Powered by Deep Web Technologies
Note: This page contains sample records for the topic "beneath butte mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Gordon Butte | Open Energy Information  

Open Energy Info (EERE)

Gordon Butte Gordon Butte Jump to: navigation, search Name Gordon Butte Facility Gordon Butte Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Gordon Butte Wind LLC Developer Oversight Resources LLC Energy Purchaser Northwestern Energy Location Martinsdale MT Coordinates 46.41040464°, -110.3341484° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.41040464,"lon":-110.3341484,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

Superfund Record of Decision (EPA Region 8): Silver Bow Creek/Butte Area, MT. (Second remedial action), June 1992. Interim report  

Science Conference Proceedings (OSTI)

The Silver Bow Creek/Butte Area site is a mining and processing area located 7 miles east of Anaconda in the Upper Clark Fork River Basin, Deer Lodge County, Montana. Site contamination is the result of over 100 years of mining and process operations in the area. Until the early 1970's, mining, milling, and smelting wastes were dumped directly into Silver Bow Creek and transported downstream. The ROD addresses an interim remedy for all media at OU12. The primary contaminants of concern affecting the soil, sediment, ground water, and surface water in the Inactive area are metals, including arsenic, chromium, and lead; and inorganics.

Not Available

1992-06-30T23:59:59.000Z

3

Burley Butte | Open Energy Information  

Open Energy Info (EERE)

Butte Butte Jump to: navigation, search Name Burley Butte Facility Burley Butte Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power Location Cassia County ID Coordinates 42.4644°, -113.895° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4644,"lon":-113.895,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

4

Cuttings Analysis At Glass Buttes Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Cuttings Analysis At Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Glass Buttes Area (DOE GTP)...

5

Multispectral Imaging At Glass Buttes Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Glass Buttes Area (DOE GTP) Exploration Activity Details Location Glass Buttes Area Exploration Technique Multispectral Imaging Activity Date Usefulness not indicated DOE-funding...

6

Aeromagnetic Survey At Glass Buttes Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Glass Buttes Area (DOE GTP) Exploration Activity Details Location Glass Buttes Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness not indicated DOE-funding...

7

Development Wells At Glass Buttes Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Glass Buttes Area (DOE GTP) Exploration Activity...

8

Horse Butte Wind Project | Open Energy Information  

Open Energy Info (EERE)

Horse Butte Wind Project Horse Butte Wind Project Jump to: navigation, search Name Horse Butte Wind Project Facility Horse Butte Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horse Butte Wind 1 LLC Developer Utah Associated Municipal Power Systems Location Bonneville ID Coordinates 43.491689°, -111.789344° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.491689,"lon":-111.789344,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

9

FIRE HAZARDS ANALYSIS - BUSTED BUTTE  

SciTech Connect

The purpose of this fire hazards analysis (FHA) is to assess the risk from fire within individual fire areas at the Busted Butte Test Facility and to ascertain whether the DOE fire safety objectives are met. The objective, identified in DOE Order 420.1, Section 4.2, is to establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees. (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. Critical process controls and safety class systems being damaged as a result of a fire and related events.

R. Longwell; J. Keifer; S. Goodin

2001-01-22T23:59:59.000Z

10

Twin Buttes Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Buttes Wind Farm Buttes Wind Farm Jump to: navigation, search Name Twin Buttes Wind Farm Facility Twin Buttes Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer PPM Energy Inc Energy Purchaser Xcel Energy Location Prowers County CO Coordinates 37.674215°, -102.639971° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.674215,"lon":-102.639971,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

11

Glass Buttes Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Glass Buttes Geothermal Area Glass Buttes Geothermal Area (Redirected from Glass Buttes Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Glass Buttes Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (14) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

12

Coffin Butte Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Coffin Butte Biomass Facility Coffin Butte Biomass Facility Jump to: navigation, search Name Coffin Butte Biomass Facility Facility Coffin Butte Sector Biomass Facility Type Landfill Gas Location Benton County, Oregon Coordinates 44.6281686°, -123.3873877° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.6281686,"lon":-123.3873877,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

13

M-25, BUTT WELDS IN PROCESS PIPING  

SciTech Connect

Metal-arc and inert-gas shielded tungsten-arc processes were compared for circumferential butt welding of austenitic stainless steel process pipe. Inert-gas tungsten-arc welding was superior to other techniques. (C.J.G.)

Litman, A.P.

1958-07-10T23:59:59.000Z

14

Square Butte Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Square Butte Electric Coop Square Butte Electric Coop Jump to: navigation, search Name Square Butte Electric Coop Place North Dakota Utility Id 17858 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Square_Butte_Electric_Coop&oldid=411602"

15

Glass Buttes Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Glass Buttes Geothermal Area Glass Buttes Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Glass Buttes Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (14) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

16

Butte Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Butte Electric Coop, Inc Butte Electric Coop, Inc Jump to: navigation, search Name Butte Electric Coop, Inc Place South Dakota Utility Id 2655 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Community Organization Commercial Irrigation pumping service Industrial Irrigation, Off Season (9pm-6pm) Commercial Large Commercial-3Phase Industrial Large Commercial-3Phase with Metered Heat Industrial Municipal Pumping Commercial Residential Residential Residential All-Electric Residential Residential All-Electric Metered Heat Residential

17

Mitchell Butte Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mitchell Butte Geothermal Area Mitchell Butte Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mitchell Butte Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.763,"lon":-117.156,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

18

Microsoft Word - TeakeanButte_CX Memo  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dave Tripp Dave Tripp Project Manager - TEP-CSB-1 Proposed Action: Teakean Butte Radio Station Upgrade Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.19 Microwave, meterological and radio towers; B1.24 Property transfers Location: Township 38 North, Range 1 East, Section 31, Clearwater County, Idaho Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to upgrade analog radio communication equipment with a new digital communication system at the Teakean Butte Radio Site located near Lewiston, Idaho. BPA would replace equipment including a tower, communication building, and propane tank to ensure communication reliability. Teakean Butte is used by several different entities to operate

19

Delcer Butte Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Delcer Butte Geothermal Project Delcer Butte Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Delcer Butte Geothermal Project Project Location Information Coordinates 40.404444444444°, -115.05888888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.404444444444,"lon":-115.05888888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

20

Beneath the Surface.  

E-Print Network (OSTI)

??Beneath the Surface is a collection of seven individual literary nonfiction essays. Five of the essays are personal essays, and three come from the author's (more)

Dienes, Susanna

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "beneath butte mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Microsoft Word - RattlesnakeButte_CX.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dorie Welch Dorie Welch Project Manager - KEWM-4 Proposed Action: Rattlesnake Butte Property Funding. Fish and Wildlife Project No.: 2011-003-00, Contract # BPA-006468 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Real Property transfers for cultural protection, habitat preservation and wildlife management. Location: Monroe Quadrangle, in Lane County, Oregon (near Junction City, Oregon). Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA is proposing to fund the Nature Conservancy (the Conservancy) to acquire 47 acres of land adjacent to a 50-acre parcel to create a total 97-acre parcel that will be known as Rattlesnake Butte. The Conservancy will provide BPA a conservation easement over the entire 97-acre property that will prevent habitat conversion and

22

Square Butte HVDC modulation system field tests  

SciTech Connect

The authors describe field tests conducted at the Square Butte dc system to validate transfer functions of the digital model for dc current and voltage modulation control design. The field tests and digital model results confirm a dominant interarea mode of oscillation of 0.8 hz. Field tests also established spurious responses in rectifier and inverter frequency measurements which appear to be attributable to transducer distortion.

Grund, C.E. (General Electric Co., Schenectady, NY (USA)); Hauer, J.F. (BPA, Portland, OR (US)); Crane, L.P.; Carlson, D.L. (Minnesota Power and Light Co., Duluth, MN (USA)); Wright, S.E. (EPRI, Palo Alto, CA (US))

1990-01-01T23:59:59.000Z

23

Butte City, Idaho: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Butte City, Idaho: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

24

Flow Test At Glass Buttes Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Glass Buttes Area (DOE GTP) Exploration Activity Details Location Glass Buttes Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding...

25

Ground Gravity Survey At Glass Buttes Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Glass Buttes Area (DOE GTP) Exploration...

26

Field Mapping At Glass Buttes Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Glass Buttes Area (DOE GTP) Exploration Activity...

27

Butte Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Springs Geothermal Area Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Butte Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.771138,"lon":-119.114138,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

28

LiDAR At Glass Buttes Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

LiDAR At Glass Buttes Area (DOE GTP) Exploration Activity Details Location Glass Buttes Area Exploration Technique LiDAR Activity Date Usefulness not indicated DOE-funding Unknown...

29

SYSTRAN MT dictionary development  

E-Print Network (OSTI)

SYSTRAN has demonstrated success in the MT field with its long history spanning nearly 30 years. As a general-purpose fully automatic MT system, SYSTRAN employs a transfer approach. Among its several components, large, carefully encoded, high-quality dictionaries are critical to SYSTRAN's translation capability. A total of over 2.4 million words and expressions are now encoded in the dictionaries for twelve source language systems (30 language pairs- one per year!). SYSTRAN'S dictionaries, along with its parsers, transfer modules, and generators, have been tested on huge amounts of text, and contain large terminology databases covering various domains and detailed linguistic rules. Using these resources, SYSTRAN MT systems have successfully served practical translation needs for nearly 30 years, and built a reputation in the MT world for their large, mature dictionaries. This paper describes various aspects of SYSTRAN MT dictionary development as an important part of the development and refinement of SYSTRAN MT systems. There are 4 major sections: 1) Role and Importance of Dictionaries in the SYSTRAN Paradigm describes the importance of coverage and depth in the dictionaries; 2) Dictionary Structure discusses the specifics of

Laurie Gerber; Jin Yang

1997-01-01T23:59:59.000Z

30

Crested Butte, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Crested Butte, Colorado: Energy Resources Crested Butte, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.8697146°, -106.9878231° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8697146,"lon":-106.9878231,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

31

Microsoft Word - AlbionButteRSCommunicationUpgrade-CX.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2011 4, 2011 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearence Memorandum David Tripp - TEP-CSB-1 Proposed Action: Albion Butte Radio Station Communication Upgrade Budget Information: Work Order # 00253466 Task 03 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021: B1.7 "Acquisition, installation, operation, and removal of communication systems..." Location: Cassia County, Idaho - Section 19, Township 11 South, Range 26 East of the Nibbs Creek Quadrangle Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to upgrade the communication building and equipment at BPA's Albion Butte Radio Station located in Cassia County, ID. This project is part of an

32

Butts County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Butts County, Georgia: Energy Resources Butts County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.2691443°, -83.9532571° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.2691443,"lon":-83.9532571,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

33

Red Butte, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Butte, Wyoming: Energy Resources Butte, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8060757°, -106.4341976° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8060757,"lon":-106.4341976,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

34

Box Butte County, Nebraska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Box Butte County, Nebraska: Energy Resources Box Butte County, Nebraska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.1911471°, -103.0817903° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.1911471,"lon":-103.0817903,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

35

Water-Gas Samples At Glass Buttes Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Glass Buttes Area (DOE GTP) Exploration Activity Details Location Glass...

36

Microsoft Word - CX-Silver_Butte_28August2012.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 28, 2012 August 28, 2012 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Frank Weintraub Project Manager - TEP-TPP-1 Proposed Action: Silver Butte Fiber Burial Project Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B.47 Fiber Optic Cable. Location: Kootenai National Forest, Lincoln and Sanders County, Montana Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to bury an approximately 1-mile-long overhead fiber optic line (fiber) segment located along the Noxon-Libby transmission line. Under the Proposed Action, the fiber would be buried within the BPA right-of-way (ROW) and a U.S. Forest Service (USFS) access road. Past snow and ice loading along the segment has resulted in

37

The Western Environmental Technology Office (WETO), Butte, Montana, technology summary  

SciTech Connect

This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. WETO`s environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies.

Not Available

1994-09-01T23:59:59.000Z

38

NIST Open Machine Translation (OpenMT) Evaluation  

Science Conference Proceedings (OSTI)

DARPA TIDES Machine Translation 2004 Evaluation (MT04). Current and Recent DARPA TIDES MT Activities. MT04 takes ...

39

Gas Sampling At Glass Buttes Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Gas Sampling At Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Glass Buttes Area (DOE GTP) Exploration Activity Details Location Glass Buttes Area Exploration Technique Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Gas_Sampling_At_Glass_Buttes_Area_(DOE_GTP)&oldid=689421" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities

40

Category:Billings, MT | Open Energy Information  

Open Energy Info (EERE)

MT MT Jump to: navigation, search Go Back to PV Economics By Location Media in category "Billings, MT" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Billings MT NorthWestern Corporation.png SVFullServiceRestauran... 64 KB SVHospital Billings MT NorthWestern Corporation.png SVHospital Billings MT... 62 KB SVLargeHotel Billings MT NorthWestern Corporation.png SVLargeHotel Billings ... 62 KB SVLargeOffice Billings MT NorthWestern Corporation.png SVLargeOffice Billings... 62 KB SVMediumOffice Billings MT NorthWestern Corporation.png SVMediumOffice Billing... 62 KB SVMidriseApartment Billings MT NorthWestern Corporation.png SVMidriseApartment Bil... 63 KB SVOutPatient Billings MT NorthWestern Corporation.png SVOutPatient Billings ...

Note: This page contains sample records for the topic "beneath butte mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Ultrasonic Acceptance Small Diameter Boiler Tube Butt Weld: Project Status Update  

Science Conference Proceedings (OSTI)

This is an interim report documenting the progress of a multiyear project for developing an alternative ultrasonic testing (UT) acceptance guideline for small diameter boiler tube butt welds.BackgroundHistorically, small diameter boiler tube butt welds have either been examined for defects using radiography or not inspected, with the owner relying only on a hydrostatic pressure test at 1.5 times the design pressure to assess weld quality. This reliance is ...

2013-12-20T23:59:59.000Z

42

Settling of Particles beneath Water Waves  

Science Conference Proceedings (OSTI)

Considered here is the motion of small particles beneath irrotational water waves. The added mass and inertial forces are shown to be an important role in the mean transport of particles. To leading order, particles are transported with a mean ...

Ian Eames

2008-12-01T23:59:59.000Z

43

Geology And A Working Conceptual Model Of The Obsidian Butte (Unit 6)  

Open Energy Info (EERE)

Geology And A Working Conceptual Model Of The Obsidian Butte (Unit 6) Geology And A Working Conceptual Model Of The Obsidian Butte (Unit 6) Sector Of The Salton Sea Geothermal Field, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geology And A Working Conceptual Model Of The Obsidian Butte (Unit 6) Sector Of The Salton Sea Geothermal Field, California Details Activities (2) Areas (1) Regions (0) Abstract: A working conceptual model has been developed for the southwestern portion of the Salton Sea geothermal system, the region encompasing CalEnergy Operating Company's imnent 'Unit 6' field expansion (185 megawatts). The model is based on examination and analysis of several thousand borehole rock samples combined with a wealth of subsurface information made available for the first time from the databases of present

44

Microsoft Word - CX-Redmond-PilotButte-WoodPoleFY12_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2012 3, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Richard Heredia Project Manager - TEP-TPP-1 Proposed Action: Redmond-Pilot Butte No. 1 Wood Pole Replacement Project PP&A Project No.: 2189 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 Additions and modifications to transmission facilities Location: Redmond-Pilot Butte No. 1 transmission line in Deschutes County, Oregon at structures 4/7 and 11/6. Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA is proposing to replace two deteriorating wood pole structures along its Redmond-Pilot Butte No. 1 230-kV transmission line located in Deschutes County, Oregon. The two structures

45

Dormaier and Chester Butte 2007 Follow-up Habitat Evaluation Procedures Report.  

DOE Green Energy (OSTI)

Follow-up habitat evaluation procedures (HEP) analyses were conducted on the Dormaier and Chester Butte wildlife mitigation sites in April 2007 to determine the number of additional habitat units to credit Bonneville Power Administration (BPA) for providing funds to enhance, and maintain the project sites as partial mitigation for habitat losses associated with construction of Grand Coulee Dam. The Dormaier follow-up HEP survey generated 482.92 habitat units (HU) or 1.51 HUs per acre for an increase of 34.92 HUs over baseline credits. Likewise, 2,949.06 HUs (1.45 HUs/acre) were generated from the Chester Butte follow-up HEP analysis for an increase of 1,511.29 habitat units above baseline survey results. Combined, BPA will be credited with an additional 1,546.21 follow-up habitat units from the Dormaier and Chester Butte parcels.

Ashley, Paul R.

2008-01-01T23:59:59.000Z

46

METHOD OF BUTT WELDING SMALL THERMOCOUPLES 0.001 TO 0.010 INCH IN DIAMETER  

SciTech Connect

A method of butt welding thermoeouples 0.001 to 0.010 in. in diameter is described. The thermocouple wires are positioned in a micro-manipulator, and a controlled welding pulse is applied to them. This welding method provides uniform upset welds through a simple preduction technique. (auth)

Stover, C.M.

1960-06-01T23:59:59.000Z

47

Aeromagnetic Survey At Mt St Helens Area (Towle, 1983) | Open Energy  

Open Energy Info (EERE)

Towle, 1983) Towle, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Mt St Helens Area (Towle, 1983) Exploration Activity Details Location Mt St Helens Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes The VLF method has proved useful in mapping the crater and central dome of Mount St. Helens. More detailed and extensive VLF investigations as well as other electrical and electromagnetic studies will be useful in determining the electrical structure of Mount St. Helens in more detail. Electrical and electromagnetic methods would be especially useful in determining the actual electrical conductivity of partial melt beneath the dome. The ability of these methods to determine the correlation of surface features

48

Long Fingers of Heat Beneath Earth's Surface  

NLE Websites -- All DOE Office Websites (Extended Search)

Long Fingers of Heat Long Fingers of Heat Beneath Earth's Surface Long Fingers of Heat Beneath Earth's Surface volcanic-hotspots1.jpg Why it Matters: A key mission for the Office of Basic Energy Science is related to new methods and techniques for geosciences imaging from the atomic scale to the kilometer scale. Geophysical imaging methods are needed to measure and monitor subsurface reservoirs for hydrocarbon production or for carbon dioxide storage resulting from large-scale carbon sequestration schemes. Key Challenges: Development of new approaches for regional and global seismic tomography using high-accuracy numerical schemes that treat wave propagation through complex 3D models of earth structure directly with spectral element methods. Accomplishments: A new, cutting-edge method for global seismic imaging that

49

Microsoft Word - CX-PilotButte-LaPineWoodPoleFY12_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2012 30, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Richard Heredia Project Manager - TEP-TPP-1 Proposed Action: Pilot Butte-La Pine No. 1 Wood Pole Replacement Project PP&A Project No.: 2188 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 Additions and modifications to transmission facilities ... include ... replacement of wood poles. Location: Pilot Butte-La Pine No. 1 transmission line located in Deschutes County, Oregon, at the following structures: Mile Structure 5 7 6 5 7 4 16 7 16 8 17 5 18 1 18 3 21 3 21 8 25 3 30 5 Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA is proposing to replace 12 deteriorating wood pole

50

Microsoft Word - CX-PilotButte-LaPine-WoodPoles-FY13_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2013 3, 2013 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Richard Heredia Project Manager - TEP-TPP-1 Proposed Action: Wood pole replacements on Bonneville Power Administration's (BPA) Pilot Butte-La Pine No. 1 transmission line PP&A Project No.: 2484 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine Maintenance Location: Deschutes County, Oregon, at the following structures: Mile Structure 3 1 3 2 7 3 7 5 9 2 11 3 13 5 13 8 14 1 15 1 16 3 16 5 21 7 21 9 22 2 22 4 22 5 23 5 27 2 Proposed by: BPA Description of the Proposed Action: BPA is proposing to replace 19 deteriorating wood pole structures along its Pilot Butte-La Pine No. 1, 230-kilovolt transmission line located in Deschutes County, Oregon. The 19 structures

51

Nondestructive Evaluation: Inspection and Mitigation of Alloy 82/182 Butt Welds  

Science Conference Proceedings (OSTI)

This report conveys the current status and technical merits of the results derived from the Inspection and Mitigation of Alloy 82/182 Butt Welds project funded by the Materials Executive Oversight Group (MEOG), Materials Reliability Program (MRP), and Nondestructive Evaluation Center (NDEC). The project was constructed and approved for funding to support the utility members in their efforts to meet the commitments set forth in the MRP-169 guideline. It was recognized that there was a gap and mockups woul...

2009-10-20T23:59:59.000Z

52

Materials Reliability Program: Finite-Element Model Validation for Dissimilar Metal Butt-Welds (MRP-316)  

Science Conference Proceedings (OSTI)

Residual stresses imparted by the welding process are a principal factor in the process of primary water stress corrosion cracking (PWSCC) of Alloy 82/182 nickel-alloy dissimilar metal (DM) piping butt welds in pressurized water reactors (PWRs). Analytical models are frequently used to simulate the welding process in order to predict the residual stress distribution in the weld and base material as an input to crack growth calculations. The crack growth calculations, in turn, have demonstrated a high sen...

2011-12-20T23:59:59.000Z

53

Geophysical study of the crust and upper mantle beneath the central Rio Grande rift and adjacent Great Plains and Colorado Plateau  

Science Conference Proceedings (OSTI)

As part of the national hot dry rock (HDR) geothermal program conducted by Los Alamos Scientific Laboratory, a regional deep magnetotelluric (MT) survey of Arizona and New Mexico was performed. The main objective of the MT project was to produce a regional geoelectric contour map of the pervasive deep electrical conductor within the crust and/or upper mantle beneath the Colorado Plateau, Basin and Range Province, and Rio Grande rift. Three MT profiles cross the Jemez lineament. Preliminary one-dimensional analysis of the data suggest the lineament is associated with anomalously high electrical conductivity very shallow in the crust. An MT/audiomagnetotelluric (AMT) study of a 161 km/sup 2/ HDR prospect was performed on the Zuni Indian Reservation, New Mexico. Two-dimensional gravity modeling of a 700-km gravity profile at 34/sup 0/30'N latitude was used to study the crust and upper mantle beneath the Rio Grande rift. Several models of each of three consecutive layers were produced using all available geologic and geophysical constraints. Two short-wavelength anomalies along the gravity profile were analyzed using linear optimization techniques.

Ander, M.E.

1981-03-01T23:59:59.000Z

54

Ground Gravity Survey At Marysville Mt Area (Blackwell) | Open...  

Open Energy Info (EERE)

Ground Gravity Survey At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Ground Gravity Survey Activity Date...

55

Controlled Source Audio MT | Open Energy Information  

Open Energy Info (EERE)

Controlled Source Audio MT Controlled Source Audio MT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Controlled Source Audio MT Details Activities (5) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Magnetotelluric Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Cost Information Low-End Estimate (USD): 1,866.44186,644 centUSD

56

Evidence For Gas And Magmatic Sources Beneath The Yellowstone...  

Open Energy Info (EERE)

Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic Field From Seismic Tomographic Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal...

57

Anomalous shear wave attenuation in the shallow crust beneath...  

Open Energy Info (EERE)

the Coso volcanic field, and are coincident with the epicentral locations of recent earthquake swarms. No anomalous attenuation is seen beneath the Coso volcanic field above about...

58

Marysville Mt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Marysville Mt Geothermal Area Marysville Mt Geothermal Area (Redirected from Marysville Mt Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Marysville Mt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Montana Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

59

DOE Report Assesses Potential for Carbon Dioxide Storage Beneath Federal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Assesses Potential for Carbon Dioxide Storage Beneath Report Assesses Potential for Carbon Dioxide Storage Beneath Federal Lands DOE Report Assesses Potential for Carbon Dioxide Storage Beneath Federal Lands May 14, 2009 - 1:00pm Addthis Washington, DC - As a complementary document to the U.S. Department of Energy's Carbon Sequestration Atlas of the United States and Canada issued in November 2008, the Office of Fossil Energy's National Energy Technology Laboratory has now released a report that provides an initial estimate of the potential to store carbon dioxide (CO2) underneath millions of acres of Federal lands. The report, Storage of Captured Carbon Dioxide Beneath Federal Lands, estimates and characterizes the storage potential that lies beneath some of the more than 400 million acres of Federal land available for lease.

60

A Demonstration System for Capturing Geothermal Energy from Mine Waters  

Open Energy Info (EERE)

System for Capturing Geothermal Energy from Mine Waters System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description Butte, Montana, like many other mining towns that developed because of either hard-rock minerals or coal, is underlain by now-inactive water-filled mines. In Butte's case, over 10,000 miles of underground workings have been documented, but as in many other mining communities these waters are regarded as more of a liability than asset. Mine waters offer several advantages:

Note: This page contains sample records for the topic "beneath butte mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Mt. Baker Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Mt. Baker Geothermal Project Mt. Baker Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Mt. Baker Geothermal Project Project Location Information Coordinates 48.777222222222°, -121.81333333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.777222222222,"lon":-121.81333333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

62

Marysville Mt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Marysville Mt Geothermal Area Marysville Mt Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Marysville Mt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Montana Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

63

Mt Ranier Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mt Ranier Geothermal Area Mt Ranier Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Ranier Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

64

Microsoft Word - Horse_Butte_G0374_Env_ Clearance_Doc.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2011 7, 2011 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Amy Freel Project Manager - TEP-TPP-1 Proposed Action: Cattle Creek Substation (formerly known as Horse Butte Substation) Budget Information: Work Order # 00283812 (TC AUO) and 00283765 (TC) Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.11 "Construction or electric power substations (including switching stations and support facilities) with power delivery at 230-kilovolt (kV) or below, or modification (other than voltage increases) of existing substations and support facilities, ..." Location: Bonneville County, ID near Idaho Falls. Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: In response to Utah Associated Municipal Power

65

Mineral resources of the Devils Playground and Twin Buttes Wilderness study areas, Sweetwater County, Wyoming  

Science Conference Proceedings (OSTI)

The Devils Playground and Twin Buttes Wilderness Study Areas are contiguous, covering an area totalling 26,800 acres in Southwest Wyoming. The study areas have been withdrawn from mining claim location because of the rich oil shale deposits in the region. In addition, Minerals management Service considers the areas to have moderate development potential for sodium (trona), with as much as 1.2 billion tons of inferred resources. The study areas are classic sites for vertebrate fossils, yielding many thousands of specimens now in museums. Chert beds are common, and it is prized by collectors for its banded appearance. The study area shave a high resource potential for undiscovered natural gas. The study areas have a moderate potential for zeolites. A low potential exists for coal resources (coal is present at great depths) and for undiscovered metallic minerals.

Van Loenen, R.E.; Bryant, W.A. (US Geological Survey (US)); Lane, M.E. (US Bureau of Mines (US))

1991-01-01T23:59:59.000Z

66

Dense Water Formation beneath a Time-Dependent Coastal Polynya  

Science Conference Proceedings (OSTI)

Recent modeling studies of dense water formation beneath an idealized steady coastal polynya have provided simple analytical expressions for the maximum density anomaly achievable as a function of the polynya geometry and the imposed surface ...

David C. Chapman

1999-04-01T23:59:59.000Z

67

Microsoft Word - MtRichmond_CX  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Dorie Welch Project Manager - KEWM-4 Proposed Action: Mt. Richmond property funding Fish and Wildlife Project No.: 2011-003-00, BPA-007071 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Real Property transfers for cultural protection, habitat preservation, and wildlife management. Location: Fairdale and Yamhill quadrangles, in Yamhill County, Oregon (near Yamhill, Oregon). Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA is proposing to fund the Yamhill Soil and Water Conservation District's (YSWCD) purchase of the Mt. Richmond property (Property), a 284.66-acre parcel of land located west of the City of Yamhill in Yamhill County Oregon.

68

Mt Peak Utility | Open Energy Information  

Open Energy Info (EERE)

Peak Utility Peak Utility Jump to: navigation, search Name Mt Peak Utility Facility Mt Peak Utility Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Mnt Peak Utility Energy Purchaser Mnt Peak Utility Location Midlothian TX Coordinates 32.42144978°, -97.02427357° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.42144978,"lon":-97.02427357,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

69

Mt Poso Cogeneration | Open Energy Information  

Open Energy Info (EERE)

Poso Cogeneration Poso Cogeneration Jump to: navigation, search Name Mt Poso Cogeneration Place Bakersfield, California Zip 93308 Product California-based project developer for the Mt Poso Cogeneration project near Bakersfield, California. Coordinates 44.78267°, -72.801369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.78267,"lon":-72.801369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

70

Data Acquisition-Manipulation At Marysville Mt Area (Blackwell) | Open  

Open Energy Info (EERE)

Marysville Mt Area (Blackwell) Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful DOE-funding Unknown Notes Heat flow analysis. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Data_Acquisition-Manipulation_At_Marysville_Mt_Area_(Blackwell)&oldid=388982" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs

71

Materials Reliability Program: Welding Residual Stress Dissimilar Metal Butt-Weld Finite Element Modeling Handbook (MRP-317)  

Science Conference Proceedings (OSTI)

The residual stresses imparted by the welding process are a principal factor in the process of primary water stress corrosion cracking (PWSCC) of Alloy 82/182 nickel-alloy (i.e., dissimilar metal) piping butt welds in pressurized water reactors (PWRs). Numerical methods by finite element analyses are frequently used to simulate the welding process in order to predict the residual stress distribution in the weld and base material as an input to crack growth calculations. The crack growth calculations, in ...

2011-12-22T23:59:59.000Z

72

Current Activities Assessing Butt Fusion Joint Integrity in High Density Polyethylene Piping  

SciTech Connect

The Pacific Northwest National Laboratory (PNNL) in Richland, Washington, conducted initial studies to evaluate the effectiveness of nondestructive examinations (NDE) coupled with mechanical testing for assessing butt fusion joint integrity in high density polyethylene (HDPE) pipe. The work provided insightful information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques for detecting lack of fusion (LOF) conditions in the fusion joints. HDPE has been installed on a limited basis in American Society of Mechanical Engineers (ASME) Class 3, buried piping systems at several operating U.S. nuclear power plants and has been proposed for use in new construction. A comparison was made between the results from ultrasonic and microwave nondestructive examinations and the results from mechanical destructive evaluations, specifically the high-speed tensile test and the side-bend test, for determining joint integrity. The data comparison revealed that none of the NDE techniques detected all of the lack-of-fusion conditions that were revealed by the destructive tests. Follow-on work has recently been initiated at PNNL to accurately characterize the NDE responses from machined flaws of varying size and location in PE 4710 materials as well as the LOF condition. This effort is directed at quantifying the ability of volumetric NDE techniques to detect flaws in relation to the critical flaw size associated with joint integrity. A status of these latest investigations is presented.

Crawford, Susan L.; Cinson, Anthony D.; Doctor, Steven R.; Denslow, Kayte M.

2012-09-01T23:59:59.000Z

73

Temporal Velocity Variations beneath the Coso Geothermal Field Observed  

Open Energy Info (EERE)

Velocity Variations beneath the Coso Geothermal Field Observed Velocity Variations beneath the Coso Geothermal Field Observed using Seismic Double Difference Tomography of Compressional and Shear Wave Arrival Times Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Temporal Velocity Variations beneath the Coso Geothermal Field Observed using Seismic Double Difference Tomography of Compressional and Shear Wave Arrival Times Details Activities (1) Areas (1) Regions (0) Abstract: Microseismic imaging can be an important tool for characterizing geothermal reservoirs. Since microseismic sources occur more or less continuously both due to the operations of a geothermal field and the naturally occurring background seismicity, passive seismic monitoring is well suited to quantify the temporal variations in the vicinity of a

74

Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic  

Open Energy Info (EERE)

Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic Field From Seismic Tomographic Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic Field From Seismic Tomographic Imaging Details Activities (1) Areas (1) Regions (0) Abstract: The 3-D P-wave velocity and P- to S-wave velocity ratio structure of the Yellowstone volcanic field, Wyoming, has been determined from local earthquake tomography using new data from the permanent Yellowstone seismic network. We selected 3374 local earthquakes between 1995 and 2001 to invert for the 3-D P-wave velocity (Vp) and P-wave to S-wave velocity ratio (Vp/Vs) structure. Vp anomalies of small size (15_15 km) are reliably

75

The Hydrogeologic Character of the Lower Tuff Confining Unit and the Oak Springs Butte Confining Unit in the Tuff Pile Area of Central Yucca Flat  

SciTech Connect

The lower tuff confining unit (LTCU) in the Yucca Flat Corrective Action Unit (CAU) consists of a monotonous sequence of pervasively zeolitized volcanic tuff (i.e., mostly bedded with lesser nonwelded to poorly welded tuff; not fractured) (Bechtel Nevada, 2006). The LTCU is an important confining unit beneath Yucca Flat because it separates the alluvial and volcanic aquifers, where many underground nuclear tests were conducted, from the regional lower carbonate aquifer. Recent sub-CAU-scale modeling by Los Alamos National Laboratory in the Tuff Pile area of Yucca Flat (Boryta, et al., in review) includes postulated low-porosity, high-permeability zones (i.e., fractured welded-tuff aquifers) within the LTCU. This scenario indicates that such postulated low-porosity, high-permeability zones could provide fast-path lateral conduits to faults, and eventually to the lower carbonate aquifer. A fractured and faulted lower carbonate aquifer is postulated to provide a flow path(s) for underground test-derived contaminants to potential offsite receptors. The ramifications of such a scenario are obvious for groundwater flow and contaminant migration beneath Yucca Flat. This paper describes the reasoning for not including postulated low-porosity, high-permeability zones within the LTCU in the Tuff Pile area or within the LTCU in the Yucca Flat CAU-scale model. Both observational and analytical data clearly indicate that the LTCU in the Tuff Pile area consists of pervasively zeolitic, nonwelded to poorly welded tuffs that are classified as tuff confining units (i.e., high-porosity, low-permeability). The position regarding the LTCU in the Tuff Pile area is summarized as follows: The LTCU in the Tuff Pile area consists of a monotonous sequence of predominantly zeolitic nonwelded to poorly welded tuffs, and thus is accurately characterized hydrogeologically as a tuff confining unit (aquitard) in the Yucca Flat-Climax Mine hydrostratigraphic framework model (Bechtel Nevada, 2006). No welded-tuff (or lava-flow aquifers), referred to as low-porosity, high-permeability zones in Boryta et al. (in review), are present within the LTCU in the Tuff Pile area. Fractures within the LTCU are poorly developed, a characteristic of zeolitic tuffs; and fracture distributions are independent of stratigraphic and lithologic units (Prothro, 2008). Groundwater flow and radionuclide transport will not be affected by laterally extensive zones of significantly higher permeability within the LTCU in the Tuff Pile area. Although not the primary focus of this report, the hydrogeologic character of the Oak Spring Butte confining unit (OSBCU), located directly below the LTCU, is also discussed. The OSBCU is lithologically more diverse, and does include nonwelded to partially welded ash-flow tuffs. However, these older ash-flow tuffs are poorly welded and altered (zeolitic to quartzofeldspathic), and consequently, would tend to have properties similar to a tuff confining unit rather than a welded-tuff aquifer.

Sigmund L. Drellack, Jr., Lance B. Prothro, Jose L. Gonzales, and Jennifer M. Mercadante

2010-07-30T23:59:59.000Z

76

Integrated dense array and transect MT surveying at dixie valley...  

Open Energy Info (EERE)

2007 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Integrated dense array and transect MT surveying at dixie valley geothermal...

77

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating...  

Open Energy Info (EERE)

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating and Revising 100 Years of Studies The USGS published a USGS Professional Paper in 2010 entitled

78

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating...  

Open Energy Info (EERE)

Search Share this page on Facebook icon Twitter icon Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating and Revising 100 Years of Studies Dataset Summary...

79

,"Whitlash, MT Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Whitlash, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

80

,"Havre, MT Natural Gas Pipeline Imports From Canada (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Havre, MT Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2003 ,"Release Date:","172014" ,"Next...

Note: This page contains sample records for the topic "beneath butte mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

,"Babb, MT Natural Gas Pipeline Imports From Canada (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Babb, MT Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

82

,"Sweetgrass, MT Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Sweetgrass, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

83

Controlled Source Audio MT At Roosevelt Hot Springs Area (Combs...  

Open Energy Info (EERE)

Activity Date Usefulness not indicated DOE-funding Unknown Notes "SP, MT, dipole-dipole resistivity, CSAMT; sufficient electrical data may be available" References Jim Combs (1...

84

A Methodology for the Assessment of Unconventional (Continuous) Resources with an Application to the Greater Natural Buttes Gas Field, Utah  

Science Conference Proceedings (OSTI)

The Greater Natural Buttes tight natural gas field is an unconventional (continuous) accumulation in the Uinta Basin, Utah, that began production in the early 1950s from the Upper Cretaceous Mesaverde Group. Three years later, production was extended to the Eocene Wasatch Formation. With the exclusion of 1100 non-productive ('dry') wells, we estimate that the final recovery from the 2500 producing wells existing in 2007 will be about 1.7 trillion standard cubic feet (TSCF) (48.2 billion cubic meters (BCM)). The use of estimated ultimate recovery (EUR) per well is common in assessments of unconventional resources, and it is one of the main sources of information to forecast undiscovered resources. Each calculated recovery value has an associated drainage area that generally varies from well to well and that can be mathematically subdivided into elemental subareas of constant size and shape called cells. Recovery per 5-acre cells at Greater Natural Buttes shows spatial correlation; hence, statistical approaches that ignore this correlation when inferring EUR values for untested cells do not take full advantage of all the information contained in the data. More critically, resulting models do not match the style of spatial EUR fluctuations observed in nature. This study takes a new approach by applying spatial statistics to model geographical variation of cell EUR taking into account spatial correlation and the influence of fractures. We applied sequential indicator simulation to model non-productive cells, while spatial mapping of cell EUR was obtained by applying sequential Gaussian simulation to provide multiple versions of reality (realizations) having equal chances of being the correct model. For each realization, summation of EUR in cells not drained by the existing wells allowed preparation of a stochastic prediction of undiscovered resources, which range between 2.6 and 3.4 TSCF (73.6 and 96.3 BCM) with a mean of 2.9 TSCF (82.1 BCM) for Greater Natural Buttes. A second approach illustrates the application of multiple-point simulation to assess a hypothetical frontier area for which there is no production information but which is regarded as being similar to Greater Natural Buttes.

Olea, Ricardo A., E-mail: olea@usgs.gov [U.S. Geological Survey (United States); Cook, Troy A. [Denver Federal Center (United States); Coleman, James L. [U.S. Geological Survey (United States)

2010-12-15T23:59:59.000Z

85

Materials Reliability Program: Technical Basis for Preemptive Weld Overlays for Alloy 82/182 Butt Welds in PWRs (MRP-169)  

Science Conference Proceedings (OSTI)

Dissimilar metal Alloy 82/182 bimetallic pipe-to-nozzle butt welds (DMWs) have experienced cracking in recent years due to primary water stress corrosion cracking (PWSCC). Although weld overlays have been used primarily as a repair for flawed piping, they also can be applied at locations that have not yet exhibited any cracking but are considered susceptible to PWSCC. An overlay used in this manner is termed a preemptive weld overlay (PWOL). This report provides the technical basis for PWOL overlays for ...

2005-10-25T23:59:59.000Z

86

Mt Signal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Signal Geothermal Area Signal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Signal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.65,"lon":-115.71,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

87

WPA Omnibus Award MT Wind Power Outreach  

DOE Green Energy (OSTI)

The objective of this grant was to further the development of Montana??s vast wind resources for small, medium, and large scale benefits to Montana and the nation. This was accomplished through collaborative work with wind industry representatives, state and local governments, the agricultural community, and interested citizens. Through these efforts MT Dept Environmental Quality (DEQ) was able to identify development barriers, educate and inform citizens, as well as to participate in regional and national dialogue that will spur the development of wind resources. The scope of DEQ??s wind outreach effort evolved over the course of this agreement from the development of the Montana Wind Working Group and traditional outreach efforts, to the current focus on working with the state??s university system to deliver a workforce trained to enter the wind industry.

Brian Spangler, Manager Energy Planning and Renewables

2012-01-30T23:59:59.000Z

88

Data Update for Mt. Tom, Holyoke, MA September 2005  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA September 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for September 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

89

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA March 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for March 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

90

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA June 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for June 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

91

Data Update for Mt. Tom, Holyoke, MA February 2006  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA February 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for February 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

92

Data Update for Mt. Tom, Holyoke, MA January 2007  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA January 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for January 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

93

Data Update for Mt. Tom, Holyoke, MA October 2005  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA October 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for October 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

94

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA June 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for June 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

95

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA March 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for March 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

96

Data Update for Mt. Tom, Holyoke, MA January 2006  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA January 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for December 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

97

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA April 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for April 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

98

Data Update for Mt. Tom, Holyoke, MA January 2008  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA January 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for January 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

99

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA March 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for March 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

Massachusetts at Amherst, University of

100

Data Update for Mt. Tom, Holyoke, MA September 2007  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA September 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for September 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "beneath butte mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA July 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for July 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

Massachusetts at Amherst, University of

102

Data Update for Mt. Tom, Holyoke, MA August 2006  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA August 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for August 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

103

Data Update for Mt. Tom, Holyoke, MA November 2007  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA November 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for November 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

104

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA April 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for April 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

Massachusetts at Amherst, University of

105

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA July 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for July 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

106

Data Update for Mt. Tom, Holyoke, MA November 2005  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA November 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for November 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

107

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA April 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for April 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

108

Data Update for Mt. Tom, Holyoke, MA September 2006  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA September 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for September 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

109

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA May 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for May 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

110

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA July 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for July 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

111

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA May 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for May 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

Massachusetts at Amherst, University of

112

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA June 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for June 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

Massachusetts at Amherst, University of

113

Data Update for Mt. Tom, Holyoke, MA October 2007  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA October 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for October 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

114

Data Update for Mt. Tom, Holyoke, MA February 2008  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA February 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for February 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

115

Data Update for Mt. Tom, Holyoke, MA August 2007  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA August 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for August 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

116

Data Update for Mt. Tom, Holyoke, MA November 2006  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA November 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for November 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

117

Data Update for Mt. Tom, Holyoke, MA October 2006  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA October 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for October 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

118

Data Update for Mt. Tom, Holyoke, MA February 2007  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA February 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for February 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

119

Data Update for Mt. Tom, Holyoke, MA December 2005  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA December 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for December 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

120

NETL: News Release - A Climate Change Solution Beneath our Feet  

NLE Websites -- All DOE Office Websites (Extended Search)

13, 2002 13, 2002 A Climate Change Solution Beneath Our Feet? Energy Department Joins AEP, Battelle to Study Deep Geologic Reservoirs for Greenhouse Gas Storage NEW HAVEN, WV - Deep beneath much of the United States lie rock formations containing waters far too salty for human consumption. Long overlooked, these brine-filled reservoirs are now attracting new interest as possible "storage sites" for greenhouse gases emitted from power plants. Graphic - Map of U.S. Saline Aquifers Deep saline formations underlie much of the United States including many areas where power plants are concentrated. [Click on map for larger image.] The U.S. Department of Energy has given the go-ahead to a research team headed by American Electric Power (AEP) and Battelle to begin studying

Note: This page contains sample records for the topic "beneath butte mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Ground Magnetics At Marysville Mt Area (Blackwell) | Open Energy  

Open Energy Info (EERE)

Ground Magnetics At Marysville Mt Area (Blackwell) Ground Magnetics At Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Ground Magnetics Activity Date Usefulness not useful DOE-funding Unknown Notes A ground magnetic survey located no anomaly with an amplitude of more than 20 or 30 gammas that could be associated with the thermal anomaly, however the magnetic data did outline the Cretaceous stock in great detail and allow the removal from the gravity field of the effect of the stock. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Ground_Magnetics_At_Marysville_Mt_Area_(Blackwell)&oldid=389390"

122

Controlled Source Audio MT At Pilgrim Hot Springs Area (DOE GTP...  

Open Energy Info (EERE)

Controlled Source Audio MT At Pilgrim Hot Springs Area (DOE GTP) Exploration Activity Details Location Pilgrim Hot Springs Area Exploration Technique Controlled Source Audio MT...

123

Controlled Source Audio MT At Soda Lake Area (Combs 2006) | Open...  

Open Energy Info (EERE)

Exploration Technique Controlled Source Audio MT Activity Date Usefulness not indicated DOE-funding Unknown Notes "EM sounding, MT, CSAMT, dipole-dipole resistivity; reservoir...

124

Implementation of ASME Code, Section XI, Code Case N-770, on Alternative Examination Requirements for Class 1 Butt Welds Fabricated with Alloy 82/182  

SciTech Connect

In May 2010, the NRC issued a proposed notice of rulemaking that includes a provision to add a new section to its rules to require licensees to implement ASME Code Case N-770, Alternative Examination Requirements and Acceptance Standards for Class 1 PWR Piping and Vessel Nozzle Butt Welds Fabricated with UNS N06082 or UNS W86182 Weld Filler Material With or Without the Application of Listed Mitigation Activities, Section XI, Division 1, with 15 conditions. Code Case N-770 contains baseline and inservice inspection (ISI) requirements for unmitigated butt welds fabricated with Alloy 82/182 material and preservice and ISI requirements for mitigated butt welds. The NRC stated that application of ASME Code Case N-770 is necessary because the inspections currently required by the ASME Code, Section XI, were not written to address stress corrosion cracking Alloy 82/182 butt welds, and the safety consequences of inadequate inspections can be significant. The NRC expects to issue the final rule incorporating this code case into its regulations in the spring 2011 time frame. This paper discusses the new examination requirements, the conditions that NRC is imposing , and the major concerns with implementation of the new Code Case.

Sullivan, Edmund J.; Anderson, Michael T.

2012-09-17T23:59:59.000Z

125

Mt St Helens Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mt St Helens Geothermal Area Mt St Helens Geothermal Area (Redirected from Mt St Helens Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt St Helens Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

126

3D Mt Resistivity Imaging For Geothermal Resource Assessment And  

Open Energy Info (EERE)

Resistivity Imaging For Geothermal Resource Assessment And Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: 3D Mt Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Details Activities (3) Areas (2) Regions (0) Abstract: MT and TDEM surveys acquired in 2005 were integrated with existing MT and TDEM data recovered from obsolete formats to characterize the geometry of the geothermal reservoir. An interpretation based on the correlation of the 3D MT resistivity with well properties indicated that most of the previous exploration wells had been tarted close to but not in the center of areas tha appeared most likely to be permeable. Such

127

Definition: Controlled Source Audio MT | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Controlled Source Audio MT Jump to: navigation, search Dictionary.png Controlled Source Audio MT Controlled Source Audio-Magnetotellurics (CSAMT) is an active source application of a magnetotelluric survey aimed at providing a more reliable signal and rapid acquisition time relative to a natural source MT measurement.[1] View on Wikipedia Wikipedia Definition Magnetotellurics (MT) is an electromagnetic geophysical method of imaging the earth's subsurface by measuring natural variations of electrical and magnetic fields at the Earth's surface. Investigation depth ranges from 300m below ground by recording higher frequencies down to 10,000m or deeper with long-period soundings. Developed in Russia and

128

Field Mapping At Marysville Mt Area (Blackwell) | Open Energy Information  

Open Energy Info (EERE)

Mt Area (Blackwell) Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Field Mapping Activity Date Usefulness useful DOE-funding Unknown Notes Geologic mapping has outlined a structure which may be a partial control on the high heat flow. The Cretaceous intrusive (outlined by the magnetic data) and the heat flow anomaly occupy a broad dome in the Precambrian rocks, the stock outcropping in the northwest portion of the dome, and the heat flow anomaly restricted to the southwest portion of the dome. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa

129

Mt. St. Helens' Aerosols: Some Tropospheric and Stratospheric Effects  

Science Conference Proceedings (OSTI)

Aerosol optical depth measurements based on the attenuation of direct solar radiation before and after the six major explosive eruptions of Mt. St. Helens during 1980 are presented. These automated measurements are from a site 200 km mostly cut ...

J. J. Michalsky; G. M. Stokes

1983-04-01T23:59:59.000Z

130

MT Energie GmbH Co KG | Open Energy Information  

Open Energy Info (EERE)

Saxony, Germany Zip 27404 Sector Services Product MT-Energie provides both turn-key biogas plants and related components and services. Coordinates 53.295765, 9.27964 Loading...

131

Havre, MT Natural Gas Pipeline Imports From Canada (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Million Cubic Feet) Havre, MT Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA...

132

Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada...  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 2 2013 3 5 4 6 9...

133

Havre, MT Natural Gas Pipeline Imports From Canada (Dollars per...  

Gasoline and Diesel Fuel Update (EIA)

Dollars per Thousand Cubic Feet) Havre, MT Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

134

Storage of Captured Carbon Dioxide Beneath Federal Lands  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage of Captured Carbon Storage of Captured Carbon Dioxide Beneath Federal Lands May 8, 2009 DOE/NETL-2009/1358 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The

135

Observations of the mid-mantle discontinuity beneath Indonesia from S to P converted waveforms  

E-Print Network (OSTI)

Observations of the mid-mantle discontinuity beneath Indonesia from S to P converted waveforms a coherent discontinuity structure beneath Indonesia. Analysis of data recorded by three regional arrays from Indonesia from S to P converted waveforms, Geophys. Res. Lett., 33, L04302, doi:10.1029/2005GL025106. 1

Kawakatsu, Hitoshi

136

Mt. Wachusett Community College Makes Huge Investment in Wind Power |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mt. Wachusett Community College Makes Huge Investment in Wind Power Mt. Wachusett Community College Makes Huge Investment in Wind Power Mt. Wachusett Community College Makes Huge Investment in Wind Power March 14, 2011 - 1:14pm Addthis Mount Wachusett Community College staff Bill Swift, Bob LaBonte, Norm Boudreau, George Couillard and Vestas trainer Bill Fulkerson about to ascend the MWCC north wind turbine | Photo courtesy of GreenOnGreenStreet Mount Wachusett Community College staff Bill Swift, Bob LaBonte, Norm Boudreau, George Couillard and Vestas trainer Bill Fulkerson about to ascend the MWCC north wind turbine | Photo courtesy of GreenOnGreenStreet Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office What will this project do? The turbines are expected to provide an annual savings of approximately $700,000 based on the area's current utility rates.

137

Mt St Helens Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mt St Helens Geothermal Area Mt St Helens Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt St Helens Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

138

Utilizing the geochemical data from the National Uranium Resource Evaluation (NURE) program: an evaluation of the Butte quadrangle, Montana  

Science Conference Proceedings (OSTI)

Some 1370 water and 1951 sediment samples were collected from 1994 locations in the Butte quadrangle, Montana, in 1976 and 1977 by the University of Montana for the Los Alamos Scientific Laboratory (LASL). The LASL analyzed the water samples for uranium and the sediment samples for uranium plus 42 additional elements. The data were then released to the Montana College of Mineral Science and Technology (MCMS and T), which was responsible for the evaluation of the uranium data. The data have subsequently been released by the LASL in an open-file report (Broxton, 1980). Statistical evaluations of the data were undertaken for uranium, copper, lead, zinc, manganese, gold, and silver. The uranium evaluations indicated certain areas in the western part of the quadrangle to be favorable for further investigation (particularly along the Rock Creek), as well as anomalous areas just north of Anaconda. The entire Boulder Batholith area had a high uranium background, but there didn't appear to be any particular site in this area that might be worth pursuing. The multielement evaluations confirmed the known base and precious metal provinces within the quadrangle. A methodology for evaluating data tapes from the National Uranium Resource Evaluation (NURE) program was developed and presented throughout this report. This methodology could be developed further to define areas worth exploring for commodities other than uranium.

Van Eeckhout, E.M.

1980-12-01T23:59:59.000Z

139

Werner Steimle, MT(ASCP) OSU Student Health Services Laboratory  

E-Print Network (OSTI)

Werner Steimle, MT(ASCP) OSU Student Health Services Laboratory Staff Medical Technologist OSU Student Health Services Laboratory Corvallis, OR · 1998 ­ 2007 Section Supervisor, Laboratory Salem Hospital Regional Health Services Salem, OR · 1994 ­ 1998 Lead Medical Technologist/ Oregon

Tullos, Desiree

140

Geologic evidence for a magma chamber beneath Newberry Volcano, Oregon  

SciTech Connect

At Newberry Volcano, central Oregon, more than 0.5 m.y. of magmatic activity, including caldera collapse and renewed caldera-filling volcanism, has created a structural and thermal chimney that channels magma ascent. Holocene rhyolitic eruptions (1) have been confined mainly within the caldera in an area 5 km in diameter, (2) have been very similar in chemical composition, phenocryst mineralogy, and eruptive style, and (3) have occurred as recently as 1300 years ago, with repose periods of 2000--3000 years between eruptions. Holocene basaltic andesite eruptions are widespread on the flanks but are excluded from the area of rhyolitic volcanism. Basaltic andesite in fissures at the edge of the rhyolite area has silicic inclusions and shows mixed basalt-rhyolite magma relations. These geologic relations and the high geothermal gradient that characterizes the lower part of a drill hole in the caldera (U.S. Geological Survey Newberry 2) indicate that a rhyolitic magma chamber has existed beneath the caldera throughout the Holocene. Its longevity probably is a result of intermittent underplating by basaltic magma.

Macleod, N.S.; Sherrod, D.R.

1988-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "beneath butte mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

GRR/Section 13-MT-a - Land Use Assessment | Open Energy Information  

Open Energy Info (EERE)

MT-a - Land Use Assessment < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 13-MT-a - Land Use...

142

Melt zones beneath five volcanic complexes in California: an assessment of  

Open Energy Info (EERE)

Melt zones beneath five volcanic complexes in California: an assessment of Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences Details Activities (5) Areas (5) Regions (0) Abstract: Recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. The areas studied were: (1) Salton Trough, (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent volcanic activity and published indications of crustal melt zones. 23 figs.

143

Anomalous shear wave attenuation in the shallow crust beneath the Coso  

Open Energy Info (EERE)

Anomalous shear wave attenuation in the shallow crust beneath the Coso Anomalous shear wave attenuation in the shallow crust beneath the Coso volcanic region, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Anomalous shear wave attenuation in the shallow crust beneath the Coso volcanic region, California Details Activities (1) Areas (1) Regions (0) Abstract: We use seismograms of local earthquakes to image relative shear wave attenuation structure in the shallow crust beneath the region containing the Coso volcanic-geothermal area of eastern California. SV and P wave amplitudes were measured from vertical component seismograms of earthquakes that occurred in the Coso-southern Sierra Nevada region from July 1983 to 1985. Seismograms of 16 small earthquakes show SV amplitudes which are greatly diminished at some azimuths and takeoff angles,

144

Surface Wave Propagation in Shallow Water beneath an Inhomogeneous Ice Cover  

Science Conference Proceedings (OSTI)

The scattering of flexuralgravity waves in a layer of shallow fluid beneath an ice cover with irregularities is investigated. The irregularities considered are the ice edges, cracks, areas of finely broken ice, and ice ridges. Even this ...

A. V. Marchenko; K. I. Voliak

1997-08-01T23:59:59.000Z

145

Evolution of upper mantle beneath East Asia and the Tibetan Plateau from P-wave tomography  

E-Print Network (OSTI)

The main objective of the research presented in this thesis is to improve our understanding for the evolution of the upper mantle beneath East Asia and the Tibetan Plateau through high resolution P-wave tomography. The ...

Li, Chang, Ph.D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

146

Micro-Earthquake At Marysville Mt Area (Blackwell) | Open Energy  

Open Energy Info (EERE)

Area (Blackwell) Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Micro-Earthquake Activity Date Usefulness not indicated DOE-funding Unknown Notes A seismic ground noise was carried out but the ground noise in the anomaly area (and the surrounding region) was extremely low, approximately 4 orders of magnitude below that observed in the geothermal areas in the Salton Sea between 1-10 Hz (in units of power density). Because of this very low background noise the micro-earthquake survey was possible with instrument gains well in excess of a million. Regional micro-earthquake activity was located within about 15 km of the geothermal area but no micro-earthquakes

147

Mt. Edgecumbe High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Edgecumbe High School Wind Project Edgecumbe High School Wind Project Jump to: navigation, search Name Mt. Edgecumbe High School Wind Project Facility Mt. Edgecumbe High School Sector Wind energy Facility Type Community Wind Location AK Coordinates 57.053928°, -135.356903° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.053928,"lon":-135.356903,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

148

File:INL-geothermal-mt.pdf | Open Energy Information  

Open Energy Info (EERE)

mt.pdf mt.pdf Jump to: navigation, search File File history File usage Montana Geothermal Resources Size of this preview: 728 × 600 pixels. Full resolution ‎(5,100 × 4,200 pixels, file size: 1.99 MB, MIME type: application/pdf) Description Montana Geothermal Resources Sources Idaho National Laboratory Authors Patrick Laney; Julie Brizzee Related Technologies Geothermal Creation Date 2003-11-01 Extent State Countries United States UN Region Northern America States Montana File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:41, 16 December 2010 Thumbnail for version as of 12:41, 16 December 2010 5,100 × 4,200 (1.99 MB) MapBot (Talk | contribs) Automated upload from NREL's "mapsearch" data

149

Thermal And-Or Near Infrared At Marysville Mt Area (Blackwell) | Open  

Open Energy Info (EERE)

Marysville Mt Area (Blackwell) Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness not indicated DOE-funding Unknown Notes No further mention of infrared photography. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Thermal_And-Or_Near_Infrared_At_Marysville_Mt_Area_(Blackwell)&oldid=386636" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties

150

m(T2): The Truth behind the glamour.  

E-Print Network (OSTI)

ar X iv :h ep -p h/ 03 04 22 6v 1 2 3 A pr 2 00 3 Cavendish HEP-2002-02/14 PACS: 14.80.Ly 13.85.Qk mT2 : the truth behind the glamour Alan Barr Christopher Lester Phil Stephens Cavendish Laboratory, University of Cambridge, Madingley Road... .5 % 22.2 % Table 1: The lightest chargino mass, the mass difference, ?M?1 = m?+1 ?m?01 , and two chargino branching ratios for the AMSB-like points discussed in section 4.2. The hadronic branching ratios can be found in [7]. 4.2 Case 2 AMSB...

Barr, Alan; Lester, Christopher G; Stephens, Phil

151

Inferences On The Hydrothermal System Beneath The Resurgent Dome In Long  

Open Energy Info (EERE)

Inferences On The Hydrothermal System Beneath The Resurgent Dome In Long Inferences On The Hydrothermal System Beneath The Resurgent Dome In Long Valley Caldera, East-Central California, Usa, From Recent Pumping Tests And Geochemical Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Inferences On The Hydrothermal System Beneath The Resurgent Dome In Long Valley Caldera, East-Central California, Usa, From Recent Pumping Tests And Geochemical Sampling Details Activities (6) Areas (1) Regions (0) Abstract: Quaternary volcanic unrest has provided heat for episodic hydrothermal circulation in the Long Valley caldera, including the present-day hydrothermal system, which has been active over the past 40 kyr. The most recent period of crustal unrest in this region of east-central California began around 1980 and has included periods of

152

A Temperature Model Of The Crust Beneath The Barents Sea- Investigations  

Open Energy Info (EERE)

Model Of The Crust Beneath The Barents Sea- Investigations Model Of The Crust Beneath The Barents Sea- Investigations Along Geotraverses Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Temperature Model Of The Crust Beneath The Barents Sea- Investigations Along Geotraverses Details Activities (0) Areas (0) Regions (0) Abstract: 2D and 3D modeling of the geothermal field was carried out along seven extended geotraverses in the Barents Sea compiled on the basis of CMP profiling and results of deep drilling. Depths of the zone characterized by catagenetic transformation of organic matter were calculated for different areas of the sedimentary basin. The minimal depth is confined to the South Barents Basin with the highest hydrocarbon resource potential established by geological exploration. In 3D models, this area is distinguished by a

153

Preliminary results for the abundance of multicored EAS at Mt. Norikura  

Science Conference Proceedings (OSTI)

Multicore type EAS was observed by 54 m2 spark chamber at Mt. Norikura (740 g/?cm2). As a preliminary result

Norikura Air Shower Group

1979-01-01T23:59:59.000Z

154

Modeling Tidal Current Profiles and Vertical Mixing beneath FilchnerRonne Ice Shelf, Antarctica  

Science Conference Proceedings (OSTI)

One of the warmest water masses beneath FilchnerRonne Ice Shelf (FRIS) is dense, high salinity shelf water (HSSW) that flows into the sub-ice-shelf cavity from the ice front and occupies the lower portion of the water column. A one-dimensional ...

Keith Makinson

2002-01-01T23:59:59.000Z

155

Adaptation of an Isopycnic Coordinate Ocean Model for the Study of Circulation beneath Ice Shelves  

Science Conference Proceedings (OSTI)

Much of the Antarctic coastline comprises large, floating ice shelves, beneath which waters from the open ocean circulate. The interaction of the seawater with the base of these ice shelves has a bearing both on the rate at which Antarctic Bottom ...

David M. Holland; Adrian Jenkins

2001-08-01T23:59:59.000Z

156

Spatial variation of seismic b-values beneath Makushin Volcano, Unalaska Island, Alaska  

E-Print Network (OSTI)

19 April 2006 Editor: S. King Abstract The frequency­magnitude distribution was spatially mapped]. Makushin has had several small steam and ash emissions since it's dis- covery. Little is known about the magma distribution in the crust beneath Makushin. The purpose of the study is to provide constraints

Gao, Stephen Shangxing

157

Distribution of magma beneath the Toba caldera complex, north Sumatra, Indonesia, constrained by  

E-Print Network (OSTI)

Distribution of magma beneath the Toba caldera complex, north Sumatra, Indonesia, constrained and Geophysical Agency, Jakarta, Indonesia R. McCaffrey, D. A. Wark, and S. W. Roecker Department of Earth@rpi.edu) Fauzi and G. Ibrahim Meteorological and Geophysical Agency, Jakarta, Indonesia (fauzi@bmg.go.id) Sukhyar

McCaffrey, Robert

158

Mt Wheeler Power, Inc (Utah) | Open Energy Information  

Open Energy Info (EERE)

Utah Utah Utility Id 13073 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0786/kWh Commercial: $0.0810/kWh Industrial: $0.0610/kWh The following table contains monthly sales and revenue data for Mt Wheeler Power, Inc (Utah). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 11.289 138.131 203 9.256 101.356 114 1.61 12.38 14 22.155 251.867 331

159

Village of Mt Horeb, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Horeb, Wisconsin (Utility Company) Horeb, Wisconsin (Utility Company) Jump to: navigation, search Name Mt Horeb Village of Place Wisconsin Utility Id 13036 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership

160

Mt Carmel Public Utility Co | Open Energy Information  

Open Energy Info (EERE)

Public Utility Co Public Utility Co Jump to: navigation, search Name Mt Carmel Public Utility Co Place Illinois Utility Id 13032 Utility Location Yes Ownership I NERC Location SERC NERC SERC Yes ISO MISO Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Service Commercial Commercial Electric Space Heating Service Commercial Large Light and Power Electric Service - Less Than 10 MW Industrial Large Light and Power Electric Service - equal or greater than 10 MW

Note: This page contains sample records for the topic "beneath butte mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Rule-based partial MT using enhanced finite-state grammars in NooJ  

Science Conference Proceedings (OSTI)

The paper argues for the viability and utility of partial machine translation (MT) in multilingual information systems. The notion of partial MT is modelled on partial parsing and involves a bottomup pattern matching approach where the finite-state transducers ... Keywords: NooJ system, finite-state language processing, local grammars, machine translation, multilingual information systems

Tams Vradi

2007-06-01T23:59:59.000Z

162

Self Potential At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) |  

Open Energy Info (EERE)

Self Potential At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Self Potential At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Exploration Activity Details Location Mt Princeton Hot Springs Area Exploration Technique Self Potential Activity Date Usefulness useful DOE-funding Unknown Notes Used to map fracture and fluid flow patterns. References K. Richards, A. Revil, A. Jardani, F. Henderson, M. Batzle, A. Haas (2010) Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Colorado, Using Geoelectrical Methods Retrieved from "http://en.openei.org/w/index.php?title=Self_Potential_At_Mt_Princeton_Hot_Springs_Area_(Richards,_Et_Al.,_2010)&oldid=388680"

163

Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) | Open  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A dipole-dipole resistivity survey of the area was carried out with estimated penetration up to 700 meters and no indication of low values of resistivity were found associated with the thermal anomaly. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Marysville_Mt_Area_(Blackwell)&oldid=510539

164

GRR/Section 7-MT-a - Energy Facility Siting | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 7-MT-a - Energy Facility Siting GRR/Section 7-MT-a - Energy Facility Siting < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-MT-a - Energy Facility Siting 07MTAEnergyFacilitySiting (6).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Major Facility Siting Act ARM Title 17 Triggers None specified Click "Edit With Form" above to add content 07MTAEnergyFacilitySiting (6).pdf 07MTAEnergyFacilitySiting (6).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Montana Major Facility Siting Act governs the siting of energy facilities in Montana. 7-MT-a.1 to 7-MT-a.2 - Does the Power Plant Have a Production Capacity of

165

A Preparation Zone For Volcanic Explosions Beneath Naka-Dake Crater, Aso  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » A Preparation Zone For Volcanic Explosions Beneath Naka-Dake Crater, Aso Volcano, As Inferred From Magnetotelluric Surveys Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Preparation Zone For Volcanic Explosions Beneath Naka-Dake Crater, Aso Volcano, As Inferred From Magnetotelluric Surveys Details Activities (0) Areas (0) Regions (0) Abstract: The 1st crater of Naka-dake, Aso volcano, is one of the most active craters in Japan, and known to have a characteristic cycle of activity that consists of the formation of a crater lake, drying-up of the

166

Mt Princeton Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Princeton Hot Springs Geothermal Area Princeton Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Princeton Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.73166667,"lon":-106.17,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

167

Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences  

DOE Green Energy (OSTI)

Recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. The areas studied were: (1) Salton Trough, (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent volcanic activity and published indications of crustal melt zones. 23 figs.

Goldstein, N.E.; Flexser, S.

1984-12-01T23:59:59.000Z

168

MT3D: a 3 dimensional magnetotelluric modeling program (user's guide and documentation for Rev. 1)  

DOE Green Energy (OSTI)

MT3D.REV1 is a non-interactive computer program written in FORTRAN to do 3-dimensional magnetotelluric modeling. A 3-D volume integral equation has been adapted to simulate the MT response of a 3D body in the earth. An integro-difference scheme has been incorporated to increase the accuracy. This is a user's guide for MT3D.REV1 on the University of Utah Research Institute's (UURI) PRIME 400 computer operating under PRIMOS IV, Rev. 17.

Nutter, C.; Wannamaker, P.E.

1980-11-01T23:59:59.000Z

169

Soil carbon dynamics beneath switchgrass as indicated by stable isotope analysis  

Science Conference Proceedings (OSTI)

Surface (0--40 cm) soil organic carbon (SOC) dynamics were studied beneath four switchgrass (Panicum virgatum L.) field trails in the southeastern US. Soil organic carbon was partitioned into particulate organic matter (POM) and mineral-associated organic matter (MOM). Most (75--90%) of the SOC at each study site was affiliated with MOM (<0.053 mm). Changes in stable carbon isotope ratios were used to derive carbon inputs to and losses from POM and MOM at each site. Inventories of existing SOC and new C{sub 4}-derived SOC beneath switchgrass decreased with increasing soil depth. Approximately 5 yr after establishment, 19 to 31% of the existing SOC inventories beneath switchgrass had been derived from new C{sub 4}-carbon inputs. Calculated turnover times of POM and MOM ranged from 2.4 to 4.3 yr and 26 to 40 yr, respectively. The turnover time of SOC in the POM fraction increased with decreasing mean annual temperature. A simple, two-compartment model was parameterized to predict the potential for soil carbon sequestration under switchgrass. An example calculation with the model indicated a measurable and verifiable recovery of soil carbon (=12% increase) on degraded lands through one decade of switchgrass production. The potential to sequester carbon through switchgrass cultivation will depend on initial soil carbon inventories, prevailing climate, soil types and site management.

Garten, C.T. Jr.; Wullschleger, S.D.

2000-04-01T23:59:59.000Z

170

Soil carbon dynamics beneath switchgrass as indicated by stable isotope analysis  

Science Conference Proceedings (OSTI)

Surface (0-40 cm) soil organic carbon (SOC) dynamics were studied beneath four switchgrass (Panicum virgatum L.) field trials in the southeastern United States. Soil organic carbon was partitioned into particulate organic matter (POM) and mineral-associated organic matter (MOM). Most (75-90%) of the SOC at each study site was affiliated with MOM (<0.053 mm). Changes in stable carbon isotope ratios were used to derive carbon inputs to and losses from POM and MOM at each site. Inventories of existing SOC and new C4-derived SOC beneath switchgrass decreased with increasing soil depth. Approximately 5 yr after establishment, 19 to 31% of the existing SOC inventories beneath switchgrass had been derived from new C{sub 4}-carbon inputs. Calculated turnover times of POM and MOM ranged from 2.4 to 4.3 yr and 26 to 40 yr, respectively. The turnover time of SOC in the POM fraction increased with decreasing mean annual temperature. A simple, two-compartment model was parameterized to predict the potential for soil carbon sequestration under switchgrass. An example calculation with the model indicated a measurable and verifiable recovery of soil carbon ({approx}12% increase) on degraded lands through one decade of switchgrass production. The potential to sequester carbon through switchgrass cultivation will depend on initial soil carbon inventories, prevailing climate, soil type, and site management.

Garten Jr, Charles T [ORNL; Wullschleger, Stan D [ORNL

2000-04-01T23:59:59.000Z

171

Salinity and hydrodynamics of the Holocene and upper Pleistocene beneath the Louisiana wetlands from electrical measurements  

Science Conference Proceedings (OSTI)

A conceptual hydrodynamic model in the Holocene and upper Pleistocene beneath the Louisiana wetlands is described in terms of safety distributions. Porewater safety is calculated from electrical measurements, including resistivity soundings, electric logs, and electromagnetic profiling. Electrical measurements support the primary, basin-wide groundwater flow model; however, the data also indicate secondary contributions from expulsion of fluids under geopressure along active growth faults and from original waters of deposition. Expulsion of water from growth faults has been described previously for deeper sections of the Pleistocene, but has not been reported for the Holocene or upper Pleistocene beneath the Louisiana wetlands. Porewater chemistry variations beneath the coastal wetlands are a consequence of the following (in order of importance): (1) environment of deposition; (2) a basin-wide, regional flow system; (3) expulsion from deep-seated growth faults; and (4) pore water extrusion due to compaction. Water chemistry in Holocene clays and muds is influenced primarily by the deposition environment In Pleistocene sands, the chemistry is a function of the other three factors.

McGinnis, L.D.; Thompson, M.D.; Kuecher, G.J.; Wilkey, P.L. [Argonne National Lab., IL (United States); Isaacson, H.R. [Gas Research Inst., Chicago, IL (United States)

1995-06-01T23:59:59.000Z

172

Analysis of Fracture in Cores from the Tuff Confining Unit beneath Yucca Flat, Nevada Test Site  

SciTech Connect

The role fractures play in the movement of groundwater through zeolitic tuffs that form the tuff confining unit (TCU) beneath Yucca Flat, Nevada Test Site, is poorly known. This is an important uncertainty, because beneath most of Yucca Flat the TCU lies between the sources of radionuclide contaminants produced by historic underground nuclear testing and the regional carbonate aquifer. To gain a better understanding of the role fractures play in the movement of groundwater and radionuclides through the TCU beneath Yucca Flat, a fracture analysis focusing on hydraulic properties was performed on conventional cores from four vertical exploratory holes in Area 7 of Yucca Flat that fully penetrate the TCU. The results of this study indicate that the TCU is poorly fractured. Fracture density for all fractures is 0.27 fractures per vertical meter of core. For open fractures, or those observed to have some aperture, the density is only 0.06 fractures per vertical meter of core. Open fractures are characterized by apertures ranging from 0.1 to 10 millimeter, and averaging 1.1 millimeter. Aperture typically occurs as small isolated openings along the fracture, accounting for only 10 percent of the fracture volume, the rest being completely healed by secondary minerals. Zeolite is the most common secondary mineral occurring in 48 percent of the fractures observed.

Lance Prothro

2008-03-01T23:59:59.000Z

173

3-D Density Model Of Mt Etna Volcano (Southern Italy) | Open Energy  

Open Energy Info (EERE)

3-D Density Model Of Mt Etna Volcano (Southern Italy) 3-D Density Model Of Mt Etna Volcano (Southern Italy) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 3-D Density Model Of Mt Etna Volcano (Southern Italy) Details Activities (0) Areas (0) Regions (0) Abstract: A detailed density model of Mt. Etna and its surrounding areas has been evaluated using a 3-D inversion of the gravimetric data acquired in the 1980's. Several high-density and low-density bodies are found, penetrating from shallow depths as far down as 12 km bsl. A positive correlation (in terms of location, extent, density, and velocity) is established between several anomalies of the density model and features identified in previously published seismic tomographies. A prominent high-density body extending down to 7 km bsl is recognized in the southern

174

Thermal And-Or Near Infrared At Mt Ranier Area (Frank, 1995) | Open Energy  

Open Energy Info (EERE)

Thermal And-Or Near Infrared At Mt Ranier Area Thermal And-Or Near Infrared At Mt Ranier Area (Frank, 1995) Exploration Activity Details Location Mt Ranier Area Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness useful DOE-funding Unknown Notes Infrared images acquired through joint US. Department of Energy and U.S. Geological Survey efforts (Kieffer et al., 1982) show a representative pattern of heat emission from the summit area (Fig. 5). References David Frank (1995) Surficial Extent And Conceptual Model Of Hydrothermal System At Mount Rainier, Washington Retrieved from "http://en.openei.org/w/index.php?title=Thermal_And-Or_Near_Infrared_At_Mt_Ranier_Area_(Frank,_1995)&oldid=386481" Categories: Exploration Activities DOE Funded Activities What links here Related changes

175

GRR/Section 6-MT-e - Floodplain Development Permit | Open Energy  

Open Energy Info (EERE)

6-MT-e - Floodplain Development Permit 6-MT-e - Floodplain Development Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-MT-e - Floodplain Development Permit 06MTEFloodplainDevelopmentPermit (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Federal Emergency Management Agency Triggers None specified Click "Edit With Form" above to add content 06MTEFloodplainDevelopmentPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Anyone planning new development within a designated Special Flood Hazard Areas (SFHA). Check with local floodplain [www.mtfloodplain.mt.gov

176

Integrated dense array and transect MT surveying at dixie valley geothermal  

Open Energy Info (EERE)

dense array and transect MT surveying at dixie valley geothermal dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal alteration and deep fluid sources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Integrated dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal alteration and deep fluid sources Authors Philip E. Wannamaker, William M. Doerner and Derrick P. Hasterok Conference proceedings, 32th workshop on geothermal reservoir Engineering, Stanford University; Stanford University; 2007 Published Publisher Not Provided, 2007 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Integrated dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal

177

A Portable Elf-Mt System For Shallow Resistivity Sounding | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » A Portable Elf-Mt System For Shallow Resistivity Sounding Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Portable Elf-Mt System For Shallow Resistivity Sounding Details Activities (0) Areas (0) Regions (0) Abstract: In view of recent extensive investigation of shallow resistivity structure for active fault studies and geothermal exploration, we developed a portable magnetotelluric (MT) system for the extremely low frequency (ELF) range. The system aims primarily at making real-time analyses of MT data at the so-called Schumann resonance frequencies of ~ 8, 14 and 20 Hz.

178

Atmospheric Carbon Dioxide Record from In Situ Measurements at Mt. Cimone  

NLE Websites -- All DOE Office Websites (Extended Search)

Mt. Cimone Mt. Cimone Atmospheric Carbon Dioxide Record from In Situ Measurements at Mt. Cimone graphics Graphics data Data Investigators Tiziano Colombo and Riccardo Santaguida Italian Meteorological Service, Via delle Ville, 100-41029 Sestola (MO), Italy Period of Record 1979-1997 Methods Continuous atmospheric CO2 measurements have been carried out at Mt. Cimone since 1979. Since December 1988, air samples have also been collected approximately once per week in a pair of 2-L, electropolished, stainless steel cylindrical flasks. From 1979 until December 1988, a Hartmann and Braun URAS-2T NDIR gas analyzer was used for CO2 determinations. Currently, CO2 determinations are made through the use of a Siemens Ultramat-5E NDIR gas analyzer. Water vapor is eliminated by passing the air through a U-tube

179

Rock Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Information  

Open Energy Info (EERE)

Mt Ranier Area (Frank, 1995) Mt Ranier Area (Frank, 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Mt Ranier Area (Frank, 1995) Exploration Activity Details Location Mt Ranier Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes This paper relies primarily on minerals, gases, and water found in surficial deposits to construct a conceptual model for Mount Rainier that considers the following factors: - Locations of hydrothermal leakage at the surface; - Structures that provide permeable paths of fluid egress to the surface; - Amount of excess heat discharge; - Composition of surficial thermal fluids; - Composition, guided by mineralogy, of subsurface thermal fluids. Analytical data used as a basis for the model are from samples

180

A Large Self-Potential Anomaly And Its Changes On The Quiet Mt Fuji, Japan  

Open Energy Info (EERE)

Self-Potential Anomaly And Its Changes On The Quiet Mt Fuji, Japan Self-Potential Anomaly And Its Changes On The Quiet Mt Fuji, Japan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Large Self-Potential Anomaly And Its Changes On The Quiet Mt Fuji, Japan Details Activities (0) Areas (0) Regions (0) Abstract: Self-potential (SP) surveys were carried out on Mt. Fuji volcano, Japan, and an intense positive anomaly (about 2000 mV) was found in the summit area. The positive SP anomaly was stable on 2001 and 2002, but increased 150 mV in amplitude on September 12, 2003, and suddenly decreased 300 mV two weeks later. This amplitude change coincides with the emergence of the fumaroles, which appeared for the first time in 40 years, on the east-northeast flank 6 km apart from the summit. The SP anomaly is thought

Note: This page contains sample records for the topic "beneath butte mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

GRR/Section 1-MT-a - Land Use Considerations | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 1-MT-a - Land Use Considerations GRR/Section 1-MT-a - Land Use Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 1-MT-a - Land Use Considerations 01MTALandUseConsiderations.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 01MTALandUseConsiderations.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Add Text Print PDF Retrieved from "http://en.openei.org/w/index.php?title=GRR/Section_1-MT-a_-_Land_Use_Considerations&oldid=685537" Categories: Regulatory Roadmap State Sections Geothermal Regulatory Roadmap Sections

182

Missing Stratospheric Ozone Decrease at Southern Hemisphere Middle Latitudes after Mt. Pinatubo: A Dynamical Perspective  

Science Conference Proceedings (OSTI)

Although large total ozone decreases occurred in the Northern Hemisphere extratropics in the years after the volcanic eruption of Mt. Pinatubo that are generally attributed to the eruption, comparable decreases did not emerge in the Southern ...

C. Schnadt Poberaj; J. Staehelin; D. Brunner

2011-09-01T23:59:59.000Z

183

GRR/Section 6-MT-f - Short-term Water Quality Standard for Turbidity...  

Open Energy Info (EERE)

GRRSection 6-MT-f - Short-term Water Quality Standard for Turbidity (318 Authorization) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home...

184

GRR/Section 14-MT-d - 401 Water Quality Certification | Open...  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon GRRSection 14-MT-d - 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY...

185

Port of Morgan, MT Natural Gas Pipeline Exports to Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

Million Cubic Feet) Port of Morgan, MT Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

186

Port of Morgan, MT Natural Gas Pipeline Exports to Canada (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Dollars per Thousand Cubic Feet) Port of Morgan, MT Natural Gas Pipeline Exports to Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

187

Monitoring and Targeting (M&T): A Low Investment, Low Risk Approach to Energy Cost Savings  

E-Print Network (OSTI)

Monitoring and Targeting (M&T) is a disciplined approach to energy management that ensures that energy resources are used to their maximum economic advantage. M&T serves two principal functions: Ongoing, day-to-day control of energy use Planned improvements in energy efficiency Key elements of an M&T program include: Measurement of utility (steam, fuel, power) consumption levels The establishment of consumption targets that take variations in key variables (e.g., throughput, conversion, product quality...etc.) into account Comparison of actual vs. target energy usage "Exception reports" to highlight areas experiencing unusually good or unusually poor performance An established protocol, involving both management and operating personnel, for reviewing and acting upon the energy information available. Tracking and reporting of the savings achieved Periodic review and reassessment of the energy targets. This paper briefly reviews key M&T concepts and their application in industrial settings. Practical aspects of program implementation -such as data entry, target setting, report generation, software requirements, and personnel orientation and training -are discussed. Representative savings produced by M&T in a variety of plant types also are presented. These savings typically are achieved with little or no capital investment.

McMullan, A.; Rutkowski, M.; Karp, A.

2001-05-01T23:59:59.000Z

188

GRR/Section 4-MT-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 4-MT-a - State Exploration Process GRR/Section 4-MT-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-MT-a - State Exploration Process 04MTAStateExplorationProcess (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Montana Board of Oil and Gas Conservation Regulations & Policies ARM 17.20.202: Geothermal Exploration Plan ARM 17.20.203: Initial Field Report ARM 17.20.204: Periodic Field Report ARM 17.20.205: Final Field Report ARM 17.20.206: Geological Report MCA 82-1-103: Notice of Intent MCA 82-1-104: Bond MCA 82-1-105: Permit Issuance MCA 82-1-106: NOI Forwarded MCA 82-1-107: Notice to Surface Owner MCA 82-1-108: Record of Work Performed Triggers

189

GRR/Section 14-MT-b - MPDES Permitting Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 14-MT-b - MPDES Permitting Process GRR/Section 14-MT-b - MPDES Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-MT-b - MPDES Permitting Process 14MTBMPDESPermittingProcess.pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality United States Environmental Protection Agency Regulations & Policies MCA 75-5-402: Duties of MDEQ MCA 75-5-403: Denial, Modification, Review 75-5-611: Violation, Hearing Triggers None specified Click "Edit With Form" above to add content 14MTBMPDESPermittingProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

190

Direct-Current Resistivity Survey At Mt Princeton Hot Springs Area  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity Survey At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Exploration Activity Details Location Mt Princeton Hot Springs Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Used to map fracture and fluid flow patterns. References K. Richards, A. Revil, A. Jardani, F. Henderson, M. Batzle, A. Haas (2010) Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs,

191

GRR/Section 14-MT-e - Groundwater Pollution Control System | Open Energy  

Open Energy Info (EERE)

MT-e - Groundwater Pollution Control System MT-e - Groundwater Pollution Control System < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-MT-e - Groundwater Pollution Control System 14MTEGroundwaterPollutionControlSystemPermit (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Water Quality Act (Montana Codes Annotated 75-5-101 et seq.) Administrative Rules of Montana 17.30.1001 et seq. Triggers None specified Click "Edit With Form" above to add content 14MTEGroundwaterPollutionControlSystemPermit (1).pdf 14MTEGroundwaterPollutionControlSystemPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

192

GRR/Section 20-MT-a - Well Abandonment Process | Open Energy Information  

Open Energy Info (EERE)

20-MT-a - Well Abandonment Process 20-MT-a - Well Abandonment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 20-MT-a - Well Abandonment Process 20MTAWellAbandonmentProcess.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Regulations & Policies Rule 36.21.671 - Abandonment of Flowing Wells Rule 36.21.810 - Abandonment Rule Chapter 36.21 Board of Water Well Contractors Triggers None specified Click "Edit With Form" above to add content 20MTAWellAbandonmentProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Montana requires the employment of particular engineering standards when

193

Geothermal Literature Review At Mt Ranier Area (Frank, 1995) | Open Energy  

Open Energy Info (EERE)

Geothermal Literature Review At Mt Rainier Area Geothermal Literature Review At Mt Rainier Area (Frank, 1995) Exploration Activity Details Location Mt Rainier Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes This paper relies primarily on minerals, gases, and water found in surficial deposits to construct a conceptual model for Mount Rainier that considers the following factors: - Locations of hydrothermal leakage at the surface; - Structures that provide permeable paths of fluid egress to the surface; - Amount of excess heat discharge; - Composition of surficial thermal fluids; - Composition, guided by mineralogy, of subsurface thermal fluids. Analytical data used as a basis for the model are from samples collected during field investigations in 1982-1985 (Frank, 1985), whereas

194

GRR/Section 17-MT-b - Montana Stream Protection Act (SPA 124 Permit) | Open  

Open Energy Info (EERE)

GRR/Section 17-MT-b - Montana Stream Protection Act (SPA 124 Permit) GRR/Section 17-MT-b - Montana Stream Protection Act (SPA 124 Permit) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 17-MT-b - Montana Stream Protection Act (SPA 124 Permit) 17MTBMontanaStreamProtectionActSPA124Permit.pdf Click to View Fullscreen Contact Agencies Montana Fish, Wildlife & Parks Regulations & Policies MCA 87-5-501 et seq Montana Stream Protection Triggers None specified Click "Edit With Form" above to add content 17MTBMontanaStreamProtectionActSPA124Permit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Montana has a policy to preserve fish and wildlife habitat as well as

195

GRR/Section 15-MT-a - Air Quality Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 15-MT-a - Air Quality Permit GRR/Section 15-MT-a - Air Quality Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-MT-a - Air Quality Permit 15MTAAirQualityPermit (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated 75-2 Administrative Rules of Montana 17.8 Triggers None specified Click "Edit With Form" above to add content 15MTAAirQualityPermit (1).pdf 15MTAAirQualityPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Montana Department of Environmental Quality (DEQ) requires a Montana Air Permit to construct and operate a new or modified source of air

196

GRR/Section 3-MT-a - State Geothermal Resource Lease | Open Energy  

Open Energy Info (EERE)

3-MT-a - State Geothermal Resource Lease 3-MT-a - State Geothermal Resource Lease < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-a - State Geothermal Resource Lease 03MTAStateGeothermalResourceLease.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Regulations & Policies Rule 36.25.404 Triggers None specified Click "Edit With Form" above to add content 03MTAStateGeothermalResourceLease.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart is intended to document the process behind the geothermal resource lease in Montana. The procedure is outlined in Rule 36.25.404.

197

GRR/Section 5-MT-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

GRR/Section 5-MT-a - Drilling and Well Development GRR/Section 5-MT-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-MT-a - Drilling and Well Development 05MTADrillingAndWellDevelopment (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana Department of Environmental Quality Regulations & Policies MCA 37-43-104: Monitoring Wells MCA 37-43-302: License Requirements MCA 37-43-306: Bonding Requirements Triggers None specified Click "Edit With Form" above to add content 05MTADrillingAndWellDevelopment (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

198

RECIPIENT:MT DEQ u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MT DEQ MT DEQ u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlVIINATION PROJECT TITLE: Montana FormauJ SEP Page 1 of2 STATE: MT Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number em Number DE-FOA000643 NT43199 GF0-Q043199-OO1 Based on my review ofthe inrormation concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.IA), I have made the following determination: ex. EA, [IS APPENDIX AND NUMBER: Description: A9 Information gathering, analysis, and dissemination Information gathering (induding, but not limited to, literature surveys, inventories, site visits, and audits), data analysis (including, but not limited to, computer modeling), document preparation

199

GRR/Section 6-MT-b - Construction Storm Water Permit | Open Energy  

Open Energy Info (EERE)

MT-b - Construction Storm Water Permit MT-b - Construction Storm Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-MT-b - Construction Storm Water Permit 06MTBConstructionStormWaterPermit (7).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated 75-5 [ARM 17.30.1101] Triggers None specified Click "Edit With Form" above to add content 06MTBConstructionStormWaterPermit (7).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Montana regulates water quality under Montana Code Annotated 75-5. The

200

GRR/Section 12-MT-a - Flora & Fauna Considerations | Open Energy  

Open Energy Info (EERE)

GRR/Section 12-MT-a - Flora & Fauna Considerations GRR/Section 12-MT-a - Flora & Fauna Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 12-MT-a - Flora & Fauna Considerations 12MTAFloraFaunaConsiderations (2).pdf Click to View Fullscreen Contact Agencies Montana Fish, Wildlife & Parks Regulations & Policies Commercial Use Administrative Rules Triggers None specified Click "Edit With Form" above to add content 12MTAFloraFaunaConsiderations (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart and the following content outlines the flora and fauna considerations that are specific to Montana and in addition to federal

Note: This page contains sample records for the topic "beneath butte mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

GRR/Section 6-MT-a - Montana Overdimensional or Overweight Load Permit |  

Open Energy Info (EERE)

GRR/Section 6-MT-a - Montana Overdimensional or Overweight Load Permit GRR/Section 6-MT-a - Montana Overdimensional or Overweight Load Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-MT-a - Montana Overdimensional or Overweight Load Permit 06MTAMontanaOverdimensionalOrOverweightLoadPermit (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Transportation Regulations & Policies Montana Code Annotated 61-10-101 et seq. Administrative Rules of Monatana 18.8 Triggers None specified Click "Edit With Form" above to add content 06MTAMontanaOverdimensionalOrOverweightLoadPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

202

Controlled Source Audio MT At Cove Fort Area - Liquid (Combs 2006) | Open  

Open Energy Info (EERE)

Cove Fort Area - Liquid (Combs 2006) Cove Fort Area - Liquid (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Controlled Source Audio MT At Cove Fort Area (Combs 2006) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Controlled Source Audio MT Activity Date Usefulness not indicated DOE-funding Unknown Notes "SP, dipole-dipole resistivity, CSAMT; sufficient electrical data are available. Reservoir model?" References Jim Combs (1 January 2006) Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Controlled_Source_Audio_MT_At_Cove_Fort_Area_-_Liquid_(Combs_2006)&oldid=598122"

203

GRR/Section 3-MT-e - Encroachment Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 3-MT-e - Encroachment Permit GRR/Section 3-MT-e - Encroachment Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-e - Encroachment Permit 03MTEEncroachmentPermit.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana Department of Transportation Triggers None specified Click "Edit With Form" above to add content 03MTEEncroachmentPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart is intended to address the permitting requirements for encroachments on Montana Department of Transportation lands.

204

GRR/Section 18-MT-a - Underground Storage Tanks | Open Energy Information  

Open Energy Info (EERE)

MT-a - Underground Storage Tanks MT-a - Underground Storage Tanks < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-MT-a - Underground Storage Tanks 18MTAUndergroundStorageTanks (2).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated 75-11-501 Administrative Rules of Montana 17-56 Triggers None specified Click "Edit With Form" above to add content 18MTAUndergroundStorageTanks (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A developer must obtain an Underground Storage Tank Installation Permit

205

GRR/Section 14-MT-a - Nonpoint Source Pollution | Open Energy Information  

Open Energy Info (EERE)

MT-a - Nonpoint Source Pollution MT-a - Nonpoint Source Pollution < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-MT-a - Nonpoint Source Pollution 14MTANonpointSourcePollution (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Montana Watershed Coordination Council United States Environmental Protection Agency Regulations & Policies Clean Water Act Triggers None specified Click "Edit With Form" above to add content 14MTANonpointSourcePollution (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Nonpoint source (NPS) pollution is the state's single largest source of

206

GRR/Section 14-MT-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-MT-d - Section 401 Water Quality Certification GRR/Section 14-MT-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-MT-d - Section 401 Water Quality Certification 14MTD401WaterQualityCertification (2).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Federal Clean Water Act (33 USC § 1251 et seq.) Montana Codes Annotated 75-5-401 Aministrative Rules of Montana Chapter 30 Administrative Rules of Montana 17.30.101 through 109 Triggers None specified Click "Edit With Form" above to add content 14MTD401WaterQualityCertification (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

207

Water Sampling At Mt St Helens Area (Shevenell & Goff, 1995) | Open Energy  

Open Energy Info (EERE)

Helens Area (Shevenell & Goff, 1995) Helens Area (Shevenell & Goff, 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt St Helens Area (Shevenell & Goff, 1995) Exploration Activity Details Location Mt St Helens Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown References Lisa Shevenell, Fraser Goff (1995) Evolution Of Hydrothermal Waters At Mount St Helens, Washington, Usa Retrieved from "http://en.openei.org/w/index.php?title=Water_Sampling_At_Mt_St_Helens_Area_(Shevenell_%26_Goff,_1995)&oldid=389549" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

208

Water Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Information  

Open Energy Info (EERE)

Water Sampling At Mt Rainier Area (Frank, 1995) Water Sampling At Mt Rainier Area (Frank, 1995) Exploration Activity Details Location Mt Rainier Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes This paper relies primarily on minerals, gases, and water found in surficial deposits to construct a conceptual model for Mount Rainier that considers the following factors: - Locations of hydrothermal leakage at the surface; - Structures that provide permeable paths of fluid egress to the surface; - Amount of excess heat discharge; - Composition of surficial thermal fluids; - Composition, guided by mineralogy, of subsurface thermal fluids. Analytical data used as a basis for the model are from samples collected during field investigations in 1982-1985 (Frank, 1985), whereas

209

GRR/Section 6-MT-f - Short-term Water Quality Standard for Turbidity (318  

Open Energy Info (EERE)

GRR/Section 6-MT-f - Short-term Water Quality Standard for Turbidity (318 GRR/Section 6-MT-f - Short-term Water Quality Standard for Turbidity (318 Authorization) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-MT-f - Short-term Water Quality Standard for Turbidity (318 Authorization) 06MTFShortTermWaterQualityStandardForTurbidity318Authorization.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana Department of Environmental Quality Montana Fish, Wildlife & Parks Regulations & Policies MCA 75-5-318 Triggers None specified Click "Edit With Form" above to add content 06MTFShortTermWaterQualityStandardForTurbidity318Authorization.pdf Error creating thumbnail: Page number not in range.

210

GRR/Section 6-MT-d - Other Overview | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 6-MT-d - Other Overview GRR/Section 6-MT-d - Other Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-MT-d - Other Overview 06MTDOtherOverview.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana Department of Environmental Quality Montana Fish, Wildlife & Parks Triggers None specified Click "Edit With Form" above to add content 06MTDOtherOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This overview is intended to direct the developer to additional construction permits. For projects intended near waterways, Montana also provides a joint

211

GRR/Section 3-MT-f - Right-of-Way Easement for Utilities | Open Energy  

Open Energy Info (EERE)

3-MT-f - Right-of-Way Easement for Utilities 3-MT-f - Right-of-Way Easement for Utilities < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-f - Right-of-Way Easement for Utilities 03MTFRightOfWayEasementForUtilitiesProcess.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana State Historic Preservation Office Triggers None specified Click "Edit With Form" above to add content 03MTFRightOfWayEasementForUtilitiesProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart is intended to describe the process for obtaining an

212

GRR/Section 18-MT-b - Hazardous Waste Facility Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-MT-b - Hazardous Waste Facility Permit GRR/Section 18-MT-b - Hazardous Waste Facility Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-MT-b - Hazardous Waste Facility Permit 18MTBHazardousWasteFacilityPermit.pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated Title 75, Chapter 10, Part 4 Administrative Rules of Montana Title 17, Chapter 53 40 CFR 260 through 40 CFR 270 40 CFR 124 Triggers None specified Click "Edit With Form" above to add content 18MTBHazardousWasteFacilityPermit.pdf 18MTBHazardousWasteFacilityPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

213

GRR/Section 8-MT-a - Transmission Siting Process | Open Energy Information  

Open Energy Info (EERE)

8-MT-a - Transmission Siting Process 8-MT-a - Transmission Siting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-MT-a - Transmission Siting Process 08MTATransmission (3).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated Title 75, Chapter 20 Montana Environmental Policy Act MCA 75-20-301 Findings Necessary for Certification ARM 17.20.1606 Electric Transmission Lines, Need Standard ARM 17.20.907 ARM 17.20.920 ARM 17.20.921 ARM 17.20.923 ARM 17.20.1902 Triggers None specified Click "Edit With Form" above to add content 08MTATransmission (3).pdf 08MTATransmission (3).pdf Error creating thumbnail: Page number not in range.

214

MT_GEQ_Handbook_July2009.doc MUSIC EDUCATION AND MUSIC THERAPY (MEMT)  

E-Print Network (OSTI)

MT_GEQ_Handbook_July2009.doc MUSIC EDUCATION AND MUSIC THERAPY (MEMT) Music Therapy Graduate Equivalency Program Handbook Music Therapy Graduate Equivalency Program Individuals who hold baccalaureate in Music Therapy planning outline. This handbook is designed to supplement the information in the KU

Peterson, Blake R.

215

PyMT: a post-WIMP multi-touch user interface toolkit  

Science Conference Proceedings (OSTI)

Multi-touch and tabletop input paradigms open novel doors for post-WIMP (Windows, Icons, Menus, Pointer) user interfaces. Developing these novel interfaces and applications poses unique challenges for designers and programmers alike. We present PyMT ... Keywords: GUI, Python, UI toolkits, graphics, multi-touch, open source, post-WIMP, user interfaces

Thomas E. Hansen; Juan Pablo Hourcade; Mathieu Virbel; Sharath Patali; Tiago Serra

2009-11-01T23:59:59.000Z

216

The Lava Butte Site Revisited  

E-Print Network (OSTI)

point sample made of Newberry Volcano obsidian and thus, arein lithic type (Newberry Volcano obsidian) and productionpercussion flakes of Newberry Volcano obsidian was found in

Davis, Carl M.; Scott, Sara A.

1991-01-01T23:59:59.000Z

217

List of Geothermal ARRA Projects | Open Energy Information  

Open Energy Info (EERE)

ARRA Projects ARRA Projects Jump to: navigation, search List of Geothermal ARRA Funded Projects CSV State Project Type Topic 2 Awardees Funding Location of Project A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project Nevada Validation of Innovative Exploration Technologies Magma Energy 5,000,000 Soda Lake, Nevada A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project Montana Topic Area 1: Technology Demonstration Projects Montana Tech of The University of Montana 1,072,744 Butte, Montana A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project New Mexico Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources New Mexico Institute of Mining and Technology 1,999,990 Socorro, New Mexico

218

Property:Geothermal/LocationOfProject | Open Energy Information  

Open Energy Info (EERE)

LocationOfProject LocationOfProject Jump to: navigation, search Property Name Geothermal/LocationOfProject Property Type Page Description Location of Project Pages using the property "Geothermal/LocationOfProject" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Soda Lake, Nevada + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Butte, Montana + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + Socorro, New Mexico +

219

Property:Geothermal/Impacts | Open Energy Information  

Open Energy Info (EERE)

Impacts Impacts Jump to: navigation, search Property Name Geothermal/Impacts Property Type Text Description Impacts Pages using the property "Geothermal/Impacts" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + If successful, this would mark a major advance in our ability to image potentially productive fluid pathways in fracture-dominated systems. A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Successful application of techniques could allow replication to buildings across campus and in City of Butte, including county court house, the Federal court building, World Museum of Mining, and numerous privately owned historic buildings.

220

GRR/Section 3-MT-b - State Land Access | Open Energy Information  

Open Energy Info (EERE)

b - State Land Access b - State Land Access < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-b - State Land Access 03MTBStateLandAccess (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana State Land Board Regulations & Policies Montana Code 77-4-101 et seq Geothermal Resources Natural Resources and Conservation Rules Triggers None specified Click "Edit With Form" above to add content 03MTBStateLandAccess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 3-MT-b.1 - Application for Lease, Right-of-Way, or Easement

Note: This page contains sample records for the topic "beneath butte mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

GRR/Section 14-MT-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 14-MT-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-MT-c - Underground Injection Control Permit 14MTCUndergroundInjectionControlPermit.pdf Click to View Fullscreen Contact Agencies United States Environmental Protection Agency Triggers None specified Click "Edit With Form" above to add content 14MTCUndergroundInjectionControlPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

222

GRR/Section 11-MT-a - State Cultural Considerations | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 11-MT-a - State Cultural Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-MT-a - State Cultural Considerations 11MTAStateCulturalConsiderations (1).pdf Click to View Fullscreen Contact Agencies Montana State Historic Preservation Office Regulations & Policies MCA 22-3-421: Report of Discovery on State Land MCA 22-3-800: Human Skeletal Remains and Burial Site Protection Act Triggers None specified Click "Edit With Form" above to add content

223

GRR/Section 3-MT-c - Encroachment Overview | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 3-MT-c - Encroachment Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-c - Encroachment Overview 03MTCEncroachmentOverview.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Triggers None specified Click "Edit With Form" above to add content 03MTCEncroachmentOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative There are several individual right of way or encroachment procedures in Montana. This overview is intended to lead the developer to the appropriate

224

GRR/Section 11-MT-b - Human Remains Process | Open Energy Information  

Open Energy Info (EERE)

b - Human Remains Process b - Human Remains Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-MT-b - Human Remains Process 11MTBHumanRemainsProcess (1).pdf Click to View Fullscreen Contact Agencies Montana State Historic Preservation Office Regulations & Policies MCA 22-3-805: Discovery of Human Remains or Burial Material Triggers None specified Click "Edit With Form" above to add content 11MTBHumanRemainsProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _ 11-MT-b.1 - Cease Operations and Contact County Coroner MCA 22-3-805: (1) A [developer] who by...construction, or other ground-disturbing

225

GRR/Section 17-MT-a - Aesthetic Resource Assessment | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 17-MT-a - Aesthetic Resource Assessment < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 17-MT-a - Aesthetic Resource Assessment 17MTAAestheticResourceAssessment.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana Department of Environmental Quality Montana Fish, Wildlife & Parks Regulations & Policies MCA 75-7-101 et seq The Natural Streambed and Land Preservation Act of 1975 MCA 87-5-501 et seq Montana Stream Protection

226

Sykes, M.T., I.C. Prentice, and W. Cramer. 1996. A bioclimatic  

NLE Websites -- All DOE Office Websites (Extended Search)

Sykes, M.T., I.C. Prentice, and W. Cramer. 1996. A bioclimatic Sykes, M.T., I.C. Prentice, and W. Cramer. 1996. A bioclimatic model for the potential distributions of north European tree species under present and future climates. Journal of Biogeography 23(2):203- 233. A bioclimatic model based on physiological constraints to plant growth and regeneration is used here in an empirical way to describe the present natural distributions of northern Europe's major trees. Bioclimatic variables were computed from monthly means of temperature, precipitation and sunshine (%) interpolated to a 10' grid taking into account elevation. Minimum values of mean coldest-month temperature (T-c) and 'effective' growing degree days (GDD*) were fitted to species' range limits. GDD* is total annual growing degree days (GDD) minus GDD to budburst (GDD(o)). Each species was assigned to one of the

227

GRR/Section 9-MT-a - Montana Environmental Policy Act | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 9-MT-a - Montana Environmental Policy Act < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 9-MT-a - Montana Environmental Policy Act 09MTAMontanaEnvironmentalPolicyAct.pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Montana Environmental Quality Council Regulations & Policies Montana Environmental Policy Act National Environmental Policy Act ARM 36-2-521 et seq ARM 17-4-607 General Requirements for MFWP Triggers None specified Click "Edit With Form" above to add content 09MTAMontanaEnvironmentalPolicyAct.pdf Error creating thumbnail: Page number not in range.

228

GRR/Section 19-MT-a - Water Access & Water Rights Issues | Open Energy  

Open Energy Info (EERE)

GRR/Section 19-MT-a - Water Access & Water Rights Issues GRR/Section 19-MT-a - Water Access & Water Rights Issues < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-MT-a - Water Access & Water Rights Issues 19MTAWaterAccessWaterRightsIssues (2).pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Regulations & Policies MCA Title 85 Water Use MCA 77-4-108 Water Rights in Connection with Geothermal Development MCA 85-2-307 MCA 85-2-308 MCA 85-2-309 MCA 85-2-310 MCA 85-2-311 MCA 85-2-313 MCA 85-2-315 Triggers None specified Click "Edit With Form" above to add content 19MTAWaterAccessWaterRightsIssues (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

229

Structural and heat-flow implications of infrared anomalies at Mt. Hood, Oregon  

DOE Green Energy (OSTI)

Surface thermal features occur in an area of 9700 m/sup 2/ at Mt. Hood, on the basis of an aerial line-scan survey made April 26, 1973. The distribution of the thermal areas below the summit of Mt. Hood, shown on planimetrically corrected maps at 1 : 12,000, suggests structural control by a fracture system and brecciated zone peripheral to a hornblende-dacite plug dome (Crater Rock), and by a concentric fracture system that may have been associated with development of the present crater. The extent and inferred temperature of the thermal areas permits a preliminary estimate of a heat discharge of 10 megawatts, by analogy with similar fumarole and thermal fields of Mt. Baker, Washington. This figure includes a heat loss of 4 megawatts (MW) via conduction, diffusion, evaporation, and radiation to the atmosphere, and a somewhat less certain loss of 6 MW via fumarolic mass transfer of vapor and advective heat loss from runoff and ice melt. The first part of the estimate is based on two-point models for differential radiant exitance and differential flux via conduction, diffusion, evaporation, and radiation from heat balance of the ground surface. Alternate methods for estimating volcanogenic geothermal flux that assume a quasi-steady state heat flow also yield estimates in the 5-11 MW range. Heat loss equivalent to cooling of the dacite plug dome is judged to be insufficient to account for the heat flux at the fumarole fields.

Friedman, J.D.; Frank, D.

1977-01-01T23:59:59.000Z

230

Data Package for Past and Current Groundwater Flow and Contamination beneath Single-Shell Tank Waste Management Areas  

Science Conference Proceedings (OSTI)

This appendix summarizes historic and recent groundwater data collected from the uppermost aquifer beneath the 200 East and 200 West Areas. Although the area of interest is the Hanford Site Central Plateau, most of the information discussed in this appendix is at the scale of individual single-shell tank waste management areas. This is because the geologic, and thus the hydraulic, properties and the geochemical properties (i.e., groundwater composition) are different in different parts of the Central Plateau.

Horton, Duane G.

2007-03-16T23:59:59.000Z

231

Quantitative Analysis of Mt. St. Helens Ash by X-Ray Diffraction and X-Ray Fluorescence Spectrometry  

Science Conference Proceedings (OSTI)

A quantitative study by x-ray diffraction, optical polarizing microscopy, and x-ray fluorescence spectrometry of fallout and ambient ash from three Mt. St. Helens eruptions has revealed a consistent picture of the mineralogical and elemental ...

Briant L. Davis; L. Ronald Johnson; Dana T. Griffen; William Revell Phillips; Robert K. Stevens; David Maughan

1981-08-01T23:59:59.000Z

232

An Estimate of the Chemical and Radiative Perturbation of Stratospheric Ozone Following the Eruption of Mt. Pinatubo  

Science Conference Proceedings (OSTI)

In this work a numerical assessment is attempted of trace species interactions with aerosols injected in the stratosphere by the eruption of Mt. Pinatubo. A photochemical two-dimensional model is used for this purpose, with heterogeneous chemical ...

G. Pitari; V. Rizi

1993-10-01T23:59:59.000Z

233

An assessment of regional climate trends and changes to the Mt. Jaya glaciers of Irian Jaya  

E-Print Network (OSTI)

Over the past century, glaciers throughout the tropics have predominately retreated. These small glaciers, which respond quickly to climate changes, are becoming increasingly important in understanding glacier-climate interactions. The glaciers on Mt. Jaya in Irian Jaya, Indonesia are the last remaining tropical glaciers in the Western Pacific region. Although considerable research exists investigating the climatic factors most affecting tropical glacier mass balance, extensive research on the Mt. Jaya glaciers has been lacking since the early 1970s. Using IKONOS satellite images, the ice extents of the Mt. Jaya glaciers in 2000, 2002, 2003, 2004, and 2005 were mapped. The mapping indicates that the recessional trend which began in the mid-19th century has continued. Between 1972 (Allison, 1974; Allison and Peterson, 1976) and 2000, the glaciers lost approximately 67.6% of their area, representing a reduction in surface ice area from 7.2 km2 to 2.35 km2. From 2000 to 2005, the glaciers lost an additional 0.54 km2, representing approximately 24% of the 2000 area. Rates of ice loss, calculated from area measurements for the Mt. Jaya glaciers in 1942, 1972, 1987, and 2005, indicate that ice loss on Mt. Jaya has increased during each subsequent period. Preliminary modeling, using 600 hPa atmospheric temperature, specific humidity, wind speeds, surface precipitation, and radiation values, acquired from the NCEP Reanalysis dataset, indicates that the only climate variable having a statistically-significant change with a magnitude great enough to strongly affect ice loss on these glaciers was an increase in the mean monthly atmospheric temperature of 0.24?°C between 1972 and 1987. However, accelerated ice loss occurring from 1988-2005 without large observed changes in the weather variables indicates that a more complex explanation may be required. Small, though statistically-significant changes were found in regional precipitation, with precipitation decreasing from 1972-1987 and increasing from 1988-2005. While, individually, these changes were not of sufficient magnitude to have greatly affected ice loss on these glaciers, increased precipitation along with a rising freezing level may have resulted in a greater proportion of the glacier surface being affected by rain. This may account for the increased recession rate observed in the latter period.

Kincaid, Joni L.

2003-05-01T23:59:59.000Z

234

Review and model-based analysis of factors influencing soil carbon sequestration beneath switchgrass (Panicum virgatum)  

SciTech Connect

Abstract. A simple, multi-compartment model was developed to predict soil carbon sequestration beneath switchgrass (Panicum virgatum) plantations in the southeastern United States. Soil carbon sequestration is an important component of sustainable switchgrass production for bioenergy because soil organic matter promotes water retention, nutrient supply, and soil properties that minimize erosion. A literature review was included for the purpose of model parameterization and five model-based experiments were conducted to predict how changes in environment (temperature) or crop management (cultivar, fertilization, and harvest efficiency) might affect soil carbon storage and nitrogen losses. Predictions of soil carbon sequestration were most sensitive to changes in annual biomass production, the ratio of belowground to aboveground biomass production, and temperature. Predictions of ecosystem nitrogen loss were most sensitive to changes in annual biomass production, the soil C/N ratio, and nitrogen remobilization efficiency (i.e., nitrogen cycling within the plant). Model-based experiments indicated that 1) soil carbon sequestration can be highly site specific depending on initial soil carbon stocks, temperature, and the amount of annual nitrogen fertilization, 2) response curves describing switchgrass yield as a function of annual nitrogen fertilization were important to model predictions, 3) plant improvements leading to greater belowground partitioning of biomass could increase soil carbon sequestration, 4) improvements in harvest efficiency have no indicated effects on soil carbon and nitrogen, but improve cumulative biomass yield, and 5) plant improvements that reduce organic matter decomposition rates could also increase soil carbon sequestration, even though the latter may not be consistent with desired improvements in plant tissue chemistry to maximize yields of cellulosic ethanol.

Garten Jr, Charles T [ORNL

2012-01-01T23:59:59.000Z

235

Crust and upper mantle P wave velocity structure beneath Valles caldera, New Mexico: Results from the Jemez teleseismic tomography experiment  

Science Conference Proceedings (OSTI)

New results are presented from the teleseismic component of the Jemez Tomography Experiment conducted across Valles caldera in northern New Mexico. We invert 4872 relative {ital P} wave arrival times recorded on 50 portable stations to determine velocity structure to depths of 40 km. The three principle features of our model for Valles caldera are: (1) near-surface low velocities of {minus}17{percent} beneath the Toledo embayment and the Valle Grande, (2) midcrustal low velocities of {minus}23{percent} in an ellipsoidal volume underneath the northwest quadrant of the caldera, and (3) a broad zone of low velocities ({minus}15{percent}) in the lower crust or upper mantle. Crust shallower than 20 km is generally fast to the northwest of the caldera and slow to the southeast. Near-surface low velocities are interpreted as thick deposits of Bandelier tuff and postcaldera volcaniclastic rocks. Lateral variation in the thickness of these deposits supports increased caldera collapse to the southeast, beneath the Valle Grande. We interpret the midcrustal low-velocity zone to contain a minimum melt fraction of 10{percent}. While we cannot rule out the possibility that this zone is the remnant 1.2 Ma Bandelier magma chamber, the eruption history and geochemistry of the volcanic rocks erupted in Valles caldera following the Bandelier tuff make it more likely that magma results from a new pulse of intrusion, indicating that melt flux into the upper crust beneath Valles caldera continues. The low-velocity zone near the crust-mantle boundary is consistent with either partial melt in the lower crust or mafic rocks without partial melt in the upper mantle. In either case, this low-velocity anomaly indicates that underplating by mantle-derived melts has occurred. {copyright} 1998 American Geophysical Union

Steck, Lee K.; Fehler, Michael C.; Roberts, Peter M.; Baldridge, W. Scott; Stafford, Darrik G. [Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Lutter, William J.; Sessions, Robert [Department of Geology and Geophysics, University of Wisconsin-Madison (United States)

1998-10-01T23:59:59.000Z

236

MT2-reconstructed invisible momenta as spin analizers, and an application to top polarization  

E-Print Network (OSTI)

Full event reconstruction is known to be challenging in cases with more than one undetected final-state particle, such as pair production of two states each decaying semi-invisibly. On the other hand, full event reconstruction would allow to access angular distributions sensitive to the spin fractions of the decaying particles, thereby dissecting their production mechanism. We explore this possibility in the case of Standard-Model t-tbar production followed by a leptonic decay of both W bosons, implying two undetected final-state neutrinos. We estimate the t and tbar momentum vectors event by event using information extracted from the kinematic variable MT2. The faithfulness of the estimated momenta to the true momenta is then tested in observables sensitive to top polarization and t-tbar spin correlations. Our method thereby provides a novel approach towards the evaluation of these observables, and towards testing t-tbar production beyond the level of the total cross section. While our discussion is confined to t-tbar production as a benchmark, the method is applicable to any process whose decay topology allows to construct MT2.

Diego Guadagnoli; Chan Beom Park

2013-08-09T23:59:59.000Z

237

A Serendipitous, Long-Term Infiltration Experiment: Water and Tritium Circulation Beneath the CAMBRIC Ditch at the Nevada Test Site  

Science Conference Proceedings (OSTI)

Underground nuclear weapons testing at the Nevada Test Site introduced numerous radionuclides that may be used to characterize subsurface hydrologic transport processes in arid climates. A sixteen year pumping experiment designed to examine radionuclide migration away from the CAMBRIC nuclear test, conducted in groundwater beneath Frenchman Flat in 1965, gave rise to an unintended second experiment involving radionuclide infiltration through the vadose zone, as induced by seepage of pumping effluents beneath an unlined discharge trench. The combined experiments have been reanalyzed using a detailed, three-dimensional numerical model of transient, variably saturated flow and mass transport, tailored specifically for large scale and efficient calculations. Simulations have been used to estimate radionuclide travel and residence times in various parts of the system for comparison with observations in wells. Model predictions of mass transport were able to clearly demonstrate radionuclide recycling behavior between the ditch and pumping well previously suggested by isotopic age dating information; match travel time estimates for radionuclides moving between the ditch, the water table, and monitoring wells; and provide more realistic ways in which to interpret the pumping well elution curves. Collectively, the results illustrate the utility of integrating detailed numerical modeling with diverse observational data in developing accurate interpretations and forecasts of contaminant migration processes.

Maxwell, R M; Tompson, A B; Kollet, S J

2008-11-20T23:59:59.000Z

238

Mt. Hood geothermal exploratory drilling and testing plan. Old Maid Flat holes No. 1 and No. 7A  

DOE Green Energy (OSTI)

This plan has been prepared to establish the objectives and set forth the procedures and guidelines for conducting geothermal exploratory drilling and testing operations in the Old Maid Flat area of Mt. Hood, Oregon, approximately 50 miles east of Portland. The project will be conducted on lands within the Mt. Hood National Forest, which are currently under Federal Lease OR 13994 to the Northwest Geothermal Corporation. The exploratory geothermal operations will consist of (1) testing an existing 4,000-foot temperature gradient hole to determine the quality of geothermal fluids, and (2) drilling and testing a new 5,000-foot hole to determine overall geothermal reservoir characteristics.

Not Available

1980-05-01T23:59:59.000Z

239

GRR/Section 17-MT-c - Natural Streambed and Land Preservation Act (310  

Open Energy Info (EERE)

c - Natural Streambed and Land Preservation Act (310 c - Natural Streambed and Land Preservation Act (310 Permit) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 17-MT-c - Natural Streambed and Land Preservation Act (310 Permit) 17MTCNaturalStreambedAndLandPreservationAct310Permit.pdf Click to View Fullscreen Contact Agencies Local Conservation District Montana Department of Natural Resources & Conservation Montana Fish, Wildlife & Parks Regulations & Policies MCA 75-7-101 et seq The Natural Streambed and Land Preservation Act of 1975 Triggers None specified Click "Edit With Form" above to add content 17MTCNaturalStreambedAndLandPreservationAct310Permit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

240

GRR/Section 17-MT-d - Streamside Management Zone Law | Open Energy  

Open Energy Info (EERE)

d - Streamside Management Zone Law d - Streamside Management Zone Law < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 17-MT-d - Streamside Management Zone Law 17MTDStreamsideManagementZoneLawProcess.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Triggers None specified Click "Edit With Form" above to add content 17MTDStreamsideManagementZoneLawProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Any landowner or operator conducting a series of commercial forest practices that will access, harvest, or regenerate trees on a defined land

Note: This page contains sample records for the topic "beneath butte mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

GRR/Section 3-MT-d - Land Use License Process | Open Energy Information  

Open Energy Info (EERE)

d - Land Use License Process d - Land Use License Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-d - Land Use License Process 03MTDLandUseLicenseProcess (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Regulations & Policies Surface Management Rule 36.25.103 Triggers None specified Click "Edit With Form" above to add content 03MTDLandUseLicenseProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The land use license is intended to be used for short-term use of state-owned lands. This license may be used for casual use of the lands

242

GRR/Section 11-MT-c - Cultural Resource Discovery | Open Energy Information  

Open Energy Info (EERE)

c - Cultural Resource Discovery c - Cultural Resource Discovery < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-MT-c - Cultural Resource Discovery 11MTCCulturalResourceDiscoveryProcess (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana State Historic Preservation Office Regulations & Policies 36 CFR 800.16: NHPA Definitions MCA 22-3-421: Montana Antiquities Definitions MCA 22-3-429: Consultation, Notice, Appeal MCA 22-3-430: Mitigation MCA 22-3-435: Report of Discovery ARM 36.2.801-813: Antiquities Triggers None specified Click "Edit With Form" above to add content 11MTCCulturalResourceDiscoveryProcess (1).pdf Error creating thumbnail: Page number not in range.

243

Resource appraisal of the Mt. Shasta Wilderness Study area, Siskiyou County, California  

DOE Green Energy (OSTI)

Results of geological, geochemical, and aeromagnetic surveys indicate that the only potentially extractable resource of Mt. Shasta may be geothermal energy, but the potential within the Wilderness Study Area is low. Some sulfur and gypsum occur locally around active and extinct fumaroles near the summit but are too small to indicate a resource. Cinder deposits have been mined near the Wilderness Study Area, but almost none are exposed within it. The levels of trace-metal anomalies relative to background values and the amounts of exposed mineralized rock are too small to indicate economic potential. It is concluded that any significant potential for future geothermal development is more likely to exist on and near the lower slopes of the volcano, generally outside the study area. (JGB)

Christiansen, R.L.; Kleinhampl, F.J.; Blakely, R.J.; Tuchek, E.T.; Johnson, F.L.; Conyac, M.D.

1977-01-01T23:59:59.000Z

244

Traffic Management Command, ATTN: MT-INFF, 5611 Columbia Pike, Falls  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

/ 'Vol 52,-No. 212. !/- Tuesday; November 3, -1987 1 Notices.- . / 'Vol 52,-No. 212. !/- Tuesday; November 3, -1987 1 Notices.- . . and responsibility of that company. This is not intented to prevent a carrier from interchanging equipment to allow for the through movement of traffic. Master- leases which do not meet the requirements of a long-term lease or that depend on other documentation and/or subleases to be complete are viewed as trip-leases. DATE: Comments must be received on or before 1 January 1988. ADDRESS: Comments should be addressed to: Headquarters, Military Traffic Management Command, ATTN: MT-INFF, 5611 Columbia Pike, Falls Church, VA 22041-5050. FOR FURTHER INFORMATION CONTACT. Ms. Patricia McCormick, HQMTMC 5611 Columbia Pike, Falls Church, VA 22041- 5050, (202] 756-1887. SUPPLEMENTARY INFORMATION. Master- leases which do not conform to the

245

Analyses of Nuclear ldhA Gene and mtDNA Control Region Sequences of Atlantic Northern Bluen Tuna  

E-Print Network (OSTI)

Analyses of Nuclear ldhA Gene and mtDNA Control Region Sequences of Atlantic Northern Blue®n Tuna: There has been considerable debate about whether the Atlantic northern blue®n tuna exist as a single®n tuna from the Mediterranean Sea and the northwestern Atlantic Ocean. Pairwise comparisons of multiple

Ely, Bert

246

Pattern recognition of volcanic tremor data on Mt. Etna (Italy) with KKAnalysis-A software program for unsupervised classification  

Science Conference Proceedings (OSTI)

Continuous seismic monitoring plays a key role in the surveillance of the Mt. Etna volcano. Besides earthquakes, which often herald eruptive episodes, the persistent background signal, known as volcanic tremor, provides important information on the volcano ... Keywords: Cluster analysis, Fuzzy C-means, K-means, Self-organizing map, Volcano monitoring, Volcano seismology

A. Messina; H. Langer

2011-07-01T23:59:59.000Z

247

EM SSAB NATIONAL CHAIRS MEETING Deer Creek State Park, Mt. Sterling, Ohio  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM SSAB NATIONAL CHAIRS MEETING EM SSAB NATIONAL CHAIRS MEETING Deer Creek State Park, Mt. Sterling, Ohio November 5-7, 2013 DAY 1 - Tuesday, November 5, 2013 8:00 a.m. - 8:20 a.m. Welcome and Opening Remarks Cate Alexander, EM SSAB Designated Federal Officer Will Henderson, Chair, Portsmouth Site Specific Advisory Board William Murphie, Manager, Portsmouth Paducah Project Office, DOE-EM 8:20 a.m. - 8:30 a.m. Overview of Meeting Eric Roberts, Facilitator 8:30 a.m. - 9:30 a.m. EM Program Update Alice Williams, Associate Principal Deputy Assistant Secretary for Environmental Management 9:30 a.m. - 10:20 a.m. Round Robin (Chairs' Site Reports) 5 minutes each 10:20 a.m. - 10:30 a.m. Recognition of Departing Chairs 10:30 a.m. - 10:45 a.m. Break 10:45 a.m. - 12:00

248

CO2 flood tests on whole core samples of the Mt. Simon sandstone, Illinois Basin  

SciTech Connect

Geological sequestration of CO2, whether by enhanced oil recovery (EOR), coal-bed methane (CBM) recovery, or saline aquifer injection is a promising near-term sequestration methodology. While tremendous experience exists for EOR, and CBM recovery has been demonstrated in existing fields, saline aquifer injection studies have only recently been initiated. Studies evaluating the availability of saline aquifers suitable for CO2 injection show great potential, however, the long-term fate of the CO2 injected into these ancient aqueous systems is still uncertain. For the subject study, a series of laboratory-scale CO2 flood tests were conducted on whole core samples of the Mt. Simon sandstone from the Illinois Basin. By conducting these tests on whole core samples rather than crushed core, an evaluation of the impact of the CO2 flood on the rock mechanics properties as well as the geochemistry of the core and brine solution has been possible. This empirical data could provide a valuable resource for the validation of reservoir models under development for these engineered CO2 systems.

O'Connor, William K.; Rush, Gilbert E.

2005-09-01T23:59:59.000Z

249

Chemical Weathering of New Pyroclastic Deposits from Mt. Merapi (Java), Indonesia  

SciTech Connect

Java Island, Indonesia with abundant amount of pyroclastic deposits is located in the very active and dynamic Pacific Ring of Fires. Studying the geochemical weathering indices of these pyroclastic deposits is important to get a clear picture about weathering profiles on deposits resulting from the eruption of Mt. Merapi. Immediately after the first phase of the eruption (March to June 2006), moist and leached pyroclastic deposits were collected. These pyroclastic deposits were found to be composed of volcanic glass, plagioclase feldspar in various proportions, orthopyroxene, clinopyroxene, olivine, amphibole, and titanomagnetite. Total elemental composition of the bulk samples (including trace elements and heavy metals) were determined by wet chemical methods and X-ray fluorescence (XRF) analyses. Weathering of the pyroclastic deposits was studied using various weathering indices. The Ruxton ratio, weathering index of Parker, Vought resudual index and chemical index of weathering of moist pyroclastic are lower than the leached sample but the alteration indices (chemical and plagioclase) are slightly higher in the moist compared to the leached pyroclastic deposits.

Fiantis, Dian; Nelson, Malik; Van Ranst, Eric; Shamshudin, Josup; Qafoku, Nikolla

2009-09-01T23:59:59.000Z

250

Structural controls, alteration, permeability and thermal regime of Dixie Valley from new-generation MT/galvanic array profiling  

DOE Green Energy (OSTI)

State-of-the-art MT array measurements in contiguous bipole deployments across the Dixie Valley thermal area have been integrated with regional MT transect data and other evidence to address several basic geothermal goals. These include 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault zones which have experienced fluid flux as indicated by low resistivity; 3), infer ultimate heat and fluid sources for the thermal area; and 4), from a generic technique standpoint, investigate the capability of well-sampled electrical data for resolving subsurface structure. Three dense lines cross the Senator Fumaroles area, the Cottonwood Creek and main producing area, and the low-permeability region through the section 10-15 area, and have stand-alone MT soundings appended at one or both ends for local background control. Regularized 2-D inversion implies that shallow pediment basement rocks extend for a considerable distance (1-2 km) southeastward from the topographic scarp of the Stillwater Range under all three dense profiles, but especially for the Senator Fumaroles line. This result is similar to gravity interpretations in the area, but with the intrinsic depth resolution possible from EM wave propagation. Low resistivity zones flank the interpreted main offsetting fault especially toward the north end of the field which may be due to alteration from geothermal fluid outflow and upflow. The appended MT soundings help to substantiate a deep, subvertical conductor intersecting the base of Dixie Valley from the middle crust, which appears to be a hydrothermal conduit feeding from deep crustal magmatic underplating. This may supply at least part of the high temperature fluids and explain enhanced He-3 levels in those fluids.

Philip E. Wannamaker

2007-11-30T23:59:59.000Z

251

Jeanne Wright, RN, BSN, MT, CCRP, CIM, RAC, SoCRA Research Analyst Lead, University of Michigan, Michigan Institute for Clinical and Health Research  

E-Print Network (OSTI)

Jeanne Wright, RN, BSN, MT, CCRP, CIM, RAC, SoCRA Research Analyst Lead, University of Michigan&D. CERTIFICATIONS Regulatory Affairs Certification (2012) National Association of IRB Managers (CIM), 2009

Eustice, Ryan

252

Complete nucleotide sequences of the domestic cat (Felis catus) mitochondrial genome and a transposed mtDNA tandem repeat (Numt) in the nuclear genome  

SciTech Connect

The complete 17,009-bp mitochondrial genome of the domestic cat, Felis catus, has been sequenced and conforms largely to the typical organization of previously characterized mammalian mtDNAs. Codon usage and base composition also followed canonical vertebrate patterns, except for an unusual ATC (non-AUG) codon initiating the NADH dehydrogenase subunit 2 (ND2) gene. Two distinct repetitive motifs at opposite ends of the control region contribute to the relatively large size (1559 bp) of this carnivore mtDNA. Alignment of the feline mtDNA genome to a homologous 7946-bp nuclear mtDNA tandem repeat DNA sequence in the cat, Numt, indicates simple repeat motifs associated with insertion/deletion mutations. Overall DNA sequence divergence between Numt and cytoplasmic mtDNA sequence was only 5.1%. Substitutions predominate at the third codon position of homologous feline protein genes. Phylogenetic analysis of mitochondrial gene sequences confirms the recent transfer of the cytoplasmic mtDNA sequences to the domestic cat nucleus and recapitulates evolutionary relationships between mammal species. 86 refs., 4 figs., 3 tabs.

Lopez, J.V.; Cevario, S.; O`Brien, S.J. [National Cancer Institute, Frederick, MD (United States)

1996-04-15T23:59:59.000Z

253

Baseline mapping study of the Steed Pond aquifer and vadose zone beneath A/M Area, Savannah River Site, Aiken, South Carolina  

SciTech Connect

This report presents the second phase of a baseline mapping project conducted for the Environmental Restoration Department (ERD) at Savannah River Site. The purpose of this second phase is to map the structure and distribution of mud (clay and silt-sized sediment) within the vadose zone beneath A/M Area. The results presented in this report will assist future characterization and remediation activities in the vadose zone and upper aquifer zones in A/M Area.

Jackson, D.G. Jr.

2000-01-27T23:59:59.000Z

254

Real-Space Microscopic Electrical Imaging of n+-p Junction Beneath Front-Side Ag Contact of Multicrystalline Si Solar Cells  

SciTech Connect

We investigated the quality of the n+-p diffused junction beneath the front-side Ag contact of multicrystalline Si solar cells by characterizing the uniformities of electrostatic potential and doping concentration across the junction using the atomic force microscopy-based electrical imaging techniques of scanning Kelvin probe force microscopy and scanning capacitance microscopy. We found that Ag screen-printing metallization fired at the over-fire temperature significantly degrades the junction uniformity beneath the Ag contact grid, whereas metallization at the optimal- and under-fire temperatures does not cause degradation. Ag crystallites with widely distributed sizes were found at the Ag-grid/emitter-Si interface of the over-fired cell, which is associated with the junction damage beneath the Ag grid. Large crystallites protrude into Si deeper than the junction depth. However, the junction was not broken down; instead, it was reformed on the entire front of the crystallite/Si interface. We propose a mechanism of junction-quality degradation, based on emitter Si melting at the temperature around the Ag-Si eutectic point during firing, and subsequent re-crystallization with incorporation of Ag and other impurities and with formation of crystallographic defects during quenching. The effect of this junction damage on solar cell performance is discussed.

Jiang, C. S.; Li, Z. G.; Moutinho, H. R.; Liang, L.; Ionkin, A.; Al-Jassim, M. M.

2012-04-15T23:59:59.000Z

255

Butte, Montana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

03917°, -112.534446° 03917°, -112.534446° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.003917,"lon":-112.534446,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

Property:Geothermal/AwardeeWebsite | Open Energy Information  

Open Energy Info (EERE)

AwardeeWebsite AwardeeWebsite Jump to: navigation, search Property Name Geothermal/AwardeeWebsite Property Type URL Description Awardee Website Pages using the property "Geothermal/AwardeeWebsite" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + http://www.magmaenergycorp.com/s/Home.asp + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + http://www.mtech.edu/ + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + http://www.nmt.edu/ +

257

Property:Geothermal/Partner1 | Open Energy Information  

Open Energy Info (EERE)

Partner1 Partner1 Jump to: navigation, search Property Name Geothermal/Partner1 Property Type String Description Partner 1 Pages using the property "Geothermal/Partner1" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + University of Nevada + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + TBA + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + Los Alamos National Laboratory + A new analytic-adaptive model for EGS assessment, development and management support Geothermal Project + Lawrence Berkeley National Lab +

258

Property:Geothermal/FundingSource | Open Energy Information  

Open Energy Info (EERE)

FundingSource FundingSource Jump to: navigation, search Property Name Geothermal/FundingSource Property Type String Description Funding Source Pages using the property "Geothermal/FundingSource" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + American Recovery and Reinvestment Act of 2009 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + American Recovery and Reinvestment Act of 2009 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + American Recovery and Reinvestment Act of 2009 +

259

Property:Geothermal/AwardeeCostShare | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Geothermal/AwardeeCostShare Jump to: navigation, search Property Name Geothermal/AwardeeCostShare Property Type Number Description Awardee Cost Share Pages using the property "Geothermal/AwardeeCostShare" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + 9,571,873 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 1,082,753 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + 4,135,391 +

260

Property:Geothermal/TotalProjectCost | Open Energy Information  

Open Energy Info (EERE)

TotalProjectCost TotalProjectCost Jump to: navigation, search Property Name Geothermal/TotalProjectCost Property Type Number Description Total Project Cost Pages using the property "Geothermal/TotalProjectCost" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + 14,571,873 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 2,155,497 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + 6,135,381 + A new analytic-adaptive model for EGS assessment, development and management support Geothermal Project + 1,629,670 +

Note: This page contains sample records for the topic "beneath butte mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Property:Geothermal/DOEFundingLevel | Open Energy Information  

Open Energy Info (EERE)

DOEFundingLevel DOEFundingLevel Jump to: navigation, search Property Name Geothermal/DOEFundingLevel Property Type Number Description DOE Funding Level (total award amount) Pages using the property "Geothermal/DOEFundingLevel" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + 5,000,000 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 1,072,744 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + 1,999,990 +

262

Property:Geothermal/FundingOpportunityAnnouncemt | Open Energy Information  

Open Energy Info (EERE)

Geothermal/FundingOpportunityAnnouncemt Geothermal/FundingOpportunityAnnouncemt Jump to: navigation, search Property Name Geothermal/FundingOpportunityAnnouncemt Property Type String Description Funding Opportunity Announcement Pages using the property "Geothermal/FundingOpportunityAnnouncemt" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + DE-FOA-0000109 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + DE-FOA-0000116 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + DE-FOA-0000109 +

263

Property:Geothermal/Awardees | Open Energy Information  

Open Energy Info (EERE)

Awardees Awardees Jump to: navigation, search Property Name Geothermal/Awardees Property Type String Description Awardees (Company / Institution) Pages using the property "Geothermal/Awardees" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Magma Energy + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Montana Tech of The University of Montana + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + New Mexico Institute of Mining and Technology +

264

Geothermal resource assessment of Mt. Hood volcano, Oregon, Phase I study. Technical progress report No. 2, October 1, 1977--March 31, 1978  

DOE Green Energy (OSTI)

Several phases of the Mt. Hood geothermal resource assessment project are nearing completion. Most of the field work has been completed for the geologic study, gravity survey, and water sampling portions of the project. Thermal modelling, water analyses, rock analyses and age dating, and preparation of a complete Bouguer gravity map are in progress.

Hull, D.A.

1978-05-31T23:59:59.000Z

265

NATIVE MYCORRHIZAL FUNGI WITH ASPEN ON SMELTER-IMPACTED SITES IN THE NORTHERN ROCKY MOUNTAINS  

E-Print Network (OSTI)

Ridge of Butte (MT), behind the smelter stack at Anaconda (MT), near the (removed) smelter in Kellogg stack at Anaconda, MT (inactive copper smelter), at the (removed) lead smelter at Kellogg, ID, and along regenerating south of the Anaconda Superfund site. Aspen is able to colonize these areas due to mutualistic

Cripps, Cathy

266

Effects of the Mt. Pinatubo eruption on the radiative and chemical processes in the troposphere and stratosphere  

Science Conference Proceedings (OSTI)

The LLNL 2-D zonally averaged chemical-radiative transport model of the global atmosphere was used to study the effects of the June 15, 1991 eruption of the Mt. Pinatubo volcano on stratospheric processes. SAGE-11 time-dependent aerosol surface area density and optical extinction data were used as input into the model. By the winter solstice, 1991, a maximum change in column ozone was observed in the equatorial region of {minus}2% (with heterogeneous chemical reactions on sulfuric acid aerosols) and {minus}5.5% (including heterogeneous reactions plus radiative feedbacks). Maximum local ozone decreases of 12% were derived in the equatorial region, at 25 km, for winter solstice 1991. Column NO{sub 2} peaked ({minus}14%) at 30 S in October 1991. Local concentrations of NO{sub x}, Cl{sub x}, and HO{sub x}, in the lower stratosphere, were calculated to have changed between 30 S and 30 N by {minus}40%, +80%, and +60% respectively.

Kinnison, D.E.; Grant, K.E.; Connell, P.S.; Wuebbles, D.J.

1992-07-05T23:59:59.000Z

267

Sodium arsenite alters cell cycle and MTHFR, MT1/2, and c-Myc protein levels in MCF-7 cells  

SciTech Connect

There is limited available information on the effects of arsenic on enzymes participating in the folate cycle. Therefore, our aim was to evaluate the effects of sodium arsenite on the protein levels of methylenetetrahydrofolate reductase (MTHFR) and dihydrofolate reductase (DHFR) and its further relationship with the expression MT1/2 and c-myc in MCF-7 cells. Arsenite treatment (0-10 muM) for 4 h decreased MTHFR levels in a concentration-dependent fashion without significant effects on DHFR. The effects on MTHFR were observed at arsenite concentrations not significantly affecting cell viability. We also observed an increase in S-phase recruitment at all concentrations probed. Lower concentrations (< 5 muM) induced cell proliferation, showing a high proportion of BrdU-stained cells, indicating a higher DNA synthesis rate. However, higher concentrations (>= 5 muM) or longer treatment periods induced apoptosis. Arsenite also induced dose-dependent increases in MT1/2 and c-Myc protein levels. The levels of MTHFR were inversely correlated to MT1/2 and c-Myc overexpression and increased S-phase recruitment. Our findings indicate that breast epithelial cells are responsive to arsenite and suggest that exposure may pose a risk for breast cancer. The reductions in MTHFR protein levels contribute to understand the mechanisms underlying the induction of genes influencing growth regulation, such as c-myc and MT1/2. However, further research is needed to ascertain if the effects here reported following short-time and high-dose exposure are relevant for human populations chronically exposed to low arsenic concentrations.

Ruiz-Ramos, Ruben [Centro de Investigacion en Salud Poblacional, INSP, Cuernavaca, Morelos (Mexico); Departamento de Toxicologia, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, 07360 Mexico D.F. (Mexico); Lopez-Carrillo, Lizbeth [Centro de Investigacion en Salud Poblacional, INSP, Cuernavaca, Morelos (Mexico); Albores, Arnulfo [Departamento de Toxicologia, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, 07360 Mexico D.F. (Mexico); Hernandez-Ramirez, Raul U. [Centro de Investigacion en Salud Poblacional, INSP, Cuernavaca, Morelos (Mexico); Cebrian, Mariano E., E-mail: mcebrian@cinvestav.m [Departamento de Toxicologia, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, 07360 Mexico D.F. (Mexico)

2009-12-15T23:59:59.000Z

268

Search for supersymmetry in hadronic final states using $M_{T2}$ in pp collisions at $\\sqrt{s}$ = 7 TeV  

E-Print Network (OSTI)

A search for supersymmetry or other new physics resulting in similar final states is presented using a data sample of 4.73 inverse femtobarns of pp collisions collected at sqrt(s)=7 TeV with the CMS detector at the LHC. Fully hadronic final states are selected based on the variable MT2, an extension of the transverse mass in events with two invisible particles. Two complementary studies are performed. The first targets the region of parameter space with medium to high squark and gluino masses, in which the signal can be separated from the standard model backgrounds by a tight requirement on MT2. The second is optimized to be sensitive to events with a light gluino and heavy squarks. In this case, the MT2 requirement is relaxed, but a higher jet multiplicity and at least one b-tagged jet are required. No significant excess of events over the standard model expectations is observed. Exclusion limits are derived for the parameter space of the constrained minimal supersymmetric extension of the standard model, as...

Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Er, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Hrmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knnz, Valentin; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schfbeck, Robert; Strauss, Josef; Taurok, Anton; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Staykova, Zlatka; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Lonard, Alexandre; Marage, Pierre Edouard; Reis, Thomas; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jrmie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Verwilligen, Piet; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; De Jesus Damiao, Dilson; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Ald Jnior, Walter Luiz; Carvalho, Wagner; Custdio, Analu; Da Costa, Eliza Melo; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Soares Jorge, Luana; Sznajder, Andre; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Siguang; Zhu, Bo; Zou, Wei; Avila, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Mntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Hrknen, Jaakko; Heikkinen, Mika Aatos; Karimki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampn, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindn, Tomas; Luukka, Panja-Riina; Menp, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Karjalainen, Ahti; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis

2012-01-01T23:59:59.000Z

269

MT@TMS  

Science Conference Proceedings (OSTI)

This came on the heels of a statement released earlier in the month by the UK's Department for Environment, Food, and Rural Affairs (DEFRA), saying in part,...

270

MT@TMS  

Science Conference Proceedings (OSTI)

Oct 15, 2010 ... This report certainly played a key role in moving academic ... with the elite group of physicists and other scientists developing the atomic bomb.

271

MT@TMS  

Science Conference Proceedings (OSTI)

Sep 16, 2009 ... Duranar Powder Coatings: PPG Industries, Pittsburgh, Pennsylvania. ... Nanocrystal Solar Cells: Lawrence Berkeley National Laboratory and...

272

MT@TMS  

Science Conference Proceedings (OSTI)

Apr 20, 2013 ... Ron earned a BSc and BEng (1944), a Master MetEng (1954), and a Doctor of Applied Science (1967) from the University of Melbourne.

273

MT@TMS  

Science Conference Proceedings (OSTI)

May 28, 2012 ... Wettability and Interfacial Phenomena Between Metals and Ceramic/Refractory Materials:Submitted by Martin Pech-Canul. For a more...

274

MT@TMS  

Science Conference Proceedings (OSTI)

Dec 29, 2011... pyrometallurgical processingviewed as inherently pollutingcan ... to address air, land, and water pollution is part of that long-term dream.

275

MT@TMS  

Science Conference Proceedings (OSTI)

Jan 15, 2009 ... Combined heat and power (CHP) technologies, which capture and reuse waste heat from electric or mechanical power, account for about nine...

276

MT@TMS  

Science Conference Proceedings (OSTI)

Sep 3, 2009... an anti-reflective coating that facilitates the efficient conversion of solar ... the region to weather the current economic downturn far better than...

277

MT@TMS  

Science Conference Proceedings (OSTI)

Mar 31, 2013 ... During its five operational years, Roadrunner, part of the U.S. National Nuclear Security Administration's Advanced Simulation and Computing...

278

MT@TMS  

Science Conference Proceedings (OSTI)

Oct 29, 2010 ... The process used in drilling Marcellus shalealso known as frackingentails pumping millions of gallons of water and chemicals deep...

279

MT@TMS  

Science Conference Proceedings (OSTI)

Apr 20, 2012... and yttrium are used in fluorescent light fixtures, while neodymium ... in electronic/electrical applications and in support radio and light bulbs,...

280

MT@TMS  

Science Conference Proceedings (OSTI)

Met. Trans. Home .... as well as the environmental impacts and national security implications of that mix, and consider how they might leverage their research to...

Note: This page contains sample records for the topic "beneath butte mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

MT@TMS  

Science Conference Proceedings (OSTI)

Jul 7, 2009 ... Through interviews with Harrie J. Stevens, director of the Center for Glass ... tensile stress, as well as manufacturing and tempering techniques.

282

MT@TMS  

Science Conference Proceedings (OSTI)

Mar 24, 2013 ... Materials for Nuclear Power ... high temperature heat recovery; high temperature thermal storage; and use of domestically abundant ores.

283

MT@TMS  

Science Conference Proceedings (OSTI)

Dec 29, 2011 ... CHAMINI L. MENDIS National Institute for Materials Science, Japan JOM Advisor, Magnesium Committee The adoption of magnesium alloys in...

284

MT@TMS  

Science Conference Proceedings (OSTI)

Jun 19, 2013 ... These resources are free to all web users, so feel free to browse and download whatever you find useful. Development of the Materials...

285

MT@TMS  

Science Conference Proceedings (OSTI)

May 28, 2012... Division of the National Institute of Standards and Technology and advisor to the director on the Materials Genome ... Since the best way to experience a TMS Annual Meeting is to actually be ... 2013 All rights reserved.

286

MT@TMS  

Science Conference Proceedings (OSTI)

Mar 21, 2013... radiation detection, thermal barrier, and tribological applications. ... reveal a prospect for the improvement and optimization of solar reflectors.

287

MT@TMS  

Science Conference Proceedings (OSTI)

Dec 29, 2011 ... The question of where all of the additional electricity to power our vehicles ... The continuing high price of many metals in 2011 had a significant...

288

MT@TMS  

Science Conference Proceedings (OSTI)

Jan 18, 2013 ... You're going to make things very different when the price of oil goes ... deeply about how to increase the amount of electricity generated by...

289

MT@TMS  

Science Conference Proceedings (OSTI)

Jul 1, 2011 ... Request Meeting Information .... Could you share a few of the key points that you are planning to make? ... We already have a program called Advanced Technological ... Manufacturing Innovation; Electrical, Communications and Cyber ... Interdisciplinary Research Teams (MIRT) representing collaborative...

290

MT@TMS  

Science Conference Proceedings (OSTI)

Mar 20, 2013 ... This included limited resources and faculty availability, as well as limits on the number of courses that could be included in undergraduate...

291

MT@TMS  

Science Conference Proceedings (OSTI)

Dec 3, 2010 ... A Quadrennial Energy Review (QER) could likewise establish national goals and coordinate actions across agencies. It could also identify the...

292

MT@TMS  

Science Conference Proceedings (OSTI)

Jul 9, 2012 ... You are not signed in | Login here | New User? ... TMS Energy ... that will reduce dependence on non-renewable resources and improve the...

293

MT@TMS  

Science Conference Proceedings (OSTI)

Aug 23, 2012 ... A postulated failure mode consisting of a pinhole leak in a heat exchanger tube raises safety concerns because of autoignition of the working...

294

MT@TMS  

Science Conference Proceedings (OSTI)

Jun 3, 2009 ... Materials at the University of Puerto Rico-Mayagez: The Surge .... Department of Electrical and Computer Engineering professor and principal...

295

MT@TMS  

Science Conference Proceedings (OSTI)

Mar 6, 2009 ... ALEXANDRA CINTRN-APONTE, UNIVERSITY OF PUERTO RICO AT ... "Grain Refinement of Pure Al and Al-Si Alloy by Applying Electric...

296

MT@TMS  

Science Conference Proceedings (OSTI)

Materials for Nuclear Power ... Posted on: 10/04/2011 ... scientific workforce and accelerating the transition from research to new products, processes and services, ... MS&T 2011 is organized as a partnership the American Ceramic Society, the...

297

MT@TMS  

Science Conference Proceedings (OSTI)

Aug 18, 2010 ... Materials for Nuclear Power ... The 1297 Magna Carta represents the transition from a brokered agreement to ... often called America's Birth Certificate because it is the first world map to label ... The Archives will display the Magna Carta until early 2011 while plans for the new encasement are developed.

298

MT@TMS  

Science Conference Proceedings (OSTI)

Feb 12, 2010 ... This efficiency is more than five times greater than that of traditional ... offers better color rendering properties than is typically found in CFLs.

299

MT@TMS  

Science Conference Proceedings (OSTI)

... zeolite, dubbed SBN, captured enough medium source methane to turn it to high purity methane, which in turn could be used to generate efficient electricity.

300

MT@TMS  

Science Conference Proceedings (OSTI)

Jul 1, 2011 ... It definitely left an impression that we thought funding for research was important enough to merit taking a trip to DC, especially getting toward...

Note: This page contains sample records for the topic "beneath butte mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

MT@TMS  

Science Conference Proceedings (OSTI)

Jun 23, 2013... the survey, with three-quarters saying they would participate in open data sharing if encouraged as a term/condition of funding or publication.

302

MT@TMS  

Science Conference Proceedings (OSTI)

Aug 23, 2012... successful technology implementation, Smith will present examples highlighting efforts in sustainability, composite materials, and lighting.

303

MT@TMS  

Science Conference Proceedings (OSTI)

Feb 3, 2009 ... Reported Scientific American on January 14, There was less talk of biofuels and almost no talk of hydrogen than in previous years, with the...

304

MT@TMS  

Science Conference Proceedings (OSTI)

Mar 13, 2011 ... The U.S. Department of Energy Office (DOE) of Energy Efficiency and Renewable Energy (EERE) is seeking applicants for a postdoctoral...

305

MT@TMS  

Science Conference Proceedings (OSTI)

Investigations will focus on searching for signs of the Higgs boson, a previously undetected particle thought to generate mass. Scientists will also probe the...

306

MT@TMS  

Science Conference Proceedings (OSTI)

Dec 3, 2008 ... CERN scientists are confident, however, that the LHC will be up and running next year to resume its search for the Higgs boson particle and...

307

MT@TMS  

Science Conference Proceedings (OSTI)

Sep 20, 2011 ... Gary Gladysz, vice president of Technology for Trelleborg Offshore and a symposium organizer, said that deciding to pursue his Ph.D. under...

308

MT@TMS  

Science Conference Proceedings (OSTI)

Sep 9, 2009 ... A research team lead by Brookhaven National Laboratory, New York, has confirmed that certain conditions necessary for superconductivity...

309

MT@TMS  

Science Conference Proceedings (OSTI)

They also typically add copper, which retards the growth of algae, moss, and lichen. The Michigan team believes the stamp sand could prove an attractive...

310

MT@TMS  

Science Conference Proceedings (OSTI)

Access Scalable High-Power Redox Capacitors with Aligned Nanoforests of Crystalline MnO2 Nanorods by High Voltage Electrophoretic Deposition.

311

MT@TMS  

Science Conference Proceedings (OSTI)

A new form of clean coal technology reached an important milestone, with the successful operation of a research-scale combustion system at The Ohio State...

312

MT@TMS  

Science Conference Proceedings (OSTI)

Oct 15, 2010 ... Mailing Lists Rental ... Over the past 25 years, the conference has covered many topics and, ... As in previous conferences, utility engineers and consultants ... Gabriel Ilevbare, Electric Power Institute, is the technical program...

313

MT@TMS  

Science Conference Proceedings (OSTI)

May 5, 2009 ... Materials for Nuclear Power .... All developed standards fulfill the requirements of the GRID computing, which largely ... To close gaps in the model chain, a further extension of microstructure simulation models is necessary.

314

MT@TMS  

Science Conference Proceedings (OSTI)

Jul 2, 2009 ... Funding for the research was provided by the U.S. Department of Energy's Fossil Energy Advanced Research Materials Program and the Office...

315

MT@TMS  

Science Conference Proceedings (OSTI)

Dec 12, 2010 ... Next-generation materials for renewable energy production and ... of recycling technologies are all materials research realms with recent...

316

MT@TMS  

Science Conference Proceedings (OSTI)

Apr 20, 2013 ... The authors of this articleand organizers of ICME 2013are Mei Li, Ford Motor Company, Dearborn, MI; Carelyn Campbell, NIST,...

317

MT@TMS  

Science Conference Proceedings (OSTI)

Aug 5, 2010... are taught such as thermodynamics (e.g., HSC Chemistry and its flow sheeting capability), mass and heat transfer, fluid flow, materials, and,...

318

MT@TMS  

Science Conference Proceedings (OSTI)

Nov 2, 2009 ... The AFDC is managed by NREL and sponsored by the Clean Cities Initiative, a government-industry partnership sponsored by DOE's Vehicle...

319

MT@TMS  

Science Conference Proceedings (OSTI)

Explores the potential of wind, solar, geothermal, solar-thermal, hydroelectric, and other renewable energy sources. Also presents likely deployment timelines, ...

320

MT@TMS  

Science Conference Proceedings (OSTI)

Feb 3, 2010 ... BRaDD covers data from alumina refineries around the world and has been developed as a comparative tool enabling identification of trends...

Note: This page contains sample records for the topic "beneath butte mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

MT@TMS  

Science Conference Proceedings (OSTI)

Nov 30, 2012... National Laboratories, SLAC National Accelerator Laboratory, Northwestern University, University of Chicago, University of Illinois-Chicago,...

322

MT@TMS  

Science Conference Proceedings (OSTI)

The key enabler that the MGI has identified in achieving this is a materials innovation infrastructure. The TMS Orlando Materials Innovation Principles was cited...

323

MT@TMS  

Science Conference Proceedings (OSTI)

Oct 15, 2010 ... On S3226, which supports the development of an offshore wind power industry on the Great Lakes, Herderick commented, you can tell that a...

324

MT@TMS  

Science Conference Proceedings (OSTI)

Pyrohydrolysis, recycling of lixiviants, and water conservation will also be explored, as well as the potential use of chloride technology for the development of...

325

MT@TMS  

Science Conference Proceedings (OSTI)

In fact, the 21st century presents a range of challenges arising from every aspect of life from providing food, water, and energy to realizing livable cities;...

326

MT@TMS  

Science Conference Proceedings (OSTI)

Apr 20, 2012 ... Materials for Nuclear Power .... He commented that today's culture for managing science, in many instances, ... geologist with the Idaho National Engineering and Environmental Laboratory. ... Our work was supported by assessment from various components of the corporation, so funding was secure.

327

MT@TMS  

Science Conference Proceedings (OSTI)

Mar 31, 2009 ... Rube Goldberg and his creations became so popular that he has his own Webster's Dictionary definition: A comically involved, complicated...

328

MT@TMS  

Science Conference Proceedings (OSTI)

Nov 23, 2012 ... We thought the particle size would be too small to effectively capture, said Prentice. Not only can we capture the powder, we've also worked...

329

MT@TMS  

Science Conference Proceedings (OSTI)

Apr 19, 2010 ... Despite time limitations and a steep learning curve, Diedrich feels fortunate that she has found a hobby that meshes her artistic talents with her...

330

MT@TMS  

Science Conference Proceedings (OSTI)

Aug 13, 2012 ... The U.S. Department of Energy (DOE) announced seven new projects on August 13 that support the development of lighter and stronger...

331

MT@TMS  

Science Conference Proceedings (OSTI)

Jun 11, 2012 ... The U.S. Department of Energy (DOE) will invest up to $120 million over five years to launch a new Energy Innovation Hub, focused on...

332

MT@TMS  

Science Conference Proceedings (OSTI)

A mechanical engineer who later became interested in materials science and biology, Suresh has done pioneering work studying the biomechanics of blood...

333

MT@TMS  

Science Conference Proceedings (OSTI)

Apr 19, 2010... 34 were formed, and the students studied the basic facts, wrote essays, ... of rigorous analysis, active engagement, and creative synthesis.

334

MT@TMS  

Science Conference Proceedings (OSTI)

Jul 26, 2012 ... ASME and ASCE have been collaborating on the salary survey report for the last five years. The firm enetrix, a division of Gallup Inc., prepared...

335

MT@TMS  

Science Conference Proceedings (OSTI)

May 30, 2012 ... Materials for Nuclear Power ... with companies and activities in several relevant areas of the industry (e.g., coal, gas, nuclear, solar, wind).

336

MT@TMS  

Science Conference Proceedings (OSTI)

Qatalum is a joint venture company equally owned by Qatar Petroleum and Hydro ... Headquartered in Oslo, Hydro is a Fortune Global 500 supplier of aluminum...

337

MT@TMS  

Science Conference Proceedings (OSTI)

... expertise of five industrial companies, three research centers, and four universities from the United Kingdom, Sweden, France, Switzerland, Greece, and Spain...

338

MT@TMS  

Science Conference Proceedings (OSTI)

Posted on: 10/16/2009. Gossan Resources Limited, headquartered in Manitoba, Canada, announced October 1 that Phase II bench scale testing has confirmed...

339

MT@TMS  

Science Conference Proceedings (OSTI)

... Reactor Materials and Components with Neutron and Synchrotron Radiation ... Hume-Rothery Award Symposium: Electronic Structure Theory of Stability and...

340

MT@TMS  

Science Conference Proceedings (OSTI)

Oct 9, 2009 ... For most homeowners, the technology is expensive and cumbersome ... generally cost 30 to 40 percent less than current solar energy systems.

Note: This page contains sample records for the topic "beneath butte mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

MT@TMS  

Science Conference Proceedings (OSTI)

Nov 30, 2009 ... Experiment Quantifies Consumer Benefits of Deep Energy Retrofit ... home owners willing to have their houses undergo a deep energy retrofit ... structures that use the latest in energy-efficient materials and technologies.

342

MT@TMS  

Science Conference Proceedings (OSTI)

Sep 23, 2011... Science Foundation's Industry & University Cooperative Research Program, ... for portable electronics, as well as hybrid and electric vehicles.

343

MT@TMS  

Science Conference Proceedings (OSTI)

Jun 19, 2013 ... Energy security, resource sustainability, environmental issues, and aging infrastructure are just a few of the challenges facing 21st century...

344

MT@TMS  

Science Conference Proceedings (OSTI)

However, the ideas intuitively make economic and 'energy saving' sense. Approaches such as the use of more efficient grinding equipment and limiting the ...

345

MT@TMS  

Science Conference Proceedings (OSTI)

Nov 23, 2012 ... Also discussed will be the rapid development of shale oil production, along with changes in global refining capacity (and coking capacity).

346

Funding for state, city, and county governments in the state includes:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MT MT Montana Total Sum City, County, and SEO Allocations All $13,971,000 MT Montana State Energy Office $9,593,500 MT Anaconda-Deer Lodge City $50,000 MT Billings City $1,003,000 MT Bozeman City $175,500 MT Butte-Silver Bow City $138,700 MT Great Falls City $570,100 MT Havre City $50,000 MT Helena City $138,600 MT Kalispell City $96,700 MT Miles City City $50,000 MT Missoula City $680,400 MT Cascade County $94,400 MT Flathead County $274,200 MT Gallatin County $198,700 MT Lake County $119,500 MT Lewis and Clark County $120,400 MT Lincoln County $80,000 MT Missoula County $151,000 MT Park County $67,100 MT Ravalli County $167,400 MT Yellowstone County $151,800 In addition, today's announcement includes funding for the following Tribal

347

Evaluation of Confining Layer Integrity Beneath the South District Wastewater Treatment Plant, Miami-Dade Water and Sewer Department, Dade County, Florida  

DOE Green Energy (OSTI)

A review has been performed of existing information that describes geology, hydrogeology, and geochemistry at the South District Wastewater Treatment Plant, which is operated by the Miami-Dade Water and Sewer Department, in Dade County, Florida. Treated sanitary wastewater is injected into a saline aquifer beneath the plant. Detection of contaminants commonly associated with treated sanitary wastewater in the freshwater aquifer that overlies the saline aquifer has indicated a need for a reevaluation of the ability of the confining layer above the saline aquifer to prevent fluid migration into the overlying freshwater aquifer. Review of the available data shows that the geologic data set is not sufficient to demonstrate that a competent confining layer is present between the saline and freshwater aquifers. The hydrogeologic data also do not indicate that a competent confining layer is present. The geochemical data show that the freshwater aquifer is contaminated with treated wastewater, and the spatial patterns of contamination are consistent with upward migration through localized conduits through the Middle Confining Unit, such as leaking wells or natural features. Recommendations for collection and interpretation of additional site characterization data are provided.

Starr, R.C.; Green, T.S.; Hull, L.C.

2001-02-28T23:59:59.000Z

348

Evaluation of Confining Layer Integrity Beneath the South District Wastewater Treatment Plant, Miami-Dade Water and Sewer Department, Dade County, Florida  

Science Conference Proceedings (OSTI)

A review has been performed of existing information that describes geology, hydrogeology, and geochemistry at the South District Wastewater Treatment Plant, which is operated by the Miami-Dade Water and Sewer Department, in Dade County, Florida. Treated sanitary wastewater is injected into a saline aquifer beneath the plant. Detection of contaminants commonly associated with treated sanitary wastewater in the freshwater aquifer that overlies the saline aquifer has indicated a need for a reevaluation of the ability of the confining layer above the saline aquifer to prevent fluid migration into the overlying freshwater aquifer. Review of the available data shows that the geologic data set is not sufficient to demonstrate that a competent confining layer is present between the saline and freshwater aquifers. The hydrogeologic data also do not indicate that a competent confining layer is present. The geochemical data show that the freshwater aquifer is contaminated with treated wastewater, and the spatial patterns of contamination are consistent with upward migration through localized conduits through the Middle Confining Unit, such as leaking wells or natural features. Recommendations for collection and interpretation of additional site characterization data are provided.

Starr, Robert Charles; Green, Timothy Scott; Hull, Laurence Charles

2001-02-01T23:59:59.000Z

349

Experiment Safety Assurance Package for the 40- to 50-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-Hole Positions in the Advanced Test Reactor  

SciTech Connect

This experiment safety assurance package (ESAP) is a revision of the last MOX ESAP issued in February 2001(Khericha 2001). The purpose of this revision is to identify the changes in the loading pattern and to provide a basis to continue irradiation up to ~42 GWd/MT burnup (+ 2.5% as predicted by MCNP (Monte Carlo N-Particle) transport code before the preliminary postirradiation examination (PIE) results for 40 GWd/MT burnup are available. Note that the safety analysis performed for the last ESAP is still applicable and no additional analysis is required (Khericha 2001). In July 2001, it was decided to reconfigure the test assembly using the loading pattern for Phase IV, Part 3, at the end of Phase IV, Part 1, as the loading pattern for Phase IV, Parts 2 and 3. Three capsule assemblies will be irradiated until the highest burnup capsule assembly accumulates: ~50 GWd/MT burnup, based on the MCNP code predictions. The last ESAP suggests that at the end of Phase IV, Part 1, we remove the two highest burnup capsule assemblies (@ ~40 GWd/MT burnup) and send them to ORNL for PIE. Then, irradiate the test assembly using the loading pattern for Phase IV, Part 2, until the highest burnup capsule reaches ~40 GWd/MT burnup per MCNP-predicted values.

Khericha, Soli T

2002-06-01T23:59:59.000Z

350

Experiment Safety Assurance Package for the 40- to 50-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-Hole Positions in the Advanced Test Reactor  

SciTech Connect

This experiment safety assurance package (ESAP) is a revision of the last MOX ESAP issued in February 2001(Khericha 2001). The purpose of this revision is to identify the changes in the loading pattern and to provide a basis to continue irradiation up to {approx}42 GWd/MT burnup (+ 2.5%) as predicted by MCNP (Monte Carlo N-Particle) transport code before the preliminary postirradiation examination (PIE) results for 40 GWd/MT burnup are available. Note that the safety analysis performed for the last ESAP is still applicable and no additional analysis is required (Khericha 2001). In July 2001, it was decided to reconfigure the test assembly using the loading pattern for Phase IV, Part 3, at the end of Phase IV, Part 1, as the loading pattern for Phase IV, Parts 2 and 3. Three capsule assemblies will be irradiated until the highest burnup capsule assembly accumulates: {approx}50 GWd/MT burnup, based on the MCNP code predictions. The last ESAP suggests that at the end of Phase IV, Part 1, we remove the two highest burnup capsule assemblies ({at} {approx}40 GWd/MT burnup) and send them to ORNL for PIE. Then, irradiate the test assembly using the loading pattern for Phase IV, Part 2, until the highest burnup capsule reaches {approx}40 GWd/MT burnup per MCNP-predicted values.

Khericha, S.T.

2002-06-30T23:59:59.000Z

351

WCM Decisionmakers Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

Drill new injection well into granite bedrock beneath Mt. Simon Sandstone (8,000 feet) Corn processing plant CO 2 source is ethanol production facility Two injection zone...

352

Deformation mechanisms beneath shallow foundations  

E-Print Network (OSTI)

. Where sufficient capacity is available near the ground surface, projects such as low-rise buildings (up to about five storeys in height), houses, tanks and even wind turbines might adopt a shallow foundation system. 1.2 Shallow Foundations Shallow... and drying procedure is followed. Figures 1.1(b) and 1.1(c) show a wind turbine shallow foundation during the concrete pour stage, and a completed rectangular footing with column reinforcement respectively. Two issues are considered in the design of shallow...

McMahon, Brendan

2013-02-05T23:59:59.000Z

353

Experiment Safety Assurance Package for the 40- to 52-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-hole Positions in the Advanced Test Reactor  

SciTech Connect

This experiment safety assurance package (ESAP) is a revision of the last mixed uranium and plutonium oxide (MOX) ESAP issued in June 2002). The purpose of this revision is to provide a basis to continue irradiation up to 52 GWd/MT burnup [as predicted by MCNP (Monte Carlo N-Particle) transport code The last ESAP provided basis for irradiation, at a linear heat generation rate (LHGR) no greater than 9 kW/ft, of the highest burnup capsule assembly to 50 GWd/MT. This ESAP extends the basis for irradiation, at a LHGR no greater than 5 kW/ft, of the highest burnup capsule assembly from 50 to 52 GWd/MT.

S. T. Khericha; R. C. Pedersen

2003-09-01T23:59:59.000Z

354

Visualizing the Surface Infrastructure Used to Move 2 MtCO2/year from the Dakota Gasification Company to the Weyburn CO2 Enhanced Oil Recovery Project: Version of July 1, 2009  

Science Conference Proceedings (OSTI)

Google Earth Pro has been employed to create an interactive flyover of the worlds largest operational carbon dioxide capture and storage project. The visualization focuses on the transport and storage of 2 MtCO2/year which is captured from the Dakota Gasification Facility (Beula, North Dakota) and transported 205 miles and injected into the Weyburn oil field in Southeastern Saskatchewan.

Dooley, James J.

2009-07-09T23:59:59.000Z

355

Microsoft Word - G0374 Horse Butte CX.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clearence Memorandum Clearence Memorandum Cherilyn C. Randall - TPC-TPP-4 Proposed Action: Birch Creek Radio Tower Budget Information: Work Order #257258 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021: B4.6 "Additions or modifications to electric power transmission facilities that would not affect the environment beyond the presviously developed facility area including... replacement of poles..." Location: Bonneville County, ID - Section 2, Township 2 South, Range 41 East of the Heise SE Quadrangle Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA is proposing to install a new 50-ft radio tower within the existing Birch Creek Radio Station property in order to communicate with Utah Associated Municipal

356

Butte County, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

6253952°, -121.5370003° 6253952°, -121.5370003° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6253952,"lon":-121.5370003,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

357

Butte County, South Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

992°, -103.7008932° 992°, -103.7008932° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9251992,"lon":-103.7008932,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

358

Butte Falls, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Falls, Oregon: Energy Resources Falls, Oregon: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.5431843°, -122.5655886° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5431843,"lon":-122.5655886,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

359

Butte County, Idaho: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

°, -113.1841378° °, -113.1841378° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6448198,"lon":-113.1841378,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

360

HF Emission Reduction from Anode Butts Using Covered Trays  

Science Conference Proceedings (OSTI)

Maximize Efficiency and Safety of Smelters through Advanced Multipurpose Simulator ... Multivariate Statistical Investigation of Carbon Consumption for HSS ...

Note: This page contains sample records for the topic "beneath butte mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Characterization of Petroleum Coke and Butts Used in Anode ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Particulate Composites. Presentation Title, Characterization of Petroleum Coke...

362

Geology And A Working Conceptual Model Of The Obsidian Butte...  

Open Energy Info (EERE)

interconnected, mineralized fractures (veinlets). This stockwork probably formed by hydraulic rock rupture induced by explosion of isolated, fluid-filled pores heated and...

363

Tooth butt/buzz control method/system  

SciTech Connect

This patent describes a method for controlling shifting of an automated mechanical transmission system. It comprises: a mechanical transmission including a shift actuator, a fuel controlled engine, a nonpositive coupling drivingly interposed the engine and the transmission, and a central control unit (50) effective to receive input signals indicative of the status of the transmission system including signals indicative of the rotational speeds of transmission shafts and signals indicative of the positioning of transmission jaw clutch members and to process same in accordance with logic rules to issue command output signals to a plurality of system actuators, including the shift actuator and a non-positive coupling actuator, the method including the steps, responsive to sensing a required shift from transmission neutral into a selected gear ratio, of causing the nonpositive coupling to be disengaged, then causing the jaw clutch members associated with the selected gear ratio to rotate at a substantially synchronous speed and then causing the jaw clutch members to be continuously urged into positive engagement.

Langbo, R.W.; Boardman, M.D.

1992-03-31T23:59:59.000Z

364

Multi-fluid shocks in clusters of galaxies: entropy, sigma_ v-T, M-T and L_x-T scalings  

E-Print Network (OSTI)

The nonthermal phenomena in clusters of galaxies are considered in the context of the hierarchical model of cosmic structure formation by accretion and merging of the dark matter (DM) substructures.Accretion and merging processes produce large-scale gas shocks. The plasma shocks are expected to be collisionless. In the course of cluster's aggregation, the shocks, being the main gas-heating agent, generate turbulent magnetic fields and accelerate energetic particles via collisionless multi-fluid plasma relaxation processes. The intracluster gas heating and entropy production rate by a collisionless shock may differ significantly from that in a single-fluid collisional shock. Simple scaling relations for postshock ion temperature and entropy as functions of shock velocity in strong collisionless multi-fluid shocks are presented. We show that the multi-fluid nature of the collisionless shocks results in high gas compression, reduced entropy production and modified sigma_v-T, M-T and L_x-T scalings. The scaling i...

Bykov, A M

2005-01-01T23:59:59.000Z

365

Multi-fluid shocks in clusters of galaxies: entropy, sigma_ v-T, M-T and L_x-T scalings  

E-Print Network (OSTI)

The nonthermal phenomena in clusters of galaxies are considered in the context of the hierarchical model of cosmic structure formation by accretion and merging of the dark matter (DM) substructures.Accretion and merging processes produce large-scale gas shocks. The plasma shocks are expected to be collisionless. In the course of cluster's aggregation, the shocks, being the main gas-heating agent, generate turbulent magnetic fields and accelerate energetic particles via collisionless multi-fluid plasma relaxation processes. The intracluster gas heating and entropy production rate by a collisionless shock may differ significantly from that in a single-fluid collisional shock. Simple scaling relations for postshock ion temperature and entropy as functions of shock velocity in strong collisionless multi-fluid shocks are presented. We show that the multi-fluid nature of the collisionless shocks results in high gas compression, reduced entropy production and modified sigma_v-T, M-T and L_x-T scalings. The scaling indexes estimated for a simple model of a strong accretion multi-fluid shock are generally consistent with observations. Soft X-ray and extreme ultraviolet photons dominate the emission of strong accretion shock precursors that appear as large-scale filaments. Magnetic fields, turbulence and energetic particles constitute the nonthermal components contributing into the pressure balance, energy transport and emission of clusters. Nonthermal emission of energetic particles could be a test to constrain the cluster properties.

A. M. Bykov

2005-01-26T23:59:59.000Z

366

Property:Geothermal/Objectives | Open Energy Information  

Open Energy Info (EERE)

Objectives Objectives Jump to: navigation, search Property Name Geothermal/Objectives Property Type Text Description Objectives Pages using the property "Geothermal/Objectives" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Apply three-dimensional/three-component (3D-3C) reflection seismic technology to define transmissive geothermal structures at the Soda Lake Geothermal area, Churchill County, NV. A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Install a heat-pump system in Montana Tech's new Natural Resources Building that will (a) provide efficient, geothermally based, climate control for the building, and (b) demonstrate the efficacy of using mine waters for heat pump systems. At a minimum, the system capacity will be in the 50- to 100-ton range, but could be larger if economics warrant.

367

Miniature MT optical assembly (MMTOA)  

DOE Patents (OSTI)

An optical assembly (10) includes a rigid mount (12) with a recess (26) proximate a first side thereof, a substrate (14), and an optical die (16) flip-chip bonded to the substrate (14). The substrate (14) is secured to the first side of the mount and includes a plurality of die bonding elements (40), a plurality of optical apertures (32), and a plurality of external bonding elements (42). A plurality of traces (44) interconnect the die bonding elements (40) and the external bonding elements (42). The optical die (16) includes a plurality of optical elements, each element including an optical signal interface (48), the die being bonded to the plurality of die bonding elements (40) such that the optical signal interface (48) of each element is in registry with an optical aperture (32) of the substrate (14) and the die (16) is at least partially enclosed by the recess (26).

Laughlin, Daric (Overland Park, KS); Abel, Phillip (Overland Park, KS)

2008-04-01T23:59:59.000Z

368

EMSL: News - MT Thomas Award  

NLE Websites -- All DOE Office Websites (Extended Search)

accomplishments that include seminal and novel theoretical advancements in understanding electron transfer reactions at environmental interfaces and its impact on the field of...

369

EERE SBIR Case Study: Sonic Energy Improves Industrial Separation and Mixing Processes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resodyn to develop a simple, Resodyn to develop a simple, new technology that improves membrane performance by a factor of 5 to 10 compared to conventional mixing, offering far better separations capability for a wide variety of industries and applications. Resodyn Corporation (Butte, MT) is a small high-technology business whose objective is to develop, manufacture, and sell advanced technologies for high-

370

Infrared Propagation Modeling beneath Marine Stratus Clouds  

Science Conference Proceedings (OSTI)

Airborne measurements of aerosol size distributions are used to determine the vertical profiles of infrared (IR) extinction and absorption coefficients and asymmetry factors in eight different maritime stratus cloud regimes during unstable ...

H. G. Hughes; C. R. Zeisse

2000-04-01T23:59:59.000Z

371

Graphical law beneath each written natural language  

E-Print Network (OSTI)

We study twenty four written natural languages. We draw in the log scale, number of words starting with a letter vs rank of the letter, both normalised. We find that all the graphs are of the similar type. The graphs are tantalisingly closer to the curves of reduced magnetisation vs reduced temperature for magnetic materials. We make a weak conjecture that a curve of magnetisation underlies a written natural language.

Anindya Kumar Biswas

2013-07-18T23:59:59.000Z

372

NETL: Methane Hydrates - ANS Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Science Plan The Mt. Elbert prospect will be drilled as a vertical stratigraphic test using the Doyon 14 rig. The well is being drilled beneath an exploration ice pad...

373

MT paper-2 column.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

GT2005-68203 INSERTION OF SHOCK WAVE COMPRESSION TECHNOLOGY INTO MICRO TURBINES FOR INCREASED EFFICIENCY AND REDUCED COSTS ABSTRACT The following analysis is presented to serve as a preliminary design guide for micro turbine engine designers to consider the potential advantages of incorporating the Rampressor into their recuperated engine designs. It is shown that the increase in compressor efficiency and the shift in optimum pressure will increase the efficiency of the engine and lower the recuperator inlet temperature and specific cost. This also provides the opportunity to increase the turbine inlet temperature and specific power without incorporating more costly air-cooled metal or ceramic components into the turbine design.

374

Mt Wheeler Power, Inc | Open Energy Information  

Open Energy Info (EERE)

Nevada Nevada Utility Id 13073 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS (Small General Service) Commercial H-1(Metered Residential or Commercial Electric Heat) Residential H-2 (Unmetered Residential Electric Heat Rate) Residential Irrigation Rate (Annual Charge) Commercial Irrigation Rate (Demand Charge) Commercial Irrigation Rate (Kilowatt Hour Rate) Commercial Irrigation Rate (Load Factor Rate) Commercial Irrigation Rate (Off-Peak Rate) Commercial

375

Methane Hydrates - Mt. Elbert Well Log Data  

NLE Websites -- All DOE Office Websites (Extended Search)

more. Project background information - Alaska North Slope Gas Hydrate Reservoir Characterization - DE-FC26-01NT41332 More information on the National Methane Hydrates R&D Program...

376

WIND DATA REPORT Ragged Mt Maine  

E-Print Network (OSTI)

Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst. This report covers wind Average Wind Speeds, September 1, 2007 ­ November 30, 2007. January 22, 2008 Renewable Energy Research ­ Turbulence Intensity vs. Wind Speed, September 1, 2007 ­ November 30, 2007. January 22, 2008 Renewable Energy

Massachusetts at Amherst, University of

377

Improving AMBER, an MT evaluation metric  

Science Conference Proceedings (OSTI)

A recent paper described a new machine translation evaluation metric, AMBER. This paper describes two changes to AMBER. The first one is incorporation of a new ordering penalty; the second one is the use of the downhill simplex algorithm to tune the ...

Boxing Chen; Roland Kuhn; George Foster

2012-06-01T23:59:59.000Z

378

MT@TMS Frequently Asked Questions  

Science Conference Proceedings (OSTI)

For some Web browsers, a yellow message will appear, requesting you to allow scripted windows. Click on the yellow message bar. A gray message bar will...

379

Babb, MT Natural Gas Export to Canada  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011...

380

OpenMT12 Evaluation Results  

Science Conference Proceedings (OSTI)

... NJU, Nanjing University, China, Yes, NRC, NRC Canada, Canada, Yes, Yes, OSU, Ohio State University, USA, Yes, Yes, ... NRC, NRC Canada, Canada ...

2013-01-18T23:59:59.000Z

Note: This page contains sample records for the topic "beneath butte mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Babb, MT Natural Gas Export to Canada  

Gasoline and Diesel Fuel Update (EIA)

6 2007 2008 2009 2010 2011 View History Pipeline Volumes 0 0 0 0 0 20 1996-2011 Pipeline Prices -- -- -- -- -- 3.39 1996-2011...

382

Havre, MT Natural Gas Exports to Canada  

Annual Energy Outlook 2012 (EIA)

1998 1999 2000 2001 2002 2003 View History Pipeline Volumes NA NA 1,309 NA NA 0 1998-2003 Pipeline Prices NA NA 3.66 NA NA -- 1998-2003...

383

Microsoft Word - CX-Redmond-PilotButte-Lapine_RelayCommunicationReplac...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TO ATTN OF: KEPR-4 SUBJECT: Environmental Cleareance Memorandum Jim Riehl Electrical Engineer - TECC-CSB-2 Proposed Action: Replace a relaytransfer trip rack at Redmond...

384

Intermittent upwelling of asthenosphere beneath the Gregory Rift, Kenya  

Science Conference Proceedings (OSTI)

K-Ar dates and chemical compositions of basalts in the Gregory Rift, Kenya, demonstrate marked secular variation of lava chemistry. Two magmatic cycles characterized by incompatible element relative depletion are recognized; both occurring immediately after the peak of basaltic volcanism and coeval with both trachyte/phonolite volcanism and domal uplift of the region. These cycles may be attributed to increasing degree of partial melting of mantle source material in association with thinning of the lithosphere by thermal erosion through contact with hot upwelling asthenospheric mantle. Cyclic variation in asthenosphere upwelling may be considered an important controlling process in the evolution of the Gregory Rift.

Tatsumi, Yoshiyuki (Univ. of Tasmania (Australia) Kyoto Univ. (Japan)); Kimura, Nobukazu (Kyoto Univ. (Japan)); Itaya, Tetsumaru (Okayama Univ. of Science (Japan)); Koyaguchi, Takehiro (Kumamoto Univ. (Japan)); Suwa, Kanenori (Nagoya Univ. (Japan))

1991-06-01T23:59:59.000Z

385

Inferences On The Hydrothermal System Beneath The Resurgent Dome...  

Open Energy Info (EERE)

dome. Although this system apparently died off as a result of mineral deposition and cooling (andor deepening) of magmatic heat sources, flow testing and tidal analyses of...

386

A Preparation Zone For Volcanic Explosions Beneath Naka-Dake...  

Open Energy Info (EERE)

mud eruptions, and red hot glows on the crater wall. Temporal variations in the geomagnetic field observed around the craters of Naka-dake also indicate that thermal...

387

Evidence for Deep Magma Injection Beneath Lake Tahoe,  

E-Print Network (OSTI)

-containing gas streams from the catalytic reforming of hydrocarbons to produce an aqueous solution of reduced

Faulds, James E.

388

Acoustical Measurement of Current and Vorticity beneath Ice  

Science Conference Proceedings (OSTI)

An acoustical instrument has been developed to measure path-averaged horizontal current and vorticity in the subice boundary layer of the eastern Arctic during the spring of 1989. A triangular acoustic array of side 200 m was used to obtain ...

Dimitris Menemenlis; David M. Farmer

1992-12-01T23:59:59.000Z

389

Temporal Velocity Variations beneath the Coso Geothermal Field...  

Open Energy Info (EERE)

events and determine the compressional and shear wave velocity as well as their ratio. In a first step, we apply traveltime tomography based on the observed microearthquake...

390

Wave-induced Roll Motion beneath an Ice Cover  

Science Conference Proceedings (OSTI)

A pair of gravity waves propagating at oblique angles along the sea-ice interface in a viscous, rotating ocean is studied theoretically. The motion is described by a Lagrangian formulation. Two theoretical models of the ice cover are considered. ...

Arne Melsom

1992-01-01T23:59:59.000Z

391

CAMAS: A Citizen Awareness System for Crisis Mitigation S. Mehrotra, C. Butts, D. Kalashnikov, N. Venkatasubramanian, K. Altintas, Haimin Lee,  

E-Print Network (OSTI)

was to identify cross-document coreference chains about the same "resign" event. The answer keys were manually cre coreference. First are appositive relations as holds between 'John Smith' and ~chairman of General Electric' in: John Smith, chairman of General Electric, resigned yesterday. Identifying this class

Venkatasubramanian, Nalini

392

CAMAS: A Citizen Awareness System for Crisis Mitigation Sharad Mehrotra, Carter Butts, Dmitri V. Kalashnikov, Nalini Venkatasubramanian, Kemal Altintas, Ram  

E-Print Network (OSTI)

the crisis flows through the disaster response networks has the potential to revolutionize crisis response with which information flows through disaster response networks, which consist of numerous response to natural or man-made disasters in a timely and effective manner can reduce deaths and injuries, contain

Kalashnikov, Dmitri V.

393

THE PROVENANCE OF EOCENE TUFF BEDS IN THE FOSSIL BUTTE MEMBER OF THE GREEN RIVER FORMATION, WYOMING: RELATION TO THE  

E-Print Network (OSTI)

Analysisofrecursivestochastic algorithms IEEE Trona. Aulo. Control AC-22 551-75 MscKay D J and Miller K D 1990Analyea of

Seamons, Kent E.

394

MAGNETOSTRICTIVE SENSOR \(MsS\) INSPECTION OF BUTT WELDS FOR CONTINUOUS STEEL-COIL PROCESSING LINES„LABORATORY EVALUATION  

NLE Websites -- All DOE Office Websites (Extended Search)

NONLINEAR HARMONIC SENSORS FOR DETECTION OF MECHANICAL DAMAGE FINAL REPORT October 1, 2002-December 31, 2003 Prepared by Alfred E. Crouch Southwest Research Institute® Post Office Drawer 28510 San Antonio, Texas 78228-0510 Alan Dean, Carl Torres and Jeff Aron Tuboscope Pipeline Services P.O. Box 808 Houston, Texas 77001 March 2004 DOE Contract No. DE-FC26-01NT41156 SwRI® Project 14.05030 Prepared for U.S. Department of Energy National Energy Technology Laboratory 3610 Collins Ferry Road Morgantown, West Virginia 26507-0880 SOUTHWEST RESEARCH INSTITUTE SAN ANTONIO HOUSTON DETROIT WASHINGTON, DC ii iii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

395

The Urgent Need for Carbon Dioxide Sequestration Klaus S. Lackner, Darryl P. Butt, Reed Jensen and Hans Ziock  

E-Print Network (OSTI)

that this will happen. Solar energy is still far too expensive. Wind, hydro- and geothermal energy are too limited the most abundant and most reliable energy resource ever known to mankind. The need to reduce green- house at the same time providing for the growing energy demand of the world, are extremely limited. None

396

City of Mt Pleasant, Iowa (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Iowa Iowa Utility Id 13038 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Commercial Demand Commercial Commercial Electric Heat - One Meter Service Residential Commercial Electric Heat - Two Meter Service Commercial Residential Residential Residential Electric Heat - One Meter Service Residential Residential Electric Heat - Two Meter Service Residential Security Lights- With Existing Pole Lighting

397

BWXT Pantex, LLC Route 726, Mt. Athos Road  

National Nuclear Security Administration (NNSA)

9B. DATED (SEE ITEM 11) I I DE-AC04-00AL66620 10B. DATED (SEE ITEM 13) CONTRACT ID CODE PAGE I OF 2 PAGES 2. AMENDMENTIMODIFICATION NO. MI18 extended. CODE I FACILITY CODE Offers must acknowledge receipt of this amendment prior to the hour and date specified in the solicitation as amended, by one of the following methods: (a) By completing Items 8 and 15, and returning - copies of the amendment; (b) By acknowledging receipt of this amendment on each copy of the offer submitted; or (c) By separate letter or telegram which includes a reference to the solicitation and amendment numbers. FAILURE OF YOUR ACKNOWLEDGMENT TO BE RECElVED AT THE PLACE DESIGNATED FOR THE RECEIPT OF OFFERS PRIOR TO THE HOUR AND DATE SPECIFIED MAY RESULT IN REJECTION OF YOUR OFFER. If by virtue of this amendment you desire to change an offer already submitted, such

398

BWXT Pantex, LLC Route 726, Mt. Athos Road  

National Nuclear Security Administration (NNSA)

9B. DATED (SEE E M 11) I 1 DE-ACO4-OOALO6020 10s. DATED (SEE ITEM 13) I . CONTRACT ID CODE PAGE I OF 2 PAGES 2. AMENDMENT/MODlFlCATlON NO. MO99 Offers must acknowledge receipt of this amendment priw to the hour and date specifid in the solicitation a s amended. by one of the fdlovving methods: (a) By completing Items 8 and 15, and returning - copies of the amendmmS (b) By acknwuledglng receipt of this amendment on each oopy of the offer submitted; or (c) By separate letttx or tdegram which includes a reference to the solicitation m d amendment n u m b . FAILURE OF YOUR ACKNOWLEDGMENT TO BE RECEIVED AT THE PLACE DESIGNATED FOR THE RECEIPT OF OFFERS PRIOR TO THE HOUR AND DATE SPECIFIED MAY RESULT IN REJECTION OF YOUR OFFER. If by virtue of this msndment yw desire to change an offa already submitted. such drmge

399

BWXT Pantex, LLC Route 726, Mt. Athos Road  

National Nuclear Security Administration (NNSA)

Sol-lClTATlONlMODlFlCATlON OF CONTRACT I Sol-lClTATlONlMODlFlCATlON OF CONTRACT I I . CONTRACT ID CODE PAGE I OF P PAGES 9B. DATED (SEE E M 11) 2. AMENDMENTIMODIFICATION NO. MI01 Offers must acknowledge receipt of this amendment prior to the hour and date specifmd in the solicitation as mended, by one of the following methods: (a) By completing Items 8 and 15, and returning - coples of the amendment; @) By acknowledging r d p t of this amendment on each copy of the offer submitted; or (c) By seperate letter or telegram whlch includes a refer- to the solicitation and mendmmt numbers. FAILURE OF YOUR ACKNOWLEDGMENT TO BE RECEIVED AT THE PLACE DESIGNATED FOR THE RECEIPT OF OFFERS PRIOR TO THE HOUR AND DATE SPECIFIED MAY RESULT IN REJECTION OF YOUR OFFER. If by virtus of this msndment you desire to change an offer drem-ly submitted, such change

400

BWXT Pantex, LLC Route 726, Mt. Athos Road  

NLE Websites -- All DOE Office Websites (Extended Search)

I I 1 CONTRACT ID CODE I I 9B. DATED (SEE ITEM 11) PAGE I OF 2 PAGES 10A. MODIFICATION OF CONTRACTIORDER NO. DE-AC04-00AL66620 1 1 1 0 B DATED (SEE ITEM 13) 2. AMENDMENTIMODIFICATION NO. M I 22 - . - extended. Offers must acknowledge receipt of this amendment prior to the hour and date specified in the solicitation as amended, by one of the following methods: (a) By completing Items 8 and 15, and returning - copies of the amendment; (b) By acknowledging receipt of this amendment on each copy of the offer submitted; or (c) By separate letter or telegram which includes a reference to the solicitation and amendment numbers. FAILURE OF YOUR ACKNOWLEDGMENT TO BE RECEIVED AT THE PLACE DESIGNATED FOR THE RECEIPT OF OFFERS PRIOR TO THE HOUR AND DATE SPECIFIED MAY RESULT IN REJECTION OF YOUR OFFER. If by virtue of this amendment you desire to change an offer already submitted, such

Note: This page contains sample records for the topic "beneath butte mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

City of Mt Pleasant, Tennessee (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Tennessee Tennessee Utility Id 13039 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power - Part 1 (Small Commercial < 50 kW) Commercial General Power - Part 1 - > (Commercial 51 - 1000 kW) Commercial General Power - Part 2 - (51 - 1,000 kW) Industrial General Power - Part 3 - (1,001 - 5,000 kW) Industrial Outdoor Lighting - 100 W HPS Lighting Outdoor Lighting - 250 W HPS Lighting Outdoor Lighting - 400 W MH floodlight Lighting Residential Residential Average Rates

402

Chemical Characteristics of Fog Water at Mt. Tateyama ... - Springer  

Science Conference Proceedings (OSTI)

direct solar irradiance and the solar aureole radiance distributions, as ..... storms in the arid regions of the Asian continent during the autumn of 2006 can also be...

403

November 2012 JOM Focuses on Primary Metals ... - MT@TMS  

Science Conference Proceedings (OSTI)

Oct 16, 2012 ... This paper presents research on the novel technology of fluidized roasting reduction of low-grade pyrolusite using biogas residual as reductant...

404

BWXT Pantex, LLC Route 726, Mt. Athos Road Lynchburg, V  

National Nuclear Security Administration (NNSA)

DATA (If required) 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) 11. THlS ITEM ONLY APPI-IES TO AMENDMENTS OF SOLICITATIONS The above numbered...

405

BWXT Pantex, LLC Route 726, Mt. Athos Road  

National Nuclear Security Administration (NNSA)

ORDER NO. IN ITEM 10A. 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) I I B. THE ABOVE-NUMBERED CONTRACTIORDER IS MODIFIED TO REFLECT THE...

406

Whitlash, MT Natural Gas Imports by Pipeline from Canada  

Gasoline and Diesel Fuel Update (EIA)

GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba...

407

Sweetgrass, MT Liquefied Natural Gas Exports to Canada  

Gasoline and Diesel Fuel Update (EIA)

GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba...

408

Second generation sequencing allows for mtDNA mixture ...  

Science Conference Proceedings (OSTI)

... of additional discrimi- nation power, yet their ... using the NextGENe software package from SoftGenetics, Inc ... 18 savolainen P, Rosen b, Holmberg A ...

2012-10-09T23:59:59.000Z

409

Extending the BLEU MT evaluation method with frequency weightings  

Science Conference Proceedings (OSTI)

We present the results of an experiment on extending the automatic method of Machine Translation evaluation BLUE with statistical weights for lexical items, such as tf.idf scores. We show that this extension gives additional information about evaluated ...

Bogdan Babych; Anthony Hartley

2004-07-01T23:59:59.000Z

410

BWXT Pantex, LLC Route 726, Mt. Athos Road  

NLE Websites -- All DOE Office Websites (Extended Search)

Sponsors Process Manual N 481.1A Reimbursable Work for Department of Homeland Security O 482.1 DOE Facilities Technology Partnering Programs O 483.1 DOE Cooperative Research and...

411

BWXT Pantex, LLC Route 726, Mt. Athos Road  

NLE Websites -- All DOE Office Websites (Extended Search)

h 6 ) CODE U.S. Department of Energy National Nuclear Security Administratlon Manager, Pantex Site Office , P.O. Box 30030 Amarillo, TX 79120 4. REQUISITIOWPURCHASE REQ. NO. 11....

412

BWXT Pantex, LLC Route 726, Mt. Athos Road  

NLE Websites -- All DOE Office Websites (Extended Search)

6) CODE U.S. Department of Energy National Nuclear Security Administration Manager, Pantex Site Office P.O. Box 30030 Amarillo, TX 79120 4. REQUlSlTlONlPURCHASE REQ. NO. 11....

413

BWXT Pantex, LLC Route 726, Mt. Athos Road Lynchburg, V  

NLE Websites -- All DOE Office Websites (Extended Search)

6) CODE U.S. Department of Energy National Nuclear Security Administration Manager, Pantex Site Office P.O. Box 30030 Amarillo, TX 79120 4. REQUlSlTlONlPURCHASE REQ. NO. CODE I...

414

Whitlash, MT Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,820 6,420 6,533 12,767 2000's 13,733 11,428 12,558 14,475 20,069 11,157 9,120 8,945 9,834...

415

Whitlash, MT Natural Gas Pipeline Imports From Canada (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3.57 3.80 3.68 3.81 3.94 4.01 3.95 3.73 3.65 3.37 3.20 3.10 2012 2.71 2.37 1.93 1.71 1.79 1.90 2.07 2.29 2.22 2.71 3.29...

416

Babb, MT Natural Gas Pipeline Exports to Canada (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 91 NA NA 2000's NA 549 143 38 1,429 0 0 0 0 0 2010's 0 20 - No Data Reported; -- Not...

417

Babb, MT Natural Gas Pipeline Imports From Canada (Dollars per...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.16 1.40 1.65 2.00 2000's 5.83 2.74 2.24 4.70 5.21 7.32 5.44 6.46 7.49 3.26 2010's 3.86 3.98...

418

Babb, MT Natural Gas Pipeline Exports to Canada (Dollars per...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.53 NA NA 2000's NA 3.55 2.28 6.48 4.98 -- -- -- -- -- 2010's -- 3.39 - No Data Reported; --...

419

Whitlash, MT Natural Gas Pipeline Imports From Canada (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.14 1.61 1.57 2.05 2000's 3.09 2.71 2.42 4.86 5.06 7.40 5.59 6.00 7.63 3.45 2010's 3.88 3.65...

420

Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Dollars...  

Annual Energy Outlook 2012 (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.08 3.79 3.87 3.96 4.08 4.18 3.94 3.78 3.71 3.37 3.24 2.96 2012 2.51 2.19 1.86 1.71 2.08 1.95 2.37 2.27 2.42 3.20 3.44...

Note: This page contains sample records for the topic "beneath butte mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Havre, MT Natural Gas Pipeline Exports to Canada (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 1,510 2000's 1,606 2,428 15,892 8,851 21,950 19,159 21,245 20,420 16,399 12,504 2010's 9,437...

422

Whitlash, MT Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 586 518 591 564 622 539 612 629 604 606 591 599 2012 598 571 600 542 575 525 550 549 530 526 493 512 2013 511 452 475 485...

423

Havre, MT Natural Gas Pipeline Exports to Canada (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 640 555 634 583 587 562 607 581 512 553 498 495 2012 433 406 398 390 389 373 366 347 334 314 295 286 2013 271 230 232 184...

424

Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's NA 121 NA 347 2,728 2,043 2,012 1,539 1,373 1,109 2010's 932 781 716...

425

Babb, MT Natural Gas Pipeline Imports From Canada (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 10 164 251 1,367 1,953 1,897 1,872 2,240 1,262 884 623 285 2012 217 406 580 1,533 1,373 2,243 2,223 1,846 1,913 1,680 867...

426

Babb, MT Natural Gas Pipeline Imports From Canada (Dollars per...  

Annual Energy Outlook 2012 (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.21 4.18 4.17 4.17 4.23 4.30 4.08 3.91 3.82 3.40 3.25 3.12 2012 2.71 2.22 1.93 1.85 2.18 2.02 2.46 2.36 2.50 3.31 3.50...

427

Havre, MT Natural Gas Pipeline Exports to Canada (Dollars per...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.06 3.88 3.86 3.97 4.09 4.18 4.03 3.83 3.76 3.44 3.31 3.30 2012 2.95 2.46 2.08 1.82 1.73 2.02 2.05 2.43 2.27 2.62 3.43...

428

Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Dollars...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's NA 1.94 NA 5.09 5.12 7.37 5.81 6.12 8.02 3.52 2010's 3.98 3.77 2.41...

429

Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 71 62 68 68 70 68 68 67 64 57 53 64 2012 57 60 63 62 65 61 68 60 55 57 52 55 2013 52 46 46 25 991...

430

Babb, MT Natural Gas Pipeline Exports to Canada (Dollars per...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3.39 - No Data Reported; -- Not Applicable; NA Not Available; W Withheld to avoid disclosure of individual company...

431

Babb, MT Natural Gas Pipeline Exports to Canada (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 20 - No Data Reported; -- Not Applicable; NA Not Available; W Withheld to avoid disclosure of individual company...

432

Babb, MT Natural Gas Pipeline Imports From Canada (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 16,545 18,477 17,776 3,841 2000's 295 2,571 6,326 4,645 4,333 396 7,343 4,580 4,057 6,702 2010's...

433

Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Dollars ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2011: 4.08: 3.79: 3.87: 3.96: 4.08: 4.18: 3.94: 3.78: 3.71: 3.37: 3.24: 2.96: 2012: 2.51: 2.19: 1.86: 1.71: 2.08 ...

434

Havre, MT Natural Gas Pipeline Exports to Canada (Dollars per...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2.05 2000's 3.25 3.40 2.74 4.80 5.32 7.33 6.05 6.16 8.14 3.63 2010's 4.05 3.82 2.40...

435

Whitlash, MT Natural Gas Pipeline Imports From Canada (Dollars per ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2011: 3.57: 3.80: 3.68: 3.81: 3.94: 4.01: 3.95: 3.73: 3.65: 3.37: 3.20: 3.10: 2012: 2.71: 2.37: 1.93: 1.71: 1.79 ...

436

BWXT Pantex, LLC Route 726, Mt. Athos Road  

NLE Websites -- All DOE Office Websites (Extended Search)

for Owners and Operators of Underground Storage Tanks (UST) 40 CFR 300 National Oil and Hazardous Substances Pollution Contingency Plan 40 CFR 302 Designation, Reportable...

437

City of Mt Pleasant, Utah (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Utah Utah Utility Id 13037 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial-Over 5,000 KWH with demand-Within City Limits Commercial Commercial-Over 5,000 KWH with demand-outside City Limits Commercial Commercial-small user-outside city limits Commercial Commercial-small user-within city limits Commercial Irrigation Pumping-not restricted-Within City Limits Commercial Irrigation Pumping-not restricted-outside City Limits Commercial

438

Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record  

SciTech Connect

This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns.

1997-12-31T23:59:59.000Z

439

Paleomagnetism of the Quaternary Cerro Prieto, Crater Elegante, and Salton Buttes volcanic domes in the northern part of the Gulf of California rhombochasm  

DOE Green Energy (OSTI)

Deviating thermomagnetic directions in volcanics representing the second and fifth or sixth pulse of volcanism suggest that the Cerro Prieto volcano originated about 110,000 years B.P. and continued to be active intermittently until about 10,000 years ago.

de Boer, J.

1980-02-01T23:59:59.000Z

440

Assessment of the Mechanical Stress Improvement Process for Mitigating Primary Water Stress Corrosion Cracking in Nickel Alloy Butt Welds in Piping Systems Approved for Leak-Before-Break  

SciTech Connect

This report provides an assessment of the use of Mechanical Stress Improvement Process to reduce, or decrease, stress-driven degradation, i.e., primary water stress corrosion cracking.

Sullivan, Edmund J.; Anderson, Michael T.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "beneath butte mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Assessment of Weld Overlays for Mitigating Primary Water Stress Corrosion Cracking at Nickel Alloy Butt Welds in Piping Systems Approved for Leak-Before-Break  

SciTech Connect

This TLR provides an assessment of weld overlays as a mitigation strategy for PWSCC, and includes an assessment of the WOL-related inspection requirements of Code Case N-770-1, as conditioned in 50.55a.

Sullivan, Edward J.; Anderson, Michael T.

2012-08-01T23:59:59.000Z

442

Materials Reliability Program: Technical Basis for Preemptive Weld Overlay for Alloy 82/182 Butt Welds in Pressurized Water Reactors (MRP-169) Revision 1-A  

Science Conference Proceedings (OSTI)

Weld overlays can be applied at locations that have not yet shown any cracking but are considered susceptible to primary water stress corrosion cracking (PWSCC). A planned application of the overlay can be facilitated, and potential future cracking is mitigated because of the resulting favorable post-overlay residual stresses at the weld location. Inservice inspection also is expedited because of enhanced joint inspectability provided by the weld overlay. An overlay used in this manner is termed a preemp...

2010-10-05T23:59:59.000Z

443

Materials Reliability Program: Technical Basis for Preemptive Weld Overlays for Alloy 82/182 Butt Welds in PWRs (MRP-169) Revision 1  

Science Conference Proceedings (OSTI)

Weld overlays can be applied at locations that have not yet shown any cracking but are considered susceptible to primary water stress corrosion cracking (PWSCC). A planned application of the overlay can be facilitated, and potential future cracking is mitigated because of the resulting favorable post-overlay residual stresses at the weld location. Inservice inspection also is expedited because of enhanced joint inspectability provided by the weld overlay. An overlay used in this manner is termed a preemp...

2008-06-11T23:59:59.000Z

444

Petrology and stable isotope geochemistry of three wells in the Buttes area of the Salton Sea Geothermal Field, Imperial Valley, California, USA  

DOE Green Energy (OSTI)

A detailed investigation is reported of cuttings recovered from three wells in the Salton Sea geothermal field located at the southeast end of the Salton Sea, California. The wells, Magmamax No. 2, Magmamax No. 3, and Woolsey No. 1 penetrate 1340 m, 1200 m, and 730 m, respectively, of altered sandstones, siltstones, and shales of the Colorado River delta. The wells are located at the crest of a thermal anomaly, reach a maximum of 320/sup 0/C at 1070 m, and produce a brine containing approximately 250,000 mg/1 of dissolved solids.

Kendall, C.

1976-12-01T23:59:59.000Z

445

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 26, 2010 Butte College's solar panels are helping it make more energy than it uses, providing it financial as well environmental benefits. | Photo courtesy of Butte College...

446

EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

25: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon...

447

A Simulation of a Supercell Thunderstorm with Emulated Radiative Cooling beneath the Anvil  

Science Conference Proceedings (OSTI)

This note reports the preliminary results of an ongoing numerical study designed to investigate what effects, if any, radiative transfer processes can have on the evolution of convective storms. A pair of idealized three-dimensional simulations ...

Paul M. Markowski; Jerry Y. Harrington

2005-07-01T23:59:59.000Z

448

Numerical Simulations of Radiative Cooling beneath the Anvils of Supercell Thunderstorms  

Science Conference Proceedings (OSTI)

Numerical simulations of supercell thunderstorms that include parameterized radiative transfer and surface fluxes are performed using the Advanced Regional Prediction System (ARPS) to investigate the effects of anvil shadows on the near-storm ...

Jeffrey Frame; Paul Markowski

2010-08-01T23:59:59.000Z

449

REACTIVE MULTIPHASE BEHAVIOR OF CO2 IN SALINE AQUIFERS BENEATH THE COLORADO PLATEAU  

DOE Green Energy (OSTI)

Field and laboratory investigations of naturally occurring CO{sub 2}-reservoirs are being conducted to determine the characteristics of potential seal and reservoir units and the extent of the interactions that occur between the host rocks and the CO{sub 2} charged fluids. Efforts have focused on the Farnham Dome field, located in central Utah, the Springerville-St. Johns field in Arizona and New Mexico, and most recently, the Crystal Geyser-Salt Wash graben areas with their CO{sub 2}-charged geysers and springs in central Utah. At both the Springerville-St. Johns field and the central Utah CO{sub 2} spring area, there is evidence of extensive travertine deposits that document release of CO{sub 2} to the atmosphere. At Farnham Dome, calcite debris fields appear to be remnants of vein calcite and an earlier period of fluid leakage. The main achievements during this quarter are (1): preparation for a soil gas flux survey in October at the Crystal Geyser --Little Grand Wash fault zone, and the Salt Wash graben; (2) submission of an abstract to the upcoming Measurement, Monitoring and Verification session at the Fall AGU meeting; (3) submission of an invited abstract to the Gordon Conference on Hydrocarbon Resources; and (4) receipt of initial radiocarbon dates of travertine from the Springerville-St Johns field. Analytical results and interpretations of both the travertine deposition and the soil gas surveys are still in progress, and will be included in future quarterly reports.

R.G. Allis; J. Moore; S. White

2004-10-25T23:59:59.000Z

450

Re^Os evidence for replacement of ancient mantle lithosphere beneath the North China craton  

E-Print Network (OSTI)

^Os data for peridotite xenoliths carried in Paleozoic kimberlites and Tertiary alkali basalts confirm, coupled with the presence of cold, refractory mantle xenoliths carried in kimberlite pipes that erupt

Mcdonough, William F.

451

Probing the deep critical zone beneath the Luquillo Experimental Forest, Puerto Rico  

Science Conference Proceedings (OSTI)

Recent work has suggested that weathering processes occurring in the subsurface produce the majority of silicate weathering products discharged to the world s oceans, thereby exerting a primary control on global temperature via the well-known positive feedback between silicate weathering and CO2. In addition, chemical and physical weathering processes deep within the critical zone create aquifers and control groundwater chemistry, watershed geometry and regolith formation rates. Despite this, most weathering studies are restricted to the shallow critical zone (e.g., soils, outcrops). Here we investigate the chemical weathering, fracturing and geomorphology of the deep critical zone in the Bisley watershed in the Luquillo Critical Zone Observatory, Puerto Rico, from two boreholes drilled to 37.2 and 27.0 m depth, from which continuous core samples were taken. Corestones exposed aboveground were also sampled. Weathered rinds developed on exposed corestones and along fracture surfaces on subsurface rocks slough off of exposed corestones once rinds attain a thickness up to ~1 cm, preventing the corestones from rounding due to diffusion limitation. Such corestones at the land surface are assumed to be what remains after exhumation of similar, fractured bedrock pieces that were observed in the drilled cores between thick layers of regolith. Some of these subsurface corestones are massive and others are highly fractured, whereas aboveground corestones are generally massive with little to no apparent fracturing. Subsurface corestones are larger and less fractured in the borehole drilled on a road where it crosses a ridge compared to the borehole drilled where the road crosses the stream channel. Both borehole profiles indicate that the weathering zone extends to well below the stream channel in this upland catchment; hence weathering depth is not controlled by the stream level within the catchment and not all of the water in the watershed is discharged to the stream.

Buss, Heather [University of Bristol, UK; Brantley, S. L. [Pennsylvania State University, University Park, PA; Scatena, Fred [University of Pennsylvania; Bazilevskaya, Ekaterina [Pennsylvania State University, University Park, PA; Blum, Alex [U. S. Geological Survey, Boulder, CO; Schulz, M [University of Pennsylvania; Jimenez, M [University of Pennsylvania; White, Art [U.S. Geological Survey, Menlo Park, CA; Cole, David [Ohio State University

2013-01-01T23:59:59.000Z

452

REACTIVE MULTIPHASE BEHAVIOR OF CO2 IN SALINE AQUIFERS BENEATH THE COLORADO PLATEAU  

Science Conference Proceedings (OSTI)

The six coal-fired power plants located in the Colorado Plateau and southern Rocky Mountain region of the U.S. produce 100 million tons of CO{sub 2} per year. Thick sequences of collocated sedimentary rocks represent potential sites for sequestration of the CO{sub 2}. Field and laboratory investigations of naturally occurring CO{sub 2}-reservoirs are being conducted to determine the characteristics of potential seal and reservoir units and the extent of the interactions that occur between the host rocks and the CO{sub 2} charged fluids. The results are being incorporated into a series of two-dimensional numerical models that represent the major chemical and physical processes induced by injection. During reporting period covered here (March 30 to June 30, 2003), the main achievements were: Presentation of three papers at the Second Annual Conference on Carbon Sequestration (May 5-8, Alexandria, Virginia); Presentation of a poster at the American Association of Petroleum Geologists meeting; Co-PI organized and chaired a special session on Geologic Carbon Dioxide Sequestration at the American Association of Petroleum Geologists annual convention in Salt Lake City (May 12-15).

R.G. Allis; J. Moore; S. White

2003-06-30T23:59:59.000Z

453

Global warming of the mantle beneath continents back to the Archaean Nicolas Coltice a,  

E-Print Network (OSTI)

the complete aggregation of Pangea: the CAMP at 200 Ma, the Karoo at 180 Ma, the Parana-Etendeka at 130 Ma and Karoo), emplaced while Pangea was still a supercontinent (McHone, 2000; DeMin et al., 2003; Jourdan et; Jourdan et al., 2006, 2007c). In what follows, we examine critical features of the CAMP and Karoo CFBs

454

DOI: 10.1002/cssc.201000032 The Immobility of CO2 in Marine Sediments Beneath 1500  

E-Print Network (OSTI)

simulations involve the constant injection of 300 kT of CO2 per year for 50 years per vertical injection well. The sim- ulations are radially symmetric around the 100 m long vertical injection wells. In both confined to capture CO2 produced at indus- trial facilities and approaches to inject the CO2 into geologic

Schrag, Daniel

455

The Secrets Beneath the Surface of High-Speed Industrial Sprays  

NLE Websites -- All DOE Office Websites (Extended Search)

and consumer applications, such as surface finishing (paint and particle coating) and gas turbine combustion applications. These sprays comprise a jet of liquid surrounded by a...

456

Oblique subduction of the Gagua Ridge beneath the Ryukyu accretionary wedge system  

E-Print Network (OSTI)

and the Ryukyu Arc. Taking into account the opening of the Okinawa backarc basin and partitioning at the rear

Demouchy, Sylvie

457

EPRI Comments on Swedish Study of PCB Accumulation Beneath AC Power Lines  

Science Conference Proceedings (OSTI)

A paper entitled, "Increased deposition of polychlorinated biphenyls (PCBs) under an AC high-voltage power line," was recently published in Atmospheric Environment (2009;43:6168-6174). These EPRI Comments evaluate the strengths and limitations of the study and provide perspective in the context of results from previous studies.

2010-02-05T23:59:59.000Z

458

Petrology and Geochemistry of Neoproterozoic Arc Plutons Beneath the Atlantic Coastal Plain, SRS, SC  

Science Conference Proceedings (OSTI)

In this report is presented first a brief review of the regional geologic setting of the Savannah River Site, descriptions of the plutonic rock units sampled here, whole rock geochemical data on the plutonic igneous rocks, and finally, a discussion of how the crystalline basement rocks of the Savannah River Site formed and how they may correlate with other terranes exposed in the Piedmont of the Carolinas, Georgia, and Virginia.

Maryak, M.

1998-10-21T23:59:59.000Z

459

Uranium Contamination in the Subsurface Beneath the 300 Area, Hanford Site, Washington  

SciTech Connect

This report provides a description of uranium contamination in the subsurface at the Hanford Site's 300 Area. The principal focus is a persistence plume in groundwater, which has not attenuated as predicted by earlier remedial investigations. Included in the report are chapters on current conditions, hydrogeologic framework, groundwater flow modeling, and geochemical considerations. The report is intended to describe what is known or inferred about the uranium contamination for the purpose of making remedial action decisions.

Peterson, Robert E.; Rockhold, Mark L.; Serne, R. Jeffrey; Thorne, Paul D.; Williams, Mark D.

2008-02-29T23:59:59.000Z

460

Soil carbon storage beneath recently established tree plantations in Tennessee and South Carolina, USA  

Science Conference Proceedings (OSTI)

Rates of soil carbon (C) accumulation under 7 recently established tree plantations in Tennessee and South Carolina (USA) were estimated by comparing soil C stocks under the plantations to adjacent reference (nonplantation) sites. Estimated rates of C accumulation in surface (0-40 cm) mineral soil were 40-170 gCm{sup -2} yr{sup -1} during the first decade following plantation establishment. Most soil C at each site was found in mineral-associated organic matter (i.e., soil C associated with the silt-clay fraction). Soils with high sand content and low initial C stocks exhibited the greatest gains in particulate organic matter C (POM-C). Labile soil C stocks (consisting of forest floor and mineral soil POM-C) became an increasingly important component of soil C storage as loblolly pine stands aged. Rates of mineral soil C accumulation were highly variable in the first decade of plantation growth, depending on location, but the findings support a hypothesis that farm to tree plantation conversions can result in high initial rates of soil C accumulation in the southeastern United States.

Garten Jr, Charles T [ORNL

2002-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "beneath butte mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Situated Learning and the Situated Knowledge Web: Exploring the Ground Beneath Knowledge Management  

Science Conference Proceedings (OSTI)

Knowledge is now recognized as an important basis for competitive advantage and many firms are beginning to establish initiatives to leverage and manage organizational knowledge. These include efforts to codify knowledge in repositories as well as efforts ... Keywords: Ethnographic Methods, Knowledge Management, Organizational Change, Qualitative Research, Situated Knowledge, Web Situated Learning

Sarma R. Nidumolu; Mani Subramani; Alan Aldrich

2001-05-01T23:59:59.000Z

462

Analysis of pumping-induced unsaturated regions beneath a perennial river  

E-Print Network (OSTI)

the period over which water can be produced at a particulardesaturated and water could no longer be produced at a rateis unsaturated, but water can still be produced at a rate of

Su, G.W.; Jasperse, J.; Seymour, D.; Constantz, J.; Zhou, Q.

2008-01-01T23:59:59.000Z

463

REACTIVE MULTIPHASE BEHAVIOR OF CO{sub 2} IN SALINE AQUIFERS BENEATH THE COLORADO PLATEAU  

DOE Green Energy (OSTI)

Soil gas surveys have been carried out on the Colorado Plateau over areas with natural occurrences of CO{sub 2}. At Farnham Dome, Utah, and Springerville-St. Johns, Arizona, proven CO{sub 2} reservoirs occur at 600-800 m depth, but no anomalous soil gas CO{sub 2} flux was detected. Background CO{sub 2} fluxes of up to about 5 g m{sup -2} day{sup -1} were common in arid, poorly vegetated areas, and fluxes up to about 20 g m{sup -2} day{sup -1} were found at Springerville-St. Johns in heavily vegetated, wet ground adjacent to springs. These elevated fluxes are attributed to shallow root zone activity rather than to a deep upflow of CO{sub 2}. Localized areas of anomalously high CO{sub 2} gas flux ({approx} 100 g m{sup -2} day{sup -1}) were documented along the Little Grand Wash Fault Zone near Crystal Geyser, Utah and nearby in Ten Mile Graben, but those in Ten Mile Graben are not directly associated with the major faults. In both areas, features with a visible gas flux are present. Isotopic measurements on the CO{sub 2} gas confirm that it originated at depth. Evidence of widespread vein calcite at the surface at Farnham Dome and travertine deposits in the other areas suggests that there has been an outflow of CO{sub 2}-rich fluids in the past. 14C ages of pollen trapped in the travertine at Springerville-St. Johns record a period of CO{sub 2} leakage to the atmosphere between 887 {+-} 35 and 3219 {+-} 30 years BP. No travertine deposits appear to be currently forming. At Springerville-St. Johns, Crystal Geyser and Ten Mile Graben, there are significant outflows of high-bicarbonate water. Movement of CO{sub 2}-rich groundwaters may be the dominant mechanism controlling the mobility of CO{sub 2} today. The very localized nature of the soil gas anomalies, evidence of large scale discharge of CO{sub 2} over a very short period of time and the outflow of ground water containing dissolved CO{sub 2} will present challenges for effective, long term monitoring of CO{sub 2} leakage.

R.G. Allis; J. Moore; S. White

2005-02-08T23:59:59.000Z

464

Mantle transition zone beneath the Caribbean-South American plate boundary and its tectonic implications  

E-Print Network (OSTI)

-velocity anomalies (HVAs). As schematically shown in Fig. 1, the shape and location of the HVAs associated

Niu, Fenglin

465

Basalt petrogenesis beneath slow- and ultraslow-spreading Arctic mid-ocean ridges  

E-Print Network (OSTI)

To explore the ability of melting mafic lithologies to produce alkaline ocean-island basalts (OIB), an experimental study was carried out measuring clinopyroxene (Cpx)melt and garnet (Gt)-melt partition coefficients during ...

Elkins, Lynne J

2009-01-01T23:59:59.000Z

466

REACTIVE MULTIPHASE BEHAVIOR OF CO2 IN SALINE AQUIFERS BENEATH THE COLORADO PLATEAU  

Science Conference Proceedings (OSTI)

Soil CO{sub 2} flux surveys have been conducted over known CO{sub 2} reservoirs at Farnham Dome, Utah, Crystal Geyser-Ten Mile Graben in Utah and Springerville-St. Johns, Arizona. No anomalous CO{sub 2} flux was detected at the Farnham Dome and Springerville-St. Johns. At Crystal Geyser-Ten Mile Graben, localized areas of anomalously high CO{sub 2} flux ({approx}100 g m{sup -2} day{sup -1}) occur along a fault zone near visibly degassing features. Isotopic measurements on CO{sub 2} collected from nearby springs indicate that it originated at depth. Evidence of widespread vein calcite at the surface (Farnham Dome) and travertine deposits at the other two areas suggests that discharge of CO{sub 2}-rich fluids has occurred in the past. Despite the lack of evidence for significant present day leakage of CO{sub 2} to the atmosphere at Springerville-St. Johns and Crystal Geyser-Ten Mile Graben, there are significant outflows of high-bicarbonate water in both areas suggesting continuous migration of CO{sub 2} in the aqueous phase from depth. The very localized nature of the CO{sub 2} flux anomalies, and the outflow of ground water containing dissolved CO{sub 2} present challenges for effective, long term monitoring of CO{sub 2} leakage.

R.G. Allis; J. Moore; S. White

2005-05-16T23:59:59.000Z

467

Earthquake Swarm Activity Beneath the Tokaanu-Waihi Geothermal System, Lake Taupo, New Zealand  

DOE Green Energy (OSTI)

The hypocenters of 4 earthquake swarms (total of 54 events), recorded with a local network between 1986 April and 1987 January, occur within upper crustal rocks of the deeper Tokaanu-Waihi geothermal reservoir; all the events had a magnitude M{sub L} {le} 3.2. Most foci are aligned along two NW-trending basement fault structures along which young rhyodacitic extrusions can be found. The swarm activity has been interpreted in terms of injections into basement fractures of magma from deeper chambers (dyke injection swarm activity).

Hochstein, M.P.; Sherburn, S.; Tikku, J.

1995-01-01T23:59:59.000Z

468

Radiological status of the ground water beneath the Hanford Site, January-December 1981  

Science Conference Proceedings (OSTI)

During 1981, 299 monitoring wells were sampled at various times for radionuclide chemical contaminants. This report is one of a series prepared annually to document and evaluate the status of ground water at the Hanford Site. Two substances, tritium and nonradioactive nitrate, are easily transported in ground water; therefore, these substances are used as primary tracers to monitor the movement of contaminated ground water. Data collected during 1981 describe the movement of tritium and the nonradioactive nitrate plumes as well as their response to the influences of ground-water flow, ionic dispersion, and radioactive decay. The gross beta (/sup 106/Ru) levels have become so low that it will no longer be considered a major radionuclide contaminant. The tritium plume continues to show increasing concentrations near the Columbia River. While it is mapped as having reached the Columbia River, its contribution to the river has not been distinguished from other sources at this time. This plume shows much the same configuration as in 1977, 1978, 1979, and 1980. The size of the nitrate plume appears stable. Concentrations of nitrate in the vicinity of the 100-H Area continue to be high as a result of past leaks from the evaporation facility. The overall quality of the ground water at the Hanford Site is generally comparable to that of other ground waters in eastern Washington. Any exceptions to this statement will be noted in this report.

Eddy, P.A.; Cline, C.S.; Prater, L.S.

1982-04-01T23:59:59.000Z

469

Photographic Documentation of Some Distinctive Cloud Forms Observed Beneath a Large Cumulonimbus  

Science Conference Proceedings (OSTI)

Photographs of some variform cloud features observed in the inflow sector of an intense thunderstorm that occurred in southeastern Montana on 11 July 1981 are described. Associated meteorological conditions are interpreted within the context of ...

J. C. Fankhauser; G. M. Barnes; L. J. Miller; P. M. Roskowski

1983-05-01T23:59:59.000Z

470

National Center for Appropriate Technology | Open Energy Information  

Open Energy Info (EERE)

Technology Technology Jump to: navigation, search Name NCAT Energy Services Address P.O. BOX 3838 Place Butte, MT Zip 59702 Phone number 800.ASK.NCAT Website http://www.ncat.org/energy/ Coordinates 45.9834394°, -112.5272468° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.9834394,"lon":-112.5272468,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

471

Load Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Visualization and Controls Peer Review Visualization and Controls Peer Review Load Control for System Reliability and Measurement-Based Stability Assessment Dan Trudnowski, PhD, PE Montana Tech Butte, MT 59701 dtrudnowski@mtech.edu 406-496-4681 October 2006 2 Presentation Outline * Introduction - Goals, Enabling technologies, Overview * Load Control - Activities, Status * Stability Assessment - Activities, Status * Wrap up - Related activities, Staff 3 Goals * Research and develop technologies to improve T&D reliability * Technologies - Real-time load control methodologies - Measurement-based stability-assessment 4 Enabling Technologies * Load control enabled by GridWise technology (e.g. PNNL's GridFriendly appliance) * Real-time stability assessment enabled by Phasor Measurement (PMU) technology 5 Project Overview * Time line: April 18, 2006 thru April 17, 2008

472

ASC_RdMap7.7.55.10_MT.indd  

National Nuclear Security Administration (NNSA)

on The CoVer: on The CoVer: Dynamic void collapse in single crystal copper by dislocation emission. Shown is a small section of a 2.13-billion atom molecular dynamics simulation of a shock-compressed copper single crystal with a 0.41% preexisting void density. The simulation was performed using the SPaSM application running on BlueGene/L. Atoms in pristine fcc lattice sites are not shown, atoms in hcp stacking faults are grey, and other atoms (including surfaces and dislocation cores) are red. Untouched voids ahead of the shock front are visible in the upper right, while the complete collapse of voids leads to an array of planar stacking faults (grey) bounded by partial dislocation loops (red) behind the shock front. SPaSM is used to simulate many aspects of material

473

Microsoft Word - Granite-Mt-3G-Radio-Station-CX.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 0 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Creig Millen Project Manager - TEC-CSB-1 Proposed Action: Granite Mountain 3G Radio Station Project Budget Information: Work Order 00197218, Task 03 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.19 Siting, construction, and operation of microwave and radio communication towers and associated facilities... Location: Stevens County, Washington (T34N, R38E, Section 17) Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to install a new 100-foot radio tower, communication building, and related digital radio equipment at an existing BPA communications site on Granite Mountain in Stevens County, Washington. The new tower and building will upgrade and replace

474

LinguaNet: Embedded MT in a Cross-Border Messaging Systemfor European Law Enforcement  

Science Conference Proceedings (OSTI)

Globalisation of crime poses a serious threat to the international community and is a matter of growing concern to law enforcement agencies all over the world. In the combat against international and organized crime, the European Union (EU) has supported ... Keywords: Embedded machine translation, controlled-content data elements, multilingual casualty registration, multilingual knowledge databases, multilingual term bases, police communication

Inge Gorm Hansen; Henrik Selse Srensen

2002-09-01T23:59:59.000Z

475

Manual for Development of a Transient MODFLOW/MT3DMS/SEAWAT Simulation  

E-Print Network (OSTI)

the maximum pressure needed to lift the overburden (``the fracture pressure''), and new CO2 injection wells (MMscf) of natural gas burned to generate elec- tricity (n3045us2a.xls). All these data are posted generation has been calculated from the DOE EIA files epmxlfile4_1.xls (Report DOE/EIA-0226) for coal, and n

476

Using TectoMT as a preprocessing tool for phrase-based statistical machine translation  

Science Conference Proceedings (OSTI)

We present a systematic comparison of preprocessing techniques for two language pairs: English-Czech and English-Hindi. The two target languages, although both belonging to the Indo-European language family, show significant differences in morphology, ... Keywords: phrase-based translation, preprocessing, reordering

Daniel Zeman

2010-09-01T23:59:59.000Z

477

The School for Marine Science and The Heat Budget for Mt. Hope Bay  

E-Print Network (OSTI)

. This result has been often quoted in considering the power plant's impact on the physical and biological the heat contributions to MHB from the Brayton Point Power Station (BPPS), from the exchange across the air to uncertainty in the measurements used to estimate air-sea heat fluxes­the long-wave radiation in particular

Chen, Changsheng

478

form the caprock overlaying a 500-foot thick portion of the Mt...  

NLE Websites -- All DOE Office Websites (Extended Search)

likely to be concentrated within specific regions of a smaller number of these aquifers." Jordan K. Eccles, Lincoln Pratson, Richard G. Newell, and Robert B. Jackson, Energy...

479

Port of Del Bonita, MT Natural Gas Imports by Pipeline from Canada  

Gasoline and Diesel Fuel Update (EIA)

GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba...

480

Port of Morgan, MT Natural Gas Imports by Pipeline from Canada  

Annual Energy Outlook 2012 (EIA)

GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba...

Note: This page contains sample records for the topic "beneath butte mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Complete mtDNA genomes of Anopheles darlingi and an approach to anopheline divergence time  

E-Print Network (OSTI)

State University of New York- Albany, Empire Plaza, Albany,State University of New York at Albany, Biomedical Sciences

2010-01-01T23:59:59.000Z

482

GRR/Section 17-MT-c - Natural Streambed and Land Preservation...  

Open Energy Info (EERE)

Conservation District Montana Department of Natural Resources & Conservation Montana Fish, Wildlife & Parks Regulations & Policies MCA 75-7-101 et seq The Natural Streambed and...

483

Overview of physical oceanographic measurements taken during the Mt. Mitchell Cruise to the ROPME Sea Area  

Science Conference Proceedings (OSTI)

The ROPME Sea Area (RSA) is one of the most important commercial waterways in the world. However, the number of direct oceanographic observations is small. An international program to study the effect of the Iraqi oil spill on the environment was sponsored by the ROPME, the Intergovernmental Oceanographic Commission, and the National Oceanic and Atmospheric Administration (NOAA).

Reynolds, R.M.

1993-03-31T23:59:59.000Z

484

MT DOE/EPSCoR planning grant. [Annual Technical Progress Report  

Science Conference Proceedings (OSTI)

The Montana DOE/EPSCoR planning process has made significant changes in the state of Montana. This is exemplified by notification from the Department of Energy's Experimental Program to Stimulate Competitive Research (DOE/EPSCoR) recommendation to fund Montana's 1992 graduate traineeship grant proposal in the amount of $500,000. This is a new award to Montana. DOE traineeship reviewers recognized that our planning grant enabled us to develop linkages and build the foundation for a competitive energy-related research and traineeship program in Montana. During the planning, we identified three major focus areas: Energy Resource Base, Energy Production, and Environmental Effects. For each focus area, we detailed specific problem areas that the trainees may research. We also created MORE, a consortium of industrial affiliates, state organizations, the Montana University System (MUS), tribal colleges, and DOE national laboratories. MORE and our state-wide Research and Education Workshop improved and solidified working relationships. We received numerous letters of support. DOE reviewers endorsed our traineeship application process. They praised the linkage of each traineeship with a faculty advisor, and the preference for teams of faculty members and two or more students. Particularly commendable'' were our programs to involve Native American educators and the leveraging effect'' of this on the human resources in the state. Finally, the DOE reviewers indicated that cost-sharing via support of Native Americans was creative and positive.

Bromenshenk, J.J.; Scruggs, V.L.

1992-08-31T23:59:59.000Z

485

Northwest Geothermal Corp. 's (NGC) plan of exploration, Mt. Hood Area, Clackamas County, Oregon  

DOE Green Energy (OSTI)

The Area Geothermal Supervisor (AGS) received a Plan of Operations (POO) from Northwest Geothermal Corporation (NGC) on 2/12/80. In the POO, NGC proposed two operations: testing and abandoning an existing 1219 meter (m) geothermal temperature gradient hole, designated as OMF No. 1, and drilling and testing a new 1524 m geothermal exploratory hole, to be designated as OMF No. 7A. The POO was amended on 5/6/80, to provide for the use of an imp

Not Available

1980-05-01T23:59:59.000Z

486

Simulations of Groundwater Flow and Radionuclide Transport in the Vadose and Saturated Zones beneath Area G, Los Alamos National Laboratory  

Science Conference Proceedings (OSTI)

Numerical simulations are used to predict the migration of radionuclides from the disposal units at Material Disposal Area G through the vadose zone and into the main aquifer in support of a radiological performance assessment and composite analysis for the site. The calculations are performed with the finite element code, FEHM. The transport of nuclides through the vadose zone is computed using a three-dimensional model that describes the complex mesa top geology of the site. The model incorporates the positions and inventories of thirty-four disposal pits and four shaft fields located at Area G as well as those of proposed future pits and shafts. Only three nuclides, C-14, Tc-99, and I-129, proved to be of concern for the groundwater pathway over a 10,000-year period. The spatial and temporal flux of these three nuclides from the vadose zone is applied as a source term for the three-dimensional saturated zone model of the main aquifer that underlies the site. The movement of these nuclides in the aquifer to a downstream location is calculated, and aquifer concentrations are converted to doses. Doses related to aquifer concentrations are six or more orders of magnitude lower than allowable Department of Energy performance objectives for low-level radioactive waste sites. Numerical studies were used to better understand vadose-zone flow through the dry mesa-top environment at Area G. These studies helped define the final model used to model flow and transport through the vadose zone. The study of transient percolation indicates that a steady flow vadose-zone model is adequate for computing contaminant flux to the aquifer. The fracture flow studies and the investigation of the effect of basalt and pumice properties helped us define appropriate hydrologic properties for the modeling. Finally, the evaporation study helped to justify low infiltration rates.

Kay H. Birdsell; Kathleen M. Bower; Andrew V. Wolfsberg; Wendy E. Soll; Terry A. Cherry; Tade W. Orr

1999-07-01T23:59:59.000Z

487

Relationships between geochemistry and structure beneath a palaeo-spreading centre: a study of the mantle section in the  

E-Print Network (OSTI)

. Mineral/melt partition coe¤cients are the same as those selected by Bedini and Bodinier [57]. Numbers This work has bene¢ted from discussions with R. Bedini, F. Boudier, G. Ceuleneer, C. Dupuy, Ph. Gouze and A

Demouchy, Sylvie

488

Uranium Elemental and Isotopic Constraints on Groundwater Flow Beneath the Nopal I Uranium Deposit, Pena Blanca, Mexico  

SciTech Connect

The Nopal I uranium deposit in Chihuahua, Mexico, is an excellent analogue for evaluating the fate of spent fuel, associated actinides, and fission products over long time scales for the proposed Yucca Mountain high-level nuclear waste repository. In 2003, three groundwater wells were drilled directly adjacent to (PB-1) and 50 m on either side of the uranium deposit (PB-2 and PB-3) in order to evaluate uranium-series transport in three dimensions. After drilling, uranium concentrations were elevated in all of the three wells (0.1-18 ppm) due to drilling activities and subsequently decreased to {approx}5-20% of initial values over the next several months. The {sup 234}U/{sup 238}U activity ratios were similar for PB-1 and PB-2 (1.005 to 1.079) but distinct for PB-3 (1.36 to 1.83) over this time period, suggesting limited mixing between groundwater from these wells over these short time and length scales. Regional groundwater wells located up to several km from the deposit also have distinct uranium isotopic characteristics and constrain mixing over larger length and time scales. We model the decreasing uranium concentrations in the newly drilled wells with a simple one-dimensional advection-dispersion model, assuming uranium is introduced as a slug to each of the wells and transported as a conservative tracer. Using this model for our data, the relative uranium concentrations are dependent on both the longitudinal dispersion as well as the mean groundwater flow velocity. These parameters have been found to be correlated in both laboratory and field studies of groundwater velocity and dispersion (Klotz et al., 1980). Using typical relationships between velocity and dispersion for field and laboratory studies along with the relationship observed from our uranium data, both velocity (1-10 n/yr) and dispersion coefficient (1E-5 to 1E-2 cm{sup 2}/s) can be derived from the modeling. As discussed above, these relatively small flow velocities and dispersivities agree with mixing considerations derived from the {sup 234}U/{sup 238}U data. While these results and the limited productivity of these wells consistently suggest limited groundwater flow and mixing, we anticipate additional work with artificial tracers to better establish groundwater flow velocities and gradient at this site.

S.J. Goldstein; M.T. Murrell; A.M. Simmons

2005-07-11T23:59:59.000Z

489

Seasonal Patterns of Melatonin, Cortisol, and Progesterone Secretion in Female Lambs Raised Beneath a 500-kV Transmission Line.  

SciTech Connect

Although several kinds of biological effects of electric and magnetic fields have been reported from laboratory studies, few have been independently replicated. When this study was being planned, the suppression of nighttime melatonin in rodents was thought to represent one of the strongest known effects of these fields. The effect had been replicated by a single laboratory for 60-Hz electric fields, and by multiple laboratories for d-c magnetic fields. The primary objective of this study was to determine whether the effect of electric and magnetic fields on melatonin would also occur in sheep exposed to a high voltage transmission line. The specific hypothesis tested by this experiment was as follows: The electrical environment produced by a 60-Hz, 500-kV transmission line causes a depression in nocturnal melatonin in chronically exposed female lambs. This may mimic effects of pinealectomy or constant long-day photoperiods, thus delaying the onset of reproductive cycles. Results of the study do not provide evidence to support the hypothesis. Melatonin concentrations in the sheep exposed to the transmission line showed the normal pattern of low daytime and high nighttime serum levels. As compared to the control group, there were no statistically significant group differences in the mean amplitude, phase, or duration of the nighttime melatonin elevation.

Lee, Jack M.

1992-06-01T23:59:59.000Z

490

One dimensional P wave velocity structure of the crust beneath west Java and accurate hypocentre locations from local earthquake inversion  

SciTech Connect

A one-dimensional (1-D) velocity model and station corrections for the West Java zone were computed by inverting P-wave arrival times recorded on a local seismic network of 14 stations. A total of 61 local events with a minimum of 6 P-phases, rms 0.56 s and a maximum gap of 299 Degree-Sign were selected. Comparison with previous earthquake locations shows an improvement for the relocated earthquakes. Tests were carried out to verify the robustness of inversion results in order to corroborate the conclusions drawn out from our reasearch. The obtained minimum 1-D velocity model can be used to improve routine earthquake locations and represents a further step toward more detailed seismotectonic studies in this area of West Java.

Supardiyono; Santosa, Bagus Jaya [Physics Department, Faculty of Mathematics and Natural Sciences, State University of Surabaya, Surabaya (Indonesia) and Physics Department, Faculty of Mathematics and Natural Sciences, Sepuluh Nopember Institute of Technology, Surabaya (Indonesia); Physics Department, Faculty of Mathematics and Natural Sciences, Sepuluh Nopember Institute of Technology, Surabaya (Indonesia)

2012-06-20T23:59:59.000Z

491

Inversion of commbined geophysical data for determination of structure beneath the Imperial Valley geothermal region. Final report  

DOE Green Energy (OSTI)

A program aimed at developing formal numerical modeling data sets for defining the earth's near surface environment is discussed. The numerical modeling procedures developed and the results obtained in these areas are described. The conclusions are enumerated. (MHR)

Savino, J.M.; Rodi, W.L.; Goff, R.C.; Jordan, T.H.; Alexander, J.H.; Lambert, D.G.

1977-09-01T23:59:59.000Z

492

A Closely-Spaced Magnetotelluric Study Of The Ahuachapan-Chipilapa  

Open Energy Info (EERE)

Closely-Spaced Magnetotelluric Study Of The Ahuachapan-Chipilapa Closely-Spaced Magnetotelluric Study Of The Ahuachapan-Chipilapa Geothermal Field, El Salvador Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Closely-Spaced Magnetotelluric Study Of The Ahuachapan-Chipilapa Geothermal Field, El Salvador Details Activities (0) Areas (0) Regions (0) Abstract: The distribution of electrical conductivity beneath the Ahuachapan-Chipilapa geothermal area was simulated using 2-D models based on 126 closely-spaced magnetotelluric (MT) measurements. The observed MT response was interpreted as being produced by the superposition of two orthogonal geological structural systems: an approximately E-W regional trend associated with the Central Graben structure, which affects the longer period response, and a local and younger N-S fault system that is

493

A Self-Calibrating Remote Control Chemical Monitoring System  

SciTech Connect

The Susie Mine, part of the Upper Tenmile Mining Area, is located in Rimini, MT about 15 miles southwest of Helena, MT. The Upper Tenmile Creek Mining Area is an EPA Superfund site with 70 abandoned hard rock mines and several residential yards prioritized for clean up. Water from the Susie mine flows into Tenmile Creek from which the city of Helena draws part of its water supply. MSE Technology Applications in Butte, Montana was contracted by the EPA to build a treatment system for the Susie mine effluent and demonstrate a system capable of treating mine waste water in remote locations. The Idaho National Lab was contracted to design, build and demonstrate a low maintenance self-calibrating monitoring system that would monitor multiple sample points, allow remote two-way communications with the control software and allow access to the collected data through a web site. The Automated Chemical Analysis Monitoring (ACAM) system was installed in December 2006. This thesis documents the overall design of the hardware, control software and website, the data collected while MSE-TAs system was operational, the data collected after MSE-TAs system was shut down and suggested improvements to the existing system.

Jessica Croft

2007-06-01T23:59:59.000Z

494

Materials Reliability Program: Evaluation of Potential for Low Temperature Crack Propagation in Reactor Pressure Vessel Outlet Nozzl e Dissimilar Metal Butt Welds by Stress and Fracture Mechanics Analyses (MRP-247)  

Science Conference Proceedings (OSTI)

Low Temperature Crack Propagation is a form of hydrogen embrittlement that can cause, under specific environmental conditions in laboratory tests, severe degradation of the fracture resistance of nickel-base alloys X-750 and 690, and weld metals 82/182 and 52/152. While no operating plant has exhibited evidence of LTCP, the hydrogen levels and temperature conditions necessary for LTCP to occur are present during some PWR shutdowns. This report evaluates the potential for the thermal stresses generated du...

2008-12-22T23:59:59.000Z

495

ENVIRONMENTAL REVIEW for CATEGORICAL EXCLUSION DETERMINATION  

NLE Websites -- All DOE Office Websites (Extended Search)

DETERMINATION Rocky Mountain Region, Western Area Power Administration Alliance Substation Communication Building Installation Box Butte County, Nebraska A. Brief Description...

496

2001 TMS Annual Meeting Exhibitor  

Science Conference Proceedings (OSTI)

... Pallet Transporters; Furnace Charging Machines; Furnace Tending Machines; Molten Metal Carriers; Ladle Charging Trucks; Butt Cleaning Manipulators; Coil...

497

Exhibitor: GLAMA MASCHINENBAU GmbH  

Science Conference Proceedings (OSTI)

... Machines; Furnace Tending Machines; Mobile Flash Gas Refiners; Ladle Charging Trucks; Molten Metal Carriers; Butt Cleaning Manipulators; Coil Lift Trucks.

498

2000 TMS Annual Meeting Exhibitor: GLAMA MASCHINENBAU GmbH  

Science Conference Proceedings (OSTI)

... Furnace Charging Machines; Furnace Tending Machines; Molten Metal Carriers; Ladle Charging Trucks; Butt Cleaning Manipulators; Coil Lift Trucks.

499

Nebraska Water Conference Council's Annual Water & Natural Resources Tour  

E-Print Network (OSTI)

& completion of administrative forms required for uranium mine visit. ­ Darrell Marshall & Ed Hoffman (Chadron Mine. 1:45 Arrive at Crow Butte Uranium Mine for tour and discussion; remarks by Jim Stocke. 3:15 Depart Crow Butte Uranium Mine; travel Nebr 2 & secondary roads to Box Butte Reservoir and minimum

Nebraska-Lincoln, University of

500

Petrologic considerations for hot dry rock geothermal site selection in the Clear Lake Region, California  

DOE Green Energy (OSTI)

The Clear Lake area is well known for anomalous heat flow, thermal springs, hydrothermal mineral deposits, and Quaternary volcanism. These factors, along with the apparent lack of a large reservoir of geothermal fluid north of Collayomi fault make the Clear Lake area an attractive target for hot dry rock (HDR) geothermal development. Petrologic considerations provide some constraints on site selection for HDR development. Spatial and temporal trends in volcanism in the Coast Ranges indicate that magmatism has migrated to the north with time, paralleling passage of the Mendocino triple junction and propagation of the San Andreas fault. Volcanism in the region may have resulted from upwelling of hot asthenosphere along the southern margin of the subducted segment of the Gorda plate. Spatial and temporal trends of volcanism within the Clear Lake volcanic field are similar to larger-scale trends of Neogene volcanism in the Cost Ranges. Volcanism (especially for silicic compositions) shows a general migration to the north over the {approximately}2 Ma history of the field, with the youngest two silicic centers located at Mt. Konocti and Borax Lake. The Mt. Konocti system (active from {approximately} 0.6 to 0.3 Ma) was large and long-lived, whereas the Borax Lake system is much smaller but younger (0.09 Ma). Remnants of silicic magma bodies under Mt. Konocti may be in the latter stages of cooling, whereas a magma body centered under Borax Lake may be in the early stages of development. The existence of an upper crustal silicic magma body of under Borax Lake has yet to be demonstrated by passive geophysics, however, subsurface temperatures in the area as high (> 200{degrees}C at 2000 m) as those beneath the Mt. Konocti area. Based on petrologic considerations alone, the Mt. Konocti-Borax Lake area appears to be the most logical choice for HDR geothermal development in the region.

Stimac, J.; Goff, F. (Los Alamos National Lab., NM (United States)); Hearn, B.C. Jr. (US Geological Survey, Reston, VA, Branch of Lithospheric Processes (United States))

1992-01-01T23:59:59.000Z