Benefits Fund Jump to: navigation, search Public benefit funds (PBF) are state-level programs typically developed during electric utility restructuring by some states in the late 1990s to ensure continued support for renewable energy resources, energy efficiency initiatives and low-income energy programs. These funds are most commonly supported through a very small surcharge on electricity consumption (e.g., $0.002/kWh). This charge is sometimes referred to as a system benefits charge (SBC). PBFs commonly support rebate programs for renewable energy systems, loan programs, research and development, and energy education programs. [1] Public Benefits Fund Incentives CSV (rows 1 - 51) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

188

System Benefits Charge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System Benefits Charge System Benefits Charge System Benefits Charge < Back Eligibility Commercial Industrial Residential Schools Utility Program Info State New Hampshire Program Type Public Benefits Fund Provider New Hampshire Public Utilities Commission New Hampshire's 1996 electric-industry restructuring legislation authorized the creation of a system benefits charge (SBC) to support energy-efficiency programs and energy-assistance programs for low-income residents. The efficiency fund, which took effect in 2002, is funded by a non-bypassable surcharge of 1.8 mills per kilowatt-hour ($0.0018/kWh) on electric bills. A separate surcharge of 1.5 mills per kWh ($0.0015/kWh) supports low-income energy assistance programs. Approximately $19 million is collected annually to support the efficiency fund, although the annual sum collected has

189

Energy & Environmental Benefits from Steam & Electricity Cogeneration  

E-Print Network (OSTI)

Eastman's Texas Operations (TEX) occupies a 6,000 acre site where it manufactures more than 60 major products and employs 1,800 persons in a complex of more than 200 buildings. TEX is Eastman's largest single consumer of energy; its processes require lar

Ratheal, R.

2004-01-01T23:59:59.000Z

190

Renewable Electricity Benefits Quantification Methodology: A...  

NLE Websites -- All DOE Office Websites (Extended Search)

Portfolio Standard eGRID Emissions & Generation Resource Integrated Database EIA Energy Information Administration EPA U.S. Environmental Protection Agency ERC Environmental...

191

Energy Efficiency and Performance Testing of Non-Road Electric Vehicles: Forklift Truck Evaluation — Status Report  

Science Conference Proceedings (OSTI)

Forklift trucks play an integral role in the industrial economy, and the majority of those trucks in service in the United States are electric. The benefits of such non-road electric vehicles include lower life cycle costs, improved worker health and safety, and reduced maintenance. However, large numbers of electric lift trucks can become a concern to the electric utility industry if the vehicles are inefficient or cause power quality problems. Southern California Edison (SCE) has evaluated the energy e...

2003-12-31T23:59:59.000Z

192

Improved  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Improved cache performance in Monte Carlo transport calculations using energy banding A. Siegel a , K. Smith b , K. Felker c,∗ , P . Romano b , B. Forget b , P . Beckman c a Argonne National Laboratory, Theory and Computing Sciences and Nuclear Engineering Division b Massachusetts Institute of Technology, Department of Nuclear Science and Engineering c Argonne National Laboratory, Theory and Computing Sciences Abstract We present an energy banding algorithm for Monte Carlo (MC) neutral parti- cle transport simulations which depend on large cross section lookup tables. In MC codes, read-only cross section data tables are accessed frequently, ex- hibit poor locality, and are typically much too large to fit in fast memory. Thus, performance is often limited by long latencies to RAM, or by off-node communication latencies when the data footprint is very large and must be decomposed on

193

NEET Benefits | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEET NEET Benefits NEET Benefits The R&D activities under the Nuclear Energy Enabling Technology (NEET) Program will address revolutionary improvements in safety, performance, reliability, economics, and proliferation risk reduction and promote creative solutions to the broad array of nuclear energy challenges related to reactor and fuel cycle development. The activities undertaken in this program complement those within the Reactor Concepts Research Development & Demonstration and Fuel Cycle R&D programs. The knowledge generated through these activities will allow Nuclear Energy (NE) to address key challenges affecting nuclear reactor and fuel cycle deployment (e.g., capital cost, technology risks, and proliferation concerns). Further, these activities will enable nuclear power to continue

194

Electric Power Industry Needs for Grid-Scale Storage Applications |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Needs for Grid-Scale Storage Applications Industry Needs for Grid-Scale Storage Applications Electric Power Industry Needs for Grid-Scale Storage Applications Stationary energy storage technologies will address the growing limitations of the electricity infrastructure and meet the increasing demand for renewable energy use. Widespread integration of energy storage devices offers many benefits, including the following: Alleviating momentary electricity interruptions Meeting peak demand Postponing or avoiding upgrades to grid infrastructure Facilitating the integration of high penetrations of renewable energy Providing other ancillary services that can improve the stability and resiliency of the electric grid Electric Power Industry Needs for Grid-Scale Storage Applications More Documents & Publications

195

Delaware Electric Cooperative - Green Energy Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Electric Cooperative - Green Energy Fund Delaware Electric Cooperative - Green Energy Fund Delaware Electric Cooperative - Green Energy Fund < Back Eligibility Agricultural Commercial Industrial Nonprofit Residential Rural Electric Cooperative Savings Category Appliances & Electronics Commercial Lighting Lighting Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info State Delaware Program Type Public Benefits Fund Provider Delaware Department of Natural Resources and Environmental Control '''''Note: The Green Energy Fund regulations are currently under revision to improve program function and meet the requirements of the Delaware Energy Act. The Delaware Division of Energy and Climate

196

International Electricity Regulation  

Energy.gov (U.S. Department of Energy (DOE))

U.S. trade in electric energy with Canada and Mexico is rising, bringing economic and reliability benefits to the United States and its trading partners. Within the Office of Electricity Delivery ...

197

Wind Energy Benefits  

DOE Green Energy (OSTI)

Wind energy provides many benefits, including economic and environmental. This two-sided fact sheet succinctly outlines the top ten wind energy benefits and is especially well suited for general audiences.

Not Available

2005-04-01T23:59:59.000Z

198

Building Energy Codes Program: National Benefits Assessment, 1992-2040 |  

NLE Websites -- All DOE Office Websites (Extended Search)

Program: National Benefits Assessment, 1992-2040 Program: National Benefits Assessment, 1992-2040 Commercial and residential buildings account for approximately 41% of all energy consumption and 72% of electricity usage in the United States. Building energy codes and standards set minimum requirements for energy-efficient design and construction for new and renovated buildings, assuring reductions in energy use and greenhouse gas emissions over the life of buildings. The U.S. Department of Energy (DOE), through the Building Energy Codes Program (BECP or the Program), supports the improvement of energy efficiency in buildings. BECP periodically assesses the impacts of its activities by estimating historical and projected energy savings, consumer savings, and avoided emissions. The Pacific Northwest National Laboratory (PNNL) conducted the

199

Do Generation Firms in Restructured Electricity Markets Have Incentives to Support Social-Welfare-Improving Transmission Investments? *  

E-Print Network (OSTI)

Transmission Grid Study of the U.S. Department of Energy (Abraham, 2002) declares: "Growth in electricity of incentives for investment in the U.S. electricity transmission system are sparse. Moreover, noneDo Generation Firms in Restructured Electricity Markets Have Incentives to Support Social

Oren, Shmuel S.

200

Benefits | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Working Here » Benefits Working Here » Benefits Benefits Enjoy First Rate Federal Career Benefits As a DOE employee, you'll have access to exceptional Federal benefits with a variety of plan options that often exceed those offered in the private sector. In addition, you'll have competitive remuneration, continuous learning opportunities, and paid time off to help you construct an enjoyable work-life balance. You'll benefit from: Great salary Recruitment incentives Personal leave (vacation) Sick leave Student loan repayments Matching 401(k) retirement contribution Career development Possibility of opportunities to see the world Training Work-Life balance Flexible work schedules Retirement plan Health/Vision/Dental plans Flexible spending account Specifically, Federal career benefits for DOE employees include:

Note: This page contains sample records for the topic "benefits improved electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

An improved procedure for developing a calibrated hourly simulation model of an electrically heated and cooled commercial building  

E-Print Network (OSTI)

With the increased use of building energy simulation programs, calibration of simulated data to measured data has been recognized as an important factor in substantiating how well the model fits a real building. Model calibration to measured monthly utility data has been utilized for many years. Recently, efforts have reported calibrated models at the hourly level. Most of the previous methods have relied on very simple comparisons including bar charts, monthly percent difference time-series graphs, and x-y scatter plots. A few advanced methods have been proposed as well which include carpet plots and comparative 3-D time-series plots. Unfortunately, at hourly levels of calibration, many of the traditional graphical calibration techniques become overwhelmed with data and suffer from data overlap. In order to improve upon previously established techniques, this thesis presents new calibration methods including temperature binned box-whisker-mean analysis to improve x-y scatter plots, 24-hour weather-daytype box-whisker-mean graphs to show hourly temperature-dependent energy use profiles, and 52-week box-whisker-mean plots to display long-term trends. In addition to the graphical calibration techniques, other methods are also used including indoor temperature calibration to improve thermostat schedules and architectural rendering as a means of verifying the building envelope dimensions and shading placement. Several statistical methods are also reviewed for their appropriateness including percent difference, mean bias error (MBE), and the coefficient of variation of the root mean squared error. Results are presented using a case study building located in Washington, D.C. In the case study building, nine months of hourly whole-building electricity data and site-specific weather data were measured and used with the DOE-2. 1D building simulation program to test the new techniques. Use of the new calibration procedures were able to produce a MBE of-0.7% and a CV(RMSE) of 23. 1 % which compare favorably with the most accurate hourly neural network models.

Bou-Saada, Tarek Edmond

1994-01-01T23:59:59.000Z

202

Hybrid Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles.

203

Examination of Potential Benefits of an Energy Imbalance Market in the Western Interconnection  

SciTech Connect

In the Western Interconnection, there is significant interest in improving approaches to wide-area coordinated operations of the bulk electric power system, in part because of the increasing penetration of variable generation. One proposed solution is an energy imbalance market. This study focused on that approach alone, with the goal of identifying the potential benefits of an energy imbalance market in the year 2020.

Milligan, M.; Clark, K.; King, J.; Kirby, B.; Guo, T.; Liu, G.

2013-03-01T23:59:59.000Z

204

Battery energy storage: A preliminary assessment of national benefits (the Gateway Benefits Study)  

SciTech Connect

Preliminary estimates of national benefits from electric utility applications of battery energy storage through the year 2010 are presented along with a discussion of the particular applications studied. The estimates in this report were based on planning information reported to DOE by electric utilities across the United States. Future studies are planned to refine these estimates as more application-specific information becomes available.

Akhil, A. [Sandia National Labs., Albuquerque, NM (United States); Zaininger, H. [Zaininger Engineering Co., San Jose, CA (United States); Hurwitch, J.; Badin, J. [Energetics, Inc., Columbia, MD (United States)

1993-12-01T23:59:59.000Z

205

System Benefits Charge  

Energy.gov (U.S. Department of Energy (DOE))

New York's system benefits charge (SBC), established in 1996 by the New York Public Service Commission (PSC), supports energy efficiency, education and outreach, research and development, and low...

206

A Legacy of Benefit  

Energy.gov (U.S. Department of Energy (DOE))

Over more than three decades, FE research and development has established a legacy of significant achievement and return of value and benefits for the public funds invested.

207

International Electricity Regulation | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulation International Electricity Regulation U.S. trade in electric energy with Canada and Mexico is rising, bringing economic and reliability benefits to the United States and...

208

Energy Storage: The Key to a Reliable, Clean Electricity Supply |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage: The Key to a Reliable, Clean Electricity Supply Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply February 22, 2012 - 4:52pm Addthis Improved energy storage technology offers a number of economic and environmental benefits. Improved energy storage technology offers a number of economic and environmental benefits. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? ARPA-E's GRIDS program is investing in new technologies that make storing energy cheaper and more efficient. Energy storage isn't just for AA batteries any more. Thanks to investments from the Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity

209

Energy Storage: The Key to a Reliable, Clean Electricity Supply |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply February 22, 2012 - 4:52pm Addthis Improved energy storage technology offers a number of economic and environmental benefits. Improved energy storage technology offers a number of economic and environmental benefits. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? ARPA-E's GRIDS program is investing in new technologies that make storing energy cheaper and more efficient. Energy storage isn't just for AA batteries any more. Thanks to investments from the Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity

210

Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network (OSTI)

and (2) monthly electricity bill impacts for a typicalinfluence consumer electricity bills. Some benefits thatconsumer’s monthly electricity bill. Figure presents

Chen, Cliff

2009-01-01T23:59:59.000Z

211

Benefits | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Apply for a Job Apply for a Job Connect with Argonne LinkedIn Facebook Twitter YouTube Google+ More Social Media » Benefits With outstanding benefits, competitive pay, wellness programs and a stimulating and attractive work environment, Argonne is a tremendous place to pursue your career. Employee benefits are a key factor when evaluating a career opportunity. At Argonne, you'll find a comprehensive array of benefits to meet a variety of needs. In addition to medical, dental, life and disability coverage, you'll have access to paid time off, a retirement plan with a generous match and a number of other benefits, such as adoption assistance, an on-site child care center and auto and homeowners' insurance. Wellness plays an important role in life at Argonne. We offer a variety of

212

Prospects for Neighborhood Electric Vehicles  

E-Print Network (OSTI)

improved, neighborhood electric cars will likely be seen aseven general-purpose electric cars. They con- size orgasoline-like electric cars, they wilt undoubtedlybecome

Sperling, Daniel

1994-01-01T23:59:59.000Z

213

Outdoor Electric Heavy-Duty Lift Truck Demonstration at Progress Energy Florida  

Science Conference Proceedings (OSTI)

Electric lift trucks now represent well over 50% of the U.S. lift truck market, their sales propelled by improved performance, life-cycle cost savings, and operational, health, and environmental benefits. In fact, research shows that electric lift trucks over their lifetime cost approximately $1 per operating hour less per unit than internal combustion trucks due to lower fuel and maintenance costs. Despite these market successes, however, some users perceive that electric lift trucks do not perform ...

2012-08-23T23:59:59.000Z

214

Suppression of electric and magnetic fluctuations and improvement of confinement due to current profile modification by biased electrode in Saha Institute of Nuclear Physics tokamak  

Science Conference Proceedings (OSTI)

Improvement of plasma confinement is achieved in normal q{sub a} discharges of SINP-tokamak by introducing a biased electrode inside the last closed flux surface. All the important features of high confinement mode are observed biasing the electrode negatively with respect to the vacuum vessel. Arrays of electric and magnetic probes introduced in the edge plasma region reveal suppression of electric and magnetic fluctuations over distinct frequency ranges as well as modification of the toroidal current profile due to biasing. Further analysis identifies the electrostatic fluctuations to be due to drift mode and the magnetic fluctuations may be of slow compressional Alfven waves. Both get suppressed due to current profile modification during biasing, hence leading to the improvement of plasma confinement.

Basu, Debjyoti; Pal, Rabindranath [Saha Institute of Nuclear Physics, 1/AF-Bidhannagar, Kolkata 700064 (India); Ghosh, Joydeep; Chattopadhyay, Prabal K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

2012-07-15T23:59:59.000Z

215

Environmental Benefits of Smart Meters  

E-Print Network (OSTI)

Abstract: Today, consumers and utility companies can agree that smart meters provide benefits such as time-of-use billing, accurate measurement, and elimination of a meter reader's monthly visit. But do smart meters provide tangible benefits for the environment? Not all agree on this. This article discusses how a smart meter helps a utility to monitor energy usage. That monitoring data then allows the utility to work with consumers to reduce energy usage and integrate various sources of renewable energy. When that happens, the environment wins. A similar version of this article was published in Electronic Products on November 15, 2011. An Awakening "I don't understand the environmental benefits of the smart grid, " my cousin Chris said after I told him about my involvement in the smart grid effort at Maxim. "I think it is just a ploy by the utilities to raise rates, " he added. Ordinarily, I would have interrupted him with comments about intelligent management of energy and resources, but my cousin worked for the northern California utility for 15 years. He was not speaking from an uninformed standpoint, so I listened further. "Electricity flows like water, " he continued. "It flows from the source to all points of consumption. Installing a smart meter does not save energy, it just counts when you are consuming it. " These are all valid points. Here I was, convinced that smart meters were a good thing, something that could benefit both the economy and the environment, something that brought a better technical solution to an old problem. But in fact, I did not really know how the smart grid could

David Andeen; Segment Manager

2011-01-01T23:59:59.000Z

216

Zero Waste Program 2011 Recycling Benefits  

E-Print Network (OSTI)

of the following homes per month: 10,343 286 tons of plastic 95 tons of aluminum 0 KW-Hrs of Electricity from Waste-to-Energy: This provides enough energy to heat and cool at a Waste-to-Energy (WTE) the following homes per month: 10Rutgers Zero Waste Program 2011 Recycling Benefits Through WM's Recycling Program, our company

Delgado, Mauricio

217

Recovery Act Project Clears Portsmouth Switchyard, Benefits Community  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Clears Portsmouth Switchyard, Benefits Project Clears Portsmouth Switchyard, Benefits Community through Recycling Recovery Act Project Clears Portsmouth Switchyard, Benefits Community through Recycling American Recovery and Reinvestment Act workers recently completed the demolition of structures in an electrical switchyard used to help power the Portsmouth Site's uranium enrichment processes for defense and commercial uses for nearly five decades. In the $28 million Recovery Act project completed safely and on schedule, workers demolished 160 towers as tall as 120 feet that were used to operate the X-533 Electrical Switchyard. Recovery Act Project Clears Portsmouth Switchyard, Benefits Community through Recycling More Documents & Publications Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent

218

SRS - Retiree Benefits - Forms  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Contacts Benefits Solutions Service Center Health Insurance including: Medical, Dental, Life Insurance, Retirement Services and Pension Plan, Savings and Investment Plan (SIP). Benefits Solutions Service Center 803.725.7772 (locally) or 800.368.7333 Benefit Related Customer Service Numbers 1.866.288.3257, website: www.ibenefitcenter.com Representatives M-F 9:00 - 5:00 EST System available 24 hours a day Monday - Saturday, and Sunday after 1 p.m. 1.800.325.6596 (Prime,Standard, Basic, Dental and Flexible Spending Accounts: Option 5 for COBRA and 3161 Benefits) M-F 8:30 - 4:30 1.800.868.-1032 (Mental Health and Substance Abuse Assistance) 1.800.521.3606, Vision Plan 1.800.581.4222, Westinghouse Corporate Pension 1.800.581.3366, Westinghouse Corporate Savings Plan

219

Environmental benefits of adjustable-speed drive applications  

Science Conference Proceedings (OSTI)

The industrial sector uses 37% or 3.1 quads of the electricity that is produced in the United States. Of this, 70% or 2.2 quads powers electric motors. Adjustable speed drives (ASDs), which have the potential of reducing the power requirement of constant speed motor-driven systems by 20 to 50%, can play a major role in conserving energy and energy-efficiency improvement. While they save energy, ASDs are also widely used for improving process control. This benefit is offsetting some of the incremental costs applied to industrial production. In most of the approaches being developed to tackle the environmental problem, there is a heavy emphasis on energy efficiency because it relates directly to reduced fossil fuel-based power production, which in turn cuts CO{sub 2}, NO{sub 2} and SO{sub 2} emissions. To work on improving the environment in the near term, it is necessary to promote energy-efficient equipment and systems. In the longer term, much more environmentally attractive means of power generation, transportation, and industrial production will come into play. By using new technology, such as ASDS, it is possible to maintain a standard of living at home, a rate of production in industry, or a level of comfort in an office building at a reduced level of energy consumption. Noise pollution reduction by speed control of fans by ASDs is also demonstrated. ASDs have been used to reduce fish kill in rivers (12) and are being used for water conservation. As examples of what can be accomplished in industry to improve energy efficiency and for the resulting environmental improvement, a number of uses for ASDs in electric utility power plants, in the mining industry, and the petroleum refining process are discussed. The Los Angeles Basin's plans for electrification of industry to control atmospheric emissions are included to show an example of a possible trend for the rest of the country.

Oliver, J.A. (JARSCO Engineering Corp., Corona, CA (United States))

1992-07-01T23:59:59.000Z

220

Benefit-cost analysis of DOE's Current Federal Program to increase hydrothermal resource utilization. Final report  

DOE Green Energy (OSTI)

The impact of DOE's Current Federal Program on the commercialization of hydrothermal resources between 1980 and 2000 is analyzed. The hydrothermal resources of the United States and the types of DOE activities used to stimulate the development of these resources for both electric power and direct heat use are described briefly. The No Federal Program and the Current Federal Program are then described in terms of funding levels and the resultant market penetration estimates through 2000. These market penetration estimates are also compared to other geothermal utilization forecasts. The direct benefits of the Current Federal Program are next presented for electric power and direct heat use applications. An analysis of the external impacts associated with the additional hydrothermal resource development resulting from the Current Federal Program is also provided. Included are environmental effects, national security/balance-of-payments improvements, socioeconomic impacts and materials requirements. A summary of the analysis integrating the direct benefits, external impacts and DOE program costs concludes the report.

Not Available

1981-12-10T23:59:59.000Z

Note: This page contains sample records for the topic "benefits improved electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A Feasibility Study of Sustainable Distributed Generation Technologies to Improve the electrical System on the Duck Valley Reservation  

DOE Green Energy (OSTI)

A range of sustainable energy options were assessed for feasibility in addressing chronic electric grid reliability problems at Duck Valley IR. Wind power and building energy efficiency were determined to have the most merit, with the Duck Valley Tribes now well positioned to pursue large scale wind power development for on- and off-reservation sales.

Herman Atkins, Shoshone-Paiute; Mark Hannifan, New West Technologies

2005-06-30T23:59:59.000Z

222

Energy Efficiency Public Benefits Funds | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Public Benefits Funds Energy Efficiency Public Benefits Funds Energy Efficiency Public Benefits Funds < Back Eligibility Low-Income Residential Multi-Family Residential Retail Supplier Utility Savings Category Home Weatherization Commercial Weatherization Other Sealing Your Home Ventilation Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Program Info State Illinois Program Type Public Benefits Fund Provider Illinois Department of Commerce and Economic Opportunity Illinois's 1997 electric-industry restructuring legislation created separate public benefits funds that support renewable energy and residential energy efficiency. The efficiency fund is known as the Energy Efficiency Trust Fund. Electric utilities and alternative retail electric suppliers contribute annually a pro-rata share of a total amount of $3

223

Eligibility for Retiree Benefits  

NLE Websites -- All DOE Office Websites (Extended Search)

Eligibility, Enrollment Eligibility, Enrollment Eligibility, Enrollment for Retiree Benefits Age + years of service determines eligibility for retiree healthcare benefits. Contact Retiree Insurance Providers Healthcare insurance eligibility upon retirement To be eligible for retiree healthcare insurance, TCP1 and TCP2 employees must: be at least age 50 with at least 10 years of applicable service credits; or have at least 5 years of applicable service credits and meet the "Rule of 75" (age + service credits equal at least 75). LANS Health & Welfare Benefit Plan for Retirees (pdf) - see additional eligiblity requirements Note: TCP1 and TCP2 employees with less than 20 years of service are subject to graduated eligibilty. Transitioning employees who were hired in a career position with UC before January 1, 1990 receive 100% of the LANS

224

SRS - Retiree Benefits - Forms  

NLE Websites -- All DOE Office Websites (Extended Search)

Forms Forms Medical Forms Return completed forms to: 5-200 Health Care Programs Enrollment Change Benefits Solutions Service Center Bldg 703-47A, Aiken, SC 29808 5-340 Medical Claim Form Claims Processing Center P.O. Box 100300, Columbia, SC 29202 -- Pharmacy Claim Form Caremark Prescription Drug Claim Processing Center, P.O. Box 52059, Phoenix, AZ 85072-2059 Dental Forms Return completed forms to: 5-200 Health Care Programs Enrollment Change Benefits Solutions Service Center Bldg 703-47A, Aiken, SC 29808 5-342 Dental Claim Form Claims Processing Center P.O. Box 100300, Columbia, SC 29202 Life Insurance Return completed forms to: 5-171 Contributory Group Life Application and Deduction Authorization Benefits Solutions Service Center Bldg 703-47A, Aiken, SC 29808

225

Benefits and Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

Benefits and Challenges Benefits and Challenges Benefits Photo: Fuel cell exhaust emits no harmful pollutants Less Greenhouse Gas Emissions Gasoline- and diesel-powered vehicles emit greenhouse gases (GHGs), mostly carbon dioxide (CO2), that contribute to global climate change. Fuel cell vehicles (FCVs) powered by pure hydrogen emit no GHGs from their tailpipe, only heat and water. Producing the hydrogen to power FCVs can generate GHGs, depending on the production method, but much less than that emitted by conventional gasoline and diesel vehicles. more... The chart below shows the GHGs generated by various vehicle types and considers all steps of the energy chain from fuel extraction or production to fuel use by the vehicle, not just tailpipe emissions. Even when accounting for the GHGs emitted during hydrogen production, conventional

226

Public Benefits Funds for Renewables and Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Benefits Funds for Renewables and Efficiency Public Benefits Funds for Renewables and Efficiency Public Benefits Funds for Renewables and Efficiency < Back Eligibility Commercial General Public/Consumer Industrial Institutional Residential Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State California Program Type Public Benefits Fund Provider California Public Utilities Commission California's 1996 electric industry restructuring legislation ([http://www.leginfo.ca.gov/pub/95-96/bill/asm/ab_1851-1900/ab_1890_bill_9... AB 1890]) directed the state's three major investor-owned utilities (Southern California Edison, Pacific Gas and Electric Company, and San Diego Gas and Electric) to collect a "public goods charge" (PGC) on

227

Performance improvement of a solar heating system utilizing off-peak electric auxiliary. Semi-annual progress report, June 18, 1979-December 31, 1979  

SciTech Connect

During the period 18 June 1979 through December 1979, a solar assisted heat pump system was designed, installed and operated in the University of Toledo Experimental Solar House. The heat pump system is capable of operating in a wide range of temperatures which is needed in a solar house utilizing off-peak storage from the electric utility. The complete system consists of 584.1 square feet of Libbey-Owens-Ford's flat plate solar collectors, a 5 horsepower compressor (Victaulic Corp.), an evaporator (Dunham-Bush), a condensor (Dunham-Bush), thermal storage units, and associated equipment. During the installation and initial operation of the system, numerous aspects of the feasibility of this system design have been evaluated. Many of these aspects point to the potentially improved operating performance of a solar heating system utilizing off-peak storage from the electric utility.

Eltimsahy, A.H.

1979-12-01T23:59:59.000Z

228

Improved long-term electrical stability of pulsed high-power diodes using dense carbon fiber velvet cathodes  

Science Conference Proceedings (OSTI)

The influence of fibrous velvet cathodes on the electrical stability of a planar high-power diode powered by a {approx}230 kV, {approx}110 ns pulse has been investigated. The current density was on the order of {approx}123 A/cm{sup 2}. A combination of time-resolved electrical and optical diagnostics has been employed to study the basic phenomenology of the temporal and spatial evolution of the diode plasmas. Additionally, an impedance model was used to extract information about this plasma from voltage and current profiles. The results from the two diagnostics were compared. By comparison with commercial polymer velvet cathode, the dense carbon fiber velvet cathode showed superior long-term electrical stability as judged by the change in cathode turn-on field, ignition delays, diode impedance, and surface plasma characteristics during the voltage flattop, a promising result for applications where reliable operation at high power is required. Finally, it was shown that the interaction of the electron beam with the stainless steel anode did not lead to the formation of anode plasma. These results may be of interest to the high power microwave systems with cold cathodes.

Yang Jie; Shu Ting; Wang Hui [College of Opto-Electric Science and Engineering, National University of Defense Technology, Hunan 410073 (China)

2012-07-15T23:59:59.000Z

229

Quantitative Assessment of Distributed Energy Resource Benefits  

Science Conference Proceedings (OSTI)

Distributed energy resources (DER) offer many benefits, some of which are readily quantified. Other benefits, however, are less easily quantifiable because they may require site-specific information about the DER project or analysis of the electrical system to which the DER is connected. The purpose of this study is to provide analytical insight into several of the more difficult calculations, using the PJM power pool as an example. This power pool contains most of Pennsylvania, New Jersey, Maryland, and Delaware. The techniques used here could be applied elsewhere, and the insights from this work may encourage various stakeholders to more actively pursue DER markets or to reduce obstacles that prevent the full realization of its benefits. This report describes methodologies used to quantify each of the benefits listed in Table ES-1. These methodologies include bulk power pool analyses, regional and national marginal cost evaluations, as well as a more traditional cost-benefit approach for DER owners. The methodologies cannot however determine which stakeholder will receive the benefits; that must be determined by regulators and legislators, and can vary from one location to another.

Hadley, S.W.

2003-05-22T23:59:59.000Z

230

Electrical engineering Electricity  

E-Print Network (OSTI)

generation Transmission Distribution · Electrical generators · Electric motors · High voltage engineering associated with the systems Electrical engineering · Electric power generation Transmission Distribution The electricity transported to load locations from a power station transmission subsystem The transmission system

Ã?nay, Devrim

231

Community Wind Benefits (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet explores the benefits of community wind projects, including citations to published research.

Not Available

2012-11-01T23:59:59.000Z

232

The Smart Grid: An Estimation of the Energy and CO2 Benefits  

Science Conference Proceedings (OSTI)

This report articulates nine mechanisms by which the smart grid can reduce energy use and carbon impacts associated with electricity generation and delivery. The quantitative estimates of potential reductions in electricity sector energy and associated CO2 emissions presented are based on a survey of published results and simple analyses. This report does not attempt to justify the cost effectiveness of the smart grid, which to date has been based primarily upon the twin pillars of cost-effective operation and improved reliability. Rather, it attempts to quantify the additional energy and CO2 emission benefits inherent in the smart grid’s potential contribution to the nation’s goal of mitigating climate change by reducing the carbon footprint of the electric power system.

Pratt, Robert G.; Balducci, Patrick J.; Gerkensmeyer, Clint; Katipamula, Srinivas; Kintner-Meyer, Michael CW; Sanquist, Thomas F.; Schneider, Kevin P.; Secrest, Thomas J.

2010-01-27T23:59:59.000Z

233

The Smart Grid: An Estimation of the Energy and CO2 Benefits  

Science Conference Proceedings (OSTI)

This report articulates nine mechanisms by which the smart grid can reduce energy use and carbon impacts associated with electricity generation and delivery. The quantitative estimates of potential reductions in electricity sector energy and associated CO2 emissions presented are based on a survey of published results and simple analyses. This report does not attempt to justify the cost effectiveness of the smart grid, which to date has been based primarily upon the twin pillars of cost-effective operation and improved reliability. Rather, it attempts to quantify the additional energy and CO2 emission benefits inherent in the smart grid’s potential contribution to the nation’s goal of mitigating climate change by reducing the carbon footprint of the electric power system.

Pratt, Robert G.; Balducci, Patrick J.; Gerkensmeyer, Clint; Katipamula, Srinivas; Kintner-Meyer, Michael CW; Sanquist, Thomas F.; Schneider, Kevin P.; Secrest, Thomas J.

2010-01-15T23:59:59.000Z

234

IEA-Electricity Access Database | Open Energy Information  

Open Energy Info (EERE)

IEA-Electricity Access Database IEA-Electricity Access Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: IEA-Electricity Access Database Agency/Company /Organization: International Energy Agency (IEA) Topics: Co-benefits assessment, - Energy Access Resource Type: Dataset Website: www.iea.org/weo/electricity.asp Language: English IEA-Electricity Access Database Screenshot References: Electricity Access Database[1] "In a continuing effort to improve our understanding of the electrification process, we have updated, for the fifth time, the database on electrification rates that we first built for WEO-2002. The database shows detailed data on urban and rural electrification collected from industry, national surveys and international sources. Based on this updated analysis,

235

Analysis of data from electric and hybrid electric vehicle student competitions  

DOE Green Energy (OSTI)

The US Department of Energy sponsored several student engineering competitions in 1993 that provided useful information on electric and hybrid electric vehicles. The electrical energy usage from these competitions has been recorded with a custom-built digital meter installed in every vehicle and used under controlled conditions. When combined with other factors, such as vehicle mass, speed, distance traveled, battery type, and type of components, this information provides useful insight into the performance characteristics of electrics and hybrids. All the vehicles tested were either electric vehicles or hybrid vehicles in electric-only mode, and had an average energy economy of 7.0 km/kwh. Based on the performance of the ``ground-up`` hybrid electric vehicles in the 1993 Hybrid Electric Vehicle Challenge, data revealed a I km/kwh energy economy benefit for every 133 kg decrease in vehicle mass. By running all the electric vehicles at a competition in Atlanta at several different constant speeds, the effects of rolling resistance and aerodynamic drag were evaluated. On average, these vehicles were 32% more energy efficient at 40 km/h than at 72 km/h. The results of the competition data analysis confirm that these engineering competitions not only provide an educational experience for the students, but also show technology performance and improvements in electric and hybrid vehicles by setting benchmarks and revealing trends.

Wipke, K.B. [National Renewable Energy Lab., Golden, CO (United States); Hill, N.; Larsen, R.P. [Argonne National Lab., IL (United States)

1994-01-01T23:59:59.000Z

236

California Renewable Technology Market and Benefits Assessment  

Science Conference Proceedings (OSTI)

The renewable-energy market in California is substantial, with large numbers of companies providing a wide variety of goods and services to the market. This report characterizes the status and prospects of each renewable-energy resource in the state and estimates the current and potential economic and environmental benefits they provide. The overall objective is to provide information useful in formulating renewable-energy research strategies that can make California's electricity more reliable, affordab...

2001-11-08T23:59:59.000Z

237

American Indian tribes and electric industry restructuring: Issues and opportunities  

Science Conference Proceedings (OSTI)

The US electric utility industry is undergoing a period of fundamental change that has significant implications for Native American tribes. Although many details remain to be determined, the future electric power industry will be very different from that of the present. It is anticipated that the new competitive electric industry will be more efficient, which some believe will benefit all participants by lowering electricity costs. Recent developments in the industry, however, indicate that the restructuring process will likely benefit some parties at the expense of others. Given the historical experience and current situation of Native American tribes in the US, there is good reason to pay attention to electric industry changes to ensure that the situation of tribes is improved and not worsened as a result of electric restructuring. This paper provides a review of electricity restructuring in the US and identifies ways in which tribes may be affected and how tribes may seek to protect and serve their interests. Chapter 2 describes the current status of energy production and service on reservations. Chapter 3 provides an overview of the evolution of the electric industry to its present form and introduces the regulatory and structural changes presently taking place. Chapter 4 provides a more detailed discussion of changes in the US electric industry with a specific focus on the implications of these changes for tribes. Chapter 5 presents a summary of the conclusions reached in this paper.

Howarth, D. [Morse, Richard, and Weisenmiller, and Associates Inc., Oakland, CA (United States); Busch, J. [Lawrence Berkeley National Lab., CA (United States); Starrs, T. [Kelso, Starrs, and Associates LLC, Vashon, WA (United States)

1997-07-01T23:59:59.000Z

238

A Review of Recent RTO Benefit-Cost Studies: Toward More Comprehensive...  

NLE Websites -- All DOE Office Websites (Extended Search)

management, generation and transmission investment and operation, and wholesale electricity market operation. This report: 1) Describes the history of benefit-cost...

239

A Review of Recent RTO Benefit-Cost Studies: Toward More Comprehensive...  

NLE Websites -- All DOE Office Websites (Extended Search)

management, generation and transmission investment and operation, and wholesale electricity market operation. This report: Describes the history of benefit-cost analysis...

240

Cost-Benefit Assessment of Cycle Alignment  

Science Conference Proceedings (OSTI)

The information contained in this technical update report represents an in-depth study to evaluate the different methods used to improve cycle alignment. The study outlines the cost and benefits of using these different methods and describes their application. The collection and assemblage of this information will provide a reference for plant engineering and management personnel in their attempts to improve steam plant efficiency by implementing a systematic cycle alignment program. Through the use of t...

2011-11-07T23:59:59.000Z

Note: This page contains sample records for the topic "benefits improved electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores  

E-Print Network (OSTI)

Mégel. 2011. “Modeling Electric Vehicle Benefits Connectedenvironmental value of plug-in electric vehicles connectedBattaglia. 2010. “Plug-in Electric Vehicle Interactions with

Mendes, Goncalo

2013-01-01T23:59:59.000Z

242

Electric Bike Use in China and Their Impacts on the Environment, Safety, Mobility and Accessibility  

E-Print Network (OSTI)

benefits! and! costs! of! electric! bikes! are! relative!would! otherwise! use! if! electric! bikes! were! banned. !That! is,! if! an! electric! bike! user! would! otherwise!

Cherry, Christopher

2007-01-01T23:59:59.000Z

243

Schneider Electric Director Initiates Strategy to Recruit IAC...  

NLE Websites -- All DOE Office Websites (Extended Search)

Schneider Electric Director Initiates Strategy to Recruit IAC Graduates Carl Castellow realized that his industrial consulting team at Schneider Electric could benefit from adding...

244

Combined cycle electric power plant and a heat recovery steam generator having improved boiler feed pump flow control  

SciTech Connect

A combined cycle electric power plant is described that includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes an economizer tube and a high pressure evaporator tube and a boiler feed pump for directing the heat exchange fluid serially through the aforementioned tubes. A condenser is associated with the steam turbine for converting the spent steam into condensate water to be supplied to a deaerator for removing undesired air and for preliminarily heating the water condensate before being pumped to the economizer tube. Condensate flow through the economizer tube is maintained substantially constant by maintaining the boiler feed pump at a predetermined, substantially constant rate. A bypass conduit is provided to feed back a portion of the flow heated in the economizer tube to the deaerator; the portion being equal to the difference between the constant flow through the economizer tube and the flow to be directed through the high pressure evaporator tube as required by the steam turbine for its present load.

Martz, L.F.; Plotnick, R.J.

1976-06-29T23:59:59.000Z

245

Patricia Hoffman Assistant Secretary Office of Electricity Delivery and Energy Reliability  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Patricia Hoffman Assistant Secretary Office of Electricity Delivery and Energy Reliability U.S. Department of Energy Room 8H033 1000 Independence Avenue, SW Washington, DC 20585 Subject: DOE RFI DOE RFI 2010-23251 - Addressing Policy and Logistical Challenges to Smart Grid Implementation Dear Assistant Secretary Hoffman, The Galvin Electricity Initiative commends the Department of Energy for reaching out to key stakeholders to obtain input and comments on ways to improve electricity service. Your questions were comprehensive and should provide insights on ways to produce specific consumer benefits through the application of innovative technology, system design concepts, and enabling policies. The Galvin Electricity Initiative, a non-profit organization, has dedicated

246

Alternative Fuels Data Center: Electricity  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity to someone by E-mail Share Alternative Fuels Data Center: Electricity on Facebook Tweet about Alternative Fuels Data Center: Electricity on Twitter Bookmark Alternative Fuels Data Center: Electricity on Google Bookmark Alternative Fuels Data Center: Electricity on Delicious Rank Alternative Fuels Data Center: Electricity on Digg Find More places to share Alternative Fuels Data Center: Electricity on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Prices Find electricity fuel prices and trends. Electricity can be used to power all-electric vehicles and plug-in hybrid

247

Electric power industry restructuring in Australia: Lessons from down-under. Occasional paper No. 20  

SciTech Connect

Australia`s electric power industry (EPI) is undergoing major restructuring. This restructuring includes commercialization of state-owned electric organization through privatization and through corporatization into separate governmental business units; structural unbundling of generation, transmission, retailing, and distribution; and creation of a National Electricity Market (NEM) organized as a centralized, market-based trading pool for buying and selling electricity. The principal rationales for change in the EPI were the related needs of enhancing international competitiveness, improving productivity, and lowering electric rates. Reducing public debt through privatization also played an important role. Reforms in the EPI are part of the overall economic reform package that is being implemented in Australia. Enhancing efficiency in the economy through competition is a key objective of the reforms. As the need for reform was being discussed in the early 1990s, Australia`s previous prime minister, Paul Keating, observed that {open_quotes}the engine which drives efficiency is free and open competition.{close_quotes} The optimism about the economic benefits of the full package of reforms across the different sectors of the economy, including the electricity industry, is reflected in estimated benefits of a 5.5 percent annual increase in real gross domestic product and the creation of 30,000 more jobs. The largest source of the benefits (estimated at 25 percent of total benefits) was projected to come from reform of the electricity and gas sectors.

Ray, D. [Univ. of Wisconsin, Madison, WI (United States)

1997-01-01T23:59:59.000Z

248

Methodological Approaches for Estimating the Benefits and Costs of Smart Grid Demonstration Projects  

Science Conference Proceedings (OSTI)

This report presents a comprehensive framework for estimating the benefits and costs of Smart Grid projects and a step-by-step approach for making these estimates. The framework identifies the basic categories of benefits, the beneficiaries of these benefits, and the Smart Grid functionalities that lead to different benefits and proposes ways to estimate these benefits, including their monetization. The report covers cost-effectiveness evaluation, uncertainty, and issues in estimating baseline conditions against which a project would be compared. The report also suggests metrics suitable for describing principal characteristics of a modern Smart Grid to which a project can contribute. This first section of the report presents background information on the motivation for the report and its purpose. Section 2 introduces the methodological framework, focusing on the definition of benefits and a sequential, logical process for estimating them. Beginning with the Smart Grid technologies and functions of a project, it maps these functions to the benefits they produce. Section 3 provides a hypothetical example to illustrate the approach. Section 4 describes each of the 10 steps in the approach. Section 5 covers issues related to estimating benefits of the Smart Grid. Section 6 summarizes the next steps. The methods developed in this study will help improve future estimates - both retrospective and prospective - of the benefits of Smart Grid investments. These benefits, including those to consumers, society in general, and utilities, can then be weighed against the investments. Such methods would be useful in total resource cost tests and in societal versions of such tests. As such, the report will be of interest not only to electric utilities, but also to a broad constituency of stakeholders. Significant aspects of the methodology were used by the U.S. Department of Energy (DOE) to develop its methods for estimating the benefits and costs of its renewable and distributed systems integration demonstration projects as well as its Smart Grid Investment Grant projects and demonstration projects funded under the American Recovery and Reinvestment Act (ARRA). The goal of this report, which was cofunded by the Electric Power Research Institute (EPRI) and DOE, is to present a comprehensive set of methods for estimating the benefits and costs of Smart Grid projects. By publishing this report, EPRI seeks to contribute to the development of methods that will establish the benefits associated with investments in Smart Grid technologies. EPRI does not endorse the contents of this report or make any representations as to the accuracy and appropriateness of its contents. The purpose of this report is to present a methodological framework that will provide a standardized approach for estimating the benefits and costs of Smart Grid demonstration projects. The framework also has broader application to larger projects, such as those funded under the ARRA. Moreover, with additional development, it will provide the means for extrapolating the results of pilots and trials to at-scale investments in Smart Grid technologies. The framework was developed by a panel whose members provided a broad range of expertise.

Lee, Russell [ORNL

2010-01-01T23:59:59.000Z

249

Pacific Gas and Electric Company's Compressed Air Management Program: A Performance Assessment Approach to Improving Industrial Compressed Air System Operation and Maintenance  

E-Print Network (OSTI)

The Compressed Air Management Program (CAMP) provides Pacific Gas and Electric's (PG&E's) large industrial customers with measurement-based performance assessments of their compressed air systems. Under this program, the customer's system is inspected and both short-term, high resolution, and longer-term measurements are taken of power and pressure. These data are used in developing a system simulation based on the US DOE's AIRMaster+ computer model. Model results and professional judgment are used to identify a cost-effective strategy for improving the system. Recommendations are provided to the customer along with technical support for implementing these recommendations. After improvements are complete, the performance measurements are repeated so that PG&E and its customers can judge the effectiveness of the recommendations. The program uses a standardized toolkit (all off-the-shelf components) along with software developed exclusively for this application, to accomplish the required measurements and efficiently analyze and reduce the data for use in the AIRMaster+ model.

Qualmann, R. L.; Zeller, W.; Baker, M.

2002-04-01T23:59:59.000Z

250

Recovery Act Project Clears Portsmouth Switchyard, Benefits Community  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Project Clears Portsmouth Switchyard, Benefits Recovery Act Project Clears Portsmouth Switchyard, Benefits Community through Recycling Recovery Act Project Clears Portsmouth Switchyard, Benefits Community through Recycling American Recovery and Reinvestment Act workers recently completed the demolition of structures in an electrical switchyard used to help power the Portsmouth Site's uranium enrichment processes for defense and commercial uses for nearly five decades. In the $28 million Recovery Act project completed safely and on schedule, workers demolished 160 towers as tall as 120 feet that were used to operate the X-533 Electrical Switchyard. Recovery Act Project Clears Portsmouth Switchyard, Benefits Community through Recycling More Documents & Publications Microsoft Word - PSRP Updates 6-25-10_v2

251

Definition: Reduced Electricity Cost | Open Energy Information  

Open Energy Info (EERE)

Cost Jump to: navigation, search Dictionary.png Reduced Electricity Cost Functions that provide this benefit could help alter customer usage patterns (demand response with price...

252

Alternative Fuels Data Center: Hybrid Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids Plug-In Hybrids All-Electric Vehicles Hybrid Electric Vehicles

253

Property:AdditionalBenefitPlaces | Open Energy Information  

Open Energy Info (EERE)

AdditionalBenefitPlaces AdditionalBenefitPlaces Jump to: navigation, search This is a property of type Page. Pages using the property "AdditionalBenefitPlaces" Showing 21 pages using this property. A Atlantic City Electric Company Smart Grid Project + Maryland +, District of Columbia + Avista Utilities Smart Grid Project + Idaho + B Black Hills Power, Inc. Smart Grid Project + North Dakota +, Minnesota + C Consolidated Edison Company of New York, Inc. Smart Grid Project + New Jersey + D Duke Energy Business Services LLC Smart Grid Project + Indiana +, Ohio + E El Paso Electric Smart Grid Project + New Mexico + Electric Power Board of Chattanooga Smart Grid Project + Georgia + F FirstEnergy Service Company Smart Grid Project + Pennsylvania + I ISO New England, Incorporated Smart Grid Project + Connecticut +, Maine +, New Hampshire +, ...

254

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM  

E-Print Network (OSTI)

Environmental Benefits of Electric Vehicles Integration onof using plug-in hybrid electric vehicle battery packs forN ATIONAL L ABORATORY Plug-in Electric Vehicle Interactions

Momber, Ilan

2010-01-01T23:59:59.000Z

255

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM  

E-Print Network (OSTI)

Environmental Benefits of Electric Vehicles Integration onusing plug-in hybrid electric vehicle battery packs for gridL ABORATORY Plug-in Electric Vehicle Interactions with a

Momber, Ilan

2010-01-01T23:59:59.000Z

256

Expected benefits of federally-funded thermal energy storage research  

DOE Green Energy (OSTI)

Pacific Northwest Laboratory (PNL) conducted this study for the Office of Advanced Utility Concepts of the US Department of Energy (DOE). The objective of this study was to develop a series of graphs that depict the long-term benefits of continuing DOE's thermal energy storage (TES) research program in four sectors: building heating, building cooling, utility power production, and transportation. The study was conducted in three steps- The first step was to assess the maximum possible benefits technically achievable in each sector. In some sectors, the maximum benefit was determined by a supply side'' limitation, and in other sectors, the maximum benefit is determined by a demand side'' limitation. The second step was to apply economic cost and diffusion models to estimate the benefits that are likely to be achieved by TES under two scenarios: (1) with continuing DOE funding of TES research, and (2) without continued funding. The models all cover the 20-year period from 1990 to 2010. The third step was to prepare graphs that show the maximum technical benefits achievable, the estimated benefits with TES research funding, and the estimated benefits in the absence of TES research funding. The benefits of federally-funded TES research are largely in four areas: displacement of primary energy, displacement of oil and natural gas, reduction in peak electric loads, and emissions reductions.

Spanner, G E; Daellenbach, K K; Hughes, K R; Brown, D R; Drost, M K

1992-09-01T23:59:59.000Z

257

Expected benefits of federally-funded thermal energy storage research  

DOE Green Energy (OSTI)

Pacific Northwest Laboratory (PNL) conducted this study for the Office of Advanced Utility Concepts of the US Department of Energy (DOE). The objective of this study was to develop a series of graphs that depict the long-term benefits of continuing DOE`s thermal energy storage (TES) research program in four sectors: building heating, building cooling, utility power production, and transportation. The study was conducted in three steps- The first step was to assess the maximum possible benefits technically achievable in each sector. In some sectors, the maximum benefit was determined by a ``supply side`` limitation, and in other sectors, the maximum benefit is determined by a ``demand side`` limitation. The second step was to apply economic cost and diffusion models to estimate the benefits that are likely to be achieved by TES under two scenarios: (1) with continuing DOE funding of TES research, and (2) without continued funding. The models all cover the 20-year period from 1990 to 2010. The third step was to prepare graphs that show the maximum technical benefits achievable, the estimated benefits with TES research funding, and the estimated benefits in the absence of TES research funding. The benefits of federally-funded TES research are largely in four areas: displacement of primary energy, displacement of oil and natural gas, reduction in peak electric loads, and emissions reductions.

Spanner, G.E.; Daellenbach, K.K.; Hughes, K.R.; Brown, D.R.; Drost, M.K.

1992-09-01T23:59:59.000Z

258

Benefits | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Benefits | National Nuclear Security Administration Benefits | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Benefits Home > Federal Employment > Working at NNSA > Benefits Benefits The great jobs we have at NNSA also come with comprehensive benefits packages. They are among the best and most comprehensive available and play a vital role in demonstrating the Federal government and NNSA's

259

Benefits | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Benefits | National Nuclear Security Administration Benefits | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Benefits Home > Federal Employment > Working at NNSA > Benefits Benefits The great jobs we have at NNSA also come with comprehensive benefits packages. They are among the best and most comprehensive available and play a vital role in demonstrating the Federal government and NNSA's

260

Data Collection and Reporting for Metrics and Benefits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Collection and Reporting for Collection and Reporting for Metrics and Benefits Smart Grid Investment Grant Program Joe Paladino November 19, 2009 Investments Transformation Results * Equipment Manufacturing * Customer Systems * Advanced Metering Infrastructure * Electric Distribution Systems * Electric Transmission Systems * Integrated and/or Crosscutting Systems Customer Empowerment * Job Creation and Marketplace Innovation * Reduced Peak Load and Consumption * Operational Efficiency * Grid Reliability and Resilience * More Distributed and Renewable Energy * Lower Carbon Dioxide Emissions Advanced Grid Functionality An Opportunity for Transformation Primary Intent Is to Determine SGIG Program Impact Secondary Intent Is to Learn (to Address Uncertainty) Project-Based Cost/Benefit Analysis SGIG Program - Building the

Note: This page contains sample records for the topic "benefits improved electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

EIA's Prediction of the Benefits of R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Forecasting the Benefits of DOE Programs Forecasting the Benefits of DOE Programs for Advanced Fossil-Fuel Electricity Generating Technologies: The EIA High Fossil Electricity Technology Case USDOE Office of Fossil Energy National Energy Technology Laboratory Office of Systems and Policy Support October 2002 DOE National Energy Technology Laboratory i Frank Shaffer USDOE National Energy Technology Laboratory Office of Systems and Policy Support Franklin.Shaffer@netl.doe.gov 412-386-5964 Melissa Chan USDOE National Energy Technology Laboratory Office of Systems and Policy Support Melissa.Chan@netl.doe.gov 412-386-4944 Authors and Contacts ii DOE National Energy Technology Laboratory Executive Summary...........................................................................................................

262

Demand response compensation, net Benefits and cost allocation: comments  

Science Conference Proceedings (OSTI)

FERC's Supplemental Notice of Public Rulemaking addresses the question of proper compensation for demand response in organized wholesale electricity markets. Assuming that the Commission would proceed with the proposal ''to require tariff provisions allowing demand response resources to participate in wholesale energy markets by reducing consumption of electricity from expected levels in response to price signals, to pay those demand response resources, in all hours, the market price of energy for such reductions,'' the Commission posed questions about applying a net benefits test and rules for cost allocation. This article summarizes critical points and poses implications for the issues of net benefit tests and cost allocation. (author)

Hogan, William W.

2010-11-15T23:59:59.000Z

263

Benefit/cost framework for evaluating modular energy storage : a study for the DOE energy storage systems program.  

DOE Green Energy (OSTI)

The work documented in this report represents another step in the ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Energy Storage Systems (ESS) Program. This study uses updated cost and performance information for modular energy storage (MES) developed for this study to evaluate four prospective value propositions for MES. The four potentially attractive value propositions are defined by a combination of well-known benefits that are associated with electricity generation, delivery, and use. The value propositions evaluated are: (1) transportable MES for electric utility transmission and distribution (T&D) equipment upgrade deferral and for improving local power quality, each in alternating years, (2) improving local power quality only, in all years, (3) electric utility T&D deferral in year 1, followed by electricity price arbitrage in following years; plus a generation capacity credit in all years, and (4) electric utility end-user cost management during times when peak and critical peak pricing prevail.

Eyer, James M. (Distributed Utility Associates, Livermore, CA); Schoenung, Susan M. (Longitude 122 West, Inc., Menlo Park, CA)

2008-02-01T23:59:59.000Z

264

Energy storage benefits and market analysis handbook : a study for the DOE Energy Storage Systems Program.  

DOE Green Energy (OSTI)

This Guide describes a high level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric utility-related applications. In the United States use of electricity storage to support and optimize transmission and distribution (T&D) services has been limited due to high storage system cost and by limited experience with storage system design and operation. Recent improvement of energy storage and power electronics technologies, coupled with changes in the electricity marketplace, indicate an era of expanding opportunity for electricity storage as a cost-effective electric resource. Some recent developments (in no particular order) that drive the opportunity include: (1) states adoption of the renewables portfolio standard (RPS), which may increased use of renewable generation with intermittent output, (2) financial risk leading to limited investment in new transmission capacity, coupled with increasing congestion on some transmission lines, (3) regional peaking generation capacity constraints, and (4) increasing emphasis on locational marginal pricing (LMP).

Eyer, James M. (Distributed Utility Associates, Livermore, CA); Corey, Garth P.; Iannucci, Joseph J., Jr. (Distributed Utility Associates, Livermore, CA)

2004-12-01T23:59:59.000Z

265

NREL: Sustainable NREL - Community Benefits  

NLE Websites -- All DOE Office Websites (Extended Search)

Community Benefits Essential to the lab's sustainability efforts is helping sustain the community by supporting economic development and sharing knowledge and resources with the...

266

Air-Quality Improvement Tax Incentives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air-Quality Improvement Tax Incentives Air-Quality Improvement Tax Incentives Air-Quality Improvement Tax Incentives < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Bioenergy Buying & Making Electricity Solar Water Heating Wind Program Info State Ohio Program Type Other Incentive Provider Ohio Air Quality Development Authority The Ohio Air Quality Development Authority (OAQDA) provides assistance for new air quality projects in Ohio, for both small and large businesses. For qualifying projects, the OAQDA also projects tax benefits. For qualifying projects, the Ohio Air Quality Development Authority (OAQDA) can provide a 100 percent exemption from the tangible personal property tax

267

Alternative Fuels Data Center: Electricity Related Links  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity Related Links to someone by E-mail Share Alternative Fuels Data Center: Electricity Related Links on Facebook Tweet about Alternative Fuels Data Center: Electricity Related Links on Twitter Bookmark Alternative Fuels Data Center: Electricity Related Links on Google Bookmark Alternative Fuels Data Center: Electricity Related Links on Delicious Rank Alternative Fuels Data Center: Electricity Related Links on Digg Find More places to share Alternative Fuels Data Center: Electricity Related Links on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations

268

Connecting Distributed Energy Resources to the Grid: Their Benefits to the DER Owner etc.  

SciTech Connect

The vision of the Distributed Energy Research Program (DER) program of the U.S. Department of Energy (DOE) is that the United States will have the cleanest and most efficient and reliable energy system in the world by maximizing the use of affordable distributed energy resources. Electricity consumers will be able to choose from a diverse number of efficient, cost-effective, and environmentally friendly distributed energy options and easily connect them into the nation's energy infrastructure while providing benefits to their owners and other stakeholders. The long-term goal of this vision is that DER will achieve a 20% share of new electric capacity additions in the United States by 2010, thereby helping to make the nation's electric power generation and delivery system more efficient, reliable, secure, clean, economical, and diverse in terms of fuel use (oil, natural gas, solar, hydroelectric, etc.) and prime mover resource (solar, wind, gas turbines, etc.). Near- and mid-term goals are to develop new technologies for implementing and operating DER and address barriers associated with DER usage and then to reduce costs and emissions and improve the efficiency and reliability of DER. Numerous strategies for meeting these goals have been developed into a research, development, and demonstration (RD&D) program that supports generation and delivery systems architecture, including modeling and simulation tools. The benefits associated with DER installations are often significant and numerous. They almost always provide tangible economic benefits, such as energy savings or transmission and distribution upgrade deferrals, as well as intangible benefits, such as power quality improvements that lengthen maintenance or repair intervals for power equipment. Also, the benefits routinely are dispersed among end users, utilities, and the public. For instance, an end user may use the DER to reduce their peak demand and save money due to lower demand charges. Reduced end user peak demand, in turn, may lower a distribution system peak load such that upgrades are deferred or avoided. This could benefit other consumers by providing them with higher reliability and power quality as well as avoiding their cost share of a distribution system upgrade. In this example, the costs of the DER may be born by the end user, but that user reaps only a share of the benefits. This report, the first product of a study to quantify the value of DER, documents initial project efforts to develop an assessment methodology. The focus of currently available site-specific DER assessment techniques are typically limited to two parties, the owner/user and the local utility. Rarely are the impacts on other stakeholders, including interconnected distribution utilities, transmission system operators, generating system operators, other local utility customers, local and regional industry and business, various levels of government, and the environment considered. The goal of this assessment is to quantify benefits and cost savings that accrue broadly across a region, recognizing that DER installations may have local, regional, or national benefits.

Poore, WP

2003-07-09T23:59:59.000Z

269

Comprehensive Evaluation of Rail Transit Benefits  

E-Print Network (OSTI)

This report evaluates rail transit benefits based on a comprehensive analysis of urban transportation system performance in major U.S. cities. It discusses best practices for evaluating transit benefits. It finds that cities with larger, well-established rail systems have significantly higher per capita transit ridership, lower average per capita vehicle ownership and mileage, less traffic congestion, lower traffic death rates and lower consumer transportation expenditures than otherwise comparable cities. This indicates that rail transit systems can provide a variety of economic, social and environmental benefits, and benefits tend to increase as a system expands and matures. This analysis indicates that rail investments can be a cost effective way to improve urban transport. Parking, vehicle and congestion cost savings from rail transit are estimated to exceed total U.S. public transit subsidies. It critiques Great Rail Disasters (O’Toole, 2004), a report which argued that rail transit systems fail to achieve their objectives and are not cost effective. It finds that many claims in Great Rail Disasters are inaccurate, based on

Todd Litman; Todd Alexander Litman

2004-01-01T23:59:59.000Z

270

Benefit Forms | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Employee Orientation » Benefit Forms New Employee Orientation » Benefit Forms Benefit Forms The employment and benefits forms that you will be asked to complete as part of this orientation program can be numerous. Each, however, serves an important purpose in ensuring proper recording of your employment and benefit elections. This online program is designed to make the task a little easier. Each set of forms that you will work with has been compiled to ensure that you are only completing the essential documentation for your individual employment circumstance. Also, each set begins with an Employee Information Form that, upon completion, will auto-populate applicable data throughout the entire package. All of the forms are in PDF format and require Acrobat Reader to view and fill-in. When you open the form "Packages," it will load in a separate

271

EAC Presentation: Metrics and Benefits Analysis for the ARRA Smart Grid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Metrics and Benefits Analysis for the ARRA Smart Metrics and Benefits Analysis for the ARRA Smart Grid Programs - March 10, 2011 EAC Presentation: Metrics and Benefits Analysis for the ARRA Smart Grid Programs - March 10, 2011 PowerPoint presentation by Joe Paladino from the Office of Electricity Delivery and Energy Reliability before the Electricity Advisory Committee (EAC) on metrics and benefits analysis for the American Recovery and Reinvestment Act smart grid programs including the Smart Grid Investment Grants and the Smart Grid Demonstration Program. Metrics and Benefits Analysis for the ARRA Smart Grid Programs More Documents & Publications Data Collection and Reporting for Metrics and Benefits: Smart Grid Investment Grant Program Electricity Advisory Committee Meeting Presentations June 2012 - Tuesday,

272

EAC Presentation: Metrics and Benefits Analysis for the ARRA Smart Grid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Metrics and Benefits Analysis for the ARRA Smart Metrics and Benefits Analysis for the ARRA Smart Grid Programs - March 10, 2011 EAC Presentation: Metrics and Benefits Analysis for the ARRA Smart Grid Programs - March 10, 2011 PowerPoint presentation by Joe Paladino from the Office of Electricity Delivery and Energy Reliability before the Electricity Advisory Committee (EAC) on metrics and benefits analysis for the American Recovery and Reinvestment Act smart grid programs including the Smart Grid Investment Grants and the Smart Grid Demonstration Program. Metrics and Benefits Analysis for the ARRA Smart Grid Programs More Documents & Publications Electricity Advisory Committee Meeting Presentations June 2012 - Tuesday, June 12, 2012 Data Collection and Reporting for Metrics and Benefits: Smart Grid

273

Vehicle Yaw Control Utilizing Hybrid Electric Drivetrains with Multiple Electric Motors.  

E-Print Network (OSTI)

??Vehicles with multiple electric motors coupled to individual wheels have excitingopportunities for safety control systems. An investigation is conducted to determine whatdynamic benefits can be… (more)

D'Iorio, James

2008-01-01T23:59:59.000Z

274

The model electric restaurant  

SciTech Connect

Restaurants are the most intensive users of energy of all types of commercial buildings. As a result, they have some of the highest energy costs. New and existing restaurants are important customers to electric utilities. Many opportunities exist to use electricity to improve restaurant energy performance. This report discusses a project in which computer simulations were used to investigate restaurant energy subsystem performance and to assess the potential for electric equipment to reduce energy consumption, reduce peak demand improve load factors, and reduce energy cost in new all-electric restaurants. The project investigated typical restaurant designs for all-electric and gas/electric facilities and compared them to high efficiency electric options in all-electric restaurants. This analysis determined which investiments in high-efficiency electric equipment are attractive for restaurant operators. Improved equipment for food preparation, heating and cooling, ventilation, sanitation, and lighting subsystem was studied in cafeteria, full menu, fast food, and pizza restaurants in Atlanta, Cleveland, Los Angeles, and Phoenix. In addition to the actual rate structures, four synthetic rate structures were used to calculate energy costs, so that the results can be applied to other locations. The results indicate that high efficiency and improved all-electric equipment have the potential for significantly reducing energy consumption, peak demand, and operating costs in almost all restaurants in all locations. The all-electric restaurants, with a combination of improved equipment, also offer the customer a competitive choice in fuels in most locations. 12 refs., 26 figs., 55 tabs.

Frey, D.J.; Oatman, P.A. (Architectural Energy Corp., Boulder, CO (USA)); Claar, C.N. (Pennsylvania State Univ., University Park, PA (USA))

1989-12-01T23:59:59.000Z

275

Guide for prioritizing power plant productivity improvement projects: handbook of availability improvement methodology  

SciTech Connect

As part of its program to help improve electrical power plant productivity, the Department of Energy (DOE) has developed a methodology for evaluating productivity improvement projects. This handbook presents a simplified version of this methodology called the Availability Improvement Methodology (AIM), which provides a systematic approach for prioritizing plant improvement projects. Also included in this handbook is a description of data taking requirements necessary to support the AIM methodology, benefit/cost analysis, and root cause analysis for tracing persistent power plant problems. In applying the AIM methodology, utility engineers should be mindful that replacement power costs are frequently greater for forced outages than for planned outages. Equivalent availability includes both. A cost-effective ranking of alternative plant improvement projects must discern between those projects which will reduce forced outages and those which might reduce planned outages. As is the case with any analytical procedure, engineering judgement must be exercised with respect to results of purely mathematical calculations.

Not Available

1981-09-15T23:59:59.000Z

276

Wellness & Additional Benefits | Careers | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Working at ORNL Working at ORNL Benefits Wellness and Other Incentives View Open Positions View Postdoctoral Positions Create A Profile Internal applicants please apply here View or update your current application or profile. External applicants Internal applicants Internet Explorer Browser preferred for ORNL applicants. Chrome is not currently supported. For more information about browser compatibility please refer to the FAQs. If you have difficulty using the online application system or need an accommodation to apply due to a disability, please email ORNLRecruiting@ornl.gov or phone 1-866-963-9545 Careers Home | ORNL | Careers | Working at ORNL | Wellness and Other Incentives SHARE Wellness & Additional Benefits Wellness Program Employees have many opportunities to maintain and improve their health

277

TUTORIAL 5144 Environmental Benefits of Smart Meters  

E-Print Network (OSTI)

Abstract: Today, consumers and utility companies can agree that smart meters provide benefits such as time-of-use billing, accurate measurement, and elimination of a meter reader's monthly visit. But do smart meters provide tangible benefits for the environment? Not all agree on this. This article discusses how a smart meter helps a utility to monitor energy usage. That monitoring data then allows the utility to work with consumers to reduce energy usage and integrate various sources of renewable energy. When that happens, the environment wins. A similar version of this article was published in Electronic Products on November 15, 2011. An Awakening "I don't understand the environmental benefits of the smart grid, " my cousin Chris said after I told him about my involvement in the smart grid effort at Maxim. "I think it is just a ploy by the utilities to raise rates, " he added. Ordinarily, I would have interrupted him with comments about intelligent management of energy and resources, but my cousin worked for the northern California utility for 15 years. He was not speaking from an uninformed standpoint, so I listened further. "Electricity flows like water, " he continued. "It flows from the source to all points of consumption. Installing a smart meter does not save energy, it just counts when you are consuming it. " These are all valid points. Here I was, convinced that smart meters were a good thing, something that could benefit both the economy and the environment, something that brought a better technical solution to an old problem. But in fact, I did not really know how the smart grid could

David Andeen; Segment Manager

2012-01-01T23:59:59.000Z

278

Understanding the Cost of Power Interruptions to U.S. Electricity Consumers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Understanding the Cost of Power Interruptions to U.S. Electricity Understanding the Cost of Power Interruptions to U.S. Electricity Consumers Understanding the Cost of Power Interruptions to U.S. Electricity Consumers The massive electric power blackout in the northeastern United States and Canada on August 14-15, 2003 resulted in the U.S. electricity system being called "antiquated" and catalyzed discussions about modernizing the grid. Industry sources suggested that investments of $50 to $100 billion would be needed. This report seeks to quantify an important piece of information that has been missing from these discussions: how much do power interruptions and fluctuations in power quality (power-quality events) cost U.S. electricity consumers? Accurately estimating this cost will help assess the potential benefits of investments in improving the reliability

279

The Statewide Benefits Of Net-Metering In California  

E-Print Network (OSTI)

The Statewide Benefits Of Net-Metering In California & the Consequences of Changes to the Program-Metering In California Net Metering is a policy that allows commercial and residential electricity customers to receive and to meeting the clean energy mandates under California's Global Warming Solutions Act, AB32. Under

Kammen, Daniel M.

280

Utility Benefits of SMES in the Pacific Northwest  

Science Conference Proceedings (OSTI)

Superconducting magnetic energy storage (SMES) is an emerging technology expected to have wide-spread asset value in the electric utility industry. This project updates an earlier assessment of SMES benefits in the Pacific Northwest by estimating net present values of several system-specific application scenarios with the SMES cost model developed by EPRI.

1996-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "benefits improved electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Alternative Fuels Data Center: Natural Gas Benefits  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Benefits Benefits to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Benefits on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Benefits on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Benefits on Google Bookmark Alternative Fuels Data Center: Natural Gas Benefits on Delicious Rank Alternative Fuels Data Center: Natural Gas Benefits on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Benefits on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Laws & Incentives Natural Gas Benefits and Considerations Compressed and liquefied natural gas are clean, domestically produced alternative fuels. Using these fuels in natural gas vehicles increases

282

Potential Benefits of Commissioning California Homes  

SciTech Connect

Commissioning California's houses can result in better performing systems and houses. In turn, this will result in more efficient use of energy, carbon emission reductions, and improved occupant comfort. In particular, commissioning houses can save a significant amount of HVAC-related energy (15 to 30% in existing houses, 10 to 20% in new conventional houses, and up to 8% in advanced energy efficiency houses). The process that we considered includes corrective measures that could be implemented together during construction or during a single site visit (e.g., air tightening, duct sealing, and refrigerant and air handler airflow corrections in a new or existing house). Taking advantage of additional, more complex opportunities (e.g., installing new windows in an existing house, replacing the heating and air conditioning system in a new or existing house) can result in additional HVAC-related energy savings (60 to 75% in existing houses, and 50 to 60% in new conventional houses). The commissioning-related system and house performance improvements and energy savings translate to additional benefits throughout California and beyond. By applying commissioning principles to their work, the building community (builders and contractors) benefit from reduced callbacks and lower warranty costs. HERS raters and inspectors will have access to an expanded market sector. As the commissioning process rectifies construction defects and code problems, building code officials benefit from better compliance with codes. The utilities benefit from reduced peak demand, which can translate into lower energy acquisition costs. As houses perform closer to expectations, governmental bodies (e.g., the California Energy Commission and the Air Resources Board) benefit from greater assurance that actual energy consumption and carbon emissions are closer to the levels mandated in codes and standards, resulting in better achievement of state energy conservation and environmental goals. California residents' quality of life is improved through better indoor environmental comfort and lower energy bills. Lower energy bills free up money for residents to spend on other needs or goals, such as additional education and health and welfare. With an expansion of existing industries and the development of new commissioning-related industries, related jobs and tax revenues will increase, further increasing the quality of life for California.

Matson, Nance; Wray, Craig; Walker, Iain; Sherman, Max

2002-01-01T23:59:59.000Z

283

Potential Benefits of Commissioning California Homes  

SciTech Connect

Commissioning California's houses can result in better performing systems and houses. In turn, this will result in more efficient use of energy, carbon emission reductions, and improved occupant comfort. In particular, commissioning houses can save a significant amount of HVAC-related energy (15 to 30% in existing houses, 10 to 20% in new conventional houses, and up to 8% in advanced energy efficiency houses). The process that we considered includes corrective measures that could be implemented together during construction or during a single site visit (e.g., air tightening, duct sealing, and refrigerant and air handler airflow corrections in a new or existing house). Taking advantage of additional, more complex opportunities (e.g., installing new windows in an existing house, replacing the heating and air conditioning system in a new or existing house) can result in additional HVAC-related energy savings (60 to 75% in existing houses, and 50 to 60% in new conventional houses). The commissioning-related system and house performance improvements and energy savings translate to additional benefits throughout California and beyond. By applying commissioning principles to their work, the building community (builders and contractors) benefit from reduced callbacks and lower warranty costs. HERS raters and inspectors will have access to an expanded market sector. As the commissioning process rectifies construction defects and code problems, building code officials benefit from better compliance with codes. The utilities benefit from reduced peak demand, which can translate into lower energy acquisition costs. As houses perform closer to expectations, governmental bodies (e.g., the California Energy Commission and the Air Resources Board) benefit from greater assurance that actual energy consumption and carbon emissions are closer to the levels mandated in codes and standards, resulting in better achievement of state energy conservation and environmental goals. California residents' quality of life is improved through better indoor environmental comfort and lower energy bills. Lower energy bills free up money for residents to spend on other needs or goals, such as additional education and health and welfare. With an expansion of existing industries and the development of new commissioning-related industries, related jobs and tax revenues will increase, further increasing the quality of life for California.

Matson, Nance; Wray, Craig; Walker, Iain; Sherman, Max

2002-01-01T23:59:59.000Z

284

Benefits of Sustainable Building Design | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Benefits of Sustainable Building Design Benefits of Sustainable Building Design Benefits of Sustainable Building Design October 4, 2013 - 4:22pm Addthis Photo of an air-intake structure outside a Federal facility. An air-intake structure outside of this Federal facility lowers energy costs by taking in chilly night air to cool the building's data center. The application of sustainable building design not only helps Federal facilities meet laws and regulations, it also provides them with many other benefits. These benefits include: Lower energy costs Reduction in operating and maintenance costs Increase in productivity of building occupants Improvement health and psychological well-being of building occupants Reduction in pollutants Opportunity to foster a positive public image. Sustainable building design can reduce annual energy costs anywhere from

285

Alternative methods to determine headwater benefits  

DOE Green Energy (OSTI)

In 1992, the Federal Energy Regulatory Commission (FERC) began using a Flow Duration Analysis (FDA) methodology to assess headwater benefits in river basins where use of the Headwater Benefits Energy Gains (HWBEG) model may not result in significant improvements in modeling accuracy. The purpose of this study is to validate the accuracy and appropriateness of the FDA method for determining energy gains in less complex basins. This report presents the results of Oak Ridge National Laboratory`s (ORNL`s) validation of the FDA method. The validation is based on a comparison of energy gains using the FDA method with energy gains calculated using the MWBEG model. Comparisons of energy gains are made on a daily and monthly basis for a complex river basin (the Alabama River Basin) and a basin that is considered relatively simple hydrologically (the Stanislaus River Basin). In addition to validating the FDA method, ORNL was asked to suggest refinements and improvements to the FDA method. Refinements and improvements to the FDA method were carried out using the James River Basin as a test case.

Bao, Y.S.; Perlack, R.D.; Sale, M.J.

1997-11-10T23:59:59.000Z

286

Analysis of Benefits of an Energy Imbalance Market in the NWPP  

SciTech Connect

The Northwest Power Pool (NWPP) Market Assessment Committee (MC) Initiative, which was officially launched on March 19, 2012, set out to explore a range of alternatives that could help the Balancing Authorities and scheduling utilities in the NWPP area address growing operational and commercial challenges affecting the regional power system. The MC formed an Analytical Team with technical representatives from each of the member Balancing Areas in the NWPP and with staff of Pacific Northwest National Laboratory (PNNL). This Analytical Team was instructed to conduct extensive studies of intra-hour operation of the NWPP system in the year 2020 and of the NWPP region with 14,671 MW of wind penetration. The effort utilized a sub-hourly production cost model (the PLEXOS® computer model) that inputs data from the Western Electricity Coordinating Council (WECC)-wide Production Cost Model (PCM) to evaluate potential production cost savings. The Analytical Team was given two general options to evaluate: •Energy Imbalance Market (EIM): establishment of an automated, organized NWPP area market for economically supplying energy imbalance within the hour. •Enhanced Market-Operational Tools (EMT) that might augment or replace an EIM. The Analytical The Analytical Team built on the WECC-wide PCM data from prior work done in the WECC and carried forward the evolution of the original WECC Transmission Expansion Planning Policy Committee (TEPPC) 2020 PC0 data base. A large number of modifications and improvements were made to this case and the data were subjected to extensive review by the team members to improve the model representation of the Northwest (NW). MC meetings that were open to the public were held for interested parties to review and provide input to the study. Results for the test, base, and sensitivity case studies performed by the MC Initiative Analytical Team indicate that there are a wide range of benefits that could be obtained from the operation of an EIM in the NWPP depending on what assumptions are made. The instructions from the MC were to determine a "minimum high confidence" range of potential benefits. The results for the Base Case indicate that the EIM benefits ranged from approximately $40 million to $70 million in annual savings from the operation of an EIM in the NWPP footprint. A number of additional relevant sensitivity cases were performed, including low and high water conditions, low and high natural gas prices, and various flex reserve requirements, resource operations, and amounts of resource capability held back during the preschedule period. Along with the results for the Base Case, the results for these studies yielded EIM benefits that clustered within the range of $70 to $80 million dollars per year with potential benefits ranging from approximately $125 million to as little as $17 million per year. Because the design and operation of an EIM could enable participating Balancing Authorities (BAs) to collectively lower the quantity of resources they must carry to meet within-hour balancing needs, a sensitivity case was also performed to analyze the impact that such reductions might have on the benefits from an EIM. The results for this sensitivity case indicate that such reductions could increase the benefits from the operation of an EIM in the NWPP into the range of approximately $130 million to $160 million per year. Also, a sensitivity case for a WECC-wide EIM was performed with the results indicating that the potential benefits to the NWPP could increase into the range of $197 million to $233 million per year. While there may be potential reliability benefits from the coordinated dispatch process underlying the operation of an EIM, reliability benefits from an EIM were out of the scope of this study. The EIM benefit analyses that were performed by the Analytical Team are provided in this report.

Samaan, Nader A.; Bayless, Rich; Symonds, Mark; Nguyen, Tony B.; Jin, Chunlian; Wu, Di; Diao, Ruisheng; Makarov, Yuri V.; Kannberg, Landis D.; Guo, Tao; Dennison-Leonard , Sarah; Goodenough, Mike; Schellberg, Ron; Conger, Sid; Harris, Kevin; Rarity, Matt; Wallace, Steven; Austin, Jamie; Noteboom, Rod; Van Blaricom , Tim; McRunnel, Kim; Apperson, John; Empey, Marshall; Etingov, Pavel V.; Warady, Debra; Brush, Ray; Newkirk, Joshua; Williams, Peter; Landauer, Marv; Owen, Hugh; Morter, Wayne; Haraguchi, Keli; Portouw, Jim; Downey, kathryn; Sorey, Steve; Williams, Stan; Gossa, Teyent; Kalich, Clint; Damiano, Patrick; Macarthur, Clay; Martin, Tom; Hoerner, Joe; Knudsen, Steve; Johnson, Anders; Link, Rick; Holcomb, Dennis

2013-10-18T23:59:59.000Z

287

Price Responsive Demand in New York Wholesale Electricity Market using OpenADR  

E-Print Network (OSTI)

Advanced Metering, and Demand Response in Electricity2006. Benefits of Demand Response in Electricity Markets and2010. Open Automated Demand Response Technologies for

Kim, Joyce Jihyun

2013-01-01T23:59:59.000Z

288

Modeling and Design Optimization of Plug-In Hybrid Electric Vehicle Powertrains.  

E-Print Network (OSTI)

??Hybrid electric vehicles (HEVs) were introduced in response to rising environmental challenges facing the automotive sector. HEVs combine the benefits of electric vehicles and conventional… (more)

Chehresaz, Maryyeh

2013-01-01T23:59:59.000Z

289

Promise of Solar Energy is Boundless: A Smarter Electric Grid Delivers on that Promise  

Science Conference Proceedings (OSTI)

This brochure summarizes the benefits of a smart electric grid, the Solar Program's Solar Energy Grid Intergration Systems efforts, and the Office of Electricity's "The Smart Grid" booklet.

Not Available

2008-10-01T23:59:59.000Z

290

Benefit/Cost Analysis of Geothermal Technology R&D. Volume III: Energy Extraction and Utilization Technology  

DOE Green Energy (OSTI)

This document describes the benefit/cost relationship for 44 research and development (R and D) projects being funded by the Utilization Technology Branch (UTB) of the Division of Geothermal Energy (DGE), Department of Energy (DOE) as a part of its Energy Extraction and Conversion Technology program. The benefits were computed in terms of the savings resulting from the reduction in the cost of electricity projected to be generated at 27 hydrothermal prospects in the US between 1978 and 2000, due to technological improvements brought about by successful R and D. The costs of various projects were estimated by referring to the actual expenditures already incurred and the projected future budgets for these projects. In certain cases, the expected future expenditures had to be estimated on the basis of the work which would need to be done to carry a project to the commercialization stage.

Dhillon, Harpal S.; Nguyen, Van Thanh; Pfundstein, Richard T.; Entingh, Daniel J.

1979-05-01T23:59:59.000Z

291

Modeling Electric Vehicle Benefits Connected to Smart Grids  

E-Print Network (OSTI)

day, large school in climate zone FCZ5 - PG&E, San Franciscogrouped in different climate zones in California and withinand Power (LADWP) and climate zones FZ14+15. For this work,

Stadler, Michael

2012-01-01T23:59:59.000Z

292

Modeling Electric Vehicle Benefits Connected to Smart Grids  

E-Print Network (OSTI)

Iravani, and C. Marnay, “Microgrids, An Overview of OngoingEVs with commercial smartgrids/microgrids, which may include

Stadler, Michael

2012-01-01T23:59:59.000Z

293

Modeling Electric Vehicle Benefits Connected to Smart Grids  

E-Print Network (OSTI)

efficiencies up to 80%, will be used during times when solar thermalsolar thermal, PV-Photovoltaics Constraints TABLE III A SSUMED S TATIONARY E NERGY S TORAGE PARAMETERS [16], [17] ES charging efficiencysolar thermal and PV adoption. TABLE IV EV BATTERY SPECIFICATIONS . charging efficiency

Stadler, Michael

2012-01-01T23:59:59.000Z

294

ECONOMIC BENEFITS OF INCREASING ELECTRIC GRID RESILIENCE TO  

NLE Websites -- All DOE Office Websites (Extended Search)

delayed production, inconvenience and damage to grid infrastructure. Moreover, the aging nature of the grid - much of which was constructed over a period of more than one...

295

Modeling Electric Vehicle Benefits Connected to Smart Grids  

E-Print Network (OSTI)

CL RC bat c EV battery degradation costs total electricityresponse costs EV battery degradation costs electricityusage replacement cost of the EV battery total EV battery

Stadler, Michael

2012-01-01T23:59:59.000Z

296

Cost Benefit Analysis Modeling Tool for Electric vs. ICE Airport...  

NLE Websites -- All DOE Office Websites (Extended Search)

own starting numbers and inflation estimates for each of the fuels. Battery and Charger Efficiencies-To handle the various efficiencies of batteries and charger systems, the...

297

Modeling Electric Vehicle Benefits Connected to Smart Grids  

NLE Websites -- All DOE Office Websites (Extended Search)

can be found at 1. In previous work, the Berkeley Lab has developed the Distributed Energy Resources Customer Adoption Model (DER-CAM) 2, 3. Its optimization techniques...

298

The Direct Costs and Benefits of US Electric Utility Divestitures  

E-Print Network (OSTI)

. We find that divestiture reduces distribution efficiency but increases power sourcing efficiency. Both effects depend on the amount of own nuclear generation output but not fossil-fuel or hydro output. The net present value for all divestitures in our...

Triebs, Thomas P.; Pollitt, Michael G.; Kwoka, John E.

299

Modeling Electric Vehicle Benefits Connected to Smart Grids  

E-Print Network (OSTI)

and no stationary battery capacity. One reason for this iscan use this additional battery capacity to lower its energythe EV battery total EV battery capacity The monetary losses

Stadler, Michael

2012-01-01T23:59:59.000Z

300

Modeling Electric Vehicle Benefits Connected to Smart Grids  

E-Print Network (OSTI)

or cooling loads via absorption cooling. The outputs of DER-thermal storage, AC - absorption cooling, ST-solar thermal,combination with the absorption cooling system, reduces the

Stadler, Michael

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "benefits improved electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

International Experience with Quantifying the Co-Benefits of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

International Experience with Quantifying the Co-Benefits of Energy International Experience with Quantifying the Co-Benefits of Energy Efficiency and Greenhouse Gas Mitigation Programs and Policies Title International Experience with Quantifying the Co-Benefits of Energy Efficiency and Greenhouse Gas Mitigation Programs and Policies Publication Type Report Year of Publication 2012 Authors Williams, Christopher J., Ali Hasanbeigi, Lynn K. Price, and Grace Wu Date Published 11/2012 Publisher Lawrence Berkeley National Laboratory Keywords co-benefits, energy efficiency, ghg emissions, quantification Abstract Improving the efficiency of energy production and consumption and switching to lower carbon energy sources can significantly decrease carbon dioxide (CO2) emissions and reduce climate change impacts. A growing body of research has found that these measures can also directly mitigate many non-climate change related human health hazards and environmental damage. Positive impacts of policies and programs that occur in addition to the intended primary policy goal are called co-benefits. Policy analysis relies on forecasting and comparing the costs of policy and program implementation and the benefits that accrue to society from implementation. GHG reduction and energy efficiency policies and programs face political resistance in part because of the difficulty of quantifying their benefits. On the one hand, climate change mitigation policy benefits are often global, long-term, and subject to large uncertainties, and subsidized energy pricing can reduce the direct monetary benefits of energy efficiency policies to below their cost. On the other hand, the co-benefits that accrue from these efforts' resultant reductions in conventional air pollution (such as improved health, agricultural productivity, reduced damage to infrastructure, and local ecosystem improvements) are generally near term, local, and more certain than climate change mitigation benefits and larger than the monetary value of energy savings. The incorporation of co-benefits into energy efficiency and climate mitigation policy and program analysis therefore might significantly increase the uptake of these policies. Faster policy uptake is especially important in developing countries because ongoing development efforts that do not consider co-benefits may lock in suboptimal technologies and infrastructure and result in high costs in future years.

302

Quantifying the benefits of hybrid vehicles  

E-Print Network (OSTI)

century. Hybrid electric vehicles (HEVs) reduce emissionsas plug-in HEVs and full electric vehicles to market. In theon their design, hybrid electric vehicles employ electric

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

303

Improvements in the computation of balances and localization of commercial losses of electric energy in 0.38-kV networks  

SciTech Connect

An example of four 0.38-kV overhead distribution lines fed from a 10/0.4-kV transformer substation of the Grodno Electrical Networks (Belarus') and supplying electricity to a cottage area is used for analyzing energy balances and commercial losses in the networks. It is shown that the reliability of such analysis can be ensured by the use of modern software and electronic energy meters recording a retrospective of half-hourly intervals of active and reactive electric energy.

Vorotnitskii, V. Z.; Zaslonov, S. V.; Lysyuk, S. S. [Electric Power Research Institute (VNIIE) (Russian Federation)

2006-11-15T23:59:59.000Z

304

Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores  

E-Print Network (OSTI)

Benefits Connected to Smart Grids”. In Proceedings of the 7Planning and Operation of Smart Grids with Electric Vehicle

Mendes, Goncalo

2013-01-01T23:59:59.000Z

305

Cullman Electric Cooperative- Energy Efficient Homes Program  

Energy.gov (U.S. Department of Energy (DOE))

Cullman Electric Cooperative offers rebates to residential customers that make certain energy efficiency improvements to newly constructed, all electric homes. Up to $200 is available per home. ...

306

Just the Basics - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles Hybrid electric vehicles (HEVs) offer reduced pollution and improved fuel economy. That's why the government and auto- makers are anxious to introduce a...

307

Lake Region Electric Cooperative - Commercial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

details Lake Region Electric Cooperative (LREC) offers grants to commercial customers for electric energy efficiency improvements, audits, and engineering and design assistance for...

308

Case Study - National Rural Electric Cooperative Association...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Rural Electric Cooperative Association Smart Grid Investment Grant 1 Helping America's Electric Cooperatives Build a Smarter Grid to Streamline Operations and Improve...

309

State approaches to the system benefits charge  

SciTech Connect

This report documents the consideration and implementation of a non-bypassable system benefits charge (SBC) in six states through mid-May 1997. The SBC is being established to sustain important public-policy programs during the electric industry restructuring process. The states covered include Arizona, California, Massachusetts, New York, Rhode Island, and Wisconsin. This report was prepared for the Office of Energy and Resource Planning, Utah Department of Natural Resources, under the National Renewable Energy Laboratory`s Sustainable Technology Energy Partnerships Initiative, Second Round (STEP-2). The purpose of the report is to provide decision makers in Utah, including the Utah Public Service Commission and the state legislature, with relevant information on the SBC for use in their deliberation on the matter. The issues faced by the six states are the SBC in general; surcharge rate or funding levels; administrative structure and procedures; and actions, guidelines, and principles by program area.

Fang, J.M.

1997-07-01T23:59:59.000Z

310

SRS - Active Employee Benefits News  

NLE Websites -- All DOE Office Websites (Extended Search)

17/2013 17/2013 SEARCH GO spacer Active Employee Benefits News and Communications 01/16/13 NEW SIP IRS Determination Letter 06/09/11 Building Trades National Medical Screening Program 01/16/13 NEW Pension IRS Determination Letter 04/29/11 Pension Funding Letter & Notices 09/20/12 Income Levelling Communication 03/15/11 Potential Benefit Plan Considerations 05/14/12 2013 Benefits Changes 12/28/10 2011 FICA Reduction 05/02/12 EveMed Vision Insurance Introduces Paperless EOB's 12/15/10 Annual Notices: CHIP-ERRP-Life SARS 05/01/12 New Investment Options - SRNS Defined Contribution Plan 11/30/10 SMM - Life Insurance Revisions 04/10/12 Slides From 2012 Retiree Association Meetinq 11/04/10 Mental Health, Cadillac Plans, Grandfathered Plans

311

Analysis of International Policies In The Solar Electricity Sector: Lessons for India  

E-Print Network (OSTI)

Policies In The Solar Electricity Sector: Lessons for Indiaissues in the energy and electricity sectors. Activitiesand improve access to electricity where the electric grid is

Deshmukh, Ranjit

2011-01-01T23:59:59.000Z

312

Loss of benefits resulting from mandated nuclear plant shutdowns  

SciTech Connect

This paper identifies and discusses some of the important consequences of nuclear power plant unavailability, and quantifies a number of technical measures of loss of benefits that result from regulatory actions such as licensing delays and mandated nuclear plant outages. The loss of benefits that accompany such regulatory actions include increased costs of systems generation, increased demand for nonnuclear and often scarce fuels, and reduced system reliability. This paper is based on a series of case studies, supplemented by sensitivity studies, on hypothetical nuclear plant shutdowns. These studies were developed by Argonne in cooperation with four electric utilities.

Peerenboom, J.P.; Buehring, W.A.

1982-01-01T23:59:59.000Z

313

Characterizing and Quantifying the Societal Benefits Attributable to Smart Metering Investments  

Science Conference Proceedings (OSTI)

Smart Metering can reduce labor requirements and other costs inherent in non-automated processes, but it can also produce benefits that accrue directly or indirectly to electricity consumers and societal in general, which is why they are referred to as societal benefits. Because they accrue to consumers, rather than show up as cost savings on the utility ledger, identifying and monetizing these benefits in a business case can be a challenging task. This report reviews how utilities have estimated societa...

2008-07-07T23:59:59.000Z

314

A Framework for the Evaluation of the Cost and Benefits of Microgrids  

E-Print Network (OSTI)

A Framework for the Evaluation of the Cost and Benefits of Microgrids Greg Young Morris1 , Chad, The electric power system of the future - Integrating supergrids and microgrids, Bologna, Italy, 13Morris@gmail.com A Framework for the Evaluation of the Cost and Benefits of Microgrids G YOUNG MORRIS1 , GYoung

315

Potential Benefits of Commissioning California Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Potential Benefits of Commissioning California Homes Title Potential Benefits of Commissioning California Homes Publication Type Report LBNL Report Number LBNL-48258 Year of...

316

Energy information systems (EIS): Technology costs, benefit,...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy information systems (EIS): Technology costs, benefit, and best practice uses Title Energy information systems (EIS): Technology costs, benefit, and best practice uses...

317

Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery.

318

Intermetallic Electrodes Improve Safety and Performance in Lithium ...  

volumetric and gravimetric capacity and improves battery stability and safety. ... Transportation applications, such as electric and hybrid-electric vehicles

319

Accelerating Innovation: How Nuclear Physics Benefits Us All  

DOE R&D Accomplishments (OSTI)

Innovation has been accelerated by nuclear physics in the areas of improving our health; making the world safer; electricity, environment, archaeology; better computers; contributions to industry; and training the next generation of innovators.

2011-00-00T23:59:59.000Z

320

Determining benefits and costs of improved central air conditioner efficiencies  

E-Print Network (OSTI)

of Energy, DRAFT Marginal Energy Prices Report, July, 1999.energy use by the energy price paid by the household.energy consumption, energy price, discount rate, and central

Rosenquist, G.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "benefits improved electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Determining benefits and costs of improved central air conditioner efficiencies  

E-Print Network (OSTI)

Richland, WA. Report No. PNNL- 7. U.S. Department of Energy,National Laboratory (PNNL) using the Building Loads andADL), and David Winiarski (PNNL). This work was supported by

Rosenquist, G.

2010-01-01T23:59:59.000Z

322

title Potential Global Benefits of Improved Ceiling Fan Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fan Energy Efficiency year month keywords bottom up Ceiling fan Celing Fans efficiency energy efficiency Financial incentives Market Transformation residential Standards and...

323

ORISE: Implementing Improvements to Benefit the Scientific Peer...  

NLE Websites -- All DOE Office Websites (Extended Search)

Application The Oak Ridge Institute for Science and Education (ORISE) sets the standard for automated scientific peer reviews by continuously implementing process...

324

Determining benefits and costs of improved central air conditioner efficiencies  

E-Print Network (OSTI)

for major household appliances. Any new or amended standardcosts), lifetime of the appliance, and a discount rate. LCCconsumers use in purchasing appliances. Consumers purchase

Rosenquist, G.

2010-01-01T23:59:59.000Z

325

Impact of SiC Devices on Hybrid Electric and Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

The application of SiC devices (as battery interface, motor controller, etc.) in a hybrid electric vehicle (HEV) will benefit from their high-temperature capability, high-power density, and high efficiency. Moreover, the light weight and small volume will affect the whole power train system in a HEV, and thus performance and cost. In this work, the performance of HEVs is analyzed using PSAT (powertrain system analysis tool, vehicle simulation software). Power loss models of a SiC inverter are incorporated into PSAT powertrain models in order to study the impact of SiC devices on HEVs. Two types of HEVs are considered. One is the 2004 Toyota Prius HEV, the other is a plug-in HEV (PHEV), whose powertrain architecture is the same as that of the 2004 Toyota Prius HEV. The vehicle-level benefits from the introduction of the SiC devices are demonstrated by simulations. Not only the power loss in the motor controller but also those in other components in the vehicle powertrain are reduced. As a result, the system efficiency is improved and the vehicles consume less energy and emit less harmful gases. It also makes it possible to improve the system compactness with simplified thermal management system. For the PHEV, the benefits are more distinct. Especially, the size of battery bank can be reduced for optimum design.

Zhang, Hui [ORNL; Tolbert, Leon M [ORNL; Ozpineci, Burak [ORNL

2008-01-01T23:59:59.000Z

326

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

327

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

328

Evaluating Public Transit Benefits and Costs: Best Practices Guidebook |  

Open Energy Info (EERE)

Evaluating Public Transit Benefits and Costs: Best Practices Guidebook Evaluating Public Transit Benefits and Costs: Best Practices Guidebook Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Evaluating Public Transit Benefits and Costs: Best Practices Guidebook Agency/Company /Organization: Victoria Transport Policy Institute User Interface: Other Complexity/Ease of Use: Advanced Website: www.vtpi.org/tranben.pdf Web Application Link: www.vtpi.org/tranben.pdf Cost: Free Language: English Related Tools TransportToolkit Prototype Evaluating Public Transit Benefits and Costs: Best Practices Guidebook Where's the Hydrogen Economy? ... further results Find Another Tool FIND TRANSPORTATION TOOLS This guidebook describes how to create a comprehensive framework for evaluating the full impacts of a particular transit service or improvement.

329

Electricity 101 | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources » Electricity 101 Resources » Electricity 101 Electricity 101 FREQUENTLY ASKED QUESTIONS: Why do other countries use different shaped plugs? Why do outlets have three holes? Why do we have AC electricity? Can we harness lightning as an energy source? Can we have wireless transmission of electricity? SYSTEM: What is electricity? Where does electricity come from? What is the "grid"? How much electricity does a typical household use? How did the electric system evolve? What does the future look like? PEOPLE: Who owns the electric system? Who runs the grid? Who uses electricity? Where can I find out more about potential careers? How can I improve my energy use? POLICY: How is electricity regulated? Where can I find out about State incentives for renewables? What is a national corridor?

330

Electric Markets Technical Assistance Program: FY1999 Grant Descriptio...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY1999 Grant Descriptions and Contact Information Electric Markets Technical Assistance Program: FY1999 Grant Descriptions and Contact Information Public Benefits and Distributed...

331

Demand Response in U.S. Electricity Markets: Empirical Evidence  

E-Print Network (OSTI)

Reliability Corporation. Demand response data task force:Energy. Benefits of demand response in electricity marketsAssessment of demand response & advanced metering, staff

Cappers, Peter

2009-01-01T23:59:59.000Z

332

King County Metro Transit: Allison Hybrid Electric Transit Bus...  

NLE Websites -- All DOE Office Websites (Extended Search)

advanced hybrid electric drivetrain. Both vehicles also incorporated an oxidizing diesel particulate filter. The fuel economy and emissions benefits of the hybrid vehicle were...

333

Final environmental impact statement/report. Volume 4. Comment letters and public hearing transcripts. Northeast corridor improvement project electrication: New Haven, CT to Boston, MA  

Science Conference Proceedings (OSTI)

This document is the final environmental impact statement and final environmental impact report (FEIS/R) on the proposal by the National Railroad Passenger Corporation (Amtrak) to complete the electrification of the Northeast Corridor main line by extending electric traction from New Haven, CT, to Boston, MA. This document (Volume IV) reprints the comments received on the DEIS/R.

NONE

1994-10-01T23:59:59.000Z

334

Baltimore Gas & Electric Company (Electric)- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The Baltimore Gas & Electric Company (BGE) offers rebates for residential customers to improve the energy efficiency of eligible homes. Rebates are available for Energy Star clothes washers,...

335

Impact of the Electric Vehicle on the Electric System.  

E-Print Network (OSTI)

?? Since few years the electric vehicles draw the attention. The battery technology’s continual improvements and incentives from the authorities guarantee them an assured future… (more)

Rousselle, Melaine

2009-01-01T23:59:59.000Z

336

Co-benefits Risk Assessment (COBRA) Screening Model | Open Energy  

Open Energy Info (EERE)

Co-benefits Risk Assessment (COBRA) Screening Model Co-benefits Risk Assessment (COBRA) Screening Model Jump to: navigation, search Tool Summary Name: Co-benefits Risk Assessment (COBRA) Screening Model Agency/Company /Organization: United States Environmental Protection Agency Sector: Climate Complexity/Ease of Use: Moderate Website: www.epa.gov/statelocalclimate/resources/cobra.html Cost: Free Related Tools Tool for Selecting CDM Methods & Technologies Modular Applied General Equilibrium Tool (MAGNET) COMMUTER Model ... further results Find Another Tool FIND DEVELOPMENT IMPACTS ASSESSMENT TOOLS Automated tool that can be downloaded from the website. Converts emissions reductions into air quality improvements, estimates annual adverse health impacts avoided, and monetizes the value of these. Approach COBRA converts emissions reductions into air quality improvements, and

337

Alternative Fuels Data Center: Propane Benefits  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Benefits to Benefits to someone by E-mail Share Alternative Fuels Data Center: Propane Benefits on Facebook Tweet about Alternative Fuels Data Center: Propane Benefits on Twitter Bookmark Alternative Fuels Data Center: Propane Benefits on Google Bookmark Alternative Fuels Data Center: Propane Benefits on Delicious Rank Alternative Fuels Data Center: Propane Benefits on Digg Find More places to share Alternative Fuels Data Center: Propane Benefits on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Laws & Incentives Propane Benefits and Considerations Also known as liquefied petroleum gas (LPG), propane is a domestically produced, well-established, clean-burning fuel. Using propane as a vehicle fuel increases energy security, provides convenience and performance

338

National Benefits of a Closed-Cycle Cooling Retrofit Requirement  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) has investigated the implications of a potential U.S. Environmental Protection Agency (EPA) Clean Water Act 316(b) rulemaking if it establishes closed-cycle cooling retrofits for facilities with once-through cooling as best technology available (BTA) for fish protection. This report provides the results of a study to estimate the benefits of reducing impingement and entrainment mortality that would be achieved should EPA designate closed-cycle cooling as BTA.

2011-08-16T23:59:59.000Z

339

First-Ever Demonstration of Quantum Cryptography to Improve Security...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First-Ever Demonstration of Quantum Cryptography to Improve Security of the Electric Grid First-Ever Demonstration of Quantum Cryptography to Improve Security of the Electric Grid...

340

Quantifying the benefits of hybrid vehicles  

E-Print Network (OSTI)

in the last century. Hybrid electric vehicles (HEVs) reduceon their design, hybrid electric vehicles employ electricof this paper, hybrid electric vehicles are a broad set of

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "benefits improved electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Understanding Electric Utility Customers  

Science Conference Proceedings (OSTI)

How customers use and value electricity has been a subject of study and debate for many decades. A better understanding of how customers use electricity could help the industry find ways to improve energy efficiency, thereby helping to reduce green house gas emissions, increase energy sustainability, and improve overall growth in the economy. In addition, our ability to encourage more efficient consumption through real-time feedback, control technology, and pricing is better and less costly than it has e...

2012-02-07T23:59:59.000Z

342

Electrical generating plant availability  

SciTech Connect

A discussion is given of actions that can improve availability, including the following: the meaning of power plant availability; The organization of the electric power industry; some general considerations of availability; the improvement of power plant availability--design factors, control of shipping and construction, maintenance, operating practices; sources of statistics on generating plant availability; effects of reducing forced outage rates; and comments by electric utilities on generating unit availability.

1975-05-01T23:59:59.000Z

343

Distributed Generation Dispatch Optimization under VariousElectricity Tariffs  

Science Conference Proceedings (OSTI)

The on-site generation of electricity can offer buildingowners and occupiers financial benefits as well as social benefits suchas reduced grid congestion, improved energy efficiency, and reducedgreenhouse gas emissions. Combined heat and power (CHP), or cogeneration,systems make use of the waste heat from the generator for site heatingneeds. Real-time optimal dispatch of CHP systems is difficult todetermine because of complicated electricity tariffs and uncertainty inCHP equipment availability, energy prices, and system loads. Typically,CHP systems use simple heuristic control strategies. This paper describesa method of determining optimal control in real-time and applies it to alight industrial site in San Diego, California, to examine: 1) the addedbenefit of optimal over heuristic controls, 2) the price elasticity ofthe system, and 3) the site-attributable greenhouse gas emissions, allunder three different tariff structures. Results suggest that heuristiccontrols are adequate under the current tariff structure and relativelyhigh electricity prices, capturing 97 percent of the value of thedistributed generation system. Even more value could be captured bysimply not running the CHP system during times of unusually high naturalgas prices. Under hypothetical real-time pricing of electricity,heuristic controls would capture only 70 percent of the value ofdistributed generation.

Firestone, Ryan; Marnay, Chris

2007-05-01T23:59:59.000Z

344

High temperature superconductivity: The products and their benefits  

SciTech Connect

Numerous qualitative studies have discussed, in detail, the benefits projected from the commercialization of HTS systems; however, few are available with quantitative predictions of market penetration and resultant benefits. This report attempts to quantify those benefits, as a function of time, by examining five key classes of candidate HTS electrical equipment, and projecting market entry and capture based on historical market entry o technologies considered analogous to HTS. Any such projection is a judgment, based on experience and available data, and the analyses in this report fall into that category. The five classes of equipment examined are electric motors, transformers, generators, underground cable, and fault current limiters. In each of these classes, major international programs are now underway to develop and commercialize HTS equipment in a time frame from the present to the year 2020. Based on technology status and perceived market advantages as determined from the references, market entry dates were projected followed by market penetration predictions. The earliest equipment to achieve commercialization is predicted to be fault current limiters, predicted for market entry in the 2003--2004 time period. Transformers and cable are projected for entry in 2005 followed by electric motors in 2006. The final market entry will be by generators, predicted for commercialization in 2011.

Lawrence, L.R. Jr.; Cox, C.; Broman, D. [Bob Lawrence and Associates, Inc., Alexandria, VA (United States)

1998-07-01T23:59:59.000Z

345

Electricity Market and Policy | Electricity Markets and Policy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Analysis & Environmental Impacts Department Energy Analysis & Environmental Impacts Department The Electricity Markets and Policy Group conducts technical, economic, and policy analysis of energy topics centered on the U.S. electricity sector. Our current research seeks to inform public and private decision-making on public-interest issues related to energy efficiency and demand response, renewable energy, electricity resource and transmission planning, and electricity reliability. Demand Response & Smart Grid The Electricity Markets and Policy Group conducts public interest research on the smart grid and concepts, technologies and operating practices it enables from a market, policy, cost, benefit, and performance perspective. LEARN MORE... Electricity Reliability The reliability of the electric power system is critical to the economic

346

Potential Benefits of Commissioning California Homes  

E-Print Network (OSTI)

Electricity Electricity Consumption (kWh/ft 2 /year) TypicalCall Cases Electricity Consumption (kWh/ft 2 /year) Typicalyear, respectively). In all house types, the electricity consumption

Matson, Nance; Wray, Craig; Walker, Iain; Sherman, Max

2002-01-01T23:59:59.000Z

347

Post-Closure Benefits | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Post-Closure Benefits Post-Closure Benefits Post-Closure Benefits The Legacy Management Post-Closure Benefits (PCB) Program includes the development, implementation, and oversight of the Department's policy concerning the continuation of contractor pension and medical benefits after the closure of applicable DOE sites/facilities. This includes oversight of the administration and management of legacy contractor benefits in a fiscally responsible and effective manner. The primary program objective is to ensure a seamless transition of benefits administration after closure. The Benefit Continuity Team (BCT) within Legacy Management is responsible for this program. Legacy PCBs are benefits earned and accrued by contractor employees while in active employment at DOE facilities and are payable after their

348

Alternative Fuels Data Center: Electric Vehicle Charging Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Charging Stations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Stations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Stations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Stations on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Charging Stations on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Electric Vehicle Charging Stations

349

Alternative Fuels Data Center: Electricity Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Fuel Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics Photo of a plug-in hybrid vehicle fueling. Electricity is considered an alternative fuel under the Energy Policy Act

350

Improvements in solid desiccant cooling  

Science Conference Proceedings (OSTI)

The DINC (Direct-Indirect Evaporative Cooling) cycle was proposed in 1986 by Texas A and M researchers. The idea was to combine the benefits of direct and indirect evaporative cooling with desiccant dehumidifying using a rotating solid silica-gel dehumidifier. Recent parametric studies completed for the Texas Energy Research in Applications Program have developed a computer design for a nominal 3-ton system that would minimize the energy consumption (both thermal and electric) while maintaining a sensible heat ratio of 75% or less. That optimum design for the original 1986 DINC cycle was modified to improve its energy efficiency. The modifications described in this paper were: (1) staging the desiccant regeneration air and (2) recirculation of the primary air to the secondary side of the indirect evaporative cooling. Computer simulations were run to study the effect of the modifications on the performance of the system. American Refrigeration Institute (AIR) standard conditions (Ambient air at 35C, 40% R.H. and Room air at 26.7C, 50% R.H.) were used for all the modifications. Results were also compared to the familiar Pennington (ventilation) cycle. The study indicated that recirculating the indirect evaporative cooler air only degenerated the performance. However, staging a portion of the regeneration air could improve the thermal coefficient of Performance by 25% over the non-staged DINC cycle. Compared to a similar staged-regeneration Pennington cycle it is a 16% improvement in thermal COP and the sensible heat ratio was 70%.

Waugaman, D.; Kini, A.; Kettleborough, C.F. (Texas A and M Univ., College Station (United States))

1993-01-01T23:59:59.000Z

351

Comparison of Australian and US Cost-Benefit Approaches to MEPS  

Science Conference Proceedings (OSTI)

The Australian Greenhouse Office contracted with the Collaborative Labeling and Appliance Standards Program (CLASP) for LBNL to compare US and Australian approaches to analyzing costs and benefits of minimum energy performance standards (MEPS). This report compares the approaches for three types of products: household refrigerators and freezers, small electric storage water heaters, and commercial/industrial air conditioners. This report presents the findings of similarities and differences between the approaches of the two countries and suggests changes to consider in the approach taken in Australia. The purpose of the Australian program is to reduce greenhouse gas emissions, while the US program is intended to increase energy efficiency; each program is thus subject to specific constraints. The market and policy contexts are different, with the USA producing most of its own products and conducting pioneering engineering-economic studies to identify maximum energy efficiency levels that are technologically feasible and economically justified. In contrast, Australia imports a large share of its products and adopts MEPS already in place elsewhere. With these differences in circumstances, Australia's analysis approach could be expected to have less analytical detail and still result in MEPS levels that are appropriate for their policy and market context. In practice, the analysis required to meet these different objectives is quite similar. To date, Australia's cost-benefit analysis has served the goals and philosophies of the program well and been highly effective in successfully identifying MEPS that are significantly reducing greenhouse gas emissions while providing economic benefits to consumers. In some cases, however, the experience of the USA--using more extensive data sets and more detailed analysis--suggests possible improvements to Australia's cost-benefit analysis. The principal findings of the comparison are: (1) The Technology and Market Assessments are similar; no changes are recommended. (2) The Australian approach to determining the relationship of price to energy efficiency is based on current market, while the US approach uses prospective estimates. Both approaches may benefit from increased retrospective analysis of impacts of MEPS on appliance and equipment prices. Under some circumstances, Australia may wish to consider analyzing two separate components leading to price impacts: (a) changes in manufacturing costs and (b) markups used to convert from manufacturing costs to consumer price. (3) The Life-Cycle Cost methods are similar, but the USA has statistical surveys that permit a more detailed analysis. Australia uses average values, while the US uses full distributions. If data and resources permit, Australia may benefit from greater depth here as well. If implemented, the changes will provide more information about the benefits and costs of the program, in particular identifying who benefits and who bears net costs so that programs can be designed to offset unintended negative consequences, and may assist the government in convincing affected parties of the justification for some MEPS. However, without a detailed and statistically representative national survey, such an approach may not be practical for Australia at this time. (4) The National Benefits and Costs methods are similar prospective estimates of shipments, costs and energy savings, as well as greenhouse gas emissions. Additional sensitivity studies could further illustrate the ranges in these estimates. Consideration of lower discount rates could lead to more stringent MEPS in some cases. (5) Both the Australian and US analyses of impacts on industry, competition, and trade ultimately depend upon sufficient consultation with industry experts. While the Australian analysis of financial impacts on manufacturers is less detailed than that of the US, the Australian treatment of impacts on market shares imported from different regions of the world is more detailed. No change is recommended. Implementing these changes would increase the depth o

McMahon, James E.

2004-03-12T23:59:59.000Z

352

Cost of Power Interruptions to Electricity Consumers in the UnitedStates (U.S.)  

SciTech Connect

The massive electric power blackout in the northeastern U.S.and Canada on August 14-15, 2003 catalyzed discussions about modernizingthe U.S. electricity grid. Industry sources suggested that investments of$50 to $100 billion would be needed. This work seeks to better understandan important piece of information that has been missing from thesediscussions: What do power interruptions and fluctuations in powerquality (power-quality events) cost electricity consumers? We developed abottom-up approach for assessing the cost to U.S. electricity consumersof power interruptions and power-quality events (referred to collectivelyas "reliability events"). The approach can be used to help assess thepotential benefits of investments in improving the reliability of thegrid. We developed a new estimate based on publicly availableinformation, and assessed how uncertainties in these data affect thisestimate using sensitivity analysis.

Hamachi LaCommare, Kristina; Eto, Joseph H.

2006-02-16T23:59:59.000Z

353

Benefits vs. risks of fish consumption  

Science Conference Proceedings (OSTI)

The benefits of fish consumption outweigh the risks, according to a joint expert consultation released in October 2011 by two United Nations agencies. Benefits vs. risks of fish consumption News Inform Magazine Inform Archives Health Nutrition Omega

354

Quantifying the benefits of hybrid vehicles  

E-Print Network (OSTI)

The Emergence of Hybrid Vehicles: Ending oil’s strangleholdthe benefits of hybrid vehicles Dr. Thomas Turrentine Dr.the benefits of hybrid vehicles Report prepared for CSAA Dr.

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

355

Renewable Energy Benefits | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Benefits Renewable Energy Benefits October 16, 2013 - 5:16pm Addthis Photo of a row of PV panels on the roof of a building surrounded by skyscrapers. The General...

356

Garrett Electric Boosting Systems (EBS) Program  

DOE Green Energy (OSTI)

Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-Turbo{trademark} designs do both The purpose of this project is to design and develop an electrically assisted turbocharger, e-Turbo{trademark}, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-Turbo{trademark} can be used to generate modest amounts of electrical power and supplement the alternator under most load-speed conditions. It is shown that a single (large) e-Turbo{trademark} consumes slightly less electrical power for the same steady state torque shaping than a bi-Turbo configuration. However, the transient response of a bi-Turbo configuration is slightly better. It was shown that in order to make full use of additional capabilities of e-Turbo{trademark} wide compressor flow range is required. Variable geometry compressor (VGC) technology developed under a separate project was evaluated for incorporation into e-Turbo{trademark} designs. It was shown that the combination of these two technologies enables very high torque at low engine speeds. Designs and hardware combining VGC and e-Turbo{trademark} are to be developed in a future project. There is concern about high power demands (even though momentary) of e-Turbo{trademark}. Reducing the inertia of the turbocharger can reduce power demand and increase battery life. Low inertia turbocharger technology called IBT developed under a separate project was evaluated for synergy with e-Turbo{trademark} designs. It was concluded that inertial reduction provided by IBT is very beneficial for e-Turbo{trademark}. Designs and hardware combining IBT and e-Turbo{trademark} are to be developed in a future project. e-Turbo{trademark} provides several additional flexibilities including exhaust gas recirculation (EGR) for emissions reduction with minimum fuel economy penalty and exhaust temperature control for aftertreatment. In integrated multi-parameter control system is needed to realize the full potential of e-Turbo{trademark} performance. Honeywell expertise in process control systems involving hundreds of sensors and actuators was applied to demonstrate the potential benefits of multi-parameter, model based control systems.

Steve Arnold; Craig Balis; Pierre Barthelet; Etienne Poix; Tariq Samad; Greg Hampson; S. M. Shahed

2005-03-31T23:59:59.000Z

357

Electricity Reliability  

NLE Websites -- All DOE Office Websites (Extended Search)

lines and bar graph Electricity Reliability The Consortium for Electric Reliability Technology Solutions (CERTS) conducts research, develops, and disseminates new methods, tools,...

358

Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

government incentives or subsidies in the near future. Companies active in the electric automobile area There are no companies directly active in the electric automobile...

359

Growing Nanowires Horizontally Yields New Benefit: 'Nano ...  

Science Conference Proceedings (OSTI)

Growing Nanowires Horizontally Yields New Benefit: 'Nano-LEDs'. ... Optical microscope image of “nano LEDs” emitting light. ...

2012-10-17T23:59:59.000Z

360

Benefit-cost analysis of DOE's Current Federal Program to increase hydrothermal resource utilization. Final report  

SciTech Connect

The impact of DOE's Current Federal Program on the commercialization of hydrothermal resources between 1980 and 2000 is analyzed. The hydrothermal resources of the United States and the types of DOE activities used to stimulate the development of these resources for both electric power and direct heat use are described briefly. The No Federal Program and the Current Federal Program are then described in terms of funding levels and the resultant market penetration estimates through 2000. These market penetration estimates are also compared to other geothermal utilization forecasts. The direct benefits of the Current Federal Program are next presented for electric power and direct heat use applications. An analysis of the external impacts associated with the additional hydrothermal resource development resulting from the Current Federal Program is also provided. Included are environmental effects, national security/balance-of-payments improvements, socioeconomic impacts and materials requirements. A summary of the analysis integrating the direct benefits, external impacts and DOE program costs concludes the report.

1981-12-10T23:59:59.000Z

Note: This page contains sample records for the topic "benefits improved electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Electric Transmission Rights-of-Way Uses and Risks  

Science Conference Proceedings (OSTI)

Significant societal and economic benefits accrue through multiple uses of electric transmission rights-of-way (ROWs). Authorization of multiple ROW uses, however, has the potential to be detrimental to the safe, reliable transmission of electricity. Understanding benefits and risks will help utilities evaluate the myriad of current and potential ROW uses, establish effective protocols, and identify the best opportunities for expanding ROW uses.

2004-12-15T23:59:59.000Z

362

Long-term Repository Benefits of Using Cermet Waste Packages  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Term Benefits Long-Term Benefits Long-term Repository Benefits of Using Cermet Waste Packages A cermet waste package may improve the long-term performance of the YM repository by two mechanisms: reducing (1) the potential for nuclear criticality in the repository and (2) the long-term release rate of radionuclides from the waste package. In the natural environment, the centers of uranium ore deposits have remained intact for very long time periods while the outer edges of the ore deposit have degraded. A cermet waste package may operate in the same way. The sacrificial, slow degradation of the waste package and the DU oxide protects the SNF uranium dioxide in the interior of the package long after the package has failed. Page 2 of 4 Follow the link below to learn more about Cermets:

363

Technology Improvement Pathways to Cost-Effective Vehicle Electrification  

DOE Green Energy (OSTI)

Electrifying transportation can reduce or eliminate dependence on foreign fuels, emission of green house gases, and emission of pollutants. One challenge is finding a pathway for vehicles that gains wide market acceptance to achieve a meaningful benefit. This paper evaluates several approaches aimed at making plug-in electric vehicles (EV) and plug-in hybrid electric vehicles (PHEVs) cost-effective including opportunity charging, replacing the battery over the vehicle life, improving battery life, reducing battery cost, and providing electric power directly to the vehicle during a portion of its travel. Many combinations of PHEV electric range and battery power are included. For each case, the model accounts for battery cycle life and the national distribution of driving distances to size the battery optimally. Using the current estimates of battery life and cost, only the dynamically plugged-in pathway was cost-effective to the consumer. Significant improvements in battery life and battery cost also made PHEVs more cost-effective than today's hybrid electric vehicles (HEVs) and conventional internal combustion engine vehicles (CVs).

Brooker, A.; Thornton, M.; Rugh, J. P.

2010-04-01T23:59:59.000Z

364

Transdisciplinary electric power grid science  

E-Print Network (OSTI)

The 20th-century engineering feat that most improved the quality of human life, the electric power system, now faces discipline-spanning challenges that threaten that distinction. So multilayered and complex that they resemble ecosystems, power grids face risks from their interdependent cyber, physical, social and economic layers. Only with a holistic understanding of the dynamics of electricity infrastructure and human operators, automatic controls, electricity markets, weather, climate and policy can we fortify worldwide access to electricity.

Brummitt, Charles D; Dobson, Ian; Moore, Cristopher; D'Souza, Raissa M

2013-01-01T23:59:59.000Z

365

Review of Conservation Costs and Benefits: Five Years of Experience under the Northwest Power Act  

E-Print Network (OSTI)

In 1980, Congress passed the Pacific Northwest Electric Power Planning and Conservation Act (Public Law 96-501). In the Act, Congress mandated that conservation (i.e., improvements in energy efficiency that result in reduced consumptions) be treated as a resource and that all resources be evaluated against uniform criteria to determine the lowest cost mix of resources to meet the Northwest’s energy needs. Since the passage of the Act, the total regional expenditure on conservation by the federal Bonneville Power Administration, public utilities, and investor-owned utilities has been approximately $800 million to $900 million. This includes research and development elements of the program. This paper describes the costs and benefits of conservation programs implemented in the Pacific Northwest and some of the lessons learned to date. The analysis indicates that conservation programs that were run to acquire energy have achieved savings at levelized costs ranging between 1.9 and 2.9 cents per kilowatt hours. Research, development and pilot projects have produced savings at costs that range from less than .10 cents to 8.9 cents per kilowatt hour. Based on the results described in this paper, the Northwest Power Planning Council has concluded that conservation is indeed a resource that the Pacific Northwest can rely on to help meet future needs for electricity. The Council also concluded the region will be able secure conservation measure and resources at a cost lower than it would otherwise have to pay for additional generating resources.

Sheets, E.

1988-09-01T23:59:59.000Z

366

Alternative Fuels Data Center: Electricity Research and Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Research Electricity Research and Development to someone by E-mail Share Alternative Fuels Data Center: Electricity Research and Development on Facebook Tweet about Alternative Fuels Data Center: Electricity Research and Development on Twitter Bookmark Alternative Fuels Data Center: Electricity Research and Development on Google Bookmark Alternative Fuels Data Center: Electricity Research and Development on Delicious Rank Alternative Fuels Data Center: Electricity Research and Development on Digg Find More places to share Alternative Fuels Data Center: Electricity Research and Development on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives

367

Alternative Fuels Data Center: Electric Vehicle Charging Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Charging Station Locations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Locations Infrastructure Development

368

Estimating the Costs and Benefits of the Smart Grid  

Science Conference Proceedings (OSTI)

The present electric power delivery infrastructure was not designed to meet the increased demands of a restructured electricity marketplace, the energy needs of a digital society, or the increased use and variability of renewable power production. As a result, there is a national imperative to upgrade the current power delivery system to the higher performance levels required to support continued economic growth and to improve productivity to compete internationally. To these ends, the Smart Grid integra...

2011-03-29T23:59:59.000Z

369

Health Benefits | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Health Benefits | National Nuclear Security Administration Health Benefits | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Health Benefits Home > Federal Employment > Working at NNSA > Benefits > Health Benefits Health Benefits The great jobs we have at NNSA also come with comprehensive benefits packages. They are among the best and most comprehensive available and play

370

Public Benefit Charge Funded Performance Contracting Programs - Survey  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Benefit Charge Funded Performance Contracting Programs - Survey Public Benefit Charge Funded Performance Contracting Programs - Survey and Guidelines Title Public Benefit Charge Funded Performance Contracting Programs - Survey and Guidelines Publication Type Report Refereed Designation Unknown Year of Publication 2000 Authors Schiller, Steven R., Charles A. Goldman, and Brian Henderson Pagination 20 Date Published 08/2000 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract This paper discusses the evolution of performance contracting programs that are included in energy efficiency activities supported by Public Benefit Charge (PBC) funds. Between 1998 and 2002, on the order of $400 million of ratepayer funds are or expected to be committed for these programs in California, Colorado, New York, Texas, and Wisconsin. We summarize several programs that encourage performance-based contracting either through standard performance contracting (e.g., California, New York and Texas), demandside bidding (Colorado) or contractor support programs (Wisconsin). The programs are selected in part to illustrate differing program objectives as well as the relationship between goals and program design. Our major findings and recommendations are:

371

Changing the Conversation: Messages for Improving Public Understanding of Engineering  

E-Print Network (OSTI)

drinking water to electric cars and faster microchips, engineers use their knowledge to improve people

372

Improving the design of solar cells  

Science Conference Proceedings (OSTI)

Improving the design of solar cells. Photovoltaic (PV) systems convert the sun's light directly to electrical power by absorption ...

2012-10-02T23:59:59.000Z

373

Combined cycle electric power plant and heat recovery steam generator having improved multi-loop temperature control of the steam generated  

SciTech Connect

A combined cycle electric power plant is described that includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes a superheater tube and a steam drum from which heated steam is directed through the superheater to be additionally heated into superheated steam by the exhaust gas turbine gases. An afterburner serves to further heat the exhaust gas turbine gases passed to the superheater tube and a bypass conduit is disposed about the superheater tube whereby a variable steam flow determined by a bypass valve disposed in the bypass conduit may be directed about the superheater tube to be mixed with the superheated steam therefrom, whereby the temperature of the superheated steam supplied to the steam turbine may be accurately controlled. Steam temperature control means includes a first control loop responsive to the superheated steam temperature for regulating the position of the bypass valve with respect to a first setpoint, and a second control loop responsive to the superheated steam temperature for controlling the fuel supply to the afterburner with respect to a second setpoint varying in accordance with the bypass valve position. In particular, as the bypass valve position increases, the second setpoint, originally higher, is lowered toward a value substantially equal to that of the first setpoint.

Martz, L.F.; Plotnick, R.J.

1976-08-17T23:59:59.000Z

374

BENEFIT ELIGIBILITY Benefits under the CHEIBA Trust Plan are available to Eligible Employees and Dependents of  

E-Print Network (OSTI)

to any lien, garnishment, pledge or bankruptcy. However, a Participant may assign benefits payable under

375

Emissions Benefits of Distributed Generation in the Texas Market  

Science Conference Proceedings (OSTI)

One potential benefit of distributed generation (DG) is a net reduction in air emissions. While DG will produce emissions, most notably carbon dioxide and nitrogen oxides, the power it displaces might have produced more. This study used a system dispatch model developed at Oak Ridge National Laboratory to simulate the 2012 Texas power market with and without DG. This study compares the reduction in system emissions to the emissions from the DG to determine the net savings. Some of the major findings are that 85% of the electricity displaced by DG during peak hours will be simple cycle natural gas, either steam or combustion turbine. Even with DG running as baseload, 57% of electricity displaced will be simple cycle natural gas. Despite the retirement of some gas-fired steam units and the construction of many new gas turbine and combined cycle units, the marginal emissions from the system remain quite high (1.4 lb NO{sub x}/MWh on peak and 1.1 lb NO{sub x}/MWh baseload) compared to projected DG emissions. Consequently, additions of DG capacity will reduce emissions in Texas from power generation in 2012. Using the DG exhaust heat for combined heat and power provides an even greater benefit, since it eliminates further boiler emissions while adding none over what would be produced while generating electricity. Further studies are warranted concerning the robustness of the result with changes in fuel prices, demands, and mixes of power generating technology.

Hadley, SW

2005-06-16T23:59:59.000Z

376

DOE: Quantifying the Value of Hydropower in the Electric Grid  

SciTech Connect

The report summarizes research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. Methods are described for valuation and planning of pumped storage and conventional hydropower. The project team conducted plant case studies, electric system modeling, market analysis, cost data gathering, and evaluations of operating strategies and constraints. Five other reports detailing these research results are available a project website, www.epri.com/hydrogrid. With increasing deployment of wind and solar renewable generation, many owners, operators, and developers of hydropower have recognized the opportunity to provide more flexibility and ancillary services to the electric grid. To quantify value of services, this study focused on the Western Electric Coordinating Council region. A security-constrained, unit commitment and economic dispatch model was used to quantify the role of hydropower for several future energy scenarios up to 2020. This hourly production simulation considered transmission requirements to deliver energy, including future expansion plans. Both energy and ancillary service values were considered. Addressing specifically the quantification of pumped storage value, no single value stream dominated predicted plant contributions in various energy futures. Modeling confirmed that service value depends greatly on location and on competition with other available grid support resources. In this summary, ten different value streams related to hydropower are described. These fell into three categories; operational improvements, new technologies, and electricity market opportunities. Of these ten, the study was able to quantify a monetary value in six by applying both present day and future scenarios for operating the electric grid. This study confirmed that hydropower resources across the United States contribute significantly to operation of the grid in terms of energy, capacity, and ancillary services. Many potential improvements to existing hydropower plants were found to be cost-effective. Pumped storage is the most likely form of large new hydro asset expansions in the U.S. however, justifying investments in new pumped storage plants remains very challenging with current electricity market economics. Even over a wide range of possible energy futures, up to 2020, no energy future was found to bring quantifiable revenues sufficient to cover estimated costs of plant construction. Value streams not quantified in this study may provide a different cost-benefit balance and an economic tipping point for hydro. Future studies are essential in the quest to quantify the full potential value. Additional research should consider the value of services provided by advanced storage hydropower and pumped storage at smaller time steps for integration of variable renewable resources, and should include all possible value streams such as capacity value and portfolio benefits i.e.; reducing cycling on traditional generation.

None

2012-12-31T23:59:59.000Z

377

The role of building technologies in reducing and controlling peak electricity demand  

E-Print Network (OSTI)

AND CONTROLLING PEAK ELECTRICITY DEMAND Jonathan Koomey* andData to Improve Electricity Demand Forecasts–Final Report.further research. Electricity demand varies constantly. At

Koomey, Jonathan; Brown, Richard E.

2002-01-01T23:59:59.000Z

378

Electricity Markets  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Markets Electricity Markets Researchers in the electricity markets area conduct technical, economic, and policy analysis of energy topics centered on the U.S. electricity sector. Current research seeks to inform public and private decision-making on public-interest issues related to energy efficiency and demand response, renewable energy, electricity resource and transmission planning, electricity reliability and distributed generation resources. Research is conducted in the following areas: Energy efficiency research focused on portfolio planning and market assessment, design and implementation of a portfolio of energy efficiency programs that achieve various policy objectives, utility sector energy efficiency business models, options for administering energy efficiency

379

Definition: Reduced Electricity Losses | Open Energy Information  

Open Energy Info (EERE)

Losses Losses Jump to: navigation, search Dictionary.png Reduced Electricity Losses Functions that provide this benefit could help manage peak feeder loads, reduced electricity throughput, locate electricity production closer to the load and ensure that voltages remain within service tolerances, while minimizing the amount of reactive power provided. These actions can reduce electricity losses by making the system more efficient for a given load served or by actually reducing the overall load on the system.[1] Related Terms load, electricity generation, reactive power, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Reduced_Electricity_Losses&oldid=502644

380

Dollars from sense: The economic benefits of renewable energy  

SciTech Connect

This document illustrates direct economic benefits, including job creation, of renewable energy technologies. Examples of electricity generation from biomass, wind power, photovoltaics, solar thermal energy, and geothermal energy are given, with emphasis on the impact of individual projects on the state and local community. Employment numbers at existing facilities are provided, including total national employment for each renewable industry where available. Renewable energy technologies offer economic advantages because they are more labor-intensive than conventional generation technologies, and they use primarily indigenous resources.

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "benefits improved electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Electric Power Research Institute Cooperation to Increase Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

by improving energy efficiency and promoting the widespread adoption of electric energy demand response programs in an effort to curtail energy use during peak periods. Electric...

382

Lake Region Electric Cooperative- Commercial Energy Efficiency Grant Program  

Energy.gov (U.S. Department of Energy (DOE))

Lake Region Electric Cooperative (LREC) offers grants to commercial customers for electric energy efficiency improvements, audits, and engineering and design assistance for new and existing...

383

Office of Human Resources Services - Benefits  

NLE Websites -- All DOE Office Websites (Extended Search)

BENEFITS BENEFITS Federal employees enjoy a very comprehensive benefits package and access to programs that encourage work life balance: Sick leave - up to 13 days earned annually Annual (vacation) leave Holidays - 10 days each year Flexible work schedules and telecommuting Family and medical leave for special circumstances Leave donation program Training and development opportunities Student loan repayment (as funds are available) Tuition assistance (as funds are available) Payment of professional credentials (as funds are available) Choice of several health benefit plans Supplemental dental and vision coverage Life insurance (including additional self and family options) Employee Assistance Program Flexible Spending Accounts Traditional pension plans and the Thrift Savings Plan (similar to a 401(k))

384

On the benefits and costs of microgrids.  

E-Print Network (OSTI)

??This thesis examines the benefits that Microgrids can provide to a variety of stakeholders and considers their costs. A flexible framework is proposed in which… (more)

Weyrich Morris, Gregory

2013-01-01T23:59:59.000Z

385

Customizable Fuel Processor Technology Benefits Fuel Cell ...  

Customizable Fuel Processor Technology Benefits Fuel Cell Power Industry (ANL-IN-00-030) Argonne National Laboratory. Contact ANL About This ...

386

UNLV HUMAN RESOURCES Benefit Provider Listing  

E-Print Network (OSTI)

) 464-6832 TIAA-CREF (RPA & Supplemental 403B) www.tiaa-cref.org (800) 842-2776 SUPPLEMENTAL BENEFIT

Hemmers, Oliver

387

DOE - Office of Legacy Management -- Rocky Benefits  

Office of Legacy Management (LM)

Flats Benefits Center P.O Box 9735 Providence, RI 02940 (866) 296-5036 Medical and Life Insurance Administration Pension Administration Death Reporting Address Changes General...

388

5. Consumer Prices Reflect Benefits of Restructuring  

U.S. Energy Information Administration (EIA)

Energy Information Administration Natural Gas 1996: Issues and Trends 99 5. Consumer Prices Reflect Benefits of Restructuring The restructuring of the natural gas ...

389

Sandia National Laboratories: Careers: Benefits and Perks  

NLE Websites -- All DOE Office Websites (Extended Search)

Perks Bioscience Working at Sandia has its benefits From health and compensation to diversity programs, flexible career tracks, community outreach, and more, Sandians receive...

390

Argonne-China collaborations benefit both nations  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne-China collaborations benefit both nations Scientists and engineers at the U.S. Department of Energy's (DOE) Argonne National Laboratory often work with Chinese colleagues...

391

Benefits | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Benefits Community College Internships (CCI) CCI Home Eligibility Benefits Participant Obligations How to Apply Key Dates Frequently Asked Questions Contact WDTS Home Benefits...

392

Recovery Act Project Clears Portsmouth Switchyard, Benefits Community through Recycling  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Clears Portsmouth Project Clears Portsmouth Switchyard, Benefits Community through Recycling PIKETON, Ohio - American Recovery and Reinvestment Act workers recently completed the demolition of structures in an electrical switchyard used to help power the Portsmouth Site's uranium enrichment processes for defense and commercial uses for nearly five decades. In the $28 million Recovery Act project completed safely and on schedule, workers demolished 160 towers as tall as 120 feet that were used to operate the X-533 Electrical Switchyard. The 20-acre complex was one of two high-voltage switchyards that together provided up to 2,200 megawatts of power - enough to light up New York City at the time the Portsmouth Gaseous Diffu- sion Plant was constructed in the 1950s. The remaining switch-

393

Exploring Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Souhern California Edison Service Territory  

Science Conference Proceedings (OSTI)

Distributed energy (DE) technologies have received much attention for the energy savings and electric power reliability assurances that may be achieved by their widespread adoption. Fueling the attention have been the desires to globally reduce greenhouse gas emissions and concern about easing power transmission and distribution system capacity limitations and congestion. However, these benefits may come at a cost to the electric utility companies in terms of lost revenue and concerns with interconnection on the distribution system. This study assesses the costs and benefits of DE to both consumers and distribution utilities and expands upon a precursory study done with Detroit Edison (DTE)1, by evaluating the combined impact of DE, energy-efficiency, photovoltaics (a use of solar energy), and demand response that will shape the grid of the future. This study was funded by the U.S. Department of Energy (DOE), Gas Research Institute (GRI), American Electric Power (AEP), and Gas Technology Institute's (GTI) Distributed Energy Collaborative Program (DECP). It focuses on two real Southern California Edison (SCE) circuits, a 13 MW suburban circuit fictitiously named Justice on the Lincoln substation, and an 8 MW rural circuit fictitiously named Prosper on the Washington Substation. The primary objectives of the study were threefold: (1) Evaluate the potential for using advanced energy technologies, including DE, energy-efficiency (EE), demand response, electricity storage, and photovoltaics (PV), to reshape electric load curves by reducing peak demand, for real circuits. (2) Investigate the potential impact on guiding technology deployment and managing operation in a way that benefits both utilities and their customers by: (a) Improving grid load factor for utilities; (b) Reducing energy costs for customers; and (c) Optimizing electric demand growth. (3) Demonstrate benefits by reporting on a recently installed advanced energy system at a utility customer site. This study showed that advanced energy technologies are economical for many customers on the two SCE circuits analyzed, providing certain customers with considerable energy cost savings. Using reasonable assumptions about market penetration, the study showed that adding distributed generation would reduce peak demand on the two circuits enough to defer the need to upgrade circuit capacity. If the DE is optimally targeted, the deferral could economically benefit SCE, with cost savings that outweigh the lost revenues due to lower sales of electricity. To a lesser extent, economically justifiable energy-efficiency, photovoltaic technologies, and demand response could also help defer circuit capacity upgrades by reducing demand.

Stovall, Therese K [ORNL; Kingston, Tim [Gas Technology Institute

2005-12-01T23:59:59.000Z

394

California Electric Energy Crisis - Electricity Information  

U.S. Energy Information Administration (EIA)

Electricity Information Available Formats; Status of Electric Industry Restructuring Activity in California: html: California State Electricity Profil ...

395

Audit of health benefit costs at the Department`s Management and Operating Contractors  

SciTech Connect

The audit disclosed that the Department and certain of its contractors had initiated several positive actions to contain health benefit costs: improving data collection, increasing training, reviewing changes to health plans, improving the language in one contract, increasing the employees, share of health costs at one contractor, and initiating self-insurance at another contractor. Despite these actions, further improvements are needed in the administration of the contractor employee health benefit plans. It was found that the Department did not have the policies and procedures necessary to ensure that the health benefit costs met the tests for reasonableness. The audit of $95 million in health benefit costs incurred at six Management and Operating contractors showed that $15.4 million of these costs were excessive compared to national norms.

1994-06-23T23:59:59.000Z

396

Quantum Electrical Measurements Portal  

Science Conference Proceedings (OSTI)

NIST Home > Quantum Electrical Measurements Portal. Quantum Electrical Measurements Portal. Subject Areas. Electrical ...

2013-03-21T23:59:59.000Z

397

Electric vehicles  

SciTech Connect

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

398

Central Hudson Gas & Electric (Electric) - Commercial Lighting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home Savings Central Hudson Gas & Electric (Electric) - Commercial Lighting Rebate Program Central Hudson Gas & Electric (Electric) - Commercial Lighting Rebate...

399

Improved accounting of emissions from utility energy storage system operation  

Science Conference Proceedings (OSTI)

Several proposed utility-scale energy storage systems in the U.S. will use the spare output capacity of existing electric power systems to create the equivalent of new load-following plants that can rapidly respond to fluctuations in electricity demand and increase the flexibility of baseload generators. New energy storage systems using additional generation from existing plants can directly compete with new traditional sources of load-following and peaking electricity, yet this application of energy storage is not required to meet many of the Clean Air Act standards required of new electricity generators (e.g., coal- or gas-fired power plants). This study evaluates the total emissions that will likely result from the operation of a new energy storage facility when coupled with an average existing U.S. coal-fired power plant and estimates that the emission rates of SO{sub 2} and NOx will be considerably higher than the rate of a new plant meeting Clean Air Act standards, even accounting for the efficiency benefits of energy storage. This study suggests that improved emissions 'accounting' might be necessary to provide accurate environmental comparisons between energy storage and more traditional sources of electricity generation. 35 refs., 5 figs., 2 tabs.

Paul Denholm; Tracey Holloway [University of Wisconsin-Madison, Madison, WI (United States)

2005-12-01T23:59:59.000Z

400

Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report  

DOE Green Energy (OSTI)

Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in the further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.

Kevin Morrow; Dimitri Hochard; Jeff Wishart

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "benefits improved electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Enabling Renewable Energy and the Future Grid with Advanced Electricity Storage  

DOE Green Energy (OSTI)

Environmental concerns about using fossil fuels and their resource constrains, along with that on energy security, have spurred great interests in generating electrical energy from renewable sources such as wind and solar. The variable and stochastic nature of renewable sources however makes solar and wind power difficult to manage, especially at high levels of penetration. To effectively use the intermittent renewable energy and enable its delivery demand electrical energy storage (EES) that can also improve the reliability, stability, and efficiency of the electrical grid, which is expected to support plug-in electrical vehicles; enable real-time, two-way communication to balance demand and supply. While EES has gained wide attention for hybrid and electrical vehicle (e.g. plug-in-hybrid electrical) needs, public awareness and understanding of the critical challenges in energy storage for renewable integration and the future grid is relatively lacking. This paper examines the benefits and challenges of EES, in particular electrochemical storage or battery technologies, and discusses the fundamental principles, economics, and feasibility of the storage technologies. It intends to provide an understanding of the needs and challenges of electrical storage technologies for the stationary applications and offer general directions of research and development to the materials community.

Yang, Zhenguo; Liu, Jun; Baskaran, Suresh; Imhoff, Carl H.; Holladay, Jamelyn D.

2010-08-06T23:59:59.000Z

402

Prospects for electric vehicles  

Science Conference Proceedings (OSTI)

This paper discusses the current state-of- the-art of electric vehicles (EVs) with examples of recently developed prototype vehicles - Electric G-Van, Chrysler TEVan, Eaton DSEP and Ford/GE ETX-II. The acceleration, top speed and range of these electric vehicles are delineated to demonstrate their performance capabilities, which are comparable with conventional internal combustion engine (ICE) vehicles. The prospects for the commercialization of the Electric G-van and the TEVan and the improvements expected from the AC drive systems of the DSEP and ETX-II vehicles are discussed. The impacts of progress being made in the development of a fuel cell/battery hybrid bus and advanced EVs on the competitiveness of EVs with ICE vehicles and their potential for reduction of air pollution and utility load management are postulated.

Patil, P.G. (Research and Development, Electric and Hybrid Propulsion Div., U.S. Dept. of Energy, Washington, DC (US))

1990-12-01T23:59:59.000Z

403

Indoor environmental quality benefits of apartment energy retrofits  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor environmental quality benefits of apartment energy retrofits Indoor environmental quality benefits of apartment energy retrofits Title Indoor environmental quality benefits of apartment energy retrofits Publication Type Journal Article LBNL Report Number LBNL-6373E Year of Publication 2013 Authors Noris, Federico, Gary Adamkiewicz, William W. Delp, Toshifumi Hotchi, Marion L. Russell, Brett C. Singer, Michael Spears, Kimberly Vermeer, and William J. Fisk Journal Building Environment Volume 68 Pagination 170-178 Date Published 10/2013 Keywords Apartments; Energy; Indoor environmental quality; Retrofit; Selection Abstract Sixteen apartments serving low-income populations in three buildings were retrofit with the goal of simultaneously reducing energy consumption and improving indoor environmental quality (IEQ). Retrofit measures varied among apartments and included, among others, envelope sealing, installation of continuous mechanical ventilation systems, upgrading bathroom fans and range hoods, attic insulation, replacement of heating and cooling systems, and adding wall-mounted particle air cleaners. IEQ parameters were measured, generally for two one-week periods before and after the retrofits. The measurements indicate an overall improvement in IEQ conditions after the retrofits. Comfort conditions, bathroom humidity, and concentrations of carbon dioxide, acetaldehyde, volatile organic compounds, and particles generally improved. Formaldehyde and nitrogen dioxide levels decreased in the building with the highest concentrations, were unchanged in a second building, and increased in a third building. IEQ parameters other than particles improved more in apartments with continuous mechanical ventilation systems installed. In general, but not consistently, larger percent increases in air exchange rates were associated with larger percent decreases in indoor levels of the pollutants that primarily come from indoor sources.

404

Lithium-Titanium-Oxide Anodes Improve Battery Safety and Performance  

titanium-oxide materials improves on the safety of graphite electrodes while also offering ... such as electric and hybrid-electric vehicles Portable electronic ...

405

Enhancements to System for Tracking Radioactive Waste Shipments Benefit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enhancements to System for Tracking Radioactive Waste Shipments Enhancements to System for Tracking Radioactive Waste Shipments Benefit Multiple Users Enhancements to System for Tracking Radioactive Waste Shipments Benefit Multiple Users January 30, 2013 - 12:00pm Addthis Transportation Tracking and Communication System users can now track shipments of radioactive materials and access transportation information on mobile devices. Transportation Tracking and Communication System users can now track shipments of radioactive materials and access transportation information on mobile devices. CARLSBAD, N.M. - EM's Carlsbad Field Office (CBFO) recently deployed a new version of the Transportation Tracking and Communication System (TRANSCOM) that is compatible with mobile devices, including smartphones. The recent enhancement, TRANSCOM version 3.0, improves the user interface

406

Laser welding of electrical interconnections  

SciTech Connect

Processes and equipment have been developed for welding thin aluminum and copper foils using a Nd : YAG laser. Laser welding provides an alternate technique with improved quality for welding these types of electrical terminations.

Bauer, F.R.

1978-12-01T23:59:59.000Z

407

Renewable Energy Price-Stability Benefits in Utility Green Power Programs  

SciTech Connect

This paper examines utility experiences when offering the fixed-price benefits of renewable energy in green pricing programs, including the methods utilized and the impact on program participation. It focuses primarily on utility green pricing programs in states that have not undergone electric industry restructuring.

Bird, L. A.; Cory, K. S.; Swezey, B. G.

2008-08-01T23:59:59.000Z

408

Financing U.S. Renewable Energy Projects Through Public Capital Vehicles: Qualitative and Quantitative Benefits  

DOE Green Energy (OSTI)

This paper explores the possibility of financing renewable energy projects through raising capital in the public markets. It gives an overview of the size, structure, and benefits of public capital markets, as well as showing how renewable energy projects might take advantage of this source of new funds to lower the cost of electricity.

Mendelsohn, M.; Feldman, D.

2013-04-01T23:59:59.000Z

409

Definition: Capacity Benefit Margin | Open Energy Information  

Open Energy Info (EERE)

Benefit Margin Benefit Margin Jump to: navigation, search Dictionary.png Capacity Benefit Margin The amount of firm transmission transfer capability preserved by the transmission provider for Load- Serving Entities (LSEs), whose loads are located on that Transmission Service Provider's system, to enable access by the LSEs to generation from interconnected systems to meet generation reliability requirements. Preservation of CBM for an LSE allows that entity to reduce its installed generating capacity below that which may otherwise have been necessary without interconnections to meet its generation reliability requirements. The transmission transfer capability preserved as CBM is intended to be used by the LSE only in times of emergency generation deficiencies.[1] Related Terms

410

Electricity Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Emissions Caps and the Impact of a Radical Change in Nuclear Electricity Costs journal International Journal of Energy Economics and Policy volume year month chapter...

411

Advanced Electrical, Optical and Data Communication Infrastructure Development  

SciTech Connect

The implementation of electrical and IT infrastructure systems at the North Carolina Center for Automotive Research , Inc. (NCCAR) has achieved several key objectives in terms of system functionality, operational safety and potential for ongoing research and development. Key conclusions include: (1) The proven ability to operate a high speed wireless data network over a large 155 acre area; (2) Node to node wireless transfers from access points are possible at speeds of more than 50 mph while maintaining high volume bandwidth; (3) Triangulation of electronic devices/users is possible in areas with overlapping multiple access points, outdoor areas with reduced overlap of access point coverage considerably reduces triangulation accuracy; (4) Wireless networks can be adversely affected by tree foliage, pine needles are a particular challenge due to the needle length relative to the transmission frequency/wavelength; and (5) Future research will use the project video surveillance and wireless systems to further develop automated image tracking functionality for the benefit of advanced vehicle safety monitoring and autonomous vehicle control through 'vehicle-to-vehicle' and 'vehicle-to-infrastructure' communications. A specific advantage realized from this IT implementation at NCCAR is that NC State University is implementing a similar wireless network across Centennial Campus, Raleigh, NC in 2011 and has benefited from lessons learned during this project. Consequently, students, researchers and members of the public will be able to benefit from a large scale IT implementation with features and improvements derived from this NCCAR project.

Simon Cobb

2011-04-30T23:59:59.000Z

412

Alternative Fuels Data Center: Ethanol Benefits and Considerations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Benefits and Benefits and Considerations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Benefits and Considerations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Benefits and Considerations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Benefits and Considerations on Google Bookmark Alternative Fuels Data Center: Ethanol Benefits and Considerations on Delicious Rank Alternative Fuels Data Center: Ethanol Benefits and Considerations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Benefits and Considerations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Benefits and Considerations Ethanol is a renewable, domestically produced transportation fuel. Whether

413

Alternative Fuels Data Center: Hydrogen Benefits and Considerations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Benefits and Benefits and Considerations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Benefits and Considerations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Benefits and Considerations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Benefits and Considerations on Google Bookmark Alternative Fuels Data Center: Hydrogen Benefits and Considerations on Delicious Rank Alternative Fuels Data Center: Hydrogen Benefits and Considerations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Benefits and Considerations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Vehicles Laws & Incentives Hydrogen Benefits and Considerations Hydrogen can be produced from diverse domestic resources with the potential

414

Canada Week: Integrated electric grid improves reliability ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ... ...

415

Increasing Profits with Electric Industrial Vehicles: Alabama Power Company Electric Forklift Incentive Program  

Science Conference Proceedings (OSTI)

Alabama Power Company's Electric Transportation Department has increased its bottom line through an innovative electric forklift incentive program. This presentation outlines the key points of an EPRI Case Study (EPRI report no. 1006013) that documents the utility's strategy, implementation, and results. The presentation demonstrates 1) the value of the industrial electric vehicle market to the utility, and 2) how the industrial market can benefit your bottom line.

2001-08-24T23:59:59.000Z

416

Electric utilities and residential solar systems  

DOE Green Energy (OSTI)

The long-run incremental cost (LRIC) of providing electricity for solar heating and hot water systems is estimated for three utilities using a utility capacity expansion model and compared to the cost of providing electricity to electric-only systems. All investment, fuel and operating costs are accounted for. Hot water systems and combined heating and hot water systems are analyzed separately. It is found that the LRIC for solar backup is no more than the LRIC of electricity used for purely electric heating and hot water devices and also no more than the incremental cost of normal load growth. For the three utilities studied, there appears to be little basis for rate distinctions between solar devices using electric backup and electric-only heating and hot water devices. Off-peak storage heating and hot water devices have a much lower LRIC than the standard systems; again, there appears to be no basis for distinguishing between solar and electric off-peak devices. Compared to average cost pricing, incremental cost pricing offers considerable benefits to customers using solar and electric heat and hot water, especially if a separate lower rate is adopted for off-peak storage devices; these benefits can amount to several hundred dollars per year. Substantial savings in the use of oil and gas fuels can be achieved if residences using these fuels convert to solar systems, savings not necessarily achievable by a shift, instead, to electric systems.

Bright, R; Davitian, H

1980-04-01T23:59:59.000Z

417

Toward More Comprehensive Assessments of FERC Electricity Restructuring  

NLE Websites -- All DOE Office Websites (Extended Search)

Toward More Comprehensive Assessments of FERC Electricity Restructuring Toward More Comprehensive Assessments of FERC Electricity Restructuring Policies: A Review of Recent Benefit-Cost Studies of RTOs Title Toward More Comprehensive Assessments of FERC Electricity Restructuring Policies: A Review of Recent Benefit-Cost Studies of RTOs Publication Type Journal Article LBNL Report Number lbnl-62571 Year of Publication 2006 Authors Eto, Joseph H., Douglas R. Hale, and Bernard C. Lesieutre Journal The Electricity Journal Volume 19 Start Page 50 Issue 10 Date Published 12/2006 Type of Article Journal Keywords electricity markets, electricity markets and policy group Abstract Definitive assessment of Federal Energy Regulatory Commission policies on regional transmission organizations is not currently possible because of uncertainties in the data and methods used in recent benefit-cost studies as well as lack of investigation of key impacts of the formation of RTOs.

418

DOE Hydrogen Analysis Repository: Projected Benefits - GPRA  

NLE Websites -- All DOE Office Websites (Extended Search)

Projected Benefits - GPRA Projected Benefits - GPRA Project Summary Full Title: Projected Benefits of Federal Energy Efficiency and Renewable Energy Programs Project ID: 208 Principal Investigator: Michael Leifman Keywords: Energy efficiency; energy use; energy savings; renewable Purpose Assess the past and future contributions of the programs conducted by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) to DOE's goals of providing affordable, clean and reliable energy. The program benefits are reported in EERE's annual Congressional Budget Request. This analysis fulfills the requirements of the Government Performance and Results Act of 1993. Performer Principal Investigator: Michael Leifman Organization: U.S. Department of Energy Address: 1000 Independence Ave., SW

419

Benefits Forms and Information | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Employee Orientation » Benefits Forms and New Employee Orientation » Benefits Forms and Information Benefits Forms and Information As a Federal employee, you may have the opportunity to participate in a number of employee benefit and family-friendly programs. If your appointment to Federal employment confers eligibility, you may elect to participate in health, dental, and life insurance programs; retirement savings plans; flexible spending accounts; long-term care insurance; and vacation and sick leave. In addition, there are a number of family-friendly programs that the Department of Energy (DOE) offers its employees, such as alternative work schedules, flexiplace/telecommuting, transit subsidy, child development centers, and exercise and wellness facilities. The employment forms found in this section collect important and necessary

420

Benefits of Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Benefits of Research Benefits of Research Benefits of Research Return on Investment Since its creation in 1977, FE has established a legacy of achievement, return-of-value, and tangible benefits for the taxpayer dollars invested. Read more Natural Gas from Shale Office of Fossil Energy research helped refine cost-effective horizontal drilling and hydraulic fracturing technologies, making hundreds of trillions of cubic feet of natural gas technically recoverable. Read more Methane Hydrate R&D FE has played a major role in developing technologies to help tap new, unconventional sources of natural gas. Read more Carbon Capture & Storage Through FE R&D, the United States has become a world leader in carbon capture and storage science and technology. Read more Research and development activities at the U.S. Department of Energy's

Note: This page contains sample records for the topic "benefits improved electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Regulation, Unemployment, and Cost-Benefit Analysis  

E-Print Network (OSTI)

pdf (“A stand-alone analysis of jobs is not included in aWachter, Job Displacement and Mortality: An Analysis Usingnew jobs are rounding errors in cost-benefit analyses that

Posner, Eric; Masur, Jonathan S.

2011-01-01T23:59:59.000Z

422

Wind Energy Benefits | Open Energy Information  

Open Energy Info (EERE)

Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Wind Energy Benefits Jump to: navigation, search Photo from Todd Spink, NREL 14821 U.S....

423

September 16 ESTAP Webinar: Optimizing the Benefits of a PV with Battery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 16 ESTAP Webinar: Optimizing the Benefits of a PV with September 16 ESTAP Webinar: Optimizing the Benefits of a PV with Battery Storage System September 16 ESTAP Webinar: Optimizing the Benefits of a PV with Battery Storage System August 30, 2013 - 12:34pm Addthis On Monday, September 16 from 1 - 2 p.m. ET, Clean Energy States Alliance will host a webinar on optimizing the benefits of a photovoltaic (PV) storage system with a battery. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability. The webinar will discuss PNM's Prosperity Energy Storage Project, which is partly funded through DOE's Recovery Act Smart Grid Storage Demonstration Program. The project has successfully demonstrated optimizing the storage and delivery of energy using a PV with battery system. The

424

Benefits and Costs of Aggressive Energy Efficiency Programs and the Impacts  

Open Energy Info (EERE)

Benefits and Costs of Aggressive Energy Efficiency Programs and the Impacts Benefits and Costs of Aggressive Energy Efficiency Programs and the Impacts of Alternative Sources of Funding: Case Study of Massachusetts Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Benefits and Costs of Aggressive Energy Efficiency Programs and the Impacts of Alternative Sources of Funding: Case Study of Massachusetts Focus Area: Energy Efficiency Topics: Policy Impacts Website: eetd.lbl.gov/ea/emp/reports/lbnl-3833e.pdf Equivalent URI: cleanenergysolutions.org/content/benefits-and-costs-aggressive-energy- Language: English Policies: Regulations Regulations: Utility/Electricity Service Costs This analysis, based on the Massachusetts Green Communities Act, looks at the impact of energy efficiency targets mandated by the Act on rates and

425

Fossil Energy R&D Returns Significant National Benefit in More Than Three  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy R&D Returns Significant National Benefit in More Than Fossil Energy R&D Returns Significant National Benefit in More Than Three Decades of Achievement Fossil Energy R&D Returns Significant National Benefit in More Than Three Decades of Achievement July 27, 2011 - 1:00pm Addthis Washington, DC - Research and development (R&D) activities at the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) have helped increase domestic energy supplies and security, lowered costs, improved efficiencies, and enhanced environmental protection over the past 30 years, according to newly released informational materials. "This newly released information emphatically underscores the historic benefit and future role of FE research in developing and commercially deploying new technologies that provide sustainable benefits to the

426

Higher Education: Who Benefits? WHAT IS THE  

E-Print Network (OSTI)

Little argument exists about the societal and personal value of education. The more complicated question is who benefits from, and therefore who pays for, higher education. Both the community and the individual benefit from education; this complicates the funding equation as to how much society and the individual should pay. If students had to pay the full price of education, too few would be able or willing to pay because the immediate personal

unknown authors

2003-01-01T23:59:59.000Z

427

Electric machine  

SciTech Connect

An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

El-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Reddy, Patel Bhageerath (Madison, WI)

2012-07-17T23:59:59.000Z

428

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network (OSTI)

history of concern about such emissions has led to significant improvements in the polluting characteristics of electricity generation

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

429

The model electric restaurant  

SciTech Connect

Starting in December 1987, the Electric Power Research Institute (EPRI) and Southern California Edison (SCE) initiated a project with the Pennsylvania State University (Penn State) to study the energy performance of restaurants. Penn State formed the Restaurant Subsystems Technology (REST) project team to conduct the Model Restaurant Project. For the first phase of the project, the REST team was charged with the responsibility of identifying and investigating electric technologies to improve energy efficiency and to reduce peak demand in new restaurants. Energy and economic analyses were performed to determine whether these electric technologies are competitive with existing technologies in gas/electric restaurants and whether they are improvements to current technologies in all-electric restaurants. Technologies for heating and cooling, lighting, sanitation, food preparation, ventilation, and refrigeration were studied. This report contains detailed monthly information about the restaurants that were simulated. The results are presented on a monthly basis so the reader can study performance during all seasons. However, this second volume is not a stand alone'' document. To fully understand the information presented here, the reader must have a copy of Volume 1 and be familiar with the terminology used to describe the various restaurants and the process used to analyze the buildings.

Frey, D.J.; Oatman, P.A. (Architectural Energy Corp., Boulder, CO (USA)); Claar, C.N. (Pennsylvania State Univ., University Park, PA (USA))

1990-12-01T23:59:59.000Z

430

Review of the WECC EDT phase 2 EIM benefits analysis and results report.  

DOE Green Energy (OSTI)

A region-wide Energy Imbalance Market (EIM) was recently proposed by the Western Electricity Coordinating Council (WECC). In order for the Western Area Power Administration (Western) to make more informed decisions regarding its involvement in the EIM, Western asked Argonne National Laboratory (Argonne) to review the EIM benefits study (the October 2011 revision) performed by Energy and Environmental Economics, Inc. (E3). Key components of the E3 analysis made use of results from a study conducted by the National Renewable Energy Laboratory (NREL); therefore, we also reviewed the NREL work. This report examines E3 and NREL methods and models used in the EIM study. Estimating EIM benefits is very challenging because of the complex nature of the Western Interconnection (WI), the variability and uncertainty of renewable energy resources, and the complex decisions and potentially strategic bidding of market participants. Furthermore, methodologies used for some of the more challenging aspects of the EIM have not yet matured. This review is complimentary of several components of the EIM study. Analysts and modelers clearly took great care when conducting detailed simulations of the WI using well-established industry tools under stringent time and budget constraints. However, it is our opinion that the following aspects of the study and the interpretation of model results could be improved upon in future analyses. The hurdle rate methodology used to estimate current market inefficiencies does not directly model the underlying causes of sub-optimal dispatch and power flows. It assumes that differences between historical flows and modeled flows can be attributed solely to market inefficiencies. However, flow differences between model results and historical data can be attributed to numerous simplifying assumptions used in the model and in the input data. We suggest that alternative approaches be explored in order to better estimate the benefits of introducing market structures like the EIM. In addition to more efficient energy transactions in the WI, the EIM would reduce the amount of flexibility reserves needed to accommodate forecast errors associated with variable production from wind and solar energy resources. The modeling approach takes full advantage of variable resource diversity over the entire market footprint, but the projected reduction in flexibility reserves may be overly optimistic. While some reduction would undoubtedly occur, the EIM is only an energy market and would therefore not realize the same reduction in reserves as an ancillary services market. In our opinion the methodology does not adequately capture the impact of transmission constraints on the deployment of flexibility reserves. Estimates of flexibility reserves assume that forecast errors follow a normal distribution. Improved estimates could be obtained by using other probability distributions to estimate up and down reserves to capture the underlying uncertainty of these resources under specific operating conditions. Also, the use of a persistence forecast method for solar is questionable, because solar insolation follows a deterministic pattern dictated by the sun's path through the sky. We suggest a more rigorous method for forecasting solar insolation using the sun's relatively predictable daily pattern at specific locations. The EIM study considered only one scenario for hydropower resources. While this scenario is within the normal range over the WI footprint, it represents a severe drought condition in the Colorado River Basin from which Western schedules power. Given hydropower's prominent role in the WI, we recommend simulating a range of hydropower conditions since the relationship between water availability and WI dispatch costs is nonlinear. Also, the representation of specific operational constraints faced by hydropower operators in the WI needs improvements. The model used in the study cannot fully capture all of the EIM impacts and complexities of power system operations. In particular, a primary benefit of the EIM is a shorter dispa

Veselka, T.D.; Poch, L.A.; Botterud, A. (Decision and Information Sciences)

2012-04-05T23:59:59.000Z

431

Electricity Energy Storage Technology Options  

Science Conference Proceedings (OSTI)

A confluence of industry drivers8212including increased deployment of renewable generation, the high capital cost of managing grid peak demands, and large capital investments in grid infrastructure for reliability8212is creating new interest in electric energy storage systems. New EPRI research offers a current snapshot of the storage landscape and an analytical framework for estimating the benefits of applications and life-cycle costs of energy storage systems. This paper describes in detail 10 key appl...

2010-12-23T23:59:59.000Z

432

Electricity savings potentials in the residential sector of Bahrain  

SciTech Connect

Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

Akbari, H. [Lawrence Berkeley National Lab., CA (United States); Morsy, M.G.; Al-Baharna, N.S. [Univ. of Bahrain, Manama (Bahrain)

1996-08-01T23:59:59.000Z

433

Projected Benefits of Federal Energy Efficiency and Renewable Energy Programs: FY 2004 Budget Request  

DOE Green Energy (OSTI)

The Office of Energy Efficiency and Renewable Energy (EERE) of the U.S. Department of Energy (DOE) leads the Federal Government's efforts to provide reliable, affordable, and environmentally sound energy for America, through its research, development, and deployment (RD&D) programs. EERE invests in high-risk, high-value research and development (R&D) that, conducted in partnership with the private sector and other government agencies, accelerates the development and facilitates the deployment of advanced clean energy technologies and practices. The RD&D activities of EERE are designed to improve the nation's readiness to address future energy needs. This document summarizes the results of the benefits analysis of EERE's programs, as described in the FY 2004 Budget Request. EERE is adopting a benefits framework developed by the National Research Council (NRC) to represent the various types of benefits resulting from the energy efficiency technology improvements and renewable energy technology development prompted by EERE programs. Specifically, EERE's benefits analysis focuses on three main categories of energy-linked benefits-economic, environmental, and security. These measures are not a complete representation of the benefits or market roles of efficiency and renewable technologies, but provide an indication of the range of benefits provided.

National Renewable Energy Laboratory

2004-04-01T23:59:59.000Z

434

Near Term Hydrogen and Electricity Infrastructure Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Denver, CO Denver, CO September 22, 2004 Abbas Akhil, DER and Energy Storage Sandia National Laboratories, Albuquerque, NM (505) 844-7308 aaakhil@sandia.gov Near-term Hydrogen and Electricity Infrastructure Integration Near-term Hydrogen and Electricity Infrastructure Integration Integration Scenarios and Issues Integration Scenarios and Issues ! How and where can electrolysis systems be integrated in the grid? " Siting/location " Operational issues " Investments " Benefits " Ownership ! Objectives are " Capture "grid" benefits " Seek to reduce emissions Siting and Location Siting and Location ! Electrolysis systems can be sited at " Existing generating stations " Transmission substations " Distribution substations ! Each locations has different

435

Sustainable Electricity | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Sustainable Electricity SHARE Sustainable Electricity Outdoor power line accelerated testing. Oak Ridge National Laboratory's Energy Efficiency and Electricity Technologies Program develops technologies to create a cleaner environment, a stronger economy, and a more secure future for our nation. The Program is committed to expanding energy resource options and to improving efficiency in every element of energy production and use, and to ensuring a reliable and secure grid that fully integrates central generation with distributed resources, manages power flows, facilitates recovery from disruptions to the energy supply, and meets the nation's need for increasing electric

436

Alternative Fuels Data Center: All-Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

All-Electric Vehicles All-Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: All-Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: All-Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: All-Electric Vehicles on Google Bookmark Alternative Fuels Data Center: All-Electric Vehicles on Delicious Rank Alternative Fuels Data Center: All-Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: All-Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids Plug-In Hybrids All-Electric Vehicles All-Electric Vehicles Content on this page requires a newer version of Adobe Flash Player.

437

Electric moped  

DOE Green Energy (OSTI)

Two electrically powered mopeds were designed and built. These vehicles offer single-person transportation which is convenient, quiet, low-cost, smooth, and pollution-free. The first moped has a 12 volt electrical system. The second has a 24 volt electrical system. They both have top speeds of about 20 miles per hour. They both use transistorized speed controls and deep-discharge, lead-acid batteries. These mopeds were put through a 750 mile test program. In this program, the 12 volt bike had an average range of nine miles. The 24 volt bike, with a smaller battery capacity, had an average range of six miles.

Ferschl, M.S.

1981-02-26T23:59:59.000Z

438

Achieving the Benefits of Safeguards by Design  

SciTech Connect

The overarching driver for developing a formalized process to achieve safeguards by design is to support the global growth of nuclear power while reducing ‘nuclear security’ risks. This paper discusses an institutional approach to the design process for a nuclear facility, for designing proliferation resistance, international safeguards and U.S. national safeguards and security into new nuclear facilities. In the United States, the need exists to develop a simple, concise, formalized, and integrated approach for incorporating international safeguards and other non-proliferation considerations into the facility design process. An effective and efficient design process is one which clearly defines the functional requirements at the beginning of the project and provides for the execution of the project to achieve a reasonable balance among competing objectives in a cost effective manner. Safeguards by Design is defined as “the integration of international and national safeguards, physical security and non-proliferation features as full and equal partners in the design process of a nuclear energy system or facility,” with the objective to achieve facilities that are intrinsically more robust while being less expensive to safeguard and protect. This Safeguards by Design process has been developed such that it: • Provides improved safeguards, security, and stronger proliferation barriers, while reducing the life cycle costs to the operator and regulatory agencies, • Can be translated to any international context as a model for nuclear facility design, • Fosters a culture change to ensure the treatment of ‘nuclear security’ considerations as “full and equal” partners in the design process, • Provides a useful tool for the project manager responsible for the design, construction, and start-up of nuclear facilities, and • Addresses the key integration activities necessary to efficiently incorporate International Atomic Energy Agency safeguards into the design of nuclear facilities. This paper describes the work that has been completed in the development of a Safeguards by Design process for a project, illustrated by flow diagrams based upon the project phases described in U.S. Department of Energy Order 413.3A, Program and Project Management for the Acquisition of Capital Assets. The institutionalization of the Safeguards by Design process directly supports the goals of the Next Generation Safeguards Initiative and also aligns with goals and objectives of the International Atomic Energy Agency. Other benefits from institutionalizing this Safeguards by Design process are discussed within this paper.

Trond Bjornard; Robert Bean; David Hebditch; Jim Morgan; Bruce Meppen; Scott DeMuth; Michael Ehinger; John Hockert

2008-07-01T23:59:59.000Z

439

Efficient electric motor systems for industry. Report on roundtable discussions of market problems and ways to overcome them  

Science Conference Proceedings (OSTI)

Improving the efficiency of electric motor systems is one of the best energy-saving opportunities for the United States. The Department of Energy (DOE) Office of Industrial Technologies estimates that by the year 2010 in the industrial sector, the opportunities for savings from improved efficiency in electric motor systems could be roughly as follows: 240 billion kilowatthours per year. $13 billion per year from US industry`s energy bill. Up to 50,000 megawatts in new powerplant capacity avoided. Up to 44 million metric tons of carbon-equivalent emissions mitigated per year, corresponding to 3 percent of present US emissions. Recognizing the benefits of this significant opportunity for energy savings, DOE has targeted improvements in the efficiency of electric motor systems as a key initiative in the effort to promote flexibility and efficiency in the way electricity is produced and used. Efficient electric motor systems will help the United States reach its national goals for energy savings and greenhouse gas emission reductions.

Not Available

1993-11-01T23:59:59.000Z

440

Unequal Taxes on Equal Benefits: The Taxation of Domestic Partner Benefits  

E-Print Network (OSTI)

equal benefits, the Internal Revenue Code treats the valuePanel Sur- vey, and Internal Revenue Service data. Equals dependent under Internal Revenue Code Section 152. In

Badgett, M.V. Lee

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "benefits improved electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Weighing the Costs and Benefits of Renewables Portfolio Standards:A Comparative Analysis of State-Level Policy Impact Projections  

SciTech Connect

State renewables portfolio standards (RPS) have emerged as one of the most important policy drivers of renewable energy capacity expansion in the U.S. Collectively, these policies now apply to roughly 40% of U.S. electricity load, and may have substantial impacts on electricity markets, ratepayers, and local economies. As RPS policies have been proposed or adopted in an increasing number of states, a growing number of studies have attempted to quantify the potential impacts of these policies, focusing primarily on projecting cost impacts, but sometimes also estimating macroeconomic and environmental effects. This report synthesizes and analyzes the results and methodologies of 28 distinct state or utility-level RPS cost impact analyses completed since 1998. Together, these studies model proposed or adopted RPS policies in 18 different states. We highlight the key findings of these studies on the costs and benefits of RPS policies, examine the sensitivity of projected costs to model assumptions, assess the attributes of different modeling approaches, and suggest possible areas of improvement for future RPS analysis.

Chen, Cliff; Wiser, Ryan; Bolinger, Mark

2007-01-16T23:59:59.000Z

442

Promoting the Market for Plug-in Hybrid and Battery Electric Vehicles: Role of Recharge Availability  

Science Conference Proceedings (OSTI)

Much recent attention has been drawn to providing adequate recharge availability as a means to promote the battery electric vehicle (BEV) and plug-in hybrid electric vehicle (PHEV) market. The possible role of improved recharge availability in developing the BEV-PHEV market and the priorities that different charging options should receive from the government require better understanding. This study reviews the charging issue and conceptualizes it into three interactions between the charge network and the travel network. With travel data from 3,755 drivers in the National Household Travel Survey, this paper estimates the distribution among U.S. consumers of (a) PHEV fuel-saving benefits by different recharge availability improvements, (b) range anxiety by different BEV ranges, and (c) willingness to pay for workplace and public charging in addition to home recharging. With the Oak Ridge National Laboratory MA3T model, the impact of three recharge improvements is quantified by the resulting increase in BEV-PHEV sales. Compared with workplace and public recharging improvements, home recharging improvement appears to have a greater impact on BEV-PHEV sales. The impact of improved recharging availability is shown to be amplified by a faster reduction in battery cost.

Lin, Zhenhong [ORNL; Greene, David L [ORNL

2012-01-01T23:59:59.000Z

443

Evaluating the risk-reduction benefits of wind energy  

SciTech Connect

The question of uncertainty and risk in electric utility resource planning has received considerable attention in recent years. During the 1980s, many utilities suffered financial losses because of unexpectedly high plant construction costs and low growth in electricity demand. In addition, the introduction of competition to the electric industry is creating new risks for power companies. No longer will utilities be able to count on regulatory protections and a base of captive consumers to provide a stable market and adequate return on their investments. Alternative risk management strategies will have to be considered instead. One approach to managing risk is for a utility company to invest in diverse power sources such as wind power plants. Since wind plants consume no fuel, can be built in relatively small increments with short construction lead times, and generate no pollutants, it is often said that they offer significant protection from risks associated with conventional fossil-fuel power plants. So far there have been few efforts to quantify these benefits, however. The study compares the costs and risks of two competing resource options, a gas-fired combined cycle plant and a wind plant, both utility-owned, through decision analysis. The case study utility is Texas Utilities Electric, a very large investor-owned company serving an area with substantial, high-quality wind resources. The authors chose a specific moment in the future - the year 2003 - when the utility currently plans to build a large fossil-fueled power plant, and examined the implications for the utility`s expected revenues, costs, and profits if a wind plant were to be built instead.

Brower, M.C.; Bell, K.; Spinney, P. [and others

1997-05-01T23:59:59.000Z

444

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA)

Trade and Reliability; All Reports ‹ See all Electricity Reports State Electricity Profiles. ... Electric Power Industry Emissions Estimates, 1990 Through 2010:

445

Electric Boosting System for Light Truck/SUV Application  

DOE Green Energy (OSTI)

Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems. One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-TurboTM designs do both. The purpose of this project is to design and develop an electrically assisted turbocharger, e-TurboTM, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-TurboTM can be used to generate modest amounts of electrical power and supplement the alternator under most load-speed conditions. It is shown that a single (large) e-TurboTM consumes slightly less electrical power for the same steady state torque shaping than a bi-Turbo configuration. However, the transient response of a bi-Turbo configuration in slightly better. It was shown that in order to make full use of additional capabilities of e-TurboTM wide compressor flow range is required. Variable geometry compressor (VGC) technology developed under a separate project was evaluated for incorporation into e-TurboTM designs. It was shown that the combination of these two technologies enables very high torque at low engine speeds. Designs and hardware combining VGC and e-TurboTM are to be developed in a future project. There is concern about high power demands (even though momentary) of e-TurboTM. Reducing the inertia of the turbocharger can reduce power demand and increase battery life. Low inertia turbocharger technology called IBT developed under a separate project was evaluated for synergy with e-TurboTM designs. It was concluded that inertial reduction provided by IBT is very beneficial for e-TurboTM. Designs and hardware combining IBT and e-TurboTM are to be developed in a future project. e-TurboTM provides several additional flexibilities including exhaust gas recirculation (EGR) for emissions reduction with minimum fuel economy penalty and exhaust temperature control for aftertreatment. In integrated multi-parameter control system is needed to realize the full potential of e-TurboTM performance. Honeywell expertise in process control systems involving hundreds of sensors and actuators was applied to demonstrate the potential benefits of multi-parameter, model based control systems.

Steve Arnold, Craig Balis, Pierre Barthelet, Etienne Poix, Tariq Samad, Greg Hampson, S.M. Shahed

2005-06-22T23:59:59.000Z

446

On the benefits of an integrated nuclear complex for Nevada  

SciTech Connect

An integrated nuclear complex is proposed for location at the Nevada Test Site. In addition to solving the nuclear waste disposal problem, this complex would tremendously enhance the southern Nevada economy, and it would provide low cost electricity to each resident and business in the affected counties. Nuclear industry and the national economy would benefit because the complex would demonstrate the new generation of safer nuclear power plants and revitalize the industry. Many spin-offs of the complex would be possible, including research into nuclear fusion and a world class medical facility for southern Nevada. For such a complex to become a reality, the cycle of distrust between the federal government and the State of Nevada must be broken. The paper concludes with a discussion of implementation through a public process led by state officials and culminating in a voter referendum.

Blink, J.A. [Lawrence Livermore National Laboratory, Las Vegas, NV (United States); Halsey, W.G. [Lawrence Livermore National Lab., CA (United States)

1994-01-01T23:59:59.000Z

447

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China  

E-Print Network (OSTI)

electricity and fuel efficiency improvements in the cement industryprice of electricity paid by the cement industry in 2009 isElectricity Conservation Supply Curve for the Cement Industry .

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

448

DOE - Office of Legacy Management -- Fernald Benefits  

Office of Legacy Management (LM)

Ohio > Fernald Benefits Ohio > Fernald Benefits Fernald Preserve, Ohio Former Fernald Workers' Employment Verification and Benefits Information Employment Verification Fernald employment verification requests will only be accepted in writing and require the signature of the former employee authorizing the release of the requested information. Please direct your requests to Fluor Government Group, Employment Verification, P.O. Box 1050, Richland, WA 99352, fax (509) 376-7018. Worker and Community Transition Program (Section 3161) All education, training, preference in hiring, relocation, and outplacement inquiries should be directed to Professional Services of America, Inc., 601 Avery Street, Suite 500, Parkersburg, WV 26101, (866) 562-7482, ext. 1028, e-mail: bgraham@psa-inc.com.

449

Page 4, Federal Employees Health Benefits (FEHB)  

NLE Websites -- All DOE Office Websites (Extended Search)

4 of 11 4 of 11 Previous Page Federal Employees Health Benefits (FEHB) Initial Election Period As a new employee, you have 60 days from your date of appointment to make an election for the health benefits program. Your completed Health Benefits Election Form, SF-2809, must be submitted to your servicing Human Resources Office in a timely manner. If you fail to make an election within the required deadline, you are considered to have declined coverage. You will not have another opportunity to enroll until the annual open season (conducted November/December) or unless you experience a qualifying life event (see http://www.opm.gov/insure/health/planinfo/qle.asp) that would allow you to enroll. Please note that the SF-2809 should be completed and submitted even if you are declining coverage.

450

Farmers Electric Cooperative (Kalona) - Residential Efficiency Matching  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farmers Electric Cooperative (Kalona) - Residential Efficiency Farmers Electric Cooperative (Kalona) - Residential Efficiency Matching Grant Program Farmers Electric Cooperative (Kalona) - Residential Efficiency Matching Grant Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Commercial Heating & Cooling Program Info State Iowa Program Type Utility Grant Program Rebate Amount 50% of cost, up to $100 Provider Farmers Electric Cooperative Farmers Electric Cooperative (FEC) offers a grant program which splits the cost of simple energy efficient improvements to the home. The utility will cover 50% of the cost of eligible improvements made by the participating member. Grants are limited to $100 per year. A variety of measures and

451

Onboard Plasmatron Hydrogen Production for Improved Vehicles  

SciTech Connect

A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperature electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer technology for onboard applications in internal combustion engine vehicles using diesel, gasoline and biofuels. This included the reduction of NOx and particulate matter emissions from diesel engines using plasmatron reformer generated hydrogen-rich gas, conversion of ethanol and bio-oils into hydrogen rich gas, and the development of new concepts for the use of plasmatron fuel reformers for enablement of HCCI engines.

Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi

2005-12-31T23:59:59.000Z

452

Onboard Plasmatron Hydrogen Production for Improved Vehicles  

DOE Green Energy (OSTI)

A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperature electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer technology for onboard applications in internal combustion engine vehicles using diesel, gasoline and biofuels. This included the reduction of NOx and particulate matter emissions from diesel engines using plasmatron reformer generated hydrogen-rich gas, conversion of ethanol and bio-oils into hydrogen rich gas, and the development of new concepts for the use of plasmatron fuel reformers for enablement of HCCI engines.

Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi

2005-12-31T23:59:59.000Z

453

Electricity pricing for conservation and load shifting  

Science Conference Proceedings (OSTI)

The electricity industry is facing the challenge of increasing costs of reliably meeting demand growth and fully complying with legislative renewable portfolio standards and greenhouse gas reduction targets. However, an electric utility's existing tariffs often don't have rates that increase with consumption volume or vary by time of use, thus not fully exploiting the potential benefits from customer conservation and load shifting. (author)

Orans, Ren; Woo, C.K.; Horii, Brian; Chait, Michele; DeBenedictis, Andrew

2010-04-15T23:59:59.000Z

454

NETL: Gasification Systems - Evaluation of the Benefits of Advanced Dry  

NLE Websites -- All DOE Office Websites (Extended Search)

Feed Systems Feed Systems Evaluation of the Benefits of Advanced Dry Feed System for Low Rank Coal Project Number: DE-FE0007902 General Electric Company (GE) is evaluating and demonstrating the benefits of novel dry feed technologies to effectively, reliably, and economically provide feeding of low-cost, low-rank coals into commercial Integrated Gasification Combined Cycle (IGCC) systems. GE is completing comparative techno-economic studies of two IGCC power plant cases, one without and one with advanced dry feed technologies. A common basis of design is being developed so that overall assumptions and methodologies are common in the two cases for both technical and economic areas. The baseline case, without advanced dry feed technologies, will use operational data from the Eastman Chemical Company Kingsport gasification facility in combination with DOE/NETL's Cost and Performance Baseline Low-Rank Coal to Electricity IGCC study for both cost and performance comparisons. Advanced dry feed technologies, based upon the Posimetric® pump currently under development by GE, will be developed to match the proposed plant conditions and configuration, and will be analyzed to provide comparative performance and cost information to the baseline plant case. The scope of this analysis will cover the feed system from the raw coal silo up to, and including, the gasifier injector. Test data from previous and current testing will be summarized in a report to support the assumptions used to evaluate the advanced technologies and the potential value for future applications. This study focuses primarily on IGCC systems with 90 percent carbon capture, utilization, and storage (CCUS), but the dry feed system will be applicable to all IGCC power generating plants, as well as other industries requiring pressurized syngas.

455

Fossil Energy Research Benefits Enhanced Oil Recovery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Research Benefits Energy Research Benefits Enhanced Oil Recovery EOR helps increase domestic oil supplies while also providing a way to safely and permanently store CO 2 underground. Enhanced Oil Recovery (EOR) is a way to squeeze out additional, hard- to-recover barrels of oil remaining in older fields following conventional production operations. It can also be used to permanently store carbon dioxide (CO 2 ) underground. Thanks in part to innovations supported by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) over the past 30 years, the United States is a world leader in the number of EOR projects (200) and volume of oil production (over

456

Benefit/cost comparisons of SMES in system-specific application scenarios  

DOE Green Energy (OSTI)

The inherently high storage efficiency, instantaneous dispatch capability and multi-function uses of superconducting magnetic energy storage (SMES) are attributes that give it the potential for widespread application in the electric utility industry. Opportunities appear to exist where SMES at a given location could provide multiple benefits either simultaneously or sequentially as system conditions dictate. These benefits, including diurnal storage and system stability and dynamic control enhancement, increase the application potential of SMES to a larger number of opportunities than might be justified by the value of its diurnal storage capability alone. However, the benefits an individual utility may realize from SMES applications are strongly influenced by the characteristics of the utility system, the location of the SMES unit and the timing of its installation in the system. Such benefits are typically not evaluated adequately in generic studies. This paper summarizes results of case studies performed by Pacific Northwest Laboratory (PNL) with funding provided by the Bonneville Power Administration (BPA) and the Electric Power Research Institute (EPRI). The derivation of SMES benefits and costs are described and benefit/cost (B/C) ratios are compared in system-specific scenarios of interest to BPA. Results of using the DYNASTORE production cost model show the sensitivity of B/C ratios to SMES capacity and power and to the forecast system load. Intermediate-size SMES applications which primarily provide system stability and dynamic control enhancement are reviewed. The potential for SMES to levelize the output of a wind energy complex is also assessed. Most of the cases show SMES to provide a positive net benefit with the additional, sometimes surprising indication, that B/C ratios and net present worth of intermediate-size units can exceed those of larger systems.

De Steese, J.G.; Dagle, J.E.; Kreid, D.K. [Pacific Northwest Lab., Richland, WA (United States); Haner, J.M.; Myers, W.E. [Bonneville Power Administration, Portland, OR (United States)

1992-09-01T23:59:59.000Z

457

Denton County Electric Cooperative d/b/a CoServ Electric Smart...  

Open Energy Info (EERE)

throughout CoServ Electric's service territory and explores the application of distribution automation and customer systems. The project is aimed at improving customer...

458

NETL: Gasification Systems - Studies to Improve Plant Availability...  

NLE Websites -- All DOE Office Websites (Extended Search)

Studies to Improve Plant Availability and Reduce Total Installed Cost Project No.: DE-FE0007859 General Electric Company (GE) is studying the feasibility of improving plant...

459

Improving Performance of Federal Permitting and Review of Infrastructu...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improving Performance of Federal Permitting and Review of Infrastructure Projects Improving Performance of Federal Permitting and Review of Infrastructure Projects Electricity...

460

Data Collection and Reporting for Metrics and Benefits: Smart...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Reporting for Metrics and Benefits: Smart Grid Investment Grant Program Data Collection and Reporting for Metrics and Benefits: Smart Grid Investment Grant Program Presentation...

Note: This page contains sample records for the topic "benefits improved electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.