Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

START Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects Projects START Projects The Strategic Technical Assistance Response Team (START) Program is part of the DOE Office of Indian Energy effort to assist in the development of tribal renewable energy projects. Through START, Tribes in the 48 contiguous states and Alaska apply for and are selected to receive technical assistance from DOE and national laboratory experts to move projects closer to implementation. The Strategic Technical Assistance Response Team (START) Program is part of the DOE Office of Indian Energy effort to assist in the development of tribal renewable energy projects. Through START, Tribes in the 48 contiguous states and Alaska apply for and are selected to receive technical assistance from DOE and national laboratory experts to move projects closer to implementation

2

MHK Projects/Avondale Bend Project | Open Energy Information  

Open Energy Info (EERE)

Avondale Bend Project Avondale Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9301,"lon":-90.2215,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

3

MHK Projects/New Madrid Bend Project | Open Energy Information  

Open Energy Info (EERE)

Madrid Bend Project Madrid Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.5515,"lon":-89.4613,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

4

MHK Projects/Kempe Bend Project | Open Energy Information  

Open Energy Info (EERE)

Kempe Bend Project Kempe Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.8622,"lon":-91.3073,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

5

MHK Projects/Milliken Bend Project | Open Energy Information  

Open Energy Info (EERE)

Milliken Bend Project Milliken Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.5594,"lon":-91.1119,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

6

MHK Projects/Greenville Bend Project | Open Energy Information  

Open Energy Info (EERE)

Greenville Bend Project Greenville Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9231,"lon":-90.1433,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

7

MHK Projects/Little Prairie Bend Project | Open Energy Information  

Open Energy Info (EERE)

Little Prairie Bend Project Little Prairie Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.2522,"lon":-89.657,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

8

MHK Projects/Carrolton Bend Project | Open Energy Information  

Open Energy Info (EERE)

Carrolton Bend Project Carrolton Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.95,"lon":-90.1551,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

9

MHK Projects/Gouldsboro Bend Project | Open Energy Information  

Open Energy Info (EERE)

Gouldsboro Bend Project Gouldsboro Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9177,"lon":-90.0673,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

10

MHK Projects/Scotlandville Bend Project | Open Energy Information  

Open Energy Info (EERE)

Scotlandville Bend Project Scotlandville Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.5166,"lon":-91.218,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

11

MHK Projects/Walker Bend Project | Open Energy Information  

Open Energy Info (EERE)

Walker Bend Project Walker Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.3678,"lon":-91.1315,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

12

MHK Projects/Hickman Bend Project | Open Energy Information  

Open Energy Info (EERE)

Hickman Bend Project Hickman Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.6007,"lon":-89.21,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

13

MHK Projects/Newton Bend Project | Open Energy Information  

Open Energy Info (EERE)

Newton Bend Project Newton Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.218,"lon":-90.9891,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

14

MHK Projects/Morgan Bend Crossing Project | Open Energy Information  

Open Energy Info (EERE)

Morgan Bend Crossing Project Morgan Bend Crossing Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.7879,"lon":-91.5469,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

15

MHK Projects/Sara Bend Project | Open Energy Information  

Open Energy Info (EERE)

Sara Bend Project Sara Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.751,"lon":-91.3999,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

16

MHK Projects/Kenner Bend Project | Open Energy Information  

Open Energy Info (EERE)

Kenner Bend Project Kenner Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9596,"lon":-90.2868,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

17

MHK Projects/Miller Bend Project | Open Energy Information  

Open Energy Info (EERE)

Miller Bend Project Miller Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.4887,"lon":-91.1612,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

18

MHK Projects/Remy Bend Project | Open Energy Information  

Open Energy Info (EERE)

Remy Bend Project Remy Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.0121,"lon":-90.754,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

19

Toledo Bend Project Joint Oper | Open Energy Information  

Open Energy Info (EERE)

Bend Project Joint Oper Bend Project Joint Oper Jump to: navigation, search Name Toledo Bend Project Joint Oper Place Texas Utility Id 19048 Utility Location Yes Ownership S NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Toledo_Bend_Project_Joint_Oper&oldid=411678"

20

Flexpad: highly flexible bending interactions for projected handheld displays  

Science Conference Proceedings (OSTI)

Flexpad is an interactive system that combines a depth camera and a projector to transform sheets of plain paper or foam into flexible, highly deformable, and spatially aware handheld displays. We present a novel approach for tracking deformed surfaces ... Keywords: bending, deformation, depth camera, flexible display, handheld display, projection, tracking, volumetric data

Jrgen Steimle; Andreas Jordt; Pattie Maes

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

MHK Projects/Vicksburg Bend | Open Energy Information  

Open Energy Info (EERE)

Vicksburg Bend Vicksburg Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

22

MHK Projects/Island 35 Bend | Open Energy Information  

Open Energy Info (EERE)

MHK Projects/Island 35 Bend MHK Projects/Island 35 Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.5435,"lon":-89.9079,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

23

START Program for Renewable Energy Project Development Assistance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program for Renewable Energy Project Development Assistance START Program for Renewable Energy Project Development Assistance Education and Training Energy Resource Library Funding...

24

Major Projects with Quick Starts & Jobs Creation Office of Clean...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with Quick Starts & Jobs Creation Office of Clean Coal Summary of Projects and Job Creation The following table outlines the near-term possibilities for projects that capture...

25

MHK Projects/Bar Field Bend | Open Energy Information  

Open Energy Info (EERE)

Bar Field Bend Bar Field Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.8967,"lon":-89.6897,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

26

MHK Projects/Cow Island Bend | Open Energy Information  

Open Energy Info (EERE)

Island Bend Island Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.0269,"lon":-90.2792,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

27

MHK Projects/Old Town Bend | Open Energy Information  

Open Energy Info (EERE)

Old Town Bend Old Town Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3713,"lon":-90.7493,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

28

MHK Projects/Springfield Bend | Open Energy Information  

Open Energy Info (EERE)

Springfield Bend Springfield Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.5654,"lon":-91.2603,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

29

MHK Projects/Georgetown Bend | Open Energy Information  

Open Energy Info (EERE)

Georgetown Bend Georgetown Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.5735,"lon":-91.1986,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

30

MHK Projects/Davis Island Bend | Open Energy Information  

Open Energy Info (EERE)

Island Bend Island Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.1299,"lon":-91.0636,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

31

MHK Projects/Matthews Bend | Open Energy Information  

Open Energy Info (EERE)

Matthews Bend Matthews Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.1201,"lon":-91.1208,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

32

MHK Projects/Island 14 Bend | Open Energy Information  

Open Energy Info (EERE)

Island 14 Bend Island 14 Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.2837,"lon":-89.576,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

33

MHK Projects/Fitler Bend | Open Energy Information  

Open Energy Info (EERE)

Fitler Bend Fitler Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.8007,"lon":-91.1586,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

34

MHK Projects/Slough Bend | Open Energy Information  

Open Energy Info (EERE)

Slough Bend Slough Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.4778,"lon":-89.4436,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

35

MHK Projects/St Rose Bend | Open Energy Information  

Open Energy Info (EERE)

Rose Bend Rose Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9309,"lon":-90.3433,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

36

MHK Projects/Little Cypress Bend | Open Energy Information  

Open Energy Info (EERE)

Cypress Bend Cypress Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.3482,"lon":-89.5892,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

37

MHK Projects/Saint Catherine Bend | Open Energy Information  

Open Energy Info (EERE)

Saint Catherine Bend Saint Catherine Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.4111,"lon":-91.4953,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

38

MHK Projects/Linwood Bend | Open Energy Information  

Open Energy Info (EERE)

Linwood Bend Linwood Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.1676,"lon":-89.6216,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

39

Status of the START neutral beam project  

DOE Green Energy (OSTI)

A major advantage of spherical tokamaks is their potential for achieving high beta and high plasma density in modest sized plasmas using low magntic field. Given this combination of low field and high density, neutral beam injection can provide effective auxiliary heating for the next generation of spherical tokamaks. A neutral beam injector, shipped recently from Oak Ridge National Laboratory as part of an ongoing collaboration on spherical tokamak research, has now been installed onto the START (Small Tight Aspect Ratio Tokamak) experiment at Culham Laboratory. This should provide the first experimental test of neutral injectino into spherical tokamak plasmas, and allow the effects of neutral beam heating on energy confinement and beta values to be assessed at low aspect ratios. This experiment also extends the data base of confinement scaling for tokamaks in general. Modifications to START have included in-situ machining of a new 31 cm diameter port for NBI, plus the installation of a new graphite neutral beam stop equipped with thermocouples to provide beam profile and shinethrough diagnosis. The major modification to the NBI beamline has been the installation of an optical fiber coupled control and instrumentation system. The injector will be operated without cryopumps in a 'volume pumped' configuration, and should provide 0.5 MW of injected hydrogen neutral power at a beam energy of 40 keV for 20 ms pulses. The status of the installation and commissioning program is reported.

Nightingale, M. P. S. [Association EURATOM-CCFE, Abingdon, UK; Peng, Yueng Kay Martin [ORNL

1995-01-01T23:59:59.000Z

40

Property:Project Start Date | Open Energy Information  

Open Energy Info (EERE)

Property Name Project Start Date Property Name Project Start Date Property Type String Pages using the property "Project Start Date" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 1/1/2012 + MHK Projects/ADM 3 + 1/1/2010 + MHK Projects/ADM 4 + 1/1/2010 + MHK Projects/ADM 5 + 1/11/2009 + MHK Projects/AW Energy EMEC + 1/1/2004 + MHK Projects/Admirality Inlet Tidal Energy Project + 1/1/2006 + MHK Projects/Agucadoura + 1/1/2008 + MHK Projects/Alaska 1 + 1/1/2007 + MHK Projects/Alaska 13 + 1/1/2008 + MHK Projects/Alaska 17 + 1/1/2007 + MHK Projects/Alaska 18 + 1/1/2008 + MHK Projects/Alaska 24 + 1/1/2007 + MHK Projects/Alaska 25 + 1/1/2007 + MHK Projects/Alaska 28 + 1/1/2007 + MHK Projects/Alaska 31 + 1/1/2007 + MHK Projects/Alaska 33 + 1/1/2007 +

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

START Program for Renewable Energy Project Development Assistance |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program for Renewable Energy Program for Renewable Energy Project Development Assistance START Program for Renewable Energy Project Development Assistance The Strategic Technical Assistance Response Team (START) Program is part of the DOE Office of Indian Energy effort to assist in the development of tribal renewable energy projects. Through the START Program for Renewable Energy Project Development Assistance, a team of DOE and national laboratory experts will work directly with tribal communities to evaluate project financial and technical feasibility, provide on-going training to community members, and help implement a variety of clean energy projects, including energy storage infrastructure, renewable energy deployment, and energy efficiency. The following projects were selected for the 2013 START Renewable Energy

42

Where is START? START-supported projects and communities were selected through a competitive applica-  

E-Print Network (OSTI)

Assistance Response Team (START) Program is a U.S. Department of Energy Office of Indian Energy Policy will be paired with DOE, NREL, and other Alaska-based experts who have clean energy deployment experience a variety of clean energy projects, including energy storage infrastructure, renewable energy deployment

43

Eleven Tribes Jump START Clean Energy Projects, Summer 2012 (Newsletter)  

DOE Green Energy (OSTI)

This newsletter describes key activities of the DOE Office of Indian Energy Policy and Programs for Summer 2012. The U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) has selected 11 Tribes - five in Alaska and six in the contiguous United States - to receive on-the-ground technical support for community-based energy efficiency and renewable energy projects as part of DOE-IE's Strategic Technical Assistance Response Team (START) Program. START finalists were selected based on the clarity of their requests for technical assistance and the ability of START to successfully work with their projects or community. Technical experts from DOE and its National Renewable Energy Laboratory (NREL) will work directly with community-based project teams to analyze local energy issues and assist the Tribes in moving their projects forward. In Alaska, the effort will be bolstered by DOE-IE's partnership with the Denali Commission, which will provide additional assistance and expertise, as well as funding to fuel the Alaska START initiative.

Not Available

2012-06-01T23:59:59.000Z

44

Oil field rejuvenation work starts at 14 project sites  

Science Conference Proceedings (OSTI)

This paper reports that the U.S. Department of Energy and oil and gas companies have released more information about a joint effort to rejuvenate aging U.S. oil fields in danger of abandonment. Work is starting on 14 demonstration projects that could recover 21 million bbl of oil from the fluvial dominated deltaic (FDD) reservoirs in which they are conducted. Wider application of the same techniques, if they are successful, could results in addition of 6.3 billion bbl of reserves, nearly 25% of U.S. crude oil reserves. A multidisciplinary team approach is to be used, with as many as 11 operators, service companies, universities, or state agencies participating in each project. All of the projects will culminate in extensive technology transfer activities. Here are descriptions of the projects gleaned from public abstracts provided by the DOE contractors.

Petzet, G.A. (Oil and Gas Journal (US))

1992-06-22T23:59:59.000Z

45

EA-1880: Big Bend to Witten Transmission Line Project, South Dakota |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

80: Big Bend to Witten Transmission Line Project, South Dakota 80: Big Bend to Witten Transmission Line Project, South Dakota EA-1880: Big Bend to Witten Transmission Line Project, South Dakota Summary The USDA Rural Utilities Service, with DOE's Western Area Power Administration as a cooperating agency, is preparing this EA to evaluate the environmental impacts of a proposal to construct a 70-mile long 230-kV single-circuit transmission line, a new Western Area Power Administration substation, an addition to the existing substation, and approximately 2 miles of 230-kV double-circuit transmission line, all in South Dakota. Proposed action is related to the Keystone XL project (see DOE/EIS-0433-S1). Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download April 12, 2011

46

START Site Visit Examines Viability of Tribal Community Solar Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

START Site Visit Examines Viability of Tribal Community Solar START Site Visit Examines Viability of Tribal Community Solar Project START Site Visit Examines Viability of Tribal Community Solar Project August 21, 2013 - 12:50pm Addthis From left to right: James Jensen, Tom Johnson, Jody Rosier, and Rebecca Kauffman of Southern Ute Alternative Energy, and Otto VanGeet and Alex Dane of NREL, tour a potential solar array site on Southern Ute tribal land in Ignacio, CO. Photo by Dennis Schroeder, NREL From left to right: James Jensen, Tom Johnson, Jody Rosier, and Rebecca Kauffman of Southern Ute Alternative Energy, and Otto VanGeet and Alex Dane of NREL, tour a potential solar array site on Southern Ute tribal land in Ignacio, CO. Photo by Dennis Schroeder, NREL NREL's Otto VanGeet (right) shows James Jensen of Southern Ute Alternative Energy how to use a SunEye tool to check solar availability of the site. Photo by Dennis Schroeder, NREL

47

Preliminary assessment of potential CDM early start projects in Brazil  

E-Print Network (OSTI)

conducted recently. Alcohol fuel, as well as the vegetableby Project: The use of alcohol fuel displaces some of the

Meyers, S.; Sathaye, J.; Lehman, B.; Schumacher, K.; van Vliet, O.; Moreira, J.R.

2000-01-01T23:59:59.000Z

48

Preliminary assessment of potential CDM early start projects in Brazil  

Science Conference Proceedings (OSTI)

The Brazil/US Aspen Global Forum on Climate Change Policies and Programs has facilitated a dialogue between key Brazil and US public and private sector leaders on the subject of the Clean Development Mechanism (CDM). With support from the US government, a cooperative effort between Lawrence Berkeley National Laboratory and the University of Sao Paulo conducted an assessment of a number of projects put forth by Brazilian sponsors. Initially, we gathered information and conducted a screening assessment for ten projects in the energy sector and six projects in the forestry sector. Some of the projects appeared to offer greater potential to be attractive for CDM, or had better information available. We then conducted a more detailed assessment of 12 of these projects, and two other projects that were submitted after the initial screening. An important goal was to assess the potential impact of Certified Emission Reductions (CERs) on the financial performance of projects. With the exception of the two forestry-based fuel displacement projects, the impact of CERs on the internal rate of return (IRR) is fairly small. This is true for both the projects that displace grid electricity and those that displace local (diesel-based) electricity production. The relative effect of CERs is greater for projects whose IRR without CERs is low. CERs have a substantial effect on the IRR of the two short-rotation forestry energy substitution projects. One reason is that the biofuel displaces coke and oil, both of which are carbon-intensive. Another factor is that the product of these projects (charcoal and woodfuel, respectively) is relatively low value, so the revenue from carbon credits has a strong relative impact. CERs also have a substantial effect on the NPV of the carbon sequestration projects. Financial and other barriers pose a challenge for implementation of most of the projects. In most cases, the sponsor lacks sufficient capital, and loans are available only at high interest rate and with substantial guarantee. A few of the projects might go ahead without the benefit of CERs, but most probably would not. Whether the projected revenue from CERs would be sufficient to induce sponsors to proceed with the projects is an important issue that requires further investigation. All of the projects contribute to economic development in Brazil. The forestry projects in particular would create a significant number of rural jobs, and contribute income to rural communities. Some of the carbon sequestration projects would provide environmental benefits with respect to protection of biodiversity and soil.

Meyers, S.; Sathaye, J.; Lehman, B.; Schumacher, K.; van Vliet, O.; Moreira, J.R.

2000-11-01T23:59:59.000Z

49

Preliminary assessment of potential CDM early start projects in Brazil  

E-Print Network (OSTI)

generation is from hydropower, but the majority of new power capacity is expected to use natural gas.generation that would be avoided by projects to be roughly 50% from natural gas combined cycle power

Meyers, S.; Sathaye, J.; Lehman, B.; Schumacher, K.; van Vliet, O.; Moreira, J.R.

2000-01-01T23:59:59.000Z

50

Pile Structure Program, Projected Start Date : January 1, 2010 (Implementation).  

DOE Green Energy (OSTI)

The 2008 Federal Columbia River Power System Biological Opinion includes Reasonable and Prudent Alternative 38-Piling and Piling Dike Removal Program. This RPA directs the Action Agencies to work with the Estuary Partnership to develop and implement a piling and pile dike removal program. The program has since evolved to include modifying pile structures to enhance their habitat value and complexity by adding large woody debris. The geographic extent of the Pile Structure Program (PSP) includes all tidally-influenced portions of the lower Columbia River below Bonneville Dam; however, it will focus on the mainstem. The overarching goal of the PSP is to enhance and restore ecosystem structure and function for the recovery of federally listed salmonids through the active management of pile structures. To attain this goal, the program team developed the following objectives: (1) Develop a plan to remove or modify pile structures that have lower value to navigation channel maintenance, and in which removal or modification will present low-risk to adjacent land use, is cost-effective, and would result in increased ecosystem function. (2) Determine program benefits for juvenile salmonids and the ecosystem through a series of intensively monitored pilot projects. (3) Incorporate best available science and pilot project results into an adaptive management framework that will guide future management by prioritizing projects with the highest benefits. The PSP's hypotheses, which form the basis of the pilot project experiments, are organized into five categories: Sediment and Habitat-forming Processes, Habitat Conditions and Food Web, Piscivorous Fish, Piscivorous Birds, and Toxic Contaminant Reduction. These hypotheses are based on the effects listed in the Estuary Module (NOAA Fisheries in press) and others that emerged during literature reviews, discussions with scientists, and field visits. Using pilot project findings, future implementation will be adaptively managed to maximize program benefits and address limiting factors.

Collins, Chris; Corbett, Catherine [Lower Columbia River Estuary Partnership; Ebberts, Blaine [U.S. Army Corps of Engineers

2009-07-27T23:59:59.000Z

51

Aligning Success: Contract and Project Management START STOP  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management (OECM) Management (OECM) 8:05 AM 8:20 AM 15 Opening Remarks Ingrid Kolb, Director, Office of Management (MA) 8:20 AM 8:50 AM 30 Project Management Sucesses Daniel Poneman, Deputy Secretary of Energy (pending) 8:50 AM 9:20 AM 30 Project Management Challenges Ms. Madelyn R. Creedon, Senate Staff--Senate Armed Services Committee (pending) 9:20 AM 9:35 AM 15 Break 9:35 AM 10:25 AM 50 Office of Federal Procurement Policy view on contracting The Honorable Dan Gordon, Director, Office of Federal Procurement Policy & OMB 10:25 AM 11:15 AM 50 The New DOE O 413.3B Paul Bosco, Director, Office of Engineering & Construction Management (OECM) 11:15 AM 11:30 AM 15 Break 11:30 AM 12:00 PM 30 EERE's new LEED "Platinum" Facility Jeff Baker, Golden Field Office, FPD of EERE's new "Platinum"

52

Major Projects with Quick Starts & Jobs Creation Office of Clean Coal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects with Quick Starts & Jobs Creation Projects with Quick Starts & Jobs Creation Office of Clean Coal Summary of Projects and Job Creation The following table outlines the near-term possibilities for projects that capture and sequester carbon from coal-based systems. The potential jobs associated with these activities are listed along with likely construction and operation dates. Since the funding is primarily for construction and associated activities, a rough estimate of 30 job years per $1 million dollars expended was used. COAL/CCS PROJECTS & JOBS CREATION GOV'T INDUSTRY TOTAL TOTAL FUNDING FUNDING FUNDING AWARD JOB PROGRAM/PROJECT ($Million) ($Million) ($Million) DATE CONSTRUCT OPERATE YEARS Current CCPI 440 660 1,100 2010 late 2011 2014 33,000 CCPI Plus $1000M for Additional Projects 1000 1000 2,000 2010 late 2011 2014 60,000

53

Supply curve impacts of Quick Start projects in Phase 1 of the Resource Supply Expansion Program  

DOE Green Energy (OSTI)

The Pacific Northwest Laboratory (PNL) prepared this report under contract to the Bonneville Power Administration (Bonneville), as part of the Resource Supply Expansion Project (RSEP). RSEP is a regional program instituted by Bonneville to expand conservation and renewable generation options available to resource planners and utilities. Resource alternatives are increased by RSEP through demonstration projects designed in a collaborative process that targets specific barriers to resource development including institutional, market, and reliability barriers. RSEP was launched with several projects that were designed and implemented quickly in 1992 to lay a foundation for future collaboration. The purpose of this report is to introduce the goal and structure of RSEP and to describe the so-called ``Quick Start`` RSEP projects in Phase One of RSEP. This description includes a preliminary estimate of the energy savings and/or other expected impacts of RSEP projects funded in FY 1992 and 1993. Similar estimates are also included for Bonneville projects to confirm wind and geothermal generation potential. Bonneville`s Geothermal Confirmation Agenda preceded implementation of RSEP, although it has a similar objective and collaborative approach.

Wright, G.A.; Warwick, W.M.; Durfee, D.L.

1993-12-01T23:59:59.000Z

54

DOE/EIS-0265-SA-170: Supplement Analysis for the Watershed Management Program EIS--Tapteal Bend Riparian Corridor Restoration Project (8/11/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2004 1, 2004 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-170) Jonathan McCloud Fish and Wildlife Project Manager - KEWL-4 Proposed Action: Tapteal Bend Riparian Corridor Restoration Project Project No: 2002-018-00 Watershed Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Watershed Management Program EIS): 1.9 Structural Bank Protection Using Bioengineering Methods, 2.1 Maintain Healthy Riparian Plant Communities Location: Benton County, Washington Proposed by: Bonneville Power Administration (BPA) and the Tapteal Bend Greenway Association Description of the Proposed Action: The Bonneville Power Administration is proposing to fund the

55

Major_Projects_Quick_Starts_Jobs_Creation_Office_Clean_Coal.pdf...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

jectsQuickStartsJobsCreationOfficeCleanCoal.pdf More Documents & Publications DOE Transition Documents - 2008 Sustainable Coal Use Fossil Energy Today - Second Quarter, 2012...

56

UPS CNG Truck Fleet Start Up Experience: Alternative Fuel Truck Evaluation Project  

DOE Green Energy (OSTI)

UPS operates 140 Freightliner Custom Chassis compressed natural gas (CNG)-powered vehicles with Cummins B5.9G engines. Fifteen are participating in the Alternative Fuel Truck Evaluation Project being funded by DOE's Office of Transportation Technologies and the Office of Heavy Vehicle Technologies.

Walkowicz, K.

2001-08-14T23:59:59.000Z

57

Plummeting crude prices hurt West Coast work, but several projects start up  

Science Conference Proceedings (OSTI)

The U.S. West Coast this year will see the nation's first commercial offshore arctic production and the start-up of oil flow from the controversial Santa Maria basin off California. An even bigger controversy involves the best remaining U.S. petroleum prospect-the Arctic National Wildlife Refuge (ANWR). The collapse in oil prices in 1986 has crippled drilling on the West Coast. The region always has had to contend with lower prices for lesser quality crudes and some of the highest operating costs in the U.S. But as oil prices continue to show stability, action will rebound in the two states that furnish more than one third of U.S. oil production.

Williams, B.

1987-06-08T23:59:59.000Z

58

Advanced Mixed Waste Treatment Project, Design, Construction and Start-up  

Science Conference Proceedings (OSTI)

The Advanced Mixed Waste Treatment Project (AMWTP) was awarded to BNG America in December of 1996. In 2005, following discussions between the United States (US) Department of Energy (DOE) and the United Kingdom (UK) Department of Trade and Industry (DTi) the DOE purchased the facilities. DOE awarded Bechtel B and W Idaho (BBWI) a contract to operate the facilities for one year, commencing 1 May 2005. The hand-over of AMWTP included the facility to repackage and super-compact waste (Advanced Mixed Waste Treatment Facility) and the retrieval, characterization, storage and Transuranic Package Transporter (TRUPACT) loading facility. This poster updates the progress of AMWTP from the previous presentations to Waste Management (WM) [1 and 2] to completion of the transition to BBWI in May 2005. (authors)

Dobson, A. [BNG America, 2345 Stevens Drive Suite no. 240, Richland, WA 99354 (United States); Harrop, G.; Holmes, R.G.G. [BNG America, 1920 E. 17th Street Suite no. 200, Idaho Falls, ID 83404 (United States)

2006-07-01T23:59:59.000Z

59

A B S T R AC T Starting with Houtkoop and Mazeland's (1985) study of discourse units, and touching upon recent studies aimed at detailing unit projection in  

E-Print Network (OSTI)

A B S T R AC T Starting with Houtkoop and Mazeland's (1985) study of discourse units, and touching upon recent studies aimed at detailing unit projection in interaction, this article argues that the drive toward abstract and discrete models for units and unit projection is potentially misleading. While

Sheridan, Jennifer

60

START Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

START Program START Program START Program The Strategic Technical Assistance Response Team (START) Program is part of the DOE Office of Indian Energy effort to assist in the development of tribal renewable energy projects. Through START, Tribes in the 48 contiguous states and Alaska can apply for and are selected to receive technical assistance from DOE and national laboratory experts to move projects closer to implementation. Learn more about: START 2013 Renewable Energy Project Development Assistance Projects START 2013 Alaska Native Community Energy Planning and Projects START Resources View a map of START Projects Download the START fact sheet Read our new brochure on the START Program and Capacity Building 2012-2013 Success Highlights Download brochures on the five-step tribal project development and

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Incorporating livability benefits into the Federal Transit Administration New Starts project evaluation process through accessibility-based modeling  

E-Print Network (OSTI)

The Department of Transportation's announcement of the "Livability initiative" for major transit projects in January 2010 has prompted the Federal Transit Administration (FTA) to reassess the criteria used in the evaluation ...

Ducas, Caroline R. (Caroline Rose)

2011-01-01T23:59:59.000Z

62

Getting started  

NLE Websites -- All DOE Office Websites (Extended Search)

Getting started Getting started Getting started First Steps You can log in to Genepool using SSH (Secure Shell) with the following command from any UNIX, Linux, FreeBSD, etc. command shell or terminal: ssh -l username genepool.nersc.gov There are several SSH-capable clients available for Windows, Mac, and UNIX/Linux machines. NERSC does not support or recommend any particular client. By ssh'ing to genepool.nersc.gov, you will access one of the seven genepool login nodes. These login nodes are situated behind a load balancer, so you may reach a different login node on different days. If you make use of a tool like "screen" or "tmux", make sure to take note of which login node you started it on. In addition to the genepool login nodes, the "gpint" systems are available

63

Hybrid: Starting  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

button highlighted Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar button highlighted Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar STARTING When the vehicle is started, the gasoline engine "warms up." If necessary, the electric motor acts as a generator, converting energy from the engine into electricity and storing it in the battery. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is moving. There are arrows flowing from the gasoline engine to the electric motor to the battery. Main stage: See through car with battery, engine, and electric motor visible. The car is moving. There are arrows flowing from the gasoline engine to the electric motor to the battery. Battery: The battery stores energy generated from the gasoline engine or, during regenerative braking, from the electric motor. Since the battery helps power the vehicle, it is larger and holds much more energy than batteries used to start conventional vehicles. Main stage: See through car with battery, engine, and electric motor visible. The car is moving. There are arrows flowing from the gasoline engine to the electric motor to the battery.

64

Start End  

NLE Websites -- All DOE Office Websites (Extended Search)

Start Start End Δt Title Presenter 8:30 8:35 0:05 Welcome Earl Marmar 8:35 9:20 0:45 Discussion of 1st Launcher Design and Performance Ron Parker 9:20 9:50 0:30 Technical Objectives Randy Wilson 9:50 10:20 0:30 4-Way Splitter Design and Testing Peter Koert 10:20 10:35 0:15 Break 10:35 11:20 0:45 Mechanical Design Rui Vieira 11:20 12:05 0:45 Coupler Design and Simulation -- Plasma Effects Ron Parker Thermal Effects in Splitter Orso Meneghini 12:05 12:35 0:30 Summary and Schedule Jim Irby 12:35 13:35 1:00 Lunch 13:35 15:05 1:30 Executive Session 15:05 Debrief 1 st Launcher Design and Performance Ron Parker LH Launcher Design Review 9 September 2008 Lower Hybrid waves are injected into Alcator C-Mod plasmas at 4.6 GHz via an 88-waveguide grill Probes Stainless steel grill used to inject LH waves into Alcator C-Mod plasmas during 2006 -2008 campaigns. Maximum

65

Construction of bending magnet beamline at the APS for environmental studies. 1998 annual progress report  

SciTech Connect

'Design and construction of a bending magnet beamline at the Advanced Photon Source (APS) by the Pacific Northwest Consortium-Collaborative Access Team (PNC-CAT). The beamline will be optimized for x-ray absorption spectroscopy (XAS) studies with a major focus on environmental issues. The beamline will share the experimental facilities under development at the neighboring undulator based insertion device beamline. It will utilize these facilities for XAS of both bulk and surface samples, with spatial and elemental imaging, on toxic and radioactive samples. It will help meet the rapidly growing need for the application of these techniques to environmental problems. This report summarizes progress after 1-1/2 years of a 3-year project. The original scope of the project was to build a basic bending magnet beamline. Since the start of the project the authors have obtained addition funding from DOE-BES for the PNC-CAT activities. This has allowed us to expand the scope of the original proposed bending magnet beamline. Additional items now planned include a full sized experimental enclosure separate from the first optical enclosure (FOE), a white beam vertically collimating/focusing mirror providing improved flux and focusing, and enhanced experimental capabilities. Construction of the FOE and new experimental enclosure are complete along with full sector utilities, and the FOE is currently undergoing validation for its radiation integrity. The major beamline components are still being funded by the original EMSP project, and their status is described'

Stern, E.A.

1998-06-01T23:59:59.000Z

66

Alaska START | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resources » START Program » Alaska START Resources » START Program » Alaska START Alaska START Led by the DOE Office of Indian Energy, in partnership with the Denali Commission, the DOE Office of Energy Efficiency and Renewable Energy, and the National Renewable Energy Laboratory (NREL), the Strategic Technical Assistance Response Team (START) Initiative for Rural Alaska Native Community Energy Planning and Projects will support activities of Alaska Native communities and entities that are focused on community-based energy planning, energy awareness and training programs, and identification and implementation of renewable energy and energy efficiency opportunities. Through the START, each Alaska Native community will receive technical assistance focused on community-based energy planning, energy awareness and

67

Louisiana Nuclear Profile - River Bend  

U.S. Energy Information Administration (EIA) Indexed Site

River Bend" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

68

HGP-A Wellhead Generator, Proof-Of-Feasibility Project 3 MW Wellhead Generator, Start-Up Training and Operating Manual  

DOE Green Energy (OSTI)

The start-up manual is an information aid to initially familiarize plant operators with the plant operation and later be used as a reference manual while operating the plant. This start-up manual is supplemented by the Plant Data Manual which contains a detailed description of the philosophy of operation and equipment characteristics. The sequencing herein presents the necessary operating procedures which must be followed in order that a smooth start-up is obtained. The sequence includes, first conditioning the well and stabilizing the steam/water separations, and then bringing the operating machinery on line. The Piping and Instrumentation Diagrams and Electrical Drawings are included under Section 12.0 and are frequently referred to in the text. Information for ''trouble-shooting'' is provided in the maintenance and operations manuals on all the equipment.

None

1981-01-01T23:59:59.000Z

69

START Alaska Historical Energy Usage Spreadsheet  

Energy.gov (U.S. Department of Energy (DOE))

Communities applying for the DOE Office of Indian Energy Strategic Technical Assistance Response Team (START) Initiative for Community Energy Planning and Projects Round Two are asked to download...

70

Eleven Tribes Jump START Clean Energy Projects, Summer 2012 (Newsletter), U.S. Department of Energy (DOE) Office of Indian Energy (OIE), Indian Energy Beat  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BUILDING BUILDING BRIDGES . . . . . . . . . . . . . . . . . . . . . . . 3 SHARING KNOWLEDGE . . . . . . . . . . . . . . . . . . . . . 3 WINNING THE FUTURE . . . . . . . . . . . . . . . . . . . . . . 3 ON THE HORIZON . . . . . . . . . . . . . . . . . . . . . . . . . 4 LEADING THE CHARGE . . . . . . . . . . . . . . . . . . . . . 4 "Tribal communities, entrepreneurs, and small businesses will benefit greatly from the technical resources and expertise provided by DOE. START will help Native American and Alaska Native communities increase local generation capacity, enhance energy efficiency and conservation measures, and create job opportunities in the new clean energy economy." -DOE-IE Director Tracey A. LeBeau The U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) has selected 11 Tribes-five in Alaska and six in the contiguous United States-to receive on-the-ground technical support for community-based energy efficiency and renewable

71

Getting Started on Edison  

NLE Websites -- All DOE Office Websites (Extended Search)

Started Getting Started on Edison Before you can use or access Edison, you must have an active NERSC account and valid password. If you don't, see Accounts and Allocations. Edison...

72

Blank Starting Slide  

NLE Websites -- All DOE Office Websites (Extended Search)

May 2004 - 4.56 million - 526 calendar days Denison Rewind Original Schedule - Start Unit 1 November 2004 Complete Unit 1 May 2005 - Start Unit 2 September 2005 - Complete...

73

Getting Started on Euclid  

NLE Websites -- All DOE Office Websites (Extended Search)

Getting started Getting started Logging In Users can log into Euclid using the Secure Shell (SSH) protocol 2 with the following command: % ssh -l username euclid.nersc.gov When you...

74

Method for uniformly bending conduits  

DOE Patents (OSTI)

The present invention is directed to a method for bending metal tubing through various radii while maintaining uniform cross section of the tubing. The present invention is practical by filling the tubing to a sufficient level with water, freezing the water to ice and bending the ice-filled tubing in a cooled die to the desired radius. The use of the ice as a filler material provides uniform cross-sectional bends of the tubing and upon removal of the ice provides an uncontaminated interior of the tubing which will enable it to be used in its intended application without encountering residual contaminants in the tubing due to the presence of the filler material.

Dekanich, S.J.

1984-04-27T23:59:59.000Z

75

Microsoft Word - Kokanee Bend CX.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2013 0, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Cecilia Brown Project Manager - KEWM-4 Proposed Action: Kokanee Bend South Conservation Easement funding Fish and Wildlife Project No. and Contract No.: 2008-800-00, BPA-006863 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Real property transfers for cultural resources protection, habitat preservation, and wildlife management Location: Township 30 North, Range 20 West, Section 30, Flathead County, MT Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA intends to fund Montana Fish, Wildlife, and Parks (MFWP) for the purchase of a conservation easement, on approximately 70 acres of property,

76

Stop/Start: Overview  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Stop/Start button highlighted banner graphic: blue bar Stop/Start button highlighted banner graphic: blue bar subbanner graphic: gray bar Overview button highlighted Driving button Braking button subbanner graphic: gray bar OVERVIEW Stop/Start hybrids are not true hybrids since electricity from the battery is not used to propel the vehicle. However, the Stop/Start feature is an important, energy-saving building block used in hybrid vehicles. Stop/Start technology conserves energy by shutting off the gasoline engine when the vehicle is at rest, such as at a traffic light, and automatically re-starting it when the driver pushes the gas pedal to go forward. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric starter/generator visible. Car is stopped at an intersection.

77

Stop/Start: Driving  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

generator to the gasoline engine to start it. Battery: The battery is used to store energy generated from the gasoline engine or, during regenerative braking, from the...

78

OBSERVATION REPORT BendKing Pipe Bending Machine.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

BENDKING PIPE BENDING MACHI\NE BENDKING PIPE BENDING MACHI\NE DEMONSTRATION Field Observation Report for December 3 - 4, 2001 Date Published: March 2002 Brian Meindinger, RMOTC PREPARED FOR THE U.S. DEPARTMENT OF ENERGY ROCKY MOUNTAIN OILFIELD TESTING CENTER 907 N. POPLAR, SUITE 150 CASPER, WY 82601 1-888-599-2200 Approval: RMOTC Manager_____________________________ Date:______________ Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any

79

Bend ductility of tungsten heavy alloys  

SciTech Connect

A bend ductility test is used to indicate the formability of tungsten heavy alloys sheet. The primary test bends a notchless Charpy impact specimen to a bend angle of approximately 100C. This can be augmented by a bend-completion test. Finite element modeling as well as strain-gaged bend specimens elucidate the strain distribution in the specimen as a function of material thickness and bend angle. The bend ductilities of 70%W, 807.W and 90%W alloys are characterized. As expected, decreasing thickness or tungsten content enhances bend ductility. Oxidation is not detrimental; therefore, controlled atmosphere is not required for cooling. The potentially detrimental effects of mechanical working (e.g., rolling, roller-leveling, grit blasting, and peening) and machining (e.g., cutting and sanding) are illustrated.

Gurwell, W.E.; Garnich, M.R.; Dudder, G.B.; Lavender, C.A.

1992-11-01T23:59:59.000Z

80

A Dynamic Reversal Bending Fatigue Testing System  

A bending fatigue system has been proposed and developed in this disclosure to test various structural materials in general.

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

START Program Project Sites | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Expenditure Per Person Solar Energy Potential Solar Energy Potential Renewable Energy Production By State Renewable Energy Production By State 2009 Total Energy...

82

START Program Project Sites | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design --Solar Decathlon -Manufacturing Energy Sources -Renewables --Solar ---SunShot --Wind --Water ---Carbon Capture & Sequestration -Consumption -Smart Grid Science &...

83

START Program Project Sites | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act -Energy Sector Jobs -Education & Training -Funding Opportunities --Grants -Prices & Trends -Energy Policy Environmental Cleanup -Emergency Response & Procedures or Search...

84

Getting Started on Euclid  

NLE Websites -- All DOE Office Websites (Extended Search)

Getting started Getting started Getting started Logging In Users can log into Euclid using the Secure Shell (SSH) protocol 2 with the following command: % ssh -l username euclid.nersc.gov When you successfully log in you will land in your $HOME directory. Euclid is a one node system. All jobs that run on Euclid, e.g. compiles, edits, user jobs, etc,. run on the same node. Sample Program Code: Parallel Hello World Although Euclid was not intended for production runs of MPI codes, it is possible to run small MPI codes on it. Open a new file called helloWorld.f90 with a text editor such as emacs or vi. Paste the contents of the below code into the file. program helloWorld implicit none include "mpif.h" integer :: myPE, numProcs, ierr call MPI_INIT(ierr) call MPI_COMM_RANK(MPI_COMM_WORLD, myPE, ierr)

85

Structural basis for DNA bending  

Science Conference Proceedings (OSTI)

The authors report proton NMR studies on DNA oligonucleotides that contain A tracts of lengths known to produce various degrees of bending. Spectra of duplexes in the series 5{prime}-(GGCA{sub n}CGG){center dot}(CCGT{sub n}GCC) (n = 3,4,5,7,9) reveal substantial structural changes within the A{sub n}{center dot}T{sub n} tract as its length is increased. Chemical-shift comparisons show that A tracts with fewer than about seven members do not contain regions of uniform structure. Throughout the series, there is a striking monotonic relationship between the location of an A{center dot}T pair in the A tract and the relative position of its ThyH3 resonance. The direction of this chemical-shift dispersion is opposite to that expected from consideration of ring-current effects alone. This model features a substantial negative base-pair tilt, which has been suggested previously as the source of A-tract bending. In contrast, the nuclear Overhauser effect distances are inconsistent with at least one known crystallographic A-tract structure which lacks appreciable base-pair tilt.

Nadeau, J.G.; Crothers, D.M. (Yale Univ., New Haven, CT (USA))

1989-04-01T23:59:59.000Z

86

Full Hybrid: Starting  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

highlighted Low Speed button Cruising button Passing button Braking button Stopped button highlighted Low Speed button Cruising button Passing button Braking button Stopped button STARTING When a full hybrid vehicle is initially started, the battery typically powers all accessories. The gasoline engine only starts if the battery needs to be charged or the accessories require more power than available from the battery. stage graphic: vertical blue rule Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection. Battery (highlighted): The battery stores energy generated from the gasoline engine or, during regenerative braking, from the electric motor. Since the battery powers the vehicle at low speeds, it is larger and holds much more energy than batteries used to start conventional vehicles. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection.

87

The Bending of Wood With Steam.  

E-Print Network (OSTI)

??Based on experimentation with the steam bending of wood to curved shapes, this thesis describes my involvement with three basic aspects of the process. First (more)

Cottey Jr., James H.

2008-01-01T23:59:59.000Z

88

Getting Started | Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Getting Started Getting Started Client example: open_in_t in_struct; open_out_t out_struct; /* Initialize the interface */ [...] NA_Addr_lookup(network_class, server_name, &server_addr); /* Register RPC call */ rpc_id = HG_REGISTER("open", open_in_t, open_out_t); /* Fill input parameters */ [...] in_struct.in_param0 = in_param0; /* Send RPC request */ HG_Forward(server_addr, rpc_id, &in_struct, &out_struct, &rpc_request); /* Wait for completion */ HG_Wait(rpc_request, HG_MAX_IDLE_TIME, HG_STATUS_IGNORE); /* Get output parameters */ [...] out_param0 = out_struct.out_param0; int main(int argc, void *argv[]) { /* Initialize the interface */ [...] /* Register RPC call */ HG_HANDLER_REGISTER("open", open_rpc, open_in_t, open_out_t); /* Process RPC calls */

89

Western Area Power Administration Starting Forecast Month: Sierra...  

NLE Websites -- All DOE Office Websites (Extended Search)

Starting Forecast Month: Sierra Nevada Region Through Values at Load Center (Tracy Substation) Reg & Res CVP Maximum Capability CVP Energy Generation Peak Project Use Demand...

90

Big Bend Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

icon Twitter icon Big Bend Electric Coop, Inc Jump to: navigation, search Name Big Bend Electric Coop, Inc Place Washington Utility Id 1723 Utility Location Yes...

91

EA-1897: AltaRock's Newberry Volcano EGS Demonstration near Bend, Oregon |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: AltaRock's Newberry Volcano EGS Demonstration near Bend, 7: AltaRock's Newberry Volcano EGS Demonstration near Bend, Oregon EA-1897: AltaRock's Newberry Volcano EGS Demonstration near Bend, Oregon Summary This EA evaluates the environmental impacts of a proposal to create an Enhanced Geothermal Systems (EGS) Demonstration Project involving new technology, techniques, and advanced monitoring protocols for the purpose of testing the feasibility and viability of EGS for renewable energy production. BLM is the lead agency for this EA and DOE is a cooperating agency. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download April 5, 2012 EA-1897: Finding of No Significant Impact AltaRock's Newberry Volcano EGS Demonstration near Bend, Oregon April 5, 2012 EA-1897: Final Environmental Assessment

92

Making Fast Start Finance Work | Open Energy Information  

Open Energy Info (EERE)

Making Fast Start Finance Work Making Fast Start Finance Work Jump to: navigation, search Tool Summary Name: Making Fast Start Finance Work Agency/Company /Organization: European Climate Foundation Sector: Energy Topics: Finance Resource Type: Guide/manual, Training materials Website: www.project-catalyst.info/images/publications/2010-06-07_project_catal Making Fast Start Finance Work Screenshot References: Making Fast Start Finance Work[1] Logo: Making Fast Start Finance Work This paper aims to provide a fact base on the current sources of Fast Start Finance,including size, composition, and intended use, as well as analysis on the Fast Start Finance priorities and the institutional mechanisms needed to ensure that it delivers real impact. "...This paper aims to provide a fact base on the current sources of Fast

93

Horseshoe Bend Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Horseshoe Bend Wind Farm Horseshoe Bend Wind Farm Jump to: navigation, search Name Horseshoe Bend Wind Farm Facility Horseshoe Bend Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner United Materials Developer Exergy Development Group Energy Purchaser Idaho Power Location West of Great Falls MT Coordinates 47.497516°, -111.432567° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.497516,"lon":-111.432567,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

94

Real-time resilient focusing through a bending multimode fiber  

E-Print Network (OSTI)

We introduce a system capable of focusing light through a multimode fiber in 37ms, one order of magnitude faster than demonstrated in previous reports. As a result, the focus spot can be maintained during significant bending of the fiber, opening numerous opportunities for endoscopic imaging and energy delivery applications. We measure the transmission matrix of the fiber by projecting binary-amplitude computer generated holograms using a digital micromirror device and a field programmable gate array controller. The system shows two orders of magnitude enhancements of the focus spot relative to the background.

Caravaca-Aguirre, Antonio M; Conkey, Donald B; Piestun, Rafael

2013-01-01T23:59:59.000Z

95

Demonstration of Black Start Ancillary Service Certification Testing  

Science Conference Proceedings (OSTI)

This is a discussion of Black Start Tests conducted in April 1999 which then served as a demonstration project for certification of black start capability. This work is a companion effort of the EPRI Measurement of Ancillary Services from Power Plants project. Several of the summary, introductory and background paragraphs of the final report (Ref.1) for that project are reproduced here as a convenience to the reader.

1999-12-21T23:59:59.000Z

96

DOE Hydrogen Analysis Repository: Quick Starting Fuel Processors - A  

NLE Websites -- All DOE Office Websites (Extended Search)

Quick Starting Fuel Processors - A Feasibility Study Quick Starting Fuel Processors - A Feasibility Study Project Summary Full Title: Quick Starting Fuel Processors - A Feasibility Study Project ID: 164 Principal Investigator: Shabbir Ahmed Brief Description: This project studied the feasibility of fast-starting fuel processors to meet DOE goals for on-board fuel processing. Keywords: On-board fuel processor Purpose Study the feasibility of developing fast-starting fuel processors that can meet DOE's targets, investigate designs and strategies capable of meeting the start-up targets, and validate models using experimental and hardware data. Performer Principal Investigator: Shabbir Ahmed Organization: Argonne National Laboratory (ANL) Address: 9700 South Cass Ave Argonne, IL 60439 Telephone: 630-252-4553

97

Big Bend Power Station Neural Network-Intelligent Sootblower (NN-ISB) Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

Big Bend Power Station neural network- Big Bend Power Station neural network- intelligent SootBlower (nn-iSB) oPtimization (comPleted) Project Description The overall goal of this project was to develop a Neural Network-Intelligent Sootblowing (NN-ISB) system on the 445 MW Tampa Electric Big Bend Unit #2 to initiate sootblowing in response to real-time events or conditions within the boiler rather than relying on general rule-based protocols. Other goals were to increase unit efficiency, reduce NO X , and improve stack opacity. In a coal-fired boiler, the buildup of ash and soot on the boiler tubes can lead to a reduction in boiler efficiency. Thus, one of the most important boiler auxiliary operations is the cleaning of heat-absorbing surfaces. Ash and soot deposits are removed by a process known as sootblowing, which uses mechanical devices for on-line cleaning

98

Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring the Standard Model Exploring the Standard Model       You've heard a lot about the Standard Model and the pieces are hopefully beginning to fall into place. However, even a thorough understanding of the Standard Model is not the end of the story but the beginning. By exploring the structure and details of the Standard Model we encounter new questions. Why do the most fundamental particles have the particular masses we observe? Why aren't they all symmetric? How is the mass of a particle related to the masses of its constituents? Is there any other way of organizing the Standard Model? The activities in this project will elucidate but not answer our questions. The Standard Model tells us how particles behave but not necessarily why they do so. The conversation is only beginning. . . .

99

Microsoft Word - CX-NorthBendWoodPoles_FY13_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Bend District Wood Pole Replacement Projects North Bend District Wood Pole Replacement Projects PP&A Project No.: 2658 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance Location: Various transmission lines located in Douglas, Linn, and Lane counties, Oregon. Refer to Project Location Attachment for transmission lines and corresponding structure locations. Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to replace deteriorating wood poles and associated structural/electrical components (e.g. cross arms, insulators, guy anchors, etc.) along the subject transmission lines. Replacement will be in-kind and will utilize the existing holes to minimize ground disturbance. If necessary, an auger will be used to remove any loose soil from

100

Flexpad: highly flexible bending interactions for projected handheld displays  

E-Print Network (OSTI)

Flexpad is an interactive system that combines a depth camera and a projector to transform sheets of plain paper or foam into flexible, highly deformable, and spatially aware handheld displays. We present a novel approach ...

Jordt, Andreas

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

MHK Projects | Open Energy Information  

Open Energy Info (EERE)

MHK Projects MHK Projects Jump to: navigation, search << Return to the MHK database homepage Click one of the following Marine Hydrokinetic Projects for more information: Loading... 40MW Lewis project ADM 3 ADM 4 ADM 5 AW Energy EMEC AWS II Admirality Inlet Tidal Energy Project Agucadoura Alaska 1 Alaska 13 Alaska 17 Alaska 18 Alaska 24 Alaska 25 Alaska 28 Alaska 31 Alaska 33 Alaska 35 Alaska 36 Alaska 7 Algiers Cutoff Project Algiers Light Project Amity Point Anconia Point Project Angoon Tidal Energy Plant Aquantis Project Ashley Point Project Astoria Tidal Energy Atchafalaya River Hydrokinetic Project II Avalon Tidal Avondale Bend Project BW2 Tidal Bar Field Bend Barfield Point Bayou Latenache Belair Project Belleville BioSTREAM Pilot Plant Bluemill Sound Bondurant Chute Bonnybrook Wastewater Facility Project 1

102

Operations start and shipments begin  

NLE Websites -- All DOE Office Websites (Extended Search)

problems encountered during the attempts to start up the calutrons. The first shipment of uranium 235 (200 grams of 12% enrichment) from Y-12 in March, 1944, proved that the...

103

Quantum Espresso Quick Start Introduction  

E-Print Network (OSTI)

Quantum Espresso Quick Start Introduction Quantum Espresso (http://www.quantum properties eg., phonon dispersion, NMR shifts and band structure to name a few. Quantum Espresso is available. Matter 21, 395502 (2009). Online Guide for QE : http://www.quantum

Bjørnstad, Ottar Nordal

104

Better Buildings Showcase Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Showcase Projects Better Buildings Showcase Projects Showcase projects are initial projects started within 9 months of becoming a Better Buildings Challenge...

105

Design of the START experiment  

SciTech Connect

The START experiment (Small Tight Aspect Ratio Tokamak) is a low-budget device under construction that is specifically intended to investigate MHD behavior at extremely tight aspect ratios (as low as R/a-1.2) as well as the effectiveness of a major radius compression technique to produce high toroidal current in such plasmas. The main components of the START assembly are described along with the mode of operation.

Smith, R.T.C. [UKAEA Fusion, Culham UK; Peng, Yueng Kay Martin [ORNL

1989-01-01T23:59:59.000Z

106

Getting Started: What to Ask the Developer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GETTING STARTED: WHAT TO ASK THE DEVELOPER? GETTING STARTED: WHAT TO ASK THE DEVELOPER? Below is a list of preliminary questions to think about when approached by a developer or technology representative for developing clean energy resources on tribal lands. For more assistance, contact the DOE Office of Indian Energy at indianenergy@hq.doe.gov. Resources: * Which resources have been identified as being available? * What data was used to identify the resources? * Has the development of all available resources been evaluated separately as well as optimally combined with others? * What is the effective resource capacity? Development: * What is the proposed scale (MW capacity) for the project? * How will construction be accomplished? * How long will development and construction to commercial operation date (COD) take?

107

Bend, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Bend, OR) (Redirected from Bend, OR) Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0581728°, -121.3153096° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0581728,"lon":-121.3153096,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

108

Nuclear fuels accounting interface: River Bend experience  

SciTech Connect

This presentation describes nuclear fuel accounting activities from the perspective of nuclear fuels management and its interfaces. Generally, Nuclear Fuels-River Bend Nuclear Group (RBNG) is involved on a day-by-day basis with nuclear fuel materials accounting in carrying out is procurement, contract administration, processing, and inventory management duties, including those associated with its special nuclear materials (SNM)-isotopics accountability oversight responsibilities as the Central Accountability Office for the River Bend Station. As much as possible, these duties are carried out in an integrated, interdependent manner. From these primary functions devolve Nuclear Fuels interfacing activities with fuel cost and tax accounting. Noting that nuclear fuel tax accounting support is of both an esoteric and intermittent nature, Nuclear Fuels-RBNG support of developments and applications associated with nuclear fuel cost accounting is stressed in this presentation.

Barry, J.E.

1986-01-01T23:59:59.000Z

109

Getting Started Videoconferences | Argonne Leadership Computing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Getting Started Videoconferences Start Date: Jan 23 2014 - 3:16pm Event Website: http:www.alcf.anl.govworkshopsgetting-started-videoconference-2014 Register for one of eight...

110

Better Buildings Neighborhood Program: Getting Started  

NLE Websites -- All DOE Office Websites (Extended Search)

Started on Twitter Bookmark Better Buildings Neighborhood Program: Getting Started on Google Bookmark Better Buildings Neighborhood Program: Getting Started on Delicious Rank...

111

Department of Energy Announces Start of Western Area Power Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Start of Western Area Power Start of Western Area Power Administration Recovery Act Project Department of Energy Announces Start of Western Area Power Administration Recovery Act Project September 16, 2009 - 12:00am Addthis WASHINGTON, DC - With the goal of bringing new jobs and green power to the West, Energy Secretary Steven Chu announced today a large-scale transmission project to be financed using funding from the American Recovery and Reinvestment Act. The Western Area Power Administration will use borrowing authority under the Recovery Act to help build the $213 million Montana-Alberta Tie Limited (MATL) transmission project between Great Falls, Montana, and Lethbridge, Alberta. Almost two-thirds of the 214-mile transmission line will be located on U.S. soil, creating American

112

Light-bending tests of Lorentz invariance  

E-Print Network (OSTI)

Classical light bending is investigated for weak gravitational fields in the presence of hypothetical local Lorentz violation. Using an effective field theory framework that describes general deviations from local Lorentz invariance, we derive a modified deflection angle for light passing near a massive body. The results include anisotropic effects not present for spherical sources in General Relativity as well as Weak Equivalence Principle violation. We develop an expression for the relative deflection of two distant stars that can be used to analyze data in past and future solar-system observations. The measurement sensitivities of such tests to coefficients for Lorentz violation are discussed.

Rhondale Tso; Quentin G. Bailey

2011-08-10T23:59:59.000Z

113

Property:Project Installed Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Installed Capacity (MW) Installed Capacity (MW) Jump to: navigation, search Property Name Project Installed Capacity (MW) Property Type String Pages using the property "Project Installed Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 + MHK Projects/ADM 5 + 1 + MHK Projects/AWS II + 1 + MHK Projects/Admirality Inlet Tidal Energy Project + 22 + MHK Projects/Agucadoura + 2 + MHK Projects/Alaska 18 + 10 + MHK Projects/Alaska 36 + 10 + MHK Projects/Algiers Cutoff Project + 16 + MHK Projects/Algiers Light Project + 0 + MHK Projects/Anconia Point Project + 0 + MHK Projects/Ashley Point Project + 0 + MHK Projects/Astoria Tidal Energy + 300 + MHK Projects/Avondale Bend Project + 0 + MHK Projects/Bar Field Bend + 0 +

114

Consumer bankruptcy: A fresh start  

E-Print Network (OSTI)

We quantitatively analyze the welfare implications of different consumer bankruptcies rules. We look at a dynamic life cycle model where households face idiosyncratic uncertainty. Bankruptcy rules vary in two dimensions: whether discharge of debt is granted to borrowers on demand (fresh start) and the fraction of income garnished from defaulters. We find that the welfare comparison depends critically upon the nature and magnitude of income and expenses uncertainty.

Igor Livshits; James Macgee; Michele Tertilt

2007-01-01T23:59:59.000Z

115

Starting apparatus for internal combustion engines  

DOE Patents (OSTI)

This report is a patent description for a system to start an internal combustion engine. Remote starting and starting by hearing impaired persons are addressed. The system monitors the amount of current being drawn by the starter motor to determine when the engine is started. When the engine is started the system automatically deactivates the starter motor. Five figures are included.

Dyches, G.M.; Dudar, A.M.

1995-01-01T23:59:59.000Z

116

Tension and Flex Bending Fatigue of Superelastic Nitinol  

Science Conference Proceedings (OSTI)

Symposium, Shape Memory Alloys. Presentation Title, Tension and Flex Bending Fatigue of Superelastic Nitinol. Author(s), John R Lewandowski, Brian Benini,...

117

The Research on Controlling the Pre-Bending Deformation before ...  

Science Conference Proceedings (OSTI)

The straightness and residual stresses of the rail after straightening are affected by the bending deformation during cooling before straightening. By analyzing...

118

Big Bend, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bureau 2005 Place to 2006 CBSA Retrieved from "http:en.openei.orgwindex.php?titleBigBend,California&oldid227746" Categories: Places Stubs Cities What links here Related...

119

Warm Bending Magnesium Sheet for Automotive Closure Panels  

Science Conference Proceedings (OSTI)

For automotive production, hemming equipment would be augmented with a rapid heating technology to locally heat the bend region, complete the hem and...

120

DISTRIBUTION OF THE SYNCHROTRON RADIATION FROM BENDING MAGNETS  

NLE Websites -- All DOE Office Websites (Extended Search)

DISTRIBUTION OF THE SYNCHROTRON RADIATION FROM BENDING MAGNETS LS-91 S. Kim November 1988 NO DISTRIBUTION REFERENCE ONLY This note describes the distribution of the synchrotron...

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

SRI CAT Section 1 bending magnet beamline description  

SciTech Connect

This report discusses: APS bending magnet source; beamline layout; beamline optical components; beamline operation; time-resolved studies station; polarization studies station; and commissioning and operational schedule.

Srajer, G.; Rodricks, B.; Assoufid, L.; Mills, D.M.

1994-03-10T23:59:59.000Z

122

Rapid starting methanol reactor system  

DOE Patents (OSTI)

The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

Chludzinski, Paul J. (38 Berkshire St., Swampscott, MA 01907); Dantowitz, Philip (39 Nancy Ave., Peabody, MA 01960); McElroy, James F. (12 Old Cart Rd., Hamilton, MA 01936)

1984-01-01T23:59:59.000Z

123

2005 Getting Started with Epics Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Video Library APS Colloquium Videos * 2007 * 2006 * 2005 * 2004 Getting Started with Epics * 2005 * 2004 2005 Getting Started with Epics Videos ASD Controls and AOD BCDA have...

124

Cold-Start KBP Something from Nothing  

Science Conference Proceedings (OSTI)

... Entity Links. Wikipedia Cold-Start. Cross Language Links. Why is Cold-Start Hard? ... Zoning. Information. Fusion. System Diagram. Corpus. Lorify. ...

2013-06-19T23:59:59.000Z

125

APS Bending Magnet X-rays and  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiation of Nd-Fe-B Permanent Magnets with Irradiation of Nd-Fe-B Permanent Magnets with APS Bending Magnet X-rays and 60 Co γ-rays J. Alderman and P.K. Job APS Operations Division Advanced Photon Source J. Puhl Ionizing Radiation Division National Institute of Standards and Technology June 2000 Table of Contents Introduction Radiation-Induced Demagnetization of Permanent Magnets Resources Required γ-ray Irradiation Results and Analysis of γ-ray Irradiation X-ray Irradiation Results and Analysis of X-ray Irradiation Summary and Conclusions Acknowledgements References Tables and Figures Introduction The Advanced Photon Source (APS), as well as other third-generation synchrotron light sources, uses permanent magnets in the insertion devices to produce x-rays for scientific

126

Bend, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Bend, Oregon: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0581728°, -121.3153096° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0581728,"lon":-121.3153096,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Preliminary assessment of potential CDM early start projects in Brazil  

E-Print Network (OSTI)

10 XI. Wind Farms in Northeast$20/tC SMALL HYDRO IN GOIAS WIND FARMS BAGASSE ELECTRICITYFax: +55(71)379 1759 XI. Wind Farms in Northeast Brazil

Meyers, S.; Sathaye, J.; Lehman, B.; Schumacher, K.; van Vliet, O.; Moreira, J.R.

2000-01-01T23:59:59.000Z

128

NETL: News Release - DOE Project Starts CO2 Sequestration in...  

NLE Websites -- All DOE Office Websites (Extended Search)

typically results in a great deal of produced water. The SWP plans to take some of this produced water, desalinate it, and use it to irrigate nearby riparian areas stressed by...

129

Preliminary assessment of potential CDM early start projects in Brazil  

E-Print Network (OSTI)

pollution from natural gas-fired power plants. Some of the50% from natural gas combined cycle power plants and 50%power plant. In Brazil, the most likely plant type that would be displaced is natural gas

Meyers, S.; Sathaye, J.; Lehman, B.; Schumacher, K.; van Vliet, O.; Moreira, J.R.

2000-01-01T23:59:59.000Z

130

Preliminary assessment of potential CDM early start projects in Brazil  

E-Print Network (OSTI)

16 XIV. Hydroelectricity Generation in the State ofFOR ELEC GENERATION HYDROELECTRICITY IN AMAPA ALCOHOL/DIESELXIV. Hydroelectricity Generation in the State of Amap

Meyers, S.; Sathaye, J.; Lehman, B.; Schumacher, K.; van Vliet, O.; Moreira, J.R.

2000-01-01T23:59:59.000Z

131

Preliminary assessment of potential CDM early start projects in Brazil  

E-Print Network (OSTI)

of higher-efficiency steam turbines. The second (1995-97)for 40-bar boiler and steam turbine with 3-bar extraction

Meyers, S.; Sathaye, J.; Lehman, B.; Schumacher, K.; van Vliet, O.; Moreira, J.R.

2000-01-01T23:59:59.000Z

132

Preliminary assessment of potential CDM early start projects in Brazil  

E-Print Network (OSTI)

other period) the non-baseload sources were at the margin.is not exceeded. For baseload sources, the algorithm only

Meyers, S.; Sathaye, J.; Lehman, B.; Schumacher, K.; van Vliet, O.; Moreira, J.R.

2000-01-01T23:59:59.000Z

133

Preliminary assessment of potential CDM early start projects in Brazil  

E-Print Network (OSTI)

credits, High Price Including other biomass outside thefrom biomass qualifies to receive a better price thanprice conditions (US$65/MWh) has occurred for a biomass-

Meyers, S.; Sathaye, J.; Lehman, B.; Schumacher, K.; van Vliet, O.; Moreira, J.R.

2000-01-01T23:59:59.000Z

134

Clean Cities: Starting a Clean Cities Coalition  

NLE Websites -- All DOE Office Websites (Extended Search)

Coalitions Coalitions Printable Version Share this resource Send a link to Clean Cities: Starting a Clean Cities Coalition to someone by E-mail Share Clean Cities: Starting a Clean Cities Coalition on Facebook Tweet about Clean Cities: Starting a Clean Cities Coalition on Twitter Bookmark Clean Cities: Starting a Clean Cities Coalition on Google Bookmark Clean Cities: Starting a Clean Cities Coalition on Delicious Rank Clean Cities: Starting a Clean Cities Coalition on Digg Find More places to share Clean Cities: Starting a Clean Cities Coalition on AddThis.com... Locations Starting Coalitions Contacts Starting a Clean Cities Coalition Starting a Clean Cities coalition can be a great first step toward reducing petroleum use in your area. The U.S. Department of Energy (DOE) grants official Clean Cities designation to coalitions that exhibit

135

Science Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne Argonne Science Project Ideas! Our Science Project section provides you with sample classroom projects and experiments, online aids for learning about science, as well as ideas for Science Fair Projects. Please select any project below to continue. Also, if you have an idea for a great project or experiment that we could share, please click our Ideas page. We would love to hear from you! Science Fair Ideas Science Fair Ideas! The best ideas for science projects are learning about and investigating something in science that interests you. NEWTON has a list of Science Fair linkd that can help you find the right topic. Toothpick Bridge Web Sites Toothpick Bridge Sites! Building a toothpick bridge is a great class project for physics and engineering students. Here are some sites that we recommend to get you started!

136

EA-1897: AltaRock's Newberry Volcano EGS Demonstration near Bend...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: AltaRock's Newberry Volcano EGS Demonstration near Bend, Oregon EA-1897: AltaRock's Newberry Volcano EGS Demonstration near Bend, Oregon Summary This EA evaluates the...

137

2003 American Solar Challenge Official Starting Lineup  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Solar Challenge Official Starting Lineup Starting Team Car Time 9:00 Kansas State University 28 9:01 University of Minnesota 35 9:02 University of Missouri - Rolla 42...

138

Intelius_NYU Cold Start System  

Science Conference Proceedings (OSTI)

Intelius-NYU Cold Start System. Ang Sun, Xin Wang, Sen Xu, Yigit Kiran, Shakthi Poornima, Andrew Borthwick. (Intelius Inc.). ...

2013-06-19T23:59:59.000Z

139

Starting from Quantum Mechanics - Programmaster.org  

Science Conference Proceedings (OSTI)

Computational Modeling and Simulation of Advanced Materials for Energy Applications: Starting from Quantum Mechanics Sponsored by: TMS/ASM:...

140

Microsoft Word - BigBendSootblowerPPA_Final_061306.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

34 Big Bend Power Station Neural Network-Sootblower Optimization A DOE Assessment June 2006 U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory...

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Diffraction of Kelvin Waves and Bores at Coastal Bends  

Science Conference Proceedings (OSTI)

Bends in coastal mountain ranges may diffract propagating atmospheric Kelvin waves and trapped coastal currents. Analytic solutions exist for the diffraction of both linear Kelvin waves and linear nonrotating gravity waves. Within the context of ...

William C. Skamarock; Joseph B. Klemp; Richard Rotunno

1996-05-01T23:59:59.000Z

142

Kyrgyzstan starts up its first refinery  

Science Conference Proceedings (OSTI)

The Central Asian republic of Kyrgyzstan started up its first oil refinery in October 1996. The 10,000 b/d plant is designed to produce gasoline, diesel, and mazut (heavy fuel oil) from local Kyrgyz crude. Before construction of the Jalalabad refinery, all finished petroleum products were imported from neighboring countries. Kyrgyzstan`s demand for finished products is about 40,000 b/d. The new refinery was designed and constructed by Petrofac of Tyler, Texas, on behalf of Kyrgoil Corp., Calgary. Kyrgoil is a partner with the Kyrgyz state oil company, Kyrgyzsneft, in a venture called Kyrzgyz Petroleum Co. (KPC). KPC has undertaken restoration and continued development of the oil fields in Kyrgyzstan`s Fergana basin, in addition to the refinery project. The company also has marketing rights for finished products within Kyrgyzstan. The refinery comprises: a hydroskimming (atmospheric distillation) section, diesel steam stripping, gasoline blending, and utilities and off-sites, including steam generation, power generation, tank farm, truck and rail tank-car loading and unloading facilities, crude inlet pipeline, high-voltage power line, substation, air compression, laboratory, and maintenance facilities.

McLeod, G. [Petrofac LLC, Tyler, TX (United States)

1997-05-05T23:59:59.000Z

143

Saving Energy and Money Starts at Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Money Starts at Home Money Starts at Home Saving Energy and Money Starts at Home July 28, 2010 - 2:28pm Addthis Kevin Brosnahan What does this mean for me? The first step to getting your home drastically more energy efficient is by getting a professionally conducted home energy audit. Energysavers.gov has tons of facts on keeping your home energy efficient. Every year, the typical U.S. family spends about $1,900 on home utility bills. Unfortunately, a large portion of that energy is wasted - and subsequently, families are spending their hard-earned dollars on that wasted energy. For many low-income Americans, these energy bills absorb quite a significant amount of family income. The good news is that there are easy, no-cost or low-cost projects that you can do in one day to save energy and money at home. One of the best

144

STARTING TODAY: Bloomberg, Daniels, Musk, Pickens, Chu and Energy Leaders  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STARTING TODAY: Bloomberg, Daniels, Musk, Pickens, Chu and Energy STARTING TODAY: Bloomberg, Daniels, Musk, Pickens, Chu and Energy Leaders Headline 3-Day ARPA-E Summit STARTING TODAY: Bloomberg, Daniels, Musk, Pickens, Chu and Energy Leaders Headline 3-Day ARPA-E Summit February 25, 2013 - 1:59pm Addthis NEWS MEDIA CONTACT (202) 586-4940 Follow @energy on Twitter for live coverage of the ARPA-E Summit. Check the energy.gov blog for daily wrapups and photo galleries. WASHINGTON - Building on the President's call in his State of the Union address to further American energy independence through innovation, key thought leaders from academia, business, and government will come together next week to discuss cutting-edge energy issues at the Advanced Research Projects Agency - Energy's (ARPA-E) fourth annual Energy Innovation

145

Automated start-up of EBR-II: A preview  

Science Conference Proceedings (OSTI)

Oak Ridge National Laboratory (ORNL) and Argonne National Laboratory (ANL) are undertaking a joint project to develop control philosophies, strategies, and algorithms for computer control of the start-up mode of the Experimental Breeder Reactor II (EBR-II). The major objective of this project is to show that advanced liquid-metal reactor (LMR) plants can be operated from low power to full power using computer control. Development of an automated control system with this objective in view will help resolve specific issues and provide proof through demonstration that automatic control for plant start-up is feasible. This paper describes the approach that will be used to develop such a system and some of the features it is expected to have. Structured, rule-based methods, which will provide start-up capability from a variety of initial plant conditions and degrees of equipment operability, will be used for accomplishing mode changes during plant start-up. Several innovative features will be incorporated such as signal, command, and strategy validation to maximize reliability, flexibility to accommodate a wide range of plant conditions, and overall utility. Continuous control design will utilize figures of merit to evaluate how well the controller meets the mission requirements. The operator interface will have unique ''look ahead'' features to let the operator see what will happen next. 15 refs., 7 figs., 1 tab.

Kisner, R.A.

1989-01-01T23:59:59.000Z

146

Fast Start Financing | Open Energy Information  

Open Energy Info (EERE)

Fast Start Financing Fast Start Financing Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fast Start Financing Agency/Company /Organization: Government of the Netherlands Partner: United Nations Environment Programme, United Nations Development Programme, United Nations Framework Convention on Climate Change, World Bank Topics: Finance, Market analysis Resource Type: Maps Website: www.faststartfinance.org/home Fast Start Financing Screenshot References: Fast Start Financing [1] Overview "www.faststartfinance.org aims to provide transparency about the amount, direction and use of fast start climate finance, in turn building trust in its delivery and impact. Development of the website was initiated by the government of the Netherlands, with support from the governments of Costa Rica, Colombia,

147

SWERA/Getting Started | Open Energy Information  

Open Energy Info (EERE)

Getting Started Getting Started < SWERA Jump to: navigation, search SWERA logo.png Solar and Wind Energy Resource Assessment (SWERA) Getting StartedPowered by OpenEI Getting Started Data Sets Analysis Tools About SWERA How to use SWERA Users can start from the SWERA home page to assess renewable energy data available for their country. Begin by clicking on the SWERA icon next to "Getting Started" and then clicking on a geographic location of interest on the map displayed. Clicking a country on the map will present the user with the option to view that country's profile in OpenEI or open the OpenCarto GIS analysis tool, allowing the user to search, visualize and explore the data. The tool provides a legend display for data searching, meta data information, detailed resource information provision at click, temporal

148

Technical Assistance Program: Off to a Running Start (Newsletter)  

DOE Green Energy (OSTI)

This newsletter describes key activities of the DOE Office of Indian Energy Policy and Programs for Winter 2012. Between December 2, 2011, and January 15, 2012, 46 American Indian and Alaska Native Tribes submitted applications to receive technical assistance through the program, which provides Tribes with on-the-ground technical support from DOE and National Renewable Energy Laboratory (NREL) staff to help move tribal energy efficiency and renewable energy projects forward. The applications are being considered through the Strategic Technical Assistance Response Team (START) selection process, which incorporates expert reviews and outreach to Tribes who present a need for assistance with their community-based energy efficiency and renewable energy projects. The final successful applicants will be selected based on the clarity of their requests for technical assistance and the ability of START to successfully work with each unique project or community. At least three selected Tribes in Alaska will receive technical assistance between March and May 2012, and up to five selected Tribes in the contiguous United States will receive technical assistance between March and August 2012. During the months of START Program activity, DOE and NREL experts will work in the two locations. In Alaska, START experts will work directly with community-based project teams to analyze local energy issues and provide assistance with energy projects and cost savings initiatives. This effort will be bolstered by DOE-IE's partnership with the Denali Commission, which will provide further assistance and expertise. In the lower 48 states, NREL experts will work with the selected renewable energy START projects to evaluate financial and technical feasibility and provide early development technical assistance to better position the projects for financing and construction. This on-the-ground technical assistance is part of a broader DOE-IE effort to make reliable, accurate technical information and skills-based training available to tribal communities throughout the United States. The primary goal of the START initiative, according to DOE-IE Director Tracey A. LeBeau, is to bring about the next generation of energy development in Indian Country. Through energy project planning, quality training, and technical assistance, The START program will leverage the early-stage resource characterization and pre-feasibility investments that DOE has made in Indian Country over the years, and unlock the energy resources that exist on tribal lands to help build a 21st century tribal energy economy. Working collaboratively with a select group of Tribes and Alaska Native entities, the DOE Office of Indian Energy, NREL, and the Denali Commission will empower tribal leaders to make informed energy decisions and help build capacity to bring tribal energy visions to fruition and get renewable energy projects off the ground, said LeBeau. Ultimately, these efforts will serve to further the Obama Administration and DOE's shared commitment to provide Native American and Alaska Native communities with the tools and resources they need to foster tribal energy self-sufficiency and sustainability, advancing job creation and enhancing economic competitiveness.

Not Available

2012-02-01T23:59:59.000Z

149

IMAGINE Officially Starts Commissioning | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

The IMAGINE team present for the official start of commissioning. Doug Selby, HFIR instrument coordinator, hands the shutter keys to IMAGINE instrument scientist Flora...

150

Subfreezing Start/Stop Protocol for an Advanced Metallic Open-Flowfield Fuel Cell Stack  

NLE Websites -- All DOE Office Websites (Extended Search)

Subfreezing Start/Stop Protocol for an Advanced Subfreezing Start/Stop Protocol for an Advanced Subfreezing Start/Stop Protocol for an Advanced Subfreezing Start/Stop Protocol for an Advanced Subfreezing Start/Stop Protocol for an Advanced Metallic Open Metallic Open Metallic Open Metallic Open- - - -Flowfield Flowfield Flowfield Flowfield Fuel Cell Stack Fuel Cell Stack Fuel Cell Stack Fuel Cell Stack Presented at: US DOE New Projects Kickoff Meeting Washington, DC 13-14 February 2007 Alternative Energy Efficient Simple Clean Today Alternative Energy Efficient Simple Clean Today Objective Objective Objective Objective This project will demonstrate a PEM fuel cell stack that is able to perform and start up in subfreezing conditions, respecting allowed energy budget, and showing limited impact at extreme temperatures over multiple

151

Big Bend Preventorium Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Preventorium Greenhouse Low Temperature Geothermal Facility Preventorium Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Big Bend Preventorium Greenhouse Low Temperature Geothermal Facility Facility Big Bend Preventorium Sector Geothermal energy Type Greenhouse Location Big Bend, California Coordinates 39.6982182°, -121.4608015° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

152

Insulation of Pipe Bends Improves Efficiency of Hot Oil Furnaces  

E-Print Network (OSTI)

Thermodynamic analyses of processes indicated low furnace efficiencies on certain hot oil furnaces. Further investigation, which included Infrared (IR) thermography testing of several furnaces, identified extremely hot surfaces on the outside of the convective sections. Consultation with the furnace manufacturer then revealed that furnaces made in the 1960's tended to not insulate the pipe bends in the convective section. When insulation was added within the covers of the pipe bends on one furnace, the energy efficiency improved by approximately 11%. The total savings are approximately 14,000 Million Btu/yr on one furnace. Insulation will be applied to several other furnaces at the site.

Haseltine, D. M.; Laffitte, R. D.

1999-05-01T23:59:59.000Z

153

WestStart CALSTART | Open Energy Information  

Open Energy Info (EERE)

WestStart CALSTART WestStart CALSTART Jump to: navigation, search Name WestStart-CALSTART Place Pasadena, California Zip 91106 Product String representation "WestStart-CALST ... nd create jobs." is too long. Coordinates 29.690847°, -95.196308° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.690847,"lon":-95.196308,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

154

The Physics of Tokamak Start-up  

SciTech Connect

Tokamak start-up on present-day devices usually relies on inductively induced voltage from a central solenoid. In some cases inductive startup is assisted with auxiliary power from electron cyclotron radio frequency heating. ITER, the National Spherical Torus eXperiment Upgrade and JT60, now under construction, will make use of the understanding gained from present-day devices to ensure successful start-up. Design of a spherical tokamak (ST) with DT capability for nuclear component testing would require an alternative to a central solenoid because the small central column in an ST has insufficient space to provide shielding for the insulators in the solenoid. Alternative start-up techniques such as induction using outer poloidal field coils, electron Bernstein wave start-up, coaxial helicity injection and point source helicity injection have been used with success, but require demonstration of scaling to higher plasma current.

D. Mueller

2012-11-13T23:59:59.000Z

155

Janices start at Training & Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Janice's start at Training & Technology Janice West Christman, Vice President, Y-12 Quality Assurance, agreed to share her story the week she was retiring. Maybe I caught her at...

156

Accelerator and Microbeam Start-up At the console  

E-Print Network (OSTI)

on Drive Motor (F2) to provide power to the terminal. 3. Verify that switches F4 ­ F9 are "on". Red (up on the closed water cooling system, which cools the bending magnets and magnet power supplies. 3. Turn on the power supply for magnet M1 (90º bending magnet). 5. Turn on the power supply for the horizontal steering

157

DOE Announces Webinars on Kick-Starting an Energy Management Program,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kick-Starting an Energy Management Kick-Starting an Energy Management Program, SunShot Incubator Projects, and More DOE Announces Webinars on Kick-Starting an Energy Management Program, SunShot Incubator Projects, and More December 20, 2013 - 8:58am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars January 7: Live Webinar on Kick-starting Your Energy Management Program Webinar Sponsor: EERE's Better Buildings Initiative The Energy Department will present a live webinar titled "Kick-Starting

158

Partial oxidation for improved cold starts in alcohol-fueled engines: Phase 2 topical report  

DOE Green Energy (OSTI)

Alcohol fuels exhibit poor cold-start performance because of their low volatility. Neat alcohol engines become difficult, if not impossible, to start at temperatures close to or below freezing. Improvements in the cold-start performance (both time to start and emissions) are essential to capture the full benefits of alcohols as an alternative transportation fuel. The objective of this project was to develop a neat alcohol partial oxidation (POX) reforming technology to improve an alcohol engine`s ability to start at low temperatures (as low as {minus}30 C) and to reduce its cold-start emissions. The project emphasis was on fuel-grade ethanol (E95) but the technology can be easily extended to other alcohol fuels. Ultimately a compact, on-vehicle, ethanol POX reactor was developed as a fuel system component to produce a hydrogen-rich, fuel-gas mixture for cold starts. The POX reactor is an easily controllable combustion device that allows flexibility during engine startup even in the most extreme conditions. It is a small device that is mounted directly onto the engine intake manifold. The gaseous fuel products (or reformate) from the POX reactor exit the chamber and enter the intake manifold, either replacing or supplementing the standard ethanol fuel consumed during an engine start. The combustion of the reformate during startup can reduce engine start time and tail-pipe emissions.

NONE

1998-04-01T23:59:59.000Z

159

Could Gila Bend, Arizona, Become the Solar Capital of the World? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Could Gila Bend, Arizona, Become the Solar Capital of the World? Could Gila Bend, Arizona, Become the Solar Capital of the World? Could Gila Bend, Arizona, Become the Solar Capital of the World? November 15, 2011 - 9:57am Addthis Serving approximately 9,000 homes with clean renewable energy, the Paloma and Cotton Center solar plants highlight the rapidly rising solar corridor in Gila Bend, Arizona. | Photo courtesy of the town of Gila Bend, Arizona. Serving approximately 9,000 homes with clean renewable energy, the Paloma and Cotton Center solar plants highlight the rapidly rising solar corridor in Gila Bend, Arizona. | Photo courtesy of the town of Gila Bend, Arizona. Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs "Gila Bend had essentially been economically stagnant for the last two

160

The influence of return bends on the downstream pressure drop and condensation heat transfer in tubes  

E-Print Network (OSTI)

The influence of return bends on the downstream pressure drop and heat transfer coefficient of condensing refrigerant R-12 was studied experimentally. Flow patterns in glass return bends of 1/2 to 1 in. radius and 0.315 ...

Traviss, Donald P.

1971-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Getting Started | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Getting Started Getting Started Create a Profile Students working in lab Your candidate profile is your way to communicate to our recruiters information about your experience, education, and job preferences. Feel free to update it as frequently as necessary. You may attach resumes and transcripts to the profile. Additionally, you must release your profile for us to access it. You may enter the profile and release it for viewing by our recruiters at any time. Apply For Jobs The profile you create is considered a crucial part of your employment application. Once you have completed your profile, you can start applying for jobs. To apply for job openings simply use the job search to find something that interests you and click apply inside the job posting. You can apply for as many jobs as you like. College program opportunities, such

162

CleanStart | Open Energy Information  

Open Energy Info (EERE)

CleanStart CleanStart Jump to: navigation, search Name CleanStart Place McClellan, California Zip CA 95652 Product US Business Technology Incubator located in California. Coordinates 38.668696°, -121.394799° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.668696,"lon":-121.394799,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

163

2003 American Solar Challenge Official Starting Lineup  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Solar Challenge Official Starting Lineup American Solar Challenge Official Starting Lineup Starting Team Car # Time 9:00 Kansas State University 28 9:01 University of Minnesota 35 9:02 University of Missouri - Rolla 42 9:03 University of Missouri - Columbia 43 9:04 University of Toronto 11 9:05 University of Waterloo 24 9:06 North Dakota State University 22 9:07 Auburn University 7 9:08 CalSol 254 9:09 Principia College 32 9:10 Queen's University 100 9:11 Western Michigan University 786 9:12 Purdue University 314 9:13 University of Pennsylvania 76 9:14 Iowa State University 9 9:15 Texas A&M University 12 9:16 McGill University 66 9:17 University of Arizona 8 9:18 Stanford University 16 9:19 California Polytechnic State University - SLO 5

164

Property:StartYear | Open Energy Information  

Open Energy Info (EERE)

StartYear StartYear Jump to: navigation, search This is a property of type Date. The allowed values for this property are: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 1988 1987 1986 1985 1984 1983 1982 1981 Subproperties This property has the following 1 subproperty: M Morocco-NREL Energy Activities Pages using the property "StartYear" Showing 25 pages using this property. (previous 25) (next 25) A ASEAN-GIZ Regional Environmentally Sustainable Cities Programme - RESCP + 2007 + Afghanistan-NREL Mission + 2009 + Africa - CCS capacity building + 2010 + Algeria-DLR Resource Assessments + 2007 + Asia Pacific Partnership on Clean Development and Climate + 2006 + B Bangladesh-DLR Resource Assessments + 2001 + Bangladesh-GTZ Renewable Energy and Energy Efficiency Programme + 2007 +

165

DOE Order Self Study Modules - Getting Started  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Getting Started DOE Orders Self-Study Program Getting Started August 2011 1 U.S. DEPARTMENT OF ENERGY ORDERS SELF-STUDY PROGRAM GETTING STARTED This course was developed using the Criterion Referenced Instruction (CRI) method of training. That means the course contains only the information you need to perform your job. You will be shown the learning objectives at the beginning of the course. If you think you can demonstrate competency without additional instruction, you may complete the practice at any time. When you complete all of the practices successfully, you may ask the course manager for the criterion test. The familiar level requires that you understand and remember the material. The general level requires that you understand the applicability of the material. If you are unsure of the level of proficiency

166

It Starts with Science... | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

It Starts with Science... It Starts with Science... It Starts with Science... Addthis Description Secretary Chu sits down with a journalism student at Carnegie Mellon's Education City campus in Qatar to discuss the value of science in education and what attracted him to the study of Physics. Speakers Secretary Steven Chu, Thouria Mahmoud Duration 3:09 Topic Science Education Energy Economy Credit Energy Department Video THOURIA MAHMOUD: And I'm a student in Northwestern in Qatar, a sophomore in journalism. And now we're in Carnegie Mellon University in Qatar, and I'm talking to Mr. Secretary. If you had any advice for students who are, like, looking forward to pursue any science major, what would you tell them? SECRETARY OF ENERGY STEVEN CHU: In universities they call a liberal arts

167

Where the Sky Is the Right Color: Scale and Air Pollution in the Big Bend Region  

E-Print Network (OSTI)

sources implicated in Big Bend haze, namely coal-fired power plants; eliminating those plants or powering them through alternate

Donez, Francisco Juan

2010-01-01T23:59:59.000Z

168

Wisconsin Start-up Taps into Wind Supply Chain | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Start-up Taps into Wind Supply Chain Start-up Taps into Wind Supply Chain Wisconsin Start-up Taps into Wind Supply Chain August 10, 2010 - 2:00pm Addthis Renewegy, LLC received a $525,000 Recovery Act loan to help start its smaller-scale wind turbine business. This fall, the company will begin production on its first batch of turbine systems. | Photo courtesy of Renewegy Renewegy, LLC received a $525,000 Recovery Act loan to help start its smaller-scale wind turbine business. This fall, the company will begin production on its first batch of turbine systems. | Photo courtesy of Renewegy Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? Renewegy received $525,000 Recovery Act loan to start wind turbine business Business hired 16 people and projects at least three more by end of

169

Kansas refinery starts up coke gasification unit  

SciTech Connect

Texaco Refining and Marketing Inc. has started up a gasification unit at its El Dorado, Kan., refinery. The unit gasifies delayed coke and other refinery waste products. This is the first refinery to install a coke-fueled gasification unit for power generation. Start-up of the $80-million gasification-based power plant was completed in mid-June. The gasifier produces syngas which, along with natural gas, fuels a combustion turbine. The turbine produces virtually 100% of the refinery`s electricity needs and enough heat to generate 40% of its steam requirements.

Rhodes, A.K.

1996-08-05T23:59:59.000Z

170

South Bend, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bend, Indiana: Energy Resources Bend, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6833813°, -86.2500066° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6833813,"lon":-86.2500066,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

171

Big Bend, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bend, Wisconsin: Energy Resources Bend, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8814034°, -88.2067573° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8814034,"lon":-88.2067573,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

172

City of West Bend, Iowa (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Bend Bend Place Iowa Utility Id 20364 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Rates Commercial Commercial Electric Rates (3 Phase) Commercial Industrial Electric Rates Industrial Residential Electric Rates Residential Rural Electric Rates (3 Phase) Commercial Rural Electric Rates (Single Phase) Commercial Average Rates Residential: $0.0755/kWh Commercial: $0.0716/kWh Industrial: $0.0795/kWh References

173

Post Oak Bend City, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Oak Bend City, Texas: Energy Resources Oak Bend City, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.6320777°, -96.3135917° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.6320777,"lon":-96.3135917,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

174

Fort Bend County, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bend County, Texas: Energy Resources Bend County, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.5692614°, -95.8142885° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.5692614,"lon":-95.8142885,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

175

Gila Bend, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bend, Arizona: Energy Resources Bend, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.9478236°, -112.7168305° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.9478236,"lon":-112.7168305,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

176

Bessemer Bend, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bessemer Bend, Wyoming: Energy Resources Bessemer Bend, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7580196°, -106.5203123° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7580196,"lon":-106.5203123,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

Project information  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Information Amistad Project (Texas) Collbran Project (Colorado) Colorado River Storage Project Dolores Project (Colorado) Falcon Project (Texas) Provo River Project (Utah)...

178

Starting From Total Shutdown Initial Position  

E-Print Network (OSTI)

) and exposed to atmospheric pressure will destroy pump oil. #12;#12;Starting From Total Shutdown Initial Position: · Roughing pump: OFF · Forepump: OFF · Diff. pump-Vent to CENTER position. 5. Open Accumulator Valve 6. Turn on diffusion pump. Repeller light should go on

McCombe, Bruce D.

179

Big Bend Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Big Bend Hot Springs Geothermal Area Big Bend Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Big Bend Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0217,"lon":-121.9183,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

180

Bending free toroidal shells for tokamak fusion reactors  

SciTech Connect

Several authors have suggested a novel shape for the toroidal field (TF) coils of a tokamak fusion reactor. Collectively, these magnet shapes have become referred to as the ''Princeton D-coil.'' This coil shape can be derived by assuming that for a thin conductor to be in a state of ''pure tension,'' its radius of curvature must be proportional to the toroidal radius. A principal disadvantage of this derivation is that out-of-plane support, a necessary feature in the design of a tokamak fusion reactor, is neglected. A derivation of a bending free toroidal shell for a tokamak fusion reactor is presented. The out-of-plane structure is considered to be an integral part of the fusion reactor and therefore its shape is optimized to produce a bending free stress distribution. This shape, which is nearly circular for aspect ratios greater than 2.5, is derived by solving the equilibrium, constitutive, and kinematic relationships for a uniform toroidal membrane. This membrane is subjected to a magnetic pressure which is inversely proportional to the square of the toroidal radius. A comparison between this bending free shape and the D-shape is presented.

Gray, W.H.; Stoddart, W.C.T.; Akin, J.E.

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Property:StartDate | Open Energy Information  

Open Energy Info (EERE)

StartDate" StartDate" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 1 April 2008 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 + 1 August 2008 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December 2008 + 1 December 2008 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 + 1 February 2008 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 + 1 February 2009 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 + 1 January 2008 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2009 + 1 January 2009 +

182

Evolution of gamebots project  

Science Conference Proceedings (OSTI)

GameBots is a project started in early 2000s by A. N. Marshall and G. A. Kaminka. The project aims at providing researchers a real-time virtual environment testbed for their agents. GameBots utilized environment of Unreal Tournament first-person shooter ...

Michal Bda; Martin ?ern; Jakub Gemrot; Cyril Brom

2012-09-01T23:59:59.000Z

183

Bend Testing of Silicon Micro-Cantilevers from -30  

Science Conference Proceedings (OSTI)

Above 500oC they started to exhibit limited ductility, before fracturing, in agreement with macro-scale testing. Proceedings Inclusion? Planned:...

184

Property:Project Nearest Body of Water | Open Energy Information  

Open Energy Info (EERE)

Nearest Body of Water Nearest Body of Water Jump to: navigation, search Property Name Project Nearest Body of Water Property Type String Pages using the property "Project Nearest Body of Water" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + North Atlantic Ocean + MHK Projects/ADM 3 + Galway Bay site close to Spiddal + MHK Projects/ADM 5 + government Pilot Zone + MHK Projects/Algiers Light Project + Mississippi River + MHK Projects/Anconia Point Project + Mississippi River + MHK Projects/Ashley Point Project + Mississippi River + MHK Projects/Astoria Tidal Energy + East River + MHK Projects/Avalon Tidal + Ingram Thorofare + MHK Projects/Avondale Bend Project + Mississippi River + MHK Projects/BW2 Tidal + Maurice River +

185

Analysis and Experiments with a Slow-Start Procedure  

Science Conference Proceedings (OSTI)

Slow-start procedures were developed decades ago in order to provide a smoother evolution in numerical simulations performed with three-time-level integration schemes. The advantages of a slow start versus a conventional forward start should ...

Harold Ritchie; Anne-Marie Leduc

1994-04-01T23:59:59.000Z

186

Advanced Vehicle Testing Activity - Stop-Start Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Stop-Start Vehicles Stop-start Vehicles allow the internal combustion engine to shut-down when the vehicle stops in traffic, and re-start quickly to launch the vehicle. Fuel is...

187

Weakly Charged Cationic Nanoparticles Induce DNA Bending and Strand Separation  

SciTech Connect

The understanding of interactions between double stranded (ds) DNA and charged nanoparticles will have a broad bearing on many important applications from drug delivery [ 1 4 ] to DNAtemplated metallization. [ 5 , 6 ] Cationic nanoparticles (NPs) can bind to DNA, a negatively charged molecule, through a combination of electrostatic attraction, groove binding, and intercalation. Such binding events induce changes in the conformation of a DNA strand. In nature, DNA wraps around a cylindrical protein assembly (diameter and height of 6 nm) [ 7 ] with an 220 positive charge, [ 8 ] creating the complex known as chromatin. Wrapping and bending of DNA has also been achieved in the laboratory through the binding of highly charged species such as molecular assemblies, [ 9 , 10 ] cationic dendrimers, [ 11 , 12 ] and nanoparticles. [ 13 15 ] The charge of a nanoparticle plays a crucial role in its ability to induce DNA structural changes. If a nanoparticle has a highly positive surface charge density, the DNA is likely to wrap and bend upon binding to the nanoparticle [ 13 ] (as in the case of chromatin). On the other hand, if a nanoparticle is weakly charged it will not induce dsDNA compaction. [ 9 , 10 , 15 ] Consequently, there is a transition zone from extended to compact DNA conformations which depends on the chemical nature of the nanoparticle and occurs for polycations with charges between 5 and 10. [ 9 ] While the interactions between highly charged NPs and DNA have been extensively studied, the processes that occur within the transition zone are less explored.

Railsback, Justin [North Carolina State University; Singh, Abhishek [North Carolina State University; Pearce, Ryan [North Carolina State University; McKnight, Timothy E [ORNL; Collazo, Ramon [North Carolina State University; Sitar, Zlatko [ORNL; Yingling, Yaroslava [North Carolina State University; Melechko, Anatoli Vasilievich [ORNL

2012-01-01T23:59:59.000Z

188

Tank Farm Contractor Phase 1 Feed Delivery and Storage and Disposal Mission Summary for 2006 Hot Start Extended Order  

SciTech Connect

This is the level one logic diagram for the River Protection Project (RPP), Tank Farm Contractor, Phase 1, Feed Delivery Storage and Disposal Mission Summary for 2006 Hot Start.

DAVIS, T.J.

2000-04-24T23:59:59.000Z

189

Method and apparatus for starting supersonic compressors  

DOE Patents (OSTI)

A supersonic gas compressor with bleed gas collectors, and a method of starting the compressor. The compressor includes aerodynamic duct(s) situated for rotary movement in a casing. The aerodynamic duct(s) generate a plurality of oblique shock waves for efficiently compressing a gas at supersonic conditions. A convergent inlet is provided adjacent to a bleed gas collector, and during startup of the compressor, bypass gas is removed from the convergent inlet via the bleed gas collector, to enable supersonic shock stabilization. Once the oblique shocks are stabilized at a selected inlet relative Mach number and pressure ratio, the bleed of bypass gas from the convergent inlet via the bypass gas collectors is effectively eliminated.

Lawlor, Shawn P

2013-08-06T23:59:59.000Z

190

Independent to start gas flow in Moldova  

Science Conference Proceedings (OSTI)

A small independent operator hopes to start gas production this year in the eastern European republic of Moldova, which imports all oil and gas, mainly from Russia. Redeco Ltd. LLC, Oklahoma City, is seeking commercial customers in the town of Baimaclia for gas from a planned 5 km sales pipeline from nearby Victorovca field. The company is affiliated with Redexco ltd., Calgary, and Costilla Energy Inc., Midland, Tex. Redeco`s Victorovca 302 workover well in Cantemir County flowed 500 Mcfd of gas in December from 1,976--86 ft in the Miocene Sarmat formation. The well is in the eastern Carpathian basin. Most wells in Victorovca field are 30--45 years old, but Redeco believes it could economically redrill the field. Victorovca field extends about 12 km east-west and 4 km north-south.

NONE

1997-02-03T23:59:59.000Z

191

Great Plains gets a running start  

Science Conference Proceedings (OSTI)

The United States first commercial synthetic fuel plant has been geared up to deliver the $2 billion project by late 1984 in Beulah, North Dakota. The Great Plains coal gasification plant is rising quickly under a compressed 44 month schedule. Delivery of synthetic natural gas from the 125 million-cu-ft-a-day plant by 1984 is possible. Getting the $1.4 billion gasification plant, 22,000-ton-per-day coal mine and 365-mile, 20-in. dia pipeline connection completed on schedule and within budget is critical. The price of the product gas, which will be mixed with relatively cheap natural gas in the consortium's pipelines, has been set by the Federal Energy Regulatory Commission at $6.75 per thousand cubic feet. This project has been planned since 1972. (DP)

Not Available

1981-11-19T23:59:59.000Z

192

Shear and Bending Fatigue Failure of Lead Free Solder Joint and ...  

Science Conference Proceedings (OSTI)

Among many mechanisms leading to solder joint failure, the fracture by cyclic bending, shear, and shock load is particularly concerned. Conventionally, those...

193

Strain-rate Sensitivity in the Bending Strength of a Forged ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The strain rate sensitivity of bending strength is analyzed for a forged turbostratic-carbon fiber, reinforced epoxy-resin composite (FTCFC).

194

A Study on Bending Deformation Behavior of Ni -Based DS and SC ...  

Science Conference Proceedings (OSTI)

based superalloys used for gas turbine components because bending stresses are often observed in some critical portions of gas turbine blades and vanes.

195

Bending of metal-filled carbon nanotube under electron beam irradiation  

Science Conference Proceedings (OSTI)

Electron beam irradiation induced, bending of Iron filled, multiwalled carbon nanotubes is reported. Bending of both the carbon nanotube and the Iron contained within the core was achieved using two approaches with the aid of a high resolution electron microscope (HRTEM). In the first approach, bending of the nanotube structure results in response to the irradiation of a pristine kink defect site, while in the second approach, disordered sites induce bending by focusing the electron beam on the graphite walls. The HRTEM based in situ observations demonstrate the potential for using electron beam irradiation to investigate and manipulate the physical properties of confined nanoscale structures.

Misra, Abha [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, Karnataka, 560012 (India)

2012-03-15T23:59:59.000Z

196

Ultrafast dynamics of liquid water: Frequency fluctuations of the OH stretch and the HOH bend  

SciTech Connect

Frequency fluctuations of the OH stretch and the HOH bend in liquid water are reported from the third-order response function evaluated using the TTM3-F potential for water. The simulated two-dimensional infrared (IR) spectra of the OH stretch are similar to previously reported theoretical results. The present study suggests that the frequency fluctuation of the HOH bend is faster than that of the OH stretch. The ultrafast loss of the frequency correlation of the HOH bend is due to the strong couplings with the OH stretch as well as the intermolecular hydrogen bond bend.

Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

2013-07-28T23:59:59.000Z

197

Newberry EGS Demonstration Project Environmental Analysis (EA)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Newberry Volcano Enhanced Geothermal System (EGS) Demonstration Project UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT (BLM) DOI-BLM-OR-P000-2011-0003-EA DOE/EA-1897 ENVIRONMENTAL ASSESSMENT DECEMBER 2011 Location: Federal Geothermal Leases on the West Flank of Newberry Volcano, Deschutes County, 22 miles south of Bend, Oregon Applicant: Davenport Newberry Holdings LLC and AltaRock Energy, Inc. 225 NW Franklin Avenue, Suite 1 Bend, OR 97701 Tel: 541-323-1190 Lead Agency: U.S. Department of the Interior,

198

Microsoft Word - BigBendSootblowerPPA_Final_061306.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

6/1234 6/1234 Big Bend Power Station Neural Network-Sootblower Optimization A DOE Assessment June 2006 U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory National Energy Technology Laboratory Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name,

199

New Jersey SmartStart Buildings - Direct Install Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Jersey SmartStart Buildings - Direct Install Program New Jersey SmartStart Buildings - Direct Install Program New Jersey SmartStart Buildings - Direct Install Program < Back Eligibility Commercial Industrial Local Government Nonprofit Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Other Construction Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Lesser of 70% of project costs or $75,000 per project; annual entity cap of $250,000 Program Info Funding Source New Jersey Societal Benefits Charge (public benefits fund); ARRA State New Jersey Program Type State Rebate Program Rebate Amount Varies Provider c/o TRC Energy Services The Direct Install program offers turn-key energy efficiency solutions to qualified industrial and commercial customers that, with some exceptions,

200

Rapid start-up / restart avionics provide robust fault tolerance with reduced Size, Weight And Power  

Science Conference Proceedings (OSTI)

An approach that uses rapid start-up computers to provide fault-tolerance and transient upset recovery while minimizing Size, Weight and Power (SWaP) is described. 1 2 This paper provides a status report on a research project conducted by Draper Laboratory ...

Robert Hammett

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The agreement gives the go-ahead for work to start  

E-Print Network (OSTI)

international parties involved in an experimental nuclear fusion reactor project have initialed a 10bnThe agreement gives the go- ahead for work to start Fusion reactor work gets go-ahead Seven-euro (£682m) agreement on the plan. The International Thermonuclear Experimental Reactor (Iter

202

EA-1880: Big Bend to Witten Transmission Line Project, South Dakota  

Energy.gov (U.S. Department of Energy (DOE))

The USDA Rural Utilities Service, with DOEs Western Area Power Administration as a cooperating agency, is preparing this EA to evaluate the environmental impacts of a proposal to construct a 70-mile long 230-kV single-circuit transmission line, a new Western Area Power Administration substation, an addition to the existing substation, and approximately 2 miles of 230-kV double-circuit transmission line, all in South Dakota.

203

Effects of supercritical carbon dioxide treatment on bending properties of micro-sized SU-8 Specimens  

Science Conference Proceedings (OSTI)

The bending properties of micro-sized photoresist patterns are quantitatively evaluated using micro-sized SU-8 cantilever type test specimens to clarify the effects of supercritical carbon dioxide-treatment (ScCO"2-treatment). The SU-8 specimens were ... Keywords: Bending strength, Degree of crosslinking, Micro-sized materials, Photoresist, SU-8, Supercritical carbon dioxide

Chiemi Ishiyama; Tso-Fu Mark Chang; Masato Sone

2011-08-01T23:59:59.000Z

204

Bending Burning Matches and Crumpling Burning Paper Texas A&M University  

E-Print Network (OSTI)

Bending Burning Matches and Crumpling Burning Paper Zeki Melek Texas A&M University Department burning. Specifically, we can simulate the bending of burning matches, and the folding of burning paper interactively. 1 Introduction We present a simple method to increase the realism of the simu- lation of burning

Keyser, John

205

Power Plant Optimization Demonstration Projects Cover Photos:  

NLE Websites -- All DOE Office Websites (Extended Search)

5 SEPTEMBER 2007 5 SEPTEMBER 2007 Power Plant Optimization Demonstration Projects Cover Photos: * Top left: Coal Creek Station * Top right: Big Bend Power Station * Bottom left: Baldwin Energy Complex * Bottom right: Limestone Power Plant A report on four projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Great River Energy * Tampa Electric Company * Pegasus Technologies * NeuCo. , Inc.  Power Plant Optimization Demonstration Projects Executive Summary .......................................................................................4 Background: Power Plant Optimization ......................................................5 Lignite Fuel Enhancement Project ...............................................................8

206

Commissioning and Start Up of a 110 MegaWatt Cogeneration Facility  

E-Print Network (OSTI)

"In December of 1987, Union Carbide successfully brought on line a 110,000 KVA combined cycle cogeneration facility. The construction, commissioning and start up of this complex facility was accomplished in a remarkably short twelve months. As with all projects of any magnitude, there were several technical challenges that developed during the course of the year. These challenges and the Project Team response will be discussed in some detail. Some areas include: 1. Procurement 2. Technical review of specs and drawings 3. Existing manufacturing facility constraints 4. Mechanical problems 5. Electrical problems 6. Control system / instrumentation problems The commissioning and start up had to be coordinated with existing Plant operations. As a result of the Project Team's efforts, the cogeneration facility achieved 100% of design output on December 22, 1987 without any significant impact on the manufacturing facility."

Good, R.

1988-09-01T23:59:59.000Z

207

Spring Forward and Start Saving Money | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Forward and Start Saving Money Spring Forward and Start Saving Money March 8, 2013 - 10:15am Addthis Installing blinds or draperies can help you save on cooling costs during...

208

Edison Down for About One Month Starting June 24  

NLE Websites -- All DOE Office Websites (Extended Search)

Edison Down for About One Month Starting June 24 Edison Down for About One Month Starting June 24 June 4, 2013 by Francesca Verdier (0 Comments) The Edison Phase II system arrives...

209

Saving Energy and Money Starts at Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saving Energy and Money Starts at Home Saving Energy and Money Starts at Home July 28, 2010 - 2:28pm Addthis Kevin Brosnahan What does this mean for me? The first step to getting...

210

Circuit arrangement for starting and operating a gas discharge laser  

SciTech Connect

A circuit arrangement is described for starting and operating a gas discharge laser having a starting phase and an operating phase. It consists of two supply lines for supplying a direct current to the gas discharge laser, a ballast resistor connected in at least one of the supply lines, and circuit means in shunt with the ballast resistor through which a starting current flows during the starting phase of the gas discharge laser.

Bolhuis, P.J.

1989-04-25T23:59:59.000Z

211

Passive gust load alleviation through bend-twist coupling of composite beams on typical commercial airplane wings  

E-Print Network (OSTI)

The effects of bend-twist coupling on typical commercial airplane wings are evaluated. An analytical formulation of the orthotropic box beam bending stiffness matrix is derived by combining Euler-Bernoulli beam theory and ...

Gauthier Perron, Sbastien

2012-01-01T23:59:59.000Z

212

EIA-Voluntary Reporting of Greenhouse Gases Program - Getting Started  

U.S. Energy Information Administration (EIA) Indexed Site

Getting Started Getting Started Voluntary Reporting of Greenhouse Gases Program Getting Started Form EIA-1605 may seem daunting at first, even for entities that have reported under the original program. That's why EIA has developed the Getting Started page to help entities take a systematic approach to reporting their emissions and reductions. The Voluntary Reporting of Greenhouse Gases Program suggests that prospective reporters familiarize themselves with the specific requirements for reporting their entity's inventory and reductions by answering the questions embodied in the 10 steps below. In addition, EIA has prepared the interactive Getting Started tool to help reporters determine what parts of Form EIA-1605 they need to complete. Getting Started Tool Getting Started PDF Tables

213

Berkeley Lab Technology Spawns Successful Start-up Companies | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Berkeley Lab Technology Spawns Successful Start-up Companies Berkeley Lab Technology Spawns Successful Start-up Companies Berkeley Lab Technology Spawns Successful Start-up Companies October 25, 2010 - 10:58am Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What are the key facts? Three start-up companies using Berkeley-developed technology have either had highly successful launches or closed major deals in the last several months. Ed. Note cross posted from Berkeley Lab News Center, written by Julie Chao. What do a smart window company, a microbial analysis start-up and waste-heat recovery start-up have in common? They're all located in the San Francisco Bay Area and they're all based on technology developed at Lawrence Berkeley National Laboratory. What's more, these three start-up companies have either had highly

214

New Jersey SmartStart Buildings - Pay for Performance Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Jersey SmartStart Buildings - Pay for Performance Program New Jersey SmartStart Buildings - Pay for Performance Program New Jersey SmartStart Buildings - Pay for Performance Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Varies for each program milestone $1 M per utility account (gas and electric) per year $2 M per project $4 M per entity per year Program Info State New Jersey Program Type State Rebate Program Rebate Amount $/kWh, $/therm, and $/sq. ft. incentives, vary based on expected energy

215

Start-up control system and vessel for LMFBR  

DOE Patents (OSTI)

A reflux condensing start-up system comprises a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.

Durrant, Oliver W. (Akron, OH); Kakarala, Chandrasekhara R. (Clinton, OH); Mandel, Sheldon W. (Galesburg, IL)

1987-01-01T23:59:59.000Z

216

Start-up control system and vessel for LMFBR  

DOE Patents (OSTI)

A reflux condensing start-up system includes a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.

Durrant, Oliver W. (Akron, OH); Kakarala, Chandrasekhara R. (Clinton, OH); Mandel, Sheldon W. (Galesburg, IL)

1987-01-01T23:59:59.000Z

217

Theoretical and experimental analyses of titanium sheet metal bending by nd:YAG laser.  

E-Print Network (OSTI)

??Laser Bending is a new non-contact method of forming sheet-metal components which does not require any special tools. This process is highly accurate and can (more)

Shidid, D

2011-01-01T23:59:59.000Z

218

Characterization of Optical Fiber Strength Under Applied Tensile Stress and Bending Stress  

Science Conference Proceedings (OSTI)

Various types of tensile testing and bend radius tests were conducted on silica core/silica cladding optical fiber of different diameters with different protective buffer coatings, fabricated by different fiber manufacturers. The tensile tests were conducted to determine not only the average fiber strengths at failure, but also the distribution in fracture strengths, as well as the influence of buffer coating on fracture strength. The times-to-failure of fiber subjected to constant applied bending stresses of various magnitudes were measured to provide a database from which failure times of 20 years or more, and the corresponding minimum bend radius, could be extrapolated in a statistically meaningful way. The overall study was done to provide an understanding of optical fiber strength in tensile loading and in applied bending stress as related to applications of optical fiber in various potential coizfgurations for weapons and enhanced surveillance campaigns.

P.E. Klingsporn

2011-08-01T23:59:59.000Z

219

Funding & Financing for Energy Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects Projects Funding & Financing for Energy Projects A concentrating solar power system being installed in Gila Bend, Arizona. | Photo by Dennis Schroeder. A concentrating solar power system being installed in Gila Bend, Arizona. | Photo by Dennis Schroeder. Are you a state, local or tribal government, or private sector partner, looking for resources or financing to support an energy project? Learn about funding and financing opportunities. AT THE ENERGY DEPARTMENT Loan Programs Office: The Energy Department's Loan Program Office guarantees loans to eligible clean energy projects and provides direct loans to eligible manufacturers of advanced technology vehicles and components. Learn about how the Energy Department's loan programs are accelerating domestic commercial deployment of advanced technologies at a

220

Property:Incentive/StartDateString | Open Energy Information  

Open Energy Info (EERE)

StartDateString StartDateString Jump to: navigation, search Property Name Incentive/StartDateString Property Type String Description Start Date string property. Use this property in queries until the Property:Incentive/StartDate property is populated with valid dates only. Currently, some are populated with additional notes included. Pages using the property "Incentive/StartDateString" Showing 25 pages using this property. (previous 25) (next 25) 3 30% Business Tax Credit for Solar (Vermont) + 01/01/2009 + A AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) + 3/11/2011 + AEP Appalachian Power - Residential Home Retrofit Program (West Virginia) + 3/11/2011 + AEP Ohio - Commercial Self Direct Rebate Program (Ohio) + 1/1/2008 +

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

How to Start Your Own Business - Lawrence Berkeley National ...  

of living depends on what we produce, and engineers and scientists, more than ... starting small and building value in steps. The founders wanted to devel-

222

Delayed Start or Cancellation of Business Hours | Argonne National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Twitter Delayed Start or Cancellation of Business Hours Winter Road Closings Winter Weather FAQs Westgate Alternate Routes Reporting IllegalUnethical Activity Working Remotely...

223

Assess your starting point | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

to maximize savings. EPA has two tools to help you assess your starting point: Use the Energy Program Assessment Matrix to compare your organization's energy management...

224

Assess your starting point | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Assess your starting point Assess your starting point Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Read the ENERGY STAR Guidelines for Energy Management Get buy-in from leadership and staff Make a commitment Assess your starting point Use Portfolio Manager Save energy Find financing Earn recognition Communicate your success

225

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Chart: project timeline - Project Milestones - Budget - Bibliography * Thank you 29 30 Organization Chart * Project team: Purdue University - Dr. Brenda B. Bowen: PI, student...

226

Projects Completed Year-to-Date Grand Total: $114,360,905 1,038,467Grand Total SF:Text25:09-Nov-10  

E-Print Network (OSTI)

Project Location: Branch Campus Architect Project Cost Project Name SFContractor Project Start/End Project,983,29974,624Total SF:Total Projects 5Totals for Branch Campus Project Location: HSC Architect Project Cost Project/30/2010 Mary Gauer Total Cost: $13,070,289118,332Total SF:Total Projects 12Totals for HSC Project Location

New Mexico, University of

227

Western Area Power Administration Starting Forecast Month: Sierra...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reg & Res Maximum CVP Capacity CVP Energy Generation Peak Project Use Demand Project Use (PU) Load Energy First Pref. (FP) Peak Demand First Pref. (FP) Load Energy Estimated...

228

EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX SUMMARY This EIS evaluates the environmental impacts of a proposal to provide financial assistance for a project proposed by NRG Energy, Inc (NRG). DOE selected NRG's proposed W.A. Parish Post-Combustion CO2 Capture and Sequestration Project for a financial assistance award through a competitive process under the Clean Coal Power Initiative Program. NRG would design, construct and operate a commercial-scale carbon dioxide (CO2) capture facility at its existing W.A. Parish Generating Station in Fort Bend County, Texas; deliver the CO2 via a new pipeline to the existing West Ranch oil field in Jackson

229

EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

73: W.A. Parish Post-Combustion CO2 Capture and Sequestration 73: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX SUMMARY This EIS evaluates the environmental impacts of a proposal to provide financial assistance for a project proposed by NRG Energy, Inc (NRG). DOE selected NRG's proposed W.A. Parish Post-Combustion CO2 Capture and Sequestration Project for a financial assistance award through a competitive process under the Clean Coal Power Initiative Program. NRG would design, construct and operate a commercial-scale carbon dioxide (CO2) capture facility at its existing W.A. Parish Generating Station in Fort Bend County, Texas; deliver the CO2 via a new pipeline to the existing West Ranch oil field in Jackson

230

PSNH - Municipal Smart Start Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PSNH - Municipal Smart Start Program PSNH - Municipal Smart Start Program PSNH - Municipal Smart Start Program < Back Eligibility Local Government Savings Category Other Maximum Rebate Not specified Program Info State New Hampshire Program Type Utility Loan Program Rebate Amount No up front costs: Payments made over time with the savings obtained from lower energy costs. Provider Public Service of New Hampshire Public Service of New Hampshire (PSNH), an electric utility, offers the Smart Start Program to Municipal customers. This program assists municipalities in reducing energy consumption and electric bills at facilities by installing energy-saving measures. Payment for services and products will be made over time with the savings obtained from lower energy costs. Under the Smart Start Program, PSNH pays all of the costs associated

231

Property:Incentive/StartDate | Open Energy Information  

Open Energy Info (EERE)

StartDate StartDate Jump to: navigation, search Property Name Incentive/StartDate Property Type Date Description Start Date. In order to see all values for this property, Property:Incentive/StartDateString should be used in queries until only valid dates are in this property. Currently, some entries include notes after the date or are just notes. Subproperties This property has the following 50 subproperties: A Alcohol Fuels Exemption (Hawaii) Alternative Energy Personal Property Tax Exemption (Michigan) Anne Arundel County - Solar and Geothermal Equipment Property Tax Credits (Maryland) B Broward County - Energy Sense Appliance Rebate Program (Florida) C CCEF - Commercial, Industrial, Institutional PV Grant Program (Connecticut) California Solar Initiative - Solar Thermal Program (California)

232

Researchers Describe Project to Merge Cloud Computing and Supercomputi...  

NLE Websites -- All DOE Office Websites (Extended Search)

DD project was to demonstrate a proof-of-concept capability for this novel high-performance computing (HPC) environment. The "traditional" cloud design approach often starts with...

233

Energy Conservation Tax Credits - Competitively-Selected Projects...  

Open Energy Info (EERE)

Energy Incentive Programs Amount Varies by project Equipment Requirements First year energy savings must yield a simple payback period of greater than 3 years. Start Date 2011...

234

CSU /Agency Totals 85 Task Agreements Agency PI Project Title Start Date End Date Budget  

E-Print Network (OSTI)

, Robert Forest Inventory and Support at Fort Campbell, Kentucky 01-Apr-11 31-Mar-16 $97,876.00 Brozka Area, Island of Hawaii 29-Sep-11 30-Apr-13 $4,988,670.00 Brozka, Robert Sustainable Urban Development,195.00 #12;Cooper, David Long Term Data Collection to Support Restoration Design In the Lulu City Wetland

Crone, Elizabeth

235

ENI REFINING & MARKETING SANNAZZARO GASIFICATION PLANT PROJECT UPDATE AND START UP EXPERIENCE  

E-Print Network (OSTI)

Following the new regulation introduced in Europe in the last years, defining more stringent limits for the emissions to the atmosphere, the necessity to find an alternative use for the fuel oil has created a new challenge for refineries. Progressive reduction of heavy residue market obliged refineries to reduce this production

Gasification Technologies; Dario Camozzi; Snamprogetti Italy

2006-01-01T23:59:59.000Z

236

Team UT-Battelle: How to start a project | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Leigha Edwards Protocol & Community Outreach Manager email: ledwards@ornl.gov phone: 865.241.9309 fax: 865.574.0595 mail: Building 4500 N, MS 6266 or Fred Strohl Volunteer...

237

University of Pittsburgh Early Head Start (Family Foundations) is a 15-year project that  

E-Print Network (OSTI)

. The program continually serves 290 children in a home-based environment so that parents spend time

Sibille, Etienne

238

CUB /Agency Totals 10 Task Agreements Agency PI Project Title Start Date End Date Budget  

E-Print Network (OSTI)

, Craig Ice Patch Archeology: Orthorectification of Aerial Photography for Glacier National Park, Montana-Mar-14 $17,382.00 RM-CESU: University of Colorado at Boulder/Agency Activity FY12 671,561.00$ #12,573.00 US Geological Survey Goldstein, Phillip OBIS-USA (Ocean Biogeographic Information System US) 01-Aug

Crone, Elizabeth

239

CUB /Agency Totals 14 Task Agreements Agency PI Project Title Start Date End Date Budget  

E-Print Network (OSTI)

National Recreation Area 1970s aerial photograph collection into the Interior Collection Management $19,877.00 RMCESU: University of Colorado at Boulder/Agency Activity FY10 727Scale Analysis and Synthesis 01Sep10 28Feb12 $45,000.00 12 Task Agreements $387,426.00 US Geological Survey

Crone, Elizabeth

240

Predictors of compliance with the postpartum visit among women living in healthy start project areas  

E-Print Network (OSTI)

as income, receipt of AFDC (Aid to Families with DependentWomen currently receiving AFDC, reporting two or more moveswith Dependent Children (AFDC) receipt Number of moves in

Bryant, Allison S; Haas, Jennifer S; McElrath, Thomas F; McCormick, Marie C

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Gas-liquid two phase flow through a vertical 90 elbow bend  

SciTech Connect

Pressure drop data are reported for two phase air-water flow through a vertical to horizontal 90 elbow bend set in 0.026 m i.d. pipe. The pressure drop in the vertical inlet tangent showed some significant differences to that found for straight vertical pipe. This was caused by the elbow bend partially choking the inflow resulting in a build-up of pressure and liquid in the vertical inlet riser and differences in the structure of the flow regimes when compared to the straight vertical pipe. The horizontal outlet tangent by contrast gave data in general agreement with literature even to exhibiting a drag reduction region at low liquid rates and gas velocities between 1 and 2 m s{sup -1}. The elbow bend pressure drop was best correlated in terms of l{sub e}/d determined using the actual pressure loss in the inlet vertical riser. The data showed a general increase with fluid rates that tapered off at high fluid rates and exhibited a negative pressure region at low rates. The latter was attributed to the flow being smoothly accommodated by the bend when it passed from slug flow in the riser to smooth stratified flow in the outlet tangent. A general correlation was presented for the elbow bend pressure drop in terms of total Reynolds numbers. A modified Lockhart-Martinelli model gave prediction of the data. (author)

Spedding, P.L.; Benard, E. [School of Aeronautical Engineering, Queen's University Belfast, BT9 5AH (United Kingdom)

2007-07-15T23:59:59.000Z

242

Gas-liquid pressure drop in vertical internally wavy 90 bend  

SciTech Connect

Experiments of air water two-phase flow pressure drop in vertical internally wavy 90 bend have been carried out. The tested bends are flexible and made of stainless steel with inner diameter of 50 mm and various curvature radiuses of 200, 300, 400 and 500 mm. The experiments were performed under the following conditions of two-phase parameters; mass flux from 350 to 750 kg/m{sup 2} s. Gas quality from 1% to 50% and system pressure from 4 to 7.5 bar. The results demonstrate that the effect of the above-mentioned parameters is very significant at high ranges of mass flow quality. Due to the increasing of two-phase flow resistance, energy dissipations, friction losses and interaction of the two-phases in the vertical internally wavy 90 bend the total pressure drops are perceptible about 2-5 times grater than that in smooth bends. Based on the mass and energy balance as well as the presented experimental results, new empirical correlation has been developed to calculate the two-phase pressure drop and hence the two-phase friction factor of the tested bends. The correlation includes the relevant primary parameter, fit the data well, and is sufficiency accurate for engineering purposes. (author)

Benbella, Shannak [Department of Mechanical Engineering, Al-Balqa Applied University, Al-Huson University College, P.O. Box 50, Al-Huson (Jordan); Al-Shannag, Mohammad; Al-Anber, Zaid A. [Department of Chemical Engineering, Faculty of Engineering Technology, Al-Balqa Applied University, P.O. Box 15008, Marka 11134, Amman (Jordan)

2009-01-15T23:59:59.000Z

243

DOE Provides $30 Million to Jump Start Bioenergy Research Centers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30 Million to Jump Start Bioenergy Research Centers 30 Million to Jump Start Bioenergy Research Centers DOE Provides $30 Million to Jump Start Bioenergy Research Centers October 1, 2007 - 2:49pm Addthis DOE Bioenergy Research Center Investment Tops $400 Million WASHINGTON, DC-The U.S. Department of Energy (DOE) today announced it has invested nearly $30 million in end-of-fiscal-year (2007) funds to accelerate the start-up of its three new Bioenergy Research Centers, bringing total DOE Bioenergy Research Center investment to over $400 million. The three DOE Bioenergy Research Centers-located in Oak Ridge, Tennessee; Madison, Wisconsin; and near Berkeley, California-selected by DOE this June, bring together multidisciplinary teams of leading scientists to advance research needed to make cellulosic ethanol and other biofuels

244

Property:Building/StartPeriod | Open Energy Information  

Open Energy Info (EERE)

StartPeriod StartPeriod Jump to: navigation, search This is a property of type Date. Start of the period (first day o the month) Pages using the property "Building/StartPeriod" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1 January 2004 + Sweden Building 05K0002 + 1 January 2004 + Sweden Building 05K0003 + 1 January 2004 + Sweden Building 05K0004 + 1 January 2004 + Sweden Building 05K0005 + 1 October 2004 + Sweden Building 05K0006 + 1 October 2004 + Sweden Building 05K0007 + 1 October 2004 + Sweden Building 05K0008 + 1 October 2004 + Sweden Building 05K0009 + 1 October 2004 + Sweden Building 05K0010 + 1 October 2004 + Sweden Building 05K0011 + 1 October 2004 + Sweden Building 05K0012 + 1 January 2004 + Sweden Building 05K0013 + 1 October 2004 +

245

Template:DivStartLeft | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Template Edit History Facebook icon Twitter icon » Template:DivStartLeft Jump to: navigation, search This is the 'DivStartLeft' template. It is used in conjuction with Template:DivEnd to put surround the "free text" area in the geothermal region template. Usage It should be called in the following format: {{DivStartLeft}} Retrieved from "http://en.openei.org/w/index.php?title=Template:DivStartLeft&oldid=403880" Categories: Templates Formatting Templates What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

246

START and Online Education Program Update Webinar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

START and Online Education Program Update Webinar START and Online Education Program Update Webinar START and Online Education Program Update Webinar January 30, 2013 11:00AM MST Webinar The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs, Office of Energy Efficiency and Renewable Energy Tribal Energy Program, and Western Area Power Administration are pleased to continue their sponsorship of the Tribal Renewable Energy Webinar Series. Attend this webinar to get an overview of the START program, activities, and accomplishments, and learn about DOE's new renewable energy education curriculum for Tribes, delivered through a new online training platform. The webinar will be held from 11 a.m. to 12:30 p.m. Mountain time. Why You Should Attend Find ways to promote tribal energy sufficiency and foster economic

247

GRR/GRR Getting Started | Open Energy Information  

Open Energy Info (EERE)

GRR Getting Started GRR Getting Started < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Print PDF Getting Started with the Roadmap The Geothermal Regulatory Roadmap has 3 main parts: Flowcharts, Narratives, and Reference Materials, described in more detail below. GRR Product Overview For more information, watch the GRR Product Overview (Video) (approximate length: 10 minutes), or download the Original PowerPoint Presentation. Contents 1 Getting Started with the Roadmap 1.1 1. Flowcharts 1.1.1 Flowchart Shapes 1.1.2 Flowchart Colors 1.1.3 Flowchart Features 1.1.4 Element Features 1.1.5 Example 1.2 2. Narratives 1.3 3. Reference Material 1.4 Did we miss a permit? 1.5 Does content need updating? 1.6 Are you an agency with regulatory authority over a required permit?

248

Help:Starting a new page | Open Energy Information  

Open Energy Info (EERE)

Starting a new page Starting a new page Jump to: navigation, search An example of how to add a company to the Solar Gateway There are several ways to start a new page. These can vary based on the type of page started, as well as the wiki and namespace. The first thing you should do is know which topic area your page falls under. OpenEI has several gateways around specific topics, such as Solar, Wind, and Geothermal. In these Gateways, you'll immediately see forms for adding content. Forms were created to standardize the information you put in, and make it fast and easy to get your content published on OpenEI. For example, in the Solar Gateway, you'll see a map of Solar Energy companies, under which you can add a new company that will add a new page and populate the map. Companies, like many other categories of information

249

Science on Saturday starts Jan. 11 | Princeton Plasma Physics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Science on Saturday starts Jan. 11 By Jeanne Jackson DeVoe January 10, 2014 Tweet Widget Facebook Like Google Plus One Joshua E. G. Peek, a Hubble Fellow at Columbia University's...

250

Getting Started at ALCF | Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

ALCC Program Director's Discretionary Program Need Help? support@alcf.anl.gov 630-252-3111 866-508-9181 Getting Started at ALCF If you are interested in using ALCF resources,...

251

Clean Start/McClellan Technology Incubator | Open Energy Information  

Open Energy Info (EERE)

Start/McClellan Technology Incubator Start/McClellan Technology Incubator Jump to: navigation, search Logo: Clean Start/McClellan Technology Incubator Name Clean Start/McClellan Technology Incubator Address 5022 Bailey Loop Place McClellan, California Zip 95652 Region Bay Area Coordinates 38.657365°, -121.390278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.657365,"lon":-121.390278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

252

A note on the effect of the cosmological constant on the bending of light  

E-Print Network (OSTI)

We take another look at the equations behind the description of light bending in a Universe with a cosmological constant. We show that even within the impact parameter entering into the photon's differential equation, and which is defined here with exclusive reference to the beam of light as it bends around the central mass, lies the contribution of the cosmological constant. The latter is shown to enter in a novel way into the equation. When the latter is solved our approach implies, beyond the first two orders in the mass-term and the lowest-order in the cosmological constant, a slightly different expression for the bending angle from what is previously found in the literature.

Fayal Hammad

2013-09-01T23:59:59.000Z

253

ProjectBrochure Manhattanville in West Harlem Installation of New Sewer and  

E-Print Network (OSTI)

Sewer Project Project Brochure Borough: Manhattan Project Description: New Storm and Combined StormProjectBrochure Manhattanville in West Harlem Installation of New Sewer and Upgrade of Combined/Sanitary Sewers Project Start: September 15, 2009 Tentative Project Completion: Spring 2011 Project Cost

Qian, Ning

254

RHIC Project | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

RHIC Project RHIC Project The Superconducting Magnet Division supplied 1740 magnetic elements, in 888 cryostats, for the RHIC facility at BNL. Of these, 780 magnetic elements were manufactured by Northrop-Grumman (Bethpage, NY) and 360 were made by Everson Electric (Bethlehem, PA). The magnets made in industry used designs developed at BNL. The first cooldown of the magnets for the RHIC engineering run was in 1999. Since then, the magnets have operated very reliably. arc dipole coil and yoke Arc dipole coil and yoke, with magnetic flux lines The magnets provide modest field (3.45 Teslas in the arc dipoles) in a cost-effective design. Key features in the principal bending and focusing magnets include the use of NbTi Rutherford cable, a single-layer coil, and cold iron as both yoke and collar. The magnets operate in forced-flow

255

Effect of couple-stress on the pure bending of a prismatic bar  

SciTech Connect

An evaluation of the applicability of the couple-stress theory to the stress analysis of graphite structures is performed by solving a pure bending problem. The differences between solutions from the couple-stress theory and from the classical theory of elasticity are compared. It is found that the differences are sufficient to account for the inconsistencies which have often been observed between the classical elasticity theory and actual behavior of graphite under bend and tensile loadings. An experimental procedure to measure the material constants in the couple-stress theory is also suggested. The linear couple-stress theory, the origins of which go back to the turn of the last century, adds linear relations between couple-stresses and rotation gradients to the classical stress-strain law. By adopting the classical assumption that the plane cross section remains plane after deformation, the pure-bending problem is reduced to a plane couple-stress problem with traction-free boundary conditions. A general solution for an isotropic elastic prismatic bar under pure bending is then obtained using the Airy stress function and another stress function wich accounts for the couple-stresss. For a cylindrical bar, it reduces to a simple series solution. The moment-curvature and stress-curvature relations derived for a cylindrical bar from the general solution are used to examine the effect of couple-stresses. Numerical compilation of relations indicates that the couple stress parameters can be practically determined by measuring the moment-curvature ratio of various diametered specimens under bending. Although there is not sufficient data for such evaluation at present, it appears that the theory is consistent with the limited bend and tensile strength data of cylindrical specimens for H-451 graphite.

Tzung, F.; Kao, B.; Ho, F.; Tang, P.

1981-02-01T23:59:59.000Z

256

Project Accounts  

NLE Websites -- All DOE Office Websites (Extended Search)

» Project Accounts » Project Accounts Project Accounts Overview Project accounts are designed to facilitate collaborative computing by allowing multiple users to use the same account. All actions performed by the project account are traceable back to the individual who used the project account to perform those actions via gsisshd accounting logs. Requesting a Project Account PI's, PI proxies and project managers are allowed to request a project account. In NIM do "Actions->Request a Project Account" and fill in the form. Select the repository that the Project Account is to use from the drop-down menu, "Sponsoring Repository". Enter the name you want for the account (8 characters maximum) and a description of what you will use the account for and then click on the "Request Project Account" button. You

257

TEST SYSTEM FOR EVALUATING SPENT NUCLEAR FUEL BENDING STIFFNESS AND VIBRATION INTEGRITY  

SciTech Connect

Transportation packages for spent nuclear fuel (SNF) must meet safety requirements specified by federal regulations. For normal conditions of transport, vibration loads incident to transport must be considered. This is particularly relevant for high-burnup fuel (>45 GWd/MTU). As the burnup of the fuel increases, a number of changes occur that may affect the performance of the fuel and cladding in storage and during transportation. The mechanical properties of high-burnup de-fueled cladding have been previously studied by subjecting defueled cladding tubes to longitudinal (axial) tensile tests, ring-stretch tests, ring-compression tests, and biaxial tube burst tests. The objective of this study is to investigate the mechanical properties and behavior of both the cladding and the fuel in it under vibration/cyclic loads similar to the sustained vibration loads experienced during normal transport. The vibration loads to SNF rods during transportation can be characterized by dynamic, cyclic, bending loads. The transient vibration signals in a specified transport environment can be analyzed, and frequency, amplitude and phase components can be identified. The methodology being implemented is a novel approach to study the vibration integrity of actual SNF rod segments through testing and evaluating the fatigue performance of SNF rods at defined frequencies. Oak Ridge National Laboratory (ORNL) has developed a bending fatigue system to evaluate the response of the SNF rods to vibration loads. A three-point deflection measurement technique using linear variable differential transformers is used to characterize the bending rod curvature, and electromagnetic force linear motors are used as the driving system for mechanical loading. ORNL plans to use the test system in a hot cell for SNF vibration testing on high burnup, irradiated fuel to evaluate the pellet-clad interaction and bonding on the effective lifetime of fuel-clad structure bending fatigue performance. Technical challenges include pure bending implementation, remote installation and detachment of the SNF test specimen, test specimen deformation measurement, and identification of a driving system suitable for use in a hot cell. Surrogate test specimens have been used to calibrate the test setup and conduct systematic cyclic tests. The calibration and systematic cyclic tests have been used to identify test protocol issues prior to implementation in the hot cell. In addition, cyclic hardening in unidirectional bending and softening in reverse bending were observed in the surrogate test specimens. The interface bonding between the surrogate clad and pellets was found to impact the bending response of the surrogate rods; confirming this behavior in the actual spent fuel segments will be an important aspect of the hot cell test implementation,

Wang, Jy-An John [ORNL; Wang, Hong [ORNL; Bevard, Bruce Balkcom [ORNL; Howard, Rob L [ORNL; Flanagan, Michelle [U.S. Nuclear Regulatory Commission

2013-01-01T23:59:59.000Z

258

Project 244  

NLE Websites -- All DOE Office Websites (Extended Search)

PROJECT PARTNER Advanced Technology Systems, Inc. Pittsburgh, PA PROJECT PARTNERS Ohio University Athens, OH Texas A&M University-Kingsville Kingsville, TX WEBSITES http:...

259

Projects | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

and Conferences Supporting Organizations Supercomputing and Computation Home | Science & Discovery | Supercomputing and Computation | Projects Projects 1-10 of 180 Results Prev...

260

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS August 20-22, 2013 2 Presentation Outline * Benefits to the program * Project overall objectives * Technical status * Project summary * Conclusions and future plans 3 Benefit...

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Great Plains Gasification Project status report  

SciTech Connect

The Great Plains Gasification Project is the first commercial synthetic fuels project based on coal conversion in the US. The goal is to convert North Dakota lignite into pipeline quality synthetic natural gas (SNG). The project consists of an open pit coal mine, a gasification plant, and an SNG pipeline in Mercer County, North Dakota. The project took 12 years from its conception to the production in 1984 of SNG for users. The author describes the plant's basic processes, the start-up activities and schedule, and some of the more interesting start-up problems.

Pollock, D.C.

1985-08-01T23:59:59.000Z

262

Widget:ExpandableTextStart | Open Energy Information  

Open Energy Info (EERE)

ExpandableTextStart ExpandableTextStart Jump to: navigation, search This widget allows text to start hidden then expand and re-hide when clicked. Users will see "....[read more]" when hidden and "[show less]" when expanded. (configurable in Widget:ExpandableTextEnd) This widget does not allow any parameters. Users of this widget must use the Start and End variants of the widget, as shown below. While slightly less convenient for the wiki content developer to use two widgets, this allows full wikitext in the expandable text area, which would otherwise just be limited to plaintext. Usage: Be what you would seem to be - or if you'd like it put more simply {{#Widget:ExpandableTextStart}}- Never imagine yourself not to be otherwise than what it might appear to others that what you were or might have been was not otherwise than what you had been would have appeared to them to be otherwise. Lewis Carroll (1832 - 1898) from '''Alice's Adventures in Wonderland and Through the Looking Glass.'''

263

Design, Manufacture and Testing of A Bend-Twist D-Spar  

DOE Green Energy (OSTI)

Studies have indicated that an adaptive wind turbine blade design can significantly enhance the performance of the wind turbine blade on energy capture and load mitigation. In order to realize the potential benefits of aeroelastic tailoring, a bend-twist D-spar, which is the backbone of a blade, was designed and fabricated to achieve the objectives of having maximum bend-twist coupling and fulfilling desirable structural properties (031 & GJ). Two bend-twist D-spars, a hybrid of glass and carbon fibers and an all-carbon D-spar, were fabricated using a bladder process. One of the D-spars, the hybrid D-spar, was subjected to a cantilever static test and modal testing. Various parameters such as materials, laminate schedule, thickness and internal rib were examined in designing a bend-twist D-spar. The fabrication tooling, the lay-up process and the joint design for two symmetric clamshells are described in this report. Finally, comparisons between the experimental test results and numerical results are presented. The comparisons indicate that the numerical analysis (static and modal analysis) agrees well with test results.

Ong, Cheng-Huat; Tsai, Stephen W.

1999-06-01T23:59:59.000Z

264

Theoretical solution for light transmission of a bended hollow light guide  

SciTech Connect

Hollow light guides with very high reflective inner surfaces are novel daylight systems that collect sunlight and skylight available on the roof of buildings transporting it into deep or windowless interiors in building cores. Thus the better utilization of daylight can result in energy savings and wellbeing in these enclosed indoor spaces. An analytical complex solution of a straight tube system was solved in the HOLIGILM method with a user-friendly tool available on the http://www.holigilm.info. An even more difficult light flow transport is to be determined in bended tubes usually placed on sloped roofs where a bend is necessary to adjust the vertical pass through the ceilings. This paper presents the theoretical derivation of the model with its graphical representation and coordinate system respecting backward ray-tracing bend distortions. To imagine the resulting illuminance on the horizontal plane element in the interior, the virtual ray (i.e. luminance in an elementary solid angle) has to pass the ceiling diffuser interface, the inner mirror like tube with a bend, through a roof cupola attachment to the element of the sky and sun light source. Due to this complexity and the lengthy derivation and explanations more practical applications will be published later in a separate contribution. (author)

Kocifaj, Miroslav; Darula, Stanislav; Kittler, Richard [ICA, Slovak Academy of Sciences, 9, Dubravska Road, 845 03 Bratislava (Slovakia); Kundracik, Frantisek [Department of Experimental Physics, FMPI, Comenius University, Mlynska dolina, 842 48 Bratislava (Slovakia)

2010-08-15T23:59:59.000Z

265

Optimization Case Study of CSP Temperature Cycle and Board Bending Reliability  

E-Print Network (OSTI)

RE1-3 1 Optimization Case Study of CSP Temperature Cycle and Board Bending Reliability Ian R attach, CSP, chip scale package, solder joint reliability, fatigue cracking, board flex sensitivity of our CSP products because of a tensile sensitivity that was not characterized by a controlled test

Harvey, Ian R.

266

POWER SUPPLIES FOR THE BENDING MAGNETS OF THE BEP AND VEPP-2000 STORAGE RING  

E-Print Network (OSTI)

transformer (2) are located closely to the BEP ring. The power part of each thyristor module (Fig.2) consistsPOWER SUPPLIES FOR THE BENDING MAGNETS OF THE BEP AND VEPP-2000 STORAGE RING S.S. Vasichev, V of the collider. The beam energy change lead to the necessity to develop new power supplies for the main field

Kozak, Victor R.

267

Photomechanical bending mechanics of polydomain azobenzene liquid crystal polymer network films  

SciTech Connect

Glassy, polydomain azobenzene liquid crystal polymer networks (azo-LCNs) have been synthesized, characterized, and modeled to understand composition dependence on large amplitude, bidirectional bending, and twisting deformation upon irradiation with linearly polarized blue-green (440-514 nm) light. These materials exhibit interesting properties for adaptive structure applications in which the shape of the photoresponsive material can be rapidly reconfigured with light. The basis for the photomechanical output observed in these materials is absorption of actinic light by azobenzene, which upon photoisomerization dictates an internal stress within the local polymer network. The photoinduced evolution of the underlying liquid crystal microstructure is manifested as macroscopic deformation of the glassy polymer film. Accordingly, this work examines the polarization-controlled bidirectional bending of highly concentrated azo-LCN materials and correlates the macroscopic output (observed as bending) to measured blocked stresses upon irradiation with blue-green light of varying polarization. The resulting photomechanical output is highly dependent on the concentration of crosslinked azobenzene mesogens employed in the formulation. Experiments that quantify photomechanical bending and photogenerated stress are compared to a large deformation photomechanical shell model to quantify the effect of polarized light interactions with the material during static and dynamic polarized light induced deformation. The model comparisons illustrate differences in internal photostrain and deformation rates as a function of composition and external mechanical constraints.

Cheng Liang; Torres, Yanira; Oates, William S. [Florida Center for Advanced Aero Propulsion (FCAAP), Department of Mechanical Engineering, Florida A and M and Florida State University, Tallahassee, Florida 32310 (United States); Lee, Kyung Min; McClung, Amber J.; Baur, Jeffery; White, Timothy J. [Air Force Research Laboratory, Materials and Manufacturing Directorate, 3005 Hobson Way B-651 St. 1, Wright Patterson Air Force Base, Ohio 45433-7750 (United States)

2012-07-01T23:59:59.000Z

268

Damping of bending waves in truss beams by electrical transmission lines with PZT actuators  

E-Print Network (OSTI)

Damping of bending waves in truss beams by electrical transmission lines with PZT actuators F. dell of the truss beam with an electrical transmission line by a line distribution of PZT actuators. It has been modular beams by coupling them with fourth-order electric transmission lines and adding PZT actu- ators

Paris-Sud XI, Université de

269

Response of the Summer Marine Layer Flow to an Extreme California Coastal Bend  

Science Conference Proceedings (OSTI)

A summer wind speed maximum extending more than 200 km occurs over water around Point Conception, California, the most extreme bend along the U.S. West Coast. The following several causes were investigated for this wind speed maximum: 1) synoptic ...

Clive E. Dorman; Darko Kora?in

2008-08-01T23:59:59.000Z

270

Multiyear Subinertial and Seasonal Eulerian Current Observations near the Florida Big Bend Coast  

Science Conference Proceedings (OSTI)

Multiyear in situ Eulerian acoustic Doppler current profiler measurements were obtained at 5-, 10-, and 19-m depths off the Big Bend coast, and in 19 m off the Florida Peninsula to the south. Analysis on subinertial time scales, dominated by ...

Ekaterina V. Maksimova; Allan J. Clarke

2013-08-01T23:59:59.000Z

271

The West Bend, Wisconsin Storm of 4 April 1981:A Problem in Operational Meteorology  

Science Conference Proceedings (OSTI)

This paper presents an analysis of a thunderstorm system that spawned a downburst and an F4 anticyclonictornado in the West Bend, Wisconsin area in the early morning of 4 April 1981. The tornado caused threefatalities and was one of the strongest ...

Roger M. Wakimoto

1983-01-01T23:59:59.000Z

272

Evaluation of the Effect of LOCA Testing on Polyimide Insulated Wire Subjected to Bending: Volume 2  

Science Conference Proceedings (OSTI)

Due in part to mishandling and improper installation, polyimide insulated wire has exhibited degradation in some military aircraft and power plant applications. This report presents the results of a Rochester Gas & Electric (RG&E) test program to determine the effects of bending on aged polyimide lead wire and subsequent performance of this wire during a nuclear plant design basis accident.

1998-05-19T23:59:59.000Z

273

Research on Vortex Unstablity Caused by Bending Deformation of Drilling Bar in BTA Deep Hole Machining  

Science Conference Proceedings (OSTI)

Vortex and unstability of bending boring bar caused by cutting fluid force are researched, with Timoshenko beam model and mated vibration model, based on which machining quality of BTA deep hole drilling and tools life can be promoted in practice. Linear ... Keywords: deep hole boring, boring bar, Timoshenko beam, mating vibration, vortex motion stability

Zhanqi Hu; Wu Zhao

2009-04-01T23:59:59.000Z

274

Fluid flow through a vertical to horizontal 90 elbow bend III three phase flow  

SciTech Connect

Three phase water/oil/air flow was studied around a vertical upward to horizontal 90 elbow bend of R/d = 0.654. The results were more complex than corresponding two phase data. The pressure drop recorded for the two tangent legs sometimes showed significant variations to the straight pipe data. In most cases this variation was caused by differences in the flow regimes between the two systems. The elbow bend tended to constrict the flow presented by the vertical inlet tangent leg while sometimes acting as a wave and droplet generator for the horizontal outlet tangent leg. It could be argued that the inclusion of the elbow bend altered the flow regime map transitional boundaries but it also is possible that insufficient settling length was provided in the apparatus design. The elbow bend pressure drop was best presented as l{sub e}/d the equivalent length to diameter ratio using the actual total pressure drop in the vertical inlet tangent leg. Generally l{sub e}/d values rose with gas rate, but exhibited an increasingly complex relation with f{sub o} the oil to liquid volumetric ratio as liquid rate was increased. A significant maximum in l{sub e}/d was in evidence around the inversion from water dominated to oil dominated flows. Several models are presented to predict the data. (author)

Spedding, P.L.; Benard, E.; Crawford, N.M. [School of Mechanical and Aerospace Engineering, Queen's University Belfast, Ashby Building, Belfast BT9 5AH (United Kingdom)

2008-01-15T23:59:59.000Z

275

Manhattan Project: Suggested Readings  

Office of Scientific and Technical Information (OSTI)

SUGGESTED READINGS SUGGESTED READINGS Resources > Readings The literature on the Manhattan Project is extensive. The purpose of this web page is not to catalogue it, but only to suggest a very select few places to start. For more exhaustive lists of secondary works relating to the early history of nuclear energy, consult the bibliographies of the books listed below. Suggested Surveys of the Manhattan Project Gosling, F. G. The Manhattan Project: Making the Atomic Bomb. DOE/MA-0001; Washington: History Division, Department of Energy, January 1999. An overview history by the Chief Historian of the Department of Energy and the basis for most of the "Events" in this web site. The best short survey for the general reader. Revised with additional photographs in January 2010 as DOE/MA-0002 Revised and available in .pdf format.

276

scriptEnv - loading modules before starting a script  

NLE Websites -- All DOE Office Websites (Extended Search)

scriptEnv - loading modules before starting a script scriptEnv - loading modules before starting a script scriptEnv - loading modules before starting a script In some cases a script needs to load modules before the script can be executed, but it can often be inconvenient or impossible to provide wrapper scripts which load the needed modules. CGI scripts on the gpweb resources or in the NERSC portal environment which require the genepool-specific python/perl/R or databases configuration modules are a strong example of this. NERSC provides the scriptEnv as a custom drop-in replacement for /usr/bin/env. scriptEnv loads your selected modules to allow your scripts to run easily and reproducibly. After constructing your scriptEnv, you only need replace the shebang line of your script to use your custom scriptEnv

277

Testimony Before the Senate Armed Services Committee, New START Treaty  

National Nuclear Security Administration (NNSA)

Before the Senate Armed Services Committee, New START Treaty Before the Senate Armed Services Committee, New START Treaty Hearing | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Congressional Testimony > Testimony Before the Senate Armed Services Committee, ... Congressional Testimony Testimony Before the Senate Armed Services Committee, New START Treaty

278

Widget:ExpandableBoxStart | Open Energy Information  

Open Energy Info (EERE)

ExpandableBoxStart ExpandableBoxStart Jump to: navigation, search The widget creates an expandable text box which can contain any standard wiki content. The box will be collapsed upon page load and can be expanded by clicking anywhere on the box. Once expanded, the box can be collapsed by clicking anywhere on the box header (the original box). Users of this widget must use the Start and End variants of the widget, as shown below. While slightly less convenient for the wiki content developer to use two widgets, this allows full wikitext in the expandable text area, which would otherwise just be limited to plaintext. Note: You must also use the accompanying variant of this widget: Widget:ExpandableBoxEnd Parameters label - text label of the box header (optional, default "More

279

Apps for Energy Public Voting Starts Today! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Apps for Energy Public Voting Starts Today! Apps for Energy Public Voting Starts Today! Apps for Energy Public Voting Starts Today! May 17, 2012 - 3:53pm Addthis The Energy Department's digital team tested out Apps for Energy submissions in preparation for public voting. | Photo by Hantz Leger. The Energy Department's digital team tested out Apps for Energy submissions in preparation for public voting. | Photo by Hantz Leger. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs How can I participate? View the Apps for Energy submissions and vote for your favorite! Back in April, we launched Apps for Energy -- challenging developers to build mobile and web applications that bring Green Button electricity data to life. You answered our call -- sending in innovative, creative and fun

280

Entergy Arkansas - CitySmart Quick Start Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Entergy Arkansas - CitySmart Quick Start Energy Efficiency Program Entergy Arkansas - CitySmart Quick Start Energy Efficiency Program Entergy Arkansas - CitySmart Quick Start Energy Efficiency Program < Back Eligibility Institutional Local Government Schools Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount One Measure: $0.10/kWh saved in first year Two Measures: $0.11/kWh saved in first year Three Measures: $0.12/kWh saved in first year Comprehensive Measures (4 +): $0.14/kWh saved in first year Benchmarking/Master Planning: Free to eligible customers Provider Entergy Arkansas, Inc. The CitySmart Program is an energy efficiency program designed to provide

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Spring Forward and Start Saving Money | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Forward and Start Saving Money Forward and Start Saving Money Spring Forward and Start Saving Money March 8, 2013 - 10:15am Addthis Installing blinds or draperies can help you save on cooling costs during the summer months. | Photo courtesy of ©iStockphoto.com/powershot Installing blinds or draperies can help you save on cooling costs during the summer months. | Photo courtesy of ©iStockphoto.com/powershot Jason Lutterman Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Follow these spring tips to save money in your home. March has begun, and as millions around the world prepare to "spring forward" one hour for Daylight Saving Time on March 10th, you might consider this as an opportunity to also save some money to use in the

282

Environmental Justice Starts with Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Justice Starts with Education Environmental Justice Starts with Education Environmental Justice Starts with Education December 15, 2010 - 4:50pm Addthis Bill Valdez Bill Valdez Principal Deputy Director Today, Obama Administration officials and hundreds of advocates of environmental justice gathered at the White House Summit on Environmental Justice to discuss green jobs and clean energy, and open up a dialogue on these and other issues. We owe these advocates a big thank you for their work to make sure every American has clean water to drink, clean air to breathe, and clean communities to live in. The office of Economic Impact and Diversity is helping coordinate the Department's efforts to promote environmental justice both internally and with communities. Community education is one of the most important parts of what we do at the

283

Modeling and cold start in alcohol-fueled engines  

DOE Green Energy (OSTI)

Neat alcohol fuels offer several benefits over conventional gasoline in automotive applications. However, their low vapor pressure and high heat of vaporization make it difficult to produce a flammable vapor composition from a neat alcohol fuel during a start under cold ambient conditions. Various methods have been introduced to compensate for this deficiency. In this study, the authors applied computer modeling and simulation to evaluate the potential of four cold-start technologies for engines fueled by near-neat alcohol. The four technologies were a rich combustor device, a partial oxidation reactor, a catalytic reformer, and an enhanced ignition system. The authors ranked the competing technologies by their ability to meet two primary criteria for cold starting an engine at {minus}25 deg C and also by several secondary parameters related to commercialization. Their analysis results suggest that of the four technologies evaluated, the enhanced ignition system is the best option for further development.

Markel, A.J.; Bailey, B.K.

1998-05-01T23:59:59.000Z

284

Mechanical Bending Technique for Determining CSP Design and Assembly Mark R. Larsen, Ian R. Harvey Ph.D.,  

E-Print Network (OSTI)

S34-3-1 Mechanical Bending Technique for Determining CSP Design and Assembly Weaknesses Mark R at the Chip Size Package (CSP) solder fillet. Mechanically stressing the package serves as a valuable tool bending results compare different CSP architectures thus demonstrating the utility of the test technique

Harvey, Ian R.

285

Motor Starting Module (MSM V2.0)  

Science Conference Proceedings (OSTI)

MSM 2.0 allows evaluation of the potential Power Quality impacts (voltage drop and resultant flicker) of motor starting operations on the surrounding system. The developed module is an improvement on the Motor starting module of Power Quality Diagnostic System (PQDS) software that was developed earlier by EPRI. The user-friendly module has been developed on an EMTP-RV platform and serves to overcome the rigidity of the single line structure of the PQDS version. Customer will need to install a licensed co...

2009-10-22T23:59:59.000Z

286

Impingement starting and power boosting of small gas turbines  

SciTech Connect

The technology of high-pressure air or hot-gas impingement from stationary shroud supplementary nozzles onto radial outflow compressors and radial inflow turbines to permit rapid gas turbine starting or power boosting is discussed. Data are presented on the equivalent turbine component performance for convergent/divergent shroud impingement nozzles, which reveal the sensitivity of nozzle velocity coefficient with Mach number and turbine efficiency with impingement nozzle admission arc. Compressor and turbine matching is addressed in the transient turbine start mode with the possibility of operating these components in braking or reverse flow regimes when impingement flow rates exceed design.

Rodgers, C.

1985-10-01T23:59:59.000Z

287

Western Area Power Administration Starting Forecast Month: Sierra...  

NLE Websites -- All DOE Office Websites (Extended Search)

Month CVP Generation Project Use First Preference Purchases and Exchanges Base Resource January 2014 Twelve-Month Forecast of CVP Generation and Base Resource January 2014 December...

288

DOE/EA-1683: Finding of No Significant Impact Department of Energy Loan Guarantee to Abengoa Solar Inc. for the Solana Concentrating Solar Power Facility Near Gila Bend, Arizona (05/06/10)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT FINDING OF NO SIGNIFICANT IMPACT DEPARTMENT OF ENERGY LOAN GUARANTEE TO ABENGOA SOLAR INC. FOR THE SOLANA CONCENTRATING SOLAR POWER FACILITY NEAR GILA BEND, ARIZONA AGENCY: U.S. Department of Energy, Loan Guarantee Program Office ACTION: Finding of No Significant Impact SUMMARY: The U.S. Department of Energy (DOE) has conducted an environmental assessment (EA) that analyzed the potential environmental impacts associated with a 280 Megawatt (MW) concentrating solar power (CSP) plant (Solana Generating Plant) and associated 230 kilovolt transmission line (Solana Gen-Tie) proposed by Abengoa Solar Inc. (Abengoa) near Gila Bend, Arizona (Solana Project). DOE, through its Loan Guarantee Program Office (LGPO), proposes to provide a Federal loan guarantee pursuant to Title XVII of the

289

CHRISTOPHNIEMANN A new wave of start-ups  

E-Print Network (OSTI)

CHRISTOPHNIEMANN 20 INNOVATION A new wave of start-ups wants to install rooftop solar panels. Installing a rooftop ar- ray of solar panels large enough to produce all of the energy required by a building a pool of cash to pay for the solar panels. Directly or indirectly, homeowners buy the electricity

Kammen, Daniel M.

290

What does it take to start a biodiesel industry?  

Science Conference Proceedings (OSTI)

Learn how Jatropha is being used to make biodiesel in Haiti, and how this effort is helping people in that country build an economy literally from the ground up. What does it take to start a biodiesel industry? Publications aocs articles book book

291

Starting laminar plumes: Comparison of laboratory and numerical modeling  

E-Print Network (OSTI)

, F-91405 Orsay, France Peter E. van Keken Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109-1005, USA (keken@umich.edu) Angela Limare Institut de Physique du Globe, UMR. In the laboratory experiments the plumes are started in a nearly isoviscous silicone oil with heat supplied through

van Keken, Peter

292

FYI on where to start: A bibliography of internetworking information  

Science Conference Proceedings (OSTI)

The intent of this bibliography is to offer a representative collection of resources of information that will help the reader become familiar with the concepts of internetworking. It is meant to be a starting place for further research. There are references ...

K. L. Bowers; T. L. LaQuey; J. K. Reynolds; K. Roubicek; M. K. Stahl; A. Yuan

1990-08-01T23:59:59.000Z

293

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermopolis, WY. * Start Laboratory Tests of Effects of CO 2 -H 2 O-Rock Reaction 26 27 Organization Chart Dr. John Kaszuba (co PI) Dr. Ken Sims (co PI) MS Students Tim Moloney...

294

Western Pond Turtle Head-starting and Reintroduction; 2004-2005 Annual Report.  

DOE Green Energy (OSTI)

This report covers the results of the western pond turtle head-starting and reintroduction project for the period of October 2004-September 2005. Wild hatchling western pond turtles from the Columbia River Gorge were reared at the Woodland Park and Oregon Zoos in 2004 and 2005 as part of the recovery effort for this Washington State endangered species. The objective of the program is to reduce losses to introduced predators like bullfrogs and largemouth bass by raising the hatchlings to a size where they are too large to be eaten by most of these predators. Thirty-five turtles were placed at the Woodland Park Zoo and 53 at the Oregon Zoo. Of these, 77 head-started juvenile turtles were released at three sites in the Columbia Gorge in 2005. Four were held back to attain more growth in captivity. Eleven were released at the Klickitat ponds, 22 at the Klickitat lake, 39 at the Skamania site, and 5 at Pierce National Wildlife Refuge (NWR). This brought the total number of head-start turtles released since 1991 to 257 for the Klickitat ponds, 136 for the Klickitat lake, 206 for the Skamania pond complex, and 255 at Pierce NWR. In 2005, 34 females from the two Columbia Gorge populations were equipped with transmitters and monitored for nesting activity. Twenty-four nests were located and protected; these produced 90 hatchlings. The hatchlings were collected in September and transported to the Oregon and Woodland Park zoos for rearing in the head-start program. During the 2005 field season trapping effort, 486 western pond turtles were captured in the Columbia Gorge, including 430 previously head-started turtles. These recaptures, together with confirmed nesting by head-start females and visual resightings, indicate the program is succeeding in boosting juvenile recruitment to increase the populations. Records were also collected on 216 individual painted turtles captured in 2005 during trapping efforts at Pierce NWR, to gather baseline information on this native population. Bonneville Power Administration (BPA) funded approximately 75% of program activities in the Columbia River Gorge from October 2004 through September 2005.

Van Leuven, Susan; Allen, Harriet; Slavin, Kate (Washington Department of Fish and Wildlife, Wildlife Management Program, Olympia, WA)

2005-09-01T23:59:59.000Z

295

NSLS-II Project Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Project Schedule NSLS-II Project Schedule Major Milestone Event Major Milestone Event Preliminary Schedule CD-0 (approve Mission Need) 4th quarter, FY2005 CD-1 (approve Alternative Selection and Cost Range) 4th quarter, FY2007 CD-2 (approve Performance Baseline) 1st quarter, FY2008 CD-3 (approve Start of Construction) 2nd quarter, FY2009 CD-4 (approve Start of Operations) FY2015 Critical Decisions The five Critical Decisions are major milestones approved by the Secretarial Acquisition Executive or Acquisition Executive that establish the mission need, recommended alternative, Acquisition Strategy, the Performance Baseline, and other essential elements required to ensure that the project meets applicable mission, design, security, and safety requirements. Each Critical Decision marks an increase in commitment of

296

Green Start-Ups: Opportunities, Technology, and Financing  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Start-Ups: Opportunities, Technology, and Financing Green Start-Ups: Opportunities, Technology, and Financing Speaker(s): Stephen Lin Date: December 19, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Dale Sartor Please join us for a brown bag lunch to hear about a new green technology and new ways of doing business in Asia, the US and in between. A foreign-invented power efficiency technology will be described and demonstrated. Entrepreneurial plans for its deployment in the US will be described including a pilot with the San Francisco Giants. Besides giving the Giants 5% savings with no upfront cost, the entrepreneurial team hopes to develop a proof-of-concept test case where Securitized Energy Savings (SESs) are created for green and social investors. A brief introduction on carbon credits and Voluntary Emission Reduction credits (VERs) will be

297

New Jersey SmartStart Buildings - New Construction and Retrofits |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » New Jersey SmartStart Buildings - New Construction and Retrofits New Jersey SmartStart Buildings - New Construction and Retrofits < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate General: incentives may be limited to $500,000 per utility account per year. Custom Measures: limited to lesser of $0.16/kWh or $1.60/therm saved annually; 50% of total costs; or buydown to a 1-year payback period Program Info Funding Source New Jersey Societal Benefits Charge (public benefits fund)

298

Pseudo Slice Energy Spread in Dynamics of Electron Beams Moving through Magnetic Bends  

E-Print Network (OSTI)

In the previous canonical formulation of beam dynamics for an electron bunch moving ultrarelativistically through magnetic bending systems, we have shown that the transverse dynamics equation for a particle in the bunch has a driving term which behaves as the centrifugal force caused by the particle's initial potential energy due to collective particle interactions within the bunch. As a result, the initial potential energy at the entrance of a bending system, which we call pseudo (kinetic) energy, is indistinguishable from the usual kinetic energy offset from the design energy in its perturbation to particle optics through dispersion and momentum compaction. In this paper, in identifying this centrifugal force on particles as the remnant of the CSR cancellation effect in transverse particle dynamics, we show how the dynamics equation in terms of the canonical momentum for beam motion on a curved orbit is related to the Panofsky-Wenzel theorem for wakefields for beam motion on a straight path. It is shown tha...

Li, Rui

2014-01-01T23:59:59.000Z

299

Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Projects Power Projects Contact SN Customers Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates You are here: SN Home page > About SNR Power Projects Central Valley: In California's Central Valley, 18 dams create reservoirs that can store 13 million acre-feet of water. The project's 615 miles of canals irrigate an area 400 miles long and 45 miles wide--almost one third of California. Powerplants at the dams have an installed capacity of 2,099 megawatts and provide enough energy for 650,000 people. Transmission lines total about 865 circuit-miles. Washoe: This project in west-central Nevada and east-central California was designed to improve the regulation of runoff from the Truckee and Carson river systems and to provide supplemental irrigation water and drainage, as well as water for municipal, industrial and fishery use. The project's Stampede Powerplant has a maximum capacity of 4 MW.

300

BWR Fuel Deposit Sample Evaluation: River Bend Cycle 11 Crud Flakes (Part 1)  

Science Conference Proceedings (OSTI)

The River Bend boiling water reactor (BWR) experienced fuel defects due to heavy crud deposition during Cycle 11. This report describes the use of a new analytical methodology to examine crud samples from failed rods from this plant. The methodology uses a special scraping tool to obtain clearly defined flake samples that can then be examined by traditional analytical techniques. This new analytical methodology can provide preliminary data for root cause assessment in a matter of months rather than the y...

2004-09-24T23:59:59.000Z

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Modeling Analysis of the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study  

Science Conference Proceedings (OSTI)

Particulate sulfate compounds account for approximately half of the particulate matter (PM) during periods of poor visibility at Big Bend National Park (BBNP). Poor visibility is associated with two distinct meteorological regimes -- one dominated by flow from Mexico during spring and summer months and another characterized by transport from regions northeast of BBNP during fall months. Accordingly, the monitoring component of BRAVO took place from July to October 1999. More than 30 sites were establishe...

2004-02-24T23:59:59.000Z

302

The NIFFTE project  

E-Print Network (OSTI)

The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) is a double-sided Time Projection Chamber (TPC) with micromegas readout designed to measure the energy-dependent neutron-induced fission cross sections of the major and minor actinides with unprecedented accuracy. The NIFFTE project addresses the challenge of minimizing major sources of systematic uncertainties from previous fission chamber measurements such as: target and beam non-uniformities, misidentification of alpha and light charged particles as fission fragments, and uncertainties inherent to the reference standards used. In-beam tests of the NIFFTE TPC at the Los Alamos Neutron Science Center (LANSCE) started in 2010 and have continued in 2011, 2012 and 2013. An overview of the NIFFTE TPC status and performance at LANSCE will be presented.

Ruz J.; Asner D. M.; Baker R. G.; Bundgaard J.; Burgett E.; Cunningham M.; Deaven J.; Duke D. L.; Greife U.; Grimes S.; Heffner M.; Hill T.; Isenhower D.; Klay J. L.; Kleinrath V.; Kornilov N.; Laptev A. B.; Loveland W.; Masseyf T. N.; Meharchand R.; Qu H.; Sangiorgio S.; Seilhan B.; Snyder L.; Stave S.; Tatishvili G.; Thornton R. T.; Tovesson F.; Towell D.; Towell R. S.; Watson S.; Wendt B.; Wood L

2013-09-30T23:59:59.000Z

303

OpenEI:Projects | Open Energy Information  

Open Energy Info (EERE)

Projects are focused efforts to improve some piece of OpenEI. Each Projects are focused efforts to improve some piece of OpenEI. Each effort is coordinated via one or more project pages within the "OpenEI:" wiki namespace. Anyone is free to participate in any projects. If you'd like to start an OpenEI Project, simply create a new project page and link to it in the "Active Projects" section below. OpenEI Projects are largely based on the concept of Wikiprojects in Wikipedia. Active Projects Motion Charts - describes how OpenEI admins can create widgets for motion charts Geographic Pages - developing perfect "place energy profile" pages in OpenEI. Images - collecting energy-related images in the OpenEI wiki. Public Resources - identifying energy datasets and other digital resources that are already public and could be made available in OpenEI.

304

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS CCS August 20-22, 2013 2 Presentation Outline * Benefits to the program * Project overall objectives * Technical status * Project summary * Conclusions and future plans 3 Benefit to the Program * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * This research project develops a reservoir scale CO 2 plume migration model at the Sleipner project, Norway. The Sleipner project in the Norwegian North Sea is the world's first commercial scale geological carbon storage project. 4D seismic data have delineated the CO 2 plume migration history. The relatively long history and high fidelity data make

305

A Beamline for High-Pressure Studies at the Advanced Light Source with a Superconducting Bending Magnet as the Source  

E-Print Network (OSTI)

The Advanced Light Source (ALS) is a relatively low-energy (keV. The beam size in the ALS is small, due to the smallCompared to the prototype ALS superconducting bend magnet

2005-01-01T23:59:59.000Z

306

Environmentally advanced refinery nears start-up in Germany  

SciTech Connect

Mitteldeutsche Erdoel-Raffinerie GmbH (Mider), is building a 170,000 b/d, grassroots refinery in Leuna, Germany. The refinery is scheduled to start up in third quarter of this year. At the heart of the new refinery is a new technology called progressive distillation. Other major units include: vacuum distillation, catalytic reforming, alkylation, visbreaking, fluid catalytic cracking (FCC), and hydrodesulfurization (HDS). In addition, an existing partial oxidation (POX)/methanol production unit will be integrated with the new refinery. The paper describes the plant and its major processes.

Rhodes, A.K.

1997-03-17T23:59:59.000Z

307

Cold start characteristics of ethanol as an automobile fuel  

DOE Patents (OSTI)

An alcohol fuel burner and decomposer in which one stream of fuel is preheated by passing it through an electrically heated conduit to vaporize the fuel, the fuel vapor is mixed with air, the air-fuel mixture is ignited and combusted, and the combustion gases are passed in heat exchange relationship with a conduit carrying a stream of fuel to decompose the fuel forming a fuel stream containing hydrogen gas for starting internal combustion engines, the mass flow of the combustion gas being increased as it flows in heat exchange relationship with the fuel carrying conduit, is disclosed.

Greiner, Leonard (2750-C Segerstrom, Santa Ana, CA 92704)

1982-01-01T23:59:59.000Z

308

16 Projects To Advance Hydropower Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16 Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology September 6, 2011 - 11:24am Addthis U.S. Department Energy Secretary Steven Chu and U.S. Department of the Interior Secretary Ken Salazar announced nearly $17 million in funding over the next three years for research and development projects to advance hydropower technology. The list of 16 projects in 11 different states can be found here. Applicant Location Award Amount; Funding is from DOE unless otherwise noted Description Sustainable Small Hydro (Topic Areas 1.1. and 1.2) Earth by Design Bend, OR $1,500,000 This project will develop and test a new low-head modular hydropower technology in a canal in Oregon's North Unit Irrigation District to produce cost-competitive electricity.

309

16 Projects To Advance Hydropower Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects To Advance Hydropower Technology Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology September 6, 2011 - 11:24am Addthis U.S. Department Energy Secretary Steven Chu and U.S. Department of the Interior Secretary Ken Salazar announced nearly $17 million in funding over the next three years for research and development projects to advance hydropower technology. The list of 16 projects in 11 different states can be found here. Applicant Location Award Amount; Funding is from DOE unless otherwise noted Description Sustainable Small Hydro (Topic Areas 1.1. and 1.2) Earth by Design Bend, OR $1,500,000 This project will develop and test a new low-head modular hydropower technology in a canal in Oregon's North Unit Irrigation District to produce cost-competitive electricity.

310

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

1-23, 2012 1-23, 2012 2 Presentation Outline I. Benefits II. Project Overview III. Technical Status A. Background B. Results IV. Accomplishments V. Summary 3 Benefit to the Program * Program goals. - Prediction of CO 2 storage capacity. * Project benefits. - Workforce/Student Training: Support of 3 student GAs in use of multiphase flow and geochemical models simulating CO 2 injection. - Support of Missouri DGLS Sequestration Program. 4 Project Overview: Goals and Objectives Project Goals and Objectives. 1. Training graduate students in use of multi-phase flow models related to CO 2 sequestration. 2. Training graduate students in use of geochemical models to assess interaction of CO

311

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Center for Coal's Center for Coal's FY10 Carbon Sequestration Peer Review February 8 - 12, 2010 2 Collaborators * Tissa Illangasekare (Colorado School of Mines) * Michael Plampin (Colorado School of Mines) * Jeri Sullivan (LANL) * Shaoping Chu (LANL) * Jacob Bauman (LANL) * Mark Porter (LANL) 3 Presentation Outline * Benefit to the program * Project overview * Project technical status * Accomplishments to date * Future Plans * Appendix 4 Benefit to the program * Program goals being addressed (2011 TPP): - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * Project benefit: - This project is developing system modeling capabilities that can be used to address challenges associated with infrastructure development, integration, permanence &

312

Project 364  

NLE Websites -- All DOE Office Websites (Extended Search)

765-494-5623 lucht@purdue.edu DEVELOPMENT OF NEW OPTICAL SENSORS FOR MEASUREMENT OF MERCURY CONCENTRATIONS, SPECIATION, AND CHEMISTRY Project Description The feasibility of...

313

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing wells Project Number: FE0009599 Robin Gerlach Al Cunningham, Lee H Spangler Montana State...

314

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Test and Evaluation of Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing wells Project Number: FE0009599 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background information - Project Concept (MICP) - Ureolytic Biomineralization, Biomineralization Sealing * Accomplishments to Date - Site Characterization - Site Preparation - Experimentation and Modeling - Field Deployable Injection Strategy Development * Summary

315

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL's Consolidated Sequestration Research Program (CSRP) Project Number FWP ESD09-056 Barry Freifeld Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefits and Goals of GEO-SEQ * Technical Status - Otway Project (CO2CRC) - In Salah (BP, Sonatrach and Statoil) - Ketzin Project (GFZ, Potsdam) - Aquistore (PTRC) * Accomplishments and Summary * Future Plans 3 Benefit to the Program * Program goals being addressed: - Develop technologies to improve reservoir storage capacity estimation - Develop and validate technologies to ensure 99 percent storage permanence.

316

Project 283  

NLE Websites -- All DOE Office Websites (Extended Search)

NJ 07039 973-535 2328 ArchieRobertson@fwc.com Sequestration ADVANCED CO 2 CYCLE POWER GENERATION Background This project will develop a conceptual power plant design...

317

Project 197  

NLE Websites -- All DOE Office Websites (Extended Search)

will bring economic value to both the industrial customers and to the participating companies. * Complete project by June 2006. Accomplishments A ceramic membrane and seal...

318

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CCUS Pittsburgh,...

319

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Interdisciplinary Investigation of the CO 2 Sequestration in Depleted Shale Gas Formations Project Number DE-FE-0004731 Jennifer Wilcox, Tony Kovscek, Mark Zoback Stanford...

320

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for...

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

* Concrete products in this project * Standard 8" concrete blocks * Standard 4' x 8' fiber-cement boards CO 2 The Goals * Maximizing carbon uptake by carbonation (at least...

322

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Evaluating Potential Groundwater Impacts and Natural Geochemical...

323

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Introduction * Organization * Benefit to Program * Project Overview * Technical Status * Accomplishments to Date...

324

Project 252  

NLE Websites -- All DOE Office Websites (Extended Search)

Stanford Global Climate Energy Project Terralog Technologies TransAlta University of Alaska Fairbanks Washington State Department of Natural Resources Western Interstate...

325

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

research partnership to improve the understanding of CO 2 within coal and shale reservoirs. 2 2 3 Presentation Outline * Program Goal and Benefits Statement * Project...

326

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

mechanistic insights 5 Project Overview: Scope of work * Task 1 - Pipeline and Casing Steel Corrosion Studies * Evaluate corrosion behavior of pipeline steels in CO 2 mixtures...

327

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

20-22, 2013 2 Acknowledgements * NETL * Shell * Tri-State * Trapper Mining * State of Colorado 3 Presentation Outline * Program Benefits * Project Program Goals * Technical...

328

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

* This project pinpoints the critical catalyst features necessary to promote carbon dioxide conversion to acrylate, validate the chemical catalysis approach, and develop an...

329

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale CO 2 Injection and Optimization of Storage Capacity in the Southeastern United States Project Number: DE-FE0010554 George J. Koperna, Jr. Shawna Cyphers Advanced Resources...

330

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of CO 2 Injection on the Subsurface Microbial Community in an Illinois Basin CCS Reservoir: Integrated Student Training in Geoscience and Geomicrobiology Project Number...

331

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Space Geodesy, Seismology, Space Geodesy, Seismology, and Geochemistry for Monitoring Verification and Accounting of CO 2 in Sequestration Sites DE-FE0001580 Tim Dixon, University of South Florida Peter Swart, University of Miami U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to program * Goals & objectives * Preliminary InSAR results (site selection phase) * Project location * Project installed equipment * Specific project results * Summary 3 Benefit to the Program * Focused on monitoring, verification, and accounting (MVA) * If successful, our project will demonstrate the utility of low cost, surface

332

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage R&D Project Review Meeting Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 DE-FE0001159 Advanced Technologies for Monitoring CO 2 Saturation and Pore Pressure in Geologic Formations Gary Mavko Rock Physics Project/Stanford University 2 Presentation Outline * Benefit to the Program * Project Overview * Motivating technical challenge * Approach * Technical Status - Laboratory results - Theoretical modeling * Summary Mavko: Stanford University 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations. - Develop technologies to demonstrate that 99% of injected CO 2 remains in injection zones. * Project benefits statement.

333

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Volume Injection of CO Large Volume Injection of CO 2 to Assess Commercial Scale Geological Sequestration in Saline Formations in the Big Sky Region Project Number: DE-FC26-05NT42587 Dr. Lee Spangler Big Sky Carbon Sequestration Partnership Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Goals and Objectives * Project overview * Kevin Dome characteristics * Project design philosophy * Infrastructure * Modeling * Monitoring * Project Opportunities 3 Benefit to the Program Program goals being addressed. * Develop technologies that will support industries' ability to predict CO

334

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

and Research on Probabilistic and Research on Probabilistic Hydro-Thermo-Mechanical (HTM) Modeling of CO 2 Geological Sequestration (GS) in Fractured Porous Rocks Project DE-FE0002058 Marte Gutierrez, Ph.D. Colorado School of Mines U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the program (Program goals addressed and Project benefits) * Project goals and objectives * Technical status - Project tasks * Technical status - Key findings * Lessons learned * Summary - Accomplishments to date 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries'

335

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Snøhvit CO Snøhvit CO 2 Storage Project Project Number: FWP-FEW0174 Task 4 Principal Investigators: L. Chiaramonte, *J.A. White Team Members: Y. Hao, J. Wagoner, S. Walsh Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Benefit to Program * Project Goals and Objectives * Technical Status * Summary & Accomplishments * Appendix 3 Benefit to the Program * The research project is focused on mechanical

336

Project title:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project title: Roseville Elverta (RSC-ELV) OPGW Replacement Project Project title: Roseville Elverta (RSC-ELV) OPGW Replacement Project Requested By: David Young Mail Code : N1410 Phone: 916-353-4542 Date Submitted: 5/4/2011 Date Required: 5/7/2011 Description of the Project: Purpose and Need The Western Area Power Administration (Western), Sierra Nevada Region (SNR), is responsible for the operation and maintenance (O&M) of federally owned and operated transmission lines, Switchyards, and facilities throughout California. Western and Reclamation must comply with the National Electric Safety Code, Western States Coordinating Council (WECC), and internal directives for protecting human safety, the physical environment, and maintaining the reliable operation of the transmission system. There is an existing OPGW communications fiber on the transmission towers between Roseville and Elverta

337

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

InSalah CO InSalah CO 2 Storage Project Project Number: FWP-FEW0174 Task 2 Principal Investigator: W. McNab Team Members: L. Chiaramonte, S. Ezzedine, W. Foxall, Y. Hao, A. Ramirez, *J.A. White Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Benefit to Program * Project Goals and Objectives * Technical Status * Accomplishments * Summary * Appendix 3 Benefit to the Program * The research project is combining sophisticated

338

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Complexity and Choice of Complexity and Choice of Model Approaches for Practical Simulations of CO 2 Injection, Migration, Leakage, and Long- term Fate Karl W. Bandilla Princeton University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Project Number DE-FE0009563 2 Presentation Outline * Project Goals and Objectives * Project overview * Accomplishments * Summary 3 Benefit to the Program * The aim of the project is to develop criteria for the selection of the appropriate level of model complexity for CO 2 sequestration modeling at a given site. This will increase the confidence in modeling results, and reduce computational cost when appropriate.

339

Forward Funding Why is Forward Funding useful for project  

E-Print Network (OSTI)

facilitates the start up of a sponsored project and eliminates the need for cost transfers at a later date forward funding chart strings be used for all project costs? No. Forward funding may not be usedForward Funding - 1 - Why is Forward Funding useful for project management? Forward funding

Raina, Ramesh

340

Project Plan Remote Target Fabrication Refurbishment Project  

Science Conference Proceedings (OSTI)

In early FY2009, the DOE Office of Science - Nuclear Physics Program reinstated a program for continued production of {sup 252}Cf and other transcurium isotopes at the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). The FY2009 major elements of the workscope are as follows: (1) Recovery and processing of seven transuranium element targets undergoing irradiation at the High Flux Isotope Reactor (HFIR) at ORNL; (2) Development of a plan to manufacture new targets for irradiation beginning in early- to mid-FY10 to supply irradiated targets for processing Campaign 75 (TRU75); and (3) Refurbishment of the target manufacturing equipment to allow new target manufacture in early FY10 The {sup 252}Cf product from processing Campaign 74 (recently processed and currently shipping to customers) is expected to supply the domestic demands for a period of approximately two years. Therefore it is essential that new targets be introduced for irradiation by the second quarter of FY10 (HFIR cycle 427) to maintain supply of {sup 252}Cf; the average irradiation period is {approx}10 HFIR cycles, requiring about 1.5 calendar years. The strategy for continued production of {sup 252}Cf depends upon repairing and refurbishing the existing pellet and target fabrication equipment for one additional target production campaign. This equipment dates from the mid-1960s to the late 1980s, and during the last target fabrication campaign in 2005- 2006, a number of component failures and operations difficulties were encountered. It is expected that following the target fabrication and acceptance testing of the targets that will supply material for processing Campaign 75 a comprehensive upgrade and replacement of the remote hot-cell equipment will be required prior to subsequent campaigns. Such a major refit could start in early FY 2011 and would take about 2 years to complete. Scope and cost estimates for the repairs described herein were developed, and authorization for the work was received in July 2009 under the Remote Target Fabrication Refurbishment Task of the Enhanced Utilization of Isotope Facilities project (Project Identification Code 2005230) funded by the American Recovery and Reinvestment Act of 2009. The goal of this project is to recover the capability to produce 4-5 curium targets for the irradiation period starting with HFIR cycle 427, currently scheduled to begin 2/17/10. Assuming success, the equipment would then be used to fabricate 6-7 additional targets to hold for the next irradiation campaign specified by the program. Specific objectives are the return to functionality of the Cubicle 3 Pellet Fabrication Line; Cubicle 2 Target Assembly equipment; and Cubicle 1 Target Inspection and Final Assembly system.

Bell, Gary L [ORNL; Taylor, Robin D [ORNL

2009-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Degree of mixing downstream of rectangular bends and design of an inlet for ambient aerosol  

E-Print Network (OSTI)

Tests were conducted to characterize mixing in a square and a rectangular duct with respect to suitability for single point sampling of contaminants. Several configurations, such as a straight duct with unidirectional flow at the entrance section and straight ducts preceded by mixing elements (a 90° mitred bend, double 90° bends in S- and U-type configurations) were tested. For a straight duct of square cross section, the COV of tracer gas concentration at 19 duct diameters downstream of the gas release location is 143% (Center release). COVs of velocity and tracer gas concentration downstream of each mixing element in square duct setups were verified throughout this study. In the case of a rectangular duct with a 3:1 (width to height) aspect ratio, COVs of velocity and tracer gas concentration only downstream of a 90° mitred bend were verified. Tests were conducted to develop improved inlets for a Battelle bioaerosol sampling system. New inlets have been developed called the All Weather Inlets (AWI), which are designed to prevent entry of precipitation while maintaining aerosol penetration. The AWI has two inlets - one that samples at a flow rate of 780 L/min and the other one that is operated at a flow rate of 90 L/min. The initial version of the AWI-780 L/min unit featured an internal cone, which was removed because the penetration of the AWI-780 without the bottom chamber was higher than that of the Battelle inlet ? 81% with the cone while 86% without the cone for around 9.5 µm AD at 2 km/h. The best bug-screen configuration was verified and a cutpoint management process was performed. The inlets were tested with different wind speeds from 2 to 24 km/h to verify the wind sensitivity of those inlets.

Seo, Youngjin

2004-12-01T23:59:59.000Z

342

Property:ASHRAE 169 Start Date | Open Energy Information  

Open Energy Info (EERE)

This is a property of type Date. This is a property of type Date. Pages using the property "ASHRAE 169 Start Date" Showing 25 pages using this property. (previous 25) (next 25) A Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone + 1 January 2006 + Acadia Parish, Louisiana ASHRAE 169-2006 Climate Zone + 1 January 2006 + Accomack County, Virginia ASHRAE 169-2006 Climate Zone + 1 January 2006 + Ada County, Idaho ASHRAE 169-2006 Climate Zone + 1 January 2006 + Adair County, Iowa ASHRAE 169-2006 Climate Zone + 1 January 2006 + Adair County, Kentucky ASHRAE 169-2006 Climate Zone + 1 January 2006 + Adair County, Missouri ASHRAE 169-2006 Climate Zone + 1 January 2006 + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + 1 January 2006 + Adams County, Colorado ASHRAE 169-2006 Climate Zone + 1 January 2006 +

343

Microsoft Word - START Application_eaform_FINAL.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Technical A ssistance O pportunity f or T ribes: Strategic T echnical A ssistance R esponse T eam ( START) P rogram f or t he Development o f R enewable E nergy P rojects About t he O ffice The Office of Indian Energy Policy and Programs (IE) is charged by Congress to direct, foster, coordinate, and implement energy planning, education, management, and programs that assist Tribes with energy development, capacity building, energy infrastructure, energy costs, and electrification of Indian lands and homes. IE works within the U.S. Department of Energy (DOE), across government agencies, and with Indian Tribes and organizations to promote Indian energy policies and initiatives. IE performs these functions within the scope of DOE's mission and consistently with the federal government's trust responsibility, tribal self- determination policy, and government-to-government relationship with Indian Tribes.

344

Microsoft Word - START-Alaska Application_FINAL.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Technical A ssistance O pportunity f or A laska N ative E ntities: Strategic T echnical A ssistance R esponse T eam ( START) I nitiative f or A laska N ative Tribal G overnment C ommunity E nergy P lanning About t he O ffice The Office of Indian Energy Policy and Programs (IE) is charged by Congress to direct, foster, coordinate, and implement energy planning and deployment, education, management, and programs that assist Tribes with energy development, capacity building, energy infrastructure, energy costs, and electrification of Indian lands and homes. IE works within the U.S. Department of Energy (DOE), across government agencies, and with Indian Tribes and organizations to promote Indian energy policies and initiatives. IE performs these functions within the scope of DOE's mission and consistently with the federal government's trust responsibility, tribal self-

345

Nuclear Safety Information Dashboard QuickStart Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety Information Dashboard Nuclear Safety Information Dashboard QuickStart Guide September 2012 Office of Analysis (HS-24) Office of Environmental Protection, Sustainability Support and Corporate Safety Analysis Office of Health, Safety and Security (HSS) Purpose of Nuclear Safety Information (NSI) Dashboard * The NSI Dashboard provides a new user interface to the Occurrence Reporting and Processing System (ORPS) to easily identify, organize, and analyze nuclear safety-related events reported into ORPS. * ORPS reporting criteria associated with events at nuclear facilities have pre-assigned weighting factors according to their relative importance and are placed into groups. * This information can be evaluated to identify trends and, using insights from current events and nature of operations, enable

346

NREL: News - Helping Cleantech Start-ups Understand Social Media  

NLE Websites -- All DOE Office Websites (Extended Search)

713 713 Helping Cleantech Start-ups Understand Social Media May 13, 2013 The Colorado Center for Renewable Energy Economic Development (CREED) at the Energy Department's National Renewable Energy Laboratory (NREL) in collaboration with the Colorado Cleantech Industry Association (CCIA) invites cleantech entrepreneurs to attend the next event in its Entrepreneur Series. The May 15 class, "Social Media and Strategic Messaging," will help cleantech entrepreneurs learn how to craft language about their companies that can be used in pitches and news releases, and on websites. CREED's Entrepreneur Series provides support for companies trying to get off the ground. The Entrepreneur Series builds a community among cleantech participants so they can draw on one another for expertise, support and

347

Dual-Fuel Truck Fleet: Start-Up Experience  

DOE Green Energy (OSTI)

Although dual-fuel engine technology has been in development and limited use for several years, it has only recently moved toward full-scale operational capability for heavy-duty truck applications. Unlike a bifuel engine, which has two separate fuel systems that are used one at a time, a dual-fuel engine uses two fuel systems simultaneously. One of California's South Coast Air Quality Management District (SCAQMD) current programs is a demonstration of dual-fuel engine technology in heavy-duty trucks. These trucks are being studied as part of the National Renewable Energy Laboratory's (NREL's) Alternative Fuel Truck Program. This report describes the start-up experience from the program.

NREL

1998-09-30T23:59:59.000Z

348

Method for starting operation of a resistance melter  

DOE Patents (OSTI)

A method for starting the operation of a resistance furnace, where heating occurs by passing a current through the charge between two furnace electrodes and the charge is a material which is essentially electrically nonconductive when in a solid physical state but which becomes more electrically conductive when in a molten physical state, by connecting electrical resistance heating wire between the furnace electrodes, placing the wire in contact with the charge material between the electrodes and passing a current through the wire to heat the wire to a temperature sufficient to melt the material between the furnace electrodes so that as the material melts, current begins to pass between the electrodes through the melted material, further heating and melting more material until all current between the electrodes passes through the charge material without the aid or presence of the resistance element.

Chapman, Christopher Charles (Richland, WA)

1977-01-01T23:59:59.000Z

349

Method of forming and starting a sodium sulfur battery  

SciTech Connect

A method of forming a sodium sulfur battery and of starting the reactive capability of that battery when heated to a temperature suitable for battery operation is disclosed. An anodic reaction zone is constructed in a manner that sodium is hermetically sealed therein, part of the hermetic seal including fusible material which closes up openings through the container of the anodic reaction zone. The hermetically sealed anodic reaction zone is assembled under normal atmospheric conditions with a suitable cathodic reaction zone and a cation-permeable barrier. When the entire battery is heated to an operational temperature, the fusible material of the hermetically sealed anodic reaction zone is fused, thereby allowing molten sodium to flow from the anodic reaction zone into reactive engagement with the cation-permeable barrier.

Paquette, David G. (Costa Mesa, CA)

1981-01-01T23:59:59.000Z

350

Western LNG project - Project summary  

Science Conference Proceedings (OSTI)

The Western LNG Project is a major new undertaking involving the liquefaction of conventional natural gas from the Western Canadian Sedimentary Basin at a plant on the British Columbia north coast. The gas in its liquid form will be shipped to Japan for consumption by utility companies. The Project represents a new era in gas processing and marketing for the Canadian natural gas industry.

Forgues, E.L.

1984-02-01T23:59:59.000Z

351

A 1.5 GeV compact light source with superconducting bending magnets  

Science Conference Proceedings (OSTI)

This paper describes the design of a compact electron synchrotron light source for producing X-rays for medical imaging, protein crystallography, nano-machining and other uses up to 35 keV. The source will provide synchrotron light from six 6.9 tesla superconducting 60{degree} bending magnet stations. In addition the ring, contains conventional quadrupoles and sextupoles. The light source has a circumference of 26 meters, which permits it to be located in a variety of industrial and medical facilities.

Garren, A.A. [Particle Beam Lasers, Inc., Northridge, CA (United States)]|[Univ. of California, Los Angeles, CA (United States). Center for Advanced Accelerators]|[Lawrence Berkeley Lab., CA (United States). Accelerator and Fusion Research Div.; Cline, D.B.; Kolonko, J.J. [Particle Beam Lasers, Inc., Northridge, CA (United States)]|[Univ. of California, Los Angeles, CA (United States). Center for Advanced Accelerators; Green, M.A. [Lawrence Berkeley Lab., CA (United States). Accelerator and Fusion Research Div.; Johnson, D.E. [Particle Beam Lasers, Inc., Northridge, CA (United States); Leung, E.M.; Madura, D.D. [Martin Marietta Technologies, Inc., Rancho Bernardo, CA (United States)

1995-05-01T23:59:59.000Z

352

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Leakage Mitigation Leakage Mitigation using Engineered Biomineralized Sealing Technologies Project Number: FE0004478 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background Information * Accomplishments to Date - Injection strategy development (control and prediction) - Large core tests - ambient pressure - Large core tests - high pressure - Small core tests - high pressure - MCDP, permeability and porosity assessments * Progress Assessment and Summary

353

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Leakage Mitigation CO2 Leakage Mitigation using Engineered Biomineralized Sealing Technologies Project Number FE0004478 Lee H Spangler, Al Cunningham, Robin Gerlach Energy Research Institute Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Motivation * Background information * Large core tests - ambient pressure * Large core tests - high pressure 3 Benefit to the Program Program goals being addressed. Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. Project benefits statement. The Engineered Biomineralized Sealing Technologies

354

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS CCS Project Number 49607 Christopher Harto Argonne National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Benefit to the Program * Program goals being addressed. - Increased control of reservoir pressure, reduced risk of CO2 migration, and expanded formation storage capacity. * Project benefits statement. - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2). - This work will help identify water related constraints on CCS deployment and provide insight into

355

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

of Multiphase of Multiphase Flow for Improved Injectivity and Trapping 4000.4.641.251.002 Dustin Crandall, URS PI: Grant Bromhal, NETL ORD Morgantown, West Virginia U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the program * Project overview * Breakdown of FY12 project tasks * Facilities and personnel * Task progress to date * Planned task successes * Tech transfer and summary 3 Benefit to the Program * Program goal being addressed - Develop technologies that will support industries' ability to predict CO

356

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS: CCS: Life Cycle Water Consumption for Carbon Capture and Storage Project Number 49607 Christopher Harto Argonne National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Benefit to the Program * Program goals being addressed. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness. * Project benefits statement. - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2). - This work will help identify water related constraints

357

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Resources International, Inc. Advanced Resources International, Inc. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefit to the Program * Program goal being addressed: - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Project benefits statement: - This research seeks to develop a set of robust mathematical modules to predict how coal and shale permeability and

358

A New Method of Black Start Based on VSC-HVDC  

Science Conference Proceedings (OSTI)

For a good Black-Start scheme, it is important to avoid inrush current and transient over voltage while starting-up other major power system equipments. In this paper, the advantages of VSC-HVDC as black start power are analyzed. Control Strategies of ... Keywords: black start, soft energizing, VSC-HVDC

Li Li; Mingxia Zhou; Sheng Li; Yinhui Li

2010-06-01T23:59:59.000Z

359

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Web-based CO Web-based CO 2 Subsurface Modeling Geologic Sequestration Training and Research Project Number DE-FE0002069 Christopher Paolini San Diego State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Project benefits and goals. * Web interface for simulating water-rock interaction. * Development of, and experience teaching, a new Carbon Capture and Sequestration course at San Diego State University. * Some noteworthy results of student research and training in CCS oriented geochemistry. * Status of active student geochemical and geomechancal modeling projects.

360

Project Title:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Repair flowline 61-66-SX-3 Repair flowline 61-66-SX-3 DOE Code: Project Lead: Wes Riesland NEPA COMPLIANCE SURVEY # 291 Project Information Date: 3/1 1/2010 Contractor Code: Project Overview In order to repair this line it was decided to trench a line aproximately 100 feet and tie it into the line at 71-3- 1. What are the environmental sx-3. This will get us out of the old flow line which has been repaired 5-6 times. this will mitigate the chances impacts? of having spills in the future. 2. What is the legal location? This flowline runs from the well77-s-1 0 to the B-2-10 manifold.+ "/-,~?X3 3. What is the duration of the project? Approximately 10 hours(1 day) to complete 4. What major equipment will be used backhoe and operator and one hand if any (work over rig. drilling rig.

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Co-Sequestration Co-Sequestration Studies Project Number 58159 Task 2 B. Peter McGrail Pacific Northwest National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Program Focus Area and DOE Connections * Goals and Objectives * Scope of Work * Technical Discussion * Accomplishments to Date * Project Wrap-up * Appendix (Organization Chart, Gantt Chart, and Bibliography 3 Benefit to the Program * Program goals addressed: - Technology development to predict CO 2 and mixed gas storage capacity in various geologic settings - Demonstrate fate of injected mixed gases * Project benefits statement:

362

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of CO 2 Exposed Wells to Predict Long Term Leakage through the Development of an Integrated Neural- Genetic Algorithm Project DE FE0009284 Boyun Guo, Ph.D. University of...

363

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

SUMNER SUMNER COUNTY, KANSAS Project Number DE-FE0006821 W. Lynn Watney Kansas Geological Survey Lawrence, KS U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Fountainview Wednesday 8-21-12 1:10-1:35 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary Small Scale Field Test Wellington Field Regional Assessment of deep saline Arbuckle aquifer Acknowledgements & Disclaimer Acknowledgements * The work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant DE-FE0002056 and DE- FE0006821, W.L. Watney and Jason Rush, Joint PIs. Project is managed and

364

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

0-22, 2013 0-22, 2013 Collaborators Zhengrong Wang, Yale University Kevin Johnson, University of Hawaii 2 Presentation Outline * Program Focus Area and DOE Connections * Goals and Objectives * Scope of Work * Technical Discussion * Accomplishments to Date * Project Wrap-up * Appendix (Organization Chart, Gantt Chart, and Bibliography 3 Benefit to the Program * Program goals addressed: - Technology development to predict CO 2 storage capacity - Demonstrate fate of injected CO 2 and most common contaminants * Project benefits statement: This research project conducts modeling, laboratory studies, and pilot-scale research aimed at developing new technologies and new systems for utilization of basalt formations for long term subsurface storage of CO 2 . Findings from this project

365

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

behavior of shales as behavior of shales as seals and storage reservoirs for CO2 Project Number: Car Stor_FY131415 Daniel J. Soeder USDOE/NETL/ORD U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Project Overview: Goals and Objectives * Program Goals - Support industry's ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness * Project Objectives - Assess how shales behave as caprocks in contact with CO 2 under a variety of conditions - Assess the viability of depleted gas shales to serve as storage reservoirs for sequestered CO

366

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 leakage and cap rock remediation DE-FE0001132 Runar Nygaard Missouri University of Science and Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation Outline * Benefit to the program * Project overview * Technical status * Accomplishments to date * Summary 2 3 Benefit to the Program * Program goals being addressed. - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * Project benefits statement. - The project develops a coupled reservoir and geomechanical modeling approach to simulate cap rock leakage and simulate the success of remediation

367

LUCF Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

RZWR'HVLJQDQG RZWR'HVLJQDQG +RZWR'HVLJQDQG ,PSOHPHQW&DUERQ ,PSOHPHQW&DUERQ 0HDVXULQJDQG0RQLWRULQJ 0HDVXULQJDQG0RQLWRULQJ $.WLYLWLHVIRU/8&) $.WLYLWLHVIRU/8&) 3URMH.WV 3URMH.WV Sandra Brown Winrock International sbrown@winrock.org Winrock International 2 3URMH.WGHVLJQLVVXHV 3URMH.WGHVLJQLVVXHV z Baselines and additionality z Leakage z Permanence z Measuring and monitoring z Issues vary with projects in developed versus developing countries Winrock International 3 /HDNDJH /HDNDJH z Leakage is the unanticipated loss or gain in carbon benefits outside of the project's boundary as a result of the project activities-divide into two types: - Primary leakage or activity shifting outside project area - Secondary leakage or market effects due to

368

Project 265  

NLE Websites -- All DOE Office Websites (Extended Search)

The goal of this project is to develop an on-line instrument using multi- wavelength lasers that is capable of characterizing particulate matter (PM) generated in fossil energy...

369

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

"Carbonsheds" as a Framework for Optimizing US CCS Pipeline Transport on a Regional to National Scale DOE-ARRA Project Number DE-FE0001943 Lincoln Pratson Nicholas School of the...

370

Project 114  

NLE Websites -- All DOE Office Websites (Extended Search)

Prototech Company SRI International Kellogg, Brown, and Root ChevronTexaco Sd-Chemie, Inc. COST Total Project Value 20,320,372 DOENon-DOE Share 15,326,608 4,993,764...

371

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23,...

372

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Laboratory U.S. Department of Energy Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23,...

373

Project 134  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Goal To demonstrate a "whole plant" approach using by-products from a coal-fired power plant to sequester carbon in an easily quantifiable and verifiable form. Objectives...

374

MANHATTAN PROJECT  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy traces its origins to World War II and the Manhattan Project effort to build the first atomic bomb. As the direct descendent of the Manhattan Engineer District, the...

375

Project 310  

NLE Websites -- All DOE Office Websites (Extended Search)

carbohydrate generated from agricultural enterprises in the U.S., such as corn wet-milling. This project is studying the production of a suite of specialty chemicals by...

376

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

G., 2011, Design and package of a 14CO2 field analyzer: the Global Monitor Platform (GMP). Proceedings of SPIE, v 8156, p. 81560E 17 DOE-NETL PROJECT REVIEW MEETING 08-21-2012...

377

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Model Complexity in Geological Carbon Model Complexity in Geological Carbon Sequestration: A Design of Experiment (DoE) & Response Surface (RS) Uncertainty Analysis Project Number: DE-FE-0009238 Mingkan Zhang 1 , Ye Zhang 1 , Peter Lichtner 2 1. Dept. of Geology & Geophysics, University of Wyoming, Laramie, Wyoming 2. OFM Research, Inc., Santa Fe, New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Project major goals and benefits; * Detailed project objectives & success criteria; * Accomplishments to date; * Summary of results; * Appendix (organization chart; Gantt chart; additional results). Dept. of Geology & Geophysics, University of Wyoming

378

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Region Region DE-FE0001812 Brian J. McPherson University of Utah U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Acknowledgements * NETL * Shell * Tri-State * Trapper Mining * State of Colorado 3 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 4 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 5 Benefit to the Program Program Goals Being Addressed by this Project

379

Project 297  

NLE Websites -- All DOE Office Websites (Extended Search)

of this project is to utilize pure oxygen at a feed rate of less than 10% of the stoichiometric requirement in demonstrating the use of oxygen-enhanced combustion in meeting...

380

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Project Number DE-FE0009562 John Stormont, Mahmoud Reda Taha University of New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D...

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

and Research on Probabilistic Hydro-Thermo-Mechanical (HTM) Modeling of CO 2 Geological Sequestration (GS) in Fractured Porous Rocks Project DE-FE0002058 Marte Gutierrez, Ph.D....

382

CO{sub 2} EOR starts in late stage of waterflood  

SciTech Connect

The Postle field carbon dioxide flood marks the first time anyone in the industry has attempted a major CO{sub 2} enhanced oil recovery EOR project at such a late stage in a waterflooded field. Prior to CO{sub 2} injection Postle produced oil with a 98% water cut. Mobil began injecting CO{sub 2} into the Postle on Nov. 15, 1995. The Postle field, discovered in 1958 in the Oklahoma Panhandle near Guymon, had produced about 92 million bbl of oil under primary and waterflood production. Waterflooding started in 1967. Oil production peaked at about 22,000 bo/d in 1970 and averaged about 2,000 bo/d when CO{sub 2} injection began at a rate of 35 MMscfd. The paper describes Mobil`s plans for the CO{sub 2} injection, the CO{sub 2} process, project installations, and Mobil`s experience with CO{sub 2} injection in other fields.

NONE

1996-07-08T23:59:59.000Z

383

Rubric for LInC Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermilab Leadership Institute Integrating Internet, Instruction and Curriculum Project List The Fermilab LInC "Publishable Quality" Rubric To get "percent total" add all items successfully executed. Subtract those not applicable from total possible, and divide that number into total successfully executed items. Engaged Learning Pedagogy (weighted 30%) Percent total for engaged learning = __________ A. The web pages for students/participants invite and motivate them to start on the project by offering a task or situation that piques their curiosity in the project (invitation to learn/hook) come up with questions, concerns, issues, hypotheses, or problem-solving suggestions that guide their investigation and overall participation in the project

384

Statistical Thermodynamics of Membrane Bending-Mediated ProteinProtein Attractions  

E-Print Network (OSTI)

ABSTRACT Highly wedge-shaped integral membrane proteins, or membrane-adsorbed proteins can induce long-ranged deformations. The strain in the surrounding bilayer creates relatively long-ranged forces that contribute to interactions with nearby proteins. In contrast, to direct short-ranged interactions such as van der Waals, hydrophobic, or electrostatic interactions, both local membrane Gaussian curvature and protein ellipticity can induce forces acting at distances of up to a few times their typical radii. These forces can be attractive or repulsive, depending on the proteins shape, height, contact angle with the bilayer, and a pre-existing local membrane curvature. Although interaction energies are not pairwise additive, for sufficiently low protein density, thermodynamic properties depend only upon pair interactions. Here, we compute pair interaction potentials and entropic contributions to the two-dimensional osmotic pressure of a collection of noncircular proteins. For flat membranes, bending rigidities of ?100k BT, moderate ellipticities, and large contact angle proteins, we find thermally averaged attractive interactions of order k BT. These interactions may play an important role in the intermediate stages of protein aggregation. Numerous biological processes where membrane bending-mediated interactions may be relevant are cited, and possible experiments are discussed.

Tom Chou; Ken S. Kim; George Oster

2001-01-01T23:59:59.000Z

385

Tennessee Valley Authority Eagle Bend 161-kV delivery point environmental assessment  

Science Conference Proceedings (OSTI)

Eagle Bend is an area located in a bend of the Clinch River about one mile southeast of Clinton, Tennessee, in Anderson County. This area, including an industrial park, is supplied electric power by the Clinton Utilities Board (UB) through its 69-kV system, which is in turn supplied by TVA over a 69-kV transmission line from Norris Hydro Plant. Studies of the power supply in the area indicate that there will likely be significant load growth both in the Clinton area in general and the industrial park in particular. Studies further show that if this new load is supplied at 69-kV, the TVA transformer at Norris Hydro which supplies this load will be overloaded by the summer of 1993 and no feasible alternate source which would maintain the quality and reliability of the power delivered to the Clinton system exists to accept this load. Clinton UB also needs to transfer load from its Clinton substation in the same time period to prevent overloading. Additional studies and consultation between TVA and Clinton UB have indicated that the best solution to this problem is to supply this load at 161-kV at a new delivery point for Clinton UB. This would require the construction of a new 161/13-kV substation by Clinton UB and the construction by TVA of a new 161-kV transmission line to connect this substation to the existing TVA 161-kV transmission system.

Not Available

1993-02-05T23:59:59.000Z

386

Illumination of interior spaces by bended hollow light guides: Application of the theoretical light propagation method  

SciTech Connect

To ensure comfort and healthy conditions in interior spaces the thermal, acoustics and daylight factors of the environment have to be considered in the building design. Due to effective energy performance in buildings the new technology and applications also in daylight engineering are sought such as tubular light guides. These allow the transport of natural light into the building core reducing energy consumption. A lot of installations with various geometrical and optical properties can be applied in real buildings. The simplest set of tubular light guide consists of a transparent cupola, direct tube with high reflected inner surface and a ceiling cover or diffuser redistributing light into the interior. Such vertical tubular guide is often used on flat roofs. When the roof construction is inclined a bend in the light guide system has to be installed. In this case the cupola is set on the sloped roof which collects sunlight and skylight from the seen part of the sky hemisphere as well as that reflected from the ground and opposite facades. In comparison with the vertical tube some additional light losses and distortions of the propagated light have to be expected in bended tubular light guides. Recently the theoretical model of light propagation was already published and its applications are presented in this study solving illuminance distributions on the ceiling cover interface and further illuminance distribution on the working plane in the interior. (author)

Darula, Stanislav; Kocifaj, Miroslav; Kittler, Richard [ICA, Slovak Academy of Sciences, Bratislava (Slovakia); Kundracik, Frantisek [Department of Experimental Physics, FMPI, Comenius University, Bratislava (Slovakia)

2010-12-15T23:59:59.000Z

387

Time frames for geothermal project development  

DOE Green Energy (OSTI)

Geothermal development can generally be broken down into distinct phases: Exploration and Leasing; Project Development And Feasibility Studies; Well Field Development; Project Finance, Construction and Start-up Operations; and Commercial Operations. Each phase represents different levels of cost and risk and different types of management teams that are needed to assess and manage the project and associated risk. Orderly transitions of management at each major phase are needed. Exploration programs are largely science based, the primary focus of the science based investigations should be to: secure the lease position, and develop sufficient information to identify and characterize an economical geothermal resource. Project development specialists build on the exploration data to: pull together a project design, develop a detailed cost estimate; prepare an environmental assessment; and collect all data needed for project financing. Construction specialist build from the development phase to: develop detailed engineering, procure equipment and materials, schedule and manage the facilities construction programs, and start and test the power plant. Operations specialists take over from construction during start-up and are responsible for sustainable and reliable operations of the resource and power generation equipment over the life of the project.

McClain, David W.

2001-04-17T23:59:59.000Z

388

California Hydrogen Infrastructure Project  

Science Conference Proceedings (OSTI)

Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a ???¢????????real-world???¢??????? retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation???¢????????s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products???¢???????? Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user???¢????????s fueling experience.

Edward C. Heydorn

2013-03-12T23:59:59.000Z

389

Combined Effects of Gravity, Bending Moment, Bearing Clearance, and Input Torque on Wind Turbine Planetary Gear Load Sharing: Preprint  

DOE Green Energy (OSTI)

This computational work investigates planetary gear load sharing of three-mount suspension wind turbine gearboxes. A three dimensional multibody dynamic model is established, including gravity, bending moments, fluctuating mesh stiffness, nonlinear tooth contact, and bearing clearance. A flexible main shaft, planetary carrier, housing, and gear shafts are modeled using reduced degrees-of-freedom through modal compensation. This drivetrain model is validated against the experimental data of Gearbox Reliability Collaborative for gearbox internal loads. Planet load sharing is a combined effect of gravity, bending moment, bearing clearance, and input torque. Influences of each of these parameters and their combined effects on the resulting planet load sharing are investigated. Bending moments and gravity induce fundamental excitations in the rotating carrier frame, which can increase gearbox internal loads and disturb load sharing. Clearance in carrier bearings reduces the bearing load carrying capacity and thus the bending moment from the rotor can be transmitted into gear meshes. With bearing clearance, the bending moment can cause tooth micropitting and can induce planet bearing fatigue, leading to reduced gearbox life. Planet bearings are susceptible to skidding at low input torque.

Guo, Y.; Keller, J.; LaCava, W.

2012-09-01T23:59:59.000Z

390

Finite element analysis of bending in a threaded connector for a 5 1/2-in. Marine riser  

Science Conference Proceedings (OSTI)

This paper describes the development of a new finite element modelling technique for performing nonlinear bending analysis of tubulars and its application to a threaded connector for a 5-1/2 inch production tubing marine riser. A finite element technique has been developed for analyzing bending loads applied to an axisymmetric geometry. The method uses a Fourier series solution. The first two terms of the series are solved simultaneously, allowing nonlinearities to be included since the method does not use superposition, which normally requires linearity. Existing methods of analysis require either a linear elastic assumption, and axisymmetric approximation of bending loads, or a full three dimensional analysis. The new technique includes nonlinearities in mechanical properties, gapping, and friction. It is more accurate than the method where axisymmetric loads are applied so that pipe OD stresses are the same as those that would result from bending. The model is considerably less complicated to use than a three dimensional model and is also considerably less expensive. The method described above is applied to a 5-1/2 inch threaded connector. The connector is analyzed under make-up, tension, pressure, bending, and shear loads. Predictions include average and reversing stresses in the pin and box wall and at stress concentrations. These predictions can be used to evaluate the fatigue life of the connector.

Allen, M.B.; Eichberger, L.C.

1984-05-01T23:59:59.000Z

391

Molecular origin of the difference in the HOH bend of the IR spectra between liquid water and ice  

SciTech Connect

The intensity of the HOH bend in the IR spectrum of ice is significantly smaller than the corresponding one in liquid water. This difference in the IR intensities of the HOH bend in the two systems is investigated using MD simulations with the flexible, polarizable, ab-initio based TTM3-F model for water, a potential that correctly reproduces the experimentally observed increase of the HOH bend in liquid water and ice from the water monomer value. We have identified two factors that are responsible for the difference in the intensity of the HOH bend in liquid water and ice: (i) the decrease of the intensity of the HOH bend in ice caused by the strong anti-correlation between the permanent dipole moment of a molecule and the induced dipole moment of a neighboring hydrogen bond acceptor molecule and (ii) the weakening of this anti-correlation by the disordered hydrogen bond network in liquid water. The presence of the anti-correlation in ice is further confirmed by ab initio electronic structure calculations of water pentamer clusters extracted from the trajectories of the MD simulations for ice and liquid water.

Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

2013-02-07T23:59:59.000Z

392

SiC-CMC-Zircaloy-4 Nuclear Fuel Cladding Performance during 4-Point Tubular Bend Testing  

SciTech Connect

The U.S. Department of Energy Office of Nuclear Energy (DOE NE) established the Light Water Reactor Sustainability (LWRS) program to develop technologies and other solutions to improve the reliability, sustain the safety, and extend the life of current reactors. The Advanced LWR Nuclear Fuel Development Pathway in the LWRS program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. Recent investigations of potential options for accident tolerant nuclear fuel systems point to the potential benefits of silicon carbide (SiC) cladding. One of the proposed SiC-based fuel cladding designs being investigated incorporates a SiC ceramic matrix composite (CMC) as a structural material supplementing an internal Zircaloy-4 (Zr-4) liner tube, referred to as the hybrid clad design. Characterization of the advanced cladding designs will include a number of out-of-pile (nonnuclear) tests, followed by in-pile irradiation testing of the most promising designs. One of the out-of-pile characterization tests provides measurement of the mechanical properties of the cladding tube using four point bend testing. Although the material properties of the different subsystems (materials) will be determined separately, in this paper we present results of 4-point bending tests performed on fully assembled hybrid cladding tube mock-ups, an assembled Zr-4 cladding tube mock-up as a standard and initial testing results on bare SiC-CMC sleeves to assist in defining design parameters. The hybrid mock-up samples incorporated SiC-CMC sleeves fabricated with 7 polymer impregnation and pyrolysis (PIP) cycles. To provide comparative information; both 1- and 2-ply braided SiC-CMC sleeves were used in this development study. Preliminary stress simulations were performed using the BISON nuclear fuel performance code to show the stress distribution differences for varying lengths between loading points and clad configurations. The 2-ply sleeve samples show a higher bend momentum compared to those of the 1-ply sleeve samples. This is applicable to both the hybrid mock-up and bare SiC-CMC sleeve samples. Comparatively both the 1- and 2-ply hybrid mock-up samples showed a higher bend stiffness and strength compared with the standard Zr-4 mock-up sample. The characterization of the hybrid mock-up samples showed signs of distress and preliminary signs of fraying at the protective Zr-4 sleeve areas for the 1-ply SiC-CMC sleeve. In addition, the microstructure of the SiC matrix near the cracks at the region of highest compressive bending strain shows significant cracking and flaking. The 2-ply SiC-CMC sleeve samples showed a more bonded, cohesive SiC matrix structure. This cracking and fraying causes concern for increased fretting during the actual use of the design. Tomography was proven as a successful tool to identify open porosity during pre-test characterization. Although there is currently insufficient data to make conclusive statements regarding the overall merit of the hybrid cladding design, preliminary characterization of this novel design has been demonstrated.

IJ van Rooyen; WR Lloyd; TL Trowbridge; SR Novascone; KM Wendt; SM Bragg-Sitton

2013-09-01T23:59:59.000Z

393

PICO-LON project to search for cosmic dark matter  

Science Conference Proceedings (OSTI)

The dark matter search project PICO-LON has been started. Thin and wide area NaI(Tl) scintillator is the promising detector system to study the properties of dark matter particle.

Fushimi, K.; Harada, K.; Kameda, Y.; Nakayama, S. [Department of Physics, University of Tokushima, 1-1 Minami Josanjimacho Tokushima city, 770-8502 Tokushima (Japan); Ejiri, H.; Shima, T. [Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka Ibaraki city, 567-0047 Osaka (Japan); Hazama, R. [Department of Engineering, Hiroshima University, 1-4-1 Higashi Kagamiyama Higashi Hiroshima city, 739-8527 Hiroshima (Japan); Imagawa, K.; Matsumoto, E. [Horiba Ltd., 2 Minami-ku Kisshoin Miyanohigashimachi Kyoto city, 601-8510 Kyoto (Japan)

2010-08-12T23:59:59.000Z

394

Energy Conservation Tax Credits - Small Premium Projects (Personal...  

Open Energy Info (EERE)

System Size Projects must cost less than 20,000 Equipment Requirements First year energy savings must yield a simple payback period of greater than 3 years. Start Date 2011...

395

Energy Conservation Tax Credits - Small Premium Projects (Corporate...  

Open Energy Info (EERE)

System Size Projects must cost less than 20,000 Equipment Requirements First year energy savings must yield a simple payback period of greater than 3 years. Start Date 2011...

396

DOE Solar Decathlon: Team Germany: Starting a Solar Revolution  

NLE Websites -- All DOE Office Websites (Extended Search)

surPLUShome at the U.S. Department of Energy Solar Decathlon 2009 with Silo House and the Washington Monument in the background. surPLUShome at the U.S. Department of Energy Solar Decathlon 2009 with Silo House and the Washington Monument in the background. Enlarge image Team Germany's surPLUShome took first place in Solar Decathlon 2009. It is now permanently placed on the Technische Universität Darmstadt campus. (Credit: Jim Tetro/U.S. Department of Energy Solar Decathlon) Who: Team Germany What: surPLUShome Where: Technische Universität Darmstadt El-Lissitzky-Str. 3 64287 Darmstadt, Deutschland Map This House Public tours: Not available Solar Decathlon 2009 Team Germany: Starting a Solar Revolution In June 2010, Team Germany's surPLUShome returned to the Technische Universität Darmstadt campus for permanent placement next to Solarhouse, from the U.S. Department of Energy Solar Decathlon 2007. As part of the

397

Low-level liquid waste treatment system start-up  

Science Conference Proceedings (OSTI)

Following removal of Cs-137 by ion exchange in the Supernatant Treatment System immediately upstream, the radioactive liquid waste is volume-reduced by evaporation. Trace amounts of Cs-137 in the resulting distillate are removed by ion exchange, then the distillate is discharged to the existing plant water treatment system. The concentrated product, 37 to 41 percent solids (by weight), is encapsulated in cement, producing a stable low-level waste form. This report provides a summary of work performed to test the Liquid Waste Treatment System following construction turnover and prior to radioactive operation. All mechanical and electrical components, piping, valves, pumps, tanks, controls, and instrumentation required to operate the system were tested; first with water, then with simulated waste. Subsystems (individual tanks, pumps, and control loops) were tested individually, then as a complete system. Finally, the system began a controlled start-up phase, which included the first four months of radioactive operation. Components were tested for operability then for performance data to verify the system`s ability to produce an acceptable waste form at design feed rates.

Baker, M.N.; Gessner, R.F.

1989-07-01T23:59:59.000Z

398

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Number (DE-FE0002056) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 W. Lynn Watney & Jason Rush (Joint PIs) Kansas Geological Survey Lawrence, KS 66047 Brighton 1&2 2:40 August 20, 2013 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary ORGANIZATIONAL STRUCTURE Modeling CO 2 Sequestration in Saline A quifer and Depleted Oil Reservoir to Evaluate Regional CO 2 Sequestration Potential of Ozark Plateau A quifer System, South-Central Kansas Co-Principal Investigators Co-Principal Investigators Kerry D. Newell -- stratigraphy, geochemistry

399

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Tracer for Tracking Permanent CO 2 Storage in Basaltic Rocks DE-FE0004847 Jennifer Hall Columbia University in the City of New York U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Conservative and Reactive Tracer Techniques * Accomplishments to Date * Summary 3 Benefit to the Program * The goal of the project is to develop and test novel geochemical tracer techniques for quantitative monitoring, verification and accounting of stored CO 2 . These techniques contribute to the Carbon Storage Program's

400

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

and Geotechnical Site and Geotechnical Site Investigations for the Design of a CO 2 Rich Flue Gas Direct Injection Facility Project Number DOE Grant FE0001833 Paul Metz Department of Mining & Geological Engineering University of Alaska Fairbanks U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Presentation Outline * Benefit to the Program * Project Overview: Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix: Not Included in Presentation 3 Benefit to the Program * Carbon Storage Program Major Goals: - Develop technologies that will support industries' ability to

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale CO Scale CO 2 Injection and Optimization of Storage Capacity in the Southeastern United States Project Number: DE-FE0010554 George J. Koperna, Jr. Shawna Cyphers Advanced Resources International U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Presentation Outline * Program Goals * Benefits Statement * Project Overview - Goals - Objectives * Technical Status * Accomplishments to Date * Summary * Appendix USDOE/NETL Program Goals * Support industry's ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop and validate technologies to ensure 99 percent storage permanence. * Develop technologies to improve reservoir storage

402

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

SUMNER COUNTY, KANSAS DE-FE0006821 W. Lynn Watney, Jason Rush, Joint PIs Kansas Geological Survey The University of Kansas Lawrence, KS U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Brighton 1&2 Wednesday 8-21-13 1:10-1:35 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary 2 Small Scale Field Test Wellington Field Regional Assessment of deep saline Arbuckle aquifer Project Team DOE-NETL Contract #FE0006821 KANSAS STATE UNIVERSITY 3 L. Watney (Joint PI), J. Rush (Joint PI), J. Doveton, E. Holubnyak, M. Fazelalavi, R. Miller, D. Newell, J. Raney

403

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Seal Repair Using Seal Repair Using Nanocomposite Materials Project Number DE-FE0009562 John Stormont, Mahmoud Reda Taha University of New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Ed Matteo, Thomas Dewers Sandia National Laboratories 2 Presentation Outline * Introduction and overview * Materials synthesis * Materials testing and characterization * Annular seal system testing * Numerical simulation * Summary 3 Benefit to the Program * BENEFITS STATEMENT: The project involves the development and testing of polymer-cement nanocomposites for repairing flaws in annular wellbore seals. These materials will have superior characteristics compared to conventional

404

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity Project Number DE-FE0002112 PIs Drs. John Kaszuba and Kenneth Sims Virginia Marcon University of Wyoming U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status - Results - Conclusions - Next Steps * Summary 3 Benefit to the Program * Program goal being addressed. - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. - Monitoring, Verification, and Accounting (MVA). MVA technologies seek to monitor, verify, and

405

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of CO Impact of CO 2 Injection on the Subsurface Microbial Community in an Illinois Basin CCS Reservoir: Integrated Student Training in Geoscience and Geomicrobiology Project Number (DEFE0002421) Dr. Yiran Dong Drs. Bruce W. Fouke, Robert A. Sanford, Stephen Marshak University of Illinois-Urbana Champaign U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Technical status * Results and discussion * Summary * Appendix 3 Benefit to the Program This research project has developed scientific, technical and institutional collaborations for the development of

406

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Mohammad Piri and Felipe Pereira Mohammad Piri and Felipe Pereira University of Wyoming U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 2013 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status o Experimentation: core-flooding and IFT/CA o Pore-scale modeling modeling * Accomplishments to Date * Summary University of Wyoming 3 Benefit to the Program * Program goal: o 'Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.' * Benefits statement: o The research project is focused on performing reservoir conditions experiments to measure steady-state relative permeabilities,

407

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring Geological CO Monitoring Geological CO 2 Sequestration using Perfluorocarbon and Stable Isotope Tracers Project Number FEAA-045 Tommy J. Phelps and David R. Cole* Oak Ridge National Laboratory Phone: 865-574-7290 email: phelpstj@ornl.gov (*The Ohio State University) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Developing the Technologies and Building the Infrastructure for CO 2 Storage August 22, 2013 2 Project Overview: Goals and Objectives Goal: Develop methods to interrogate subsurface for improved CO 2 sequestration, field test characterization and MVA, demonstrate CO 2 remains in zone, and tech transfer. Objectives: 1. Assessment of injections in field. PFT gas tracers are analyzed by GC-ECD to

408

Project Homepage  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle School Home Energy Audit Middle School Home Energy Audit Project Homepage NTEP Home - Project Homepage - Teacher Homepage - Student Pages Abstract: This set of lessons provides an opportunity for midlevel students to gain a basic understanding of how energy is turned into power, how power is measured using a meter, the costs of those units and the eventual reduction of energy consumption and cost to the consumer. Introduction to Research: By conducting energy audits of their own homes and completing exercises to gain baclground information, students begin to see the importance of energy in their daily lives. By using the Internet as a research tool, students gain develop research skills as they gain knowledge for their project. They use e-mail to collaborate with energy experts and share results with other

409

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Title: DEVELOPING A Title: DEVELOPING A COMPREHENSIVE RISK ASSESMENT FRAMEWORK FOR GEOLOGICAL STORAGE OF CO2 Ian Duncan University of Texas U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline 1. Benefit to the Program 2. Goals and Objectives 3. Technical Status Project 4. Accomplishments to Date 5. Summary 3 Benefit to the Program The research project is developing a comprehensive understanding of the programmatic (business), and technical risks associated with CCS particularly the likelihood of leakage and its potential consequences. This contributes to the Carbon Storage Program's effort of ensuring 99 percent CO

410

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage R&D Project Review Meeting Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Acknowledgments Dave Harris, Kentucky Geological Survey Dave Barnes, Western Michigan University John Rupp, Indiana Geological Survey Scott Marsteller, Schlumberger Carbon Services John McBride, Brigham Young University * Project is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal Institute * ConocoPhillips: in-kind match * Western Kentucky Carbon Storage Foundation: matching funding * SeisRes 2020, Houston: VSP acquisition and processing

411

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

to Analyze Spatial and Temporal to Analyze Spatial and Temporal Heterogeneities in Reservoir and Seal Petrology, Mineralogy, and Geochemistry: Implications for CO 2 Sequestration Prediction, Simulation, and Monitoring Project Number DE-FE0001852 Dr. Brenda B. Bowen Purdue University (now at the University of Utah) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Introduction to the project * Tasks * Student training * Student research successes * Lessons learned and future plans 3 Benefit to the Program * Addresses Carbon Storage Program major goals: - Develop technologies that will support industries' ability to predict CO

412

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Results from Simulation Project Results from Simulation Framework for Regional Geologic CO 2 Storage Infrastructure along Arches Province of Midwest United States DOE Award No. DE-FE0001034 Ohio Dept. of Dev. Grant CDO/D-10-03 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting August 21-23, 2012 Joel Sminchak and Neeraj Gupta Battelle Energy Systems sminchak@battelle.org, 614-424-7392 gupta@battelle.org, 614-424-3820 BUSINESS SENSITIVE 2 Presentation Outline 1. Technical Status 2. Background (CO 2 Sources, Geologic Setting) 3. Injection Well history 4. Geocellular Model Development 5. Geological Data (Geological dataset, Geostatistics) 6. Geocellular porosity/permeability model development 7. Pipeline Routing Analysis

413

Research projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Yuan » Research projects Yuan » Research projects Research projects Research Interests Scientific computing, domain decomposition methods Linear solvers for sparse matrices Computational plasma physics Grid generation techniques GPU computing Current Research PDSLin: A hybrid linear solver for large-scale highly-indefinite linear systems The Parallel Domain decomposition Schur complement based Linear solver (PDSLin), which implements a hybrid (direct and iterative) linear solver based on a non-overlapping domain decomposition technique called chur complement method, and it has two levels of parallelism: a) to solve independent subdomains in parallel and b) to apply multiple processors per subdomain. In such a framework, load imbalance and excessive communication lead to the performance bottlenecks, and several techniques are developed

414

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

SECARB Anthropogenic Test: SECARB Anthropogenic Test: CO 2 Capture/Transportation/Storage Project # DE-FC26-05NT42590 Jerry Hill, Southern Sates Energy Board Richard A. Esposito, Southern Company U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation Outline * Benefit to the Program * Project Overview * Technical Status - CO 2 Capture - CO 2 Transportation - CO 2 Storage * Accomplishments to Date * Organization Chart * Gantt Chart * Bibliography * Summary Benefit to the Program 1. Predict storage capacities within +/- 30% * Conducted high resolution reservoir characterization of the Paluxy saline formation key

415

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigation of the CO Investigation of the CO 2 Sequestration in Depleted Shale Gas Formations Project Number DE-FE-0004731 Jennifer Wilcox, Tony Kovscek, Mark Zoback Stanford University, School of Earth Sciences U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Project Benefits * Technical Status * Imaging at mm- to micron-scales using CT - Permeability measurements and application of the Klinkenberg effect - Molecular Dynamics simulations for permeability and viscosity estimates * Accomplishments to Date * Summary Stanford University 3 Benefit to the Program * Carbon Storage Program major goals

416

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Fidelity Computational Analysis of Fidelity Computational Analysis of CO2 Trappings at Pore-scales Project Number: DE-FE0002407 Vinod Kumar (vkumar@utep.edu) & Paul Delgado (pmdelgado2@utep.edu) University of Texas at El Paso U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Collaborators: Dr. C. Harris (Shell Oil Company/Imperial College), Dr. G. Bromhal (NETL), Dr. M. Ferer (WVU/NETL), Dr. D. Crandall (NETL-Ctr), and Dr. D. McIntyre (NETL). 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status - Pore-network modeling - Conductance derivation for irregular geom. - Pore-to-CFD Computations

417

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Number (DE-FE0002056) W. Lynn Watney & Jason Rush (Joint PIs) Kansas Geological Survey Lawrence, KS 66047 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary KANSAS STATE UNIVERSITY Bittersweet Energy Inc. Partners FE0002056 Devilbiss Coring Service Basic Energy Services Wellington Field Operator Industrial and Electrical Power Sources of CO 2 Southwest Kansas CO 2 -EOR Initiative Industry Partners (modeling 4 Chester/Morrowan oil fields to make CO2 ready) +drilling and seismic contractors TBN

418

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

MVA Tools MVA Tools Sam Clegg, Kristy Nowak-Lovato, Ron Martinez, Julianna Fessenden, Thom Rahn, & Lianjie Huang Los Alamos National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview - Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix - Organization Chart - Bibliography 3 Project Overview: Goals and Objectives * Surface MVA - Frequency Modulated Spectroscopy - Quantitatively identify CO2, H2S and CH4 seepage from geologic sequestration sites - Distinguish anthropogenic CO2 from natural CO2 emissions * CO2 carbon stable isotope measurements

419

Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend  

DOE Patents (OSTI)

A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

Ortiz, M.G.

1998-02-10T23:59:59.000Z

420

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

DE-FE0002225: DE-FE0002225: Actualistic and geochemical modeling of reservoir rock, CO 2 and formation fluid interaction, Citronelle oil field, Alabama West Virginia University & University of Alabama Presenter: Dr. Amy Weislogel (WVU) Co-PI: Dr. Rona Donahoe (UA) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits * Overview & Project Map * Reservoir Geochemical Characterization * Formation Fluid Geochemistry * Geochemical Modeling * Summary 3 Benefit to the Program * Develop technologies that will support industries'

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 BROWN 2 Presentation Outline * Benefits & overview of deriving acrylates from coupling carbon dioxide and ethylene * Chemical catalysis approach: background and battles left to fight * Experimental assessment of the viability of thermochemical acrylate production * Perspectives for the future BROWN 3 Benefit to the Program * This project identifies the critical catalyst features necessary to promote carbon dioxide coupling with ethylene to acrylate at molybdenum catalysts. This research demonstrates the viability of acrylate production

422

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool to Improve CO2 Sequestration DE FE0004542 Larry Murdoch, Clemson University Stephen Moysey, Clemson University Leonid Germanovich, Georgia Tech Cem Ozan, Baker Hughes Sihyun Kim, Georgia Tech Glenn Skawski, Clemson University Alex Hanna, Clemson University Johnathan Ebenhack, Clemson University Josh Smith, Clemson University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool, Larry Murdoch Project Review Meeting, 23 Aug. 2013 2 Presentation Outline * Preliminaries

423

Hallmark Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Project Commercialization of the Secure SCADA Communications Protocol, a cryptographic security solution for device-to-device communication Increased connectivity and automation in the control systems that manage the nation's energy infrastructure have improved system functionality, but left systems more vulnerable to cyber attack. Intruders could severely disrupt control system operation by sending fabricated information or commands to control system devices. To ensure message integrity, supervisory control and data acquisition (SCADA) systems require a method to validate device-to- device communication and verify that information has come from a trusted source and not been altered in transit. The Secure SCADA Communications Protocol (SSCP) provides message

424

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

DE-FE0001836: DE-FE0001836: Numerical modeling of geomechanical processes related to CO 2 injection within generic reservoirs Andreas Eckert & Runar Nygaard Missouri University of Science & Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Objectives, Benefits and Outcomes * Technical status: Project summary - Teaching - Reservoir scale (Geomechanics & Fluid flow simulation) - Borehole scale (Wellbore integrity & wellbore trajectory planning) * Conclusions * Appendix 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries'

425

Microsoft PowerPoint - EastBend_NETL Meeting_Nov 18_ 2009 MK_rev2.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

II CO II CO 2 Sequestration Test Cincinnati Arch MRCSP Site for: Regional Carbon Sequestration Partnerships Annual Review November 16-19, 2009 by: Mark E. Kelley, P.G. (Battelle) 2 Acknowledgements - Traci Rodosta, DOE/NETL Program Mgr - Darlene Radcliffe, Duke Energy, Director, Environmental Technology & Fuel Policy - Brian Weisker, Plant Manger for Duke Energy East Bend Station - Joe Clark, Technical Manager, Duke Energy East Bend Station - Kentucky Geological Survey (Steve Greb and others) - Indiana Geological Survey (John Rupp and others) - Ohio Geological Survey (Larry Wickstrom and others) - Bill Rike Consulting Geologist - Sarah Wade, AJW Incorporated - Battelle Staff - Dave Ball (Program Manager), Neeraj Gupta (Technical Advisor), Matt Place (Field Lead), Linc Remmert,

426

Thermo-Mechanical Bending Testing and Analysis for Public Service Electric and Gas Company Field-Aged Cables  

Science Conference Proceedings (OSTI)

High-pressure fluid-filled, pipe-type cables have been in operation since the mid-1930s, and they are acknowledged to be very reliable. However, some 230-kV and 345-kV cables, primarily those installed in the 1960s and 1970s, have experienced a failure mechanism known as thermo-mechanical bending (TMB). Cable expansion with an increase in loading causes the cables to form a series of bends. The cables tend to straighten as they cool when loads are reduced. In most cases, this movement can occur daily for...

2009-10-28T23:59:59.000Z

427

Utility Experience of In-Pipe Thermo-Mechanical Bending (TMB) Events on Pipe-Type Cables  

Science Conference Proceedings (OSTI)

High-pressure fluid-filled, pipe-type cables are quite reliable. However, some 230-kV and 345-kV cables, primarily those installed in the 1960s and 1970s, have experienced a failure mechanism known as thermomechanical bending (TMB). Cable expansion with an increase in loading causes the cables to form a series of bends. The cables tend to straighten as they cool when loads are reduced. In most cases, this movement can occur daily for many decades without incident. In some cases, however, this TMB motion ...

2008-12-11T23:59:59.000Z

428

Great Plains Gasification Project status report  

Science Conference Proceedings (OSTI)

The Great Plains Coal Gasification Project is designed to convert North Dakota lignite into pipeline quality high Btu synthetic natural gas (SNG). Located in Mercer County, North Dakota, the project consists of a coal gasification plant, coal mine, and an SNG pipeline. Construction of the project started in the summer of 1981 and was essentially complete by the fourth quarter of 1984. The plant operating staff started initial start-up planning in early 1982 and moved to the plant site in late 1982. The first unit taken over from construction was the secondary water treating unit and initial operations began on August 19, 1983. The remainder of the plant was commissioned and started up in a planned sequence with initial production of SNG occurring on July 28, 1983. Both trains were in operation and the plant was producing at about 70 percent of design capacity by December 1984-a date that has been targeted for in a start-up schedule prepared some 4-5 years earlier.

Pollock, D.C.; Stockwell, R.E.

1985-01-01T23:59:59.000Z

429

Project Checklists | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Checklists Checklists Project Checklists Below are links to project checklists, model request for proposals, and model power purchase contracts that Tribes can use for energy development projects. Connecting to the Grid: A Guide to Distributed Generation Interconnection Issues Discusses the Interstate Renewable Energy Council's (IREC's) model interconnection standards for generators up to 10 megawatts (MW) and IREC's model net-metering rules for generators up to 2 MW in capacity. Includes information on safety, power quality, and codes, legal and procedural issues, net metering, and electrical inspectors. Source: Interstate Renewable Energy Council. Getting Started: What to Ask the Developer This document provides a list of preliminary questions for Tribes to think about when approached by a developer or technology representative for

430

The perihelion of Mercury advance and the light bending calculated in (enhanced) Newton's theory  

E-Print Network (OSTI)

We show that results of a simple dynamical gedanken experiment interpreted according to standard Newton's gravitational theory, may reveal that three-dimensional space is curved. The experiment may be used to reconstruct the curved geometry of space, i.e. its non-Euclidean metric. The perihelion of Mercury advance and the light bending calculated from the Poisson equation and the equation of motion in the curved geometry have the correct (observed) values. Independently, we also show that Newtonian gravity theory may be enhanced to incorporate the curvature of three dimensional space by adding an extra equation which links the Ricci scalar with the density of matter. Like in Einstein's general relativity, matter is the source of curvature. In the spherically symmetric (vacuum) case, the metric of space 3gik that follows from this extra equation agrees, to the expected accuracy, with the metric measured by the Newtonian gedanken experiment mentioned above.

M. A. Abramowicz; G. F. R. Ellis J. Horak; M. Wielgus

2013-03-21T23:59:59.000Z

431

Bending Fuchsian representations of fundamental groups of cusped surfaces in PU(2,1)  

E-Print Network (OSTI)

We describe a family of representations of $\\pi_1(\\Sigma)$ in PU(2,1), where $\\Sigma$ is a hyperbolic Riemann surface with at least one deleted point. This family is obtained by a bending process associated to an ideal triangulation of $\\Sigma$. We give an explicit description of this family by describing a coordinates system in the spirit of shear coordinates on the Teichm\\"uller space. We identify within this family new examples of discrete, faithful and type-preserving representations of $\\pi_1(\\Sigma)$. In turn, we obtain a 1-parameter family of embeddings of the Teichm\\"uller space of $\\Sigma$ in the PU(2,1)-representation variety of $\\pi_1(\\Sigma)$. These results generalise to arbitrary $\\Sigma$ the results obtained in a previous paper for the 1-punctured torus.

Will, Pierre

2011-01-01T23:59:59.000Z

432

EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Midnight Point and Mahogany Geothermal Exploration 5: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon SUMMARY This EA evaluates Ormat Nevada, Inc.'s (Ormat's) proposed geothermal project consists of drilling up to 16 wells for geothermal exploration approximately 70 miles southeast of Bend, Oregon and 50 miles northwest of Burns, Oregon just south of U.S. Highway 20. The proposed project includes three distinct drilling areas. Up to three wells would be drilled on lands managed by the Bureau of Land Management (BLM) Prineville District (Mahogany), up to ten wells would be drilled on lands managed by the BLM Burns District (Midnight Point), and up to three wells would be drilled on

433

EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1925: Midnight Point and Mahogany Geothermal Exploration EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon SUMMARY This EA evaluates Ormat Nevada, Inc.'s (Ormat's) proposed geothermal project consists of drilling up to 16 wells for geothermal exploration approximately 70 miles southeast of Bend, Oregon and 50 miles northwest of Burns, Oregon just south of U.S. Highway 20. The proposed project includes three distinct drilling areas. Up to three wells would be drilled on lands managed by the Bureau of Land Management (BLM) Prineville District (Mahogany), up to ten wells would be drilled on lands managed by the BLM Burns District (Midnight Point), and up to three wells would be drilled on

434

Advanced Start of Combustion Sensor Phases I and II-A: Feasibility Demonstration, Design and Optimization  

DOE Green Energy (OSTI)

Homogeneous Compressed Charge Ignition (HCCI) has elevated the need for Start of Combustion (SOC) sensors. HCCI engines have been the exciting focus of engine research recently, primarily because HCCI offers higher thermal efficiency than the conventional Spark Ignition (SI) engines and significantly lower NOx and soot emissions than conventional Compression Ignition (CI) engines, and could be fuel neutral. HCCI has the potential to unify all the internal combustion engine technology to achieve the high-efficiency, low-emission goal. However, these advantages do not come easy. It is well known that the problems encountered with HCCI combustion center on the difficulty of controlling the Start of Combustion. TIAX has an SOC sensor under development which has shown promise. In previous work, including a DOE-sponsored SBIR project, TIAX has developed an accelerometer-based method which was able to determine SOC within a few degrees crank angle for a range of operating conditions. A signal processing protocol allows reconstruction of the combustion pressure event signal imbedded in the background engine vibration recorded by the accelerometer. From this reconstructed pressure trace, an algorithm locates the SOC. This SOC sensor approach is nonintrusive, rugged, and is particularly robust when the pressure event is strong relative to background engine vibration (at medium to high engine load). Phase I of this project refined the previously developed technology with an engine-generic and robust algorithm. The objective of the Phase I research was to answer two fundamental questions: Can the accelerometer-based SOC sensor provide adequate SOC event capture to control an HCCI engine in a feedback loop? And, will the sensor system meet cost, durability, and software efficiency (speed) targets? Based upon the results, the answer to both questions was 'YES'. The objective of Phase II-A was to complete the parameter optimization of the SOC sensor prototype in order to reach a juncture where plans can be and are discussed with an industry partner for how best to perform a more detailed implementation of the TIAX SOC technology on an HCCI engine system. This occurred, as evidenced the number of potential commercialization partners shown in Table 4. Potential Commercialization Partners Contacted (up to date as of January 31, 2010). During the two phases, a robust, engine-generic algorithm was developed that met the desired targets and was shown to work extremely well for HCCI engine operation.

Chad Smutzer

2010-01-31T23:59:59.000Z

435

Renewable Energy Project Development Assistance (Fact Sheet)  

SciTech Connect

This fact sheet provides information on the Tribes selected to receive assistance from the U.S. Department of Energy Office of Indian Energy 2013 Strategic Technical Assistance Response Team (START) Program, which provides technical expertise to support the development of next-generation energy projects on tribal lands.

Not Available

2013-07-01T23:59:59.000Z

436

The impact of the formula student competition on undergraduate research projects  

Science Conference Proceedings (OSTI)

Starting from their freshman year, automotive engineering students at FH Joanneum are involved in project work within the framework of project-based learning. Software projects complementary to the regular courses in the second and third semester increase ... Keywords: formula student, project based learning, self-motivation, undergraduate research

Gnter Bischof; Emilia Bratschitsch; Annette Casey; Thomas Lechner; Markus Lengauer; Adrian Millward-Sadler; Domagoj Rubea; Christian Steinmann

2009-10-01T23:59:59.000Z

437

Project 211  

NLE Websites -- All DOE Office Websites (Extended Search)

26507 26507 304-285-4133 dawn.deel@netl.doe.gov Jack C. Pashin Geological Survey of Alabama P.O. Box 869999 Tuscaloosa, AL 35486 205-349-2852 jpashin@gsa.state.al.us Sequestration GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO 2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA Background The amount of carbon dioxide (CO 2 ) in the Earth's atmosphere has risen substantially since the start of the industrial age. This increase is attributed widely to the burning of fossil fuels, and if current trends in resource utilization continue, anthropogenic CO 2 emissions will triple during the 21st century. Among the principal ways CO 2 emissions from power plants can be addressed is to sequester this greenhouse gas in geologic formations. Within the number of geologic formations that can potentially store CO

438

Colorado Start-Up Awarded First 'America's Next Top Energy Innovator...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Start-Up Awarded First 'America's Next Top Energy Innovator' Agreement Colorado Start-Up Awarded First 'America's Next Top Energy Innovator' Agreement May 20, 2011 - 5:42pm Addthis...

439

Does Head Start Improve Long-Term Outcomes? Evidence from a Regression Discontinuity Design  

E-Print Network (OSTI)

Aughinbaugh, Alison (200? ) "Does Head Start Yield Long-TermDuncan Thomas (1995) "Does Head Start Make a Difference?"J. Smith (1998) "How much does childhood poverty affect the

LUDWIG, JENS O; Miller, Doug

2004-01-01T23:59:59.000Z

440

Project Based Energy Conservation vs. Management Based Energy Conservation  

E-Print Network (OSTI)

Basic American Foods (BAF) is the largest potato dehydrator worldwide. This paper will trace the shift from a Project Based to Management Based energy conservation program. Second only to raw material, energy is one of the highest expenses at BAF. Due to this fact, BAF started a corporation wide energy reduction program in 1999. The program was one full time project engineer focused only on energy reduction projects. This approach, called project based energy conservation, worked well for about 3 years. Total savings from energy reduction projects were equivalent to over 10% of the corporate profit. At that point entropy started to take over and the initial successes were reversing themselves. BAF then re-energized its energy initiative by setting a 5% per year energy reduction goal. The project based program could not achieve this goal. Therefore, the focus switched from project based to a management based energy conservation program.

Judy, K.; O'Brien, S.

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Materials Science Division Project Safety Review  

NLE Websites -- All DOE Office Websites (Extended Search)

Miller, Electron Microscopes Miller, Electron Microscopes Project No. 20006.3 Materials Science Division Project Safety Review Safety Analysis Form (03/08) Date of Submission March 12, 2010 FWP No.: 58405 Project Title User Experimental Work with Electron Microscopes in the Electron Microscopy Center This Safety Analysis Form (SAF) supersedes previous versions of 20006 and its modifications. Is this a (check one) new submission renewal supplemental modification X Principal Investigator(s) Dean Miller Other Participants (excluding administrative support personnel) EMC staff and EMC users (Attach participant signature sheet) Project dates: Start: March 2010 End: Open-ended This form is to be completed for all new investigations or experimental projects that are conducted in MSD laboratories, and for all ongoing such projects that undergo significant change from their original

442

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

capillary trapping (FE0004956), Bryant, UT-Austin capillary trapping (FE0004956), Bryant, UT-Austin Influence of Local Capillary Trapping on Containment System Effectiveness DE-FE0004956 Steven Bryant The University of Texas at Austin U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Local capillary trapping (FE0004956), Bryant, UT-Austin Local capillary trapping (FE0004956), Bryant, UT-Austin 2 Presentation Outline * Motivation and relevance to Program * Project goals * Technical status * Accomplishments * Summary * Future plans Local capillary trapping (FE0004956), Bryant, UT-Austin Local capillary trapping (FE0004956), Bryant, UT-Austin

443

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Brian Turk Research Triangle Institute U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Project benefits and objectives * Carbon gasification * Carbon reactivity studies * Catalyst development * Techno-economic analysis * Summary 3 Benefit to the Program * Program goal: Reduce CO 2 emissions by developing beneficial uses that meet the DOE net cost metric of $10/MT for captured CO 2 that will mitigate CO 2 emissions in areas where geological storage may not be an optimal solution * Benefits statement: Development of a commercial process for converting CO 2 and a carbon source into a commodity chemical at a

444

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Caprock Integrity and Improved Caprock Integrity and Risk Assessment Techniques Project Number (FE0009168) Michael Bruno, PhD, PE GeoMechanics Technologies U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Introduction and Motivation 2 A primary requirement for long-term geologic storage and containment of carbon dioxide is ensuring caprock integrity. Large-scale CO2 injection requires improved and advanced simulation tools and risk assessment techniques to better predict and help control system failures, and to enhance performance of geologic storage. GeoMechanics Technologies is developing enhanced simulation and risk analysis approaches to assess and

445

Irene Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Irene Station, African Weather Bureau Irene Station, African Weather Bureau The photos on this site come from the Southern Hemisphere Additional Ozonesondes (SHADOZ) project. Additional photos can be found on the SHADOZ Project Web Site. Photo of the Dobson 89 Instrument The Irene Weather Office Agnes Phahlane sits behind the Dobson and collects Total Ozone Data The lab at the Irene station Cal Archer Prepares an ozonesonde Flight Preparations The balloon is readied The release Back to the SAFARI 2000 Photo Page Index Other Sites: Skukuza, MISR Validation Site | Skukuza, Eddy Covariance Site | C-130 Flight Photos | Sua Pan Site | Irene Weather Station | Fire Studies | Kalahari Transect | Kalahari Transect Sites for Canopy Structure Data | ORNL DAAC Home || ORNL Home || NASA || Privacy, Security, Notices || Data

446

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive Monitoring and Uncertainty Assessment of CO 2 Plume Migration DOE-FE0004962 Steven Bryant The University of Texas at Austin U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin 2 Presentation Outline * Motivation and relevance to Program * Project goals * Technical status * Accomplishments * Summary * Future plans Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin

447

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Basin-Scale Leakage Risks from Basin-Scale Leakage Risks from Geologic Carbon Sequestration: Impact on CCS Energy Market Competitiveness Catherine A. Peters Jeffery P. Fitts Michael A. Celia Princeton University Paul D. Kalb Vatsal Bhatt Brookhaven National Laboratory Elizabeth J. Wilson Jeffrey M. Bielicki Melisa Pollak University of Minnesota DOE Award DE-FE0000749 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to CCUS research program * Project Goals & Objectives * Technical Status  Thrust I - Reservoir-scale simulations of leakage potential with permeability evolution

448

Project Description  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Description Project Description The Energy Policy Act of 2005 (EPAct 2005), the Energy Independence and Security Act of 2007 (EISA 2007), and Presidential Executive Order 13423 all contain requirements for Federal facilities to decrease energy consumption and increase the use of renewable energy by the year 2015. To provide leadership in meeting these requirements, DOE, in partnership with the General Services Administration (GSA), has installed a rooftop solar electric, or PV, system on the roof of DOE's headquarters in Washington, D.C. The 205 kilowatt (kW) installation is one of the largest of its kind in the Nation's capital. A display in the For- restal building will show the power output of the PV system during the day and the energy produced over

449

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

for Modeling CO for Modeling CO 2 Processes: Pressure Management, Basin-Scale Models, Model Comparison, and Stochastic Inversion ESD09-056 Jens T. Birkholzer with Abdullah Cihan, Marco Bianchi, Quanlin Zhou, Xiaoyi Liu, Sumit Mukhopadhyay, Dorothee Rebscher, Barbara Fialeix Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview and Technical Status - Task 1: Optimization of Brine Extraction for Pressure Management and Mitigation - Task 2: Basin-scale Simulation of CO 2 Storage in the Northern Plains - Prairie Basal Aquifer - Task 3: Sim-SEQ Model Comparison

450

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Beneficial Use of CO Beneficial Use of CO 2 in Precast Concrete Production DE-FE0004285 Yixin Shao, Yaodong Jia Liang Hu McGill University 3H Company U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation outline * Goals and objectives * Benefits to the program * Project overview * Technical status * Accomplishment to date * Summary 2 Objective Masonry blocks Fiber-cement panels Prefabricated buildings Concrete pipes To develop a carbonation process to replace steam curing in precast concrete production for energy reduction, and carbon storage and utilization. Goals * CO 2 sequestration capacity by cement:

451

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

University of Kansas Center for Research University of Kansas Center for Research Kansas Geological Survey U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 20-22, 2013 Presentation Outline * Benefits, objectives, overview * Methods * Background & setting * Technical status * Accomplishments * Summary Benefit to the Program * Program goal addressed: Develop technologies that will support the industries' ability to predict CO 2 storage capacity in geologic formations to within ± 30 percent. * Program goal addressed: This project will confirm - via a horizontal test boring - whether fracture attributes derived from 3-D seismic PSDM Volumetric Curvature (VC) processing are real. If

452

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Brian Turk Research Triangle Institute U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Project benefits and objectives * Carbon reactivity studies * Catalyst mechanism studies * Catalyst development * Test results * Summary 3 Benefit to the Program * Program goal: Reduce CO 2 emissions by developing beneficial uses that meet the DOE net cost metric of $10/MT for captured CO 2 that will mitigate CO 2 emissions in areas where geological storage may not be an optimal solution * Benefits statement: Development of a commercial process for converting CO 2 and a carbon source into a commodity chemical at a

453

FUSRAP Project  

Office of Legacy Management (LM)

Project Project 23b 14501 FUSRAP TECHNICAL BULLETIN N O . - R 3 v . L DATE: 1.2 9-99 SUBJECT : Pr.pec.d BY T r m L u d Approval Summary of the results for the Springdale characterization activities performed per WI-94-015, Rev. 0. TUO separate radiological characterization surveys and a limited cherical characterization survey were performed on the Springdale Site in Octcjer and December, 1993. The design of the radiological surveys were to supplement and define existing ORNL surveys. The limited cher.ica1 characterization survey was performed to assist in the completion of waste disposal paperwork. Radiological contamination is primarily ir. the 'belt cutting and belt fabrication'areas of the building with a small erea of contamination in the south end of the building. The chemiccl sac~le

454

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigating the Fundamental Investigating the Fundamental Scientific Issues Affecting the Long-term Geologic Storage of Carbon Dioxide Project Number DE-FE0000397 Lee H Spangler Energy Research Institute Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Computational tool development * Laboratory studies to understand subsurface CO 2 behavior * Analog studies to inform risk analysis * Near surface detection technologies / testing * Mitigation method development 3 Benefit to the Program Program goals being addressed. * Develop technologies that will support industries' ability to predict CO

455

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

FE/NETL CTS Cost Models and FE/NETL CTS Cost Models and Benefits Assessment of Carbon Storage R&D Program David Morgan Benefits Division Office of Program Planning and Analysis National Energy Technology Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 OFFICE OF FOSSIL ENERGY 2 Presentation Outline * Overview of benefits assessment * Overview of FE/NETL models used to assess benefits of CO 2 capture and storage * Benefits evaluation of Storage Program's R&D projects using a model to estimate costs of CO 2 storage in a saline aquifer * Description of model used to estimate costs of

456

Project 307  

NLE Websites -- All DOE Office Websites (Extended Search)

INTEGRATING MONO ETHANOL AMINE (MEA) INTEGRATING MONO ETHANOL AMINE (MEA) REGENERATION WITH CO 2 COMPRESSION AND PEAKING TO REDUCE CO 2 CAPTURE COSTS Background In Phase I, Trimeric Corporation, in collaboration with the University of Texas at Austin, performed engineering and economic analyses necessary to determine the feasibility of novel MEA processing schemes aimed at reducing the cost of CO 2 capture from flue gas. These novel MEA-based CO 2 capture schemes are designed for integration into coal-fired power plants with the aim of reducing costs and improving efficiency. Primary Project Goal The primary goal of this project was to reduce the cost of MEA scrubbing for the recovery of CO 2 from flue gas by improved process integration. CONTACTS Sean I. Plasynski Sequestration Technology Manager

457

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

1-23, 2012 1-23, 2012 2 Presentation Outline * Benefit to the program * Project overview: Why 14 C for MVA? * Technical status: Cartridges, injections, lasers * Summary * Organizational chart * Collaborators 3 Benefit to the Program * Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. Permanent storage of CO 2 can be demonstrated by adding carbon-14 ( 14 C) prior to injection. This research project aims to demonstrate this by tagging fossil CO 2 with 14 C at a field site. When completed, this system will show that 14 C can be a safe and effective tracer for sequestered CO 2 . A laser-based 14 C measurement method is being adapted for continuous monitoring. This technology contributes to the Carbon Storage Program's effort of ensuring 99 percent

458

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Leakage Pathways and Leakage Pathways and Mineralization within Caprocks for Geologic Storage of CO 2 Project DE-FC26-0xNT4 FE0001786 James P. Evans Utah State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits * Goals and Objectives * Relationship to overall program goals * Overview of seal bypass * Technical status; bypass systems - Field based studies - Technological advances * Accomplishments and Summary * Appendices 3 Benefit to the Program * Program goals addressed * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.

459

Project 301  

NLE Websites -- All DOE Office Websites (Extended Search)

2006 2006 Combustion Technologies CONTACTS Robert R. Romanosky Advanced Research Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4721 robert.romanosky@netl.doe.gov Arun C. Bose Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4467 arun.bose@netl.doe.gov ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION Background Over the past years, environmental concerns regarding pollutants have grown dramatically. Current annual greenhouse gas (GHG) emissions are 12% higher than they were in 1992. In addition, carbon dioxide (CO 2 ) emissions are projected to increase by an additional 34% over the next 20 years. About one third of carbon emissions in the

460

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Michael G. Waddell Earth Sciences and Resources Institute University of South Carolina U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 20-22, 2013 2 Presentation Outline * Project goals and benefits * Overview of the geology of the South Georgia Rift basin in SC * Results of petrographic and core analysis from the Rizer #1 * Future investigations in the SGR * Summary 3 Benefit to the Program Program Goals: * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop technologies to demonstrate that 99 percent of injected

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Micro-Structured Sapphire Fiber Sensors for Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High-T and Dynamic Gas Pressure in Harsh Environments DE-FE0001127 Investigators: Hai Xiao, Hai-Lung Tsai, Missouri University of Science and Technology Junhang Dong, University of Cincinnati Program Manager: Norm Popkie, Gasification Division, NETL DOE Project Kickoff Meeting in the NETL Pittsburgh December 15, 2009 Outline * Background * Objectives * Project Elements * Management Plan * Research Plan and Approaches * Risk Management * Summary Background * Demands: High-performance, reliable, in situ sensors are highly demanded for advanced process control and lifecycle management in existing and future advanced power and fuel systems - Improved efficiency/safety/reliability/availability/maintainability

462

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Mart Oostrom Mart Oostrom Pacific Northwest National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline  Project overview  Sub-Task 1: Investigation of CO 2 migration in heterogeneous porous media  Sub-Task 2: Modeling CCUS deployment in China  Summary Collaboration with China on Clean Energy Research 3 Benefit to the Program The Clean Energy Partnership was established by a memorandum of understanding between the Chinese Academy of Sciences, the National Energy Technology Laboratory and the Pacific Northwest National Laboratory in May of 2009 with the goal of significantly reducing the environmental emissions and improving the efficiency of

463

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Evaluation of Geophysical Methods for Monitoring and Tracking CO 2 Migration in the Subsurface PI: Jeffrey Daniels Co-PI: Robert Burns & Franklin Schwartz Students: Michael Murphy & Kyle Shalek The Ohio State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 FOA Number: DE-FOA-0000032 NETL Award Number: DE-FE0002441 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary 3 Benefit to the Program * Program Goal: Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones

464

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

0-22, 2013 0-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview: Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefit to the Program * Advanced simulation tool for quantifying transport in porous and fractured geological formations during CO 2 sequestration that includes all mechanisms: convection, diffusion, dissolution and chemical reactions * A simulator that can fully model these processes does not currently exist * Simulator will contribute to our ability to predict CO 2 storage capacity in geologic formations, to within ±30 percent 4 Project Overview: Goals and Objectives Comprehensive reservoir simulator for investigation of CO 2 non-isothermal, multiphase flow and long-term storage in

465

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas J. Wolery Thomas J. Wolery Lawrence Livermore National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 LLNL-PRES-574632 2 Team Members * Roger Aines * Bill Bourcier * Tom Wolery * Tom Buscheck * Tom Wolfe (consultant) * Mike DiFilippo (consultant) * Larry Lien (Membrane Development Specialists) 3 Presentation Outline * Overview of Active CO 2 Reservoir Management (ACRM) * Subsurface Reservoir Management: Made Possible by Brine Production, Yielding Many Benefits * Brine Disposal Options - What brines are out there? - What are the treatment options? 4 Benefit to the Program * This project is identifying and evaluating

466

Classroom Projects -- Part One  

NLE Websites -- All DOE Office Websites (Extended Search)

One One Nature Bulletin No. 609 September 17, 1960 Forest Preserve District of Cook County Daniel Ryan, President Roberts Mann, Conservation Editor David H. Thompson, Senior Naturalist CLASSROOM PROJECTS -- PART ONE The essence, the fundamental purpose, of the outdoor education program conducted by our department is stated briefly in the introductory words of a book -- Natural Science Through the Seasons, by J. A. Partridge -- which we use and recommend for teachers: "To initiate children into the romance and wonder of science, and to enhance their natural desire to get to know the world around them and find an explanation of its phenomena. In this bulletin are a few examples of many projects that appeal to younsters and have proven successful in giving pupils more insight into their surroundings, including the flora and fauna, than can be obtained solely from books. These brief outlines are offered as starting points in areas of exploration and study. They may be supplemented by use of our nature bulletins, Partridge's book, the Golden Nature Guides, and publications by agencies such as the Illinois State Museum and the Illinois Office of Public Instruction.

467

Project Payette  

SciTech Connect

This is the concept for Project Payette, a nuclear event in the Seismic Detection Research Program. For this experiment, a nuclear explosive in the range of 5 to 10 kt will be detonated at a depth of 2000 to 3000 ft in an underground cavity of sufficient size that the walls of the cavity experience only elastic motion. The site will be located in a salt dome. Project Payette has been divided into three phases. Phase I will include site evaluation and engineering design of the construction of the cavity. It is estimated to require about 1 year. Phase II will include construction of the cavity and emplacement hole. It is estimated to require about 2 years. Phase III will include emplacement of instruments and the device, the detonation and the post-shot program including cavity re-entry. This is estimated to require about 1 year. The scope of this concept is intended to define Project Payette sufficiently will that Phase I work may proceed.

Warner, D.

1966-08-01T23:59:59.000Z

468

A numerical method for predicting the bending fatigue life of NiTi and stainless steel root canal  

E-Print Network (OSTI)

or fluctuating strains at nominal stresses below (and often much less than) the yield strength of the material (Bannantine et al. 1989, ASM Interna- tional 1996). The material will succumb to propagat- ing fatigue­cracks) and are subjected to harsh working (corrosive) condi- tions under a combination of torsional and bending moments

Zheng, Yufeng

469

Design Parameters for a 7.2 Tesla Bending Magnet for a 1.5 GeV Compact Light Source  

E-Print Network (OSTI)

a Central Induction of 7 tesla [l] D. B. Cline A. A. Gmen.Design Parameters for a 7.2 Tesla Bending Magnet for a 1.5Design Parameters for a 7.2 Tesla Bending Magnet for a 1.5

Green, M.A.

2011-01-01T23:59:59.000Z

470

Progress Letter Report on Bending Fatigue Test System Development for Spent Nuclear Fuel Vibration Integrity Study (Out-of-cell fatigue testing development - Task 2.4)  

SciTech Connect

Vibration integrity of high burn-up spent nuclear fuel in transportation remains to be a critical component of US nuclear waste management system. The structural evaluation of package for spent fuel transportation eventually will need to see if the content or spent fuel is in a subcritical condition. However, a system for testing and characterizing such spent fuel is still lacking mainly due to the complication involved with dealing radioactive specimens in a hot cell environment. Apparently, the current state-of-the-art in spent fuel research and development is quite far away from the delivery of reliable mechanical property data for the assessment of spent fuels in the transport package evaluation. Under the sponsorship of US NRC, ORNL has taken the challenge in developing a robust testing system for spent fuel in hot cell. An extensive literature survey was carried out and unique requirements of such testing system were identified. The U-frame setup has come to the top among various designs examined for reverse bending fatigue test of spent fuel rod. The U-frame has many features that deserve mentioned here: Easy to install spent fuel rod in test; Less linkages than in conventional bending test setup such as three-point or four-point bending; Target the failure mode relevant to the fracture of spent fuel rod in transportation by focusing on pure bending; The continuous calibrations and modifications resulted in the third generation (3G) U-frame testing setup. Rigid arms are split along the LBB axis at rod sample ends. For each arm, this results in a large arm body and an end piece. Mating halves of bushings were modified into two V-shaped surfaces on which linear roller bearings (LRB) are embedded. The rod specimen is installed into the test fixture through opening and closing slide end-pieces. The 3G apparently has addressed major issues of setup identified in the previous stage and been proven to be eligible to be further pursued in this project. On the other hand, the purchase of universal testing machine or Bose dual LM2 TB was completed and the testing system was delivered to ORNL in August 2012. The preliminary confirmation of the system and on-site training were given by Bose field engineer and regional manager on 8/1-8/2/2012. The calibration of Bose testing system has been performed by ORNL because the integration of ORNL setup into the Bose TestBench occurred after the installation. Major challenge with this process arose from two aspects: 1) the load control involves two load cells, and 2) U-frame setup itself is a non-standard specimen. ORNL has been able to implement the load control through Cycle Indirect along with pinning the U-frame setup. Two meetings with ORNL hot-cell group (November 2012 and January 2013) were held to discuss the potential issues with both epoxy mounting of rigid sleeve and U-frame setup. Many suggestions were provided to make the procedure friendlier to the manipulator in hot cell. Addressing of these suggestions resulted in another cycle of modifications of both vise mold and setup. The initial meeting with ORNL I&C group occurred in November 2012 with regard to the Bose cable modification and design of central panel to integrate the cables and wires. The first round of cable modification and central panel fabrication was completed in February 2012. The testing with the modified cables exhibited substantial noises and the testing system was not shown to be stable. It was believed the cross talk was responsible to the noise, and a central panel with a better grounding and shielding was highly recommended. The central panel has been re-designed and fabricated in March 2013. In the subsequent period, the ORNL made substantial effort to debug the noises with the load cell channel, and to resolve the noises and nonlinearity with RDP LVDTs related to the integration of RDP LVDTs to Bose system. At the same time, ORNL has completed the verification tests of Bose test system, including cycle tests under reversal bending in load control, bending tests under monotonic load, and cycle test

Wang, Jy-An John [ORNL; Wang, Hong [ORNL; Cox, Thomas S [ORNL; Baldwin, Charles A [ORNL; Bevard, Bruce Balkcom [ORNL

2013-08-01T23:59:59.000Z

471

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Introduction * Organization * Benefit to Program * Project Overview * Technical Status * Accomplishments to Date * Summary * Appendix Introduction * Most storage modeling studies assume a discrete reservoir/caprock interface with simple (uniform) flow conditions. * We address the question of whether or not heterogeneities at the interface influence transmission of CO 2 into the caprock 3 4 Reservoir Caprock Reservoir Introduction The nature of reservoir/caprock interfaces 4 Organization 5 Peter Mozley (PD/PI) NMT Sedimentology James Evans (Co-PI) USU Structure Thomas Dewers (Co-I) Jason Heath (Staff) SNL Modeling Mark Person (Cooperating Scientist) NMT Modeling Stefan Raduha NMT Sedimentology

472

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

William Bourcier William Bourcier Lawrence Livermore National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Saline Aquifer Brine Production Well Brine Injection Well Chiller Pretreatment Desalination Brine Permeate To power plant or other use Storage pump CO 2 injection Concept is to extract and desalinate aquifer brines to create fresh water and space for CO 2 storage cap-rock 3 Presentation Outline * Overview, Purpose, Goals and Benefits * Technical status - Brine treatment and disposition - Reservoir management * Accomplishments * Summary and Planned work Goals and Objectives Technical Goals Potential advantages of brine

473

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Metrics for Screening CO Metrics for Screening CO 2 Utilization Processes Peter Kabatek Energy Sector Planning and Analysis (ESPA) Services / WorleyParsons U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * NETL's Carbon Storage Program * Introduction of the metrics * Review of the case study technology * Application of metrics to the case study technology * Discussion of metrics interpretation and grouping 3 NETL Carbon Storage Program * The Carbon Storage Program contains three key elements: - Infrastructure - Global Collaborations - Core Research and Development: * Monitoring, Verification and Accounting (MVA) * Geologic Storage

474

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Introduction * Reservoir Simulation Model * Intelligent Leakage Detection System (ILDS) * Accomplishments * Summary Objective * Develop an in-situ CO 2 leak detection technology based on the concept of Smart Fields. - Using real-time pressure data from permanent downhole gauges to estimate the location and the rate of CO 2 leakage. CO2 Leakage(X,Y,Q) Artificial Intelligence & Data Mining Industrial Advisory Committee (IAC) * Project goes through continuous peer-review by an Industrial Review Committee. * Meetings: - November 6 th 2009 : * Conference call * Site selection criteria - November 17 th 2009: * A meeting during the Regional Carbon Sequestration Partnership Meeting in Pittsburgh

475

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Factors Influencing Factors Influencing CO 2 Storage Capacity and Injectivity in Eastern Gas Shales Contract No. DE-FE0004633 Michael Godec, Vice President Advanced Resources International mgodec@adv-res.com U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Program Benefits * Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefits to the Program * Program Goals Addressed - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.

476

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Training and Research Peter M. Walsh University of Alabama at Birmingham U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CCUS Pittsburgh, Pennsylvania August 21-23, 2012 DE-FE0002224 * Evaluation of the sealing capacity of caprocks serving as barriers to upward migration of CO 2 sequestered in geologic formations. * Education and training of undergraduate and graduate students, through independent research on geologic sequestration. * Education, through an advanced undergraduate/graduate level course on coal combustion and gasification, climate change, and carbon sequestration. * Simulation of CO 2 migration and trapping in storage

477

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Building the Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Introduction - Objective - Industrial Review Committee - Background * Steps Involved - Geological and Reservoir Simulation Modeling - Leakage Modeling & Real-Time Data Processing - Pattern Recognition & Intelligent Leakage Detection System (ILDS) * Accomplishments to Date * Summary Objective * Develop an in-situ CO 2 leak detection technology based on the concept of Smart Fields. - Using real-time pressure data from permanent downhole gauges to estimate the location and the rate of CO 2 leakage. Industrial Advisory Committee (IAC) * Project goes through continuous peer-review by an Industrial Review Committee. * Meetings: - November 6 th 2009 :

478

Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

About About Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now to someone by E-mail Share Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on Facebook Tweet about Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on Twitter Bookmark Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on Google Bookmark Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on Delicious Rank Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on Digg Find More places to share Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on AddThis.com...

479

SunShot Initiative: Four Solar-Saving Strategies Starting with WWW  

NLE Websites -- All DOE Office Websites (Extended Search)

Four Solar-Saving Strategies Four Solar-Saving Strategies Starting with WWW to someone by E-mail Share SunShot Initiative: Four Solar-Saving Strategies Starting with WWW on Facebook Tweet about SunShot Initiative: Four Solar-Saving Strategies Starting with WWW on Twitter Bookmark SunShot Initiative: Four Solar-Saving Strategies Starting with WWW on Google Bookmark SunShot Initiative: Four Solar-Saving Strategies Starting with WWW on Delicious Rank SunShot Initiative: Four Solar-Saving Strategies Starting with WWW on Digg Find More places to share SunShot Initiative: Four Solar-Saving Strategies Starting with WWW on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Diversity in Science and Technology Advances National Clean Energy in Solar

480

Project Rulison  

Office of Legacy Management (LM)

Rulison Rulison 1970 Environmerstal Surveillance Summary Report J - - Colorado Department of Health DIVISION OF OCCUPATIONAL AND RADIOLOGICAL HEALTH DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. STATE OF COLORADO P R O J E C T R U L I S O N Environments 1 S u r v e i l l a n c e Summary R e p o r t C o l o r a d o D e p a r t m e n t o f H e a l t h D i v i s i o n o f O c c u p a t i o n a l and R a d i o l o g i c a l 3 e a l t h This page intentionally left blank FOREWORD Project Rulison is an experimental Plowshare project undertaken cooperatively by the Atomic Energy Commission (AEC) and the Department of Interior for the government, and Austral Oil Company and CER Geo- nuclear Corporation for private industry. As required by law, the AEC

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Reversible Bending Fatigue Test System for Investigating Vibration Integrity of Spent Nuclear Fuel during Transportation  

SciTech Connect

Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety and security of spent nuclear fuel storage and transport operations. The ORNL developed test system can perform reversible-bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot-cell operation, including remote installation and detachment of the SNF test specimen, in-situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U-frame set-up equipped with uniquely designed grip rigs, to protect SNF rod and to ensure valid test results, and use of 3 specially designed LVDTs to obtain the in-situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. Th