Sample records for beneath butte mt

  1. A Demonstration Project for Capturing Geothermal Energy from Mine Waters beneath Butte, MT

    Broader source: Energy.gov [DOE]

    Project objectives. Demonstrate performance of heat pumps in a large HVAC system in a heating-dominated climate.

  2. Butt Joint Tool Commissioning

    SciTech Connect (OSTI)

    Martovetsky, N N

    2007-12-06T23:59:59.000Z

    ITER Central Solenoid uses butt joints for connecting the pancakes in the CS module. The principles of the butt joining of the CICC were developed by the JAPT during CSMC project. The difference between the CSMC butt joint and the CS butt joint is that the CS butt joint is an in-line joint, while the CSMC is a double joint through a hairpin jumper. The CS butt joint has to carry the hoop load. The straight length of the joint is only 320 mm, and the vacuum chamber around the joint has to have a split in the clamp shell. These requirements are challenging. Fig.1 presents a CSMC joint, and Fig.2 shows a CS butt joint. The butt joint procedure was verified and demonstrated. The tool is capable of achieving all specified parameters. The vacuum in the end was a little higher than the target, which is not critical and readily correctable. We consider, tentatively that the procedure is established. Unexpectedly, we discover significant temperature nonuniformity in the joint cross section, which is not formally a violation of the specs, but is a point of concern. All testing parameters are recorded for QA purposes. We plan to modify the butt joining tool to improve its convenience of operation and provide all features necessary for production of butt joints by qualified personnel.

  3. Baskett Butte - Sept 2009.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Baskett Butte conservation easement protects Willamette Valley habitats The Bonneville Power Administration is working with The Nature Conservancy to acquire and manage a...

  4. Burley Butte | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHISBrickyardRepowerBullEnergyEnergyButte Jump to:

  5. Steptoe Butte Offer Clues to State's Past

    SciTech Connect (OSTI)

    Reidel, Steve P.

    2004-11-21T23:59:59.000Z

    This is a column for a Tri-City Herald column that I write called Northwest Geology. This week's column is on Steptoe Butte near Colfax

  6. Baskett Butte - Sept 2009.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground High the cover: InvisibleBaskett Butte

  7. Gordon Butte | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place: Golden, CO Website:PanhandleGoodlandGordon Butte

  8. FIRE HAZARDS ANALYSIS - BUSTED BUTTE

    SciTech Connect (OSTI)

    R. Longwell; J. Keifer; S. Goodin

    2001-01-22T23:59:59.000Z

    The purpose of this fire hazards analysis (FHA) is to assess the risk from fire within individual fire areas at the Busted Butte Test Facility and to ascertain whether the DOE fire safety objectives are met. The objective, identified in DOE Order 420.1, Section 4.2, is to establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees. (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. Critical process controls and safety class systems being damaged as a result of a fire and related events.

  9. Square Butte Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place: Missouri References: EIASpanishSquare Butte Electric

  10. Idaho Owyhee Lemhi Custer Valley Elmore Butte Blaine Cassia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Owyhee Lemhi Custer Valley Elmore Butte Blaine Cassia Boise Clark Bonner Ada Shoshone Bingham Caribou Clearwater Fremont Power Adams Latah Twin Falls Bonneville Lincoln Oneida...

  11. Contestation of Place: Bear Butte and the Sturgis Motorcycle Rally.

    E-Print Network [OSTI]

    Stasiuk, Davie D.

    2012-01-01T23:59:59.000Z

    ??The sacred American Indian mountain of Bear Butte, South Dakota is a contested place under threat from the biker themed campgrounds that facilitate the Sturgis… (more)

  12. Coffin Butte Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy, -105.3774934°Coda Battery SystemsCoffin Butte Biomass

  13. Twin Buttes Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective:ToyoTurkey: EnergyGeothermal Area JumpButtes

  14. Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zemach, Ezra

    Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

  15. Microsoft Word - AlbionButteRSCommunicationUpgrade-CX.doc

    Broader source: Energy.gov (indexed) [DOE]

    Butte Radio Station Communication Upgrade Budget Information: Work Order 00253466 Task 03 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021: B1.7...

  16. MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY SUNDAY Boot Camp Butt and Gut Boot Camp Butt and Gut Boot Camp

    E-Print Network [OSTI]

    Dawson, Jeff W.

    MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY SUNDAY 7:00am Boot Camp Butt and Gut Boot Camp Butt and Gut Boot Camp 7:30am 8:00am Women's Strength Training Program (7-8am) Women's Strength Kickboxing Tabata (12:10-12:50pm) Bands and Buns Step Muscle Mix Cardio Kickbox Boot Camp Core Chisel 12:30pm

  17. Mt Playfair Blair Athol

    E-Print Network [OSTI]

    Greenslade, Diana

    Norwich Park Epping Forest Yatton Outstation Injune Lockington Augathella Crystalbrook Bluff Dysart Saraji CALDERVALE BABBILOORA MT MOFFATT FRANKFIELD WETLANDS MT PLAYFAIR LOCHINVAR PENJOBE TM FOREST VALE TM/MAN DERBYSHIRE DOWNS BILLABOO AL CHESTERTON TM/MAN GLEN ROCK AL SPRINGSURE TM/(SYN) ECHO HILLS AL GREEN VALLEY AL

  18. CORRECTION OF BUTT-WELDING INDUCED DISTORTIONS BY LASER FORMING

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    CORRECTION OF BUTT-WELDING INDUCED DISTORTIONS BY LASER FORMING Peng Cheng, Andrew J. Birnbaum, Y Egland Technology and Solutions Division Caterpillar Inc. Peoria, IL KEYWORDS Welding, Distortion, Correction, Laser Forming ABSTRACT Welding-induced distortion is an intrinsic phenomenon arising due

  19. EIS-0077-S: Bonneville Power Administration Crow Butte Slough Crossing

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration developed this SEIS to evaluate potential impacts resulting from construction of a 4,700 -foot segment of the Ashe-Slatt transmission line at Crow Butte Slough, overhead on towers on the existing right-of-way. This SEIS is a supplement to DOE/EIS-0077, Ashe-Slatt (Pebble Springs) 500-kilovolt Transmission Line.

  20. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO`s environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO`s areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavy metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation`s largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST`s Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management.

  1. Historical narratives of Big Chico Creek Watershed Alliance and Butte Creek Watershed Conservancy

    E-Print Network [OSTI]

    King, Mary Ann; Matz, Mike

    2003-01-01T23:59:59.000Z

    King and Mike Matz LA227 December 19, 2003 Abstract This study analyzes the histories of two non-governmental watershed organizations in Butte County, California:

  2. Box Butte County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Area Solar Energy AssociationBowerbank, Maine:Box Butte County,

  3. Butts County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais aBurkittsville,Bushyhead,Butts County, Georgia: Energy

  4. Microsoft Word - CX-Redmond-PilotButte-WoodPoleFY12_WEB.doc

    Broader source: Energy.gov (indexed) [DOE]

    3, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Richard Heredia Project Manager - TEP-TPP-1 Proposed Action: Redmond-Pilot Butte No. 1 Wood Pole...

  5. Microsoft Word - CX-PilotButte-LaPineWoodPoleFY12_WEB.docx

    Broader source: Energy.gov (indexed) [DOE]

    0, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Richard Heredia Project Manager - TEP-TPP-1 Proposed Action: Pilot Butte-La Pine No. 1 Wood Pole...

  6. Strength of Butt and Sharp-Cornered Joints

    SciTech Connect (OSTI)

    REEDY JR.,EARL DAVID

    2000-08-21T23:59:59.000Z

    There has been considerable progress in recent years towards developing a stress intensity factor-based method for predicting crack initiation at a sharp, bimaterial comer. There is now a comprehensive understanding of the nature of multi-material, two-dimensional, linear-elastic, wedge-tip stress fields. In general, the asymptotic stress state at the apex of dissimilar bonded elastic wedges (i.e. at an interface comer) can have one or more power-law singularities of differing strength and with exponents that can be real or complex. There are, however; many configurations of practical importance, (e.g. adhesively bonded butt joints, hi-material beams, etc.) where interface-comer stresses are described by one, real-valued power-law singularity. In such cases, one can reasonably hypothesize that failure occurs at a critical value of the stress intensity factor: when K{sub a}=K{sub ac}.This approach is completely analogous to LEFM except that the critical stress intensity factor is associated with a discontinuity other than a crack. To apply the K{sub ac} criterion, one must be able to accurately calculate K{sub a} for arbitrary geometries. There are several well-established methods for calculating K{sub a}. These include matching asymptotic and detailed finite element results, evaluation of a path-independent contour integral, and general finite element methods for calculating K. for complex geometries. A rapidly expanding catalog of K{sub a} calibrations is now available for a number of geometries of practical interest. These calibrations provide convenient formulas that can be used in a failure analysis without recourse to a detailed numerical analysis. The K{sub ac} criterion has been applied with some notable successes. For example, the variation in strength of adhesively bonded butt joints with bond thickness and the dependence of this relationship on adhered stiffness is readily explained. No other one-parameter fracture criterion is able to make this sort of prediction. Nevertheless, the interface-corner fracture toughness approach is just in its initial states of development, and its strengths and limitations must be more clearly defined. There are still numerous issues yet to be resolved, including the development of methods for treating time-dependent response, three-dimensional comers, large-scale yielding, and the development of a criterion that can be applied when the comer stress state is not characterized by a single K{sub a}.

  7. M.T. Thomas Recipient Named | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M.T. Thomas Recipient Named M.T. Thomas Recipient Named EMSL Recognizes Patrick Roach for Postdoc Achievement Dr. Patrick Roach Patrick Roach, now an environmental scientist at...

  8. The Corrosion of Materials in Spallation Neutron Sources R. Scott Lillard, Darryl P. Butt

    E-Print Network [OSTI]

    1 The Corrosion of Materials in Spallation Neutron Sources R. Scott Lillard, Darryl P. Butt Materials Corrosion and Environmental Effects Lab Materials Science and Technology Division, MST-6 Los current efforts to measure the real-time corrosion rates of Alloy 718 (718) during 800 MeV proton

  9. Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding

    E-Print Network [OSTI]

    Grujicic, Mica

    Welding M. Grujicic, S. Ramaswami, J.S. Snipes, R. Yavari, A. Arakere, C.-F. Yen, and B.A. Cheeseman-mechanical finite-element procedure is developed to model conventional gas metal arc welding (GMAW) butt of the workpiece and the weld temperature- dependent and by allowing the potential work of plastic deformation

  10. Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding

    E-Print Network [OSTI]

    Grujicic, Mica

    Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding M. Grujicic yet a fairly comprehensive overview of the friction stir welding (FSW) process is provided-element procedure developed in our prior study. Particular attention is given to proper modeling of the welding work

  11. 69. Red Butte-Red Fir Ridge (Shasta Red Fir) (Imper 1988b, Cheng 1996d)

    E-Print Network [OSTI]

    Standiford, Richard B.

    69. Red Butte-Red Fir Ridge (Shasta Red Fir) (Imper 1988b, Cheng 1996d) Location This established (fig. 139). Ecological subsection ­ High Cascades (M261Df). Target Element Red Fir (Abies magnifica) Distinctive Features Shasta Red Fir Forest: Taxonomically, the description of Shasta red fir (Abies magnifica

  12. Retention of Butt-End Aluminum Leg Bands by Wild Turkeys

    E-Print Network [OSTI]

    Butler, Matthew J.

    Note Retention of Butt-End Aluminum Leg Bands by Wild Turkeys MATTHEW J. BUTLER,1,2 Department wild turkeys (Meleagris gallopavo intermedia) captured in Texas and Kansas, USA, 2000­2009. We examined 187 recaptured or harvested radiotagged wild turkeys to determine band retention and modeled band

  13. Microsoft Word - MtRichmond_CX

    Broader source: Energy.gov (indexed) [DOE]

    Dorie Welch Project Manager - KEWM-4 Proposed Action: Mt. Richmond property funding Fish and Wildlife Project No.: 2011-003-00, BPA-007071 Categorical Exclusion Applied (from...

  14. Geothermal assessment activities in Oregon, 1979-1980, and a case study example at Powell Buttes, Oregon

    SciTech Connect (OSTI)

    Priest, G.R.; Black, G.L.; Blackwell, D.D.; Brown, D.E.; Ruscetta, C.A.; Foley, D. (eds.)

    1981-05-01T23:59:59.000Z

    Geothermal assessment activities in Oregon are reviewed briefly. An isogradient map, a lithologic and temperature log, and a finite difference thermal conductivity model of Powell Buttes area are presented. (MHR)

  15. Assessment of NDE Methods to Detect Lack of Fusion in HDPE Butt Fusion Joints

    SciTech Connect (OSTI)

    Crawford, Susan L.; Doctor, Steven R.; Cinson, Anthony D.; Watts, Michael W.; Moran, Traci L.; Anderson, Michael T.

    2011-07-31T23:59:59.000Z

    Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, were conducted to evaluate nondestructive examinations (NDE) coupled with mechanical testing of butt fusion joints in high-density polyethylene (HDPE) pipe for assessing lack of fusion. The work provided information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from assessments using ultrasonic and microwave nondestructive techniques and mechanical testing with the high-speed tensile impact test and the side-bend test for determining joint integrity. A series of butt joints were fabricated in 3408, 12-inch (30.5-cm) IPS DR-11 HDPE material by varying the fusion parameters to create good joints and joints containing a range of lack-of-fusion conditions. Six of these butt joints were volumetrically examined with time-of-flight diffraction (TOFD), phased-array (PA) ultrasound, and the Evisive microwave system. The outer diameter (OD) weld beads were removed for microwave evaluation and the pipes ultrasonically re-evaluated. In two of the six pipes, both the outer and inner diameter (ID) weld beads were removed and the pipe joints re-evaluated. Some of the pipes were sectioned and the joints destructively evaluated with the high-speed tensile test and the side-bend test. The fusion parameters, nondestructive and destructive evaluation results have been correlated to validate the effectiveness of what each NDE technology detects and what each does not detect. There was no single NDE method that detected all of the lack-of-fusion flaws but a combination of NDE methods did detect most of the flaws.

  16. Dobson Butte field, Williston basin, Stark County, North Dakota: nontypical oil production

    SciTech Connect (OSTI)

    Guy, W.J.

    1987-05-01T23:59:59.000Z

    The Dobson Butte field (T139N, R96W), Stark County, North Dakota, was discovered in 1982 following a detailed seismic program. Production is primarily from a structural trap in the Interlake Formation of Silurian age. Three oil wells are presently producing from a dolomite reservoir at about 11,000 ft in depth. Primary recoverable reserves of these three producing wells is calculated to be about 2 million bbl of oil. Additional reserves will come from further development of the Interlake reservoir as well as from the deeper Red River (Ordovician) Formation. The Dobson Butte field is a nontypical oil field within the Williston basin as to its high pour point oil (90/sup 0/F), high production water cuts (85-95%), lack of good oil shows in samples, unpredictable noncontinuous oil-producing reservoirs throughout the entire 600-ft Interlake Formation, difficulty in log interpretations, and difficulty in determining the source bed. The interpretation of these nontypical characteristics of Interlake oil production in the Dobson Butte field compared to other Interlake oil production within the Williston basin will have a profound effect upon future Interlake exploration.

  17. Crust and Upper Mantle P Wave Velocity Structure Beneath Valles...

    Open Energy Info (EERE)

    Crust and Upper Mantle P Wave Velocity Structure Beneath Valles Caldera, New Mexico- Results from the Jemez Teleseismic Tomography Experiment Jump to: navigation, search OpenEI...

  18. Anomalous shear wave attenuation in the shallow crust beneath...

    Open Energy Info (EERE)

    Anomalous shear wave attenuation in the shallow crust beneath the Coso volcanic region, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  19. Evidence For Gas And Magmatic Sources Beneath The Yellowstone...

    Open Energy Info (EERE)

    of magma beneath the Yellowstone caldera. Authors Stephan Husen, Robert B. Smith and Gregory P. Waite Published Journal Journal of Volcanology and Geothermal Research,...

  20. Modeling unsaturated flow and transport processes at the Busted Butte Field Test Site, Nevada

    E-Print Network [OSTI]

    Gable, Carl W.

    beneath the potential Yucca Mountain repository horizon. In situ experiments were conducted on a 10 Ă? 10 Ă? of a potential, high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. A major challenge

  1. DIVISION S-10--WETLAND SOILS Carbon Accumulation and Storage in Mineral Subsoil beneath Peat

    E-Print Network [OSTI]

    Moore, Tim

    DIVISION S-10--WETLAND SOILS Carbon Accumulation and Storage in Mineral Subsoil beneath Peat Tim R subsoil (Turunen and Moore, 2003). TheyWe showed that sandy subsoils beneath peat near Ramsey Lake conditions beneath the peat. soils beneath the forest, those beneath the peat contained similar In this paper

  2. Bacteria beneath the West Antarctic Ice Sheet Brian Lanoil,1

    E-Print Network [OSTI]

    Priscu, John C.

    Bacteria beneath the West Antarctic Ice Sheet Brian Lanoil,1 * Mark Skidmore,1 John C. Priscu,2, particularly those that lie beneath polar ice sheets, are beginning to be recog- nized as an important part Vostok, Antarctica, no sub-ice sheet environments have been shown to support microbial ecosystems. Here

  3. Gas Sampling At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCell EnergyGlass Buttes Area Exploration

  4. Mt. Baker Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmel Public Utility Co JumpRanierMt StMt.

  5. Mapping bedrock beneath glacial till using CDP seismic reflection methods

    E-Print Network [OSTI]

    Keiswetter, Dean; Black, Ross A.; Steeples, Don W.

    1994-03-01T23:59:59.000Z

    This paper is a case history demonstrating the applicability of the common depth point (CDP) seismic reflection method to image bedrock beneath glacial till in northwestern Iowa. Reflections from the base of the 40-m thick glacial till are clearly...

  6. Laboratory simulation of subsurface airflow beneath a building

    E-Print Network [OSTI]

    Corsello, Joseph William

    2014-01-01T23:59:59.000Z

    Vapor intrusion is the vapor-phase migration of volatile organic compounds (VOCs) into buildings due to subsurface soil or groundwater contamination. Oxygen replenishment rates beneath a building are significant for ...

  7. The Urgent Need for Carbon Dioxide Sequestration Klaus S. Lackner, Darryl P. Butt, Reed Jensen and Hans Ziock

    E-Print Network [OSTI]

    1 The Urgent Need for Carbon Dioxide Sequestration Klaus S. Lackner, Darryl P. Butt, Reed Jensen in this field. This memo explains why the development of a viable sequestration technology is a long term stra- tegic goal of utmost importance and why sequestration provides a goal worthy of the attention

  8. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary (Revised)

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This document has been prepared by the US Department of Energy`s (DOE`s) Office of Environmental Management (EM) Office of Science and Technology (OST) to highlight its research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Western environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described in this document have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information presented in this document has been assembled from recently produced OST documents that highlight technology development activities within each of the OST program elements and Focus Areas. This document presents one in a series for each of DOE`s Operations Office and Energy Technology Centers.

  9. EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon

    Broader source: Energy.gov [DOE]

    This EA evaluates Ormat Nevada, Inc.’s (Ormat’s) proposed geothermal project consists of drilling up to 16 wells for geothermal exploration approximately 70 miles southeast of Bend, Oregon and 50 miles northwest of Burns, Oregon just south of U.S. Highway 20. The proposed project includes three distinct drilling areas. Up to three wells would be drilled on lands managed by the Bureau of Land Management (BLM) Prineville District (Mahogany), up to ten wells would be drilled on lands managed by the BLM Burns District (Midnight Point), and up to three wells would be drilled on private land located adjacent to the federal geothermal leases west of Glass Butte (Private Lands). DOE funding would be associated with three of the sixteen proposed wells. BLM is the lead agency and DOE is participating as a cooperating agency.

  10. Developing Mt. Hope: The megawatt line

    SciTech Connect (OSTI)

    Rodzianko, P.; Fisher, F.S.

    1992-12-01T23:59:59.000Z

    After facing numerous obstacles, including opposition and competition, the Mt. Hope pumped-storage project in New Jersey has been licensed by FERC. That license will allow a former iron ore mine site to be used in producing a new resource-hydroelectricity. In early August 1992, after more than seven years of effort, the 2,000-MW Mt. Hope Waterpower Project was licensed by the Federal Energy Regulatory Commission (FERC). Getting the $1.8 billion pumped-storage project licensed was not an easy task. It involved 54 submittals to FERC, six public meetings, and costs of more than $12 million. Along the way, the project has withstood competing applications, community opposition, and legal battles. Getting a project of this magnitude off the ground is a challenge for even the most experienced developer. The effort was especially challenging for the Halecrest Company, a local family-owned and operated firm with no previous experience in hydroelectric development. When financing became tight, creative ways were found to raise seed capital for the project. When hydroelectric experience was needed, the company developed a world-class corporate team that carried Mt. Hope through the complexities of the licensing process and beyond. With license now in hand, the project developers are ready to move forward with negotiating power sales contracts and securing construction financing. The resulting project will be the second largest pumped-storage facility in the country-second only to the 2,100-MW Bath County project in Virginia. Mt. Hope will take six years to construct and is scheduled to be phased into operation beginning in 1999.

  11. Marysville Mt Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a townLoading map...(Redirected from Marysville Mt

  12. PRELIMINARY ASSESSMENT OF NDE METHODS ON INSPECTION OF HDPE BUTT FUSION PIPING JOINTS FOR LACK OF FUSION

    SciTech Connect (OSTI)

    Crawford, Susan L.; Doctor, Steven R.; Cinson, Anthony D.; Cumblidge, Stephen E.; Anderson, Michael T.

    2010-01-01T23:59:59.000Z

    Studies at the Pacific Northwest National Laboratory in Richland, Washington, are being conducted to evaluate nondestructive examination approaches for inspecting butt fusion joints in high density polyethylene (HDPE) pipe for lack of fusion (LOF). The work provides information to the United States Nuclear Regulatory Commission on the effectiveness and need for volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from preliminary assessments using ultrasonic nondestructive techniques and high-speed tensile impact testing for determining joint integrity. A series of butt joints were fabricated in 3408, 12-inch IPS DR-11 material by varying the fusion parameters in attempts to provide good joints and joints containing LOF. These butt joints were visually examined and volumetrically examined with time-of-flight diffraction (TOFD) and phased-array (PA) ultrasound. A limited subset of pipe joint material was destructively analyzed by either slicing through the joint and visually examining the surface or by employing a standard high-speed tensile impact test. Initial correlation of the fusion parameters, nondestructive, and destructive evaluations have shown that areas with gross LOF were detected with both TOFD and PA ultrasound and that the tensile impact test showed a brittle failure at the joint. There is still some ambiguity in results from the less obvious LOF conditions. Current work is targeted on assessing the sensitivity of the ultrasonic volumetric examinations and validating the results with a destructive analysis. It is expected that on-going and future work will lead to quantifying the ultrasonic responses in terms of joint integrity.

  13. Mt Wheeler Power, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area EnergyMohawkaccrediation of NIE) Jump to:Open JumpMt

  14. The Hydrogeologic Character of the Lower Tuff Confining Unit and the Oak Springs Butte Confining Unit in the Tuff Pile Area of Central Yucca Flat

    SciTech Connect (OSTI)

    Sigmund L. Drellack, Jr., Lance B. Prothro, Jose L. Gonzales, and Jennifer M. Mercadante

    2010-07-30T23:59:59.000Z

    The lower tuff confining unit (LTCU) in the Yucca Flat Corrective Action Unit (CAU) consists of a monotonous sequence of pervasively zeolitized volcanic tuff (i.e., mostly bedded with lesser nonwelded to poorly welded tuff; not fractured) (Bechtel Nevada, 2006). The LTCU is an important confining unit beneath Yucca Flat because it separates the alluvial and volcanic aquifers, where many underground nuclear tests were conducted, from the regional lower carbonate aquifer. Recent sub-CAU-scale modeling by Los Alamos National Laboratory in the Tuff Pile area of Yucca Flat (Boryta, et al., in review) includes postulated low-porosity, high-permeability zones (i.e., fractured welded-tuff aquifers) within the LTCU. This scenario indicates that such postulated low-porosity, high-permeability zones could provide fast-path lateral conduits to faults, and eventually to the lower carbonate aquifer. A fractured and faulted lower carbonate aquifer is postulated to provide a flow path(s) for underground test-derived contaminants to potential offsite receptors. The ramifications of such a scenario are obvious for groundwater flow and contaminant migration beneath Yucca Flat. This paper describes the reasoning for not including postulated low-porosity, high-permeability zones within the LTCU in the Tuff Pile area or within the LTCU in the Yucca Flat CAU-scale model. Both observational and analytical data clearly indicate that the LTCU in the Tuff Pile area consists of pervasively zeolitic, nonwelded to poorly welded tuffs that are classified as tuff confining units (i.e., high-porosity, low-permeability). The position regarding the LTCU in the Tuff Pile area is summarized as follows: • The LTCU in the Tuff Pile area consists of a monotonous sequence of predominantly zeolitic nonwelded to poorly welded tuffs, and thus is accurately characterized hydrogeologically as a tuff confining unit (aquitard) in the Yucca Flat-Climax Mine hydrostratigraphic framework model (Bechtel Nevada, 2006). • No welded-tuff (or lava-flow aquifers), referred to as low-porosity, high-permeability zones in Boryta et al. (in review), are present within the LTCU in the Tuff Pile area. • Fractures within the LTCU are poorly developed, a characteristic of zeolitic tuffs; and fracture distributions are independent of stratigraphic and lithologic units (Prothro, 2008). • Groundwater flow and radionuclide transport will not be affected by laterally extensive zones of significantly higher permeability within the LTCU in the Tuff Pile area. Although not the primary focus of this report, the hydrogeologic character of the Oak Spring Butte confining unit (OSBCU), located directly below the LTCU, is also discussed. The OSBCU is lithologically more diverse, and does include nonwelded to partially welded ash-flow tuffs. However, these older ash-flow tuffs are poorly welded and altered (zeolitic to quartzofeldspathic), and consequently, would tend to have properties similar to a tuff confining unit rather than a welded-tuff aquifer.

  15. Autosub missions beneath Polar Ice: Preparation and Experience

    E-Print Network [OSTI]

    Griffiths, Gwyn

    Autosub missions beneath Polar Ice: Preparation and Experience Gwyn Griffiths Southampton, May 2004 #12;Autosub Polar Campaigns J 2001 - Krill distribution and sea ice thickness studies in the northern Weddell Sea (Brierley, Fernandes and Brandon). J 2003 - Sea ice thickness, Bellingshausen Sea

  16. Lithosphere structure beneath the Phanerozoic intracratonic basins of North America

    E-Print Network [OSTI]

    Kaminski, Edouard

    Abstract Four intracratonic basins of North America, the Hudson Bay, Michigan, Illinois and Williston. The Williston and Illinois basins are associated with wide (V200 km) and thin anomalies (V100 km), whereas basin and 270 km beneath the Williston [4,6]. For two ba- sins of similar age located on the same Precam

  17. Uppermost mantle P wave velocities beneath Turkey and Iran

    SciTech Connect (OSTI)

    Chen, C.; Chen, W.; Molnar, P.

    1980-01-01T23:59:59.000Z

    The uppermost mantle P wave velocities beneath Turkey and Iran were estimated by applying the conventional travel time-distance relation method to arrival times of well located earthquakes recorded at a few stations. The average uppermost mantle P wave velocity under Turkey is estimated from two stations of the World Wide Standardized Seismograph Network (WWSSN), Istanbul and Tabriz. The data are consistent with a crust of uniform, but poorly determined, thickness and an uppermost mantle P wave velocity of 7.73 +- 0.08 km/s. This velocity is very similar to that for the Aegean Sea and suggests that its structure could be closely related to that beneath Turkey. For Iran, the results calculated from travel times to three WWSSN stations, Meshed, Shiraz, and Tabriz, can be explained by a crust dipping toward the south-southeast at about 1/sup 0/ with an uppermost mantle P wave velocity of 8.0 +- 0.1 km/s. If the crustal thickness were 34 km in the north it would reach about 49 km in the south. Based on these uppermost mantle velocities, the temperature at Moho beneath Turkey is probably close to the melting temperature of peridotite but that beneath Iran is probably lower.

  18. Spatial and temporal distribution of mercury in Caballo and Elephant Butte Reservoirs, Sierra County, New Mexico

    SciTech Connect (OSTI)

    Caldwell, C.A.; Canavan, M.

    1998-05-01T23:59:59.000Z

    Caballo and Elephant Butte reservoirs are located in south-central New Mexico of the Rio Grande. The reservoirs are managed together for flood control and irrigation. As a result, Caballo Reservoir undergoes seasonal water volume fluctuations creating large littoral or shallow areas. Water and sediment samples were collected monthly for one year (July 1995 to June 1996) in Caballo Reservoir to examine spatial and temporal variability of total mercury (THg) and monomethylmercury (MMHg). Concentrations of THg and MMHg were greatest in water and sediments at the site located in the seasonally flooded area (Palomas) compared to five sites in deep water. In contrast, concentrations of MMHg from the five site were at or below 1.0 ng/g. The percentages of THg in the MMHg form was greatest in sediment collected from the Palomas site from September 1995 to June 1996 (5.4-33.8%) compared to sediment from the five sites in deep water. By October 1995, a site above Caballo Reservoir in the Rio Grande had greater concentrations of dissolved MMHg (0.508 ng/L) than the Palomas site (0.411 ng/L). The presence of a potential source of contamination upriver, in addition to a series of unrelated events (fire and late summer rains), precipitated a second study from July 1996 to June 1997. Thus, the second year was initiated to determine the sources of THg and MMHg entering Caballo Reservoir.

  19. Current Activities Assessing Butt Fusion Joint Integrity in High Density Polyethylene Piping

    SciTech Connect (OSTI)

    Crawford, Susan L.; Cinson, Anthony D.; Doctor, Steven R.; Denslow, Kayte M.

    2012-09-01T23:59:59.000Z

    The Pacific Northwest National Laboratory (PNNL) in Richland, Washington, conducted initial studies to evaluate the effectiveness of nondestructive examinations (NDE) coupled with mechanical testing for assessing butt fusion joint integrity in high density polyethylene (HDPE) pipe. The work provided insightful information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques for detecting lack of fusion (LOF) conditions in the fusion joints. HDPE has been installed on a limited basis in American Society of Mechanical Engineers (ASME) Class 3, buried piping systems at several operating U.S. nuclear power plants and has been proposed for use in new construction. A comparison was made between the results from ultrasonic and microwave nondestructive examinations and the results from mechanical destructive evaluations, specifically the high-speed tensile test and the side-bend test, for determining joint integrity. The data comparison revealed that none of the NDE techniques detected all of the lack-of-fusion conditions that were revealed by the destructive tests. Follow-on work has recently been initiated at PNNL to accurately characterize the NDE responses from machined flaws of varying size and location in PE 4710 materials as well as the LOF condition. This effort is directed at quantifying the ability of volumetric NDE techniques to detect flaws in relation to the critical flaw size associated with joint integrity. A status of these latest investigations is presented.

  20. ,"Sweetgrass, MT Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sweetgrass, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  1. ,"Whitlash, MT Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Whitlash, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  2. ,"Babb, MT Natural Gas Pipeline Imports From Canada (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Babb, MT...

  3. ,"Havre, MT Natural Gas Pipeline Imports From Canada (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Havre, MT...

  4. Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson & Dellechaie, 1976)...

  5. Ground Gravity Survey At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Mt Princeton Hot Springs Geothermal Area (Case, Et Al., 1984) Exploration...

  6. Vertical Electrical Sounding Configurations At Mt Princeton Hot...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Vertical Electrical Sounding Configurations At Mt Princeton Hot Springs Geothermal Area (Zohdy, Et Al.,...

  7. E-Print Network 3.0 - asthenosphere beneath saudi Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of 60 km beneath... the hotspot and that asthenospheric flow beneath the Eifel is a passive response to plate motion. A 410 km... ABSTRACT We review evidence for plumelike...

  8. Electrical structure beneath the northern MELT line on the East Pacific Rise at 15450

    E-Print Network [OSTI]

    Brest, Université de

    Electrical structure beneath the northern MELT line on the East Pacific Rise at 15°450 S Kiyoshi] The electrical structure of the upper mantle beneath the East Pacific Rise (EPR) at 15°450 S is imaged structure beneath the northern MELT line on the East Pacific Rise at 15°450 S, Geophys. Res. Lett., 33, L

  9. WPA Omnibus Award MT Wind Power Outreach

    SciTech Connect (OSTI)

    Brian Spangler, Manager Energy Planning and Renewables

    2012-01-30T23:59:59.000Z

    The objective of this grant was to further the development of Montanaâ??s vast wind resources for small, medium, and large scale benefits to Montana and the nation. This was accomplished through collaborative work with wind industry representatives, state and local governments, the agricultural community, and interested citizens. Through these efforts MT Dept Environmental Quality (DEQ) was able to identify development barriers, educate and inform citizens, as well as to participate in regional and national dialogue that will spur the development of wind resources. The scope of DEQâ??s wind outreach effort evolved over the course of this agreement from the development of the Montana Wind Working Group and traditional outreach efforts, to the current focus on working with the stateâ??s university system to deliver a workforce trained to enter the wind industry.

  10. Data Update for Mt. Tom, Holyoke, MA August 2006

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA August 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for August 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  11. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA June 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for June 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

  12. Data Update for Mt. Tom, Holyoke, MA January 2006

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA January 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for December 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  13. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA May 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for May 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  14. Data Update for Mt. Tom, Holyoke, MA October 2006

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA October 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for October 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  15. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA July 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for July 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  16. Data Update for Mt. Tom, Holyoke, MA December 2005

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA December 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for December 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  17. Data Update for Mt. Tom, Holyoke, MA October 2005

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA October 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for October 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  18. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA July 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for July 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  19. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA July 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for July 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

  20. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA March 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for March 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  1. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA May 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for May 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

  2. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA April 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for April 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  3. Data Update for Mt. Tom, Holyoke, MA October 2007

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA October 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for October 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  4. Data Update for Mt. Tom, Holyoke, MA November 2005

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA November 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for November 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  5. Data Update for Mt. Tom, Holyoke, MA January 2008

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA January 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for January 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  6. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA June 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for June 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  7. Data Update for Mt. Tom, Holyoke, MA January 2007

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA January 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for January 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  8. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA April 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for April 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  9. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA March 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for March 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  10. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA June 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for June 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  11. Data Update for Mt. Tom, Holyoke, MA November 2006

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA November 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for November 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  12. Data Update for Mt. Tom, Holyoke, MA February 2007

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA February 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for February 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  13. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA April 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for April 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

  14. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA March 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for March 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

  15. Data Update for Mt. Tom, Holyoke, MA August 2005

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA August 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for August 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  16. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA May 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for May 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  17. Data Update for Mt. Tom, Holyoke, MA August 2007

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA August 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for August 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  18. Data Update for Mt. Tom, Holyoke, MA February 2006

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA February 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for February 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  19. Data Update for Mt. Tom, Holyoke, MA February 2008

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA February 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for February 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  20. Data Update for Mt. Tom, Holyoke, MA November 2007

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA November 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for November 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  1. Data Update for Mt. Tom, Holyoke, MA September 2007

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA September 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for September 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  2. Data Update for Mt. Tom, Holyoke, MA September 2006

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA September 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for September 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  3. Data Update for Mt. Tom, Holyoke, MA September 2005

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA September 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for September 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  4. Eruption and emplacement of flood basalt. An example from the large-volume Teepee Butte Member, Columbia River Basalt Group

    SciTech Connect (OSTI)

    Reidel, S.P. (Washington State Univ., Pullman (United States)); Tolan, T.L. (Portland State Univ., OR (United States))

    1992-12-01T23:59:59.000Z

    Flows of the Teepee Butte Member, Grande Ronde Basalt, issued from a vent system in southeastern Washington, northeastern Oregon, and western Idaho. Three distinct basalt flows were erupted: the Limekiln Rapids flow, the Joseph Creek flow, and the Pruitt Draw flow. Together these mappable flows cover more than 52,000 km[sup 2] and have a volume exceeding 5,000 km[sup 3]. A portion of the vent system for the Joseph Creek flow is exposed in cross section in Joseph Canyon, Washington; it is one of the best preserved Columbia River Basalt Group vent complexes known. The vent complex is about 1 km in cross section, 30 m high, and composed of deposits characteristic of Hawaiian-type volcanism. The vent is asymmetrical; the eastern rampart consists of intercalated pyroclastic deposits and thin pahoehoe flows; the western rampart is composed wholly of pahoehoe flows. Flows of the Teepee Butte Member are compositionally homogeneous and were emplaced as sheet flows, each having several local flow units. Our study supports the importance of linear vent systems and the westward Palouse Slope, along with the large-volume lava flows, in controlling the distribution of Columbia River Basalt Group flows. Other factors, including the number of active fissure segments and topography, modified the shape of the flows and the number of flow units. 45 refs., 19 figs., 2 tabs.

  5. Analysis of borehole temperature data from the Mt. Princeton...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Analysis of borehole temperature data from the Mt. Princeton Hot Springs area, Chaffee County,...

  6. Corrosion of 304 Stainless Steel Exposed To Nitric Acid -Chloride Environments D.G. Kolman, D.K. Ford, D.P. Butt, and T.O. Nelson

    E-Print Network [OSTI]

    Corrosion of 304 Stainless Steel Exposed To Nitric Acid - Chloride Environments D.G. Kolman, D.K. Ford, D.P. Butt, and T.O. Nelson Materials Corrosion and Environmental Effects Laboratory Los AlamosCl, and temperature on the general corrosion behavior of 304 stainless steel (SS), electrochemical studies were

  7. A Light-weight Approach to Reducing Energy Management Delays in Disks Guanying Wang, Ali R. Butt, Chris Gniady, Puranjoy Bhattacharjee

    E-Print Network [OSTI]

    Butt, Ali R.

    A Light-weight Approach to Reducing Energy Management Delays in Disks Guanying Wang, Ali R. Butt techniques such as turning machines off overnight and dynamic energy management during the business hours. Unfortunately, dynamic energy management, especially that for disks, introduces delays when an accessed disk

  8. Implementation of ASME Code, Section XI, Code Case N-770, on Alternative Examination Requirements for Class 1 Butt Welds Fabricated with Alloy 82/182

    SciTech Connect (OSTI)

    Sullivan, Edmund J.; Anderson, Michael T.

    2012-09-17T23:59:59.000Z

    In May 2010, the NRC issued a proposed notice of rulemaking that includes a provision to add a new section to its rules to require licensees to implement ASME Code Case N-770, ‘‘Alternative Examination Requirements and Acceptance Standards for Class 1 PWR Piping and Vessel Nozzle Butt Welds Fabricated with UNS N06082 or UNS W86182 Weld Filler Material With or Without the Application of Listed Mitigation Activities, Section XI, Division 1,’’ with 15 conditions. Code Case N-770 contains baseline and inservice inspection (ISI) requirements for unmitigated butt welds fabricated with Alloy 82/182 material and preservice and ISI requirements for mitigated butt welds. The NRC stated that application of ASME Code Case N-770 is necessary because the inspections currently required by the ASME Code, Section XI, were not written to address stress corrosion cracking Alloy 82/182 butt welds, and the safety consequences of inadequate inspections can be significant. The NRC expects to issue the final rule incorporating this code case into its regulations in the spring 2011 time frame. This paper discusses the new examination requirements, the conditions that NRC is imposing , and the major concerns with implementation of the new Code Case.

  9. Retinal Waves Are Governed by Collective Network Properties Daniel A. Butts,1 Marla B. Feller,2,3 Carla J. Shatz,2 Daniel S. Rokhsar1

    E-Print Network [OSTI]

    Butts, Daniel

    Retinal Waves Are Governed by Collective Network Properties Daniel A. Butts,1 Marla B. Feller,2 produces spatially and temporally restricted waves without requiring in- hibition, consistent in several different regimes of wave behavior. We also present evidence that wave properties are locally

  10. A Temperature Model Of The Crust Beneath The Barents Sea- Investigatio...

    Open Energy Info (EERE)

    Model Of The Crust Beneath The Barents Sea- Investigations Along Geotraverses Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Temperature...

  11. Elephant butte powerplant investigation of permanent magnet generator corrosion and bearing failures. Project notes 8450-97-07. Technical memo

    SciTech Connect (OSTI)

    Price, P.; Atwater, P.

    1997-04-01T23:59:59.000Z

    This investigation and report were initiated in response to a request to determine causes for excessive corrosion and premature bearing failures on the Woodward Permanent Magnet Generator (PMG) on the three main generating units at Elephant Butte. All three main generating units were rewound using epoxy-type insulating materials between 1989 and 1991. Plant personnel reported that corrosion and failure rates seemed to accelerate after the new stator windings were installed. This report documents field testing conducted the week of March 10, 1997, to determine if stray electrical currents/voltages were causing the problems. Electrical field test results indicate that accelerated PMG bearing failure and corrosion were not caused by stray voltages or current. Tests were conducted on the main shaft in the turbine pit and on the PMG shaft and housing located atop the exciter shaft.

  12. Mantle transition zone beneath the Caribbean-South American plate boundary and its tectonic implications

    E-Print Network [OSTI]

    Niu, Fenglin

    Mantle transition zone beneath the Caribbean-South American plate boundary and its tectonic seismic network of Venezuela to study the mantle transition zone structure beneath the Caribbean Caribbean, the 410-km is featured by a narrow (200 km EW) 25-km uplift extending in the NS direction around

  13. Analysis of pumping-induced unsaturated regions beneath a perennial river

    E-Print Network [OSTI]

    Zhou, Quanlin

    Analysis of pumping-induced unsaturated regions beneath a perennial river Grace W. Su,1,2 James a streambed during groundwater pumping near streams can reduce the pumping capacity, change flow paths) the formation of an unsaturated region beneath the stream, (2) the pumping capacity, (3) stream water fluxes

  14. The sedimentary record of subglacial erosion beneath the Laurentide Ice Sheet

    E-Print Network [OSTI]

    Stone, John

    The sedimentary record of subglacial erosion beneath the Laurentide Ice Sheet Gregory A. Balco Abstract The sedimentary record of subglacial erosion beneath the Laurentide Ice Sheet by Gregory A. Balco and Space Sciences I use measurements of the cosmic-ray-produced radionuclides 10 Be and 26 Al

  15. Horizontal subduction and truncation of the Cocos Plate beneath central Mexico

    E-Print Network [OSTI]

    Clayton, Robert W.

    Horizontal subduction and truncation of the Cocos Plate beneath central Mexico Xyoli Pe from a trans-Mexico temporary broadband seismic network centered on Mexico City, we report that the subducting Cocos Plate beneath central Mexico is horizontal, and tectonically underplates the base

  16. RAPID/Roadmap/3-MT-e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a20-AK-a WellAK-g UtilityHI-dMT-c3-MT-e

  17. RAPID/Roadmap/17-MT-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a < RAPID‎ | Roadmap Jump to:7-MT-a7-MT-c

  18. Strategic Planning Notes MT AHEC/MORH Advisory Board

    E-Print Network [OSTI]

    Dyer, Bill

    big, complex issues ­ Montana Healthcare Workforce Advisory Committee, HC Workforce Strategic PlanStrategic Planning Notes MT AHEC/MORH Advisory Board February 7, 2014 Strategic Priorities 1. Healthcare Workforce Training and educating the workforce Montana needs o Educational infrastructure o

  19. Technical Letter Report - Preliminary Assessment of NDE Methods on Inspection of HDPE Butt Fusion Piping Joints for Lack of Fusion

    SciTech Connect (OSTI)

    Crawford, Susan L.; Cumblidge, Stephen E.; Doctor, Steven R.; Hall, Thomas E.; Anderson, Michael T.

    2008-05-29T23:59:59.000Z

    The U.S. Nuclear Regulatory Commission (NRC) has a multi-year program at the Pacific Northwest National Laboratory (PNNL) to provide engineering studies and assessments of issues related to the use of nondestructive evaluation (NDE) methods for the reliable inspection of nuclear power plant components. As part of this program, there is a subtask 2D that was set up to address an assessment of issues related to the NDE of high density polyethylene (HDPE) butt fusion joints. This work is being driven by the nuclear industry wanting to employ HDPE materials in nuclear power plant systems. This being a new material for use in nuclear applications, there are a number of issues related to its use and potential problems that may evolve. The industry is pursuing ASME Code Case N-755 entitled “Use of Polyethylene (PE) Plastic Pipe for Section III, Division 1, Construction and Section XI Repair/Replacement Activities” that contains the requirements for nuclear power plant applications of HDPE. This Code Case requires that inspections be performed after the fusion joint is made by visually examining the bead that is formed and conducting a pressure test of the joint. These tests are only effective in general if gross through-wall flaws exist in the fusion joint. The NRC wants to know whether a volumetric inspection can be conducted on the fusion joint that will reliably detect lack-of-fusion conditions that may be produced during joint fusing. The NRC has requested that the work that PNNL is conducting be provided to assist them in resolving this inspection issue of whether effective volumetric NDE can be conducted to detect lack of fusion (LOF) in the butt HDPE joints. PNNL had 24 HDPE pipe specimens manufactured of 3408 material to contain LOF conditions that could be used to assess the effectiveness of NDE in detecting the LOF. Basic ultrasonic material properties were measured and used to guide the use of phased arrays and time-of-flight diffraction (TOFD) work that was conducted. Millimeter (mm) waves were also used to inspect these assemblies. Fluor and NDE Innovations, Inc. conducted TOFD inspections using their commercially available equipment on all 24 specimens. These NDE inspection results were reviewed and several of the specimens were selected for destructive evaluation using a microtome to slice small blocks of blank and fusion joint material. This interim report provides a status/summary of the work that has been conducted to date. In the areas selected for destructive testing where there were strong acoustic responses, LOF was verified. In areas where there were no NDE responses, no LOF was found. It needs to be noted that only a small amount of material has been destructively characterized at this point and further work is planned to determine if these trends hold up. Some of the material from three of the assemblies was sent off for mechanical testing but the results were not available to be included in this status report. The initial work shows that at least some of the LOF is providing NDE responses that have been verified through destructive testing. Thus, there is promise that a volumetric examination can be conducted on HDPE butt fusion joints. The future work will lead to quantifying what various NDE methods can detect, what they miss, and what they incorrectly characterize as defective.

  20. Assessment of NDE Methods on Inspection of HDPE Butt Fusion Piping Joints for Lack of Fusion with Validation from Mechanical Testing

    SciTech Connect (OSTI)

    Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.; Doctor, Steven R.; Moran, Traci L.; Watts, Michael W.

    2010-12-01T23:59:59.000Z

    Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, are being conducted to evaluate nondestructive examinations (NDE) coupled with mechanical testing of butt fusion joints in high-density polyethylene (HDPE) pipe for assessing lack of fusion. The work provides information to the U.S. Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from preliminary assessments using ultrasonic and microwave nondestructive techniques and mechanical testing with the high-speed tensile impact test and the side-bend test for determining joint integrity. A series of butt joints were fabricated in 3408, 12-in. IPS DR-11 HDPE material by varying the fusion parameters to create good joints and joints containing a range of lack-of-fusion conditions. Six of these butt joints were volumetrically examined with time-of-flight diffraction (TOFD), phased-array (PA) ultrasound, and the Evisive microwave system. The outer-diameter weld beads were removed for the microwave inspection. In two of the four pipes, both the outer and inner weld beads were removed and the pipe joints re-evaluated. The pipes were sectioned and the joints destructively evaluated with the side-bend test by cutting portions of the fusion joint into slices that were planed and bent. The last step in this limited study will be to correlate the fusion parameters, nondestructive, and destructive evaluation results to validate the effectiveness of what each NDE technology detects and what each does not detect. The results of the correlation will be used in identifying any future work that is needed.

  1. PRELIMINARY ASSESSMENT OF NDE METHODS ON INSPECTION OF HDPE BUTT FUSION PIPING JOINTS FOR LACK OF FUSION WITH VALIDATION FROM MECHANICAL TESTING

    SciTech Connect (OSTI)

    Crawford, Susan L.; Doctor, Steven R.; Cinson, Anthony D.; Watts, Michael W.; Moran, Traci L.; Anderson, Michael T.

    2010-07-22T23:59:59.000Z

    Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, are being conducted to evaluate nondestructive examinations (NDE) coupled with mechanical testing of butt fusion joints in high density polyethylene (HDPE) pipe for assessing lack of fusion. The work provides information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from preliminary assessments using ultrasonic and microwave nondestructive techniques and mechanical testing with the high speed tensile impact test and the bend test for determining joint integrity. A series of butt joints were fabricated in 3408, 12 inch (30.5 cm) IPS DR-11 HDPE material by varying the fusion parameters to create good joints and joints containing a range of lack of fusion conditions. Six of these butt joints were volumetrically examined with time of flight diffraction (TOFD), phased array (PA) ultrasound, and the Evisive microwave system. The outer diameter (OD) weld beads were removed for microwave evaluation and the pipes ultrasonically re-evaluated. In two of the six pipes both the outer and inner diameter (ID) weld beads were removed and the pipe joints re-evaluated. Several of the pipes were sectioned and the joints destructively evaluated with the following techniques: high speed tensile test, bend test, and focused immersion ultrasound on a joint section removed from the pipe coupled with slicing through the joint and examining the revealed surfaces. The fusion parameters, nondestructive, and destructive evaluation results will be correlated to validate the effectiveness of what each NDE technology detects and what each does not detect. This is an initial limited study which will aid in identifying key future work.

  2. Broadband marine MT exploration of the East Pacific Rise at 9500 Kerry Key and Steven Constable

    E-Print Network [OSTI]

    Key, Kerry

    Broadband marine MT exploration of the East Pacific Rise at 9°°500 N Kerry Key and Steven Constable., and S. Constable, Broadband marine MT exploration of the East Pacific Rise at 9°500 N, Geophys. Res

  3. Going-to-the-Sun Road, Glacier National Park, MT, USA

    E-Print Network [OSTI]

    Going-to-the-Sun Road, Glacier National Park, MT, USA Avalanche Path Atlas Erich H. Peitzsch Daniel..................................................................................................................................... 2 Overview of Red Rock Group avalanche paths, Going-to-the-Sun Road, Glacier National Park, MT................................................................................................................................................... 3 Overview of Lower GTSR group avalanche paths, Going-to-the-Sun Road, Glacier National Park, MT

  4. E-Print Network 3.0 - aquifer beneath yucca Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science 33 THE U.S. CONGRESS THE U.S. SECRETARY OF ENERGY Summary: recent geo- logic time, the water table beneath Yucca Mountain has risen one or more times... oc-...

  5. Mt St Helens Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmel Public Utility Co JumpRanierMt St

  6. RAPID/Roadmap/11-MT-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakum CountyPzero-FD-b BLM Land1-MT-c Cultural

  7. RAPID/Roadmap/14-MT-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakum CountyPzero-FD-b34-HI-b4-MT-c Underground

  8. RAPID/Roadmap/14-MT-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakum CountyPzero-FD-b34-HI-b4-MT-c

  9. RAPID/Roadmap/17-MT-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a Nonpoint7-FD-a Wild & Scenic7-MT-b

  10. RAPID/Roadmap/3-MT-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a20-AK-a WellAK-g UtilityHI-dMT-c State

  11. RAPID/Roadmap/3-MT-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a20-AK-a WellAK-g UtilityHI-dMT-c

  12. RAPID/Roadmap/5-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-a Drilling and Well Development5-MT-a

  13. RAPID/Roadmap/9-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-a Drilling7-HI-ce <9-FD-e9-MT-a State

  14. M.T. Thomas Award for Outstanding Postdoctoral Achievement | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund Las ConchasTrail of a martian20085816M.T. Thomas Award

  15. RAPID/Roadmap/11-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎ | Geothermal‎-CA-a) <11-FD-c1-MT-a

  16. RAPID/Roadmap/14-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎ |1-TX-a13-ID-a State14-FD-c4-MT-a Nonpoint

  17. RAPID/Roadmap/14-MT-e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎ |1-TX-a13-ID-a State14-FD-c4-MT-a

  18. RAPID/Roadmap/17-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a < RAPID‎ | Roadmap Jump to:7-MT-a

  19. RAPID/Roadmap/18-MT-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a < RAPID‎ |18-MT-b Hazardous Waste

  20. RAPID/Roadmap/3-MT-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a <3-FD-d Foresto <Roadmap/3-ID-e3-MT-b

  1. RAPID/Roadmap/4-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a <3-FD-d3-WA-b Land4-FD-b4-HI-a4-MT-a

  2. RAPID/Roadmap/6-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a4-WA-a State6-CO-b ConstructionRoadmap/6-MT-a

  3. Monitoring and Targeting (M&T): A Low Investment, Low Risk Approach to Energy Cost Savings

    E-Print Network [OSTI]

    McMullan, A.; Rutkowski, M.; Karp, A.

    Monitoring and Targeting (M&T): A Low Investment, Low Risk Approach to Energy Cost Savings Andrew McMullan Mike Rutkowski Alan Karp Vice President President Manager Bus. Development VERITECH, INC. Sterling, VA ABSTRACT Monitoring... and Targeting (M&T) is a disciplined approach to energy management that ensures that energy resources are used to their maximmn economic advantage. M&T serves two principal functions: ? Ongoing, day-to-day control of energy use ? Planned improvements...

  4. ,"Port of Del Bonita, MT Natural Gas Pipeline Imports From Canada...

    U.S. Energy Information Administration (EIA) Indexed Site

    Del Bonita, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  5. The thermal influence of the subducting slab beneath South America from 410 and 660 km discontinuity observations

    E-Print Network [OSTI]

    Helffrich, George

    The thermal influence of the subducting slab beneath South America from 410 and 660 km of the depth of the 410 km discontinuity are made beneath central South America in the vicinity of the aseismic form 2000 April 28 SUMMARY Regional seismic network data from deep South American earthquakes

  6. Upper mantle structure beneath the Caribbean-South American plate boundary from surface wave tomography

    E-Print Network [OSTI]

    Niu, Fenglin

    Upper mantle structure beneath the Caribbean-South American plate boundary from surface wave velocity structure of the crust and upper mantle of the Caribbean-South American boundary region American continental lithosphere, the Venezuelan archipelago, and the Caribbean oceanic lithosphere

  7. Elevated CO2 and O3 Alter Soil Nitrogen Transformations beneath

    E-Print Network [OSTI]

    Elevated CO2 and O3 Alter Soil Nitrogen Transformations beneath Trembling Aspen, Paper Birch, North Carolina 27695, USA ABSTRACT Nitrogen cycling in northern temperate forest ecosystems could change to a negative feed- back on N availability. Key words: Acer saccharum; Betula papyrifera; Carbon dioxide; FACE

  8. Ice Shelf Water plume flow beneath Filchner-Ronne Ice Shelf, Antarctica

    E-Print Network [OSTI]

    Feltham, Daniel

    Ice Shelf Water plume flow beneath Filchner-Ronne Ice Shelf, Antarctica Paul R. Holland,1 Daniel L Filchner- Ronne Ice Shelf, Antarctica and its underlying ocean cavity. Ice Shelf Water (ISW) plumes are initiated by the freshwater released from a melting ice shelf and, if they rise, may become supercooled

  9. Geophysical (time domain electromagnetic model) delineation of a shallow brine beneath a freshwater lake,

    E-Print Network [OSTI]

    Gvirtzman, Haim

    et al., 1999] and (2) seepage from sediments beneath the lake [Braudo et al., 1970; Stiller et al., 1975; Stiller, 1994]. The average annual contribution of all sources is estimated to be 146,000 tons below lake's bottom, and to 2000­3500 mg/L at 5 m depth [Stiller, 1994]. On the basis of tritium data

  10. Distinct compositional thin layers at mid-mantle depths beneath northeast China revealed by the USArray

    E-Print Network [OSTI]

    Niu, Fenglin

    Natural Gas Institute, China University of Petroleum, Beijing, China b Department of Earth Science, RiceDistinct compositional thin layers at mid-mantle depths beneath northeast China revealed crust northeast China USArray a b s t r a c t We observe a clear seismic arrival at $35­45 s after

  11. Distinct compositional thin layers at mid-mantle depths beneath northeast China revealed by the USArray

    E-Print Network [OSTI]

    Niu, Fenglin

    Natural Gas Institute, China University of Petroleum, Beijing, China b Department of Earth Science, RiceDistinct compositional thin layers at mid-mantle depths beneath northeast China revealed February 2013 Keywords: S to P converted wave mid-mantle reflectors subducted oceanic crust northeast China

  12. The seismic structure beneath the South Pa-cific superswell has not been well explored in

    E-Print Network [OSTI]

    ,Cook-Austral,Marquesas,and Pitcairn) whose volcanic rocks have isotopic characteris- tics suggesting deep mantle origin;and a broad chains in French Polynesia as part of the PLUME (Polynesian Lithosphere and Upper Mantle Experiment) project to image the upper mantle structure beneath French Polynesia [Barruol et al.,2002].The PLUME

  13. Recalculated probability of M !!!!!! 7 earthquakes beneath the Sea of Marmara, Turkey

    E-Print Network [OSTI]

    Recalculated probability of M !!!!!! 7 earthquakes beneath the Sea of Marmara, Turkey Tom Parsons U); KEYWORDS: earthquake probability, Sea of Marmara, seismic hazard, Turkey, stress interaction, North of Marmara, Turkey, J. Geophys. Res., 109, B05304, doi:10.1029/2003JB002667. 1. Introduction [2] The North

  14. Effective stress profiles and seepage flows beneath glaciers and ice sheets

    E-Print Network [OSTI]

    Rempel, Alan W.

    stress for ice infiltration Qb Heat flux into glacier base Qf Heat produced by dissipation Qg GeothermalEffective stress profiles and seepage flows beneath glaciers and ice sheets Alan W. REMPEL spacing and the heat-flow regime. Considerations of thermodynamic equilibrium require that ice penetrates

  15. Sampling and Hydrogeology of the Vadose Zone Beneath the 300 Area Process Ponds

    SciTech Connect (OSTI)

    Bjornstad, Bruce N.

    2004-08-31T23:59:59.000Z

    Four open pits were dug with a backhoe into the vadose zone beneath the former 300 Area Process Ponds in April 2003. Samples were collected about every 2 feet for physical, chemical, and/or microbiological characterization. This reports presents a stratigraphic and geohydrologic summary of the four excavations.

  16. The structure of a Mesozoic basin beneath the Lake Tana area, Ethiopia, revealed by magnetotelluric imaging

    E-Print Network [OSTI]

    The structure of a Mesozoic basin beneath the Lake Tana area, Ethiopia, revealed by magnetotelluric of Mines, Addis Ababa, Ethiopia c Geological Survey of Ethiopia, Addis Ababa, Ethiopia Received 18 April 2006 Abstract The northwestern Plateau of Ethiopia is almost entirely covered with extensive Tertiary

  17. Mantle flow beneath northwestern Venezuela: Seismic evidence for a deep origin of the Mrida Andes

    E-Print Network [OSTI]

    Niu, Fenglin

    Mantle flow beneath northwestern Venezuela: Seismic evidence for a deep origin of the MĂ©rida Andes University, Houston, TX, USA b FundaciĂłn de Investigaciones SimolĂłgicas (FUNVISIS), Caracas, Venezuela a b wave splitting from SKS data recorded by the national seismic network of Venezuela and a linear

  18. Re^Os evidence for replacement of ancient mantle lithosphere beneath the North China craton

    E-Print Network [OSTI]

    Rudnick, Roberta L.

    Re^Os evidence for replacement of ancient mantle lithosphere beneath the North China craton Shan and was replaced by more fertile lithospheric mantle sometime after the Paleozoic. Moreover, lithospheric mantle crust (2700 Ma), suggesting that the original Archean lithosphere was replaced in the Proterozoic

  19. RoBOT: "Rocks Beneath Our Toes" An experiential learning opportunity in mineralogy and geochemistry

    E-Print Network [OSTI]

    Baxter, Ethan F.

    RoBOT: "Rocks Beneath Our Toes" An experiential learning opportunity in mineralogy with Boston University undergraduates to analyze the mineralogy and unravel the unique story that each rock into modern scientific methods of geochemistry and mineralogy and to unlock for them the exciting

  20. Modeling Zinc and Sodium Chloride Migration in Vadose Zone Soils Beneath Stormwater Infiltration Devices

    E-Print Network [OSTI]

    Clark, Shirley E.

    be seen in the field. Based on model results, shallow groundwater will be rapidly and highly impactedModeling Zinc and Sodium Chloride Migration in Vadose Zone Soils Beneath Stormwater Infiltration device. Introduction Urbanization has increased the amount of impervious surfaces, leading to an increase

  1. An assessment of regional climate trends and changes to the Mt. Jaya glaciers of Irian Jaya

    E-Print Network [OSTI]

    Kincaid, Joni L.

    2007-09-17T23:59:59.000Z

    on the Mt. Jaya glaciers has been lacking since the early 1970s. Using IKONOS satellite images, the ice extents of the Mt. Jaya glaciers in 2000, 2002, 2003, 2004, and 2005 were mapped. The mapping indicates that the recessional trend which began in the mid...

  2. MT-SDF: Scheduled Dataflow Architecture with mini-threads Domenico Pace

    E-Print Network [OSTI]

    Kavi, Krishna

    MT-SDF: Scheduled Dataflow Architecture with mini-threads Domenico Pace University of Pisa Pisa Dataflow (SDF) architecture. We call the new architecture MT-SDF. We introduce mini-threads to execute and quantitative comparison of the mini-threads with the original SDF architecture, and out-of-order superscalar

  3. Impact of monsoons, temperature, and CO2 on the rainfall and ecosystems of Mt. Kenya during the Common Era

    E-Print Network [OSTI]

    Vuille, Mathias

    Impact of monsoons, temperature, and CO2 on the rainfall and ecosystems of Mt. Kenya during Leaf waxes Glacial and early Holocene-age sediments from lakes on Mt. Kenya have documented strong and atmospheric CO2 concentra- tions. However, little is known about climate and ecosystem variations on Mt. Kenya

  4. Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

    SciTech Connect (OSTI)

    Goldstein, N.E.; Flexser, S.

    1984-12-01T23:59:59.000Z

    Recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. The areas studied were: (1) Salton Trough, (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent volcanic activity and published indications of crustal melt zones. 23 figs.

  5. MT3D: a 3 dimensional magnetotelluric modeling program (user's guide and documentation for Rev. 1)

    SciTech Connect (OSTI)

    Nutter, C.; Wannamaker, P.E.

    1980-11-01T23:59:59.000Z

    MT3D.REV1 is a non-interactive computer program written in FORTRAN to do 3-dimensional magnetotelluric modeling. A 3-D volume integral equation has been adapted to simulate the MT response of a 3D body in the earth. An integro-difference scheme has been incorporated to increase the accuracy. This is a user's guide for MT3D.REV1 on the University of Utah Research Institute's (UURI) PRIME 400 computer operating under PRIMOS IV, Rev. 17.

  6. Analysis of Fracture in Cores from the Tuff Confining Unit beneath Yucca Flat, Nevada Test Site

    SciTech Connect (OSTI)

    Lance Prothro

    2008-03-01T23:59:59.000Z

    The role fractures play in the movement of groundwater through zeolitic tuffs that form the tuff confining unit (TCU) beneath Yucca Flat, Nevada Test Site, is poorly known. This is an important uncertainty, because beneath most of Yucca Flat the TCU lies between the sources of radionuclide contaminants produced by historic underground nuclear testing and the regional carbonate aquifer. To gain a better understanding of the role fractures play in the movement of groundwater and radionuclides through the TCU beneath Yucca Flat, a fracture analysis focusing on hydraulic properties was performed on conventional cores from four vertical exploratory holes in Area 7 of Yucca Flat that fully penetrate the TCU. The results of this study indicate that the TCU is poorly fractured. Fracture density for all fractures is 0.27 fractures per vertical meter of core. For open fractures, or those observed to have some aperture, the density is only 0.06 fractures per vertical meter of core. Open fractures are characterized by apertures ranging from 0.1 to 10 millimeter, and averaging 1.1 millimeter. Aperture typically occurs as small isolated openings along the fracture, accounting for only 10 percent of the fracture volume, the rest being completely healed by secondary minerals. Zeolite is the most common secondary mineral occurring in 48 percent of the fractures observed.

  7. Hawaiian hot-spot swell structure from seafloor MT sounding Steven Constablea,*, Graham Heinsonb,1

    E-Print Network [OSTI]

    Constable, Steve

    Hawaiian hot-spot swell structure from seafloor MT sounding Steven Constablea,*, Graham Heinsonb,1 5348090. E-mail addresses: sconstable@ucsd.edu (S. Constable)8 Graham.Heinson@adelaide.edu.au (G. Heinson

  8. E-Print Network 3.0 - area mt evidence Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    search results for: area mt evidence Page: << < 1 2 3 4 5 > >> 1 University of St Andrews School of Mathematics and Statistics Summary: ;1 HONOURS PROGRAMME IN MATHEMATICS AND...

  9. Distribution of stress in the oceanic lithosphere beneath the Lau-Havre Basin

    E-Print Network [OSTI]

    Altman, Larry Wayne

    1978-01-01T23:59:59.000Z

    . If the material injected into the basin floor came from the upper edge of the down-going slab, then it should be andesitic in composition just like the rocks of the volcanic frontal arc which are thought to have the same source. The CI CI CI Cl I I I I... arcs. In this theory, the Benioff zones do not delineate great thrust faults in the classical sense, but rather, they reflect underthrusting or subduction of lithospheric plates into the mantle beneath the arcs. The Origin of Marginal Basins...

  10. Chemical characteristics of precipitation beneath three forest types in east Texas

    E-Print Network [OSTI]

    Pehl, Charles Edward

    2012-06-07T23:59:59.000Z

    of throughfall and stemf low reaching the forest floor. Three 0. 04 hectare (0. 1 acre) plots were established in the Blue Hills area of northeastern Newton County, Texas, approximately two miles southwest of Toledo Bend Reservoir (Fig. 1). Climate Area...CHEMICAL CHARACTERISTICS OF PRECIPITATION BENEATH THREE FOREST TYPES IN EAST TEXAS A Thesis by Char les Edward Pehl Submitted to the Graduate College of Texas A8M Un i ve rs i ty in partial fulfillment of the requirement for the degree...

  11. Soil stiffness beneath a rigid mass using non-destructive impact testing

    E-Print Network [OSTI]

    Maxwell, James Christopher

    1992-01-01T23:59:59.000Z

    University Chair of Advisory Committee: Dr. Jean-Louis Briaud Research on the prediction of the soil stiffness beneath spread footings using non-destructive impact testing was conducted. Three sites having three different soils were investigated.... The soils tested were sand, clay and a landfill covered with a layer of gravel. Impact tests were performed on several footings resting on sand. These footings ranged in size from 0. 093 to 0. 836 m'. One small footing (0. 093 m') was used at several...

  12. A comprehensive analysis of contaminant transport in the vadose zone beneath tank SX-109

    SciTech Connect (OSTI)

    Ward, A.L.; Gee, G.W.; White, M.D.

    1997-02-01T23:59:59.000Z

    The Vadose Zone Characterization Project is currently investigating the subsurface distribution of gamma-emitting radionuclides in S and SX Waste Management Area (WMA-S-SX) located in the 200 West Area of the US Department of Energy`s Hanford Site in southeastern Washington State. Spectral-gamma logging of boreholes has detected elevated {sup 137}Cs concentrations as deep as 38 m, a depth considered excessive based on the assumed geochemistry of {sup 137}Cs in Hanford sediments. Routine groundwater sampling under the Resource Conservation and Recovery Act (RCRA) have also detected elevated levels of site-specific contaminants downgradient of WMA-S-SX. The objective of this report is to explore the processes controlling the migration of {sup 137}Cs, {sup 99}Tc, and NO{sub 3} through the vadose zone of WMA-S-SX, particularly beneath tank SX-109.

  13. Pn Tomographic Velocity and Anisotropy beneath the Iran Region by Yan L, Bin Liu, Shunping Pei, Youshun Sun, M. Nafi Toksz, and Xiangfang Zeng

    E-Print Network [OSTI]

    Sun, Youshun

    Short Note Pn Tomographic Velocity and Anisotropy beneath the Iran Region by Yan LĂŒ, Bin Liu and anisotropy models of the upper- most mantle beneath the Iran region. A total of 74,375 Pn phase readings from). The tomography results show some interesting anomalies. The average Pn velocity under the Iran region

  14. Sequence and annotation of the 314-kb MT325 and the 321-kb FR483 viruses that infect Chlorella Pbi

    E-Print Network [OSTI]

    Graves, Michael V.

    Sequence and annotation of the 314-kb MT325 and the 321-kb FR483 viruses that infect Chlorella Pbi of the family Phycodnaviridae, genus Chlorovirus, infect the fresh water, unicellular, eukaryotic, chlorella-like green alga, Chlorella Pbi. The 314,335-bp genome of MT325 and the 321,240-bp genome of FR483

  15. PARTICLE FILTER WITH EFFICIENT IMPORTANCE SAMPLING AND MODE TRACKING (PF-EIS-MT) AND ITS APPLICATION TO LANDMARK SHAPE TRACKING

    E-Print Network [OSTI]

    Vaswani, Namrata

    PARTICLE FILTER WITH EFFICIENT IMPORTANCE SAMPLING AND MODE TRACKING (PF-EIS-MT) AND ITS a practically implementable particle filtering (PF) method called "PF-EIS-MT" for tracking on large dimensional dimensions and (b) direct application of PF requires an impractically large number of particles. PF-EIS

  16. Altered Mitochondrial Retrograde Signaling in Response to mtDNA Depletion or a Ketogenic Diet

    E-Print Network [OSTI]

    Selfridge, Jennifer Eva

    2012-12-31T23:59:59.000Z

    kinase kinase MCI Mild cognitive impairment MCT Monocarboxylate transporter Mfn Mitofusin mtDNA Mitochondrial DNA mTOR Mammalian target of rapamycin mTORC1 mTOR complex 1 MRC Mitochondrial Respiratory Complex NAD(H) Nicotinamide adenine...

  17. Behavioral/Systems/Cognitive Receptive Field Positions in Area MT during Slow Eye

    E-Print Network [OSTI]

    Krekelberg, Bart

    Behavioral/Systems/Cognitive Receptive Field Positions in Area MT during Slow Eye Movements Till S across eye movements. We first tested the hypothesis that motion signals are integrated by neurons whose receptive fields (RFs) do not move with the eye but stay fixed in the world. Specifically, we measured

  18. M.-T. DO, P. MARSAC, Y. DELANNE Prediction of Tire/Wet Road Friction from

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    M.-T. DO, P. MARSAC, Y. DELANNE 1 Prediction of Tire/Wet Road Friction from Road Surface, validation of a contact model for the prediction of low-speed friction from road surface microtexture the friction ­ speed curve from road- and tire measurable parameters. The model development is briefly

  19. Going Beyond AER: An Extensive Analysis of Word Alignments and Their Impact on MT

    E-Print Network [OSTI]

    Ayan, Necip Fazil

    Going Beyond AER: An Extensive Analysis of Word Alignments and Their Impact on MT Necip Fazil Ayan (AER)--attempts to balance the precision and recall scores at the level of alignment links (Och and Ney et al., 2002) or METEOR (Banerjee and Lavie, 2005)). However, these studies showed that AER and BLEU

  20. Abrupt contraction flow of magnetorheological fluids , M.T. Lpez-Lpez1,2

    E-Print Network [OSTI]

    Boyer, Edmond

    engineering interest, the MR fluids are very attractive from a purely scientific point of view. The coupling1 Abrupt contraction flow of magnetorheological fluids P. Kuzhir1 , M.T. LĂłpez-LĂłpez1,2 and G Granada, 18071 Granada, Spain Abstract Contraction and expansion flows of magnetorheological fluids occur

  1. MSU Human Resources 19 Montana Hall ~ PO Box 172520 ~ Bozeman, MT 59717-2520

    E-Print Network [OSTI]

    Dyer, Bill

    MSU Human Resources 19 Montana Hall ~ PO Box 172520 ~ Bozeman, MT 59717-2520 Tel (406) 994 with the Social Security Administration and State policies, the Human Resources procedure for Name and Address changes has been modified. The Human Resources Department uses two separate forms ­ one for name changes

  2. Soil nematode communities are ecologically more mature beneath late-than early-successional stage biological soil crusts

    E-Print Network [OSTI]

    Neher, Deborah A.

    Soil nematode communities are ecologically more mature beneath late- than early-successional stage biological soil crusts Brian J. Darby a,*, Deborah A. Neher a , Jayne Belnap b a Department of Plant and Soil; accepted 12 April 2006 Abstract Biological soil crusts are key mediators of carbon and nitrogen inputs

  3. Coupled Geochemical and Hydrological Processes Governing the Fate and Transport of Radionuclides and Toxic Metals Beneath the Hanford Tank Farms

    SciTech Connect (OSTI)

    Scott Fendorf; Phil Jardine

    2006-07-21T23:59:59.000Z

    The goal of this research was to provide an improved understanding and predictive capability of coupled hydrological and geochemical mechanisms that are responsible for the accelerated migration and immobilization of radionuclides and toxic metals in the badose zone beneath the Hanford Tank Farms.

  4. Seismic Anisotropy and Mantle flow beneath Western Venezuela Jeniffer Masy,1 Fenglin Niu1 and Alan Levander1

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Seismic Anisotropy and Mantle flow beneath Western Venezuela Jeniffer Masy,1 Fenglin Niu1 and Alan the Caribbean (CAR) and South American (SA) plates in western Venezuela is a wide area where a variety- mic Network of Venezuela. Yellow and red symbols represent temporal de- ployments under the first

  5. Data Package for Past and Current Groundwater Flow and Contamination beneath Single-Shell Tank Waste Management Areas

    SciTech Connect (OSTI)

    Horton, Duane G.

    2007-03-16T23:59:59.000Z

    This appendix summarizes historic and recent groundwater data collected from the uppermost aquifer beneath the 200 East and 200 West Areas. Although the area of interest is the Hanford Site Central Plateau, most of the information discussed in this appendix is at the scale of individual single-shell tank waste management areas. This is because the geologic, and thus the hydraulic, properties and the geochemical properties (i.e., groundwater composition) are different in different parts of the Central Plateau.

  6. Review of potential technologies for the treatment of Methyl tertiary butyl Ether (MtBE) in drinking water

    SciTech Connect (OSTI)

    Brown, A.; Browne, T.E. [Komex H2O Science, Huntington Beach, CA (United States); Devinny, J.S. [Univ. of Southern California, Los Angeles, CA (United States)] [and others

    1997-12-31T23:59:59.000Z

    At present, the state of knowledge on effective treatment technologies for MtBE in drinking water, and groundwater in general, is limited. Research by others is focusing on the remediation of MtBE close to the point of release. The City of Santa Monica, MWD, Komex and USC are currently conducting research into different technologies that could be used to remove MtBE from drinking water supplies. The objectives of the research are to evaluate different treatment technologies to identify cost-effective and technically feasible alternatives for the removal of MtBE from drinking water. The evaluation is considering moderate to high water flow rates (100 to 2,000+ gpm) and low to moderate MtBE concentrations (<2,000 {mu}g/l). The research program includes four phases: (1) Literature Review; (2) Bench Scale Study; (3) Field Scale Pre-pilot Study; and (4) Summary Evaluation. This paper presents some preliminary information and findings from the first phase of this research - the literature review. The review discusses the chemical properties of MtBE and how they affect remediation and thus, an evaluation of alternative treatment technologies. The review of available literature, and the applicability and limitations of the following technologies are presented in detail.

  7. Bioremediation of RDX in the vadose zone beneath the Pantex Plant

    SciTech Connect (OSTI)

    Shull, T.L.; Speitel, G.E. Jr.; McKinney, D.C. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering] [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering

    1999-01-01T23:59:59.000Z

    The presence of dissolved high explosives (HE), in particular RDX and HMX, is well documented in the perched aquifer beneath the Pantex Plant, but the distribution of HE in the vadose zone has not yet been well defined. Although current remediation activities focus on the contamination in the perched aquifer, eventually regulatory concern is likely to turn to the residual contamination in the vadose zone. Sources of HE include the infiltration of past wastewater discharges from several HE-processing facilities through the ditch drainage system and leachate from former Landfill 3. With limited existing data on the HE distribution in the vadose zone and without preventive action, it must be assumed that residual HE could be leached into infiltrating water, providing a continuing supply of contamination to the perched aquifer. The purpose of this project was to more closely examine the fate and transport of HE in the vadose zone through mathematical modeling and laboratory experimentation. In particular, this report focuses on biodegradation as one possible fate of HE. Biodegradation of RDX in the vadose zone was studied because it is both present in highest concentration and is likely to be of the greatest regulatory concern. This study had several objectives: determine if indigenous soil organisms are capable of RDX biodegradation; determine the impact of electron acceptor availability and nutrient addition on RDX biodegradation; determine the extent of RDX mineralization (i.e., conversion to inorganic carbon) during biodegradation; and estimate the kinetics of RDX biodegradation to provide information for mathematical modeling of fate and transport.

  8. Review and model-based analysis of factors influencing soil carbon sequestration beneath switchgrass (Panicum virgatum)

    SciTech Connect (OSTI)

    Garten Jr, Charles T [ORNL

    2012-01-01T23:59:59.000Z

    Abstract. A simple, multi-compartment model was developed to predict soil carbon sequestration beneath switchgrass (Panicum virgatum) plantations in the southeastern United States. Soil carbon sequestration is an important component of sustainable switchgrass production for bioenergy because soil organic matter promotes water retention, nutrient supply, and soil properties that minimize erosion. A literature review was included for the purpose of model parameterization and five model-based experiments were conducted to predict how changes in environment (temperature) or crop management (cultivar, fertilization, and harvest efficiency) might affect soil carbon storage and nitrogen losses. Predictions of soil carbon sequestration were most sensitive to changes in annual biomass production, the ratio of belowground to aboveground biomass production, and temperature. Predictions of ecosystem nitrogen loss were most sensitive to changes in annual biomass production, the soil C/N ratio, and nitrogen remobilization efficiency (i.e., nitrogen cycling within the plant). Model-based experiments indicated that 1) soil carbon sequestration can be highly site specific depending on initial soil carbon stocks, temperature, and the amount of annual nitrogen fertilization, 2) response curves describing switchgrass yield as a function of annual nitrogen fertilization were important to model predictions, 3) plant improvements leading to greater belowground partitioning of biomass could increase soil carbon sequestration, 4) improvements in harvest efficiency have no indicated effects on soil carbon and nitrogen, but improve cumulative biomass yield, and 5) plant improvements that reduce organic matter decomposition rates could also increase soil carbon sequestration, even though the latter may not be consistent with desired improvements in plant tissue chemistry to maximize yields of cellulosic ethanol.

  9. Methyl tertiary butyl ether (MtBE) contamination of the City of Santa Monica drinking water supply

    SciTech Connect (OSTI)

    Brown, A.; Farrow, J.R.C. [Komex H2O Science, Huntington Beach, CA (United States); Rodriguez, R.A. [City of Santa Monica, CA (United States)] [and others

    1997-12-31T23:59:59.000Z

    In the summer of 1996, the City of Santa Monica ceased pumping groundwater from two Well Fields (Charnock and Arcadia) used for public drinking water supply due to persistent and increasing concentrations of MtBE in all seven municipal water supply wells. This lost production accounted for 50% of the City`s total drinking water supply. In late 1996, the City, in cooperation with State and Federal agencies, initiated an investigation of MtBE contamination at the two well fields. The objectives of the investigation were as follows: (1) Review available data on the production, use, chemical characteristics, fate and transport, toxicology, and remediation of MtBE; (2) Identify locations of potential sources of MtBE groundwater contamination at the well fields; (3) Develop an understanding of the hydrologic pathways from the potential sources to the drinking water wells; and (4) Evaluate alternative treatment technologies for the removal of MtBE from drinking water. In addition to a review of available information about MtBE, the investigation included an extensive review of literature and available data relevant to the well fields, including well field production histories, site and regional hydrogeology, all well logs and production in the groundwater basins, general groundwater quality, and the record of MtBE detection. Based upon the review of background information, conceptual hydrogeologic models were developed. A detailed review of agency files for over 45 potential source sites was conducted. The information from this review was summarized, and source site screening and ranking criteria were developed. A field program was conducted at the major well field (Charnock), including soil gas surveys, CPTs, soil borings and well installations, geophysics, and aquifer testing. The field program provided site data which allowed the conceptual hydrogeologic model to be refitted to actual site conditions.

  10. 3-D Density Model Of Mt Etna Volcano (Southern Italy) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin:YBR14InformationInformation Of Mt

  11. Rock Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia BlueRiverwoods, Illinois:239178°,isWind Farm is)EnergyMt

  12. REACTIVE MULTIPHASE BEHAVIOR OF CO2 IN SALINE AQUIFERS BENEATH THE COLORADO PLATEAU

    SciTech Connect (OSTI)

    R.G. Allis; J. Moore; S. White

    2003-01-30T23:59:59.000Z

    Gas reservoirs developed within the Colorado Plateau and Southern Rocky Mountains region are natural laboratories for studying the factors that promote long-term storage of CO{sub 2}. They also provide sites for storing additional CO{sub 2} if it can be separated from the flue gases of coal-fired power plants in this part of the U.S.A. These natural reservoirs are developed primarily in sandstones and dolomites; shales, mudstones and anhydrite form seals. In many fields, stacked reservoirs are present, indicating that the gas has migrated up through the section. There are also geologically young travertine deposits at the surface, and CO{sub 2}-charged groundwater and springs in the vicinity of known CO{sub 2} occurrences. These near-surface geological and hydrological features also provide examples of the environmental effects of leakage of CO{sub 2} from reservoirs, and justify further study. During reporting period covered here (the first quarter of Year 3 of the project, i.e. October 1-December 31, 2002), the main achievements were: (1) Planning workshop for project participants as well as other Utah researchers involved in CO{sub 2} projects (22 October, 2002), and Utah Geological Survey, Salt Lake City; (2) Presentation of paper to special CO{sub 2} sequestration session at the Geological Society of America Annual Meeting, Denver, 29 October, 2002; (3) Presentation of paper to special CO{sub 2} sequestration session at the Fall Meeting of American Geophysical Union, San Francisco, 10 December, 2002; (4) Identification of dawsonite (sodium-aluminum carbonate) as a late stage mineral deposited in CO{sub 2} feedzone at Springerville, Arizona; (5) Successful matching of known physical constraints to flow beneath the Hunter cross section being used to simulate the effects of CO{sub 2} injection. In about 1000 years, most injected CO{sub 2} may be lost to the surface from the three shallowest reservoirs considered, assuming no reactive processes; and (6) Inclusion of reactive processes in numerical simulations, and indication that CO{sub 2} is sequestered for at 1000 years in form of dissolved CO{sub 2} and carbonate mineral precipitation.

  13. Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: Identification of an RGFRRR motif governing fungal cell entry

    SciTech Connect (OSTI)

    Sagaram, Uma S.; El-Mounadi, Kaoutar; Buchko, Garry W.; Berg, Howard R.; Kaur, Jagdeep; Pandurangi, Raghoottama; Smith, Thomas J.; Shah, Dilip

    2013-12-04T23:59:59.000Z

    A highly conserved plant defensin MtDef4 potently inhibits the growth of a filamentous fungus Fusarium graminearum. MtDef4 is internalized by cells of F. graminearum. To determine its mechanism of fungal cell entry and antifungal action, NMR solution structure of MtDef4 has been determined. The analysis of its structure has revealed a positively charged patch on the surface of the protein consisting of arginine residues in its ?-core signature, a major determinant of the antifungal activity of MtDef4. Here, we report functional analysis of the RGFRRR motif of the ?-core signature of MtDef4. The replacement of RGFRRR to AAAARR or to RGFRAA not only abolishes fungal cell entry but also results in loss of the antifungal activity of MtDef4. MtDef4 binds strongly to phosphatidic acid (PA), a precursor for the biosynthesis of membrane phospholipids and a signaling lipid known to recruit cytosolic proteins to membranes. Mutations of RGFRRR which abolish fungal cell entry of MtDef4 also impair its binding to PA. Our results suggest that RGFRRR motif is a translocation signal for entry of MtDef4 into fungal cells and that this positively charged motif likely mediates interaction of this defensin with PA as part of its antifungal action.

  14. II: MOTION in ONE SPACE DIMENSION -Pt IIb 1st year CLASSICAL MECHANICS MT06 PLR from RCED

    E-Print Network [OSTI]

    Read, Peter L.

    that this happens for x >> 1/a, then the velocity approaches a limiting value of v0. Why is this ­ no resistance to motion has been included. Indeed what difference would the addition of a resistance term of the form R. To assess the relative importance of the terms one needs the model for M(t) or equivalent data. A linear

  15. EIS-0092: Conversion to Coal, Holyoke Water Power Company, Mt. Tom Generating Station Unit 1 Holyoke, Hampden County, Massachusetts

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration prepared this statement to assess the environmental impacts of prohibiting Unit 1 of the Mt. Tom Generation Station Unit 1 from using either natural gas or petroleum products as a primary energy source, which would result in the utility burning low-sulfur coal.

  16. COCORP profiles from the Montana plains: The Archean cratonic crust and a lower crustal anomaly beneath the Williston basin

    SciTech Connect (OSTI)

    Latham, T.S. (Cornell Univ., Ithaca, NY (USA)); Best, J.; Chaimov, T.; Oliver, J.; Brown, L.; Kaufman, S. (Cornell Univ. Ithaca, NY (USA))

    1988-12-01T23:59:59.000Z

    New COCORP deep seismic reflection profiles from the Montana plains between the Rocky Mountains and the Williston basin image the crystalline continental basement of the Archean Wyoming cratonic province on a regional scale. The crust is, in general, reflective throughout its entire thickness. West of the Williston basin, the crust-mantle boundary is at the base of the reflective zone and is not marked by the presence of any distinctive reflections. The lowermost crust beneath the Williston basin is, in contrast, characterized by a prominent, laterally extensive zone of relatively high-amplitude reflections. If, as the spatial correlation suggest, the anomalously reflective lower crustal zone is causally related to the subsidence of the basin, then the data place constraints in addition to those of the sedimentary record on physical models for the evolution of the Williston basin.

  17. The impact of tropical cyclones (TC) on global climate is still debated. They rapidly mix the water column beneath them, bringing cold water to the surface.

    E-Print Network [OSTI]

    Jones, Peter JS

    of Climate, 21, 638 Sriver & Huber, 2007, Observational evidence for an ocean heat pump induced by tropicalThe impact of tropical cyclones (TC) on global climate is still debated. They rapidly mix the water column beneath them, bringing cold water to the surface. One way to parameterise this process

  18. CO2 flood tests on whole core samples of the Mt. Simon sandstone, Illinois Basin

    SciTech Connect (OSTI)

    O'Connor, William K.; Rush, Gilbert E.

    2005-09-01T23:59:59.000Z

    Geological sequestration of CO2, whether by enhanced oil recovery (EOR), coal-bed methane (CBM) recovery, or saline aquifer injection is a promising near-term sequestration methodology. While tremendous experience exists for EOR, and CBM recovery has been demonstrated in existing fields, saline aquifer injection studies have only recently been initiated. Studies evaluating the availability of saline aquifers suitable for CO2 injection show great potential, however, the long-term fate of the CO2 injected into these ancient aqueous systems is still uncertain. For the subject study, a series of laboratory-scale CO2 flood tests were conducted on whole core samples of the Mt. Simon sandstone from the Illinois Basin. By conducting these tests on whole core samples rather than crushed core, an evaluation of the impact of the CO2 flood on the rock mechanics properties as well as the geochemistry of the core and brine solution has been possible. This empirical data could provide a valuable resource for the validation of reservoir models under development for these engineered CO2 systems.

  19. Four-year prospective study of the respiratory effects of volcanic ash from Mt. St. Helens

    SciTech Connect (OSTI)

    Buist, A.S.; Vollmer, W.M.; Johnson, L.R.; Bernstein, R.S.; McCamant, L.E.

    1986-04-01T23:59:59.000Z

    This report describes the 4-yr follow-up of 712 loggers exposed over an extended period to varying levels of fresh volcanic ash from the 1980 eruptions of Mt. St. Helens. Concerns related to the irritant effect the ash might have on the airways and also to its fibrogenic potential if exposures were intense and continued over many years. Our subjects were divided into 3 groups: high, low, and no exposure. Baseline testing was begun in June 1980, 1 month after the major eruption, and follow-up testing continued on an annual basis through 1984; 88% of the loggers have been tested at least 3 times. Analysis of lung function data showed that a significant, exposure-related decline in FEV1 occurred during the first year after the eruption. The decline was short-lived, however, and by 1984 the differences between exposure groups were no longer significant. Self-reported symptoms of cough, phlegm, and wheeze showed a similar pattern. No ash-related changes were seen in chest roentgenograms taken in 1980 and in 1984. Our findings are consistent with the hypothesis that the inhaled ash caused mucus hypersecretion and/or airway inflammation that reversed when the exposure levels decreased. The ash levels to which the loggers were exposed were low compared with permissible occupational levels for nuisance dusts, but generally higher than the total suspended particulate levels permissible in ambient air.

  20. Uranium hydrogeochemical and stream-sediment reconnaissance of the Mt. Michelson NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr. (comps.) [comps.

    1982-04-01T23:59:59.000Z

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Mt. Michelson NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

  1. Dark Matter Particle Spectroscopy at the LHC: Generalizing M(T2) to Asymmetric Event Topologies

    SciTech Connect (OSTI)

    Konar, Partha; /Florida U.; Kong, Kyoungchul; /SLAC; Matchev, Konstantin T.; Park, Myeonghun; /Florida U.; ,

    2012-04-03T23:59:59.000Z

    We consider SUSY-like missing energy events at hadron colliders and critically examine the common assumption that the missing energy is the result of two identical missing particles. In order to experimentally test this hypothesis, we generalize the subsystem M{sub T2} variable to the case of asymmetric event topologies, where the two SUSY decay chains terminate in different 'children' particles. In this more general approach, the endpoint M{sub T2(max)} of the M{sub T2} distribution now gives the mass {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}) of the parent particles as a function of two input children masses {tilde M}{sub c}{sup (a)} and {tilde M}{sub c}{sup (b)}. We propose two methods for an independent determination of the individual children masses M{sub c}{sup (a)} and M{sub c}{sup (b)}. First, in the presence of upstream transverse momentum PUTM the corresponding function {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}, P{sub UTM}) is independent of P{sub UTM} at precisely the right values of the children masses. Second, the previously discussed MT2 'kink' is now generalized to a 'ridge' on the 2-dimensional surface {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}). As we show in several examples, quite often there is a special point along that ridge which marks the true values of the children masses. Our results allow collider experiments to probe a multi-component dark matter sector directly and without any theoretical prejudice.

  2. A fast, simple, and naturally machine-precision algorithm for calculating both symmetric and asymmetric MT2, for any physical inputs

    E-Print Network [OSTI]

    Christopher G. Lester; Benjamin Nachman

    2014-11-16T23:59:59.000Z

    This document describes a stransverse-mass calculation algorithm that has better numerical stability, and therefore accuracy, than the fastest existing implementations. The new algorithm naturally permits computation of MT2 to machine-precision for any valid set of inputs. In addition to being more accurate than existing fast calculators, the new implementation is arguably simpler to understand, comprises fewer lines of active code, and provides the first fast machine-precision asymmetric-MT2 calculator known to the authors.

  3. What lies beneath | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome Careers at WIPPCompletes itshome /

  4. A polymorphism in metallothionein 1A (MT1A) is associated with cadmium-related excretion of urinary beta 2?microglobulin

    SciTech Connect (OSTI)

    Lei, Lijian [Department of Occupational Health, School of Public Health, Fudan University, Shanghai (China) [Department of Occupational Health, School of Public Health, Fudan University, Shanghai (China); Department of Epidemiology, School of Public Health, Shanxi Medical University, Shanxi (China); Chang, Xiuli [Department of Occupational Health, School of Public Health, Fudan University, Shanghai (China)] [Department of Occupational Health, School of Public Health, Fudan University, Shanghai (China); Rentschler, Gerda [Department of Occupational and Environmental Medicine, Lund University, SE-22185, Lund (Sweden)] [Department of Occupational and Environmental Medicine, Lund University, SE-22185, Lund (Sweden); Tian, Liting [Department of Occupational Health, School of Public Health, Fudan University, Shanghai (China)] [Department of Occupational Health, School of Public Health, Fudan University, Shanghai (China); Zhu, Guoying; Chen, Xiao [Department of Bone Metabolism, Institute of Radiation Medicine, Fudan University, Shanghai (China)] [Department of Bone Metabolism, Institute of Radiation Medicine, Fudan University, Shanghai (China); Jin, Taiyi, E-mail: tyjinster@gmail.com [Department of Occupational Health, School of Public Health, Fudan University, Shanghai (China)] [Department of Occupational Health, School of Public Health, Fudan University, Shanghai (China); Broberg, Karin, E-mail: karin.broberg_palmgren@med.lu.se [Department of Occupational and Environmental Medicine, Lund University, SE-22185, Lund (Sweden)] [Department of Occupational and Environmental Medicine, Lund University, SE-22185, Lund (Sweden)

    2012-12-15T23:59:59.000Z

    Objectives: Cadmium (Cd) toxicity of the kidney varies between individuals despite similar exposure levels. In humans Cd is mainly bound to metallothioneins (MT), which scavenge its toxic effects. Here we analyzed whether polymorphisms in MT genes MT1A and MT2A influence Cd-related kidney damage. Methods: In a cross-sectional study N = 512 volunteers were selected from three areas in South-Eastern China, which to varying degree were Cd-polluted from a smelter (control area [median Cd in urine U-Cd = 2.67 ?g/L], moderately [U-Cd = 4.23 ?g/L] and highly [U-Cd = 9.13 ?g/L] polluted areas). U-Cd and blood Cd (B-Cd) concentrations were measured by graphite-furnace atomic absorption spectrometry. MT1A rs11076161 (G/A), MT2A rs10636 (G/C) and MT2A rs28366003 (A/G) were determined by Taqman assays; urinary N-Acetyl-beta-(D)-Glucosaminidase (UNAG) by spectrometry, and urinary ?2-microglobulin (UB2M) by ELISA. Results: Higher B-Cd (natural log-transformed) with increasing number of MT1A rs11076161 A-alleles was found in the highly polluted group (p-value trend = 0.033; all p-values adjusted for age, sex, and smoking). In a linear model a significant interaction between rs11076161 genotype and B-Cd was found for UNAG (p = 0.001) and UB2M concentrations (p = 0.001). Carriers of the rs11076161 AA genotype showed steeper slopes for the associations between Cd in blood and natural log-transformed UB2M (? = 1.2, 95% CI 0.72–1.6) compared to GG carriers (? = 0.30, 95% CI 0.15–0.45). Also for UNAG (natural log-transformed) carriers of the AA genotype had steeper slopes (? = 0.55, 95% CI 0.27–0.84) compared to GG carriers (? = 0.018, 95% CI ? 0.79–0.11). Conclusions: MT1A rs11076161 was associated with B-Cd concentrations and Cd-induced kidney toxicity at high exposure levels. -- Highlights: ? Cadmium is toxic to the kidney but the susceptibility differs between individuals. ? The toxic effect of cadmium is scavenged by metallothioneins. ? A common variant of metallothionein 1A was genotyped in 512 cadmium exposed humans. ? Variant carriers of this polymorphism showed more kidney damage from cadmium. ? The frequency of these variants needs to be taken into account in risk assessment.

  5. The Parallel Grammar Project Miriam Butt

    E-Print Network [OSTI]

    the XLE parser and grammar development platform for six languages: English, French, German, Japanese consuming to produce. As such, a desideratum for the platforms is a broad utilization scope. A grammar development platform should be able to be used to write grammars for a wide variety of languages and a broad

  6. Butte Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder, CO)Burundi: Energy Resources

  7. Delcer Butte Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618bDeer Park,

  8. Butte, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais aBurkittsville,Bushyhead, Oklahoma:248862°Falls,

  9. Butte Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis a city in Chittenden County, Vermont.

  10. Butte, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis a city in Chittenden County, Vermont.

  11. Mitchell Butte Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: Energy

  12. Glass Buttes Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformationGilroy,

  13. Glass Buttes Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: Energy Resources Jump to:Connecticut

  14. Horse Butte Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName Housing Cooperation JumpKongHoosierHopland,Horse

  15. Comment on ``A modified leapfrog scheme for shallow water equations'' by Wen-Yih Sun and Oliver M.T. Sun

    E-Print Network [OSTI]

    Williams, Paul

    Commentary Comment on ``A modified leapfrog scheme for shallow water equations'' by Wen-Yih Sun and Oliver M.T. Sun Paul D. Williams Department of Meteorology, University of Reading, UK a r t i c l e i n f integration of the shallow-water equa- tions using the leapfrog time-stepping scheme [Sun Wen-Yih, Sun Oliver

  16. Cutting-Edge Savannah River Site Project Avoids Millions in Costs, Removes Chemical Solvents from Underground: Project avoided costs totaling more than $15 million, removed tons of chemical solvents from beneath the Savannah River Site

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – Workers recently completed a multiyear project that removed more than 33,000 gallons of non-radioactive chemical solvents from beneath a portion of the Savannah River Site (SRS), preventing those pollutants from entering the local water table and helping the site avoid costs of more than $15 million.

  17. NATIVE MYCORRHIZAL FUNGI WITH ASPEN ON SMELTER-IMPACTED SITES IN THE NORTHERN ROCKY MOUNTAINS

    E-Print Network [OSTI]

    Cripps, Cathy

    by extensive aspen stands on the East Ridge of Butte, MT (inactive copper smelter), adjacent to the smelter stack at Anaconda, MT (inactive copper smelter), at the (removed) lead smelter at Kellogg, ID, and alongNATIVE MYCORRHIZAL FUNGI WITH ASPEN ON SMELTER- IMPACTED SITES IN THE NORTHERN ROCKY MOUNTAINS

  18. Experiment Safety Assurance Package for the 40- to 50-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-Hole Positions in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Khericha, S.T.

    2002-06-30T23:59:59.000Z

    This experiment safety assurance package (ESAP) is a revision of the last MOX ESAP issued in February 2001(Khericha 2001). The purpose of this revision is to identify the changes in the loading pattern and to provide a basis to continue irradiation up to {approx}42 GWd/MT burnup (+ 2.5%) as predicted by MCNP (Monte Carlo N-Particle) transport code before the preliminary postirradiation examination (PIE) results for 40 GWd/MT burnup are available. Note that the safety analysis performed for the last ESAP is still applicable and no additional analysis is required (Khericha 2001). In July 2001, it was decided to reconfigure the test assembly using the loading pattern for Phase IV, Part 3, at the end of Phase IV, Part 1, as the loading pattern for Phase IV, Parts 2 and 3. Three capsule assemblies will be irradiated until the highest burnup capsule assembly accumulates: {approx}50 GWd/MT burnup, based on the MCNP code predictions. The last ESAP suggests that at the end of Phase IV, Part 1, we remove the two highest burnup capsule assemblies ({at} {approx}40 GWd/MT burnup) and send them to ORNL for PIE. Then, irradiate the test assembly using the loading pattern for Phase IV, Part 2, until the highest burnup capsule reaches {approx}40 GWd/MT burnup per MCNP-predicted values.

  19. Experiment Safety Assurance Package for the 40- to 50-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-Hole Positions in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Khericha, Soli T

    2002-06-01T23:59:59.000Z

    This experiment safety assurance package (ESAP) is a revision of the last MOX ESAP issued in February 2001(Khericha 2001). The purpose of this revision is to identify the changes in the loading pattern and to provide a basis to continue irradiation up to ~42 GWd/MT burnup (+ 2.5% as predicted by MCNP (Monte Carlo N-Particle) transport code before the preliminary postirradiation examination (PIE) results for 40 GWd/MT burnup are available. Note that the safety analysis performed for the last ESAP is still applicable and no additional analysis is required (Khericha 2001). In July 2001, it was decided to reconfigure the test assembly using the loading pattern for Phase IV, Part 3, at the end of Phase IV, Part 1, as the loading pattern for Phase IV, Parts 2 and 3. Three capsule assemblies will be irradiated until the highest burnup capsule assembly accumulates: ~50 GWd/MT burnup, based on the MCNP code predictions. The last ESAP suggests that at the end of Phase IV, Part 1, we remove the two highest burnup capsule assemblies (@ ~40 GWd/MT burnup) and send them to ORNL for PIE. Then, irradiate the test assembly using the loading pattern for Phase IV, Part 2, until the highest burnup capsule reaches ~40 GWd/MT burnup per MCNP-predicted values.

  20. Experiment Safety Assurance Package for the 40- to 52-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-hole Positions in the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. T. Khericha; R. C. Pedersen

    2003-09-01T23:59:59.000Z

    This experiment safety assurance package (ESAP) is a revision of the last mixed uranium and plutonium oxide (MOX) ESAP issued in June 2002). The purpose of this revision is to provide a basis to continue irradiation up to 52 GWd/MT burnup [as predicted by MCNP (Monte Carlo N-Particle) transport code The last ESAP provided basis for irradiation, at a linear heat generation rate (LHGR) no greater than 9 kW/ft, of the highest burnup capsule assembly to 50 GWd/MT. This ESAP extends the basis for irradiation, at a LHGR no greater than 5 kW/ft, of the highest burnup capsule assembly from 50 to 52 GWd/MT.

  1. A variable for measuring masses at hadron colliders when missing energy is expected; mT2: the truth behind the glamour

    E-Print Network [OSTI]

    Barr, Alan; Lester, Christopher G; Stephens, Phil

    AMSB-like points discussed in section 4.2. The hadronic branching ratios can be found in [10]. m?+1 #7;M?˜1 Point (GeV) (MeV) ?+1 ? ?01 e+?e ?+1 ? ?01 ”+?” SPS-300 165 886 17.0% 15.9% SPS-250 159 1798 21.9% 21.5% A-250 101 766 15.4% 13.9% A-200 97 1603... ‘natural’ way. Readers who would prefer a ‘top down’ description of mT 2, i.e. a description which starts with a definition and then works towards its consequences, are directed to skip to section 3 where this approach is taken. The concrete example which...

  2. Arnaud Rykner, L'incomprhensible dans le tapis (Sur Henry James) , in L'Incomprhensible. Littrature, rel, visuel, sous la dir. de M.-T. Mathet, Paris, L'Harmattan,

    E-Print Network [OSTI]

    Boyer, Edmond

    'Incompréhensible. Littérature, réel, visuel, sous la dir. de M.-T. Mathet, Paris, L'Harmattan, coll. Champs visuels, 2003, p.-T. Mathet, Paris, L'Harmattan, coll. Champs visuels, 2003, p. 137-165. 2 Georges Didi-Huberman et dans un

  3. Visualizing the Surface Infrastructure Used to Move 2 MtCO2/year from the Dakota Gasification Company to the Weyburn CO2 Enhanced Oil Recovery Project: Version of July 1, 2009

    SciTech Connect (OSTI)

    Dooley, James J.

    2009-07-09T23:59:59.000Z

    Google Earth Pro has been employed to create an interactive flyover of the world’s largest operational carbon dioxide capture and storage project. The visualization focuses on the transport and storage of 2 MtCO2/year which is captured from the Dakota Gasification Facility (Beula, North Dakota) and transported 205 miles and injected into the Weyburn oil field in Southeastern Saskatchewan.

  4. Microsoft Word - G0374 Horse Butte CX.doc

    Broader source: Energy.gov (indexed) [DOE]

    abatement on road and construction site, if necessary. 9. Appropriate erosion and sediment control best management practices will be utilized for the protection of water...

  5. EA-1996: Glass Buttes Radio Station, Lake County, Oregon

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management (BLM), with DOE’s Bonneville Power Administration (BPA) as a cooperating agency, is preparing an EA that will evaluate the potential environmental impacts of a proposal to construct two telecommunications facilities, one of which would provide BPA telecommunications services, on BLM land. Additional information is available at http://www.blm.gov/or/districts/prineville/plans/glassbuttes/.

  6. Microsoft Word - CX-Silver_Butte_28August2012.docx

    Broader source: Energy.gov (indexed) [DOE]

    125. The fiber would be placed in one of two 2-inch-diameter High Density Polyethylene (HDPE) conduits that would be buried approximately 42 to 48 inches below ground....

  7. BOISE STATE UNIVERSITY Darryl Butt Distinguished Professor and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    studied very high temperature hydrogen-solid reactions and thermodynamics of transition metal and actinide carbides. This work included developing planar laser induced fluorescence...

  8. SRM 2372: Past, Present, Erica Butts, Margaret Kline,

    E-Print Network [OSTI]

    ­ Microfluidic (Fluidigm BioMark) ­ Emulsion/droplet PCR (Bio-Rad QX100, RainDance) · Each partition will contain

  9. Geology And A Working Conceptual Model Of The Obsidian Butte...

    Open Energy Info (EERE)

    concentrations of veinlets and dilational breccias mineralized with pos t-calc-silicate specular hematite & anhydrite. The foregoing observations and deductions are...

  10. Butte County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais aBurkittsville,Bushyhead, Oklahoma:248862° LoadingCounty

  11. Butte County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais aBurkittsville,Bushyhead, Oklahoma:248862°

  12. Butte Falls, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais aBurkittsville,Bushyhead, Oklahoma:248862°Falls, Oregon:

  13. Butte County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis a city in Chittenden County, Vermont. ItToolBabcock

  14. Multispectral Imaging At Glass Buttes Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:MoeInformation MulkCalvin,

  15. Crested Butte, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to:InformationCrandall, Texas:CreditCrestEnergy

  16. Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About UsIndustrialofAlgae! | DepartmentDepartment of

  17. Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About UsIndustrialofAlgae! | DepartmentDepartment

  18. Sigurd Red Butte No2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation,Pvt LtdShrub Oak, New York:Siemens° LoadingSigurd Red

  19. Aeromagnetic Survey At Glass Buttes Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskeyEnergyAd-VentaAddisonInformation

  20. Red Butte, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRausWyoming: Energy Resources Jump to: navigation,

  1. Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indiana CollegeManager (ISSM)Successof

  2. SiZRiBUTtOM OF THIS DOCUMBT I S

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2)Sharing Smart GridShift End ShiftShowerheadsShutthaSi

  3. Miniature MT optical assembly (MMTOA)

    DOE Patents [OSTI]

    Laughlin, Daric (Overland Park, KS); Abel, Phillip (Overland Park, KS)

    2008-04-01T23:59:59.000Z

    An optical assembly (10) includes a rigid mount (12) with a recess (26) proximate a first side thereof, a substrate (14), and an optical die (16) flip-chip bonded to the substrate (14). The substrate (14) is secured to the first side of the mount and includes a plurality of die bonding elements (40), a plurality of optical apertures (32), and a plurality of external bonding elements (42). A plurality of traces (44) interconnect the die bonding elements (40) and the external bonding elements (42). The optical die (16) includes a plurality of optical elements, each element including an optical signal interface (48), the die being bonded to the plurality of die bonding elements (40) such that the optical signal interface (48) of each element is in registry with an optical aperture (32) of the substrate (14) and the die (16) is at least partially enclosed by the recess (26).

  4. SCATTERING BY CRACKS BENEATH FLUIDSOLID INTERFACES

    E-Print Network [OSTI]

    Craster, Richard

    parameters relevant for water­metal and water­rock combinations are taken and far field scattering patterns the fluid. For line source excitation surface waves are generated that impinge upon defects near the surface with distance along the interface from its source of excitation. The light fluid loading limit is important f

  5. Long Fingers of Heat Beneath Earth's Surface

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocsCenterCentera A B C D E FLoggingLogisticsAboutLong

  6. Announcements Pick up old homework & MT

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    -REPLICATING, ENCAPSULATED, CHEMICAL SYSTEM THAT UNDERGOES DARWINIAN EVOLUTION" Important points to examine: -What/Archean transition 4.0 ­ 3.5 billion years ago #12;At this time the solar system was bombarded with comets

  7. Wind speed vertical distribution at Mt. Graham

    E-Print Network [OSTI]

    Hagelin, S; Lascaux, F

    2010-01-01T23:59:59.000Z

    The characterization of the wind speed vertical distribution V(h) is fundamental for an astronomical site for many different reasons: (1) the wind speed shear contributes to trigger optical turbulence in the whole troposphere, (2) a few of the astroclimatic parameters such as the wavefront coherence time (tau_0) depends directly on V(h), (3) the equivalent velocity V_0, controlling the frequency at which the adaptive optics systems have to run to work properly, depends on the vertical distribution of the wind speed and optical turbulence. Also, a too strong wind speed near the ground can introduce vibrations in the telescope structures. The wind speed at a precise pressure (200 hPa) has frequently been used to retrieve indications concerning the tau_0 and the frequency limits imposed to all instrumentation based on adaptive optics systems, but more recently it has been proved that V_200 (wind speed at 200 hPa) alone is not sufficient to provide exhaustive elements concerning this topic and that the vertical d...

  8. Controlled Source Audio MT | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) | OpenMinor Permit ApplicationsSaskatchewan,Controlled

  9. Havre, MT Natural Gas Exports to Canada

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.588,219 719,435

  10. Category:Billings, MT | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind Farm JumpBLM) Lease. Add.png Add a new

  11. Mt Rainier Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmel Public Utility Co Jump to:Rainier

  12. Mt Rainier Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmel Public Utility Co Jump

  13. Mt Ranier Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmel Public Utility Co JumpRanier

  14. Marysville Mt Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(HeldManhattan,andMarsInformationWind

  15. Mt Peak Utility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMontMoraineAbbeyIMozart Jump

  16. Mt Poso Cogeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMontMoraineAbbeyIMozart JumpPoso

  17. Mt Signal Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMontMoraineAbbeyIMozart

  18. Babb, MT Natural Gas Export to Canada

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566 8021 1 2 22008662 564 1,1460 0 20 0 0 122

  19. E-Print Network 3.0 - alloy aa6056 butt Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering ; Materials Science 16 Characterizations of Seebeck coefficients and thermoelectric figures of merit for AlInN alloys with various In-contents Summary:...

  20. E-Print Network 3.0 - alloy butt joints Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Source: Oak Ridge National Laboratory Fossil Energy Program Collection: Fossil Fuels 38 ELASTIC-PLASTIC MODE-II FRACTURE OF ADHESIVE JOINTS Summary: Experiments 2.1 Torsion test...

  1. E-Print Network 3.0 - aa6056 butt joints Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuya LakeRiver: Labelled on BC map 1H Source: Russell, Kelly - Department of Earth and Ocean Sciences, University of British Columbia Collection: Geosciences 20 JSS Journal of...

  2. Microsoft Word - CX-Redmond-PilotButte-Lapine_RelayCommunicationReplac...

    Broader source: Energy.gov (indexed) [DOE]

    7, 2010 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Cleareance Memorandum Jim Riehl Electrical Engineer - TECC-CSB-2 Proposed Action: Replace a relaytransfer trip rack at...

  3. Microsoft Word - CX-PilotButte-LaPine-WoodPoles-FY13_WEB.doc

    Broader source: Energy.gov (indexed) [DOE]

    3, 2013 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Richard Heredia Project Manager - TEP-TPP-1 Proposed Action: Wood pole replacements on Bonneville Power...

  4. LiDAR At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:Keystone CleanLaton,LearnLeupp SchoolLewisville is

  5. Cuttings Analysis At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)Crowley County,Curran,784067°,Cutlerville,1983) |

  6. Development Wells At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: EnergyEnergyguaGetOpen EnergyAlumGlass

  7. Ground Gravity Survey At Glass Buttes Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county in

  8. Slim Holes At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) |Crump's Hot SpringsFort

  9. Static Temperature Survey At Glass Buttes Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA RegionSpringviewName Stateline WindInformation

  10. Compound and Elemental Analysis At Glass Buttes Area (DOE GTP) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation, search Name:CXD)2010)2008) |Energy

  11. EA-1996: Glass Buttes Radio Station, Lake County, Oregon | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal1935:Department ofEA-1988:Plant,| Department

  12. Pressure Temperature Log At Glass Buttes Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:Job

  13. Gas Sampling At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent6894093° Loading69. ItLewickiMauiSL Jump to:ColradoGlass

  14. Geology And A Working Conceptual Model Of The Obsidian Butte (Unit 6)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County, Ohio: EnergySector:2008)the Raft River

  15. FMI Log At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,LawFEMA -

  16. Flow Test At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)Flow Test AtFlow

  17. Field Mapping At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: EnergyFeilden Clegg BradleyFerrotec68-1971)Open

  18. Microsoft Word - Horse_Butte_G0374_Env_ Clearance_Doc.doc

    Broader source: Energy.gov (indexed) [DOE]

    be constructed, comprised of a 3 -ring bus with 230-kV circuits, a 115161-kV -34.5 transformer, 3 cap banks and 4-34.5 collector circuits with breakers in addition to a control...

  19. IBm1024 Inteligncia Artificial 2 Semestre/2013 Nmero Nome P1 P2 Sub MP T1 T2 T2' T3 MT L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 E1 E2 L+E F %F MF Situao Rec MR Situao aps Rec

    E-Print Network [OSTI]

    Baranauskas, José Augusto

    L4 L5 L6 L7 L8 L9 L10 E1 E2 L+E F %F MF Situação Rec MR Situação apĂłs Rec 7961541 Amir do NascimentoIBm1024 InteligĂȘncia Artificial 2Âș Semestre/2013 NĂșmero Nome P1 P2 Sub MP T1 T2 T2' T3 MT L1 L2 L3 Elemam 1.4 3.5 4.4 4.0 0.0 10.0 10.0 0.0 6.7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.1 5 83% 5.1

  20. Temporal Velocity Variations beneath the Coso Geothermal Field...

    Open Energy Info (EERE)

    Field Observed using Seismic Double Difference Tomography of Compressional and Shear Wave Arrival Times Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference...

  1. The 1989 Earthquake Swarm Beneath Mammoth Mountain, California...

    Open Energy Info (EERE)

    Mountain. Authors D.P. Hill, W.L. Ellsworth, M.J.S. Johnston, John O. Langbein, D.H. Oppenheimer, A.M. Pitt, P.A. Reasenberg, Michael L. Sorey and S.R. McNutt Published Journal...

  2. Inferences On The Hydrothermal System Beneath The Resurgent Dome...

    Open Energy Info (EERE)

    of magma or high-temperature fluids at depths of 5-7 km. Authors Christopher D. Farrar, Michael L. Sorey, Evelyn Roeloffs, Devin L. Galloway, James F. Howle and Ronald...

  3. 3-D Seismic Methods for Shallow Imaging Beneath Pavement

    E-Print Network [OSTI]

    Miller, Brian

    2013-05-31T23:59:59.000Z

    The research presented in this dissertation focuses on survey design and acquisition of near-surface 3D seismic reflection and surface wave data on pavement. Increased efficiency for mapping simple subsurface interfaces through a combined use...

  4. Flow Beneath a Ship at Small Underkeel Clearance Tim Gourlay

    E-Print Network [OSTI]

    the leading order squat and wave resistance of a ship traveling in calm water, in the case where the water in this case) kinematic viscosity of the fluid (we will consider salt water at 20 deg C, for which 1.04 Ă? 10 THEORETICAL RESEARCH has been done into the flow around a ship operating in shallow water, using Prandtl

  5. Understanding what lies beneath: Groundwater critical to Texas water

    E-Print Network [OSTI]

    Wythe, Kathy

    2008-01-01T23:59:59.000Z

    of organizations and programs associated with groundwater in Texas: Aquifers: Geological formations that can store, transmit, and yield groundwater to a well or spring. Groundwater comes from nine major and 21 minor aquifers in Texas. Confined aquifer: Layer... of water that is held between two layers of clay. The recharge area is limited to land surface where the aquifer?s geologic material is exposed to the land surface. Unconfined aquifer: Layer of water that has a confining layer on bottom and a layer...

  6. Beneath the Surface of Giant Planets: Evolution, Structure, and Composition

    E-Print Network [OSTI]

    Kelly Miller, Neil L.

    2013-01-01T23:59:59.000Z

    iii of Giant Expolanets 3.3.2 PlanetEvolution of Giant Planets . . . . . . . . . . . 2 Coupled3 Applications of Giant Planet Thermal Evolution Model 3.1

  7. Beneath the Surface of Giant Planets: Evolution, Structure, and Composition

    E-Print Network [OSTI]

    Kelly Miller, Neil L.

    2013-01-01T23:59:59.000Z

    thermal evolution model, including energy-limited mass loss,Evaporative Mass Loss Model For energy-limited evaporativeradii. Using an energy-limited escape model, we estimate a

  8. Beneath the valley of the noncommutative arithmetic-geometric ...

    E-Print Network [OSTI]

    2012-02-19T23:59:59.000Z

    Incremental proximal methods for large scale convex optimization. Mathematical ..... Proof This follow by examining the generating function above. First observe ...

  9. A Preparation Zone For Volcanic Explosions Beneath Naka-Dake...

    Open Energy Info (EERE)

    Volcanic explosions act to release the energy transferred from magma or volcanic fluids. Measurement of the subsurface electrical resistivity is a promising method in...

  10. Temperatures at the Base of the Seismogenic Crust Beneath Long...

    Open Energy Info (EERE)

    temperature at which the first mineral species in the crustal rock enters the quasi-plastic domain. This sub-solidus temperature marks the onset of the transition from brittle...

  11. Characterization of secondary collection system flows beneath synthetic composite liners

    SciTech Connect (OSTI)

    Groenleer, M.E. [Wenck Associates, Inc., Grand Rapids, MI (United States)

    1995-12-31T23:59:59.000Z

    Secondary liner systems for landfills are becoming more common. Subtitle D may be construed to require secondary liners to meet monitorability requirements for new units. Michigan requires secondary liners in many situations, most commonly at previously contaminated sites to allow for differential monitoring of the new cell(s). Much work has been done in characterizing the flow of liquids through FML/clay composite liners but less is known about flows through FML/geosynthetic clay liner (GCL) composite liners or through isolated FMLs. Flow and chemical data are examined from two Michigan landfills employing different configurations of all synthetic primary and secondary liners. The data is examined for apparent trends. Conclusions are drawn about the application of generic action flow rates as a regulatory standard to these systems and the chemical characteristics of the liquids in secondary systems. Calculations are presented to achieve a realistic action leakage rate for these systems.

  12. Mapping the Hydrothermal System Beneath the Western Moat of Long...

    Open Energy Info (EERE)

    sampling of the near magmatic environment as early as FY 1988, depending on the DOE budget. Separate abstracts have been prepared for the individual papers. Author Gregg A....

  13. Melt zones beneath five volcanic complexes in California: an...

    Open Energy Info (EERE)

    melt zones. 23 figs. Authors Goldstein, N. E.; Flexser and S. Published DOE Information Bridge, 1211984 DOI Not Provided Check for DOI availability: http:crossref.org...

  14. Basal melt rates beneath Whillans Ice Stream, West Antarctica

    E-Print Network [OSTI]

    Beem, Lucas H.; Jezek, Ken C.; Van Der Veen, C. J.

    2010-08-05T23:59:59.000Z

    Basal water lubricates and enables the fast flow of the West Antarctic ice streams which exist under low gravitational driving stress. Identification of sources and rates of basal meltwater production can provide insight into the dynamics of ice...

  15. Intermittent upwelling of asthenosphere beneath the Gregory Rift, Kenya

    SciTech Connect (OSTI)

    Tatsumi, Yoshiyuki (Univ. of Tasmania (Australia) Kyoto Univ. (Japan)); Kimura, Nobukazu (Kyoto Univ. (Japan)); Itaya, Tetsumaru (Okayama Univ. of Science (Japan)); Koyaguchi, Takehiro (Kumamoto Univ. (Japan)); Suwa, Kanenori (Nagoya Univ. (Japan))

    1991-06-01T23:59:59.000Z

    K-Ar dates and chemical compositions of basalts in the Gregory Rift, Kenya, demonstrate marked secular variation of lava chemistry. Two magmatic cycles characterized by incompatible element relative depletion are recognized; both occurring immediately after the peak of basaltic volcanism and coeval with both trachyte/phonolite volcanism and domal uplift of the region. These cycles may be attributed to increasing degree of partial melting of mantle source material in association with thinning of the lithosphere by thermal erosion through contact with hot upwelling asthenospheric mantle. Cyclic variation in asthenosphere upwelling may be considered an important controlling process in the evolution of the Gregory Rift.

  16. Temporal Velocity Variations beneath the Coso Geothermal Field Observed

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark Jump to: navigation,TelluricTODO: Would be nice496939°,using

  17. Structure and Stratigraphy Beneath a Young Phreatic Vent: South Inyo

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpen EnergyInsulated Panel AssociationCrater, Long

  18. The 1989 Earthquake Swarm Beneath Mammoth Mountain, California: An Initial

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump Jump to:Information 'Grand Paris' Project: Tools andLook

  19. Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It isInformationexplains a4Evendale, Ohio:Field From Seismic

  20. Inferences On The Hydrothermal System Beneath The Resurgent Dome...

    Open Energy Info (EERE)

    (Farrar, Et Al., 2003) Ground Gravity Survey At Long Valley Caldera Geothermal Area (Battaglia, Et Al., 2003) Injectivity Test At Long Valley Caldera Geothermal Area (Farrar, Et...

  1. arc plutons beneath: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: -grade metasediments, with the following succession: leucocratic granites, biotite-granodiorites (monzodiorites), hornblende-granodiorites...

  2. A Demonstration System for Capturing Geothermal Energy from Mine Waters

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights, Substantive(Sichuan, Sw China) | Openbeneath Butte, MT

  3. Lagoon Seepage Testing Procedures for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory Butte County, Idaho April 2014

    SciTech Connect (OSTI)

    Alan Giesbrecht

    2014-05-01T23:59:59.000Z

    The lagoon seepage testing procedures are documented herein as required by the Wastewater Rules (IDAPA 58.01.16.493). The Wastewater Rules and Wastewater Reuse Permit LA-000141-03 require that the procedure used for performing a seepage test be approved by IDEQ prior to conducting the seepage test. The procedures described herein are based on a seepage testing plan that was developed by J-U-B ENGINEERS, Inc. (J-U-B) and has been accepted by several IDEQ offices for lagoons in Idaho.

  4. Microstructure evolution of Al/Mg butt joints welded by gas tungsten arc with Zn filler metal

    SciTech Connect (OSTI)

    Liu Fei; Zhang Zhaodong; Liu Liming, E-mail: liulm@dlut.edu.cn

    2012-07-15T23:59:59.000Z

    Based on the idea of alloying welding seam, Gas tungsten arc welding method with pure Zn filler metal was chosen to join Mg alloy and Al alloy. The microstructures, phases, element distribution and fracture morphology of welding seams were examined. The results indicate that there was a transitional zone in the width of 80-100 {mu}m between the Mg alloy substrate and fusion zone. The fusion zone was mainly composed of MgZn{sub 2}, Zn-based solid solution and Al-based solid solution. The welding seam presented distinct morphology in different location owning to the quite high cooling rate of the molten pool. The addition of Zn metal could prevent the formation of Mg-Al intermetallics and form the alloyed welding seam during welding. Therefore, the tensile strengths of joints have been significantly improved compared with those of gas tungsten arc welded joints without Zn metal added. Highlights: Black-Right-Pointing-Pointer Mg alloy AZ31B and Al alloy 6061 are welded successfully. Black-Right-Pointing-Pointer Zinc wire is employed as a filler metal to form the alloyed welding seam. Black-Right-Pointing-Pointer An alloyed welding seam is benefit for improving of the joint tensile strength.

  5. Lagoon Seepage Testing Report for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory, Butte County, Idaho

    SciTech Connect (OSTI)

    Bridger Morrison

    2014-09-01T23:59:59.000Z

    J-U-B ENGINEERS, Inc. (J-U-B) performed seepage tests on the CFA Wastewater Lagoons 1, 2, and 3 between August 26th and September 22nd, 2014. The lagoons were tested to satisfy the Idaho Department of Environmental Quality (DEQ) Rules (IDAPA 58.01.16) that require all lagoons be tested at a frequency of every 10 years and the Compliance Activity CA-141-03 in the DEQ Wastewater Reuse Permit for the CFA Sewage Treatment Plant (LA-000141-03). The lagoons were tested to determine if the average seepage rates are less than 0.25 in/day, the maximum seepage rate allowed for lagoons built prior to April 15, 2007. The average seepage rates were estimated for each lagoon and are given in Table-ES1. The average seepage rates for Lagoons 1 and 2 are less than the allowable seepage rate of 0.25 in/day. Lagoon 1 and 2 passed the seepage test and will not have to be tested again until the year 20241. However, the average seepage rate for Lagoon 3 appears to exceed the allowable seepage rate of 0.25 in/day which means the potential source for the excessive leakage should be investigated further.

  6. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    SciTech Connect (OSTI)

    Not Available

    1988-09-01T23:59:59.000Z

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs.

  7. ,"Port of Morgan, MT Natural Gas Pipeline Imports From Canada...

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Port of Morgan,...

  8. Nakayasu named 2013 M.T. Thomas award recipient | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    first drug that can efficiently kill Methicillin-resistant Staphylococcus aureus, or MRSA, - the "superbug." Deputy Division Director Joshua Adkins, PNNL Biological Science,...

  9. An MT-Style Optical Package for Optical Data Transmission

    E-Print Network [OSTI]

    Gan, K. K.

    have created a new kind of problem called electromagnetic interference (EMI). To suppress the serious

  10. A selective bibliography on the lexicon in MT Ann Copestake

    E-Print Network [OSTI]

    Copestake, Ann

    of them: cmp­lg indicates the Computation and language electronic archive which can be accessed via http://xxx.lanl.gov/cmp­lg, ACL­94, Las Cruces, New Mexico. cmp­lg/9408014 Alshawi, H. (1996) `Head automata and bilingual tiling

  11. DC Resistivity Survey (Wenner Array) At Mt Princeton Hot Springs...

    Open Energy Info (EERE)

    Determination of groundwater flux patterns Notes Researchers measured DC resistivity and produced 12 resistivity profiles, each approximately 1.3 km in length. Equilibrium...

  12. *MT 4S1SGOO ^ Ris-M-2672

    E-Print Network [OSTI]

    26 Real-time 26 Engine fluids 26 7.3. Non-industrial applications 27 Biology, medicine and dentistry. Because of this it is possible to detect hydrogen in zirconium. Conversly, dense materials such as lead

  13. Improving Machine Tool Interoperability Using Standardized Interface Protocols: MT Connect

    E-Print Network [OSTI]

    Vijayaraghavan, Athulan; Sobel, Will; Fox, Armando; Dornfeld, David; Warndorf, Paul

    2008-01-01T23:59:59.000Z

    an emphasis on enabling “green manufacturing” through better© 2008 by ASME Enabling green manufacturing with betterleading to “green” manufacturing. The information on the

  14. 2327 University Way, Suite 229 Bozeman, MT 59717

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    containers in refrigerators and freezers. 1.12 Lab doors are self-closing and have locks in accordance

  15. Direct-Current Resistivity Survey At Mt Princeton Hot Springs...

    Open Energy Info (EERE)

    Survey Activity Date 2010 Usefulness useful DOE-funding Unknown Notes Used to map fracture and fluid flow patterns. References K. Richards, A. Revil, A. Jardani, F. Henderson,...

  16. Geothermometry At Mt Princeton Hot Springs Geothermal Area (Pearl...

    Open Energy Info (EERE)

    Basis Temperature estimation of valley-fill hydrothermal reservoir Notes Si, Na-K, & Na-K-Ca geothermometry estimates yielded a reservoir temperature range of 97 to 188...

  17. Integrated Dense Array and Transect MT Surveying at Dixie Valley...

    Open Energy Info (EERE)

    Fluid Sources Authors Philip E. Wannamaker, William M. Doerner and Derrick P. Hasterok Conference 32th Workshop on Geothermal Reservoir Engineering; Stanford, California; 2007...

  18. 3D Mt Resistivity Imaging For Geothermal Resource Assessment...

    Open Energy Info (EERE)

    Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Jump to: navigation, search OpenEI Reference LibraryAdd...

  19. Whitlash, MT Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009 2010from SameperCubic9,195 7,707

  20. Magnetotelluric Techniques At Mt Princeton Hot Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(Held & Henderson, 2012) | Open Energy

  1. Sweetgrass, MT Liquefied Natural Gas Exports (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfrom CanadaYear(Million

  2. Sweetgrass, MT Liquefied Natural Gas Exports Price (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfrom

  3. Sweetgrass, MT Liquefied Natural Gas Exports Price (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic Feet) Year

  4. Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Dollars

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic Feet)

  5. Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Dollars

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic Feet)per

  6. Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic

  7. Sweetgrass, MT Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8 2009 2010 2011

  8. Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8 2009 2010

  9. Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8 2009

  10. Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8 2009Feet)

  11. Nakayasu accepts 2013 M.T. Thomas Award | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,AerialStaff NUG 2012Nakayasu accepts 2013

  12. Data Acquisition-Manipulation At Marysville Mt Area (Blackwell) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to: navigation, searchIllinois: Energy Resources(Blackwell, Et

  13. Microsoft Word - CX Hillside and Squeque MT Land Acquisitions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE Tribal LeaderDE-OE0000660 Page 1 of 3 Project Title: DATE:

  14. Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubicin North Dakota6,979 89 7,728

  15. Vertical Electrical Sounding Configurations At Mt Princeton Hot Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpenVerona, New Jersey: Energy ResourcesLabs LLPGeothermal

  16. Ground Gravity Survey At Marysville Mt Area (Blackwell) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county inAl., 1979) | Open EnergyOpenInformation

  17. Ground Magnetics At Marysville Mt Area (Blackwell) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county inAl., 1979) |Haar, 1986)

  18. Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousand CubicYear Jan Feb MarCubic

  19. Havre, MT Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.588,219 719,4351998 1999 2000 2001

  20. Mt Princeton Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area EnergyMohawkaccrediation of NIE) Jump to:Open Jump to:

  1. Mt Wheeler Power, Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area EnergyMohawkaccrediation of NIE) Jump to:Open Jump

  2. Mt Carmel Public Utility Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmel Public Utility Co Jump to:

  3. Mt St Helens Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmel Public Utility Co JumpRanier

  4. Micro-Earthquake At Marysville Mt Area (Blackwell) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: Energy Resources JumpMicrel Inc JumpOpen Energy2010) |

  5. Mt. Edgecumbe High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMontMoraineAbbeyIMozartEdgecumbe High

  6. Mt. Wachusett Community College Makes Huge Investment in Wind Power |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department ofMoving Away from Silos Moving

  7. 2007-mt-elbert | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloweenReliable7O(α,5 20057 2007 ORNL Story

  8. MT Energie GmbH Co KG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECO Auger <Industries Inc Place: New JerseyGmbH

  9. BWXT Pantex, LLC Route 726, Mt. Athos Road

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77 SandiaGuidance to the RevisedLinks | National

  10. BWXT Pantex, LLC Route 726, Mt. Athos Road

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77 SandiaGuidance to the RevisedLinks |

  11. BWXT Pantex, LLC Route 726, Mt. Athos Road

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77 SandiaGuidance to the RevisedLinks

  12. BWXT Pantex, LLC Route 726, Mt. Athos Road

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77 SandiaGuidance to the RevisedLinks 9B. DATED

  13. BWXT Pantex, LLC Route 726, Mt. Athos Road

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77 SandiaGuidance to the RevisedLinks 9B. DATEDI

  14. BWXT Pantex, LLC Route 726, Mt. Athos Road Lynchburg, V

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77 SandiaGuidance to the RevisedLinks 9B.

  15. Port of Morgan, MT Natural Gas Exports to Canada

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527PriceThousand Cubic Feet) Year Jan

  16. 3D Mt Resistivity Imaging For Geothermal Resource Assessment And

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Homepowering9century Green

  17. RAPID/Roadmap/14-MT-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakum CountyPzero-FD-b34-HI-b

  18. RAPID/Roadmap/17-MT-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a Nonpoint7-FD-a Wild &

  19. RAPID/Roadmap/20-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a20-AK-a Well Abandonment

  20. RAPID/Roadmap/3-MT-f | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a20-AK-a WellAK-g

  1. RAPID/Roadmap/6-MT-e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-a Drilling and

  2. RAPID/Roadmap/8-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-a Drilling7-HI-ce < RAPID‎ |

  3. M.T. Thomas Award Call for Nominations | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministration -Lowell L. Wood, 1981Future4: WellsM.T. Thomas

  4. Northwest Distributed/Community Wind Workgroup Meeting - MT | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUALNASCAR GreenFrontiers GeneralEnergy Northwest

  5. File:INL-geothermal-mt.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jumptight-gas.pdfFut gaspHIak.pdf Jump

  6. Babb, MT Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566 8021 1 2 22008662 564 1,1460 0 20 0 0

  7. Field Mapping At Marysville Mt Area (Blackwell) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy Information 4) JumpJemez PuebloArea

  8. RAPID/Roadmap/1-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎ | Geothermal‎-CA-a Land-ID-a Land

  9. RAPID/Roadmap/11-MT-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎ | Geothermal‎-CA-a)

  10. RAPID/Roadmap/12-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎ |1-TX-a State12-ID-a State

  11. RAPID/Roadmap/13-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎ |1-TX-a13-ID-a State Land Use

  12. RAPID/Roadmap/15-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎RAPID/Roadmap/15-CA-b < RAPID‎b

  13. RAPID/Roadmap/18-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a < RAPID‎ |

  14. RAPID/Roadmap/19-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a < RAPID‎g < RAPID‎ |

  15. RAPID/Roadmap/3-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a <3-FD-d Foresto <Roadmap/3-ID-e

  16. RAPID/Roadmap/6-MT-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a4-WA-a State6-CO-b

  17. RAPID/Roadmap/6-MT-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a4-WA-a State6-CO-bc < RAPID‎ | Roadmap

  18. RAPID/Roadmap/6-MT-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a4-WA-a State6-CO-bc < RAPID‎ | Roadmapd

  19. RAPID/Roadmap/6-MT-f | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a4-WA-a State6-CO-bc < RAPID‎ |

  20. RAPID/Roadmap/7-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a4-WA-a7-CA-e BLM/CEC Joint7-HI-bID-c

  1. City of Mt Pleasant, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhio (UtilityHolyrood,Martinsville,Moultrie, GeorgiaUtah (Utility Company)

  2. Thermal Gradient Holes At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    the area References J. Held, F. Henderson (2012) New developments in Colorado geothermal energy projects Additional References Retrieved from "http:en.openei.orgw...

  3. Refraction Survey At Mt Princeton Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    fault locations and orientations, depth to basement Notes 2D and 3D refraction tomography; 192 channel recording system & 576 receiver spread; results yielded angles of...

  4. 1 Project Summary The Mt. Wilson Solar Photographic Archive DIgitization Project (Mt. Wilson SPADIP) will make available

    E-Print Network [OSTI]

    Ulrich, Roger K.

    at UCLA and through other virtual solar observatory data archives as they are implemented. Raw images scientific output will come from the utilization of the data by the general scientific com- munity. Many in order to reconstruct an improved history of the solar output of energy. The analyses to be carried out

  5. Merging high resolution geophysical and geochemical surveys to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buttes, Oregon Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical...

  6. Petrology and Geochemistry of Neoproterozoic Arc Plutons Beneath the Atlantic Coastal Plain, SRS, SC

    SciTech Connect (OSTI)

    Maryak, M.

    1998-10-21T23:59:59.000Z

    In this report is presented first a brief review of the regional geologic setting of the Savannah River Site, descriptions of the plutonic rock units sampled here, whole rock geochemical data on the plutonic igneous rocks, and finally, a discussion of how the crystalline basement rocks of the Savannah River Site formed and how they may correlate with other terranes exposed in the Piedmont of the Carolinas, Georgia, and Virginia.

  7. International Kimberlite Conference Long Abstract 1 CRATONIC CONDITIONS BENEATH ARKHANGELSK, RUSSIA

    E-Print Network [OSTI]

    Taylor, Lawrence A.

    , RUSSIA: GARNET PERIDOTITES FROM THE GRIB KIMBERLITE Vladimir Malkovets1,2,3 , Lawrence Taylor2 , William , Konstantin Litasov6 1 Institute of Mineralogy and Petrography SB RAS, Russia; 2 Planetary Geoscience University, Australia; 4 Arkhangelskgeolrazvedka Ltd, Russia; 5 Arkhangelskgeoldobycha Ltd, Russia; 6

  8. Uranium Contamination in the Subsurface Beneath the 300 Area, Hanford Site, Washington

    SciTech Connect (OSTI)

    Peterson, Robert E.; Rockhold, Mark L.; Serne, R. Jeffrey; Thorne, Paul D.; Williams, Mark D.

    2008-02-29T23:59:59.000Z

    This report provides a description of uranium contamination in the subsurface at the Hanford Site's 300 Area. The principal focus is a persistence plume in groundwater, which has not attenuated as predicted by earlier remedial investigations. Included in the report are chapters on current conditions, hydrogeologic framework, groundwater flow modeling, and geochemical considerations. The report is intended to describe what is known or inferred about the uranium contamination for the purpose of making remedial action decisions.

  9. E-Print Network 3.0 - activity beneath non-volcanic Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tectonics 7, 1-21 (1988). 9. Abers, G. A. in Non-Volcanic Rifting of Continental... @iac.unibe.ch). ... Mantle...

  10. GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS, VOL. ???, XXXX, DOI:10.1029/, Crustal and upper mantle structure beneath1

    E-Print Network [OSTI]

    Boyer, Edmond

    of Southampton, Southampton, U.K. 8 Yemen Geological Survey and mineral Resources Board, Sana'a, Yemen. 9 Sana] and how it is connected with global mantle flow [e.g.30 Montelli et al., 2006; Boschi et al., 2007, 2008

  11. Pressure fluctuations beneath turbulent spots and instability wave packets in a hypersonic boundary layer.

    SciTech Connect (OSTI)

    Beresh, Steven Jay; Casper, Katya M.; Schneider, Steven P. (Purdue University, West Lafayette, IN)

    2010-12-01T23:59:59.000Z

    The development of turbulent spots in a hypersonic boundary layer was studied on the nozzle wall of the Boeing/AFOSR Mach-6 Quiet Tunnel. Under quiet flow conditions, the nozzle wall boundary layer remains laminar and grows very thick over the long nozzle length. This allows the development of large turbulent spots that can be readily measured with pressure transducers. Measurements of naturally occurring wave packets and developing turbulent spots were made. The peak frequencies of these natural wave packets were in agreement with second-mode computations. For a controlled study, the breakdown of disturbances created by spark and glow perturbations were studied at similar freestream conditions. The spark perturbations were the most effective at creating large wave packets that broke down into turbulent spots. The flow disturbances created by the controlled perturbations were analyzed to obtain amplitude criteria for nonlinearity and breakdown as well as the convection velocities of the turbulent spots. Disturbances first grew into linear instability waves and then quickly became nonlinear. Throughout the nonlinear growth of the wave packets, large harmonics are visible in the power spectra. As breakdown begins, the peak amplitudes of the instability waves and harmonics decrease into the rising broad-band frequencies. Instability waves are still visible on either side of the growing turbulent spots during this breakdown process.

  12. Ordovician carbonate formation waters in the Illinois Basin: Chemical and isotopic evolution beneath a regional aquitard

    SciTech Connect (OSTI)

    Stueber, A.M. (Illinois Univ., Edwardsville, IL (United States)); Walter, L.M. (Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Geological Sciences)

    1992-01-01T23:59:59.000Z

    Formation waters from carbonate reservoirs in the upper Ordovician Galena Group of the Illinois Basin have been analyzed geochemically to study origin of salinity, chemical and isotopic evolution, and relation to paleohydrologic flow systems. These carbonate reservoirs underlie the Maquoketa Shale Group of Cincinnatian age, which forms a regional aquitard. Cl-Br relations and Na/Br-Cl/Br systematics indicate that initial brine salinity resulted from subaerial evaporation of seawater to a point not significantly beyond halite saturation. Subsequent dilution in the subsurface by meteoric waters is supported by delta D-delta O-18 covariance. Systematic relations between Sr-87/Sr-86 and 1/Sr suggest two distinct mixing events: introduction of a Sr-87 enriched fluid from a siliciclastic source, and a later event which only affected reservoir waters from the western shelf of the basin. The second mixing event is supported by covariance between Sr-87/Sr-86 and concentrations of cations and anions; covariance between Sr and O-D isotopes suggests that the event is related to meteoric water influx. Systematic geochemical relations in ordovician Galena Group formation waters have been preserved by the overlying Maquoketa shale aquitard. Comparison with results from previous studies indicates that waters from Silurian-Devonian carbonate strata evolved in a manner similar to yet distinct from that of the Ordovician carbonate waters, whereas waters from Mississippian-Pennsylvanian strata that overlie the New Albany Shale Group regional aquitard are marked by fundamentally different Cl-Br-Na and Sr isotope systematics. Evolution of these geochemical formation-water regimes apparently has been influenced significantly by paleohydrologic flow systems.

  13. Magnetotelluric evidence for layered mafic intrusions beneath the Vring and Exmouth rifted margins

    E-Print Network [OSTI]

    Constable, Steve

    David Myer , Steven Constable, Kerry Key Scripps Institution of Oceanography, 9500 Gilman Drive MC-0225

  14. Partially Molten Middle Crust Beneath Southern Tibet: Synthesis of Project INDEPTH Results

    E-Print Network [OSTI]

    Jones, Alan G.

    , J. Booker, M. Unsworth, W. S. F. Kidd, M. Hauck, D. Alsdorf, A. Ross, M. Cogan, Changde Wu, E, Uni- versity of Washington, Seattle, WA 98195, USA. W. S. F. Kidd and M. Edwards, Department of Geo. Nelson,* Wenjin Zhao, L. D. Brown, J. Kuo, Jinkai Che, Xianwen Liu, S. L. Klemperer, Y. Makovsky, R

  15. Basalt petrogenesis beneath slow- and ultraslow-spreading Arctic mid-ocean ridges

    E-Print Network [OSTI]

    Elkins, Lynne J

    2009-01-01T23:59:59.000Z

    To explore the ability of melting mafic lithologies to produce alkaline ocean-island basalts (OIB), an experimental study was carried out measuring clinopyroxene (Cpx)melt and garnet (Gt)-melt partition coefficients during ...

  16. Ice-induced enhancement of solar radiation beneath overcast skies near Antarctica

    E-Print Network [OSTI]

    Horvath, Nicholas Charles

    1981-01-01T23:59:59.000Z

    , the increase of irradiance occurred at a distance from the icu edge equal to 25X of the path length through the ice-covered area. Intensification factors were calculated for comparison with results of previous studies. When compared with the results.... Percentage increases of irradiance ranged from 7X to 79X, and the distance from the ice edge at which the ice enhancement was observed ranged from 23 m to 1729 m. The lower values in both instances were associated with minimum surface ice. On the average...

  17. Reactive Multiphase behavior of CO2 in Saline Aquifers beneath the Colorado Plateau

    SciTech Connect (OSTI)

    R. G. Allis; J. Moore; S. White

    2002-06-30T23:59:59.000Z

    Gas reservoirs developed within the Colorado Plateau and Southern Rocky Mountains region are natural laboratories for studying the factors that promote long-term storage of CO{sub 2}. They also provide sites for storing additional CO{sub 2} if it can be separated from the flue gases of coal-fired power plants in this part of the U.S.A. These natural reservoirs are developed primarily in sandstones and dolomites; shales, mudstones and anhydrite form seals. In many fields, stacked reservoirs are present, indicating that the gas has migrated up through the section. There are also geologically young travertine deposits at the surface, and CO{sub 2}-charged groundwater and springs in the vicinity of known CO{sub 2} occurrences. These near-surface geological and hydrological features also provide examples of the environmental effects of leakage of CO{sub 2} from reservoirs, and justify further study. During reporting period covered here (the second quarter of Year 2 of the project, i.e. January 1-March 31, 2002), the main achievements were: (1) Field trips to the central Utah and eastern Arizona travertine areas to collect data and water samples to support study of surface CO{sub 2}-rich fluid leakage in these two areas. (2) Partial completion of a manuscript on natural analogues CO{sub 2} leakage from subsurface reservoirs. The remaining section on the chemistry of the fluids is in progress. (3) Improvements to CHEMTOUGH code to incorporate kinetic effects on reaction progress. (4) Submission of two abstracts (based on the above work) to the topical session at the upcoming GSA meeting in Denver titled ''Experimental, Field, and Modeling Studies of Geological Carbon Sequestration''. (5) Submission of paper to upcoming GGHT-6 conference in Kyoto. Co-PI S. White will attend this conference, and will also be involved in three other papers.

  18. Saltwater Upconing and Decay Beneath a Well Pumping Above an Interface Zone

    SciTech Connect (OSTI)

    Zhou, Quanlin; Bear, Jacob; Bensabat, Jacob

    2004-04-20T23:59:59.000Z

    Saltwater, or brine, underlies fresh water in many aquifers, with a transition zone separating them. Pumping fresh water by wells located above the transition zone produces upconing of the latter, eventually salinizing the pumped water, forcing shut-off. The salinity of the pumped water depends on the pumping rate, on the location of the well's screen, on the fresh water flow regime, and on the difference in density between fresh and salt water, expressed as a dimensionless factor called density difference factor (DDF). Following the well's shut-off, the upconed saltwater mound undergoes decay, tending to return to the pre-pumping regime. In this paper, the upconing-decay processes in an axially symmetrical system are investigated to discover how they are affected by the DDF and by the dispersivities. The code FEAS-Brine, developed for the simulation of coupled density-dependent flow and salt transport, is used. In this code, the flow equation is solved by the Galer:wqkin finite element method (FEM), while the advective-dispersive salt transport equation is solved in the Eulerian-Lagrangian framework. This code does not suffer from the instability constraint on the Peclet number in the vicinity of the pumping well, where advection dominates the salt transport. Simulation results show that upconing is very sensitive to the DDF, which, in our work, is in the range from 0 (for ideal tracer) to 0.2 (for brine). It is shown that for the DDF of 0.025 (for seawater), local upconing occurs only for low iso-salinity surfaces, while those of high salt concentration, practically, do not shift toward the pumping well. For an ideal tracer, all iso-salinity surfaces rise toward the pumping well. For brine, however, only iso-salinity surfaces of very low salinity upcone towards the pumping well. The decay process is lengthy; it takes a long time for the upconed saltwater to migrate back to the original horizontal transition zone prior to pumping. However, the wider transition zone caused by hydrodynamic dispersion can never return to the initial one. This indicates that once a pumping well is abandoned because of high salinity, it can be reused for groundwater utilization only after a long time.

  19. Low wave speed zones in the crust beneath SE Tibet revealed by ambient noise

    E-Print Network [OSTI]

    Niu, Fenglin

    , China, 4 State Key Laboratory of Petroleum Resource and Prospecting, and Unconventional Natural Gas's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui Institute, China University of Petroleum, Beijing, China Abstract We present a refined 3D crustal model

  20. Lab Project Civl 3010 Clayton, DoriAnn Calculation of Settlement Beneath a Rectangular Foundation

    E-Print Network [OSTI]

    Clement, Prabhakar

    Foundation The purpose of this code is to determine the increase in vertical stress, the ultimate. The depth of the water table and the length, width, and surface stress of the applied load (foundation of measure. The influence factor caused by the rectangular foundation is calculated for both the center

  1. Potential for storage of carbon dioxide in the rocks beneath the East Irish Sea

    E-Print Network [OSTI]

    Watson, Andrew

    to store CO2, particularly in its oil and gas fields. Its storage capacity was evaluated because it is well capacity in the oil and gas fields of the East Irish Sea Basin is approximately 1047 million tonnes, the fact that they do not contain hydrocarbons suggests the possibility that they may not be gas- tight

  2. Porosity enhancement from chert dissolution beneath Neocomian unconformity: Ivishak Formation, North Slope, Alaska: Discussion

    SciTech Connect (OSTI)

    Bloch, S.; McGowen, J.H. (ARCO Oil and Gas Co., Plano, TX (USA)); Duncan, J.R. (ARCO Oil and Gas Co., Midland, TX (USA))

    1990-01-01T23:59:59.000Z

    Shanmugam and Higgins (1988) concluded that chert dissolution was the dominant control of porosity and permeability trends in the fluvial facies of the Ivishak Formation in the Prudhoe Bay field. Chert dissolution, in turn, was interpreted to be a function of proximity to the Lower Cretaceous unconformity. In their opinion, the data presented by Shanmugam and Higgins are not sufficient to justify their conclusions. The authors apparently neglected to consider the effects of fundamental geological parameters (grain size and sorting) and processes (burial history) on porosity and permeability. In this discussion, the authors specifically address the effects of grain size, sorting, and burial history on porosity and permeability, to provide an alternative explanation of reservoir quality trends in the Ivishak reservoir. 3 figs.

  3. Porosity enhancement from chert dissolution beneath Neocomian unconformity: Ivishak Formation, North Slope, Alaska

    SciTech Connect (OSTI)

    Shanmugam, G.; Higgins, J.B.

    1988-05-01T23:59:59.000Z

    Secondary porosity caused by chert dissolution is common in the hydrocarbon-producing fluvial facies of the Ivishak Formation (Triassic), North Slope, Alaska. Petrographic observations suggest that macroporosity caused by chert dissolution tends to increase toward the Neocomian unconformity. In the Prudhoe Bay field, a lateral increase in core porosity (from 15% at about 30 km from the unconformity to 30% near the unconformity) and in permeability (from 50 md at about 30 km from the unconformity to 800 md near the unconformity) is evident toward the unconformity. This increase occurs within the fluvial facies (zone 4) of nearly uniform grain size and framework composition (chert litharenite). Major chert dissolution probably took place during the Neocomian uplift when the Ivishak Formation was exposed to acidic meteoric waters in the near-surface environment. 16 figures, 3 tables.

  4. Shear-Wave Splitting and Implications for Mantle Flow Beneath the MELT Region of the

    E-Print Network [OSTI]

    Wolfe, Cecily J.

    Rise Cecily J. Wolfe* and Sean C. Solomon Shear-wave splitting across the fast-spreading East Pacific network. Our splitting analysis follows stan- dard methodology (3), as adapted (10) for deriving optimum Hole Oceanographic Institution, Woods Hole, MA 02543, USA. S. C. Solomon, Department of Terrestrial

  5. Seismic Discontinuities in the Mantle Beneath the Western Pacific: Evidence from ScS Reverberations

    E-Print Network [OSTI]

    Bagley, Brian

    2006-07-11T23:59:59.000Z

    Earthquakes generate seismic waves that travel through the Earth and can be reflected by changes in density and/or seismic velocity that may relate to changes in the phase or chemical composition of the mantle. To study these discontinuities we use...

  6. Recent Experiences with Corrosion Beneath Thermal Insulation in a Chemical Plant

    E-Print Network [OSTI]

    Long, V. C.; Crawley, P. G.

    1984-01-01T23:59:59.000Z

    Corrosion of carbon and stainless steels under wet thermal insulation can be a serious problem and can be especially prevalent in the humid Gulf Coast area. This paper discusses an inspection program that has been in progress since late 1982 at a 10...

  7. Unsaturated Groundwater Flow Beneath Upper Mortandad Canyon, Los Alamos, New Mexico

    SciTech Connect (OSTI)

    Dander, D.C.

    1998-10-15T23:59:59.000Z

    Mortandad Canyon is a discharge site for treated industrial effluents containing radionuclides and other chemicals at Los Alamos National Laboratory, New Mexico. This study was conducted to develop an understanding of the unsaturated hydrologic behavior below the canyon floor. The main goal of this study was to evaluate the hypothetical performance of the vadose zone above the water table. Numerical simulations of unsaturated groundwater flow at the site were conducted using the Finite Element Heat and Mass Transfer (FEHM) code. A two-dimensional cross-section along the canyon's axis was used to model flow between an alluvial groundwater system and the regional aquifer approximately 300 m below. Using recharge estimated from a water budget developed in 1967, the simulations showed waters from the perched water table reaching the regional aquifer in 13.8 years, much faster than previously thought. Additionally, simulations indicate that saturation is occurring in the Guaje pumice bed an d that the Tshirege Unit 1B is near saturation. Lithologic boundaries between the eight materials play an important role in flow and solute transport within the system. Horizontal flow is shown to occur in three thin zones above capillary barriers; however, vertical flow dominates the system. Other simulations were conducted to examine the effects of changing system parameters such as varying recharge inputs, varying the distribution of recharge, and bypassing fast-path fractured basalt of uncertain extent and properties. System sensitivity was also explored by changing model parameters with respect to size and types of grids and domains, and the presence of dipping stratigraphy.

  8. Peakons arising as particle paths beneath small-amplitude water waves

    E-Print Network [OSTI]

    Delia Ionescu-Kruse

    2011-06-20T23:59:59.000Z

    We present a new kind of particle path in constant vorticity water of finite depth, within the framework of small-amplitude waves.

  9. Marine Controlled-Source Electromagnetic Responses of a Thin Hydrocarbon Reservoir beneath Anisotropic Overburden

    E-Print Network [OSTI]

    Youn, Sangseok

    2014-08-07T23:59:59.000Z

    In many cases of exploration geophysics, isotropic Earth forward models have been developed and measured data can be interpreted by inversion using this class of model. An isotropic model treats the Earth as a simple structure, in which the relevant...

  10. REACTIVE MULTIPHASE BEHAVIOR OF CO2 IN SALINE AQUIFERS BENEATH THE COLORADO PLATEAU

    SciTech Connect (OSTI)

    R.G. Allis; J. Moore; S. White

    2003-06-30T23:59:59.000Z

    The six coal-fired power plants located in the Colorado Plateau and southern Rocky Mountain region of the U.S. produce 100 million tons of CO{sub 2} per year. Thick sequences of collocated sedimentary rocks represent potential sites for sequestration of the CO{sub 2}. Field and laboratory investigations of naturally occurring CO{sub 2}-reservoirs are being conducted to determine the characteristics of potential seal and reservoir units and the extent of the interactions that occur between the host rocks and the CO{sub 2} charged fluids. The results are being incorporated into a series of two-dimensional numerical models that represent the major chemical and physical processes induced by injection. During reporting period covered here (March 30 to June 30, 2003), the main achievements were: Presentation of three papers at the Second Annual Conference on Carbon Sequestration (May 5-8, Alexandria, Virginia); Presentation of a poster at the American Association of Petroleum Geologists meeting; Co-PI organized and chaired a special session on Geologic Carbon Dioxide Sequestration at the American Association of Petroleum Geologists annual convention in Salt Lake City (May 12-15).

  11. 175 metres beneath the Franco-Swiss border, where the fundamental laws

    E-Print Network [OSTI]

    Royal Holloway, University of London

    are being redefined Remote corners of the world where off-the-grid communities are re-shaping their futures information and communication technology for development (ICT4D). ICT4D seeks to empower poor and marginalised people to harness the potential of new technologies to enhance their lives and communities

  12. E-Print Network 3.0 - alkaline melts beneath Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    et al. 2001), mac alkaline magmas... , it is not coincident that the mac rock at Bingham Canyon is alkaline (Waite et al. 1997) and the basaltic mac melt... specia- tion...

  13. An unexpected journey: experimental insights into magma and volatile transport beneath Erebus volcano, Antarctica

    E-Print Network [OSTI]

    Iacovino, Kayla

    2014-06-10T23:59:59.000Z

    fugacity of the volatile component and the concentration of that volatile dissolved in the melt. Because of the poor fit of our CO2 data to a power law regression, the pure-CO2 experiments of Lesne et al. (2011b) were used to create these isobars... /mantle boundary. Seismic and gravitational investigations on and around Ross Island suggest that this boundary is ?20 km deep (Cooper et al., 1994; Finotello et al., 2011; Newhall & Dzurisin, 1989). The evolution of the Erebus cone itself is inferred to have taken...

  14. Capillary Break Beneath a Slab: Polyethylene Sheeting over Aggregate; Southwestern Pennsylvania (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-07-01T23:59:59.000Z

    This document provides content for three areas of the Building America Solution Center. First, "Insulating Closed Crawlspace Walls and Band Joist Area" describes how to install rigid foam insulation on the interior perimeter walls and band joist area in closed crawlspace foundations of homes. Second, "Removing Construction Debris from Flexible Ducts" describes how to clean flexible ducts after construction or major renovation of a home to remove debris resulting from building materials, particularly airborne dust and particulates. Third, images, CAD drawings, and a case study illustrate right and wrong ways to apply polyethylene sheeting over aggregate. Similarly, a CAD drawing is included that illustrates the use of a concrete slab over polyethylene.

  15. Crust and Upper Mantle P Wave Velocity Structure Beneath Valles Caldera,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)Crowley County, Colorado: Energy ResourcesCrucialCrump'sNew

  16. Preliminary interpretation of the upper crustal structure beneath Prince Edward Island

    E-Print Network [OSTI]

    Jones, Alan G.

    during 1983 to aid in the assessment of the geothermal energy potential of the province. At ten locations gravity anomaly in the region. Key words: magnetotelluric method, geothermal energy, Prince Edward Island of the geothermal energy potential of Atlantic Canada is now in its fifth year and has entered its final phase

  17. Hydrogeochemical niches associated with hyporheic exchange beneath an acid mine drainage-contaminated stream

    E-Print Network [OSTI]

    Burgos, William

    .), Boulder, CO 80301, USA1 d Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, CO by Peter K. Kitanidis, Editor-in-Chief, with the assistance of Xunhong Chen, Associate Editor Keywords-bearing coal seams and surrounding strata are subject to chemical and physical weathering processes

  18. The entrainment of oil droplets in flow beneath an oil slick

    E-Print Network [OSTI]

    Chao, Chien-Hwa

    1973-01-01T23:59:59.000Z

    velocity, wind velocity and oil specific gravity, an equilibrium oil thickness will be reached if there is no loss of oil past the barrier. As the velocity is increased, the oil up- stream of the barrier increases in thickness and decreases in for- ward... for any given oil at which droplets are first formed and entrained. Below this speed there is no droplet formation and above this speed the number of droplets formed and the volume of oil entrained increases rapidly. The critical speed for droplet for...

  19. DOE Report Assesses Potential for Carbon Dioxide Storage Beneath Federal Lands

    Broader source: Energy.gov [DOE]

    As a complementary document to the U.S. Department of Energy's Carbon Sequestration Atlas of the United States and Canada issued in November 2008, the Office of Fossil Energy's National Energy Technology Laboratory has now released a report that provides an initial estimate of the potential to store carbon dioxide underneath millions of acres of Federal lands.

  20. Temperatures at the Base of the Seismogenic Crust Beneath Long Valley

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark Jump to: navigation,Telluric Survey DetailsCassiaCaldera,

  1. Melt Zones Beneath Five Volcanic Complexes in California: An Assessment of

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalwayHydrothermalMcFarland isDiscoveries IncMelinkShallow

  2. Melt zones beneath five volcanic complexes in California: an assessment of

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalwayHydrothermalMcFarland isDiscoveries

  3. Mapping the Hydrothermal System Beneath the Western Moat of Long Valley

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a town inRiver Energy LLC Jump to:Maplewood,Caldera

  4. Anomalous shear wave attenuation in the shallow crust beneath the Coso

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jumpvolcanic region, California | Open Energy

  5. A Low-Velocity Zone in the Basement Beneath the Valles Caldera, New Mexico

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights, Substantive(Sichuan, Sw China)| Open Energy

  6. A Preparation Zone For Volcanic Explosions Beneath Naka-Dake Crater, Aso

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights, Substantive(Sichuan, SwOpen Energy

  7. A Temperature Model Of The Crust Beneath The Barents Sea- Investigations

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,

  8. Geochemical Modeling of the Near-Surface Hydrothermal System Beneath the

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County, Ohio: EnergySector: SolarGenoa is aGeo

  9. Inferences On The Hydrothermal System Beneath The Resurgent Dome In Long

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: Eden Prairie, MinnesotaIndianapolisDevelopingIRLValley

  10. Inferences On The Hydrothermal System Beneath The Resurgent Dome In Long

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: Eden Prairie,

  11. Hydrothermal microearthquake swarms beneath active vents at Middle Valley, northern Juan de Fuca Ridge

    E-Print Network [OSTI]

    Webb, Spahr C.

    , 1983]. In this view, the hydro- thermal reaction zone is a seismogenic zone for micro- earthquakes of the important commercial ore deposits now on land. Hydro- thermal circulation can penetrate several kilometers associated with contraction from thermal strain. [4] A close association between fluid flow and micro

  12. ORIGINAL ARTICLE Reactions and reaction rates in the regional aquifer beneath

    E-Print Network [OSTI]

    Polly, David

    properties. Keywords Feldspar Á Inverse mass balance modeling Á USA Á Geochemistry Á Kinetics Introduction modeling with petro- graphic assessment to further knowledge and under- standing of complex natural hydrologic systems. Groundwater geochemistry shows marked evolution along assumed flow paths. The flow path

  13. DOI: 10.1002/cssc.201000032 The Immobility of CO2 in Marine Sediments Beneath 1500

    E-Print Network [OSTI]

    Schrag, Daniel

    to capture CO2 produced at indus- trial facilities and approaches to inject the CO2 into geologic of buoyant CO2 in terrestrial reservoirs that often contain fractures, faults, and abandoned wells and may

  14. Evaluation of sediments in the Middle Rio Grande, Elephant Butte Reservoir, and Caballo Reservoir as potential sources for toxic materials. Technical report

    SciTech Connect (OSTI)

    Popp, C.J.; Brandvold, D.K.; Lynch, T.R.; Brandvold, L.A.

    1983-03-01T23:59:59.000Z

    The distribution of a large number of priority pollutant trace metal and organic species in water and sediments in surface waters in the Middle Rio Grande region of New Mexico has been surveyed. In addition to sediments and water, limnological data was collected on the reservoirs, radionuclide and particle size analysis was performed on the sediments and a limited number of fish were surveyed for trace metals and organics. The sediments carry elevated levels of the metals Hg, Cd, As, Se, and U and fish may be biomagnifying Hg, Pb, and V through the food chain. Detectable levels of 18 different chlorinated organic pesticides were found in samples of water and bottom sediments.

  15. Assessment of Weld Overlays for Mitigating Primary Water Stress Corrosion Cracking at Nickel Alloy Butt Welds in Piping Systems Approved for Leak-Before-Break

    SciTech Connect (OSTI)

    Sullivan, Edward J.; Anderson, Michael T.

    2012-08-01T23:59:59.000Z

    This TLR provides an assessment of weld overlays as a mitigation strategy for PWSCC, and includes an assessment of the WOL-related inspection requirements of Code Case N-770-1, as conditioned in §50.55a.

  16. Assessment of the Mechanical Stress Improvement Process for Mitigating Primary Water Stress Corrosion Cracking in Nickel Alloy Butt Welds in Piping Systems Approved for Leak-Before-Break

    SciTech Connect (OSTI)

    Sullivan, Edmund J.; Anderson, Michael T.

    2013-01-01T23:59:59.000Z

    This report provides an assessment of the use of Mechanical Stress Improvement Process to reduce, or decrease, stress-driven degradation, i.e., primary water stress corrosion cracking.

  17. Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns.

  18. Tradeoffs in Brush Management for Water Yield and Habitat Management in Texas: Twin Buttes Drainage Area and Edwards Aquifer Recharge Zone

    E-Print Network [OSTI]

    Narayanan, Christopher R.; Kreuter, Urs P.; Conner, J. Richard

    2002-08-14T23:59:59.000Z

    was important or very important. Protecting and improving riparian areas and increasing streamflow were important or very important for 77.8% and 80% of the respondents, respectively (Tables 10-14). 3 Finally, landowners were asked to rate.... Of the respondents, 31.9% stated that no live oak occurred in these areas, while 15.3% stated that 10% of the live oak cover occurred within 75 yards of streams/rivers (Table 35). Levels of mesquite and a mix of live oak and mesquite in these areas were low...

  19. Economic Implications of Farmer Storage of Surface Water in Federal Projects: Elephant Butte Irrigahon District, Dona Ana and Sierra Counties, New Mexico

    E-Print Network [OSTI]

    Ellis, J. R.; Teague, P. W.; Lacewell, R. D.

    allocation of surface water given the 1 and 3 foot groundwater limitations. These streams of net returns were valued in 1980 dollars allowing comparison among the alternative scenarios. Differences between the various returns streams for each groundwater...

  20. The Passivity and Breakdown of Beryllium in Aqueous Solutions M.A. Hill, D.P. Butt, and R.S. Lillard

    E-Print Network [OSTI]

    .S. Lillard Materials Corrosion and Environmental Effects Laboratory Materials Science and Technology Division, the presence of the fluoride increased the passive current density of beryllium, but had no effect. It is an attractive engineering material for nuclear applications due to its low neutron cross section

  1. Chemistry Graduate Degree Program Page 1 of 3 Last Updated 09/19/13

    E-Print Network [OSTI]

    Reich, Norbert O.

    -Rad Laboratories, Inc. Booz Allen Hamilton Inc. Boston College Bruker Biospin Corp. Butte College Cabot Corporation

  2. Page 2 of 25 PON-13-605 Centers for Alternative Fuels

    E-Print Network [OSTI]

    , Solano, Napa, Marin, Sonoma, Yolo, El Dorado, Placer, Sutter, Colusa, Lake, Mendocino, Glenn, Butte

  3. Flax Response to Nitrogen and Phosphorus Fertilization Grant Jackson, WTARC, Conrad, MT

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Introduction Flax has the potential to become a major source of oil for bio-diesel or bio- products because

  4. E-Print Network 3.0 - accelerator microtron mt-22 Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PHOTOPRODUCTION AND THE SECOND Summary: of the Mainz Microtron accelerator in the beam energy range from threshold up to 820 MeV. The 0 0 channel... Analysis The reaction p ...

  5. E-Print Network 3.0 - angb mt clemens Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D.E. 1986. Sur quelques dents de... of "hoofed" mammals. Science 272: 1150-1153. Clemens, W.A. 1966. Fossil mammals of the type Lance Formation Source: Archibald, J. David -...

  6. MT DOE/EPSCoR planning grant. Annual technical progress report

    SciTech Connect (OSTI)

    Bromenshenk, J.J.; Scruggs, V.L.

    1992-08-31T23:59:59.000Z

    The Montana DOE/EPSCoR planning process has made significant changes in the state of Montana. This is exemplified by notification from the Department of Energy`s Experimental Program to Stimulate Competitive Research (DOE/EPSCoR) recommendation to fund Montana`s 1992 graduate traineeship grant proposal in the amount of $500,000. This is a new award to Montana. DOE traineeship reviewers recognized that our planning grant enabled us to develop linkages and build the foundation for a competitive energy-related research and traineeship program in Montana. During the planning, we identified three major focus areas: Energy Resource Base, Energy Production, and Environmental Effects. For each focus area, we detailed specific problem areas that the trainees may research. We also created MORE, a consortium of industrial affiliates, state organizations, the Montana University System (MUS), tribal colleges, and DOE national laboratories. MORE and our state-wide Research and Education Workshop improved and solidified working relationships. We received numerous letters of support. DOE reviewers endorsed our traineeship application process. They praised the linkage of each traineeship with a faculty advisor, and the preference for teams of faculty members and two or more students. ``Particularly commendable`` were our programs to involve Native American educators and the ``leveraging effect`` of this on the human resources in the state. Finally, the DOE reviewers indicated that cost-sharing via support of Native Americans was creative and positive.

  7. MT DOE/EPSCoR planning grant. [Annual Technical Progress Report

    SciTech Connect (OSTI)

    Bromenshenk, J.J.; Scruggs, V.L.

    1992-08-31T23:59:59.000Z

    The Montana DOE/EPSCoR planning process has made significant changes in the state of Montana. This is exemplified by notification from the Department of Energy's Experimental Program to Stimulate Competitive Research (DOE/EPSCoR) recommendation to fund Montana's 1992 graduate traineeship grant proposal in the amount of $500,000. This is a new award to Montana. DOE traineeship reviewers recognized that our planning grant enabled us to develop linkages and build the foundation for a competitive energy-related research and traineeship program in Montana. During the planning, we identified three major focus areas: Energy Resource Base, Energy Production, and Environmental Effects. For each focus area, we detailed specific problem areas that the trainees may research. We also created MORE, a consortium of industrial affiliates, state organizations, the Montana University System (MUS), tribal colleges, and DOE national laboratories. MORE and our state-wide Research and Education Workshop improved and solidified working relationships. We received numerous letters of support. DOE reviewers endorsed our traineeship application process. They praised the linkage of each traineeship with a faculty advisor, and the preference for teams of faculty members and two or more students. Particularly commendable'' were our programs to involve Native American educators and the leveraging effect'' of this on the human resources in the state. Finally, the DOE reviewers indicated that cost-sharing via support of Native Americans was creative and positive.

  8. MT5759 L17 13/04/2011 Tom Kelsey 1

    E-Print Network [OSTI]

    St Andrews, University of

    Effects of air pollution on the incidence of myocardial infarction Heart 2009;95:1746-1759 doi:10 the order in which research activity takes place Start with data resources Mine the data in an organised

  9. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01T23:59:59.000Z

    The mountain lacks potable surface water sources causingNo concerns about water scarcity due to lack of largecontaminated water or faulty infrastructure and lack the

  10. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01T23:59:59.000Z

    could prove that water shortages exist at Mount Laguna, itto fire, and risk of water shortage. In particular, issues72,73 Rural areas with water shortage problems tend to

  11. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01T23:59:59.000Z

    Regional Water Quality Control Board, “Watershed Managementof Land Management (BLM) Tests preserve water quality, whichRegional Water Quality Control Board. “Watershed Management

  12. at10 microtelsa-300 mt: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of all-pattern at 10 Gbps. Conclusion All optical wavelength conversion using four-wave mixing demonstrated at 10 Gbps bit rate, over 250 GHz range. Publication Aravind...

  13. Underwater blast loading of sandwich beams: Regimes of behaviour M.T. Tilbrook 1

    E-Print Network [OSTI]

    Fleck, Norman A.

    , with a time constant h on the order of millisec- onds. The magnitude of the shock wave peak pressure and decay are charted on maps using axes of blast impulse and core strength. The simulations indicate that continued (1948) and Swisdak (1978) and are repeated briefly here in order to underpin the current study

  14. Building America Case Study: Lancaster County Career and Technology Center Green Home 3, Mt Joy, Pennsylvania

    SciTech Connect (OSTI)

    Not Available

    2014-12-01T23:59:59.000Z

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction.This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate. Of primary interest is the influence of the ICF walls on developing an effective air sealing strategy and selecting an appropriate heating and cooling equipment type and capacity. The domestic water heating system is analyzed for costs and savings to investigate options for higher efficiency electric water heating. A method to ensure mechanical ventilation air flows is examined. The final solution package includes high-R mass walls, very low infiltration rates, multi-stage heat pump heating, solar thermal domestic hot water system, and energy recovery ventilation. This solution package can be used for homes to exceed 2012 International Energy Conservation Code requirements throughout all climate zones and achieves the DOE Challenge Home certification.

  15. Tatra Mt. Math. Publ. 20 (2000), 93--104 Mathematical Publications

    E-Print Network [OSTI]

    KuĂšera, Radan

    2000-01-01T23:59:59.000Z

    AND CIRCULAR UNITS OF SOME GENUS FIELDS Radan KuĆž cera ABSTRACT. The Stickelberger ideal and the group. This research is supported by the grant 201/97/0433 of the Grant Agency of the Czech Republic. 93 #12; RADAN KU

  16. MT3DMS, A Modular Three-Dimensional Multispecies Transport Model User Guide to the

    E-Print Network [OSTI]

    Zheng, Chunmiao

    .M. Cozzarelli, M.H. Lahvis, and B.A. Bekins. 1998. Ground water contamination by crude oil near Bemidji (LNAPL) contaminant through the unsaturated zone and the formation of an oil lens on the water table ................................................................................................................. 18 #12;1 1. INTRODUCTION Leaks of fuels that release contaminants such as BTEX, MTBE and other fuel

  17. Review of Hypothesis Alignment Algorithms for MT System Combination via Confusion Network Decoding

    E-Print Network [OSTI]

    ,ney}@cs.rwth-aachen.de f Raytheon BBN Technologies, 10 Moulton Street, Cambridge, MA 02138 {smatsouk. The work reported in this paper was carried out while the authors were at Raytheon BBN Technologies

  18. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01T23:59:59.000Z

    Regional Water Management National Environmental Policy ActWater Conservation? ” Australasian Journal of Environmental ManagementWater Conservation? ” Australasian Journal of Environmental Management

  19. NAT'L INST. OF STAND & TECH \\lllDb 2527MT

    E-Print Network [OSTI]

    adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology public health, safety, and the environment. One of the agency's basic functions is to develop, maintain Electronics and Electrical Engineering Laboratory · Microelectronics · Law Enforcement Standards · Electricity

  20. The DCU-ICTCAS MT system at WMT 2014 on German-English Translation Task

    E-Print Network [OSTI]

    Way, Andy

    with Moses phrase-based model (Koehn et al., 2007). For system training, we use all provided German task), we filter out sentences which are detect- ed as other language with probability more than 0 and truecasing using Moses scripts. For parallel training data, we also filter out sentence pairs containing more

  1. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01T23:59:59.000Z

    water quality risk of power loss (see Cost of Infrastructurestorage in case of power loss or having back-up generators.

  2. Images in Emergency Medicine: Splenic Infarction Due to Sickle Cell Trait after Climbing Mt. Fuji

    E-Print Network [OSTI]

    Morishima, Aki; Schofer, Joel M.; Pelletier, Pierre; McKee, James M.

    2008-01-01T23:59:59.000Z

    in 2 white men with sickle cell trait. Ann Emerg Med. 1999;altitude with unrecognized sickle cell trait: splenectomy isan African-American male with sickle cell trait. Am J Hemat.

  3. The School for Marine Science and Technology Framework for Formulating the Mt. Hope Bay

    E-Print Network [OSTI]

    Chen, Changsheng

    Technical Report No. SMAST-03-0501 The School for Marine Science and Technology University of Massachusetts #12;iii List of Tables Table 2.1. Narragansett Bay PORTS station data products phases are in Greenwich epoch degrees............... 29 Table 3.1. Summary of estuarine and marine

  4. Mt. Etna tropospheric ash retrieval and sensitivity analysis using Moderate Resolution Imaging

    E-Print Network [OSTI]

    Oxford, University of

    . In order to derive the ash plume optical thickness, the particle effective radius and the total mass, exploiting the distinct reflectivity of meteorological and volcanic clouds in the near infrared spectral as containing volcanic ash compared to the original method. The retrieved mean ash optical thick- ness at 0

  5. Mt. Etna volcanic aerosol and ash retrievals using MERIS and AATSR data

    E-Print Network [OSTI]

    Oxford, University of

    radiation. Explosive plume particles component optical characteristics has been retrieved as a spatial calculating the optical properties of the volcanic ash a radiative transfer model has been used to simulated visible and near infrared channels we have estimated the optical depth (at 550nm) and the effective radius

  6. The Investigation on Fibrous Veins and Their Host from Mt. Ida, Ouachita Mountains, Arkansas

    E-Print Network [OSTI]

    Chung, Jae Won

    2004-09-30T23:59:59.000Z

    I have studied syntectonic veins from shales and coarse calcareous sands of the Ordovician Womble Shale, Benton uplift, Arkansas. All veins are composed of calcite with minor quartz and trace feldspar and dolomite or high-Mg calcite in the coarser...

  7. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01T23:59:59.000Z

    including some naturally occurring radiation, but also E.radiation). However, the SD DEH explained that it was very important to test for naturally occurring

  8. Cronograma Seminario Topicos em Reconstruc~ao de Imagens (MT859)

    E-Print Network [OSTI]

    De Pierro, Alvaro Rodolfo

    of PET data. 7) 27-04 (TBA) Specific assays for PET (FDG, etc). 1 #12;8) 04-05 Fabiana : Blind estimation from Fourier coefficients: Thesis. 11) 25-05 Eduardo: Estimating dynamic PET curves. 12) 01-06 Multichannel blind deconvolution: an introduction. 13) 08-06 TBA 14) 15-06 TBA 15) 22-06 TBA 16) 29-06 TBA

  9. Microsoft Word - Granite-Mt-3G-Radio-Station-CX.doc

    Broader source: Energy.gov (indexed) [DOE]

    Granite Mountain 3G Radio Station Project Budget Information: Work Order 00197218, Task 03 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.19 Siting,...

  10. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01T23:59:59.000Z

    of water systems (i.e. how many people are serviced and howwealthy people with holiday homes in the area comprised many

  11. MT4614 Design of Experiments Spring Semester 2014 Problem Sheet 2 10 February 2014

    E-Print Network [OSTI]

    St Andrews, University of

    of underwater structures at sea, such as piers and oil-drilling platforms. He wants to protect them against corrosion. A colleague has developed a new sort of paint for the components. The engineer would like to see, he will remove all the metal components from the tank, and measure the amount of corrosion on each

  12. m)T7(T^/f^\\ \\ / Riso-R-430 The Geochemistry

    E-Print Network [OSTI]

    , stability-diagrams for the transuranium elements from uranium to americium under diverse conditions have is discussed, and recent experimental data are presented. INIS Descriptors: ACTINIDES, ADSORPTION, AMERICIUM-LEVEL HASTE 22 Uranium 31 Neptunium 35 Plutonium 38 Americium 41 CHEMISTRY OF TECHNETIUM 44 ADSORPTION

  13. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01T23:59:59.000Z

    A Mediterranean Response to Climate Change. ” Section 1:Nora. “A Mediterranean Response to Climate Change. ” Section

  14. PARTIAL DIFFERENTIAL EQUATIONS Lecturer: D.M.A. Stuart MT 2007

    E-Print Network [OSTI]

    Stuart, David

    advanced, but the first volume may be helpful. References [1] T.W. Kšorner, Cambridge Lecture notes on PDE) Discuss the invertibility properties of the restricted flow map: (t, s) = (t, (s, 0)) in (a) and (b) i u(x1, 0) = f(x1) for f a C1 function. Where is your solution valid? Classify the f for which

  15. Balloon-borne photometric studies of the stratospheric aerosol layer after Mt. Pinatubo eruption

    SciTech Connect (OSTI)

    Ramachandran, S.; Jayaraman, A.; Acharya, Y.B.; Subbaraya, B.H. [Physical Research Laboratory, Ahmedabad (India)

    1994-08-01T23:59:59.000Z

    Using Sun-tracking photometers on board balloons, the Pinatubo volcanic aerosol layer has been studied over Hyderabad (17.5 deg N) during October 1991 and April 1992. From the angular distribution of the scattered radiation intensity measurements the aerosol size parameters is derived. Over a decade of aerosol measurements at Hyderabad, aerosol extinction and number density obtained during October 1991 in the stratosphere are found to be the highest ever obtained with a distinct aerosol layer between 16 and 30 km. The derived aerosol size parameter shows layered structures. Analysis of the size parameter obtained during April 1992 indicates formation of aerosols at higher altitudes by coagulation with a subsequent reduction in the aerosol number density. The obtained results are found to agree well with that of an independent lidar measurement made over Ahmedabad (23 deg N) and with the stratospheric aerosol and gas experiment II (SAGE II) results.

  16. Implied motion activation in cortical area MT can be explained by visual low-level features

    E-Print Network [OSTI]

    Oram, Mike

    , The Netherlands Page 1 of 51 Jounal of Cognitive Neuroscience 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Functional Neurobiology, Helmholtz Institute, Utrecht University, The Netherlands 2 Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands 3 Department of Psychology, University of Hull, Hull

  17. Coalition formation: the role of procedure and policy flexibility Eligius M.T. Hendrix

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    is used together with data from Dutch elections and theoretical instances to study different procedures role than is usually acknowledged in literature and practice. Keywords: coalition formation, elections focused on why coalition form and, based on that, which parties will cooperate. Arguments for coalition

  18. Whitlash, MT Natural Gas Pipeline Imports From Canada (Dollars per Thousand

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009 2010from SameperCubic9,195

  19. Whitlash, MT Natural Gas Pipeline Imports From Canada (Dollars per Thousand

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009 2010from SameperCubic9,195Cubic

  20. Whitlash, MT Natural Gas Pipeline Imports From Canada (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009 2010from

  1. EM SSAB NATIONAL CHAIRS MEETING Deer Creek State Park, Mt. Sterling, Ohio

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005Department ofDOEDisabilityContractorsRecovery ActOctober 5, 2010EM SSAB

  2. Port of Del Bonita, MT Natural Gas Pipeline Imports From Canada (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear Jan670,174 674,124to Canada (Millionper

  3. Port of Del Bonita, MT Natural Gas Pipeline Imports From Canada (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear Jan670,174 674,124to Canada (Millionperper

  4. Port of Del Bonita, MT Natural Gas Pipeline Imports From Canada (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear Jan670,174 674,124to Canada

  5. Port of Del Bonita, MT Natural Gas Pipeline Imports From Canada (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear Jan670,174 674,124to CanadaCubic Feet)

  6. Port of Morgan, MT Natural Gas Pipeline Exports to Canada (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear Jan670,174 674,124to CanadaCubic

  7. Port of Morgan, MT Natural Gas Pipeline Exports to Canada (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear Jan670,174 674,124to CanadaCubicThousand

  8. Port of Morgan, MT Natural Gas Pipeline Exports to Canada (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear Jan670,174 674,124to

  9. Port of Morgan, MT Natural Gas Pipeline Exports to Canada (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear Jan670,174 674,124toFeet) Year Jan Feb

  10. Port of Morgan, MT Natural Gas Pipeline Imports From Canada (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear Jan670,174 674,124toFeet) Year Jan

  11. Port of Morgan, MT Natural Gas Pipeline Imports From Canada (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear Jan670,174 674,124toFeet) Year

  12. Port of Morgan, MT Natural Gas Pipeline Imports From Canada (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear Jan670,174 674,124toFeet) YearFeet)

  13. Port of Morgan, MT Natural Gas Pipeline Imports From Canada (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear Jan670,174 674,124toFeet)

  14. Whitlash, MT Natural Gas Pipeline Imports From Canada (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYearFeet)perWestern States CoalbedWhatDecade

  15. Controlled Source Audio MT At Mccoy Geothermal Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) | OpenMinor Permit ApplicationsSaskatchewan,

  16. DC Resistivity Survey (Wenner Array) At Mt Princeton Hot Springs Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse) Jump to: navigation,Area (Richards, Et

  17. Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge,Dinwiddie(FURUMOTO, 1976) |2005)

  18. Direct-Current Resistivity Survey At Mt Princeton Hot Springs Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge,Dinwiddie(FURUMOTO, 1976)

  19. Babb, MT Natural Gas Pipeline Exports to Canada (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5: OilCitygate PriceW W

  20. Babb, MT Natural Gas Pipeline Imports From Canada (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5: OilCitygate PriceW