National Library of Energy BETA

Sample records for beneath butte mt

  1. A Demonstration Project for Capturing Geothermal Energy from Mine Waters beneath Butte, MT

    Broader source: Energy.gov [DOE]

    Project objectives. Demonstrate performance of heat pumps in a large HVAC system in a heating-dominated climate.

  2. Burley Butte | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:PontiacInformationAssessmentExplorationButte Jump to:

  3. Butte, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy Resources Jump to: navigation, searchButte,

  4. Kac polymers Paolo Butt`a

    E-Print Network [OSTI]

    Procacci, Aldo

    Kac polymers Paolo Butt`a Aldo Procacci Benedetto Scoppola Abstract We show how a polymer in two- sidered on the appropriate scale. Key words: Polymers, Kac potentials, phase transition. Running title: Kac polymers Dedicated to a Marzio Cassandro's birthday. 1 Introduction In the last two decades

  5. Glass Buttes Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:BoreOpenGilliam County, Oregon:GlacierGlasco,Glass Buttes

  6. Glass Buttes Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEniaElectric Jump to:GerGlacialGlacialGlass Buttes

  7. Horse Butte Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine Jump to:II Wind Farm JumpHorse Butte

  8. Butte Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy Resources Jump to: navigation, search

  9. SUTTER BASIN, SUTTER & BUTTE COUNTIES, CA FLOOD RISK MANAGEMENT PROJECT

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SUTTER BASIN, SUTTER & BUTTE COUNTIES, CA FLOOD RISK MANAGEMENT PROJECT 22 October 2013 ABSTRACT: The purpose of the Sutter Basin Project is to reduce overall flood risk to the Sutter Basin study area the risk to property damage due to flooding to the Sutter Basin area located in the Sutter and Butte

  10. The electrical resistivity structure of the crust beneath the northern Main Ethiopian Rift

    E-Print Network [OSTI]

    The electrical resistivity structure of the crust beneath the northern Main Ethiopian Rift K- long profile crossing the NMER in an approxi- mately NW­SE direction, to image subsurface electrical plateau to try to understand the mechanism for plateau uplift. The MT method provides information

  11. Saving Mt. Fuji

    E-Print Network [OSTI]

    Hacker, Randi

    2013-09-12

    Broadcast Transcript: Mt. Fuji, or Fujisan is it is known here in Japan, has just been added to Unesco's World Heritage list as a cultural asset, honoring it for providing thousands of years of inspiration to artists, poets ...

  12. Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zemach, Ezra

    Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

  13. Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zemach, Ezra

    2010-01-01

    Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

  14. Pipeline MT Instructions Identification Number

    E-Print Network [OSTI]

    Hong, Don

    Pipeline MT Instructions Identification Number For identification purposes, you will be assigned a special identification number. M# You can activate your MT email, login to PipelineMT to register for classes or pay tuition and fees. Activating the MTSU Email and PipelineMT accounts: Visit the website

  15. Crested Butte, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation EU-UNDP ClimatePublic SchoolsCrested Butte,

  16. CORRECTION OF BUTT-WELDING INDUCED DISTORTIONS BY LASER FORMING

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    CORRECTION OF BUTT-WELDING INDUCED DISTORTIONS BY LASER FORMING Peng Cheng, Andrew J. Birnbaum, Y Egland Technology and Solutions Division Caterpillar Inc. Peoria, IL KEYWORDS Welding, Distortion, Correction, Laser Forming ABSTRACT Welding-induced distortion is an intrinsic phenomenon arising due

  17. EIS-0077-S: Bonneville Power Administration Crow Butte Slough Crossing

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration developed this SEIS to evaluate potential impacts resulting from construction of a 4,700-foot segment of the Ashe-Slatt transmission line at Crow Butte Slough, overhead on towers on the existing right-of-way. This SEIS is a supplement to DOE/EIS-0077, Ashe-Slatt (Pebble Springs) 500-kilovolt Transmission Line, originally filed as FES 75-79.

  18. Red Butte, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergy MarketingNewOpenRecycled EnergyButte, Wyoming:

  19. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    SciTech Connect (OSTI)

    NONE

    1996-03-01

    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO`s environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO`s areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavy metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation`s largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST`s Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management.

  20. Butts County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy Resources Jump to: navigation,ButlerSouthJumpButts

  1. Butte County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy Resources Jump to: navigation, search Equivalent

  2. The Western Environmental Technology Office (WETO), Butte, Montana, technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. WETO`s environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies.

  3. Predicting Groundwater Contamination beneath Stormwater Infiltration

    E-Print Network [OSTI]

    Clark, Shirley E.

    1 Predicting Groundwater Contamination beneath Stormwater Infiltration Activities Shirley E. Clark, Penn State Harrisburg Robert Pitt, University of Alabama Pollutants of Concern · Classes of stormwaterHighest Observed Concentration Metal Are these waters infiltration quality? Benefits of Urban Stormwater

  4. Effect of welding on impact toughness of butt-joints in a titanium alloy

    E-Print Network [OSTI]

    Zhou, Wei

    Effect of welding on impact toughness of butt-joints in a titanium alloy Wei Zhou a, *, K.G. Chew b Abstract Impact toughness of a gas tungsten arc welded TiÁ/6AlÁ/4V alloy butt-joint was evaluated at room located either in the parent metal, in the heat- affected zone (HAZ), or in the weld metal. Optical

  5. Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding

    E-Print Network [OSTI]

    Grujicic, Mica

    Welding M. Grujicic, S. Ramaswami, J.S. Snipes, R. Yavari, A. Arakere, C.-F. Yen, and B.A. Cheeseman-mechanical finite-element procedure is developed to model conventional gas metal arc welding (GMAW) butt of the workpiece and the weld temperature- dependent and by allowing the potential work of plastic deformation

  6. Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding

    E-Print Network [OSTI]

    Grujicic, Mica

    Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding M. Grujicic yet a fairly comprehensive overview of the friction stir welding (FSW) process is provided-element procedure developed in our prior study. Particular attention is given to proper modeling of the welding work

  7. Anomalous shear wave attenuation in the shallow crust beneath...

    Open Energy Info (EERE)

    structure in the shallow crust beneath the region containing the Coso volcanic-geothermal area of eastern California. SV and P wave amplitudes were measured from...

  8. Inferences On The Hydrothermal System Beneath The Resurgent Dome...

    Open Energy Info (EERE)

    more vigorous and energetic fluid circulation beneath the resurgent dome. Although this system apparently died off as a result of mineral deposition and cooling (andor...

  9. Evidence For Gas And Magmatic Sources Beneath The Yellowstone...

    Open Energy Info (EERE)

    of magma beneath the Yellowstone caldera. Authors Stephan Husen, Robert B. Smith and Gregory P. Waite Published Journal Journal of Volcanology and Geothermal Research,...

  10. Crust and Upper Mantle P Wave Velocity Structure Beneath Valles...

    Open Energy Info (EERE)

    Crust and Upper Mantle P Wave Velocity Structure Beneath Valles Caldera, New Mexico- Results from the Jemez Teleseismic Tomography Experiment Jump to: navigation, search OpenEI...

  11. Temporal Velocity Variations beneath the Coso Geothermal Field...

    Open Energy Info (EERE)

    Temporal Velocity Variations beneath the Coso Geothermal Field Observed using Seismic Double Difference Tomography of Compressional and Shear Wave Arrival Times Jump to:...

  12. Structure and Stratigraphy Beneath a Young Phreatic Vent: South...

    Open Energy Info (EERE)

    Structure and Stratigraphy Beneath a Young Phreatic Vent: South Inyo Crater, Long Valley Caldera, California Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  13. Mt. Baker Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver, Pennsylvania:(CTI PFAN) | OpenMt St HelensMt StMt.

  14. Mantle transition zone topography and structure beneath the Yellowstone hotspot

    E-Print Network [OSTI]

    Dueker, Ken

    Mantle transition zone topography and structure beneath the Yellowstone hotspot David Fee and Ken ± 1.6 km, with 36­40 km of peak to peak topography. This topography is spatially uncorrelated, providing no evidence for a lower mantle plume currently beneath the hotspot. The topography suggests

  15. Category:Billings, MT | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy014771°,North Dakota:Bonn |NJ

  16. Mt Rainier Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver, Pennsylvania:(CTI PFAN) | Open Energy(RECP)MtMt

  17. Mapping bedrock beneath glacial till using CDP seismic reflection methods

    E-Print Network [OSTI]

    Keiswetter, Dean; Black, Ross A.; Steeples, Don W.

    1994-03-01

    This paper is a case history demonstrating the applicability of the common depth point (CDP) seismic reflection method to image bedrock beneath glacial till in northwestern Iowa. Reflections from the base of the 40-m thick ...

  18. Laboratory simulation of subsurface airflow beneath a building

    E-Print Network [OSTI]

    Corsello, Joseph William

    2014-01-01

    Vapor intrusion is the vapor-phase migration of volatile organic compounds (VOCs) into buildings due to subsurface soil or groundwater contamination. Oxygen replenishment rates beneath a building are significant for ...

  19. FMI Log At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,Erosion FlumeEventFAOFBASSESSMENTInformation

  20. Gas Sampling At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXA Corp. (Delaware)GalvestonWind

  1. Compound and Elemental Analysis At Glass Buttes Area (DOE GTP) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercial Jump to:TechnologyEnergyEnergy| Open

  2. Developing Mt. Hope: The megawatt line

    SciTech Connect (OSTI)

    Rodzianko, P.; Fisher, F.S.

    1992-12-01

    After facing numerous obstacles, including opposition and competition, the Mt. Hope pumped-storage project in New Jersey has been licensed by FERC. That license will allow a former iron ore mine site to be used in producing a new resource-hydroelectricity. In early August 1992, after more than seven years of effort, the 2,000-MW Mt. Hope Waterpower Project was licensed by the Federal Energy Regulatory Commission (FERC). Getting the $1.8 billion pumped-storage project licensed was not an easy task. It involved 54 submittals to FERC, six public meetings, and costs of more than $12 million. Along the way, the project has withstood competing applications, community opposition, and legal battles. Getting a project of this magnitude off the ground is a challenge for even the most experienced developer. The effort was especially challenging for the Halecrest Company, a local family-owned and operated firm with no previous experience in hydroelectric development. When financing became tight, creative ways were found to raise seed capital for the project. When hydroelectric experience was needed, the company developed a world-class corporate team that carried Mt. Hope through the complexities of the licensing process and beyond. With license now in hand, the project developers are ready to move forward with negotiating power sales contracts and securing construction financing. The resulting project will be the second largest pumped-storage facility in the country-second only to the 2,100-MW Bath County project in Virginia. Mt. Hope will take six years to construct and is scheduled to be phased into operation beginning in 1999.

  3. EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon

    Broader source: Energy.gov [DOE]

    This EA evaluates Ormat Nevada, Inc.’s (Ormat’s) proposed geothermal project consists of drilling up to 16 wells for geothermal exploration approximately 70 miles southeast of Bend, Oregon and 50 miles northwest of Burns, Oregon just south of U.S. Highway 20. The proposed project includes three distinct drilling areas. Up to three wells would be drilled on lands managed by the Bureau of Land Management (BLM) Prineville District (Mahogany), up to ten wells would be drilled on lands managed by the BLM Burns District (Midnight Point), and up to three wells would be drilled on private land located adjacent to the federal geothermal leases west of Glass Butte (Private Lands). DOE funding would be associated with three of the sixteen proposed wells. BLM is the lead agency and DOE is participating as a cooperating agency.

  4. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary (Revised)

    SciTech Connect (OSTI)

    NONE

    1996-03-01

    This document has been prepared by the US Department of Energy`s (DOE`s) Office of Environmental Management (EM) Office of Science and Technology (OST) to highlight its research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Western environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described in this document have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information presented in this document has been assembled from recently produced OST documents that highlight technology development activities within each of the OST program elements and Focus Areas. This document presents one in a series for each of DOE`s Operations Office and Energy Technology Centers.

  5. The Urgent Need for Carbon Dioxide Sequestration Klaus S. Lackner, Darryl P. Butt, Reed Jensen and Hans Ziock

    E-Print Network [OSTI]

    1 The Urgent Need for Carbon Dioxide Sequestration Klaus S. Lackner, Darryl P. Butt, Reed Jensen in this field. This memo explains why the development of a viable sequestration technology is a long term stra- tegic goal of utmost importance and why sequestration provides a goal worthy of the attention

  6. Imaging the mantle beneath Iceland using integrated seismological techniques

    E-Print Network [OSTI]

    Foulger, G. R.

    head, this study presents a tomographic image of the mantle structure beneath Iceland to 400 km depth of the body wave and surface wave information reveals a predominantly horizontal low-velocity anomaly extending from the Moho down to $250 km depth, interpreted as a plume head. Below the plume head a near

  7. Mt Rainier Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver, Pennsylvania:(CTI PFAN) | Open Energy(RECP)Mt

  8. Mt Wheeler Power, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,Mereg GmbHMontebalitoMt Princeton Hot Springs

  9. Marysville Mt Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville Mt Geothermal Area Jump to: navigation, search

  10. Mt Signal Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource HistoryCharleston,Peak Utility Jump to:PosoMt

  11. Mantle structure beneath the western United States and its implications for convection processes

    E-Print Network [OSTI]

    Allen, Richard M.

    River Plain (ESRP) and the High Lava Plains, and a deep low velocity anomaly (>600 km) beneath the ESRP and dips toward the northwest; (3) shallow low velocity anomalies (upper 200 km) beneath the eastern Snake

  12. Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson...

    Open Energy Info (EERE)

    Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson & Dellechaie, 1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water...

  13. Refraction Survey At Mt Princeton Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    Refraction Survey At Mt Princeton Hot Springs Geothermal Area (Lamb, Et Al., 2012) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction...

  14. 3D Mt Resistivity Imaging For Geothermal Resource Assessment...

    Open Energy Info (EERE)

    3D Mt Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Jump to: navigation, search OpenEI Reference...

  15. Vertical Electrical Sounding Configurations At Mt Princeton Hot...

    Open Energy Info (EERE)

    Vertical Electrical Sounding Configurations At Mt Princeton Hot Springs Geothermal Area (Zohdy, Et Al., 1971) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

  16. Direct-Current Resistivity Survey At Mt Princeton Hot Springs...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  17. Geothermometry At Mt Princeton Hot Springs Geothermal Area (Pearl...

    Open Energy Info (EERE)

    Et Al., 1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Mt Princeton Hot Springs Geothermal Area (Pearl, Et Al., 1976)...

  18. Imaging seismic velocity structure beneath the Iceland hot spot: A finite frequency approach

    E-Print Network [OSTI]

    Shen, Yang

    Imaging seismic velocity structure beneath the Iceland hot spot: A finite frequency approach Shu and S wave speeds extending from shallow mantle to 400 km depth beneath Iceland. In reality, seismic waves anomaly beneath Iceland and its geodynamic implications. We developed a tomographic method that utilizes

  19. MT3DMS v5.3 Supplemental User's Guide

    E-Print Network [OSTI]

    Zheng, Chunmiao

    published by the U.S. Army Corps of Engineers (Zheng and Wang, 1999; available at http://hydro.geo.ua.edu/mt3d). Readers should refer to Zheng and Wang (1999) for complete information on the theoretical Tonkin, Henning Prommer, Chris Langevin, Ned Banta, Eileen Poeter, and Rui Ma in various aspects of MT3

  20. MOBILE INTERACTIVE VISITOR INFORMATION SERVICE: PUKAHA MT. BRUCE TRIAL RESULTS

    E-Print Network [OSTI]

    Zealand Tourism Research Institute Sept 2005 #12;New Zealand Tourism Research Institute September 2005 www Information Service (MIVIS) mobile phones to access audio information at Pukaha Mt Bruce (PMB) were collected and range of visitors using the MIVIS phones in the Pukaha Mt Bruce setting. #12;New Zealand Tourism

  1. WPA Omnibus Award MT Wind Power Outreach

    SciTech Connect (OSTI)

    Brian Spangler, Manager Energy Planning and Renewables

    2012-01-30

    The objective of this grant was to further the development of Montanaâ??s vast wind resources for small, medium, and large scale benefits to Montana and the nation. This was accomplished through collaborative work with wind industry representatives, state and local governments, the agricultural community, and interested citizens. Through these efforts MT Dept Environmental Quality (DEQ) was able to identify development barriers, educate and inform citizens, as well as to participate in regional and national dialogue that will spur the development of wind resources. The scope of DEQâ??s wind outreach effort evolved over the course of this agreement from the development of the Montana Wind Working Group and traditional outreach efforts, to the current focus on working with the stateâ??s university system to deliver a workforce trained to enter the wind industry.

  2. Chi tit mn hc mt bn kia.

    E-Print Network [OSTI]

    California at Davis, University of

    v xã hi, ý n môi trng và sáng to. "Th ô xe p ca Hoa K," Davis là mt cng ng a dng và nng ng chào ón, Phát �m và Nghe Trong Lãnh Vc Hc Tp, và các lãnh vc khác. Ngoài ra cng có nhiu c hi tham gia các t chc ti trng và phc v cng ng. Mun bit ngày tháng, hc phí và các chi tit khác, hãy n: www

  3. The Hydrogeologic Character of the Lower Tuff Confining Unit and the Oak Springs Butte Confining Unit in the Tuff Pile Area of Central Yucca Flat

    SciTech Connect (OSTI)

    Drellack, Jr., Sigmund L.; Prothro, Lance B.; Gonzales, Jose L.; Mercadante, Jennifer M.

    2010-07-30

    The lower tuff confining unit (LTCU) in the Yucca Flat Corrective Action Unit (CAU) consists of a monotonous sequence of pervasively zeolitized volcanic tuff (i.e., mostly bedded with lesser nonwelded to poorly welded tuff; not fractured) (Bechtel Nevada, 2006). The LTCU is an important confining unit beneath Yucca Flat because it separates the alluvial and volcanic aquifers, where many underground nuclear tests were conducted, from the regional lower carbonate aquifer. Recent sub-CAU-scale modeling by Los Alamos National Laboratory in the Tuff Pile area of Yucca Flat (Boryta, et al., in review) includes postulated low-porosity, high-permeability zones (i.e., fractured welded-tuff aquifers) within the LTCU. This scenario indicates that such postulated low-porosity, high-permeability zones could provide fast-path lateral conduits to faults, and eventually to the lower carbonate aquifer. A fractured and faulted lower carbonate aquifer is postulated to provide a flow path(s) for underground test-derived contaminants to potential offsite receptors. The ramifications of such a scenario are obvious for groundwater flow and contaminant migration beneath Yucca Flat. This paper describes the reasoning for not including postulated low-porosity, high-permeability zones within the LTCU in the Tuff Pile area or within the LTCU in the Yucca Flat CAU-scale model. Both observational and analytical data clearly indicate that the LTCU in the Tuff Pile area consists of pervasively zeolitic, nonwelded to poorly welded tuffs that are classified as tuff confining units (i.e., high-porosity, low-permeability). The position regarding the LTCU in the Tuff Pile area is summarized as follows: • The LTCU in the Tuff Pile area consists of a monotonous sequence of predominantly zeolitic nonwelded to poorly welded tuffs, and thus is accurately characterized hydrogeologically as a tuff confining unit (aquitard) in the Yucca Flat-Climax Mine hydrostratigraphic framework model (Bechtel Nevada, 2006). • No welded-tuff (or lava-flow aquifers), referred to as low-porosity, high-permeability zones in Boryta et al. (in review), are present within the LTCU in the Tuff Pile area. • Fractures within the LTCU are poorly developed, a characteristic of zeolitic tuffs; and fracture distributions are independent of stratigraphic and lithologic units (Prothro, 2008). • Groundwater flow and radionuclide transport will not be affected by laterally extensive zones of significantly higher permeability within the LTCU in the Tuff Pile area. Although not the primary focus of this report, the hydrogeologic character of the Oak Spring Butte confining unit (OSBCU), located directly below the LTCU, is also discussed. The OSBCU is lithologically more diverse, and does include nonwelded to partially welded ash-flow tuffs. However, these older ash-flow tuffs are poorly welded and altered (zeolitic to quartzofeldspathic), and consequently, would tend to have properties similar to a tuff confining unit rather than a welded-tuff aquifer.

  4. Current Activities Assessing Butt Fusion Joint Integrity in High Density Polyethylene Piping

    SciTech Connect (OSTI)

    Crawford, Susan L.; Cinson, Anthony D.; Doctor, Steven R.; Denslow, Kayte M.

    2012-09-01

    The Pacific Northwest National Laboratory (PNNL) in Richland, Washington, conducted initial studies to evaluate the effectiveness of nondestructive examinations (NDE) coupled with mechanical testing for assessing butt fusion joint integrity in high density polyethylene (HDPE) pipe. The work provided insightful information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques for detecting lack of fusion (LOF) conditions in the fusion joints. HDPE has been installed on a limited basis in American Society of Mechanical Engineers (ASME) Class 3, buried piping systems at several operating U.S. nuclear power plants and has been proposed for use in new construction. A comparison was made between the results from ultrasonic and microwave nondestructive examinations and the results from mechanical destructive evaluations, specifically the high-speed tensile test and the side-bend test, for determining joint integrity. The data comparison revealed that none of the NDE techniques detected all of the lack-of-fusion conditions that were revealed by the destructive tests. Follow-on work has recently been initiated at PNNL to accurately characterize the NDE responses from machined flaws of varying size and location in PE 4710 materials as well as the LOF condition. This effort is directed at quantifying the ability of volumetric NDE techniques to detect flaws in relation to the critical flaw size associated with joint integrity. A status of these latest investigations is presented.

  5. Economic Implications of Farmer Storage of Surface Water in Federal Projects: Elephant Butte Irrigahon District, Dona Ana and Sierra Counties, New Mexico 

    E-Print Network [OSTI]

    Ellis, J. R.; Teague, P. W.; Lacewell, R. D.

    1982-01-01

    This study estimated the expected regional impact and economic feasibility of a proposed water accumulation or water saving option for agricultural producers operating in the Elephant Butte Irrigation District in southern ...

  6. On the Turbulence Beneath Finite Amplitude Water Waves

    E-Print Network [OSTI]

    Babanin, Alexander V

    2015-01-01

    The paper by Beya et al. (2012, hereinafter BPB) has a general title of Turbulence Beneath Finite Amplitude Water Waves, but is solely dedicated to discussing the experiment by Babanin and Haus (2009, hereinafter BH) who conducted measurements of wave-induced non-breaking turbulence by particle image velocimetry (PIV). The authors of BPB conclude that their observations contradict those of BH. Here we argue that the outcomes of BPB do not contradict BH. In addition, although the main conclusion of BPB is that there is no turbulence observed in their experiment, it actually is observed.

  7. Recycling Lingware in a Multilingual MT System Steffen Leo Hansen

    E-Print Network [OSTI]

    Recycling Lingware in a Multilingual MT System Steffen Leo Hansen Manny Rayner David Carter Ivan (Rayner and Carter, 1997). The first is the most obvious: we start with a function- ing grammar

  8. Ground Gravity Survey At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    lithologic distrubtions Notes Gravity low associated with Mt. Princeton Batholith; density contrast of -0.5 gcm3 of valley-fill sediments relative to batholith References J.E....

  9. Crustal and Uppermost Mantle Structure beneath the Western United States from USArray Regional Phase Analysis /

    E-Print Network [OSTI]

    Buehler, Janine Sylvia

    2013-01-01

    SN), Mojave (M), Snake River Plain. (SRP), Northern Rockysplitting beneath the Snake River Plain suggests a mantleSierra Nevada (SN), Snake River Plain (SRP), Northern Rocky

  10. Analysis of pumping-induced unsaturated regions beneath aperennial river

    SciTech Connect (OSTI)

    Su, G.W.; Jasperse, J.; Seymour, D.; Constantz, J.; Zhou, Q.

    2007-05-15

    The presence of an unsaturated region beneath a streambedduring groundwater pumping near streams reduces the pumping capacity whenit reaches the well screens, changes flow paths, and alters the types ofbiological transformations in the streambed sediments. Athree-dimensional, multi-phase flow model of two horizontal collectorwells along the Russian River near Forestville, California was developedto investigate the impact of varying the ratio of the aquifer tostreambed permeability on (1) the formation of an unsaturated regionbeneath the stream, (2) the pumping capacity, (3) stream-water fluxesthrough the streambed, and (4) stream-water travel times to the collectorwells. The aquifer to streambed permeability ratio at which theunsaturated region was initially observed ranged from 10 to 100. The sizeof the unsaturated region beneath the streambed increased as the aquiferto streambed permeability ratio increased. The simulations also indicatedthat for a particular aquifer permeability, decreasing the streambedpermeability by only a factor of 2-3 from the permeability wheredesaturation initially occurred resulted in reducing the pumpingcapacity. In some cases, the stream-water fluxes increased as thestreambed permeability decreased. However, the stream water residencetimes increased and the fraction of stream water that reached that thewells decreased as the streambed permeability decreased, indicating thata higher streambed flux does not necessarily correlate to greaterrecharge of stream water around the wells.

  11. A Methodology for the Assessment of Unconventional (Continuous) Resources with an Application to the Greater Natural Buttes Gas Field, Utah

    SciTech Connect (OSTI)

    Olea, Ricardo A.; Cook, Troy A.; Coleman, James L.

    2010-12-15

    The Greater Natural Buttes tight natural gas field is an unconventional (continuous) accumulation in the Uinta Basin, Utah, that began production in the early 1950s from the Upper Cretaceous Mesaverde Group. Three years later, production was extended to the Eocene Wasatch Formation. With the exclusion of 1100 non-productive ('dry') wells, we estimate that the final recovery from the 2500 producing wells existing in 2007 will be about 1.7 trillion standard cubic feet (TSCF) (48.2 billion cubic meters (BCM)). The use of estimated ultimate recovery (EUR) per well is common in assessments of unconventional resources, and it is one of the main sources of information to forecast undiscovered resources. Each calculated recovery value has an associated drainage area that generally varies from well to well and that can be mathematically subdivided into elemental subareas of constant size and shape called cells. Recovery per 5-acre cells at Greater Natural Buttes shows spatial correlation; hence, statistical approaches that ignore this correlation when inferring EUR values for untested cells do not take full advantage of all the information contained in the data. More critically, resulting models do not match the style of spatial EUR fluctuations observed in nature. This study takes a new approach by applying spatial statistics to model geographical variation of cell EUR taking into account spatial correlation and the influence of fractures. We applied sequential indicator simulation to model non-productive cells, while spatial mapping of cell EUR was obtained by applying sequential Gaussian simulation to provide multiple versions of reality (realizations) having equal chances of being the correct model. For each realization, summation of EUR in cells not drained by the existing wells allowed preparation of a stochastic prediction of undiscovered resources, which range between 2.6 and 3.4 TSCF (73.6 and 96.3 BCM) with a mean of 2.9 TSCF (82.1 BCM) for Greater Natural Buttes. A second approach illustrates the application of multiple-point simulation to assess a hypothetical frontier area for which there is no production information but which is regarded as being similar to Greater Natural Buttes.

  12. NEAFS Y-mtDNA Workshop (Butler and Coble) November 1, 2006

    E-Print Network [OSTI]

    NEAFS Y-mtDNA Workshop (Butler and Coble) mtDNA November 1, 2006 http://www.cstl.nist.gov/biotech) mtDNA November 1, 2006 http://www.cstl.nist.gov/biotech/strbase/training.htm 2 Data Review-mtDNA Workshop (Butler and Coble) mtDNA November 1, 2006 http://www.cstl.nist.gov/biotech/strbase/training.htm 3

  13. Plume-lithosphere interaction beneath a fast moving plate Catherine Thoraval,1

    E-Print Network [OSTI]

    Tommasi, Andrea

    , beneath Hawaii, towards Kauai, where the lithosphere is reduced by half [Li et al., 2004]. Heat flow data studies beneath Hawaii lead to opposite conclusions. Surface-wave dispersion as well as sP converted waves also lead to contradictory conclusions. Comparison of on-swell and off-swell data for the Hawaii

  14. Upper mantle Q and thermal structure beneath Tanzania, East Africa from teleseismic P wave spectra

    E-Print Network [OSTI]

    Ritsema, Jeroen

    Upper mantle Q and thermal structure beneath Tanzania, East Africa from teleseismic P wave spectra-focus earthquakes recorded at broadband seismic stations of the Tanzania network to estimate regional variation of sublithospheric mantle attenuation beneath the Tanzania craton and the eastern branch of the East African Rift

  15. Horizontal subduction and truncation of the Cocos Plate beneath central Mexico

    E-Print Network [OSTI]

    Clayton, Robert W.

    Horizontal subduction and truncation of the Cocos Plate beneath central Mexico Xyoli Pe from a trans-Mexico temporary broadband seismic network centered on Mexico City, we report that the subducting Cocos Plate beneath central Mexico is horizontal, and tectonically underplates the base

  16. Influence of tides on melting and freezing beneath FilchnerRonne Ice Shelf, Antarctica

    E-Print Network [OSTI]

    Holland, David

    Influence of tides on melting and freezing beneath FilchnerRonne Ice Shelf, Antarctica Keith doubles. With tidal forcing, the spatial pattern and magnitude of basal melting and freezing generally), Influence of tides on melting and freezing beneath FilchnerRonne Ice Shelf, Antarctica, Geophys. Res. Lett

  17. Thermal, hydrous, and mechanical states of the mantle transition zone beneath southern Africa

    E-Print Network [OSTI]

    Shen, Yang

    Thermal, hydrous, and mechanical states of the mantle transition zone beneath southern Africa John cratons in southern Africa; consequently, the mantle transition zone is 20 km thicker than beneath post: lithosphere; upper mantle; transition zone; cratoni convection; Southern Africa 1. Introduction The upper

  18. Seismic tomography shows that upwelling beneath Iceland is confined to the upper mantle

    E-Print Network [OSTI]

    Allen, Richard M.

    Seismic tomography shows that upwelling beneath Iceland is confined to the upper mantle G. R of Iceland, Bustadavegi 9, Reykjavik, Iceland 5 National Energy Authority, Grensasvegi 9, Reykjavik, Iceland of the highest-resolution teleseismic tomography study yet performed of the upper mantle beneath Iceland

  19. Belt-parallel mantle flow beneath a halted continental collision: The Western Alps Guilhem Barruol a,

    E-Print Network [OSTI]

    Demouchy, Sylvie

    Belt-parallel mantle flow beneath a halted continental collision: The Western Alps Guilhem Barruol belts, is a particularly important objective of "mantle tectonics" that may bring a depth extent a coherent picture of upper mantle anisotropy beneath the belt. The large-scale anisotropy pattern

  20. Field Mapping At Marysville Mt Area (Blackwell) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto ElectricMonaster And Coolbaugh, 2007)

  1. Above the Roof, Beneath the Law: Perceived Justice behind Disruptive Tactics of Migrant Wage Claimants in China

    E-Print Network [OSTI]

    He, X; Wang, L; Su, Y

    2013-01-01

    bs_bs_banner Above the Roof, Beneath the Law: Perceivedmigrant workers perch on roof tops or towering construction

  2. Mt St Helens Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver, Pennsylvania:(CTI PFAN) | OpenMt St HelensMt St

  3. Magnetotelluric investigations of the lithosphere beneath the central Rae craton, mainland

    E-Print Network [OSTI]

    Jones, Alan G.

    . The magnetotelluric (MT) method, a natural source electromagnetic technique used to image the electrical resistivity, Ontario, Canada, 3 Dublin Institute for Advanced Studies, Dublin, Ireland Abstract New magnetotelluric

  4. Probing the lexicon in evaluating commercial MT systems Martin Volk

    E-Print Network [OSTI]

    for self evaluation consisted of technical, linguistic and ergonomic issues. As part of the linguisticProbing the lexicon in evaluating commercial MT systems Martin Volk University of Zurich Department Abstract In the past the evaluation of machine trans- lation systems has focused on single sys- tem

  5. Grenville foreland thrust belt hidden beneath the eastern US midcontinent

    SciTech Connect (OSTI)

    Hauser, E.C. (Cornell Univ., Ithaca, NY (United States))

    1993-01-01

    Grenville foreland thrust structures are observed beneath the eastern US midcontinent on COCORP (Consortium for Continental Reflection Profiling) line OH-1 and a short seismic line in southwest Ohio. These structures represent the first evidence for a significant Grenville foreland thrust belt preserved in eastern North America. On the COCORP lines, the structures include a thrust ramp anticline and an associated asymmetric syncline. The Grenville front tectonic zone appears to truncate these foreland structures, indicating a later, second phase expressed as a deeply penetrating, out-of-sequence thrust zone associated with the main uplift of the Grenville province on the east. A short, shallow seismic line in southwestern Ohio reveals an east-dipping sequence of prominently layered rocks that may lie above a footwall ramp to a deeper Grenville thrust fault. A drill hole into the less reflective top of this dipping sequence encountered unmetamorphosed sedimentary rocks like those increasingly reported from other drill holes in southwestern Ohio and adjacent states. Although possibly part of a late Precambrian (Keweenawan ) rift, these clastic sedimentary rocks may instead preserve evidence of a heretofore unrecognized Grenville foreland basin in eastern North America. Alternatively these Precambrian sedimentary rocks together with an underlying, but yet undrilled, strongly layered sequence may correlate with similarly layered rocks observed on COCORP and industrial seismic lines within the Middle Proterozoic granite-rhyolite province to the west in Indiana and Illinois and indicate that unmetamorphosed sedimentary material is an important constituent of the granite-rhyolite province. 25 refs., 6 figs.

  6. (Have we found the Holy Grail?) Panel at MT-Summit 2003

    E-Print Network [OSTI]

    Wu, Dekai

    (Have we found the Holy Grail?) Panel at MT-Summit 2003 #12;The HKUST Leading Question Translation? If not, is the Holy Grail just around the corner? Translation Are we just about done? #12;Dekai Wu, MT

  7. A Light-weight Approach to Reducing Energy Management Delays in Disks Guanying Wang, Ali R. Butt, Chris Gniady, Puranjoy Bhattacharjee

    E-Print Network [OSTI]

    Butt, Ali R.

    A Light-weight Approach to Reducing Energy Management Delays in Disks Guanying Wang, Ali R. Butt techniques such as turning machines off overnight and dynamic energy management during the business hours. Unfortunately, dynamic energy management, especially that for disks, introduces delays when an accessed disk

  8. The Passivity and Breakdown of Beryllium in Aqueous Solutions M.A. Hill, D.P. Butt, and R.S. Lillard

    E-Print Network [OSTI]

    The Passivity and Breakdown of Beryllium in Aqueous Solutions M.A. Hill, D.P. Butt, and R beryllium (Be) has been studied as a function of pH. Below pH 2, Be exhibited active dissolution at all, the presence of the fluoride increased the passive current density of beryllium, but had no effect

  9. Imaging crust and upper mantle beneath Mount Fuji, Japan, by receiver functions

    E-Print Network [OSTI]

    Aoki, Yosuke

    , resulting in little knowledge about the seismic structure there. To gain more insight into the magma with magmatic differentiation is suppressed. Fujii [2007] concluded that the magma reservoir beneath Mount Fuji

  10. Layered rocks beneath the Phanerozoic platform of the US midcontinent

    SciTech Connect (OSTI)

    Hauser, E.C. (Cornell Univ., Ithaca, NY (United States))

    1991-03-01

    A thick sequence of layered rocks lies hidden beneath the Phanerozoic cover of the central US over large regions. A thick sequence of Precambrian layered rocks in imaged on the COCORP transect across southern Illinois and Indiana. The thickness of this layered sequence varies from 1-3 times the thickness of the overlying Phanerozoic section of the Illinois basin. The layered sequence is observed for close to 200 km in an east-west direction. Similar layered reflections are seen on the COCORP data from Hardeman Co., TX, and neighboring southwest Oklahoma. Both of these known occurrences lie within the region of the middle Proterozoic Granite/Rhyolite province of the US midcontinent, an area within which scattered wells to basement commonly encounter 1.3-1.5 Ga undeformed granite and/or compositionally similar rhyolite. Therefore, these layered assemblages may comprise a thick sequence of silicic volcanic and sedimentary rocks (perhaps also injected by mafic sills) between scattered volcanic-intrusive centers, such as exposed in the St. Francois Mountains of southeast Missouri. However, in places such as Illinois and Indiana, the near absence of deep wells leaves the possibility that the upper portion of these layered rocks may locally be of late Proterozoic or earliest Paleozoic age. The reprocessing of available industry data, analyzed in conjunction with the existing COCORP data, includes extended vibroseis correlation. These industry data are invaluable in the author's effort to expand the known distribution of these layered rocks (e.g., into north-central Illinois) and to map their structures.

  11. Geothermal energy resource investigations at Mt. Spurr, Alaska

    SciTech Connect (OSTI)

    Turner, D.L.; Wescott, E.M. (eds.)

    1986-12-01

    Spurr volcano is a composite Quaternary cone of largely andesitic composition located on the west side of Cook Inlet about 80 miles west of Anchorage and about 40 miles from the Beluga electrical transmission line. Geologic mapping (Plate 1-1) shows that the present summit depression was produced by a Mt. St. Helens-type sector collapse, rather than by a caldera collapse. Geochronologic and previous tephrachronologic studies show that there has been an active magmatic system at Spurr volcano during the late Pleistocene-to-Holocene time interval that is of critical interest for geothermal energy resource assessment. Major effort was devoted to geochemical and geophysical surveys of the accessible area south of Mt. Spurr, in addition to geologic mapping and geochronologic studies. Many coincident mercury and helium anomalies were found, suggesting the presence of geothermal systems at depth. Extremely large electrical self-potential anomalies were also found, together with extensive zones of low resistivity discovered by our controlled-source audiomagnetotelluric survey. The juxtaposition of all of these different types of anomalies at certain areas on the south slope of Crater Peak indicates the presence of a geothermal system which should be accessible by drilling to about 2000 ft depth. It is also evident that there is a strong volcanic hazard to be evaluated in considering any development on the south side of Mt. Spurr. This hazardous situation may require angle drilling of production wells from safer areas and placement of power generation facilities at a considerable distance from hazardous areas.

  12. Mt St Helens Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver, Pennsylvania:(CTI PFAN) | OpenMt St Helens

  13. MT Energie GmbH Co KG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 < MHKKemblaSolar Jump to:Industries Inc JumpMT

  14. RAPID/Roadmap/12-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevada <UtahMontanasourceWA-aCA-aMT-a <

  15. RAPID/Roadmap/15-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa < RAPID‎ | RoadmapCO-ceWA-eb <MT-a

  16. RAPID/Roadmap/17-MT-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa < RAPID‎ |a < RAPID‎CA-aHI-aaMT-c

  17. RAPID/Roadmap/18-MT-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa < RAPID‎ |a <-AK-b <CO-badMT-b

  18. RAPID/Roadmap/4-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa < RAPID‎f <CA-aab <cdMT-a <

  19. RAPID/Roadmap/6-MT-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa < RAPID‎fRAPID/Roadmap/6-CO-bacMT-d

  20. RAPID/Roadmap/6-MT-f | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa < RAPID‎fRAPID/Roadmap/6-CO-bacMT-df

  1. City of Mt Pleasant, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler, Iowa (UtilityIowa Phone Number: (319) 385-2121City of Mt

  2. Mt Princeton Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,Mereg GmbHMontebalitoMt Princeton Hot Springs Geothermal

  3. RAPID/Roadmap/14-MT-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | Roadmap JumpNV-a <CA-cID-aMT-b <

  4. RAPID/Roadmap/14-MT-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | Roadmap JumpNV-a <CA-cID-aMT-b

  5. RAPID/Roadmap/14-MT-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | Roadmap JumpNV-a <CA-cID-aMT-bd

  6. RAPID/Roadmap/17-MT-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | Roadmap JumpNV-ad-MT-d < RAPID‎ |

  7. RAPID/Roadmap/20-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | RoadmapAK-a < RAPID‎ |MT-a <

  8. RAPID/Roadmap/8-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | RoadmapAK-abFD-a < RAPID‎ID-eMT-a

  9. Micro-Earthquake At Marysville Mt Area (Blackwell) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedicalInformation 2-2005)1995) |Information

  10. HERO Ski Trip to Mt. Hood Meadows February

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowď‚— WeUpdateScienceForTrip to Mt. Hood Meadows

  11. The entrainment of oil droplets in flow beneath an oil slick 

    E-Print Network [OSTI]

    Chao, Chien-Hwa

    1973-01-01

    THE ENTRAINMENT OF OIL DROPLETS IN PLOW BENEATH AN OIL SLICK A Thesis by CHIEN-HWA CHAO Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OP SCIENCE August 1973 Ma...)or Sub)ect: Mechanical Engineering THE ENTRAINMENT OF OIL DROPLETS IN FLOW BENEATH AN OIL SLICK A Thesis CHIEN-HWA CHAD Approved as to style and content by: ( hairman o Committee) (Head of De tment) C ( (Member) ber) (Member) August 1973...

  12. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01

    Strategies for Rural Communities. ” National Conference onallocation facing the rural community of Mt. Laguna? (EquityStrategies for Rural Communities. ” National Conference on

  13. DC Resistivity Survey (Dipole-Dipole Array) At Mt Princeton Hot...

    Open Energy Info (EERE)

    1971) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: DC Resistivity Survey (Dipole-Dipole Array) At Mt Princeton Hot Springs Geothermal Area...

  14. Rapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface mixed layer

    E-Print Network [OSTI]

    Smith, Jerome A.

    Rapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface the wind) generates high- frequency internal waves in the stratified fluid below. The internal waves evolveKinnon, and A. E. Tejada-Marti´nez (2008), Rapid generation of high-frequency internal waves beneath a wind

  15. Exponential growth of ``snow molds'' at sub-zero temperatures: an explanation for high beneath-snow

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    Exponential growth of ``snow molds'' at sub-zero temperatures: an explanation for high beneath organisms of the beneath-snow microbial community, ``snow molds'', exhibit robust exponential growth to -0.3°C for these snow molds vary from 22 to 330. Third, we derive an analytical equation

  16. Evidence from P-to-S mantle converted waves for a flat b660-kmQ discontinuity beneath Iceland

    E-Print Network [OSTI]

    Foulger, G. R.

    Evidence from P-to-S mantle converted waves for a flat b660-kmQ discontinuity beneath Iceland Z. Du; accepted 19 September 2005 Available online 22 November 2005 Editor: R.D. van der Hilst Abstract Iceland discontinuity beneath central Iceland is shallow relative to peripheral regions and this was interpreted

  17. P-wave velocity structure of the crust and uppermost mantle beneath Iceland from local earthquake tomography

    E-Print Network [OSTI]

    Shen, Yang

    P-wave velocity structure of the crust and uppermost mantle beneath Iceland from local earthquake and uppermost mantle beneath Iceland, the keys to understanding the magma plumbing system of the hotspot develop a three-dimensional P-wave velocity model of the Icelandic crust and uppermost mantle from

  18. Global warming of the mantle beneath continents back to the Archaean Nicolas Coltice a,

    E-Print Network [OSTI]

    Global warming of the mantle beneath continents back to the Archaean Nicolas Coltice a, , Hervé triggering melting events without the involvement of hot plumes. This model, called mantle global warming.R., Bertrand, H., Ricard, Y., Rey, P. (2007) Global warming of the mantle at the origin of flood basalts over

  19. Potential for storage of carbon dioxide in the rocks beneath the East Irish Sea

    E-Print Network [OSTI]

    Watson, Andrew

    Research and British Geological Survey Keyworth Nottingham NG12 5GG Email: klsh@bgs.ac.uk Tyndall CentrePotential for storage of carbon dioxide in the rocks beneath the East Irish Sea Karen Kirk February 2006 Tyndall Centre for Climate Change Research Working Paper 100 #12;Potential for storage

  20. Fossil flat-slab subduction beneath the Illinois basin, USA Heather Bedle , Suzan van der Lee

    E-Print Network [OSTI]

    van der Lee, Suzan

    .tecto.2006.06.003 #12;basin and mechanisms of basin formation, and interpret the Illinois basinFossil flat-slab subduction beneath the Illinois basin, USA Heather Bedle , Suzan van der Lee August 2006 Abstract The Illinois basin is one of several well-studied intracratonic sedimentary basins

  1. The magmatic plumbing system beneath Santiaguito Volcano, Guatemala Jeannie A.J. Scott a,

    E-Print Network [OSTI]

    Rose, William I.

    The magmatic plumbing system beneath Santiaguito Volcano, Guatemala Jeannie A.J. Scott a, , Tamsin, Guatemala City, Guatemala a b s t r a c ta r t i c l e i n f o Article history: Received 9 September 2011 storage Ascent path The silicic dome complex of Santiaguito, Guatemala, has exhibited continuous extrusive

  2. Distribution of magma beneath the Toba caldera complex, north Sumatra, Indonesia, constrained by

    E-Print Network [OSTI]

    McCaffrey, Robert

    Distribution of magma beneath the Toba caldera complex, north Sumatra, Indonesia, constrained and Geophysical Agency, Jakarta, Indonesia R. McCaffrey, D. A. Wark, and S. W. Roecker Department of Earth@rpi.edu) Fauzi and G. Ibrahim Meteorological and Geophysical Agency, Jakarta, Indonesia (fauzi@bmg.go.id) Sukhyar

  3. Supplemental Figures Seismic imaging of the laterally varying D" region beneath the Cocos Plate

    E-Print Network [OSTI]

    Garnero, Ed

    Supplemental Figures Seismic imaging of the laterally varying D" region beneath the Cocos Plate-474-1882 Fax: 907-474-5618 Email: mthorne@gi.alaska.edu #12;Supplement A. Transverse component velocity.9982 at 80Âş. #12;Supplement B. Transverse component displacement synthetics are shown. Synthetics for PREM

  4. Distinctive upper mantle anisotropy beneath the High Lava Plains and Eastern Snake River Plain,

    E-Print Network [OSTI]

    Distinctive upper mantle anisotropy beneath the High Lava Plains and Eastern Snake River Plain and continuing with the still- ongoing volcanism in the High Lava Plains (HLP) and eastern Snake River Plain (SRP waves; shear wave splitting; high lava plains; Snake River Plain; Yellowstone. Index Terms: 8137

  5. Injection of carbon from the shelf to offshore beneath the euphotic zone in the California Current

    E-Print Network [OSTI]

    Balasubramanian, Ravi

    Injection of carbon from the shelf to offshore beneath the euphotic zone in the California Current concentrations of chlorophyll are found in the California Current System over 300 km offshore, far from the coast and transported offshore in the meandering California Current jet. Chlorophyll is forced downward

  6. On the vertical extent of the large low shear velocity province beneath the South Pacific Superswell

    E-Print Network [OSTI]

    Barruol, Guilhem

    , the southwestern Pacific events recorded by seismic arrays in southeastern Asia sample its western rim [Takeuchi et the western rim to the southern rim of the Pacific LLSVP is proposed as a result of forward modeling [HeOn the vertical extent of the large low shear velocity province beneath the South Pacific

  7. A Post-Perovskite Lens and D Heat Flux Beneath the Central Pacific

    E-Print Network [OSTI]

    Garnero, Ed

    A Post-Perovskite Lens and Dµ Heat Flux Beneath the Central Pacific Thorne Lay,1 * John Hernlund,2 are attributed to a phase change from perovskite to post-perovskite and then back to perovskite as the temperature increases with depth. Iron enrichment could explain the occurrence of post-perovskite several

  8. Hydrogeochemical niches associated with hyporheic exchange beneath an acid mine drainage-contaminated stream

    E-Print Network [OSTI]

    Burgos, William

    Hydrogeochemical niches associated with hyporheic exchange beneath an acid mine drainage can be used for remediation of acid mine drainage (AMD), however, as sediment depth increases, Fe that generate acidity, frequently referred to as acid mine drainage (AMD) or, more specifically, coal mine

  9. DOI: 10.1002/cssc.201000032 The Immobility of CO2 in Marine Sediments Beneath 1500

    E-Print Network [OSTI]

    Schrag, Daniel

    -than-sea- water CO2 in deep-sea sediments is inherently more secure then storing buoyant supercritical CO2 with the mobility of supercritical CO2 that has been injected into geologically equivalent (i.e., identical porosityDOI: 10.1002/cssc.201000032 The Immobility of CO2 in Marine Sediments Beneath 1500 Meters of Water

  10. Seismic evidence for a tilted mantle plume and north^south mantle ow beneath Iceland

    E-Print Network [OSTI]

    Shen, Yang

    Seismic evidence for a tilted mantle plume and north^south mantle Łow beneath Iceland Yang Shen a.W., Washington, DC 20015, USA c Science Institute, University of Iceland, Reykjavik, Iceland d Department, Grensasvegi 9, Reykjavik, Iceland f Meteorological O/ce of Iceland, Bustadavegi 9, Reykjavik, Iceland g US

  11. Mantle upwellings and convective instabilities revealed by seismic tomography and helium isotope geochemistry beneath eastern Africa

    E-Print Network [OSTI]

    Montagner, Jean-Paul

    geochemistry beneath eastern Africa Jean-Paul Montagner,1 Bernard Marty,2 Ele´onore Stutzmann,1 De for North and East Africa using a high resolution three-dimensional anisotropic tomographic model derived from seismic data of a French experiment ``Horn of Africa'' and existing broadband data. The joint

  12. Modeling Zinc and Sodium Chloride Migration in Vadose Zone Soils Beneath Stormwater Infiltration Devices

    E-Print Network [OSTI]

    Clark, Shirley E.

    Modeling Zinc and Sodium Chloride Migration in Vadose Zone Soils Beneath Stormwater Infiltration in stormwater runoff and a decrease in groundwater recharge. Stormwater runoff contains pollutants (nutrients to the degradation of surface waters below stormwater pipe outfalls. Infiltrating stormwater has been shown

  13. Mantle flow beneath northwestern Venezuela: Seismic evidence for a deep origin of the Mrida Andes

    E-Print Network [OSTI]

    Niu, Fenglin

    Mantle flow beneath northwestern Venezuela: Seismic evidence for a deep origin of the Mérida Andes University, Houston, TX, USA b Fundación de Investigaciones Simológicas (FUNVISIS), Caracas, Venezuela a b wave splitting from SKS data recorded by the national seismic network of Venezuela and a linear

  14. Visual Field Maps, Population Receptive Field Sizes, and Visual Field Coverage in the Human MT Complex

    E-Print Network [OSTI]

    Dumoulin, Serge O.

    of processing in human motion-selective cortex. I N T R O D U C T I O N Neuroimaging experiments localize human by additional experiments. Defining human MT based on stimulus selectivity means that the identificationVisual Field Maps, Population Receptive Field Sizes, and Visual Field Coverage in the Human MT

  15. Bitcoin Transaction Malleability and MtGox Christian Decker and Roger Wattenhofer

    E-Print Network [OSTI]

    Bitcoin Transaction Malleability and MtGox Christian Decker and Roger Wattenhofer ETH Zurich International Publishing Switzerland 2014 #12;314 C. Decker and R. Wattenhofer exchanges its monopoly slowly doubled the withdrawn bitcoins, once from the withdrawal and once on its account on MtGox. In this work we

  16. An assessment of regional climate trends and changes to the Mt. Jaya glaciers of Irian Jaya 

    E-Print Network [OSTI]

    Kincaid, Joni L.

    2007-09-17

    on the Mt. Jaya glaciers has been lacking since the early 1970s. Using IKONOS satellite images, the ice extents of the Mt. Jaya glaciers in 2000, 2002, 2003, 2004, and 2005 were mapped. The mapping indicates that the recessional trend which began in the mid...

  17. Mt. Etna tropospheric ash retrieval and sensitivity analysis using Moderate Resolution Imaging

    E-Print Network [OSTI]

    Oxford, University of

    Mt. Etna tropospheric ash retrieval and sensitivity analysis using Moderate Resolution Imaging.pugnaghi@unimore.it, gabriele.gangale@unimore.it Abstract. A retrieval of tropospheric volcanic ash from Mt Etna has been. In order to derive the ash plume optical thickness, the particle effective radius and the total mass

  18. A MT System from Turkmen to Turkish Employing Finite State and Statistical Methods

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    between close language pairs can be relatively easier and can still benefit from simple(r) paradigms in MT with a disambiguation post-processing stage based on statistical language models. The very productive inflectionalA MT System from Turkmen to Turkish Employing Finite State and Statistical Methods A. Cüneyd TANTU

  19. Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

    SciTech Connect (OSTI)

    Goldstein, N.E.; Flexser, S.

    1984-12-01

    Recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. The areas studied were: (1) Salton Trough, (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent volcanic activity and published indications of crustal melt zones. 23 figs.

  20. Analysis of Fracture in Cores from the Tuff Confining Unit beneath Yucca Flat, Nevada Test Site

    SciTech Connect (OSTI)

    Lance Prothro

    2008-03-01

    The role fractures play in the movement of groundwater through zeolitic tuffs that form the tuff confining unit (TCU) beneath Yucca Flat, Nevada Test Site, is poorly known. This is an important uncertainty, because beneath most of Yucca Flat the TCU lies between the sources of radionuclide contaminants produced by historic underground nuclear testing and the regional carbonate aquifer. To gain a better understanding of the role fractures play in the movement of groundwater and radionuclides through the TCU beneath Yucca Flat, a fracture analysis focusing on hydraulic properties was performed on conventional cores from four vertical exploratory holes in Area 7 of Yucca Flat that fully penetrate the TCU. The results of this study indicate that the TCU is poorly fractured. Fracture density for all fractures is 0.27 fractures per vertical meter of core. For open fractures, or those observed to have some aperture, the density is only 0.06 fractures per vertical meter of core. Open fractures are characterized by apertures ranging from 0.1 to 10 millimeter, and averaging 1.1 millimeter. Aperture typically occurs as small isolated openings along the fracture, accounting for only 10 percent of the fracture volume, the rest being completely healed by secondary minerals. Zeolite is the most common secondary mineral occurring in 48 percent of the fractures observed.

  1. MT3D: a 3 dimensional magnetotelluric modeling program (user's guide and documentation for Rev. 1)

    SciTech Connect (OSTI)

    Nutter, C.; Wannamaker, P.E.

    1980-11-01

    MT3D.REV1 is a non-interactive computer program written in FORTRAN to do 3-dimensional magnetotelluric modeling. A 3-D volume integral equation has been adapted to simulate the MT response of a 3D body in the earth. An integro-difference scheme has been incorporated to increase the accuracy. This is a user's guide for MT3D.REV1 on the University of Utah Research Institute's (UURI) PRIME 400 computer operating under PRIMOS IV, Rev. 17.

  2. GEOPHYSICAL RESEARCH LETTERS, VOL. 28, NO. 13, PAGES 2485-2488, JUL 1, 2001 Tectospheric structure beneath southern Africa

    E-Print Network [OSTI]

    van der Lee, Suzan

    beneath southern Africa D. E. James,1 M. J. Fouch,1,2 J. C. VanDecar,1,3 S. van der Lee4 and Kaapvaal Seismic Group5 Abstract. P-wave and S-wave delay times from the broad- band data of the southern Africa in the mantle beneath southern Africa. High velocity mantle roots appear to extend to depths of at least 250 km

  3. NEAFS Y-mtDNA Workshop (Butler and Coble) Markers, Core Loci, and Kits

    E-Print Network [OSTI]

    ) ­ Ann Gross (MN) ­ Jill Smerick (FBI) ­ Sam Baechtel (FBI) ­ Roger Frappier (CFS) ­ Phil Kinsey (OR now MT) ­ Gary Sims (CA DOJ) ­ George Carmody (retired) ­ Mike Adamowicz (CT) ­ Bruce Budowle (FBI

  4. TIME-VARIABLEFILTERING OF MtTLTI[CHANNELSIGNALS USING MULTIPLE WINDOWS COHERENCEAND THE WEYL TRANSFORM

    E-Print Network [OSTI]

    Sandsten, Maria

    TIME-VARIABLEFILTERING OF MtTLTI[CHANNELSIGNALS USING MULTIPLE WINDOWS COHERENCEAND THE WEYL between all channel pairs. Time-frequency coherence functions are estimated using the multiple window

  5. The Genetic Structure of the Kuwaiti Population: mtDNA Inter- and Intra-population Variation

    E-Print Network [OSTI]

    Theyab, Jasem; Al-Bustan, Suzanne; Crawford, Michael H.

    2012-08-01

    it to their neighboring populations. These subpopulations were tested for genetic homogeneity and shown to be heterogeneous. Restriction fragment length polymorphism (RFLP) and mtDNA sequencing analyses of HVRI were used to reconstruct the genetic structure of Kuwait...

  6. Implied motion activation in cortical area MT can be explained by visual low-level features

    E-Print Network [OSTI]

    Oram, Mike

    ForReview Only Implied motion activation in cortical area MT can be explained by visual low Neuroscience #12;ForReview Only 1 Implied motion activation in cortical area MT can be explained by visual low, The Netherlands Page 1 of 51 Jounal of Cognitive Neuroscience 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

  7. Marine Controlled-Source Electromagnetic Responses of a Thin Hydrocarbon Reservoir beneath Anisotropic Overburden 

    E-Print Network [OSTI]

    Youn, Sangseok

    2014-08-07

    NOMENCLATURE MCSEM Marine Controlled-source Electromagnetic HED Horizontal electric dipole MT Magnetotellurics TX Transmitter RX Receiver EX Total electric field response EX-EX Total electric field response due to an x-directed HED source PDE.... ............................................................ 22 Figure 8. The isotropic EX-EX responses for an isotropic halfspace results, computed to validate the anisotropy modification of the SEATEM code. ........................ 24 Figure 9. EX-EX responses for different values of the z...

  8. Busted Butte Unsaturated Zone Transport Test: Fiscal Year 1998 Status Report Yucca Mountain Site Characterization Program Deliverable SPU85M4

    SciTech Connect (OSTI)

    Bussod, G.Y.; Turin, H.J.; Lowry, W.E.

    1999-11-01

    This report describes the status of the Busted Butte Unsaturated Zone Transport Test (UZTT) and documents the progress of construction activities and site and laboratory characterization activities undertaken in fiscal year 1998. Also presented are predictive flow-and-transport simulations for Test Phases 1 and 2 of testing and the preliminary results and status of these test phases. Future anticipated results obtained from unsaturated-zone (UZ) transport testing in the Calico Hills Formation at Busted Butte are also discussed in view of their importance to performance assessment (PA) needs to build confidence in and reduce the uncertainty of site-scale flow-and-transport models and their abstractions for performance for license application. The principal objectives of the test are to address uncertainties associated with flow and transport in the UZ site-process models for Yucca Mountain, as identified by the PA working group in February 1997. These include but are not restricted to: (1) The effect of heterogeneities on flow and transport in unsaturated and partially saturated conditions in the Calico Hills Formation. In particular, the test aims to address issues relevant to fracture-matrix interactions and permeability contrast boundaries; (2) The migration behavior of colloids in fractured and unfractured Calico Hills rocks; (3) The validation through field testing of laboratory sorption experiments in unsaturated Calico Hills rocks; (4) The evaluation of the 3-D site-scale flow-and-transport process model (i.e., equivalent-continuum/dual-permeability/discrete-fracture-fault representations of flow and transport) used in the PA abstractions for license application; and (5) The effect of scaling from lab scale to field scale and site scale.

  9. Stratified precambrian rocks (sedimentary?) beneath the midcontinent region of the US. Final technical report

    SciTech Connect (OSTI)

    Hauser, E.C.

    1993-02-01

    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the US midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1--3 times as thick as the overlying Paleozoic cover, but the origin of this sequence and its ultimate lateral extent are unknown. However, the occurrences of Precambrian layered rocks on both the COCORP profiles and reprocessed industry seismic reflection data from the region lie within regions of generally low amplitude and low frequency aeromagnetic anomaly, suggesting an even greater distribution. Unmetamorphosed Precambrian sedimentary rocks have been recovered from drill holes in southwest Ohio and adjacent northern Kentucky and southwesternmost Indiana. These Precambrian sedimentary rocks lie above and may be part of an underlying package of strongly layered rocks imaged on a short and shallow seismic profile in southwest Ohio. These Precambrian sedimentary rocks were originally viewed as part of a late Precambrian (Keweenawan?) rift; however, in light of Grenville foreland structures seen on the COCORP profile to the north in west central Ohio, these Precambrian strata may (1) be part of a heretofore unrecognized Grenville foreland basin, or (2) indicate that unmetamorphosed Precambrian sedimentary material may be an important constituent of the layered rocks observed on COCORP beneath southern Illinois and Indiana.

  10. Stratified precambrian rocks (sedimentary ) beneath the midcontinent region of the US

    SciTech Connect (OSTI)

    Hauser, E.C.

    1993-02-01

    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the US midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1--3 times as thick as the overlying Paleozoic cover, but the origin of this sequence and its ultimate lateral extent are unknown. However, the occurrences of Precambrian layered rocks on both the COCORP profiles and reprocessed industry seismic reflection data from the region lie within regions of generally low amplitude and low frequency aeromagnetic anomaly, suggesting an even greater distribution. Unmetamorphosed Precambrian sedimentary rocks have been recovered from drill holes in southwest Ohio and adjacent northern Kentucky and southwesternmost Indiana. These Precambrian sedimentary rocks lie above and may be part of an underlying package of strongly layered rocks imaged on a short and shallow seismic profile in southwest Ohio. These Precambrian sedimentary rocks were originally viewed as part of a late Precambrian (Keweenawan ) rift; however, in light of Grenville foreland structures seen on the COCORP profile to the north in west central Ohio, these Precambrian strata may (1) be part of a heretofore unrecognized Grenville foreland basin, or (2) indicate that unmetamorphosed Precambrian sedimentary material may be an important constituent of the layered rocks observed on COCORP beneath southern Illinois and Indiana.

  11. Compound and Elemental Analysis At Mt St Helens Area (Shevenell & Goff,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercial Jump(Thompson, 1985) | Open1995) | Open Energy

  12. Compound and Elemental Analysis At Mt St Helens Area (Shevenell & Goff,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercial Jump(Thompson, 1985) | Open1995) | Open

  13. Controlled Source Audio MT At Cove Fort Area - Liquid (Combs 2006) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewableGlobal L P Jump to: navigation,Energy

  14. Controlled Source Audio MT At Pilgrim Hot Springs Area (DOE GTP) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewableGlobal L P Jump to:

  15. Controlled Source Audio MT At Roosevelt Hot Springs Area (Combs 2006) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewableGlobal L P Jump to:Open Energy

  16. DC Resistivity Survey (Dipole-Dipole Array) At Mt Princeton Hot Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) Wind Farm JumpAlum|Cyclone PowerD1

  17. Melt Zones Beneath Five Volcanic Complexes in California: An Assessment of

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedical Area Total Egy Plt Inc

  18. Melt zones beneath five volcanic complexes in California: an assessment of

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedical Area Total Egy Plt Incshallow magma

  19. Experiment operations plan for the MT-4 experiment in the NRU reactor. [PWR

    SciTech Connect (OSTI)

    Russcher, G.E.; Wilson, C.L.; Parchen, L.J.; Marshall, R.K.; Hesson, G.M.; Webb, B.J.; Freshley, M.D.

    1983-06-01

    A series of thermal-hydraulic and cladding materials deformation experiments were conducted using light-water reactor fuel bundles as part of the Pacific Northwest Laboratory Loss-of-Coolant Accident (LOCA) Simulation Program. This report is the formal operations plan for MT-4 - the fourth materials deformation experiment conducted in the National Research Universal (NRU) reactor, Chalk River, Ontario, Canada. A major objective of MT-4 was to simulate a pressurized water reactor LOCA that could induce fuel rod cladding deformation and rupture due to a short-term adiabatic transient and a peak fuel cladding temperature of 1200K (1700/sup 0/F).

  20. Deep crustal sediment study: Widespread precambrian layered rocks (sedimentary ?) beneath the US midcontinent

    SciTech Connect (OSTI)

    Hauser, E.C. [Cornell Univ., Ithaca, NY (United States)

    1992-05-01

    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the U.S. midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1-3 times as thick as the overlying Paleozoic cover, but the origin of this sequence, its ultimate lateral extent, and resource potential are unknown. The objective of this project is to seek and reprocess seismic reflection data provided by industry from the U.S. midcontinent, and together with the COCORP deep reflection data and information from the scattered basement-penetrating drill holes, to begin to constrain the distribution, origin and evolution of this enigmatic layered sequence, particularly to evaluate if sedimentary material may be an important constituent (i.e., deep gas potential).

  1. Deep crustal sediment study: Widespread Precambrian layered rocks (Sedimentary ) beneath the US midcontinent

    SciTech Connect (OSTI)

    Hauser, E.C.

    1992-01-01

    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the US midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1--3 times as thick as the overlying Paleozoic cover, but the origin of this sequence, its ultimate lateral extent, and resource potential are unknown. The objective of this project is to seek and reprocess seismic reflection data provided by industry from the US midcontinent and together with the COCORP deep reflection data and information from the scattered basement-penetrating drill holes, to begin to constrain the distribution, origin and evolution of this enigmatic layered sequence, particularly to evaluate if sedimentary material may be an important constituent (i.e., deep gas potential).

  2. Deep crustal sediment study: Widespread Precambrian layered rocks (Sedimentary ?) beneath the US midcontinent

    SciTech Connect (OSTI)

    Hauser, E.C.

    1992-06-01

    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the US midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1--3 times as thick as the overlying Paleozoic cover, but the origin of this sequence, its ultimate lateral extent, and resource potential are unknown. The objective of this project is to seek and reprocess seismic reflection data provided by industry from the US midcontinent and together with the COCORP deep reflection data and information from the scattered basement-penetrating drill holes, to begin to constrain the distribution, origin and evolution of this enigmatic layered sequence, particularly to evaluate if sedimentary material may be an important constituent (i.e., deep gas potential).

  3. Characterization of Mg/Al butt joints welded by gas tungsten arc filling with Zn–29.5Al–0.5Ti filler metal

    SciTech Connect (OSTI)

    Liu, Fei; Wang, Hongyang; Liu, Liming, E-mail: liulm@dlut.edu.cn

    2014-04-01

    The multivariate alloying design of a welding joint is used in the Mg to Al welding process. A Zn–29.5Al–0.5Ti alloy is added as filler metal in gas tungsten arc welding of Mg and Al alloy joint based on the analysis of Al and Mg alloy characteristics. The tensile strength, microstructure, and phase constitution of the weld seam are analyzed. The formation of brittle and hard Mg–Al intermetallic compounds is avoided because of the effects of Zn, Al, and Ti. The average tensile strength of the joint is 148 MPa. Al{sub 3}Ti is first precipitated and functions as the nucleus of heterogeneous nucleation during solidification. Moreover, the precipitated Al–MgZn{sub 2} hypoeutectic phase exhibited a feather-like structure, which enhances the property of the Mg–Al dissimilar joint. - Highlights: • Mg alloy AZ31B and Al alloy 6061 are butt welded by fusion welding. • The effect of Ti in filler metal is investigated. • The formation of Mg–Al intermetallic compounds is avoided.

  4. Seismic structure and ultra-low velocity zones at the base of the Earth's mantle beneath Southeast Asia

    E-Print Network [OSTI]

    Wen, Lianxing

    Seismic structure and ultra-low velocity zones at the base of the Earth's mantle beneath Southeast t We constrain seismic structure and ultra-low velocity zones near the Earth's core-mantle boundary that the strong scatterers represent ultra-low velocity zones (ULVZs). We suggest that the seismic structure

  5. Soil nematode communities are ecologically more mature beneath late-than early-successional stage biological soil crusts

    E-Print Network [OSTI]

    Neher, Deborah A.

    Soil nematode communities are ecologically more mature beneath late- than early-successional stage biological soil crusts Brian J. Darby a,*, Deborah A. Neher a , Jayne Belnap b a Department of Plant and Soil; accepted 12 April 2006 Abstract Biological soil crusts are key mediators of carbon and nitrogen inputs

  6. Groundwatergroundwater Groundwater refers to the saturated layer of Earth's crust extending beneath the land surface to a depth

    E-Print Network [OSTI]

    Scott, Christopher

    Groundwatergroundwater Groundwater refers to the saturated layer of Earth's crust extending beneath. The widespread geographical distribution of groundwater and its usually high quality for human consumption and glaciers. The spatial occurrence and quality of groundwater are not uniform, which is the result of geology

  7. On soliton structure of higher order (2+1)-dimensional equations of a relaxing medium beneath high-frequency perturbations

    E-Print Network [OSTI]

    Kuetche Kamgang Victor; Bouetou Bouetou Thomas; Timoleon Crepin Kofane

    2007-09-27

    We investigate the soliton structure of novel (2+1)-dimensional nonlinear partial differential evolution(NLPDE) equations which may govern the behavior of a barothropic relaxing medium beneath high-frequency perturbations. As a result, we may derive some soliton solutions amongst which three typical pattern formations with loop-, cusp- and hump-like shapes.

  8. Seismic anisotropy in the wedge above the Philippine Sea slab beneath Kanto and southwest Japan derived from shear wave splitting

    E-Print Network [OSTI]

    Seno, Tetsuzo

    Seismic anisotropy in the wedge above the Philippine Sea slab beneath Kanto and southwest Japan generated by shallow and intermediate-depth earthquakes occurring in the subducting Philippine Sea are further divided into PHS1 and PHS2 (upper and lower planes of the double seismic zone in the Philippine

  9. Application of Gaussian-Beam Migration to Multiscale Imaging of the Lithosphere beneath the Hi-CLIMB Array in Tibet

    E-Print Network [OSTI]

    Nowack, Robert L.

    Application of Gaussian-Beam Migration to Multiscale Imaging of the Lithosphere beneath the Hi Tibet using data from the Hi-CLIMB experiment. We use teleseismic P waves from three groups of earthquakes to the southeast, northeast, and northwest of the Hi-CLIMB array, each within a narrow range

  10. Seismic imaging of deep low-velocity zone beneath the Dead Sea basin and transform fault: Implications for strain localization

    E-Print Network [OSTI]

    ten Brink, Uri S.

    consisted of two wide-angle seismic reflection and refraction profiles: a 280-km-long profile along vertical 4.5 Hz geophone, buried, and placed at intervals of 0.65­0.75 km along the profile. The data wereSeismic imaging of deep low-velocity zone beneath the Dead Sea basin and transform fault

  11. P-and S-Wave Receiver Function Images of Crustal Imbrication beneath the Cheyenne Belt in Southeast Wyoming

    E-Print Network [OSTI]

    Dueker, Ken

    P- and S-Wave Receiver Function Images of Crustal Imbrication beneath the Cheyenne Belt estimation to constrain the crustal structure across the Archean­Proterozoic Cheyenne belt suture of Proterozoic lower crust across the Chey- enne belt. Both P and S-wave receiver function images delineate

  12. Dr. Joseph A. Shaw Electrical & Computer Engineering Dept., Montana State University, Bozeman, MT 59717

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Dr. Joseph A. Shaw Electrical & Computer Engineering Dept., Montana State University, Bozeman, MT M.S. Electrical Engineering University of Utah 1987 B.S. Electrical Engineering University of Alaska Experience: 2008 ­ present Professor ­ Electrical & Computer Engineering (ECE) Department, Montana State

  13. Synchronous Dependency Insertion Grammars A Grammar Formalism for Syntax Based Statistical MT

    E-Print Network [OSTI]

    Synchronous Dependency Insertion Grammars A Grammar Formalism for Syntax Based Statistical MT Yuan formalism specifically designed for syntax-based sta- tistical machine translation. The synchro- nous between lan- guages, which many other synchronous grammars are unable to model. A Depend- ency Insertion

  14. MONTANA OUTDOORS 3130 MARCH APRIL 2014 FWP.MT.GOV/MTOUTDOORS Why mountain bluebirds

    E-Print Network [OSTI]

    Duckworth, Renée

    MONTANA OUTDOORS 3130 MARCH APRIL 2014 FWP.MT.GOV/MTOUTDOORS TURF WAR TWIST Why mountain bluebirds are good for this species in western Montana valleys but don't benefit, in the long run, mountain bluebirds. Although mountain blue- birds also lost nesting sites, they had evolved to also use habitats at higher

  15. Intermountain GIS Conference. April 1923 2010, Bozeman, MT. Patrick Lawrence, Maxwell BD, Rew LJ

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Intermountain GIS Conference. April 1923 2010, Bozeman, MT. Patrick Lawrence, Maxwell BD, Rew in the Python programming language, drawing on Python's builtin library, the RPy extension, ArcGIS geoprocessing and ArcGIS Server. As inputs, it accepts transect shapefiles, transect text files, or point

  16. MT3DMS, A Modular Three-Dimensional Multispecies Transport Model User Guide to the

    E-Print Network [OSTI]

    Zheng, Chunmiao

    .M. Cozzarelli, M.H. Lahvis, and B.A. Bekins. 1998. Ground water contamination by crude oil near Bemidji (LNAPL) contaminant through the unsaturated zone and the formation of an oil lens on the water tableMT3DMS, A Modular Three-Dimensional Multispecies Transport Model ­ User Guide to the Hydrocarbon

  17. Hybrid Rule-Based Example-Based MT: Feeding Apertium with Sub-sentential Translation Units

    E-Print Network [OSTI]

    Way, Andy

    Hybrid Rule-Based ­ Example-Based MT: Feeding Apertium with Sub-sentential Translation Units Felipe S´anchez-Mart´inez Mikel L. Forcada Andy Way Dept. Llenguatges i Sistemes Inform`atics Universitat University Dublin 9, Ireland {mforcada,away}@computing.dcu.ie Abstract This paper describes a hybrid machine

  18. Stress magnitude and its temporal variation at Mt. Asama Volcano, Japan, from seismic anisotropy and GPS

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Stress magnitude and its temporal variation at Mt. Asama Volcano, Japan, from seismic anisotropy stress Japan The Earth's stress regime is fundamental to its physical processes, yet few methods can determine absolute stress, and measurements of temporal variations in stress are controversial. The Global

  19. Some Effects of Mt. St. Helens Volcanic Ash on Juvenile Salmon Smolts

    E-Print Network [OSTI]

    Some Effects of Mt. St. Helens Volcanic Ash on Juvenile Salmon Smolts TIMOTHY W. NEWCOMB and THOMAS. Helens, which was completely decimated with vol- canic ash and mud slides. Heavy sediment loads smolts were exposed to various concentrations ofairborne volcanic ash from the 18 May 1980 eruption

  20. High-latitude vegetation dynamics: 850 years of vegetation development on Mt Hekla, Iceland 

    E-Print Network [OSTI]

    Cutler, Nick

    2008-01-01

    on Mt Hekla in south-central Iceland. The chronosequence approach was used to infer 850 years of vegetation development from a suite of 14 lava flows (five of which had been disturbed by the deposition of volcanic tephra). The thesis is organised around...

  1. Geophys. 1. R. astr. Soc. (1987),89,7-18 MT and reflection: an essential combination

    E-Print Network [OSTI]

    Jones, Alan G.

    1987-01-01

    ) studies and seismic reflection profiles conducted. Unfortunately, over many more regions the seismic of the magnetotelluric (MT) technique as having a vertical resolution equivalent to the seismic refraction method, in almost every case, be made wherever a seismic reflection survey is undertaken. Examples are shown from

  2. Distribution of radionuclides and water in Bandelier Tuff beneath a former Los Alamos liquid waste disposal site after 33 years

    SciTech Connect (OSTI)

    Nyhan, J.W.; Drennon, B.J.; Abeele, W.V.; Trujillo, G.; Herrera, W.J.; Wheeler, M.L.; Booth, J.W.; Purtymun, W.D.

    1984-07-01

    The distribution of radionuclides and water in Bandelier Tuff beneath a former liquid waste disposal site at Los Alamos was investigated. The waste use history of the site was described, as well as several pertinent laboratory and field studies of water and radionuclide migration in Bandelier Tuff. The distribution of plutonium, /sup 241/Am, and water was determined in a set of about 800 tuff samples collected to sampling depths of 30 m beneath two absorption beds. These data were then related to site geohydrologic data. Water and radionuclide concentrations found after 33 years were compared with the results of similar studies previously performed at this site, and the implications of these comparisons are discussed relative to nuclear waste management. 19 references, 6 figures, 4 tables.

  3. Hazard assessment in geothermal exploration: The case of Mt. Parker, Southern Philippines

    SciTech Connect (OSTI)

    Delfin, F.G. Jr.; Salonga, N.D.; Bayon, F.E.B.

    1996-12-31

    Hazard assessment of the Mt. Parker geothermal prospect, conducted in parallel with the surface exploration from 1992 to 1994, was undertaken to determine the long-term suitability of the prospect for development. By comparison with other acidic magmatic-hydrothermal systems in the Philippines, the geochemical data indicated minimal input of acidic magmatic fluids into Mt. Parker`s hydrothermal system. This system was regarded to be a neutral-pH and high-enthalpy chloride reservoir with temperature of at least 200-250{degrees}C. These favorable geochemical indications contrasted sharply with the C-14 and volcanological data indicating a shallow magmatic body with a potential for future eruption. This hazard led PNOC EDC to discontinue the survey and abandon the prospect by late 1994. On September 6, 1995, a flashflood of non-volcanic origin from the caldera lake killed nearly 100 people on the volcano`s northwestern flank.

  4. GEOPHYSICAL RESEARCH LETTERS, VOL. 28, NO. 13,PAGES 2485-2488, JULY 1,2001 Tectospheric structure beneath southern Africa

    E-Print Network [OSTI]

    Gao, Stephen Shangxing

    beneath southern Africa D. E. James,1M. J. Fouch,1'2J. C. VanDecar, KaapvaalSeismicGroup5 S. van der Lee4 and Abstract. P-wave and S-wavedelay times from the broad- band data of the southern Africa seismicexperiment southern Africa. High velocity mantle roots appear to extend to depths of at least 250 km, and locally

  5. Data Package for Past and Current Groundwater Flow and Contamination beneath Single-Shell Tank Waste Management Areas

    SciTech Connect (OSTI)

    Horton, Duane G.

    2007-03-16

    This appendix summarizes historic and recent groundwater data collected from the uppermost aquifer beneath the 200 East and 200 West Areas. Although the area of interest is the Hanford Site Central Plateau, most of the information discussed in this appendix is at the scale of individual single-shell tank waste management areas. This is because the geologic, and thus the hydraulic, properties and the geochemical properties (i.e., groundwater composition) are different in different parts of the Central Plateau.

  6. Rock Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: Energy Resources JumpMt Ranier Area (Frank, 1995)

  7. EC305 Problem Set 1 1. Let x(t) = m(t) cos 2fct, where m(t) is a real lowpass signal with bandwidth W and

    E-Print Network [OSTI]

    Bhashyam, Srikrishna

    EC305 Problem Set 1 1. Let x(t) = m(t) cos 2fct, where m(t) is a real lowpass signal with bandwidth a bandpass signal x(t) = m1(t) cos 2fct - m2(t) sin 2fct. (a) Determine the in-phase and quadrature components of this signal when the local os- cillators used have a phase offset of , i.e., they are cos (2fct

  8. Mill Creek Summit Lovejoy Buttes

    E-Print Network [OSTI]

    -CDMG 10% in 50 yr WGCE 50% in 1000 yr Ward 2% in 50 yr Stirling & Wesnousky 2% in 50 yr in Brune (1996 Summit, previously classified as Engineering Rock "A" (>760 m/s 30-m average shear-wave velocity

  9. Gordon Butte | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlantMagma EnergyGoogle lends support to the

  10. Tidally dominated depositional environment for the Mt. Simon Sandstone in central Illinois

    SciTech Connect (OSTI)

    Sargent, M.L.; Lasemi, Z. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-03-01

    Several hundred feet of core from the upper part of the Mt. Simon in central Illinois have been examined macroscopically. Grain sizes and their systematics, bedding characteristics, sedimentary structures, and relationships among beds show that the upper Mt. Simon Sandstone is composed of a series of fining-upward cycles up to 10 m (30 feet) thick. A typical cycle consists, in ascending order, of a sandy subtidal facies, a mixed sand and mud intertidal-flat facies, and a muddy upper tidal-flat facies upward through the succession, the maximum and average grain size becomes progressively finer and the cycles thinner. The lower sandstone of each cycle contains beds that are massive to cross bedded and cross laminated; some beds show scoured reactivation surfaces. A few cycles contain a middle unit characterized by flaser and lenticular bedding and abundant mudcracks. Mudcracks also are common in the shale beds at the top of each cycle. Sedimentary structures such as reactivation surfaces, flaser and lenticular bedding, and mudcracks suggest that these cycles were deposited in peritidal environments. The presence of Skolithos in some cycles suggests very shallow marine conditions. The within-cycle upward fining is caused by regression or progradation that reflects a progressive decrease in current velocity from subtidal to intertidal parts of the tidal flat. Frequent flooding of the tidal flat resulted in repeated fining-upward cycles within the upper part of the Mt. Simon Sandstone.

  11. Application of Remote Sensing Technology and Ecological Modeling of Forest Carbon Stocks in Mt. Apo Natural Park, Philippines 

    E-Print Network [OSTI]

    Leal, Ligaya Rubas

    2015-01-23

    This dissertation work explored the application of remote sensing technology for the assessment of forest carbon storage in Mt. Apo Natural Park. Biomass estimation is traditionally conducted using destructive sampling with high levels...

  12. Sequence Stratigraphy and Detrital Zircon Geochronology of Middle-Late Ordovician Mt. Wilson Quartzite, British Columbia, Canada 

    E-Print Network [OSTI]

    Hutto, Andrew Paul

    2012-07-16

    STRATIGRAPHY AND DETRITAL ZIRCON GEOCHRONOLOGY OF MIDDLE-LATE ORDOVICIAN MT. WILSON QUARTZITE, BRITISH COLUMBIA CANADA A Thesis by ANDREW PAUL HUTTO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 2012 Major Subject: Geology Sequence Stratigraphy and Detrital Zircon Geochronology of Middle-Late Ordovician Mt. Wilson...

  13. Review and model-based analysis of factors influencing soil carbon sequestration beneath switchgrass (Panicum virgatum)

    SciTech Connect (OSTI)

    Garten Jr, Charles T [ORNL

    2012-01-01

    Abstract. A simple, multi-compartment model was developed to predict soil carbon sequestration beneath switchgrass (Panicum virgatum) plantations in the southeastern United States. Soil carbon sequestration is an important component of sustainable switchgrass production for bioenergy because soil organic matter promotes water retention, nutrient supply, and soil properties that minimize erosion. A literature review was included for the purpose of model parameterization and five model-based experiments were conducted to predict how changes in environment (temperature) or crop management (cultivar, fertilization, and harvest efficiency) might affect soil carbon storage and nitrogen losses. Predictions of soil carbon sequestration were most sensitive to changes in annual biomass production, the ratio of belowground to aboveground biomass production, and temperature. Predictions of ecosystem nitrogen loss were most sensitive to changes in annual biomass production, the soil C/N ratio, and nitrogen remobilization efficiency (i.e., nitrogen cycling within the plant). Model-based experiments indicated that 1) soil carbon sequestration can be highly site specific depending on initial soil carbon stocks, temperature, and the amount of annual nitrogen fertilization, 2) response curves describing switchgrass yield as a function of annual nitrogen fertilization were important to model predictions, 3) plant improvements leading to greater belowground partitioning of biomass could increase soil carbon sequestration, 4) improvements in harvest efficiency have no indicated effects on soil carbon and nitrogen, but improve cumulative biomass yield, and 5) plant improvements that reduce organic matter decomposition rates could also increase soil carbon sequestration, even though the latter may not be consistent with desired improvements in plant tissue chemistry to maximize yields of cellulosic ethanol.

  14. Havre, MT Natural Gas Pipeline Imports From Canada (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillion Cubic Feet) Havre, MT Natural Gas Pipeline

  15. Structure of the Crust beneath Cameroon, West Africa, from the Joint Inversion of Rayleigh Wave Group Velocities and Receiver Functions

    SciTech Connect (OSTI)

    Tokam, A K; Tabod, C T; Nyblade, A A; Julia, J; Wiens, D A; Pasyanos, M E

    2010-02-18

    The Cameroon Volcanic Line (CVL) is a major geologic feature that cuts across Cameroon from the south west to the north east. It is a unique volcanic lineament which has both an oceanic and a continental sector and consists of a chain of Tertiary to Recent, generally alkaline volcanoes stretching from the Atlantic island of Pagalu to the interior of the African continent. The oceanic sector includes the islands of Bioko (formerly Fernando Po) and Sao Tome and Principe while the continental sector includes the Etinde, Cameroon, Manengouba, Bamboutos, Oku and Mandara mountains, as well as the Adamawa and Biu Plateaus. In addition to the CVL, three other major tectonic features characterize the region: the Benue Trough located northwest of the CVL, the Central African Shear Zone (CASZ), trending N70 degrees E, roughly parallel to the CVL, and the Congo Craton in southern Cameroon. The origin of the CVL is still the subject of considerable debate, with both plume and non-plume models invoked by many authors (e.g., Deruelle et al., 2007; Ngako et al, 2006; Ritsema and Allen, 2003; Burke, 2001; Ebinger and Sleep, 1998; Lee et al, 1994; Dorbath et al., 1986; Fairhead and Binks, 1991; King and Ritsema, 2000; Reusch et al., 2010). Crustal structure beneath Cameroon has been investigated previously using active (Stuart et al, 1985) and passive (Dorbath et al., 1986; Tabod, 1991; Tabod et al, 1992; Plomerova et al, 1993) source seismic data, revealing a crust about 33 km thick at the south-western end of the continental portion of the CVL (Tabod, 1991) and the Adamawa Plateau, and thinner crust (23 km thick) beneath the Garoua Rift in the north (Stuart et al, 1985) (Figure 1). Estimates of crustal thickness obtained using gravity data show similar variations between the Garoua rift, Adamawa Plateau, and southern part of the CVL (Poudjom et al., 1995; Nnange et al., 2000). In this study, we investigate further crustal structure beneath the CVL and the adjacent regions in Cameroon using 1-D shear wave velocity models obtained from the joint inversion of Rayleigh wave group velocities and P-receiver functions for 32 broadband seismic stations. From the 1-D shear wave velocity models, we obtain new insights into the composition and structure of the crust and upper mantle across Cameroon. After briefly reviewing the geological framework of Cameroon, we describe the data and the joint inversion method, and then interpret variations in crustal structure found beneath Cameroon in terms of the tectonic history of the region.

  16. A Serendipitous, Long-Term Infiltration Experiment: Water and Tritium Circulation Beneath the CAMBRIC Ditch at the Nevada Test Site

    SciTech Connect (OSTI)

    Maxwell, R M; Tompson, A B; Kollet, S J

    2008-11-20

    Underground nuclear weapons testing at the Nevada Test Site introduced numerous radionuclides that may be used to characterize subsurface hydrologic transport processes in arid climates. A sixteen year pumping experiment designed to examine radionuclide migration away from the CAMBRIC nuclear test, conducted in groundwater beneath Frenchman Flat in 1965, gave rise to an unintended second experiment involving radionuclide infiltration through the vadose zone, as induced by seepage of pumping effluents beneath an unlined discharge trench. The combined experiments have been reanalyzed using a detailed, three-dimensional numerical model of transient, variably saturated flow and mass transport, tailored specifically for large scale and efficient calculations. Simulations have been used to estimate radionuclide travel and residence times in various parts of the system for comparison with observations in wells. Model predictions of mass transport were able to clearly demonstrate radionuclide recycling behavior between the ditch and pumping well previously suggested by isotopic age dating information; match travel time estimates for radionuclides moving between the ditch, the water table, and monitoring wells; and provide more realistic ways in which to interpret the pumping well elution curves. Collectively, the results illustrate the utility of integrating detailed numerical modeling with diverse observational data in developing accurate interpretations and forecasts of contaminant migration processes.

  17. Carbon dioxide and helium emissions from a reservoir of magmatic gas beneath Mammoth Mountain, California

    SciTech Connect (OSTI)

    Sorey, M.L.; Evans, W.C. [U.S. Geological Survey, Menlo Park, California (United States)] Kennedy, B.M. [Lawrence Berkeley National Laboratory, Berkeley, California (United States)] Farrar, C.D. [U.S. Geological Survey, Carnelian Bay, California (United States)] Hainsworth, L.J. [Chemistry Department, Emory and Henry College, Emory, Virginia (United States)] Hausback, B. [Geology Department, California State University, Sacramento

    1998-07-01

    Carbon dioxide and helium with isotopic compositions indicative of a magmatic source ({delta}thinsp{sup 13}C={minus}4.5 to {minus}5{per_thousand}, {sup 3}He/{sup 4}He=4.5 to 6.7 R{sub A}) are discharging at anomalous rates from Mammoth Mountain, on the southwestern rim of the Long Valley caldera in eastern California. The gas is released mainly as diffuse emissions from normal-temperature soils, but some gas issues from steam vents or leaves the mountain dissolved in cold groundwater. The rate of gas discharge increased significantly in 1989 following a 6-month period of persistent earthquake swarms and associated strain and ground deformation that has been attributed to dike emplacement beneath the mountain. An increase in the magmatic component of helium discharging in a steam vent on the north side of Mammoth Mountain, which also began in 1989, has persisted until the present time. Anomalous CO{sub 2} discharge from soils first occurred during the winter of 1990 and was followed by observations of several areas of tree kill and/or heavier than normal needlecast the following summer. Subsequent measurements have confirmed that the tree kills arc associated with CO{sub 2} concentrations of 30{endash}90{percent} in soil gas and gas flow rates of up to 31,000 gthinspm{sup {minus}2}thinspd{sup {minus}1} at the soil surface. Each of the tree-kill areas and one area of CO{sub 2} discharge above tree line occurs in close proximity to one or more normal faults, which may provide conduits for gas flow from depth. We estimate that the total diffuse CO{sub 2} flux from the mountain is approximately 520 t/d, and that 30{endash}50 t/d of CO{sub 2} are dissolved in cold groundwater flowing off the flanks of the mountain. Isotopic and chemical analyses of soil and fumarolic gas demonstrate a remarkable homogeneity in composition, suggesting that the CO{sub 2} and associated helium and excess nitrogen may be derived from a common gas reservoir whose source is associated with some combination of magmatic degassing and thermal metamorphism of metasedimentary rocks. Furthermore, N{sub 2}/Ar ratios and nitrogen isotopic values indicate that the Mammoth Mountain gases are derived from sources separate from those that supply gas to the hydrothermal system within the Long Valley caldera. Various data suggest that the Mammoth Mountain gas reservoir is a large, low-temperature cap over an isolated hydrothermal system, that it predates the 1989 intrusion, and that it could remain a source of gas discharge for some time. {copyright} 1998 American Geophysical Union

  18. MT1-MMP promotes cell growth and ERK activation through c-Src and paxillin in three-dimensional collagen matrix

    SciTech Connect (OSTI)

    Takino, Takahisa; Tsuge, Hisashi; Ozawa, Terumasa [Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)] [Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Sato, Hiroshi, E-mail: vhsato@kenroku.kanazawa-u.ac.jp [Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)] [Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)

    2010-06-11

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21{sup WAF1} and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin {alpha}{sub v}{beta}{sub 3} were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.

  19. Uranium hydrogeochemical and stream sediment reconnaissance of the Mt. Hayes NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Not Available

    1981-05-01

    Results of a hydrogeochemical and stream sediment reconnaissance of the Mt. Hayes quadrangle, Alaska, are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and Laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A to D describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment, lake sediment, stream water, lake water, and ground water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report.

  20. EIS-0092: Conversion to Coal, Holyoke Water Power Company, Mt. Tom Generating Station Unit 1 Holyoke, Hampden County, Massachusetts

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration prepared this statement to assess the environmental impacts of prohibiting Unit 1 of the Mt. Tom Generation Station Unit 1 from using either natural gas or petroleum products as a primary energy source, which would result in the utility burning low-sulfur coal.

  1. The Mechanism of Inhibition of Antibody-based Inhibitors of Membrane-type Serine Protease 1 (MT-SP1)

    E-Print Network [OSTI]

    Craik, Charles S.

    The Mechanism of Inhibition of Antibody-based Inhibitors of Membrane-type Serine Protease 1 (MT-SP1, 600 16th St. Genentech Hall, San Francisco, CA 94143, USA The mechanisms of inhibition of two novel sc-SP1 at low pH, and is a standard mechanism inhibitor of the protease. The mechanisms of inhibition

  2. Mass transfer during drying of colloidal film beneath a patterned mask that contains a hexagonal array of holes

    E-Print Network [OSTI]

    Tarasevich, Yuri Yu

    2015-01-01

    We simulated an experiment in which a thin colloidal sessile droplet is allowed to dry out on a horizontal hydrophilic surface when a mask just above the droplet predominantly allows evaporation from the droplet free surface directly beneath the holes in the mask [Harris D J, Hu H, Conrad J C and Lewis J A 2007 \\textit{Phys. Rev. Lett.} \\textbf{98} 148301]. We considered one particular case when centre-to-centre spacing between the holes is much less than the drop diameter. In our model, advection, diffusion, and sedimentation were taken into account. FlexPDE was utilized to solve an advection-diffusion equation using the finite element method. The simulation demonstrated that the colloidal particles accumulate below the holes as the solvent evaporates. Diffusion can reduce this accumulation.

  3. F A S T -T R A C K P A P E R The seismic anomaly beneath Iceland extends down to the mantle

    E-Print Network [OSTI]

    Foulger, G. R.

    of the upper mantle yet performed in Iceland, which reveals details of the morphology, temperature and melt distribution beneath the Iceland hotspot and the adjacent oceanic plate boundaries. T H E T O M O G R A P H Y E in size. Timing was provided by GPS, and the data were downloaded to SUN workstations. We hand

  4. Interannual Changes in Seasonal Ground Freezing and Near-surface Heat Flow Beneath Bottom-fast Ice in the Near-shore Zone, Mackenzie Delta, NWT, Canada

    E-Print Network [OSTI]

    Moorman, Brian

    Interannual Changes in Seasonal Ground Freezing and Near-surface Heat Flow Beneath Bottom-fast Ice Resources Canada, Dartmouth, Nova Scotia, Canada ABSTRACT Interannual changes in seasonal ground freezing. KEY WORDS: seasonal ground freezing; permafrost; bottom-fast ice; Mackenzie Delta INTRODUCTION Arctic

  5. F A S T -T R A C K P A P E R The seismic anomaly beneath Iceland extends down to the mantle

    E-Print Network [OSTI]

    Allen, Richard M.

    F A S T - T R A C K P A P E R The seismic anomaly beneath Iceland extends down to the mantle, NJ 08544±5807, USA 4 Meteorological Of®ce of Iceland, Bustadavegi 9, Reykjavik, Iceland 5 National Energy Authority, Grensasvegi 9, Reykjavik, Iceland Accepted 2000 June 15. Received 2000 June 8

  6. Applications of stable isotopes in hydrological studies of Mt. Apo geothermal field, Philippines

    SciTech Connect (OSTI)

    Salonga, N.D.; Aragon, G.M.; Nogara, J.B.; Sambrano, B.G.

    1996-12-31

    The local precipitation in Mt. Apo is depleted of heavy isotopes owing to high elevation and landward location of the field. Rainwaters infiltrate the shallow grounds, circulate in short distances with almost no interaction with the host bed rocks, and effuse in the surface as cold springs. Lakes and rivers are affected by surface evaporation while the acid SO{sub 4} springs are affected by both evaporation and steam-heating. Only the neutral-pH Cl springs have the signature of the deep thermal fluids. The parent fluids of the deep thermal brine contain Cl of 4,800 to 5,000 mg/kg, {delta}{sup 18}O of -4.62 to -4.13 {per_thousand} and {delta}{sup 2}H of -60.0 to -57.8 {per_thousand}. Inside the Sandawa Collapse, boiling of the parent fluids resulted in a two-phase reservoir with lighter isotope contents. The thermal fluids laterally flow towards the west where they are affected by cooling and mixing of cold waters. Deep water recharge has {delta}{sup 18}O of -10.00 {per_thousand} and {delta}{sup 2}H = -61.20 {per_thousand} which come from the upper slopes of Sandawa Collapse (1580-1700 mASL).

  7. Four-year prospective study of the respiratory effects of volcanic ash from Mt. St. Helens

    SciTech Connect (OSTI)

    Buist, A.S.; Vollmer, W.M.; Johnson, L.R.; Bernstein, R.S.; McCamant, L.E.

    1986-04-01

    This report describes the 4-yr follow-up of 712 loggers exposed over an extended period to varying levels of fresh volcanic ash from the 1980 eruptions of Mt. St. Helens. Concerns related to the irritant effect the ash might have on the airways and also to its fibrogenic potential if exposures were intense and continued over many years. Our subjects were divided into 3 groups: high, low, and no exposure. Baseline testing was begun in June 1980, 1 month after the major eruption, and follow-up testing continued on an annual basis through 1984; 88% of the loggers have been tested at least 3 times. Analysis of lung function data showed that a significant, exposure-related decline in FEV1 occurred during the first year after the eruption. The decline was short-lived, however, and by 1984 the differences between exposure groups were no longer significant. Self-reported symptoms of cough, phlegm, and wheeze showed a similar pattern. No ash-related changes were seen in chest roentgenograms taken in 1980 and in 1984. Our findings are consistent with the hypothesis that the inhaled ash caused mucus hypersecretion and/or airway inflammation that reversed when the exposure levels decreased. The ash levels to which the loggers were exposed were low compared with permissible occupational levels for nuisance dusts, but generally higher than the total suspended particulate levels permissible in ambient air.

  8. CO2 flood tests on whole core samples of the Mt. Simon sandstone, Illinois Basin

    SciTech Connect (OSTI)

    O'Connor, William K.; Rush, Gilbert E.

    2005-09-01

    Geological sequestration of CO2, whether by enhanced oil recovery (EOR), coal-bed methane (CBM) recovery, or saline aquifer injection is a promising near-term sequestration methodology. While tremendous experience exists for EOR, and CBM recovery has been demonstrated in existing fields, saline aquifer injection studies have only recently been initiated. Studies evaluating the availability of saline aquifers suitable for CO2 injection show great potential, however, the long-term fate of the CO2 injected into these ancient aqueous systems is still uncertain. For the subject study, a series of laboratory-scale CO2 flood tests were conducted on whole core samples of the Mt. Simon sandstone from the Illinois Basin. By conducting these tests on whole core samples rather than crushed core, an evaluation of the impact of the CO2 flood on the rock mechanics properties as well as the geochemistry of the core and brine solution has been possible. This empirical data could provide a valuable resource for the validation of reservoir models under development for these engineered CO2 systems.

  9. Assignment 4 BS4a Actuarial Science Oxford MT 2011 IX A.4 Inflation, taxation and project appraisal

    E-Print Network [OSTI]

    Winkel, Matthias

    Assignment 4 ­ BS4a Actuarial Science ­ Oxford MT 2011 IX A.4 Inflation, taxation and project are indexed by reference to the value of a retail price index with a time lag of 8 months. The retail price index value in September 1996 was Q(-8/12) = 200 and in March 1997 was Q(-2/12) = 206. The issue price

  10. Airflow-terrain interactions through a mountain gap, with an example of eolian activity beneath an atmospheric hydraulic jump

    SciTech Connect (OSTI)

    Gaylord, D.R.; Dawson, P.J.

    1987-09-01

    The integration of atmospheric soundings from a fully instrumented aircraft with detailed sedimentary and geomorphic analyses of eolian features in the Ferris dune field of south-central Wyoming lends insight into the manner in which topography interacts with airflow to modify eolian activity. Topographically modified airflow results in zones of airflow deceleration, acceleration, and enhanced atmospheric turbulence, all of which influence the surface morphology and sedimentology. Extreme lateral confluence of prevailing airflow produces accelerated, unidirectional winds. These winds correlate with unusually continuous and elongate parabolic dunes that extend into a mountain gap (Windy Gap). Persistently heightened winds produced at the entrance to Windy Gap have resulted in a concentration of active sand dunes that lack slipfaces. Common development of a strongly amplified atmospheric wave analogous to a hydraulic jump in the gap contributes to the formation of a variety of eolian features that mantle the surface of Windy Gap and the Ferris dune field tail. Heightened, unidirectional winds in this zone promote grain-size segregation, the formation of elongated and aligned sand drifts, climbing and falling dunes, elongate scour streaks, and parabolic dunes that have low-angle (< 20/sup 0/) cross-stratification. Deflation of bedrock and loose sediment has been enhanced in the zone of maximum turbulence beneath the hydraulic jump.

  11. Crustal structure beneath RSTN stations inferred from teleseismic P-waveforms: preliminary results at RSCP, RSSD, and RSNY

    SciTech Connect (OSTI)

    Owens, T.J.; Taylor, S.R.; Zandt, G.

    1983-08-08

    We have modeled teleseismic P-waveforms recorded at three Regional Seismic Test Network (RSTN) stations (RSCP, Cumberland Plateau Observatory, TN; RSSD, Black Hills, SD; RSNY, Adirondack Mtns, NY) to determine local crustal structures. After source effects are removed by deconvolution, seismograms from events clustered in both distance and back azimuth were stacked to enhance the signal and improve confidence in interpreting converted phases at each station. Preliminary analysis indicates that seismograms from RSCP and RSNY generally exhibit less well-developed converted and reflected phases from the crust-mantle boundary than are observed at RSSD and LLNL broadband station ELK (Elko, NV). These differences are likely due to a gradational crust-mantle boundary in the eastern United States. Comparisons of seismograms recorded at the RSTN stations indicate that the waveforms at RSSD and RSCP are much more complex than waveforms from RSNY. This complexity is largely due to low-velocity sedimentary layers at the RSSD and RSCP sites, whereas RSNY is located directly on crystalline basement. At RSCP, we find a crustal thickness of 41 km, which agrees with early refraction profiles in the area. Our data require a 10 km thick transition zone between the crust and upper mantle beneath RSCP. The crustal thickness determined at RSSD is 47 to 50 km. 14 references, 10 figures, 1 table.

  12. Dark Matter Particle Spectroscopy at the LHC: Generalizing M(T2) to Asymmetric Event Topologies

    SciTech Connect (OSTI)

    Konar, Partha; Kong, Kyoungchul; Matchev, Konstantin T.; Park, Myeonghun; /Florida U.

    2012-04-03

    We consider SUSY-like missing energy events at hadron colliders and critically examine the common assumption that the missing energy is the result of two identical missing particles. In order to experimentally test this hypothesis, we generalize the subsystem M{sub T2} variable to the case of asymmetric event topologies, where the two SUSY decay chains terminate in different 'children' particles. In this more general approach, the endpoint M{sub T2(max)} of the M{sub T2} distribution now gives the mass {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}) of the parent particles as a function of two input children masses {tilde M}{sub c}{sup (a)} and {tilde M}{sub c}{sup (b)}. We propose two methods for an independent determination of the individual children masses M{sub c}{sup (a)} and M{sub c}{sup (b)}. First, in the presence of upstream transverse momentum PUTM the corresponding function {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}, P{sub UTM}) is independent of P{sub UTM} at precisely the right values of the children masses. Second, the previously discussed MT2 'kink' is now generalized to a 'ridge' on the 2-dimensional surface {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}). As we show in several examples, quite often there is a special point along that ridge which marks the true values of the children masses. Our results allow collider experiments to probe a multi-component dark matter sector directly and without any theoretical prejudice.

  13. Uranium hydrogeochemical and stream-sediment reconnaissance of the Mt. Michelson NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.

    1982-04-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Mt. Michelson NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

  14. Real-Space Microscopic Electrical Imaging of n+-p Junction Beneath Front-Side Ag Contact of Multicrystalline Si Solar Cells

    SciTech Connect (OSTI)

    Jiang, C. S.; Li, Z. G.; Moutinho, H. R.; Liang, L.; Ionkin, A.; Al-Jassim, M. M.

    2012-04-15

    We investigated the quality of the n+-p diffused junction beneath the front-side Ag contact of multicrystalline Si solar cells by characterizing the uniformities of electrostatic potential and doping concentration across the junction using the atomic force microscopy-based electrical imaging techniques of scanning Kelvin probe force microscopy and scanning capacitance microscopy. We found that Ag screen-printing metallization fired at the over-fire temperature significantly degrades the junction uniformity beneath the Ag contact grid, whereas metallization at the optimal- and under-fire temperatures does not cause degradation. Ag crystallites with widely distributed sizes were found at the Ag-grid/emitter-Si interface of the over-fired cell, which is associated with the junction damage beneath the Ag grid. Large crystallites protrude into Si deeper than the junction depth. However, the junction was not broken down; instead, it was reformed on the entire front of the crystallite/Si interface. We propose a mechanism of junction-quality degradation, based on emitter Si melting at the temperature around the Ag-Si eutectic point during firing, and subsequent re-crystallization with incorporation of Ag and other impurities and with formation of crystallographic defects during quenching. The effect of this junction damage on solar cell performance is discussed.

  15. MRI of the lung using hyperpolarized He-3 at very low magnetic field (3 mT)

    E-Print Network [OSTI]

    Bidinosti, C P; Tastevin, G; Vignaud, A; Nacher, P J

    2004-01-01

    Optical pumping of He-3 produces large (hyper) nuclear-spin polarizations independent of the magnetic resonance imaging (MRI) field strength. This allows lung MRI to be performed at reduced fields with many associated benefits, such as lower tissue susceptibility gradients and decreased power absorption rates. Here we present results of 2D imaging as well as accurate 1D gas diffusion mapping of the human lung using He-3 at very low field (3 mT). Furthermore, measurements of transverse relaxation in zero applied gradient are shown to accurately track pulmonary oxygen partial pressure, opening the way for novel imaging sequences.

  16. A polymorphism in metallothionein 1A (MT1A) is associated with cadmium-related excretion of urinary beta 2?microglobulin

    SciTech Connect (OSTI)

    Lei, Lijian; Department of Epidemiology, School of Public Health, Shanxi Medical University, Shanxi ; Chang, Xiuli; Rentschler, Gerda; Tian, Liting; Zhu, Guoying; Chen, Xiao; Jin, Taiyi; Broberg, Karin

    2012-12-15

    Objectives: Cadmium (Cd) toxicity of the kidney varies between individuals despite similar exposure levels. In humans Cd is mainly bound to metallothioneins (MT), which scavenge its toxic effects. Here we analyzed whether polymorphisms in MT genes MT1A and MT2A influence Cd-related kidney damage. Methods: In a cross-sectional study N = 512 volunteers were selected from three areas in South-Eastern China, which to varying degree were Cd-polluted from a smelter (control area [median Cd in urine U-Cd = 2.67 ?g/L], moderately [U-Cd = 4.23 ?g/L] and highly [U-Cd = 9.13 ?g/L] polluted areas). U-Cd and blood Cd (B-Cd) concentrations were measured by graphite-furnace atomic absorption spectrometry. MT1A rs11076161 (G/A), MT2A rs10636 (G/C) and MT2A rs28366003 (A/G) were determined by Taqman assays; urinary N-Acetyl-beta-(D)-Glucosaminidase (UNAG) by spectrometry, and urinary ?2-microglobulin (UB2M) by ELISA. Results: Higher B-Cd (natural log-transformed) with increasing number of MT1A rs11076161 A-alleles was found in the highly polluted group (p-value trend = 0.033; all p-values adjusted for age, sex, and smoking). In a linear model a significant interaction between rs11076161 genotype and B-Cd was found for UNAG (p = 0.001) and UB2M concentrations (p = 0.001). Carriers of the rs11076161 AA genotype showed steeper slopes for the associations between Cd in blood and natural log-transformed UB2M (? = 1.2, 95% CI 0.72–1.6) compared to GG carriers (? = 0.30, 95% CI 0.15–0.45). Also for UNAG (natural log-transformed) carriers of the AA genotype had steeper slopes (? = 0.55, 95% CI 0.27–0.84) compared to GG carriers (? = 0.018, 95% CI ? 0.79–0.11). Conclusions: MT1A rs11076161 was associated with B-Cd concentrations and Cd-induced kidney toxicity at high exposure levels. -- Highlights: ? Cadmium is toxic to the kidney but the susceptibility differs between individuals. ? The toxic effect of cadmium is scavenged by metallothioneins. ? A common variant of metallothionein 1A was genotyped in 512 cadmium exposed humans. ? Variant carriers of this polymorphism showed more kidney damage from cadmium. ? The frequency of these variants needs to be taken into account in risk assessment.

  17. LOCA simulation in the national research universal reactor program: postirradiation examination results for the third materials experiment (MT-3)

    SciTech Connect (OSTI)

    Rausch, W.N.

    1984-04-01

    A series of in-reactor experiments were conducted using full-length 32-rod pressurized water reactor (PWR) fuel bundles as part of the Loss-of-Coolant Accident (LOCA) Simulation Program. The third materials experiment (MT-3) was the sixth in the series of thermal-hydraulic and materials deformation/rutpure experiments conducted in the National Research Universal (NRU) reactor, Chalk River, Ontario, Canada. The main objective of the experiment was to evaluate ballooning and rupture during active two-phase cooling in the temperature range from 1400 to 1500/sup 0/F (1030 to 1090 K). The 12 test rods in the center of the 32-rod bundle were initially pressurized to 550 psi (3.8 MPa) to insure rupture in the correct temperature range. All 12 of the rods ruptured, with an average peak bundle strain of approx. 55%. The UKAEA also funded destructive postirradiation examination (PIE) of several of the ruptured rods from the MT-3 experiment. This report describes the work performed and presents the PIE results. Information obtained during the PIE included cladding thickness measurements metallography, and particle size analysis of the cracked and broken fuel pellets.

  18. Searches for supersymmetry using the MT2 variable in hadronic events produced in pp collisions at 8 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, V.

    2015-05-15

    Searches for supersymmetry (SUSY) are performed using a sample of hadronic events produced in 8 TeV pp collisions at the CERN LHC. The searches are based on the MT2 variable, which is a measure of the transverse momentum imbalance in an event. The data were collected with the CMS detector and correspond to an integrated luminosity of 19.5 fb?ą. Two related searches are performed. The first is an inclusive search based on signal regions defined by the value of the MT2 variable, the hadronic energy in the event, the jet multiplicity, and the number of jets identified as originating frommore »bottom quarks. The second is a search for a mass peak corresponding to a Higgs boson decaying to a bottom quark-antiquark pair, where the Higgs boson is produced as a decay product of a SUSY particle. For both searches, the principal backgrounds are evaluated with data control samples. No significant excess over the expected number of background events is observed, and exclusion limits on various SUSY models are derived.« less

  19. Anthracite-Crested butte folio, Colorado 

    E-Print Network [OSTI]

    Cross, Whitman, 1854-1949.; Eldridge, George Homans, 1854-1905.; Emmons, Samuel Franklin, 1841-1911.

    1894-01-01

    intake relationship to offspring age for black-tailed deer, elk, and white-tailed deer. 61 20 Scalar adjustment to milk energy concentration throughout lactation. 62 21 Scalar adjustment to milk production due to the milk requirement ratio. Milk... and likelihood of return at recreational areas (Swanson et al. 1989, Hastings 1986). Income from hunting operations is a major source of compensatory income for traditional farmers and ranchers (Haney 1983, Hill 1994). While deer are obviously an important...

  20. Delcer Butte Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments IncMississippi: EnergyS4263135°,Delbuoy Jump

  1. Butte Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick, Maine:IAEA CooperationSolar

  2. Square Butte Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage Edit withSpion

  3. Twin Buttes Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film SolarTown(LECBP) | OpenTrack WindTuvalu:

  4. Butte, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy Resources Jump to: navigation,ButlerSouthJump to:

  5. Coffin Butte Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) JumpIowa: EnergyEnergy InformationGeorgia:Coffey

  6. Mitchell Butte Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History View New Pages Recent

  7. Soil Science Society of America Journal This work was presented at the 12th North American Forest Soils Conference, Whitefish, MT, 1620

    E-Print Network [OSTI]

    Martin, Timothy

    Soils Conference, Whitefish, MT, 16­20 June 2013, in the Production Systems for Biomass and Bioenergy silvicultural practices used, and when combined with suitable site preparation techniques and the deployment fourfold higher aboveground pine biomass than the C treatment (7.7 Mg ha-1); the untreated CF (17.9 Mg ha-1

  8. NEAFS Y-mtDNA Workshop (Butler and Coble) November 1, 2006 http://www.cstl.nist.gov/biotech/strbase/training.htm 1

    E-Print Network [OSTI]

    NEAFS Y-mtDNA Workshop (Butler and Coble) November 1, 2006 http://www.cstl.nist.gov/biotech textbook (now in its 2nd Edition) · STRBase website: http://www.cstl.nist.gov/biotech/strbase/ · Family: wife Terilynne and 6 children · Hobbies: reading and writing http://www.cstl.nist.gov/biotech

  9. Comment on ``A modified leapfrog scheme for shallow water equations'' by Wen-Yih Sun and Oliver M.T. Sun

    E-Print Network [OSTI]

    Williams, Paul

    Commentary Comment on ``A modified leapfrog scheme for shallow water equations'' by Wen-Yih Sun and Oliver M.T. Sun Paul D. Williams Department of Meteorology, University of Reading, UK a r t i c l e i n f integration of the shallow-water equa- tions using the leapfrog time-stepping scheme [Sun Wen-Yih, Sun Oliver

  10. Adams-R-D, Thickness of the earth's crust beneath the Pacific-Antarctic ridge, New Zealand Journal of Geology and Geophysics. 7; 3, Pages 529-542. 1964.

    E-Print Network [OSTI]

    Menke, William

    Journal of Geology and Geophysics. 7; 3, Pages 529-542. 1964. Allen,-R-M., The mantle plume beneath-frequency traveltimes; I, Theory, Geophysical Journal International. 141; 1, Pages 157-174. 2000. Forsyth-D-W , Rayleigh Wave Phase Velocity Variations in a Regionalized Pacific, Eos, Transactions, American Geophysical Union

  11. Cutting-Edge Savannah River Site Project Avoids Millions in Costs, Removes Chemical Solvents from Underground: Project avoided costs totaling more than $15 million, removed tons of chemical solvents from beneath the Savannah River Site

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – Workers recently completed a multiyear project that removed more than 33,000 gallons of non-radioactive chemical solvents from beneath a portion of the Savannah River Site (SRS), preventing those pollutants from entering the local water table and helping the site avoid costs of more than $15 million.

  12. flow beneath the East Pacific Rise. Nature 402, 282285 (1999). 14. Grove, T. L., Kinzler, R. J. & Bryan, W. B. in Mantle Flow and Melt Generation at Mid-Ocean Ridges (eds

    E-Print Network [OSTI]

    1999-01-01

    flow beneath the East Pacific Rise. Nature 402, 282­285 (1999). 14. Grove, T. L., Kinzler, R. J. & Bryan, W. B. in Mantle Flow and Melt Generation at Mid-Ocean Ridges (eds Morgan, J. P., Blackman, D. K. Dick, H. J. B. in Magmatism in the Ocean Basins (eds Sounders, A. D. & Norry, M. J.) 71­105 (Geol. Soc

  13. Improvements in the M-T relation and mass function and the measured Omega_m through clusters evolution

    E-Print Network [OSTI]

    A. Del Popolo

    2003-09-05

    In this paper, I revisit the constraints obtained by several authors (Reichart et al. 1999; Eke et al. 1998; Henry 2000) on the estimated values of Omega_m, n and sigma_8 in the light of recent theoretical developments: 1) new theoretical mass functions (Sheth & Tormen 1999, Sheth, Mo & Tormen 1999, Del Popolo 2002b); 2) a more accurate mass-temperature relation, also determined for arbitrary Omega_m and Omega_{\\Lambda} (Voit 2000, Pierpaoli et al. 2001, Del Popolo 2002a). Firstly, using the quoted improvements, I re-derive an expression for the X-ray Luminosity Function (XLF), similarly to Reichart et al. (1999), and then I get some constraints to \\Omega_m and n, by using the ROSAT BCS and EMSS samples and maximum-likelihood analysis. Then I re-derive the X-ray Temperature Function (XTF), similarly to Henry (2000) and Eke et al. (1999), re-obtaining the constraints on Omega_m, n, sigma_8. Both in the case of the XLF and XTF, the changes in the mass function and M-T relation produces an increase in Omega_m of \\simeq 20% and similar results in sigma_8 and n.

  14. TPCP: Black butt of Acacia mearnsii BLACK BUTT OF ACACIA MEARNSII

    E-Print Network [OSTI]

    . Limiting damage to the roots and bases of the trees is also advised. http://www.up.ac.za/academic/fabi/tpcp/pamphlets contact us. Back to INDEX of pamphlets... http://www.up.ac.za/academic/fabi/tpcp/pamphlets

  15. A Complete Solution Classification and Unified Algorithmic Treatment for the One- and Two-Step Asymmetric S-Transverse Mass (MT2) Event Scale Statistic

    E-Print Network [OSTI]

    Joel W. Walker

    2014-08-29

    The MT2 or "s-transverse mass" statistic was developed to associate a parent mass scale to a missing transverse energy signature, given that escaping particles are generally expected in pairs, while collider experiments are sensitive to just a single transverse momentum vector sum. This document focuses on the generalized extension of that statistic to asymmetric one- and two-step decay chains, with arbitrary child particle masses and upstream missing transverse momentum. It provides a unified theoretical formulation, complete solution classification, taxonomy of critical points, and technical algorithmic prescription for treatment of the MT2 event scale. An implementation of the described algorithm is available for download, and is also a deployable component of the author's selection cut software package AEACuS (Algorithmic Event Arbiter and Cut Selector). Appendices address combinatoric event assembly, algorithm validation, and a complete pseudocode.

  16. Probing the Mechanism of the Mycobacterium tuberculosis [beta]-Ketoacyl-Acyl Carrier Protein Synthase III mtFabH: Factors Influencing Catalysis and Substrate Specificity

    SciTech Connect (OSTI)

    Brown, Alistair K.; Sridharan, Sudharsan; Kremer, Laurent; Lindenberg, Sandra; Dover, Lynn G.; Sacchettini, James C.; Besra, Gurdyal S.

    2010-11-30

    Mycolic acids are the dominant feature of the Mycobacterium tuberculosis cell wall. These {alpha}-alkyl, {beta}-hydroxy fatty acids are formed by the condensation of two fatty acids, a long meromycolic acid and a shorter C{sub 24}-C{sub 26} fatty acid. The component fatty acids are produced via a combination of type I and II fatty acid synthases (FAS) with FAS-I products being elongated by FAS-II toward meromycolic acids. The {beta}-ketoacyl-acyl carrier protein (ACP) synthase III encoded by mtfabH (mtFabH) links FAS-I and FAS-II, catalyzing the condensation of FAS-I-derived acyl-CoAs with malonyl-acyl carrier protein (ACP). The acyl-CoA chain length specificity of mtFabH was assessed in vitro; the enzyme extended longer, physiologically relevant acyl-CoA primers when paired with AcpM, its natural partner, than with Escherichia coli ACP. The ability of the enzyme to use E. coli ACP suggests that a similar mode of binding is likely with both ACPs, yet it is clear that unique factors inherent to AcpM modulate the substrate specificity of mtFabH. Mutation of proposed key mtFabH residues was used to define their catalytic roles. Substitution of supposed acyl-CoA binding residues reduced transacylation, with double substitutions totally abrogating activity. Mutation of Arg{sup 46} revealed its more critical role in malonyl-AcpM decarboxylation than in the acyl-CoA binding role. Interestingly, this effect was suppressed intragenically by Arg{sup 161} {yields} Ala substitution. Our structural studies suggested that His{sup 258}, previously implicated in malonyl-ACP decarboxylation, also acts as an anchor point for a network of water molecules that we propose promotes deprotonation and transacylation of Cys{sup 122}.

  17. Structural and tectonic implications of pre-Mt. Simon strata -- or a lack of such -- in the western part of the Illinois basin

    SciTech Connect (OSTI)

    Sargent, M.L. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-03-01

    The discovery of a pre-Mt. Simon lithic arenite (arkose) in southwestern Ohio has lead to reevaluation of many basement tests in the region. Several boreholes in adjacent states have been reexamined by others and are now believed to bottom in the Middle Run Formation. Seismic-reflection sections in western Ohio and Indiana have indicated pre-Mt. Simon basins filled with layered rocks that are interpreted to be Middle Run, however, the pre-Mt. Simon basins and east of Illinois. Samples from Illinois basement tests were reexamined to determine whether they had encountered similar strata. All reported crystalline-basement tests in Illinois show diagnostic igneous textures and mineralogical associations. Coarsely crystalline samples in cores show intergrown subhedral grains of quartz, microcline, and sodic plagioclase. Medium-crystalline rocks in cuttings samples show numerous examples of micrographic intergrowths of quartz and K-feldspar. This texture cannot be authigenically grown in a sediment and probably could not have survived a single cycle of erosion and deposition. Aphanitic rocks show porphyritic and spherulitic textures that are distinctly igneous and would be destroyed by weathering. Substantial relief on the Precambrian crystalline surface in Illinois is postulated for major structural features like the LaSalle Anticlinorium, the Sparta Shelf, the Ste. Genevieve Fault zone, etc. Paleotopographic relief up to 300 m (1,000 feet) is documented from drilling on the western flank of the basin.

  18. GilesCounty,VA MonroeCounty,W

    E-Print Network [OSTI]

    Pearisburg Barney'sWall ButtMt. DoeMt. BaldKnob& Mt.LakeHotel BearCliffs WindRock WestVirginia MLBS Driving-inattheoffice-LewisHall102 (stonebuilding).Lookingnorth-eastata3DrenderingofSaltPondMountainandsurroundingvicinity. Mountain. MLBS is located at an elevation of 3800 ft atop Salt Pond Mountain on the Eastern Continen- tal Divide

  19. GilesCounty,VA MonroeCounty,W

    E-Print Network [OSTI]

    Pearisburg Barney'sWall ButtMt. DoeMt. BaldKnob& Mt.LakeHotel BearCliffs WindRock WestVirginia MLBS Driving-inattheoffice-LewisHall102 (stonebuilding). Lookingnorth-eastata3DrenderingofSaltPondMountainandsurroundingvicinity. Mountain. MLBS is located at an elevation of 3800 ft atop Salt Pond Mountain on the Eastern Continen- tal Divide

  20. Littleton Mt. Washington

    E-Print Network [OSTI]

    Pringle, James "Jamie"

    · Across New Hampshire IN TRAVELING NEW HAMPSHIRE HIGHWAYS AND BACK ROADS, you'll discover New Hampshire, Keene Nashua Community College, Nashua BAE Systems of N.A., Nashua University of New Hampshire, Durham Great Bay Community College, Portsmouth New Hampshire Space grant Consortium 1 23 4 56 7 8 9 10 11 12 13

  1. versity (MT Assistant o

    E-Print Network [OSTI]

    discipline um vitae, s and contac electronica cmsearch@ 2011, an trategic Fac nitiative ates are en rsities

  2. Quantifying Uncertainty in Chemical Systems Modeling M.T. Reagan1, H.N. Najm1, P.P. Pebay1, O.M. Knio2 and R.G. Ghanem2

    E-Print Network [OSTI]

    Frey, Pascal

    Quantifying Uncertainty in Chemical Systems Modeling M.T. Reagan1, H.N. Najm1, P.P. P´ebay1, O The Johns Hopkins University, Baltimore, MD 21218, USA Abstract. This study compares two techniques of Chemical Kinetics 1. Introduction Chemical kinetics computations require the specification of a number

  3. A new A&P Food Market in Mt. Kisco, New York, is enjoying annual energy cost savings of nearly $130,000 with the installation of an integrated microturbine power system

    E-Print Network [OSTI]

    Pennycook, Steve

    Background A new A&P Food Market in Mt. Kisco, New York, is enjoying annual energy cost savings, heating and power solutions, was installed in 2005 in the 57,000- square-foot facility. The New York supermarket was the first U.S. customer to take delivery of the new system. The PureComfort system is designed

  4. Visualizing the Surface Infrastructure Used to Move 2 MtCO2/year from the Dakota Gasification Company to the Weyburn CO2 Enhanced Oil Recovery Project: Version of July 1, 2009

    SciTech Connect (OSTI)

    Dooley, James J.

    2009-07-09

    Google Earth Pro has been employed to create an interactive flyover of the world’s largest operational carbon dioxide capture and storage project. The visualization focuses on the transport and storage of 2 MtCO2/year which is captured from the Dakota Gasification Facility (Beula, North Dakota) and transported 205 miles and injected into the Weyburn oil field in Southeastern Saskatchewan.

  5. Geology And A Working Conceptual Model Of The Obsidian Butte...

    Open Energy Info (EERE)

    conceptual model has been developed for the southwestern portion of the Salton Sea geothermal system, the region encompasing CalEnergy Operating Company's imnent 'Unit 6'...

  6. EA-1996: Glass Buttes Radio Station, Lake County, Oregon

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management (BLM), with DOE’s Bonneville Power Administration (BPA) as a cooperating agency, is preparing an EA that will evaluate the potential environmental impacts of a proposal to construct two telecommunications facilities, one of which would provide BPA telecommunications services, on BLM land. Additional information is available at http://www.blm.gov/or/districts/prineville/plans/glassbuttes/.

  7. SRM 2372: Past, Present, Erica Butts, Margaret Kline,

    E-Print Network [OSTI]

    of absorbance and is traceable to the unit 1. The conventional conversion factor for aqueous DNA: dsDNA 1.0 D10.0) Certified for spectroscopic traceability in units of decadic attenuance, D10. The D10 scale is a measure absorbance of these dsDNA solutions had increased significantly, suggesting partial conversion to single

  8. How Can We Control Fomes Root and Butt Rot?

    E-Print Network [OSTI]

    Forest Area Is Distributed As Follows: · Cool Wet 40 · Cool Moist 17 · Warm Wet 06 · Warm Moist 27 · Warm Dry 10 (% Total High Forest Area) #12;How Do We Assess Hazard? 2. Soils Hazard Rating: · Brown earths soils #12;COOL AND WET 100% Low Hazard #12;51% Low 49% Medium COOL AND MOIST #12;12% Low 56% Medium 32

  9. Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartment of Energy InNovember 25, 2008InnovationDepartment of

  10. Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartment of Energy InNovember 25, 2008InnovationDepartment

  11. Sigurd Red Butte No2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for LowInformationShoshoneEnergyMountain, Tennessee:

  12. Box Butte County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: Energy Resources Jump to: navigation, search EquivalentOhio:Box

  13. Butte County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy Resources Jump to: navigation,Butler

  14. Butte County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy Resources Jump to: navigation,ButlerSouth Dakota:

  15. Butte Falls, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy Resources Jump to: navigation,ButlerSouth

  16. Multispectral Imaging At Glass Buttes Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsourceEnergy Information Martin, Et Al.,

  17. Aeromagnetic Survey At Glass Buttes Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy Resources JumpAdelan UKRenewable2004)Information

  18. Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIAL TECHNICAL ASSISTANCEPueblo, New Mexico | Department ofInnovative

  19. Dr. Calvin O. Butts, III | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan2 In theArunPlasmaCalvin

  20. Study on the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata region of Italy

    SciTech Connect (OSTI)

    Fantozzi, L., E-mail: l.fantozzi@iia.cnr.it [CNR-Institute of Atmospheric Pollution Research, c/o: UNICAL-Polifunzionale, 87036 Rende (Italy); Ferrara, R., E-mail: romano.ferrara@pi.ibf.cnr.it [CNR-Institute of Biophysics, San Cataldo Research Area, Via G. Moruzzi 1, 56124 Pisa (Italy); Dini, F., E-mail: fdiniprotisti@gmail.com [University of Pisa, Department of Biology, Via A. Volta 4, 56126 Pisa (Italy); Tamburello, L., E-mail: ltamburello@biologia.unipi.it [University of Pisa, Department of Biology, Via Derna 1, I-56126 Pisa (Italy); Pirrone, N.; Sprovieri, F. [CNR-Institute of Atmospheric Pollution Research, c/o: UNICAL-Polifunzionale, 87036 Rende (Italy)] [CNR-Institute of Atmospheric Pollution Research, c/o: UNICAL-Polifunzionale, 87036 Rende (Italy)

    2013-08-15

    Atmospheric mercury emissions from mine-waste enriched soils were measured in order to compare the mercury fluxes of bare soils with those from other soils covered by native grasses. Our research was conducted near Mt. Amiata in central Italy, an area that was one of the largest and most productive mining centers in Europe up into the 1980s. To determine in situ mercury emissions, we used a Plexiglas flux chamber connected to a portable mercury analyzer (Lumex RA-915+). This allowed us to detect, in real time, the mercury vapor in the air, and to correlate this with the meteorological parameters that we examined (solar radiation, soil temperature, and humidity). The highest mercury flux values (8000 ng m{sup ?2} h{sup ?1}) were observed on bare soils during the hours of maximum insulation, while lower values (250 ng m{sup ?2} h{sup ?1}) were observed on soils covered by native grasses. Our results indicate that two main environmental variables affect mercury emission: solar radiation intensity and soil temperature. The presence of native vegetation, which can shield soil surfaces from incident light, reduced mercury emissions, a result that we attribute to a drop in the efficiency of mercury photoreduction processes rather than to decreases in soil temperature. This finding is consistent with decreases in mercury flux values down to 3500 ng m{sup ?2} h{sup ?1}, which occurred under cloudy conditions despite high soil temperatures. Moreover, when the soil temperature was 28 °C and the vegetation was removed from the experimental site, mercury emissions increased almost four-fold. This increase occurred almost immediately after the grasses were cut, and was approximately eight-fold after 20 h. Thus, this study demonstrates that enhancing wild vegetation cover could be an inexpensive and effective approach in fostering a natural, self-renewing reduction of mercury emissions from mercury-contaminated soils. -- Highlights: ? Mercury air/surface exchange from grass covered soil is different from bare soil. ? Light enhances mercury emissions and is the main parameter driving the process. ? The presence of wild vegetation covering the soil reduces mercury emission. ? Vegetative covers could be a solution to reduce atmospheric mercury pollution.

  1. SCATTERING BY CRACKS BENEATH FLUIDSOLID INTERFACES

    E-Print Network [OSTI]

    Craster, Richard

    , and accurately determine the position of, cracks. The non­destructive testing of a solid to detect such flaws as the fluid coupling tends to zero is non­uniform, that is, the Rayleigh wave is not related to the Sch

  2. PhotobyMBrandon Beneath the Waves

    E-Print Network [OSTI]

    Griffiths, Gwyn

    Terschelling Autosub campaign March 00 Text message on cell phone #12;Phytoplankton analysis: Flow cytometry rating J 1000 litres payload J 700 km range J 3 - 4 kt speed J Primary cell battery #12;Fisheries radiated noise 40 50 60 70 80 90 100 110 120 130 140 150 100 1000 10000 Centre Frequency (Hz) Measured

  3. Microbes: Life Deep Beneath the Seafloor

    E-Print Network [OSTI]

    Smith, David C.

    to acceptor is captured to provide the energy to support basic metabolic functions. Microorganisms-dwelling organisms rely on oxygen, microbes use compounds of sulfur, manganese, iron, and carbon dioxide

  4. Long Fingers of Heat Beneath Earth's Surface

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCenter (LMI-EFRC)Lodging LodgingLogistics Logistics TheAbout

  5. CX-008225: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Recovery Act: A Demonstration System for Capturing Geothermal Energy from Mine Waters Beneath Butte Montana CX(s) Applied: A9, B2.1, B5.19 Date: 04/18/2012 Location(s): Montana Offices(s): Golden Field Office

  6. Pukaha Mt Bruce Capability Building Project

    E-Print Network [OSTI]

    : _________________________________________________ ISO ID: ____________________________ Department: ___________________________________________ Office Reports Applicant Certification Access privileges are issued to staff members with the understanding

  7. Why Mt Etna? C. Doglioni,1

    E-Print Network [OSTI]

    between these two approaches: (i) evo- lution and dip of the foreland mono- cline are used in Doglioni et

  8. Mt Ranier Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver, Pennsylvania:(CTI PFAN) | Open

  9. Marysville Mt Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,InformationIllinois:Martin, Michigan:

  10. Babb, MT Natural Gas Export to Canada

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724per ThousandLease

  11. Babb, MT Natural Gas Export to Canada

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724per ThousandLease0 0 20 0 0 122 1996-2014

  12. Havre, MT Natural Gas Exports to Canada

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear Jan FebMississippi119,456 111,949HOW TO

  13. Havre, MT Natural Gas Exports to Canada

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear Jan FebMississippi119,456 111,949HOW TO2,504

  14. Controlled Source Audio MT | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, EtInformation Control of Well KS-8 inSource

  15. Mt Peak Utility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource HistoryCharleston,Peak Utility Jump to:

  16. Mt Poso Cogeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource HistoryCharleston,Peak Utility Jump to:Poso

  17. Modeling unsaturated flow and transport processes at the Busted Butte Field Test Site, Nevada

    E-Print Network [OSTI]

    Gable, Carl W.

    , USA c Isotope and Nuclear Chemistry Group, C-INC, MS-J534, Los Alamos National Laboratory, Los Alamos for the integration of available knowledge and for the extrapolation of information gained from a limited number for research and management needs, they are also subject to a large number of simplifying assumptions

  18. MODELING SINGLE EVENT UPSETS IN FLOATING GATE MEMORY CELLS Nauman Z. Butt and Muhammad Alam

    E-Print Network [OSTI]

    Alam, Muhammad A.

    , the reliability of a Flash memory array has almost exclusively been related to the wear out of the tunnel oxide with program/erase cycling. Such wear out occurs because the injection of high energy carriers in a Fowler amplifiers and charge pumps. The FG cell array on the other hand was considered to be relatively insensitive

  19. Ground Gravity Survey At Glass Buttes Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar Jump to:ResourcesGriggsOpen| Open

  20. Flow Test At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport Jump to:Flanders,Information85-1986) JumpFortGlass

  1. Gas Sampling At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: Energy ResourcesMaui Area (DOE

  2. Geology And A Working Conceptual Model Of The Obsidian Butte (Unit 6)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway1997) | OpenRaft river valley, Idaho |

  3. Development Wells At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments IncMississippi:DeltaFishDesertDetroitSolarSurveyOpen1987)

  4. Field Mapping At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbHFarinello GeothermalFideris Inc formerly1-2003) Jump to:OpenGlass

  5. Slim Holes At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH Jump to:Idaho-UtahSkyline HighBlackFlintDOEGlass

  6. Static Temperature Survey At Glass Buttes Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPageBefore the Senate Select

  7. Cuttings Analysis At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc Jump to: navigation, searchCut and1983) | Open

  8. LiDAR At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds Jump to:LaredoLeelanauLeonicsLewisville,Li

  9. Pressure Temperature Log At Glass Buttes Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, BluePoulsen Hybrid,Areas-Wind ProjectInformation

  10. EA-1996: Glass Buttes Radio Station, Lake County, Oregon | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of Energy 8:Final78: Sand

  11. 2.8 Mt5.6 Mt Turning over a New Leaf

    E-Print Network [OSTI]

    to local communities and other stewards of our natural resources. Forest Trends analyzes strategic market natural ecosystems, which provide life-sustaining processes, by promoting incentives stemming from a broad 19th Street, NW 4th floor Washington, DC 20036 info@ecosystemmarketplace.com www

  12. Autosub missions beneath Polar Ice: Preparation and Experience

    E-Print Network [OSTI]

    Griffiths, Gwyn

    events implemented (up from 1); ordered sequences of events to trigger next mission element added. J and shelf ice. 4 - 12 kHz chirp sub-bottom profiler to obtain the stratigraphy within sediments Water

  13. Frequency-magnitude distribution of microearthquakes beneath the 9500

    E-Print Network [OSTI]

    Bohnenstiehl, Delwayne

    at shallow depths and relatively high stress levels (or low pore pressures) observed away from the axial zone there also exists significant spatial variability. This indicates that stress conditions and/or structural. As a byproduct of this b value analysis, the detection capabilities of the array are assessed empirically

  14. Evidence for Deep Magma Injection Beneath Lake Tahoe,

    E-Print Network [OSTI]

    Faulds, James E.

    , and the consequent eastward collapse of the competent Sierra Nevada block. Paleozoic and Mesozoic roof pendants ( 1 and 2) compressive stresses (4, 5). The base of the seismogenic zone in the region varies locally from about 15 to 18 km (6). In the Lake Tahoe area, no crustal earth- quakes deeper than 20 km can

  15. Crustal and upper mantle structure beneath Antarctica and surrounding oceans

    E-Print Network [OSTI]

    Shapiro, Nikolai

    that Antarctic ice sheets insulate geologists from direct crustal observation, but it is also related to the difficulty and expense of acquiring high-quality well- distributed seismic information across the continent. Controlled source seismic experiments (long baseline refraction and reflection profiles) have provided fairly

  16. Understanding what lies beneath: Groundwater critical to Texas water 

    E-Print Network [OSTI]

    Wythe, Kathy

    2008-01-01

    of organizations and programs associated with groundwater in Texas: Aquifers: Geological formations that can store, transmit, and yield groundwater to a well or spring. Groundwater comes from nine major and 21 minor aquifers in Texas. Confined aquifer: Layer... of water that is held between two layers of clay. The recharge area is limited to land surface where the aquifer?s geologic material is exposed to the land surface. Unconfined aquifer: Layer of water that has a confining layer on bottom and a layer...

  17. Connotation Lexicon: A Dash of Sentiment Beneath the Surface Meaning

    E-Print Network [OSTI]

    Anderson, Richard

    of sentiment beyond denotative or surface meaning of text. For instance, consider the following: Geothermal toward "geothermal". In order to sense the subtle overtone of sentiments, one needs to know that the word "emissions" has generally negative connota- tion, which geothermal reduces. In fact, depend- ing

  18. Beneath the Surface of Giant Planets: Evolution, Structure, and Composition

    E-Print Network [OSTI]

    Kelly Miller, Neil L.

    2013-01-01

    larger. 2. Tidal evolution deposits energy into the planetin combination with tidal dissipation to deposit energy intothe tidal-thermal evolution model, including energy-limited

  19. Temperatures at the Base of the Seismogenic Crust Beneath Long...

    Open Energy Info (EERE)

    flow for a given rock type, and it varies with both strain rate and water content. Earthquake activity and deformation accompanying recent unrest in Long Valley caldera,...

  20. Basal melt rates beneath Whillans Ice Stream, West Antarctica

    E-Print Network [OSTI]

    Beem, Lucas H.; Jezek, Ken C.; van der Veen, Cornelis J.

    2010-08-05

    and J.E. Mitchell. 1994. The role of the margins in the dynamics of an active ice stream. J. Glaciol., 40(136), 527–538. Engelhardt, H. 2004a. Ice temperature and high geothermal flux at Siple Dome, West Antarctica, from borehole measurements. J. Glaciol... ratio which varies laterally across the shear margin. Basal drag, ?b, basal velocity, U(b), basal temperature gradient, @T/@z(b), esti- mates of geothermal flux, G, plus knowledge of basal ice properties, density, ?, latent heat of fusion of ice, Li...

  1. Lithosphere structure beneath the Phanerozoic intracratonic basins of North America

    E-Print Network [OSTI]

    Kaminski, Edouard

    for vertical heat transport, each basin requires a different lithosphere thickness or a different boundary American craton, the lithosphere is too thick for the assumption of purely vertical heat transfer, the downward extrapolation of crustal geotherms deal with the upper part where heat transport occurs

  2. Beneath the Surface of Giant Planets: Evolution, Structure, and Composition

    E-Print Network [OSTI]

    Kelly Miller, Neil L.

    2013-01-01

    panel: ratio between tidal power injected into the planetpanel: ratio between tidal power injected into the planet2001) calculated the tidal power required to maintain the

  3. The 1989 Earthquake Swarm Beneath Mammoth Mountain, California...

    Open Energy Info (EERE)

    Activity Abstract Mammoth Mountain is a 50,000- to 200,000-year-old cumulovolcano standing on the southwestern rim of Long Valley in eastern California. On 4 May 1989, two M ...

  4. Inferences On The Hydrothermal System Beneath The Resurgent Dome...

    Open Energy Info (EERE)

    around 1980 and has included periods of intense seismicity and ground deformation. Uplift totaling more than 0.7 m has been centered on the caldera's resurgent dome, and is...

  5. Beneath the Surface of Giant Planets: Evolution, Structure, and Composition

    E-Print Network [OSTI]

    Kelly Miller, Neil L.

    2013-01-01

    The power ratio, tidal power to luminosity, describes howThe ratio of input tidal power to net radiated power is

  6. On isolated vorticity regions beneath the water surface

    E-Print Network [OSTI]

    Octavian G. Mustafa

    2011-03-12

    We present a class of vorticity functions that will allow for isolated, circular vorticity regions in the background of still water preceding the arrival of a tsunami wave at the shoreline.

  7. Slab plume interaction beneath the Pacific Northwest Mathias Obrebski,1

    E-Print Network [OSTI]

    Allen, Richard M.

    the Yellowstone Snake River Plain (YSRP) and second, that the subducting Juan de Fuca (JdF) slab is fragmented- canic outpouring that occurred 17 Ma. The Yellowstone Snake River Plain (YSRP) hosts a bimodal volcanic volcanic provinces. The Columbia River Basalts (CRB, Figure 1) is the product of a phase of massive vol

  8. Beneath the Surface of Giant Planets: Evolution, Structure, and Composition

    E-Print Network [OSTI]

    Kelly Miller, Neil L.

    2013-01-01

    evolution allows the planet to cool more efficiently attimes, which allows the planet to cool more efficiently andof these cases, the planet will later cool off before the

  9. Supergranular-scale magnetic flux emergence beneath an unstable filament

    E-Print Network [OSTI]

    Palacios, J; Guerrero, A; Saiz, E; Cerrato, Y

    2015-01-01

    Here we report evidence of a large solar filament eruption on 2013, September 29. This smooth eruption, which passed without any previous flare, formed after a two-ribbon flare and a coronal mass ejection towards Earth. The coronal mass ejection generated a moderate geomagnetic storm on 2013, October 2 with very serious localized effects. The whole event passed unnoticed to flare-warning systems. We have conducted multi-wavelength analyses of the Solar Dynamics Observatory through Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) data. The AIA data on 304, 193, 211, and 94 \\AA sample the transition region and the corona, respectively, while HMI provides photospheric magnetograms, continuum, and linear polarization data, in addition to the fully inverted data provided by HMI. [...] We have observed a supergranular-sized emergence close to a large filament in the boundary of the active region NOAA11850. Filament dynamics and magnetogram results suggest that the magnetic flux emergenc...

  10. A Preparation Zone For Volcanic Explosions Beneath Naka-Dake...

    Open Energy Info (EERE)

    and in investigating the behaviors of magma and volcanic fluids. We carried out audio-frequency magnetotelluric surveys around the craters of Naka-dake in 2004 and 2005 to...

  11. Mapping the Hydrothermal System Beneath the Western Moat of Long...

    Open Energy Info (EERE)

    under the Magma Energy Program, and by the DOE Office of Energy Research, Division of Engineering and Geosciences (DEG), along with the USGS and NSE, under the Continental...

  12. Magmatichydrothermal evolution and devolatilization beneath Merapi volcano, Indonesia

    E-Print Network [OSTI]

    as a supercritical fluid and that it subsequently exsolved into a H2O­Cl­F-rich brine and CO2­S-rich vapor. According °C fluid, although the presence of H2S, SO2 and CO2 may cause the supercritical fluid to unmix inclusions Volcanic gases Vapor-brine exsolution CO2­H2O barometry At Merapi volcano, Indonesia, explosive

  13. Melt zones beneath five volcanic complexes in California: an...

    Open Energy Info (EERE)

    (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent...

  14. Melt Zones Beneath Five Volcanic Complexes in California: An...

    Open Energy Info (EERE)

    (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent...

  15. Investigating the changing deformation mechanism beneath shallow foundations

    E-Print Network [OSTI]

    Madabhushi, Srikanth Satyanarayana Chakrapani; Haigh, Stuart Kenneth

    2015-06-02

    as the settlement increased. It was also shown the upper bound based load settlement predictions matched well with the finite element analyses of Gourvenec and Randolph (2003) and Taiebat and Carter (2000). McMahon et al (2013a) proposed a single design line... mechanism. E-grade Kaolin clay was consolidated from slurry to avoid soil strength and stiffness anisotropy. A consolidometer was used that applied a uniform stress via a hydraulic piston with the stress being applied increased in increasing stages...

  16. The 1989 Earthquake Swarm Beneath Mammoth Mountain, California: An Initial

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |Information 5th congressionalNIESLook at the 4 May Through

  17. Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative Coolers Jump to:WindEverguard

  18. Structure and Stratigraphy Beneath a Young Phreatic Vent: South Inyo

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPageBeforeCreek WindInsulatedCrater, Long Valley

  19. Temporal Velocity Variations beneath the Coso Geothermal Field Observed

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ Automation JumpSet RenewableFuelStandard Jump to:using Seismic

  20. Microstructure evolution of Al/Mg butt joints welded by gas tungsten arc with Zn filler metal

    SciTech Connect (OSTI)

    Liu Fei; Zhang Zhaodong; Liu Liming, E-mail: liulm@dlut.edu.cn

    2012-07-15

    Based on the idea of alloying welding seam, Gas tungsten arc welding method with pure Zn filler metal was chosen to join Mg alloy and Al alloy. The microstructures, phases, element distribution and fracture morphology of welding seams were examined. The results indicate that there was a transitional zone in the width of 80-100 {mu}m between the Mg alloy substrate and fusion zone. The fusion zone was mainly composed of MgZn{sub 2}, Zn-based solid solution and Al-based solid solution. The welding seam presented distinct morphology in different location owning to the quite high cooling rate of the molten pool. The addition of Zn metal could prevent the formation of Mg-Al intermetallics and form the alloyed welding seam during welding. Therefore, the tensile strengths of joints have been significantly improved compared with those of gas tungsten arc welded joints without Zn metal added. Highlights: Black-Right-Pointing-Pointer Mg alloy AZ31B and Al alloy 6061 are welded successfully. Black-Right-Pointing-Pointer Zinc wire is employed as a filler metal to form the alloyed welding seam. Black-Right-Pointing-Pointer An alloyed welding seam is benefit for improving of the joint tensile strength.

  1. Lagoon Seepage Testing Report for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory, Butte County, Idaho

    SciTech Connect (OSTI)

    Bridger Morrison

    2014-09-01

    J-U-B ENGINEERS, Inc. (J-U-B) performed seepage tests on the CFA Wastewater Lagoons 1, 2, and 3 between August 26th and September 22nd, 2014. The lagoons were tested to satisfy the Idaho Department of Environmental Quality (DEQ) Rules (IDAPA 58.01.16) that require all lagoons be tested at a frequency of every 10 years and the Compliance Activity CA-141-03 in the DEQ Wastewater Reuse Permit for the CFA Sewage Treatment Plant (LA-000141-03). The lagoons were tested to determine if the average seepage rates are less than 0.25 in/day, the maximum seepage rate allowed for lagoons built prior to April 15, 2007. The average seepage rates were estimated for each lagoon and are given in Table-ES1. The average seepage rates for Lagoons 1 and 2 are less than the allowable seepage rate of 0.25 in/day. Lagoon 1 and 2 passed the seepage test and will not have to be tested again until the year 20241. However, the average seepage rate for Lagoon 3 appears to exceed the allowable seepage rate of 0.25 in/day which means the potential source for the excessive leakage should be investigated further.

  2. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    SciTech Connect (OSTI)

    Not Available

    1988-09-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs.

  3. Lagoon Seepage Testing Procedures for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory Butte County, Idaho April 2014

    SciTech Connect (OSTI)

    Alan Giesbrecht

    2014-05-01

    The lagoon seepage testing procedures are documented herein as required by the Wastewater Rules (IDAPA 58.01.16.493). The Wastewater Rules and Wastewater Reuse Permit LA-000141-03 require that the procedure used for performing a seepage test be approved by IDEQ prior to conducting the seepage test. The procedures described herein are based on a seepage testing plan that was developed by J-U-B ENGINEERS, Inc. (J-U-B) and has been accepted by several IDEQ offices for lagoons in Idaho.

  4. Full-Scale Tests of Butt-Welded Splices in Heavy-Rolled Steel Sections Subjected to Primary Tensile Stresses

    E-Print Network [OSTI]

    Bruneau, Michel

    of the observed failure. The splice with full penetration welds exhibited satisfactory strength and ductility are to be performed. Several cases of partial or complete brittle fracture have been reported during fabrication toughness of the base material at the failed joint. The weld design and process used resulted in an initial

  5. Vertical Electrical Sounding Configurations At Mt Princeton Hot Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, NewArkansas:Standards Jump to:VernonWisconsin:Labs LLP

  6. Integrated Dense Array and Transect MT Surveying at Dixie Valley...

    Open Energy Info (EERE)

    Dixie Valley Geothermal Area, Nevada- Structural Controls, Hydrothermal Alteration and Deep Fluid Sources Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  7. Improving Machine Tool Interoperability Using Standardized Interface Protocols: MT Connect

    E-Print Network [OSTI]

    Vijayaraghavan, Athulan; Sobel, Will; Fox, Armando; Dornfeld, David; Warndorf, Paul

    2008-01-01

    23-26, 2008 IMPROVING MACHINE TOOL INTEROPERABILITY USINGMTConnect TM data from a machine tool for process planningpotential of improved machine-tool interoperability through

  8. Compound and Elemental Analysis At Mt St Helens Area (Shevenell...

    Open Energy Info (EERE)

    Date Usefulness not indicated DOE-funding Unknown References L. Shevenell, F. Goff (2000) Temporal Geochemical Variations In Volatile Emissions From Mount St Helens, Usa,...

  9. Northwest Distributed/Community Wind Workgroup Meeting- MT

    Broader source: Energy.gov [DOE]

    The Northwest Wind Resource and Action Center, which is partially funded by the U.S. Department of Energy, will facilitate a workgroup meeting for stakeholders involved in the distributed and...

  10. Thermal Gradient Holes At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    the area References J. Held, F. Henderson (2012) New developments in Colorado geothermal energy projects Additional References Retrieved from "http:en.openei.orgw...

  11. Deriving Semantic Knowledge from Descriptive Texts using an MT System

    E-Print Network [OSTI]

    Spirtes, Peter

    , instantiating concepts in an upper model for the electric power domain. In an extension of the basic system, we statements for entry into the Ontology Works electrical power factbase [9]. The system was extended to allow and textual description for a model of the North­ west electric power grid [10]. A set of texts were written

  12. Improving Machine Tool Interoperability Using Standardized Interface Protocols: MT Connect

    E-Print Network [OSTI]

    Vijayaraghavan, Athulan; Sobel, Will; Fox, Armando; Dornfeld, David; Warndorf, Paul

    2008-01-01

    interoperability enabled by MTConnect TM can provide the mechanism for process and system monitoring and optimization with respect to energy and

  13. Analysis of borehole temperature data from the Mt. Princeton...

    Open Energy Info (EERE)

    Colorado (abstract only) Author P. Morgan Conference AAPG Rocky Mountain Meeting; Salt Lake County, Utah; 10811 Published AAPG Rocky Mountain Meeting, 2013 DOI Not Provided...

  14. Urdu Localization Project: Lexicon, MT and TTS (ULP) Sarmad HUSSAIN

    E-Print Network [OSTI]

    , Pakistan sarmad.hussain@nu.edu.pk Abstract Pakistan has a population of 140 million speaking more than 56, also the national language of Pakistan. Being a developing population, Pakistani people need access-10% of these people are familiar with English. Therefore, Government of Pakistan has embarked on a project which

  15. School of Mathematics and Statistics MT5824 Topics in Groups

    E-Print Network [OSTI]

    St Andrews, University of

    .] Deduce that GpG (G). Use the previous question to show that (G) = GpG. Show that G can be generated

  16. Compound and Elemental Analysis At Mt St Helens Area (Shevenell...

    Open Energy Info (EERE)

    not indicated DOE-funding Unknown References Lisa Shevenell, Fraser Goff (1995) Evolution Of Hydrothermal Waters At Mount St Helens, Washington, Usa Additional References...

  17. Todd J. Kaiser Montana State University, Bozeman, MT

    E-Print Network [OSTI]

    Kaiser, Todd J.

    and Actuators Workshop, pp 85-88, June 2000. E. Selected Invited Presentations · "Solar Cell Basics for Teachers Square Cambridge, MA 02139 C. Selected Journal Publications · "A Wireless Sensor Interrogation Design for Passive Resonant Frequency Sensors using Frequency Modulation Spectroscopy," Brian Peterson, Andrew Olson

  18. DLT -AN INDUSTRIAL R & D PROJECT FOR MULTILINGUAL MT

    E-Print Network [OSTI]

    by an ophthalmo-logist towards the end of the nineteenth century) is not usually considered a respectable object-term development and maintenance of a complex translation and world knowledge system is a task that can only

  19. *MT 4S1SGOO ^ Ris-M-2672

    E-Print Network [OSTI]

    . APPLICATIONS OF NEUTRON RADIOGRAPHY 14 7.1. Nuclear industry 16 Nuclear fuel 16 General 23 7.2. Industrial of application of neutron radiography in industry and the nuclear field. October 1987 Risř National Laboratory 26 Real-time 26 Engine fluids 26 7.3. Non-industrial applications 27 Biology, medicine and dentistry

  20. Extrinsic Evaluation of Patent MT: Review and Commentary

    E-Print Network [OSTI]

    Oard, Doug

    ." The National Institute of Informatics (NII) Testbeds and Community for Information Access Research (NTCIR these tasks into three broad categories (expressed here using specific examples of languages and sources College Park, MD 20742 USA oard@umd.edu Noriko Kando National Institute of Informatics Tokyo, Japan kando

  1. Seismicity induced by seasonal groundwater recharge at Mt. Hood, Oregon

    E-Print Network [OSTI]

    Manga, Michael

    and narrow-width pore-fluid pressure signal. Time delays between this seasonal groundwater recharge-fluid pressure fraction, PP/P0W0.1, of the applied near-surface pore-fluid pressure perturbation, P0W0.1 MPa Elsevier B.V. All rights reserved. Keywords: hydroseismicity; groundwater; pore-Łuid pressure; permeability

  2. Statistical Theory MT 2009 Problems 1: Solution sketches

    E-Print Network [OSTI]

    Reinert, Gesine

    =1 Xi and put T = X 1 n-1 n i=1(Xi - X)2 . Show that T is an ancillary statistic. What does this say the distribution of T does not depend on neither; it is an ancillary statistic. Thus a t-test based on exponential of A is independent of (so A is an ancillary statistic). c) Show that any value in the interval x(n) - 1 2 , x(1) + 1

  3. Self Potential At Mt Princeton Hot Springs Geothermal Area (Richards...

    Open Energy Info (EERE)

    2008 - 2010 Usefulness useful DOE-funding Unknown Exploration Basis Determination of groundwater flux patterns Notes Researchers collected 2700 SP measurements. Equilibrium...

  4. DC Resistivity Survey (Wenner Array) At Mt Princeton Hot Springs...

    Open Energy Info (EERE)

    2008 - 2010 Usefulness useful DOE-funding Unknown Exploration Basis Determination of groundwater flux patterns Notes Researchers measured DC resistivity and produced 12 resistivity...

  5. Graduate Student Handbook The Graduate Group in Molecular Toxicology (MT)

    E-Print Network [OSTI]

    (Stat 2, 20) 1 Semester Mathematics Differential and Integral Calculus (Math 1A) 1 Semester Chemistry and Microbial Biology, Chemistry, Public Health, Environmental Science and Policy Management, Integrative in the core courses. Research units (NST 299) are not calculated into this GPA requirement. To receive

  6. 2323 University Way, Suite 239 Bozeman, MT 59717

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    is accomplished through exposure and penetration of the contaminated material by superheated steam for an adequate through autoclaving. After sterilization in a steam autoclave, these materials are considered non amount of time. Because steam will not penetrate a sealed plastic autoclave bag, bags containing dry

  7. MSc Programme In the programme, MT engineers acquire a thorough

    E-Print Network [OSTI]

    Langendoen, Koen

    . Research within the Marine Technology group focuses on ship hydromechanics, shipbuilding and design, safety of new ones. · Ship Production is concerned in particular with the management of shipbuilding projects

  8. Ground Gravity Survey At Marysville Mt Area (Blackwell) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar Jump to:ResourcesGriggsOpen| OpenAl., 1979)Al., 2003)

  9. Ground Magnetics At Marysville Mt Area (Blackwell) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar JumpInformation Crump's Hot Springs Area (DOE

  10. File:INL-geothermal-mt.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New Pages Recent Changes AllApschem.pdfgasp 03.pdf JumpGerak.pdf Jump to:hi.pdf Jump

  11. Data Acquisition-Manipulation At Marysville Mt Area (Blackwell) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc JumpIowa: EnergyDarkEnergy InformationEnergy

  12. Mt Carmel Public Utility Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver, Pennsylvania:(CTI PFAN) | Open Energy(RECP)

  13. RAPID/Roadmap/1-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevada <UtahMontanasource History

  14. RAPID/Roadmap/11-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevada <UtahMontanasourceWA-a <aa <

  15. RAPID/Roadmap/11-MT-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevada <UtahMontanasourceWA-a <aa <b <

  16. RAPID/Roadmap/13-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa < RAPID‎ | Roadmap Jumpf <ID-a

  17. RAPID/Roadmap/14-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa < RAPID‎ | RoadmapCO-c

  18. RAPID/Roadmap/14-MT-e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa < RAPID‎ | RoadmapCO-ce < RAPID‎

  19. RAPID/Roadmap/17-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa < RAPID‎ |a < RAPID‎CA-aHI-aa

  20. RAPID/Roadmap/18-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa < RAPID‎ |a <-AK-b <CO-bad

  1. RAPID/Roadmap/19-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa < RAPID‎f < RAPID‎ |

  2. RAPID/Roadmap/3-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa < RAPID‎f <CA-aa <dFD-pca <

  3. RAPID/Roadmap/3-MT-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa < RAPID‎f <CA-aa <dFD-pca <b

  4. RAPID/Roadmap/6-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa < RAPID‎fRAPID/Roadmap/6-CO-bac <a

  5. RAPID/Roadmap/6-MT-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa < RAPID‎fRAPID/Roadmap/6-CO-bac <ab

  6. RAPID/Roadmap/6-MT-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa < RAPID‎fRAPID/Roadmap/6-CO-bac

  7. RAPID/Roadmap/7-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa <NV-b < RAPID‎ |ahn

  8. Whitlash, MT Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3Additions (Million CubicYearSeparation9,195 7,707 7,062 6,571

  9. 2007-mt-elbert | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONe β+-Decay EvaluatedThe6 Feature2007 News7

  10. Port of Morgan, MT Natural Gas Exports to Canada

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet)PricePricethethePrice4)402 424 265 257485,026

  11. Port of Morgan, MT Natural Gas Exports to Canada

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet)PricePricethethePrice4)402 424 265

  12. Sweetgrass, MT Liquefied Natural Gas Exports to Canada

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3 November 2013Additions (Million CubicYearCubic(Million,109 932

  13. Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3 November 2013Additions (MillionThousand Cubic Feet) Year

  14. Babb, MT Liquefied Natural Gas Exports (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724per ThousandLease Separation A4.98

  15. City of Mt Pleasant, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler, Iowa (UtilityIowa Phone Number: (319) 385-2121 Website:

  16. City of Mt Pleasant, Tennessee (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler, Iowa (UtilityIowa Phone Number: (319) 385-2121

  17. Village of Mt Horeb, Wisconsin (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho) Jump to:NewVermont (Utility Company) Jump

  18. RAPID/Roadmap/11-MT-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report Url

  19. RAPID/Roadmap/17-MT-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | Roadmap JumpNV-ad

  20. RAPID/Roadmap/3-MT-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | RoadmapAK-a <CA-a <HI-ec <

  1. RAPID/Roadmap/3-MT-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | RoadmapAK-a <CA-a <HI-ec <d

  2. RAPID/Roadmap/3-MT-e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | RoadmapAK-a <CA-a <HI-ec <de

  3. RAPID/Roadmap/3-MT-f | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | RoadmapAK-a <CA-a <HI-ec <def

  4. RAPID/Roadmap/5-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | RoadmapAK-a <CA-ae

  5. RAPID/Roadmap/6-MT-e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | RoadmapAK-ab < RAPID‎ |c <dee

  6. RAPID/Roadmap/9-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | RoadmapAK-abFD-a <aAK-a

  7. Mt. Wachusett Community College Makes Huge Investment in Wind Power |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment of Energy Motion to Mr. Daniel CohenJUN 1 1 20133

  8. BWXT Pantex, LLC Route 726, Mt. Athos Road

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National 1 PAGE 1 OF2Guidance to the RevisedEIS 9B.

  9. BWXT Pantex, LLC Route 726, Mt. Athos Road

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National 1 PAGE 1 OF2Guidance to the RevisedEIS 9B.I I .

  10. BWXT Pantex, LLC Route 726, Mt. Athos Road

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National 1 PAGE 1 OF2Guidance to the RevisedEIS 9B.I I

  11. BWXT Pantex, LLC Route 726, Mt. Athos Road

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National 1 PAGE 1 OF2Guidance to the RevisedEIS 9B.I I

  12. BWXT Pantex, LLC Route 726, Mt. Athos Road

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National 1 PAGE 1 OF2Guidance to the RevisedEIS 9B.I II

  13. BWXT Pantex, LLC Route 726, Mt. Athos Road Lynchburg, V

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National 1 PAGE 1 OF2Guidance to the RevisedEIS 9B.I IIV

  14. Magnetotelluric Techniques At Mt Princeton Hot Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump to:New(Held & Henderson,

  15. Mt Wheeler Power, Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource HistoryCharleston,Peak Utility Jump

  16. Mt. Edgecumbe High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource HistoryCharleston,Peak Utility JumpEdgecumbe

  17. 3D Mt Resistivity Imaging For Geothermal Resource Assessment And

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan)data bookresult9) Jump to:13:28-07:00

  18. Sweetgrass, MT Liquefied Natural Gas Exports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome Page WelcomeDecadeSumary(Million Cubic

  19. Sweetgrass, MT Liquefied Natural Gas Exports Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome Page WelcomeDecadeSumary(Million

  20. Sweetgrass, MT Liquefied Natural Gas Exports Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome Page WelcomeDecadeSumary(MillionCubic

  1. Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome Page

  2. Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome Pageper Thousand Cubic Feet) Year

  3. Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome Pageper Thousand Cubic Feet)

  4. Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome Pageper Thousand Cubic

  5. Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome Pageper Thousand CubicThousand Cubic

  6. Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome Pageper Thousand CubicThousand

  7. Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome Pageper Thousand

  8. Merging high resolution geophysical and geochemical surveys to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon Innovative Exploration Technologies Maui Hawaii & Glass Buttes,...

  9. Velocity structure of the uppermost mantle beneath East Asia from Pn tomography and its dynamic implications

    E-Print Network [OSTI]

    Niu, Fenglin

    regions on Earth's surface due to the collision from the India plate and the suctions induced seismicity of the area, we conducted a Pn traveltime tomography to estimate the compressive wave speed. In each region, stable blocks tend to have high Pn velocity while the boundary regions, which show a high

  10. Bold IdeasResearch at the University of Arizona Cover: Beneath the University of Arizona football

    E-Print Network [OSTI]

    Ziurys, Lucy M.

    universities in the nation, with exceptional strengths in astronomy, space and optical sciences, biosciences;...the development of our region 4 land & Natural Resources 6 Public health 8 People and Place 10 Economic Future ...the future of our world 12 Renewable Energy 14 Sustainability 16 Medicine ...our

  11. The elusive lithosphereasthenosphere boundary (LAB) beneath cratons David W. Eaton a,

    E-Print Network [OSTI]

    Jones, Alan G.

    Available online 5 June 2008 Keywords: Petrologic lithosphere Thermal lithosphere Seismic lithosphere thermobarometry define a mantle stratigraphy, as well as a steady-state conductive geotherm that constrains the probable deformation mechanism near the LAB is dislocation creep, consistent with widely observed seismic

  12. EDDY CURRENT SYSTEM FOR DETECTION OF CRACKING BENEATH BRAIDING IN CORRUGATED METAL HOSE

    SciTech Connect (OSTI)

    Wincheski, Buzz [NASA Langley Research Center, Hampton, VA 23681 (United States); Simpson, John [Lockheed Martin Space Operations, Hampton, VA 23681 (United States); Hall, George [George Washington University, Washington, D.C. 20052 (United States)

    2009-03-03

    In this paper an eddy current system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.

  13. Preliminary interpretation of the upper crustal structure beneath Prince Edward Island

    E-Print Network [OSTI]

    Jones, Alan G.

    during 1983 to aid in the assessment of the geothermal energy potential of the province. At ten locations. For the western part ofthe Island there is a resistive zone which can be identified from the borehole logs as pre gravity anomaly in the region. Key words: magnetotelluric method, geothermal energy, Prince Edward Island

  14. Effective stress profiles and seepage flows beneath glaciers and ice sheets

    E-Print Network [OSTI]

    Rempel, Alan W.

    stress for ice infiltration Qb Heat flux into glacier base Qf Heat produced by dissipation Qg Geothermal Vertical coordinate Exponent in permeability relation #12; Exponent in ice-saturation relation il Ice

  15. Deformation and hydration of the lithospheric mantle beneath the Kaapvaal craton, South Africa

    E-Print Network [OSTI]

    Tommasi, Andrea

    root. The vertical variation in water contents in olivine observed in the Kaapvaal peridotites may with magnetotelluric electrical conductivity data suggests, however, that the observed vertical variation of water lithosphere with cold geotherms (Boyd et al., 1985; Chevrot and Zhao, 2007; Evans et al., 2011; Jaupart

  16. DOE Report Assesses Potential for Carbon Dioxide Storage Beneath Federal Lands

    Broader source: Energy.gov [DOE]

    As a complementary document to the U.S. Department of Energy's Carbon Sequestration Atlas of the United States and Canada issued in November 2008, the Office of Fossil Energy's National Energy Technology Laboratory has now released a report that provides an initial estimate of the potential to store carbon dioxide underneath millions of acres of Federal lands.

  17. Basalt petrogenesis beneath slow- and ultraslow-spreading Arctic mid-ocean ridges

    E-Print Network [OSTI]

    Elkins, Lynne J

    2009-01-01

    To explore the ability of melting mafic lithologies to produce alkaline ocean-island basalts (OIB), an experimental study was carried out measuring clinopyroxene (Cpx)melt and garnet (Gt)-melt partition coefficients during ...

  18. The structure of a Mesozoic basin beneath the Lake Tana area, Ethiopia, revealed by magnetotelluric imaging

    E-Print Network [OSTI]

    that electrically resistive features in the model are related to volcanic materials intruded within the rift basin basin, northwest Ethiopia is an uplifted dome possibly related to the Afar mantle plume (Pik et al

  19. Attacking the Pollution Beneath Our Feet Elena Aksel (ChE '08) is trying to see

    E-Print Network [OSTI]

    Huang, Wei

    ,000. Non-Profit Organization US Postage PAID Charlottesville, VA Permit No. 164 Office of the Dean School into their designs. "It's vital that schoolchildren make a direct connection between the wind and weather sources on the basis of their efficiency, durability and cost. Equally critical were the discussions

  20. Crustal and Uppermost Mantle Structure beneath the Western United States from USArray Regional Phase Analysis /

    E-Print Network [OSTI]

    Buehler, Janine Sylvia

    2013-01-01

    et al. [2008]). Interpretation of seismic tomography maps isresolution, interpretation of imaged seismic anoma- lies

  1. Geophysical (time domain electromagnetic model) delineation of a shallow brine beneath a freshwater lake,

    E-Print Network [OSTI]

    Gvirtzman, Haim

    groundwaters. It is hypothesized that salt transport is dominated by molecular diffusion in the central part streams entering the lake. This order of magnitude difference is a result of salt fluxes from two major cores and nineteen 0.5-m cores drilled to sediments within the lake basin (Figure 1). At the water

  2. A penalization method for calculating the flow beneath travelling water waves of large amplitude

    E-Print Network [OSTI]

    Adrian Constantin; Konstantinos Kalimeris; Otmar Scherzer

    2014-08-08

    A penalization method for a suitable reformulation of the governing equations as a constrained optimization problem provides accurate numerical simulations for large-amplitude travelling water waves in irrotational flows and in flows with constant vorticity.

  3. Particle trajectories beneath small amplitude shallow water waves in constant vorticity flows

    E-Print Network [OSTI]

    Delia Ionescu-Kruse

    2011-06-20

    We investigate the particle trajectories in a constant vorticity shallow water flow over a flat bed as periodic waves propagate on the water's free surface. Within the framework of small amplitude waves, we find the solutions of the nonlinear differential equations system which describes the particle motion in the considered case, and we describe the possible particle trajectories. Depending on the relation between the initial data and the constant vorticity, some particle trajectories are undulating curves to the right, or to the left, others are loops with forward drift, or with backward drift, others can follow some peculiar shapes.

  4. Small-amplitude capillary-gravity water waves: exact solutions and particle motion beneath such waves

    E-Print Network [OSTI]

    Delia Ionescu-Kruse

    2011-06-20

    Two-dimensional periodic surface waves propagating under the combined influence of gravity and surface tension on water of finite depth are considered. Within the framework of small-amplitude waves, we find the exact solutions of the nonlinear differential equation system which describes the particle motion in the considered case, and we describe the possible particle trajectories. The required computations involve elliptic integrals of the first kind, the Legendre normal form and a solvable Abel differential equation of the second kind. Some graphs of the results are included.

  5. Peakons arising as particle paths beneath small-amplitude water waves

    E-Print Network [OSTI]

    Delia Ionescu-Kruse

    2011-06-20

    We present a new kind of particle path in constant vorticity water of finite depth, within the framework of small-amplitude waves.

  6. Shear wave splitting and the pattern of mantle flow beneath eastern Oregon Maureen D. Long a,

    E-Print Network [OSTI]

    period of bimodal (basaltic and silicic) volcanism in both the High Lava Plains and Snake River Plain October 2009 Editor: Y. Ricard Keywords: intraplate volcanism High Lava Plains Blue Mountains Pacific Oregon includes the volcanically active High Lava Plains (HLP) province and the accreted terrains

  7. Mantle source provinces beneath the Northwestern USA delimited by helium isotopes in young basalts

    E-Print Network [OSTI]

    Graham, David W.

    phenocrysts in basalts from the eastern Snake River Plain (SRP), the Owyhee Plateau (OP) and the Oregon High: Received 17 April 2008 Accepted 11 December 2008 Available online 31 December 2008 Keywords: Snake River Plain High Lava Plains Yellowstone helium isotopes mantle plume We report new He, Nd and Sr isotope

  8. An unexpected journey: experimental insights into magma and volatile transport beneath Erebus volcano, Antarctica

    E-Print Network [OSTI]

    Iacovino, Kayla

    2014-06-10

    and phonolite, which represent the most primitive and evolved lavas from Erebus. A distinct cocktail of C-O-H-S fluid was equilibrated with each experiment, and a wide range of experimental oxygen fugacities was explored. Overall, experiments from this work...

  9. Seismic tomography shows that upwelling beneath Iceland is confined to the upper mantle

    E-Print Network [OSTI]

    Foulger, G. R.

    of the upper mantle was determined using the ACH damped least-squares method and involved 42 stations, 3159 P

  10. Ordovician carbonate formation waters in the Illinois Basin: Chemical and isotopic evolution beneath a regional aquitard

    SciTech Connect (OSTI)

    Stueber, A.M. ); Walter, L.M. . Dept. of Geological Sciences)

    1992-01-01

    Formation waters from carbonate reservoirs in the upper Ordovician Galena Group of the Illinois Basin have been analyzed geochemically to study origin of salinity, chemical and isotopic evolution, and relation to paleohydrologic flow systems. These carbonate reservoirs underlie the Maquoketa Shale Group of Cincinnatian age, which forms a regional aquitard. Cl-Br relations and Na/Br-Cl/Br systematics indicate that initial brine salinity resulted from subaerial evaporation of seawater to a point not significantly beyond halite saturation. Subsequent dilution in the subsurface by meteoric waters is supported by delta D-delta O-18 covariance. Systematic relations between Sr-87/Sr-86 and 1/Sr suggest two distinct mixing events: introduction of a Sr-87 enriched fluid from a siliciclastic source, and a later event which only affected reservoir waters from the western shelf of the basin. The second mixing event is supported by covariance between Sr-87/Sr-86 and concentrations of cations and anions; covariance between Sr and O-D isotopes suggests that the event is related to meteoric water influx. Systematic geochemical relations in ordovician Galena Group formation waters have been preserved by the overlying Maquoketa shale aquitard. Comparison with results from previous studies indicates that waters from Silurian-Devonian carbonate strata evolved in a manner similar to yet distinct from that of the Ordovician carbonate waters, whereas waters from Mississippian-Pennsylvanian strata that overlie the New Albany Shale Group regional aquitard are marked by fundamentally different Cl-Br-Na and Sr isotope systematics. Evolution of these geochemical formation-water regimes apparently has been influenced significantly by paleohydrologic flow systems.

  11. Mantle conveyor beneath the Tethyan collisional belt Thorsten W. Becker a,

    E-Print Network [OSTI]

    Becker, Thorsten W.

    into Eurasia, creating the Bitlis­Zagros collisional belt during the spreading of the Red Sea-Gulf of Aden

  12. Seismic reflection investigations of sinkholes beneath Interstate Highway 70 in Kansas

    E-Print Network [OSTI]

    Steeples, Don W.; Knapp, Ralph W.; McElwee, Carl D.

    1986-02-01

    Seismic reflection studies were performed across actively developing sinkholes located astride Interstate Highway 70 in Russell County, Kansas. Results indicate that high?resolution seismic reflection surveys are useful in the subsurface...

  13. Uranium Contamination in the Subsurface Beneath the 300 Area, Hanford Site, Washington

    SciTech Connect (OSTI)

    Peterson, Robert E.; Rockhold, Mark L.; Serne, R. Jeffrey; Thorne, Paul D.; Williams, Mark D.

    2008-02-29

    This report provides a description of uranium contamination in the subsurface at the Hanford Site's 300 Area. The principal focus is a persistence plume in groundwater, which has not attenuated as predicted by earlier remedial investigations. Included in the report are chapters on current conditions, hydrogeologic framework, groundwater flow modeling, and geochemical considerations. The report is intended to describe what is known or inferred about the uranium contamination for the purpose of making remedial action decisions.

  14. Capillary Break Beneath a Slab: Polyethylene Sheeting over Aggregate; Southwestern Pennsylvania (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-07-01

    This document provides content for three areas of the Building America Solution Center. First, "Insulating Closed Crawlspace Walls and Band Joist Area" describes how to install rigid foam insulation on the interior perimeter walls and band joist area in closed crawlspace foundations of homes. Second, "Removing Construction Debris from Flexible Ducts" describes how to clean flexible ducts after construction or major renovation of a home to remove debris resulting from building materials, particularly airborne dust and particulates. Third, images, CAD drawings, and a case study illustrate right and wrong ways to apply polyethylene sheeting over aggregate. Similarly, a CAD drawing is included that illustrates the use of a concrete slab over polyethylene.

  15. Author's personal copy Imaging of Vp, Vs, and Poisson's ratio anomalies beneath

    E-Print Network [OSTI]

    Seno, Tetsuzo

    and Kirishima. The subducting Philippine Sea slab is imaged generally as a high-velocity anomaly down to a depth's ratio could be caused by fluid-filled cracks induced by dehydration from the Philippine Sea slab; Shikoku; Philippine Sea; Seismic tomography; Poisson's ratio; Serpentinized forearc mantle; Low

  16. Unsaturated Groundwater Flow Beneath Upper Mortandad Canyon, Los Alamos, New Mexico

    SciTech Connect (OSTI)

    Dander, D.C.

    1998-10-15

    Mortandad Canyon is a discharge site for treated industrial effluents containing radionuclides and other chemicals at Los Alamos National Laboratory, New Mexico. This study was conducted to develop an understanding of the unsaturated hydrologic behavior below the canyon floor. The main goal of this study was to evaluate the hypothetical performance of the vadose zone above the water table. Numerical simulations of unsaturated groundwater flow at the site were conducted using the Finite Element Heat and Mass Transfer (FEHM) code. A two-dimensional cross-section along the canyon's axis was used to model flow between an alluvial groundwater system and the regional aquifer approximately 300 m below. Using recharge estimated from a water budget developed in 1967, the simulations showed waters from the perched water table reaching the regional aquifer in 13.8 years, much faster than previously thought. Additionally, simulations indicate that saturation is occurring in the Guaje pumice bed an d that the Tshirege Unit 1B is near saturation. Lithologic boundaries between the eight materials play an important role in flow and solute transport within the system. Horizontal flow is shown to occur in three thin zones above capillary barriers; however, vertical flow dominates the system. Other simulations were conducted to examine the effects of changing system parameters such as varying recharge inputs, varying the distribution of recharge, and bypassing fast-path fractured basalt of uncertain extent and properties. System sensitivity was also explored by changing model parameters with respect to size and types of grids and domains, and the presence of dipping stratigraphy.

  17. Exhumation of high-pressure rocks beneath the Solund Basin, Western Gneiss Region of Norway

    E-Print Network [OSTI]

    Hacker, Bradley R.

    . HACKER,1 T. B. ANDERSEN,2 D. B. ROOT,1 L. MEHL,1 J. M. MATTINSON1 AND J. L. WOODEN3 1 Department of Geological Sciences, University of California, Santa Barbara, CA 93106­9630, USA (hacker@geology.ucsb.edu) 2

  18. REACTIVE MULTIPHASE BEHAVIOR OF CO2 IN SALINE AQUIFERS BENEATH THE COLORADO PLATEAU

    SciTech Connect (OSTI)

    R.G. Allis; J. Moore; S. White

    2003-06-30

    The six coal-fired power plants located in the Colorado Plateau and southern Rocky Mountain region of the U.S. produce 100 million tons of CO{sub 2} per year. Thick sequences of collocated sedimentary rocks represent potential sites for sequestration of the CO{sub 2}. Field and laboratory investigations of naturally occurring CO{sub 2}-reservoirs are being conducted to determine the characteristics of potential seal and reservoir units and the extent of the interactions that occur between the host rocks and the CO{sub 2} charged fluids. The results are being incorporated into a series of two-dimensional numerical models that represent the major chemical and physical processes induced by injection. During reporting period covered here (March 30 to June 30, 2003), the main achievements were: Presentation of three papers at the Second Annual Conference on Carbon Sequestration (May 5-8, Alexandria, Virginia); Presentation of a poster at the American Association of Petroleum Geologists meeting; Co-PI organized and chaired a special session on Geologic Carbon Dioxide Sequestration at the American Association of Petroleum Geologists annual convention in Salt Lake City (May 12-15).

  19. Deep winds beneath Saturn's upper clouds from a seasonal long-lived planetary-scale storm

    E-Print Network [OSTI]

    Boyer, Edmond

    (France) 7 LESIA, Observatoire de Paris-Meudon, Paris (France) 8 Atmospheric, Oceanic and Planetary at 10 ­ 12 bar, much deeper than solar radiation penetrates. hal-00639431,version1-6Nov2012 #12;4 Ground

  20. Lying in wait: deep and shallow evolution of dacite beneath Volcan de Santa Maria, Guatemala

    E-Print Network [OSTI]

    Meyers, Stephen R.

    between dacitic and basaltic andesite magma as the two magmas mingled and partially mixed en route wallrock heating sufficient to induce partial melting and assimilation involved several pulses with the termination of cone-building at 25 ka: the 1902 dacite reflects .40% fractional crystallization of plagioclase

  1. Petrology and Geochemistry of Neoproterozoic Arc Plutons Beneath the Atlantic Coastal Plain, SRS, SC

    SciTech Connect (OSTI)

    Maryak, M.

    1998-10-21

    In this report is presented first a brief review of the regional geologic setting of the Savannah River Site, descriptions of the plutonic rock units sampled here, whole rock geochemical data on the plutonic igneous rocks, and finally, a discussion of how the crystalline basement rocks of the Savannah River Site formed and how they may correlate with other terranes exposed in the Piedmont of the Carolinas, Georgia, and Virginia.

  2. Thermo-mechanical structure beneath the young orogenic belt of Taiwan

    E-Print Network [OSTI]

    Ma, Kuo-Fong

    by constructing a shear strength profile from a vertical stratified rheological structure. The stratified/ductile transition revealed in the strength profile. Our results show that the observed two-layer seismicity.V. All rights reserved. Keywords: Thermo-mechanical; Rheology; Seismicity; Strength profile; Composition

  3. Uppermost mantle anisotropy beneath the southern Laurentian margin: Evidence from Knippa peridotite xenoliths, Texas

    E-Print Network [OSTI]

    Stern, Robert J.

    primitive nephelinites of the Balcones Igneous Province (BIP) [Griffin et al., 2010]. BIP volcanoes approximate the boundary between the 1.1­ 1.4 Ga southernmost Laurentian (Texas) craton and Jurassic age

  4. Recent Experiences with Corrosion Beneath Thermal Insulation in a Chemical Plant 

    E-Print Network [OSTI]

    Long, V. C.; Crawley, P. G.

    1984-01-01

    Corrosion of carbon and stainless steels under wet thermal insulation can be a serious problem and can be especially prevalent in the humid Gulf Coast area. This paper discusses an inspection program that has been in progress since late 1982 at a 10...

  5. Analysis of pumping-induced unsaturated regions beneath a perennial river

    E-Print Network [OSTI]

    Su, G.W.; Jasperse, J.; Seymour, D.; Constantz, J.; Zhou, Q.

    2008-01-01

    Su, G.W. , J. Jasperse, D. Seymour, and J. Constantz (2004),G.W. , J. Jasperse, D. Seymour, J. Constantz, C. Delaney,James Jasperse 2 , Donald Seymour 2 , James Constantz 3 ,

  6. Seismic Discontinuities in the Mantle Beneath the Western Pacific: Evidence from ScS Reverberations 

    E-Print Network [OSTI]

    Bagley, Brian

    2006-07-11

    Earthquakes generate seismic waves that travel through the Earth and can be reflected by changes in density and/or seismic velocity that may relate to changes in the phase or chemical composition of the mantle. To study these discontinuities we use...

  7. Chemical characteristics of precipitation beneath three forest types in east Texas 

    E-Print Network [OSTI]

    Pehl, Charles Edward

    1977-01-01

    . 27 9. 14 138. 07 Vl IU Qt IQ VI I 5- W Ql o c E CU CU CT Cl Ql Ql L/I 4? E 5- 0 0 5- Vl O C IA ICI I C/I 0 5- Ql /Cl ~ O O. O D o CU 5- CU GL CD ~ Vl c 0 C-I VI I I/I I/I C/I IC Vl E IU O /C Vl I N w E o QI N 0... 5. M IQ I/I Ql 4 ? D 0 W ~ ~ 5 C QI Ql 0 0 I/I 4- Q, ' Ql 0 IQ I I ~ ~ ~ QQ 0 0 0 0 0 0 tg lg ~ OJ )Ueo&ed'Uol)D!&Dg $0 qua!oggaog 20 T~hh hf 11 Throughfal1 in the loblolly pine plantation (PP) was 82/ of inci- dent precipitation...

  8. Multiparameter adjoint tomography of the crust and upper mantle beneath East Asia: 1. Model

    E-Print Network [OSTI]

    Niu, Fenglin

    Resource and Prospecting, and Unconventional Natural Gas Institute, China University of Petroleum, Beijing

  9. Low wave speed zones in the crust beneath SE Tibet revealed by ambient noise

    E-Print Network [OSTI]

    Niu, Fenglin

    , China, 4 State Key Laboratory of Petroleum Resource and Prospecting, and Unconventional Natural Gas

  10. Geochemical Modeling of the Near-Surface Hydrothermal System Beneath the

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway EditOpen

  11. Mapping the Hydrothermal System Beneath the Western Moat of Long Valley

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5TransportManitouChange |Maplewood Park,Caldera Using

  12. Oil & Natural Gas Technology Temporal Characterization of Hydrates System Dynamics beneath Seafloor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access toOctober 1996 -Workers'OfficialSan Miguel CountyOklahoma City,Oil

  13. Temperatures at the Base of the Seismogenic Crust Beneath Long Valley

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ Automation Jump to:Information 8)Cassia County, IdahoDrill

  14. A Low-Velocity Zone in the Basement Beneath the Valles Caldera, New Mexico

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram | OpenEnergyEvaluation | OpenLow Carbon Economic|

  15. A Preparation Zone For Volcanic Explosions Beneath Naka-Dake Crater, Aso

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram | OpenEnergyEvaluationOpen EnergyEnergyVolcano, As

  16. A Temperature Model Of The Crust Beneath The Barents Sea- Investigations

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram |Recent ExplorationInformationAlong

  17. Crust and Upper Mantle P Wave Velocity Structure Beneath Valles Caldera,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)|Alabama:Crofton, Maryland:Crownsville, Maryland:Crugers,New

  18. Inferences On The Hydrothermal System Beneath The Resurgent Dome In Long

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei |sourceAnd CentralWorld BankTerms andValley

  19. Inferences On The Hydrothermal System Beneath The Resurgent Dome In Long

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei |sourceAnd CentralWorld BankTerms andValleyValley

  20. Anomalous shear wave attenuation in the shallow crust beneath the Coso

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump| Open EnergyNew Jersey: Energyvolcanic region,

  1. Assessment of the Mechanical Stress Improvement Process for Mitigating Primary Water Stress Corrosion Cracking in Nickel Alloy Butt Welds in Piping Systems Approved for Leak-Before-Break

    SciTech Connect (OSTI)

    Sullivan, Edmund J.; Anderson, Michael T.

    2013-01-01

    This report provides an assessment of the use of Mechanical Stress Improvement Process to reduce, or decrease, stress-driven degradation, i.e., primary water stress corrosion cracking.

  2. Assessment of Weld Overlays for Mitigating Primary Water Stress Corrosion Cracking at Nickel Alloy Butt Welds in Piping Systems Approved for Leak-Before-Break

    SciTech Connect (OSTI)

    Sullivan, Edward J.; Anderson, Michael T.

    2012-08-01

    This TLR provides an assessment of weld overlays as a mitigation strategy for PWSCC, and includes an assessment of the WOL-related inspection requirements of Code Case N-770-1, as conditioned in §50.55a.

  3. Tradeoffs in Brush Management for Water Yield and Habitat Management in Texas: Twin Buttes Drainage Area and Edwards Aquifer Recharge Zone 

    E-Print Network [OSTI]

    Narayanan, Christopher R.; Kreuter, Urs P.; Conner, J. Richard

    2002-08-14

    control planning, assessment, & feasibility study. 12 Edwards Aquifer Recharge Zone Data Table 1. EA Acreage EA Acreage 129 2 867.15 225.00 100.00 225.00 950.00 Valid Missing N Mean Median 25 50 75 Percentiles Table 2. Role at Property 109 83....2 83.8 83.8 8 6.1 6.2 90.0 4 3.1 3.1 93.1 2 1.5 1.5 94.6 7 5.3 5.4 100.0 130 99.2 100.0 1 .8 131 100.0 Make Most Management Decisions One of Key Decision Makers Spouse of Key Decision Maker Hired Manager Other Total Valid No ResponseMissing Total...

  4. Pricing Games for Hybrid Object Stores in the Cloud: Provider vs. Tenant Yue Cheng, M. Safdar Iqbal, Aayush Gupta, Ali R. Butt

    E-Print Network [OSTI]

    Butt, Ali R.

    they simplify the management of large blocks of data at scale. To ensure cost-effectiveness of the storage service, the object stores use hard disk drives (HDDs). However, the lower performance of HDDs af- fect significant maintenance costs to the provider. We design a tiered object store for the cloud, which comprises

  5. Corrosion of 304 Stainless Steel Exposed To Nitric Acid -Chloride Environments D.G. Kolman, D.K. Ford, D.P. Butt, and T.O. Nelson

    E-Print Network [OSTI]

    Corrosion of 304 Stainless Steel Exposed To Nitric Acid - Chloride Environments D.G. Kolman, DCl, and temperature on the general corrosion behavior of 304 stainless steel (SS), electrochemical studies were vessels, are typically composed of AISI 304 stainless steel (SS). However, the corrosion resistance of 304

  6. Key China Energy Statistics 2011

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01

    kerosene, diesel oil, fuel oil, LPG, refinery gas and otherMt Diesel Oil Mt Fuel Oil Mt LPG Mt Refinery Gas Mt Other

  7. Key China Energy Statistics 2012

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01

    kerosene, diesel oil, fuel oil, LPG, refinery gas and otherMt Diesel Oil Mt Fuel Oil Mt LPG Mt Refinery Gas Mt Other

  8. C;\\u U ,RAI Y Mt. PI OJ 1, Mich.

    E-Print Network [OSTI]

    /3 cup salad dressing 2 ta blespoons chopped onion 1 tea poon salt Pepper to season Salad greens Dram he Oll off he tuna Brea. the tuna in 0 large pieces. ix every- thing together except he salad greens. Pu the una-po a 0 salad in the refrigera or until cold Serve he una-potato salad on the so ad greens #12

  9. Www.deq.mt.gov/MFS/LawRules/Circular2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:Wizard Power

  10. Thermal And-Or Near Infrared At Marysville Mt Area (Blackwell) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008) | Open EnergyEnergy

  11. Thermal And-Or Near Infrared At Mt Ranier Area (Frank, 1995) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008) | Open

  12. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01

    incentivizing unbridled water extraction, this situation ledhow much individual water extraction practices impact theexcessive groundwater extraction Water Scarcity and Ac- cess

  13. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01

    103–113 18 Freeman, Strategic Management: A StakeholderFreeman, R. Edward. Strategic Management: A StakeholderCommander. 39,40 Freeman Strategic Management: A Stakeholder

  14. In-situ aircraft observations of the 2000 Mt. Hekla volcanic cloud: Composition and chemical

    E-Print Network [OSTI]

    Lee, Shan-Hu

    to sulfuric acid was broadly consistent with changing OH concentrations at the time of the vernal equinox

  15. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01

    of Fire and Invasive Alien Plant Management Practices in of Fire and Invasive Alien Plant Management Practices in of Fire and Invasive Alien Plant Management Practices in 

  16. mtDNA Variation in Caste Populations of Andhra Pradesh, India.

    E-Print Network [OSTI]

    Bamshad, Michael; Fraley, Alexander E.; Crawford, Michael H.; Cann, Rebecca L.; Busi, Baskara R.; Naidu, J. M.; Jorde, Lynn B.

    1996-01-01

    Various anthropological analyses have documented extensive regional variation among populations on the subcontinent of India using morphological, protein, blood group, and nuclear DNA polymorphisms. These patterns are the product of complex...

  17. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01

    11 California State Water Resources Control Board, The WaterSan Diego Regional Water Quality Control Board, “Watershed73 California State Water Resources Control Board, The Water

  18. Montana Weed Control Association Annual Meeting. January 11th 2011, Great Falls, MT.

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Seed movement by vehicles: how many, how far, and under what conditions? Movement of seeds by vehicles is generally thought to increase the spread of invasive plant species, but few studies have vehicles when driven a range of distances on different surfaces (asphalt, unpaved and offroad) under wet

  19. LETTERS TO THE EDITOR Two years ago at the MT Summit held in Hakone, Japan,

    E-Print Network [OSTI]

    is based on the Arthur D. Little (ADL) study of the production experience with the Georgetown Russian). Finally, it was suggested that there were better ways for the federal government to spend these R & D

  20. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01

    Libecap, Gary D. Rescuing Water Markets: Lessons from OwensWest and Its Disappearing Water, Revised Edition. Revised. (Thomas. “Estimating Water Requirements for Firefighting

  1. Istituzioni di Matematiche I (CH-CI-MT) ________________________________V_IIIo_foglio_di_esercizi______________________*

    E-Print Network [OSTI]

    Candilera, Maurizio

    flesso e B quello a tangente parallela all'asse delle ordinate, si determini il* * volume del solido ottenuto dalla rotazione della regione finita di piano compresa tra l'arco AB, la retta OA e l* *'asse delle ascisse, di un intero giro attorno alla asse medesimo. ESERCIZIO 4. Si disegni nel piano

  2. The CAFE experiment : a joint seismic and MT investigation of the Cascadia subduction system

    E-Print Network [OSTI]

    McGary, R. Shane

    2013-01-01

    In this thesis we present results from inversion of data using dense arrays of collocated seismic and magnetotelluric stations located in the Cascadia subduction zone region of central Washington. In the migrated seismic ...

  3. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01

    1: Climate Change and the Energy Crisis. (2008). Getting Our1: Climate Change and the Energy Crisis. (2008). http://

  4. IDBA-MT: De novo Assembler for Metatranscriptomic Data generated from Next-Generating Sequencing Technology

    E-Print Network [OSTI]

    Chin, Francis Y.L.

    Parkinson Biochemistry & Molecular and Medical Genetics University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada M5S 1A1 Email: john.parkinson@utoronto.ca Telephone: 416-813-5746 Francis Y of microbes in human gut was found to be related to common diseases such as Inflammatory Bowel Disease (IBD

  5. Hawaiian Hot-spot Swell Structure from Seafloor MT Sounding Steven Constable

    E-Print Network [OSTI]

    Key, Kerry

    on the hotspot (Cough, 1979; Detrick and Crough, 1978); (ii) compositional underplating of depleted mantle

  6. NEAFS Y-mtDNA Workshop (Butler and Coble) November 1, 2006

    E-Print Network [OSTI]

    Human Genome The Human Genome Nuclear DNA 3 billion bp High Power Of Discrimination Mitochondrial DNA 16 11 12 13 14 15 16 17 18 19 20 21 22 X Y Sex- chromosomes Autosomes 3.2 billion bp Nuclear DNA), and use a genetic code for amino acids different that the nuclear DNA. · New mitochondria are formed

  7. The Investigation on Fibrous Veins and Their Host from Mt. Ida, Ouachita Mountains, Arkansas 

    E-Print Network [OSTI]

    Chung, Jae Won

    2004-09-30

    , the ?13C and ?18O compositions of the host lithologies range from 1.5 to -3.0 per mil and 7.5 to -14.0 per mil (VPDB), respectively. By contrast, the ?18O composition of the veins is remarkably constant (-13.5 per mil) among veins of starkly different...

  8. Compound Nouns in a Unification-Based MT System Pierrette Bouillon Katharina Boesefeldt

    E-Print Network [OSTI]

    of the texts involved in order to translate compounds efficientlyand correctly. We first give a brief overview

  9. MT3522 Knot Theory Solutions 4 1. (i) The closure of 2

    E-Print Network [OSTI]

    Walker, Grant

    molecule. O 1 :unknot O 2 :split unlink or opposite matched M 1 :pos trefoil M 2 :pos Hopf link or 3 #12; or opposite O 1 O 2 :pos trefoil :pos Hopf link :unknot or matched M 2 :split unlink M 1 opposite 2 or O 1 O

  10. m)T7(T^/f^\\ \\ / Riso-R-430 The Geochemistry

    E-Print Network [OSTI]

    -LEVEL HASTE 22 Uranium 31 Neptunium 35 Plutonium 38 Americium 41 CHEMISTRY OF TECHNETIUM 44 ADSORPTION, stability-diagrams for the transuranium elements from uranium to americium under diverse conditions have GROUNDWATER COMPOSITIONS 7 COMPLEX CHEMISTRY 12 CRITICAL ANION CONCENTRATION IN GROUND WATERS 17 THE CHEMISTRY

  11. mtAndroid Aplicao Mvel Android de Apoio a Percursos Pedestres Outdoor

    E-Print Network [OSTI]

    da Silva, Alberto Rodrigues

    às capacidades de um Smartphone e das tecnologias disponíveis no meio envolvente. Além das principais técnicas e tecnologias de localização existentes

  12. On the stability of the Earth's radiative energy balance: Response to the Mt. Pinatubo eruption

    E-Print Network [OSTI]

    short wave energy into the outgoing long wave energy stream, it is of interest to understand how and why

  13. Building America Case Study: Lancaster County Career and Technology Center Green Home 3, Mt Joy, Pennsylvania

    SciTech Connect (OSTI)

    Not Available

    2014-12-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction.This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate. Of primary interest is the influence of the ICF walls on developing an effective air sealing strategy and selecting an appropriate heating and cooling equipment type and capacity. The domestic water heating system is analyzed for costs and savings to investigate options for higher efficiency electric water heating. A method to ensure mechanical ventilation air flows is examined. The final solution package includes high-R mass walls, very low infiltration rates, multi-stage heat pump heating, solar thermal domestic hot water system, and energy recovery ventilation. This solution package can be used for homes to exceed 2012 International Energy Conservation Code requirements throughout all climate zones and achieves the DOE Challenge Home certification.

  14. J. Geomag. Geoelectr., 49, 727-737, 1997 Introduction to MT.,.DIW2 Special Issue

    E-Print Network [OSTI]

    Jones, Alan G.

    line, with 300 m dipoles. In-line electric fields only were recorded on this line. The four full 5, Downing Street, Cambridge, England, CB2 9EQ 1. Introduction The second Magnetotelluric Data Interpretation

  15. ATH 1300/1600 M-MT MAGLEV HYBRID TURBOMOLECULAR PUMPS

    E-Print Network [OSTI]

    Wager, John F.

    ). In Europe, AVTF-France headquarters and three of its subsidiaries, Alcatel Hochvakuumtechnik (Germany, Research and development, High energy physics, Space simulation, Accelerators. ADVANTAGES: High throughput of experience in the field of turbomolecular pump design. In order to ensure the best possible performance

  16. AMTA 2006 Overview of Statistical MT 1 An Overview of Statistical

    E-Print Network [OSTI]

    Smith, David A.

    , govt documents (~30M words) ... Serbian KhmerChechen {... ... { Bible/Koran/ Book of Mormon/ Dianetics

  17. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01

    of R: A Language and Environment for Statistical ComputingR Development Core Team. R: A language and environment for statistical

  18. Manual for Development of a Transient MODFLOW/MT3DMS/SEAWAT Simulation

    E-Print Network [OSTI]

    Barrash, Warren

    . The results of this model run are compared to the observed data in an effort to correctly identify...................................................................................... 19 Creating River Coverage........................................................................................... 20 Creating the River Arcs

  19. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01

    rain gardens, soil amendments, permeable pavements, and infiltration devices could offer potential solutions to problems of water

  20. Bern, 28. Januar 2015 / MT Weisung: Wechselkurs fr das Budgetieren neuer EU Grants

    E-Print Network [OSTI]

    Sola, Rolf Haenni

    Forschung Prof. Dr. Christian Leumann Vizerektor Hochschulstrasse 4 CH-3012 Bern Tel. +41 031 631 43 55 Christian.leumann@rektorat.unibe.ch www.rektorat.unibe.ch Vizerektorat, Hochschulstrasse 4, CH-3012 Bern #12;