Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

START Program Project Sites  

Broader source: Energy.gov [DOE]

The Strategic Technical Assistance Response Team (START) Program is part of the DOE Office of Indian Energy effort to assist in the development of tribal renewable energy projects. Through START,...

2

Big Bend-Witten Transmission Line Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Big Bend-Witten Transmission Line Project The Western Area Power Administration (Western), an agency of the Department of Energy (DOE), has prepared a draft environmental...

3

START Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Projects Projects START Projects The Strategic Technical Assistance Response Team (START) Program is part of the DOE Office of Indian Energy effort to assist in the development of tribal renewable energy projects. Through START, Tribes in the 48 contiguous states and Alaska apply for and are selected to receive technical assistance from DOE and national laboratory experts to move projects closer to implementation. The Strategic Technical Assistance Response Team (START) Program is part of the DOE Office of Indian Energy effort to assist in the development of tribal renewable energy projects. Through START, Tribes in the 48 contiguous states and Alaska apply for and are selected to receive technical assistance from DOE and national laboratory experts to move projects closer to implementation

4

MHK Projects/Greenville Bend Project | Open Energy Information  

Open Energy Info (EERE)

Greenville Bend Project Greenville Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9231,"lon":-90.1433,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

5

MHK Projects/Little Prairie Bend Project | Open Energy Information  

Open Energy Info (EERE)

Little Prairie Bend Project Little Prairie Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.2522,"lon":-89.657,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

6

MHK Projects/Carrolton Bend Project | Open Energy Information  

Open Energy Info (EERE)

Carrolton Bend Project Carrolton Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.95,"lon":-90.1551,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

7

MHK Projects/Gouldsboro Bend Project | Open Energy Information  

Open Energy Info (EERE)

Gouldsboro Bend Project Gouldsboro Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9177,"lon":-90.0673,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

8

MHK Projects/Scotlandville Bend Project | Open Energy Information  

Open Energy Info (EERE)

Scotlandville Bend Project Scotlandville Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.5166,"lon":-91.218,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

9

MHK Projects/Walker Bend Project | Open Energy Information  

Open Energy Info (EERE)

Walker Bend Project Walker Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.3678,"lon":-91.1315,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

10

MHK Projects/Hickman Bend Project | Open Energy Information  

Open Energy Info (EERE)

Hickman Bend Project Hickman Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.6007,"lon":-89.21,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

11

MHK Projects/Newton Bend Project | Open Energy Information  

Open Energy Info (EERE)

Newton Bend Project Newton Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.218,"lon":-90.9891,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

12

MHK Projects/Morgan Bend Crossing Project | Open Energy Information  

Open Energy Info (EERE)

Morgan Bend Crossing Project Morgan Bend Crossing Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.7879,"lon":-91.5469,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

13

MHK Projects/Sara Bend Project | Open Energy Information  

Open Energy Info (EERE)

Sara Bend Project Sara Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.751,"lon":-91.3999,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

14

MHK Projects/Kenner Bend Project | Open Energy Information  

Open Energy Info (EERE)

Kenner Bend Project Kenner Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9596,"lon":-90.2868,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

15

MHK Projects/Avondale Bend Project | Open Energy Information  

Open Energy Info (EERE)

Avondale Bend Project Avondale Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9301,"lon":-90.2215,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

16

MHK Projects/New Madrid Bend Project | Open Energy Information  

Open Energy Info (EERE)

Madrid Bend Project Madrid Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.5515,"lon":-89.4613,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

17

MHK Projects/Kempe Bend Project | Open Energy Information  

Open Energy Info (EERE)

Kempe Bend Project Kempe Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.8622,"lon":-91.3073,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

18

MHK Projects/Milliken Bend Project | Open Energy Information  

Open Energy Info (EERE)

Milliken Bend Project Milliken Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.5594,"lon":-91.1119,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

19

MHK Projects/Miller Bend Project | Open Energy Information  

Open Energy Info (EERE)

Miller Bend Project Miller Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.4887,"lon":-91.1612,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

20

MHK Projects/Remy Bend Project | Open Energy Information  

Open Energy Info (EERE)

Remy Bend Project Remy Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.0121,"lon":-90.754,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Final Cut Pro Starting project  

E-Print Network [OSTI]

Setup- DV-NTSC (for mini dv tape) HD- 720 or 1080 (what format did you shoot your film?) Click setup In FCP: File: Save project as (title of your movie) Save to your hard drive Desktop display File: Window and insert with/out transition Capturing only audio or only video Log and capture window Go to clip settings

Bordenstein, Seth

22

Toledo Bend Project Joint Oper | Open Energy Information  

Open Energy Info (EERE)

Bend Project Joint Oper Bend Project Joint Oper Jump to: navigation, search Name Toledo Bend Project Joint Oper Place Texas Utility Id 19048 Utility Location Yes Ownership S NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Toledo_Bend_Project_Joint_Oper&oldid=411678"

23

Proposed Start Date: Title of Project  

E-Print Network [OSTI]

Proposed Start Date: Title of Project: 1 Department:Principal Investigator(s): 1. College: Phone/ Email: 5 6 7 8 Does project involve: Human subjects? No Yes VertebrateAnimals? No Yes Radioactive understand and agree to comply with the URI policies and procedures for misconduct, conflict of interest

Rhode Island, University of

24

Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production  

Office of Energy Efficiency and Renewable Energy (EERE)

Project LIBERTY, the nations first commercial-scale cellulosic ethanol plant to use corn waste as a feedstock, announced the start of production today. Once operating at full, commercial-scale, the biorefinery in Emmetsburg, Iowa will produce 25 million gallons of cellulosic ethanol per year - enough to avoid approximately 210,000 tons of CO2 emissions annually.

25

MHK Projects/Vicksburg Bend | Open Energy Information  

Open Energy Info (EERE)

Vicksburg Bend Vicksburg Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

26

MHK Projects/Island 35 Bend | Open Energy Information  

Open Energy Info (EERE)

MHK Projects/Island 35 Bend MHK Projects/Island 35 Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.5435,"lon":-89.9079,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

27

MHK Projects/Cow Island Bend | Open Energy Information  

Open Energy Info (EERE)

Island Bend Island Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.0269,"lon":-90.2792,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

28

MHK Projects/Old Town Bend | Open Energy Information  

Open Energy Info (EERE)

Old Town Bend Old Town Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3713,"lon":-90.7493,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

29

MHK Projects/Springfield Bend | Open Energy Information  

Open Energy Info (EERE)

Springfield Bend Springfield Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.5654,"lon":-91.2603,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

30

MHK Projects/Georgetown Bend | Open Energy Information  

Open Energy Info (EERE)

Georgetown Bend Georgetown Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.5735,"lon":-91.1986,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

31

MHK Projects/Davis Island Bend | Open Energy Information  

Open Energy Info (EERE)

Island Bend Island Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.1299,"lon":-91.0636,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

32

MHK Projects/Matthews Bend | Open Energy Information  

Open Energy Info (EERE)

Matthews Bend Matthews Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.1201,"lon":-91.1208,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

33

MHK Projects/Island 14 Bend | Open Energy Information  

Open Energy Info (EERE)

Island 14 Bend Island 14 Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.2837,"lon":-89.576,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

34

MHK Projects/Fitler Bend | Open Energy Information  

Open Energy Info (EERE)

Fitler Bend Fitler Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.8007,"lon":-91.1586,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

35

MHK Projects/Slough Bend | Open Energy Information  

Open Energy Info (EERE)

Slough Bend Slough Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.4778,"lon":-89.4436,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

36

MHK Projects/Bar Field Bend | Open Energy Information  

Open Energy Info (EERE)

Bar Field Bend Bar Field Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.8967,"lon":-89.6897,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

37

MHK Projects/St Rose Bend | Open Energy Information  

Open Energy Info (EERE)

Rose Bend Rose Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9309,"lon":-90.3433,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

38

MHK Projects/Little Cypress Bend | Open Energy Information  

Open Energy Info (EERE)

Cypress Bend Cypress Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.3482,"lon":-89.5892,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

39

MHK Projects/Saint Catherine Bend | Open Energy Information  

Open Energy Info (EERE)

Saint Catherine Bend Saint Catherine Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.4111,"lon":-91.4953,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

40

MHK Projects/Linwood Bend | Open Energy Information  

Open Energy Info (EERE)

Linwood Bend Linwood Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.1676,"lon":-89.6216,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

START Program for Renewable Energy Project Development Assistance...  

Broader source: Energy.gov (indexed) [DOE]

Program for Renewable Energy Project Development Assistance START Program for Renewable Energy Project Development Assistance The Strategic Technical Assistance Response Team...

42

Property:Project Start Date | Open Energy Information  

Open Energy Info (EERE)

Property Name Project Start Date Property Name Project Start Date Property Type String Pages using the property "Project Start Date" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 1/1/2012 + MHK Projects/ADM 3 + 1/1/2010 + MHK Projects/ADM 4 + 1/1/2010 + MHK Projects/ADM 5 + 1/11/2009 + MHK Projects/AW Energy EMEC + 1/1/2004 + MHK Projects/Admirality Inlet Tidal Energy Project + 1/1/2006 + MHK Projects/Agucadoura + 1/1/2008 + MHK Projects/Alaska 1 + 1/1/2007 + MHK Projects/Alaska 13 + 1/1/2008 + MHK Projects/Alaska 17 + 1/1/2007 + MHK Projects/Alaska 18 + 1/1/2008 + MHK Projects/Alaska 24 + 1/1/2007 + MHK Projects/Alaska 25 + 1/1/2007 + MHK Projects/Alaska 28 + 1/1/2007 + MHK Projects/Alaska 31 + 1/1/2007 + MHK Projects/Alaska 33 + 1/1/2007 +

43

START Program for Renewable Energy Project Development Assistance |  

Broader source: Energy.gov (indexed) [DOE]

Program for Renewable Energy Program for Renewable Energy Project Development Assistance START Program for Renewable Energy Project Development Assistance The Strategic Technical Assistance Response Team (START) Program is part of the DOE Office of Indian Energy effort to assist in the development of tribal renewable energy projects. Through the START Program for Renewable Energy Project Development Assistance, a team of DOE and national laboratory experts will work directly with tribal communities to evaluate project financial and technical feasibility, provide on-going training to community members, and help implement a variety of clean energy projects, including energy storage infrastructure, renewable energy deployment, and energy efficiency. The following projects were selected for the 2013 START Renewable Energy

44

EA-1880: Big Bend to Witten Transmission Line Project, South Dakota |  

Broader source: Energy.gov (indexed) [DOE]

80: Big Bend to Witten Transmission Line Project, South Dakota 80: Big Bend to Witten Transmission Line Project, South Dakota EA-1880: Big Bend to Witten Transmission Line Project, South Dakota Summary The USDA Rural Utilities Service, with DOE's Western Area Power Administration as a cooperating agency, is preparing this EA to evaluate the environmental impacts of a proposal to construct a 70-mile long 230-kV single-circuit transmission line, a new Western Area Power Administration substation, an addition to the existing substation, and approximately 2 miles of 230-kV double-circuit transmission line, all in South Dakota. Proposed action is related to the Keystone XL project (see DOE/EIS-0433-S1). Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download April 12, 2011

45

START Site Visit Examines Viability of Tribal Community Solar Project |  

Broader source: Energy.gov (indexed) [DOE]

START Site Visit Examines Viability of Tribal Community Solar START Site Visit Examines Viability of Tribal Community Solar Project START Site Visit Examines Viability of Tribal Community Solar Project August 21, 2013 - 12:50pm Addthis From left to right: James Jensen, Tom Johnson, Jody Rosier, and Rebecca Kauffman of Southern Ute Alternative Energy, and Otto VanGeet and Alex Dane of NREL, tour a potential solar array site on Southern Ute tribal land in Ignacio, CO. Photo by Dennis Schroeder, NREL From left to right: James Jensen, Tom Johnson, Jody Rosier, and Rebecca Kauffman of Southern Ute Alternative Energy, and Otto VanGeet and Alex Dane of NREL, tour a potential solar array site on Southern Ute tribal land in Ignacio, CO. Photo by Dennis Schroeder, NREL NREL's Otto VanGeet (right) shows James Jensen of Southern Ute Alternative Energy how to use a SunEye tool to check solar availability of the site. Photo by Dennis Schroeder, NREL

46

Preliminary assessment of potential CDM early start projects in Brazil  

SciTech Connect (OSTI)

The Brazil/US Aspen Global Forum on Climate Change Policies and Programs has facilitated a dialogue between key Brazil and US public and private sector leaders on the subject of the Clean Development Mechanism (CDM). With support from the US government, a cooperative effort between Lawrence Berkeley National Laboratory and the University of Sao Paulo conducted an assessment of a number of projects put forth by Brazilian sponsors. Initially, we gathered information and conducted a screening assessment for ten projects in the energy sector and six projects in the forestry sector. Some of the projects appeared to offer greater potential to be attractive for CDM, or had better information available. We then conducted a more detailed assessment of 12 of these projects, and two other projects that were submitted after the initial screening. An important goal was to assess the potential impact of Certified Emission Reductions (CERs) on the financial performance of projects. With the exception of the two forestry-based fuel displacement projects, the impact of CERs on the internal rate of return (IRR) is fairly small. This is true for both the projects that displace grid electricity and those that displace local (diesel-based) electricity production. The relative effect of CERs is greater for projects whose IRR without CERs is low. CERs have a substantial effect on the IRR of the two short-rotation forestry energy substitution projects. One reason is that the biofuel displaces coke and oil, both of which are carbon-intensive. Another factor is that the product of these projects (charcoal and woodfuel, respectively) is relatively low value, so the revenue from carbon credits has a strong relative impact. CERs also have a substantial effect on the NPV of the carbon sequestration projects. Financial and other barriers pose a challenge for implementation of most of the projects. In most cases, the sponsor lacks sufficient capital, and loans are available only at high interest rate and with substantial guarantee. A few of the projects might go ahead without the benefit of CERs, but most probably would not. Whether the projected revenue from CERs would be sufficient to induce sponsors to proceed with the projects is an important issue that requires further investigation. All of the projects contribute to economic development in Brazil. The forestry projects in particular would create a significant number of rural jobs, and contribute income to rural communities. Some of the carbon sequestration projects would provide environmental benefits with respect to protection of biodiversity and soil.

Meyers, S.; Sathaye, J.; Lehman, B.; Schumacher, K.; van Vliet, O.; Moreira, J.R.

2000-11-01T23:59:59.000Z

47

Preliminary assessment of potential CDM early start projects in Brazil  

E-Print Network [OSTI]

9 X. Small Hydro in the State ofIRR WITH CREDITS AT $20/tC SMALL HYDRO IN GOIAS WIND FARMSeffect on the IRR. For the small hydro project, for example,

Meyers, S.; Sathaye, J.; Lehman, B.; Schumacher, K.; van Vliet, O.; Moreira, J.R.

2000-01-01T23:59:59.000Z

48

Aligning Success: Contract and Project Management START STOP  

Broader source: Energy.gov (indexed) [DOE]

Management (OECM) Management (OECM) 8:05 AM 8:20 AM 15 Opening Remarks Ingrid Kolb, Director, Office of Management (MA) 8:20 AM 8:50 AM 30 Project Management Sucesses Daniel Poneman, Deputy Secretary of Energy (pending) 8:50 AM 9:20 AM 30 Project Management Challenges Ms. Madelyn R. Creedon, Senate Staff--Senate Armed Services Committee (pending) 9:20 AM 9:35 AM 15 Break 9:35 AM 10:25 AM 50 Office of Federal Procurement Policy view on contracting The Honorable Dan Gordon, Director, Office of Federal Procurement Policy & OMB 10:25 AM 11:15 AM 50 The New DOE O 413.3B Paul Bosco, Director, Office of Engineering & Construction Management (OECM) 11:15 AM 11:30 AM 15 Break 11:30 AM 12:00 PM 30 EERE's new LEED "Platinum" Facility Jeff Baker, Golden Field Office, FPD of EERE's new "Platinum"

49

FLTC Sponsored Research and Development Project Wins NEH Digital Humanities Start-up Grant!  

E-Print Network [OSTI]

FLTC Sponsored Research and Development Project Wins NEH Digital Humanities Start-up Grant! A six technology has been awarded a National Endowment for the Humanities (NEH) Digital Humanities Start-up Grant (German) 6. Krysta Ryzewski, Department of Anthropology (Anthropology) The official list of 2014 NEH Grant

Cinabro, David

50

Major Projects with Quick Starts & Jobs Creation Office of Clean Coal  

Broader source: Energy.gov (indexed) [DOE]

Projects with Quick Starts & Jobs Creation Projects with Quick Starts & Jobs Creation Office of Clean Coal Summary of Projects and Job Creation The following table outlines the near-term possibilities for projects that capture and sequester carbon from coal-based systems. The potential jobs associated with these activities are listed along with likely construction and operation dates. Since the funding is primarily for construction and associated activities, a rough estimate of 30 job years per $1 million dollars expended was used. COAL/CCS PROJECTS & JOBS CREATION GOV'T INDUSTRY TOTAL TOTAL FUNDING FUNDING FUNDING AWARD JOB PROGRAM/PROJECT ($Million) ($Million) ($Million) DATE CONSTRUCT OPERATE YEARS Current CCPI 440 660 1,100 2010 late 2011 2014 33,000 CCPI Plus $1000M for Additional Projects 1000 1000 2,000 2010 late 2011 2014 60,000

51

EIS-0296: South Oregon Coast Reinforcement Project, Coos Bay/North Bend, Oregon  

Broader source: Energy.gov [DOE]

Bonneville Power Administration proposes to build a 500- kilovolt (kV) transmission line and new substation to reinforce electrical service to the southern coast of the state of Oregon. Nucor Steel, a division of Nucor Corporation, may build a new steel mill in the Coos Bay/North Bend, Oregon, area.

52

EA-1880: Big Bend to Witten Transmission Line Project, South Dakota  

Broader source: Energy.gov [DOE]

The USDA Rural Utilities Service, with DOEs Western Area Power Administration as a cooperating agency, is preparing this EA to evaluate the environmental impacts of a proposal to construct a 70-mile long 230-kV single-circuit transmission line, a new Western Area Power Administration substation, an addition to the existing substation, and approximately 2 miles of 230-kV double-circuit transmission line, all in South Dakota. Proposed action is related to the Keystone XL project (see DOE/EIS-0433-S1).)

53

DOE/EIS-0265-SA-170: Supplement Analysis for the Watershed Management Program EIS--Tapteal Bend Riparian Corridor Restoration Project (8/11/04)  

Broader source: Energy.gov (indexed) [DOE]

1, 2004 1, 2004 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-170) Jonathan McCloud Fish and Wildlife Project Manager - KEWL-4 Proposed Action: Tapteal Bend Riparian Corridor Restoration Project Project No: 2002-018-00 Watershed Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Watershed Management Program EIS): 1.9 Structural Bank Protection Using Bioengineering Methods, 2.1 Maintain Healthy Riparian Plant Communities Location: Benton County, Washington Proposed by: Bonneville Power Administration (BPA) and the Tapteal Bend Greenway Association Description of the Proposed Action: The Bonneville Power Administration is proposing to fund the

54

Alaska START Application  

Broader source: Energy.gov [DOE]

Download the application for the START Program for Community Energy Planning and ProjectsRound Three.

55

START Program: Alaska  

Broader source: Energy.gov [DOE]

Overview fact sheet on the selected DOE Office of Indian Energy Strategic Technical Assistance Response Team (START) projects in Alaska.

56

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Are non-marine organic-rich shales suitable exploration targets?  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Are non-marine organic-rich shales suitable exploration targets? (EARTH-15-SR2) Host institution: University of Oxford Supervisor 1: Stuart Robinson Supervisor 2: Steve Hesselbo (University of Exeter) Project description: Shales

Henderson, Gideon

57

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Evaluating the resilience of deepwater systems to recover from oil spills  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Evaluating the resilience of deepwater systems to recover from oil spills Host institution: Heriot-Watt University Gatliff (BGS), Jeffrey Polton (NOC), Alejandro Gallego and Eileen Bresnan (MSS). Project description: Oil

Henderson, Gideon

58

START Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

START Program START Program START Program The Strategic Technical Assistance Response Team (START) Program is part of the DOE Office of Indian Energy effort to assist in the development of tribal renewable energy projects. Through START, Tribes in the 48 contiguous states and Alaska can apply for and are selected to receive technical assistance from DOE and national laboratory experts to move projects closer to implementation. Learn more about: START 2013 Renewable Energy Project Development Assistance Projects START 2013 Alaska Native Community Energy Planning and Projects START Resources View a map of START Projects Download the START fact sheet Read our new brochure on the START Program and Capacity Building 2012-2013 Success Highlights Download brochures on the five-step tribal project development and

59

Reversal bending fatigue testing  

SciTech Connect (OSTI)

Embodiments for apparatuses for testing reversal bending fatigue in an elongated beam are disclosed. Embodiments are configured to be coupled to first and second end portions of the beam and to apply a bending moment to the beam and create a pure bending condition in an intermediate portion of the beam. Embodiments are further configured to cyclically alternate the direction of the bending moment applied to the beam such that the intermediate portion of the beam cyclically bends in opposite directions in a pure bending condition.

Wang, Jy-An John; Wang, Hong; Tan, Ting

2014-10-21T23:59:59.000Z

60

MATLAB Project #1: Getting Started with MATLAB Record and hand in the printed the MATLAB commands and the results. Also, answer  

E-Print Network [OSTI]

1 MATLAB Project #1: Getting Started with MATLAB Note: Record and hand in the printed the MATLAB of MATLAB and the various MATLAB commands. This can be used as a brief tutorial and as a reference for basic operations. Use MATLAB's help, helpwin, and demo commands or see a User's Guide for more information. Part 1

Yang, Shih-Hsuan

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas activity: a west of Shetland case study industry and government identified sponge grounds in areas of interest to the oil and gas sector

Henderson, Gideon

62

UK Oil and Gas Collaborative Doctoral Training Centre (2015 start) Project Title: Exploring the petroleum potential of a frontier province: Cretaceous stratigraphy and  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2015 start) Project Title: Exploring Myanmar. It has been shown that gas and oil exists in the basin and that a considerable unconventional biogenic gas system exists in the deep-waters offshore. The sediments of the Rakhine Basin were deposited

Henderson, Gideon

63

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Quantifying the role of groundwater in hydrocarbon systems using noble gas  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Quantifying the role of groundwater in hydrocarbon systems using noble gas isotopes (EARTH-15-CB1) Host institution biodegradation of oil can remove its value ­ but what controls the biodegradation? The deep biosphere plays a key

Henderson, Gideon

64

Microhole Tubing Bending Report  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

A downhole tubing bending study was made and is reported herein. IT contains a report and 2 excel spreadsheets to calculate tubing bending and to estimate contact points of the tubing to the drilled hole wall (creating a new support point).

Oglesby, Ken

65

Alaska START Round 3  

Broader source: Energy.gov [DOE]

The DOE Office of Indian Energy is accepting applications for the third round of the Alaska Strategic Technical Assistance Response Team (START) Program to assist Alaska Native corporations and federally recognized Alaska Native governments with accelerating clean energy projects.

66

Robbins project - start-up and commercial operation at a leading-edge recycling, waste-to-energy plant  

SciTech Connect (OSTI)

On January 22, 1997, the Robbins Resource Recovery Facility began commercial operation in Robbins, Illinois, a suburb of Chicago, after a very successful start-up program. The first installation of its kind in the United States, the Robbins facility converts municipal solid waste (MSW) into refuse-derived fuel (RDF) that is fired in two circulating fluidized-bed boilers. Steam from the boilers powers a turbine generator that can produce enough electricity to service more than 50,000 homes. The Robbins facility processes a minimum of 1600 tons of MSW per day. Some 75 percent of the MSW is converted into RDF. In addition to compostable material, the balance yields reusable aluminum, ferrous materials, and glass. Even ash produced by the circulating fluidized-bed (CFB) boilers can be used to manufacture cement. The Robbins facility is operated by Foster Wheeler Illinois, Inc., a member of the Foster Wheeler Power Systems Group. The plant was engineered by Foster Wheeler USA Corporation and built by Foster Wheeler Constructors, Inc. Foster Wheeler Energy International, Inc. provided the circulating fluidized-bed boilers.

NONE

1997-12-31T23:59:59.000Z

67

Getting started  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Getting started Getting started Getting started First Steps You can log in to Genepool using SSH (Secure Shell) with the following command from any UNIX, Linux, FreeBSD, etc. command shell or terminal: ssh -l username genepool.nersc.gov There are several SSH-capable clients available for Windows, Mac, and UNIX/Linux machines. NERSC does not support or recommend any particular client. By ssh'ing to genepool.nersc.gov, you will access one of the seven genepool login nodes. These login nodes are situated behind a load balancer, so you may reach a different login node on different days. If you make use of a tool like "screen" or "tmux", make sure to take note of which login node you started it on. In addition to the genepool login nodes, the "gpint" systems are available

68

START Program: 48 Contiguous States  

Broader source: Energy.gov [DOE]

Overview fact sheet on the selected DOE Office of Indian Energy Strategic Technical Assistance Response Team (START) projects in the 48 contiguous states.

69

Hybrid: Starting  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

button highlighted Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar button highlighted Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar STARTING When the vehicle is started, the gasoline engine "warms up." If necessary, the electric motor acts as a generator, converting energy from the engine into electricity and storing it in the battery. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is moving. There are arrows flowing from the gasoline engine to the electric motor to the battery. Main stage: See through car with battery, engine, and electric motor visible. The car is moving. There are arrows flowing from the gasoline engine to the electric motor to the battery. Battery: The battery stores energy generated from the gasoline engine or, during regenerative braking, from the electric motor. Since the battery helps power the vehicle, it is larger and holds much more energy than batteries used to start conventional vehicles. Main stage: See through car with battery, engine, and electric motor visible. The car is moving. There are arrows flowing from the gasoline engine to the electric motor to the battery.

70

Start End  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Start Start End Δt Title Presenter 8:30 8:35 0:05 Welcome Earl Marmar 8:35 9:20 0:45 Discussion of 1st Launcher Design and Performance Ron Parker 9:20 9:50 0:30 Technical Objectives Randy Wilson 9:50 10:20 0:30 4-Way Splitter Design and Testing Peter Koert 10:20 10:35 0:15 Break 10:35 11:20 0:45 Mechanical Design Rui Vieira 11:20 12:05 0:45 Coupler Design and Simulation -- Plasma Effects Ron Parker Thermal Effects in Splitter Orso Meneghini 12:05 12:35 0:30 Summary and Schedule Jim Irby 12:35 13:35 1:00 Lunch 13:35 15:05 1:30 Executive Session 15:05 Debrief 1 st Launcher Design and Performance Ron Parker LH Launcher Design Review 9 September 2008 Lower Hybrid waves are injected into Alcator C-Mod plasmas at 4.6 GHz via an 88-waveguide grill Probes Stainless steel grill used to inject LH waves into Alcator C-Mod plasmas during 2006 -2008 campaigns. Maximum

71

Alaska START | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Resources » START Program » Alaska START Resources » START Program » Alaska START Alaska START Led by the DOE Office of Indian Energy, in partnership with the Denali Commission, the DOE Office of Energy Efficiency and Renewable Energy, and the National Renewable Energy Laboratory (NREL), the Strategic Technical Assistance Response Team (START) Initiative for Rural Alaska Native Community Energy Planning and Projects will support activities of Alaska Native communities and entities that are focused on community-based energy planning, energy awareness and training programs, and identification and implementation of renewable energy and energy efficiency opportunities. Through the START, each Alaska Native community will receive technical assistance focused on community-based energy planning, energy awareness and

72

START Program 2013: Alaska | Department of Energy  

Energy Savers [EERE]

Assistance Response Team (START) Program is part of the DOE Office of Indian Energy Policy and Programs effort to assist in the development of tribal renewable energy projects....

73

The Clinch Bend Regional Industrial Site and economic development opportunities  

SciTech Connect (OSTI)

This effort focuses initially on the Clinch Bend site. Other sites and developable tracts of land are identified with the assistance of communities in proximity to Oak Ridge, the State of Tennessee, and others, and compared with the projected site requirements for large industrial facilities.

NONE

1995-12-31T23:59:59.000Z

74

Microsoft Word - Kokanee Bend CX.docx  

Broader source: Energy.gov (indexed) [DOE]

0, 2013 0, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Cecilia Brown Project Manager - KEWM-4 Proposed Action: Kokanee Bend South Conservation Easement funding Fish and Wildlife Project No. and Contract No.: 2008-800-00, BPA-006863 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Real property transfers for cultural resources protection, habitat preservation, and wildlife management Location: Township 30 North, Range 20 West, Section 30, Flathead County, MT Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA intends to fund Montana Fish, Wildlife, and Parks (MFWP) for the purchase of a conservation easement, on approximately 70 acres of property,

75

York Externally Funded Research Grants and Contracts -July 1, 2009 to December 31, 2009 Rersearcher Project Title Funder Total Funding Start Date End Date  

E-Print Network [OSTI]

of Spatial Framework to Enhance Chronic Disease Surveillance Public Health Agency of Canada $102,936 10 for an Energy Efficient Ontario SeeLine Group LTD. $10,000 11/1/2009 4/30/2010 Bebko, James Mentoring Project Conservation Authority $5,000 12/22/2009 12/31/2010 Bohr, Yvonne Parent-Infant Separation in Trans- national

76

York Externally Funded Research Grants and Contracts -January 1, 2010 to June 30, 2010 Rersearcher Project Title Funder Total Funding Start Date End Date  

E-Print Network [OSTI]

to Low Income Households and an Assessment of Their Debt Relief Options SSHRC $67,029 4/1/2010 3, Uzoamaka N Black Creek Community Capacity Building Project Delta Family Resource Centre $25,284 1 Playing Field Understanding Relative Age Effects in Sport SSHRC $100,563 4/1/2010 3/31/2013 Page 1 of 20

77

Compaction managed mirror bend achromat  

DOE Patents [OSTI]

A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

Douglas, David (Yorktown, VA)

2005-10-18T23:59:59.000Z

78

Eleven Tribes Jump START Clean Energy Projects, Summer 2012 (Newsletter), U.S. Department of Energy (DOE) Office of Indian Energy (OIE), Indian Energy Beat  

Broader source: Energy.gov (indexed) [DOE]

BUILDING BUILDING BRIDGES . . . . . . . . . . . . . . . . . . . . . . . 3 SHARING KNOWLEDGE . . . . . . . . . . . . . . . . . . . . . 3 WINNING THE FUTURE . . . . . . . . . . . . . . . . . . . . . . 3 ON THE HORIZON . . . . . . . . . . . . . . . . . . . . . . . . . 4 LEADING THE CHARGE . . . . . . . . . . . . . . . . . . . . . 4 "Tribal communities, entrepreneurs, and small businesses will benefit greatly from the technical resources and expertise provided by DOE. START will help Native American and Alaska Native communities increase local generation capacity, enhance energy efficiency and conservation measures, and create job opportunities in the new clean energy economy." -DOE-IE Director Tracey A. LeBeau The U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) has selected 11 Tribes-five in Alaska and six in the contiguous United States-to receive on-the-ground technical support for community-based energy efficiency and renewable

79

OBSERVATION REPORT BendKing Pipe Bending Machine.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BENDKING PIPE BENDING MACHI\NE BENDKING PIPE BENDING MACHI\NE DEMONSTRATION Field Observation Report for December 3 - 4, 2001 Date Published: March 2002 Brian Meindinger, RMOTC PREPARED FOR THE U.S. DEPARTMENT OF ENERGY ROCKY MOUNTAIN OILFIELD TESTING CENTER 907 N. POPLAR, SUITE 150 CASPER, WY 82601 1-888-599-2200 Approval: RMOTC Manager_____________________________ Date:______________ Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any

80

Bending Energy of Rods and Plates  

E-Print Network [OSTI]

bending energy over a rod of length L is therefore ( )21 2 0 L llEI dl r (9.2) For 2D objects185 Chapter 9 Bending Energy of Rods and Plates Integrated curvature and bending energy of a closed curvature/energy values over a chain-code description of the contour (as in binary length estimators). We

van Vliet, Lucas J.

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Nonlinear bending models for beams and plates  

Science Journals Connector (OSTI)

...elastica model when bending does not alter the beam length...linear EB model. If bending does not alter the beam length...procedure is to verify that bending does not alter the plate length...Nauka. 15 Marichev, OI . 1983 Handbook of integral transforms of higher...

2014-01-01T23:59:59.000Z

82

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: Construction Project Team: Project Facts & Figures: Budget: £1.1M Funding Source: Departmental Construction Project Programme: Start on Site: November 2010 End Date : March 2011 Occupation Date: March 2011 For further information contact Project Manager as listed above

83

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: This project refurbished half of the 5th and 7th floors on the Faculty of Medicine, please visit: http://www1.imperial.ac.uk/medicine/ Construction Project Team: Project Facts & Figures: Budget: £3,500,000 Funding Source: SRIF III Construction Project Programme: Start

84

Stop/Start: Overview  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Stop/Start button highlighted banner graphic: blue bar Stop/Start button highlighted banner graphic: blue bar subbanner graphic: gray bar Overview button highlighted Driving button Braking button subbanner graphic: gray bar OVERVIEW Stop/Start hybrids are not true hybrids since electricity from the battery is not used to propel the vehicle. However, the Stop/Start feature is an important, energy-saving building block used in hybrid vehicles. Stop/Start technology conserves energy by shutting off the gasoline engine when the vehicle is at rest, such as at a traffic light, and automatically re-starting it when the driver pushes the gas pedal to go forward. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric starter/generator visible. Car is stopped at an intersection.

85

Blank Starting Slide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rewind Generator Rewind Denison Powerhouse Denison Rewind Rewind Contract - Awarded to Alstom May 2004 - 4.56 million - 526 calendar days Denison Rewind Original Schedule - Start...

86

Stop/Start: Driving  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

when the vehicle is at rest. When pulling out, the electric startergenerator uses electricity from the battery to instantly start the gasoline engine---the sole source of...

87

Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production...  

Office of Environmental Management (EM)

our transportation fueling options," said Secretary Ernest Moniz. "Home-grown biofuels have the potential to further increase our energy security, stimulate rural economic...

88

The Bending of Wood With Steam.  

E-Print Network [OSTI]

??Based on experimentation with the steam bending of wood to curved shapes, this thesis describes my involvement with three basic aspects of the process. First (more)

Cottey Jr., James H.

2008-01-01T23:59:59.000Z

89

Getting Started | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Run a Program Getting Started Getting Started Developing a successful, self-sustaining energy efficiency upgrade program in your community starts with careful planning....

90

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: In the first phase of the Union Building re.union.ic.ac.uk/marketing/building Construction Project Team: Project Facts & Figures: Budget: £1,400,000 Funding Source: Capital Plan and Imperial College Union reserves Construction Project Programme: Start on Site: August 2006 End Date: March

91

EA-1897: AltaRock's Newberry Volcano EGS Demonstration near Bend, Oregon |  

Broader source: Energy.gov (indexed) [DOE]

7: AltaRock's Newberry Volcano EGS Demonstration near Bend, 7: AltaRock's Newberry Volcano EGS Demonstration near Bend, Oregon EA-1897: AltaRock's Newberry Volcano EGS Demonstration near Bend, Oregon Summary This EA evaluates the environmental impacts of a proposal to create an Enhanced Geothermal Systems (EGS) Demonstration Project involving new technology, techniques, and advanced monitoring protocols for the purpose of testing the feasibility and viability of EGS for renewable energy production. BLM is the lead agency for this EA and DOE is a cooperating agency. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download April 5, 2012 EA-1897: Finding of No Significant Impact AltaRock's Newberry Volcano EGS Demonstration near Bend, Oregon April 5, 2012 EA-1897: Final Environmental Assessment

92

Getting Started on Euclid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Getting started Getting started Getting started Logging In Users can log into Euclid using the Secure Shell (SSH) protocol 2 with the following command: % ssh -l username euclid.nersc.gov When you successfully log in you will land in your $HOME directory. Euclid is a one node system. All jobs that run on Euclid, e.g. compiles, edits, user jobs, etc,. run on the same node. Sample Program Code: Parallel Hello World Although Euclid was not intended for production runs of MPI codes, it is possible to run small MPI codes on it. Open a new file called helloWorld.f90 with a text editor such as emacs or vi. Paste the contents of the below code into the file. program helloWorld implicit none include "mpif.h" integer :: myPE, numProcs, ierr call MPI_INIT(ierr) call MPI_COMM_RANK(MPI_COMM_WORLD, myPE, ierr)

93

US tokamak starts up  

Science Journals Connector (OSTI)

... 's Plasma Physics Laboratory have successfully started up the first of a new generation of tokamak fusion devices. The $314 million ... fusion devices. The $314 million Tokamak Fusion Test Reactor (TFTR) is expected to attain scientific break-even - the point ...

Stephen Budiansky

1983-01-13T23:59:59.000Z

94

PHP: Getting Started Introduction  

E-Print Network [OSTI]

PHP: Getting Started Introduction This document describes the basic syntax for PHP code, how to execute PHP scripts, methods for sending output to the browser, how to comment your code, and the handling of whitespace. Basic PHP syntax PHP code typically resides in a plaintext file with a .php extension. The code

Vander Zanden, Brad

95

Full Hybrid: Starting  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

highlighted Low Speed button Cruising button Passing button Braking button Stopped button highlighted Low Speed button Cruising button Passing button Braking button Stopped button STARTING When a full hybrid vehicle is initially started, the battery typically powers all accessories. The gasoline engine only starts if the battery needs to be charged or the accessories require more power than available from the battery. stage graphic: vertical blue rule Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection. Battery (highlighted): The battery stores energy generated from the gasoline engine or, during regenerative braking, from the electric motor. Since the battery powers the vehicle at low speeds, it is larger and holds much more energy than batteries used to start conventional vehicles. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection.

96

Horseshoe Bend Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Horseshoe Bend Wind Farm Horseshoe Bend Wind Farm Jump to: navigation, search Name Horseshoe Bend Wind Farm Facility Horseshoe Bend Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner United Materials Developer Exergy Development Group Energy Purchaser Idaho Power Location West of Great Falls MT Coordinates 47.497516°, -111.432567° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.497516,"lon":-111.432567,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

97

Parallel interacting edge cracks under pure bending  

E-Print Network [OSTI]

. Once the applicability of the Williams' equations, have been proved or disproved, the power of the singularity represented by the first term of equation 1. 1 and the polynomial expansion can be truncated in order to extract information... of Williams' approach for the case of cracked bodies under pure bending is demonstrated. Four point bending load is applied on specimens with either a vertical or a slant crack giving Mode I or Mixed Mode I ? II respectively. The existence...

Moran, Ivan

1991-01-01T23:59:59.000Z

98

Getting Started | Mercury  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Getting Started Getting Started Client example: open_in_t in_struct; open_out_t out_struct; /* Initialize the interface */ [...] NA_Addr_lookup(network_class, server_name, &server_addr); /* Register RPC call */ rpc_id = HG_REGISTER("open", open_in_t, open_out_t); /* Fill input parameters */ [...] in_struct.in_param0 = in_param0; /* Send RPC request */ HG_Forward(server_addr, rpc_id, &in_struct, &out_struct, &rpc_request); /* Wait for completion */ HG_Wait(rpc_request, HG_MAX_IDLE_TIME, HG_STATUS_IGNORE); /* Get output parameters */ [...] out_param0 = out_struct.out_param0; int main(int argc, void *argv[]) { /* Initialize the interface */ [...] /* Register RPC call */ HG_HANDLER_REGISTER("open", open_rpc, open_in_t, open_out_t); /* Process RPC calls */

99

Big Bend Power Station Neural Network-Intelligent Sootblower (NN-ISB) Optimization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Big Bend Power Station neural network- Big Bend Power Station neural network- intelligent SootBlower (nn-iSB) oPtimization (comPleted) Project Description The overall goal of this project was to develop a Neural Network-Intelligent Sootblowing (NN-ISB) system on the 445 MW Tampa Electric Big Bend Unit #2 to initiate sootblowing in response to real-time events or conditions within the boiler rather than relying on general rule-based protocols. Other goals were to increase unit efficiency, reduce NO X , and improve stack opacity. In a coal-fired boiler, the buildup of ash and soot on the boiler tubes can lead to a reduction in boiler efficiency. Thus, one of the most important boiler auxiliary operations is the cleaning of heat-absorbing surfaces. Ash and soot deposits are removed by a process known as sootblowing, which uses mechanical devices for on-line cleaning

100

Making Fast Start Finance Work | Open Energy Information  

Open Energy Info (EERE)

Making Fast Start Finance Work Making Fast Start Finance Work Jump to: navigation, search Tool Summary Name: Making Fast Start Finance Work Agency/Company /Organization: European Climate Foundation Sector: Energy Topics: Finance Resource Type: Guide/manual, Training materials Website: www.project-catalyst.info/images/publications/2010-06-07_project_catal Making Fast Start Finance Work Screenshot References: Making Fast Start Finance Work[1] Logo: Making Fast Start Finance Work This paper aims to provide a fact base on the current sources of Fast Start Finance,including size, composition, and intended use, as well as analysis on the Fast Start Finance priorities and the institutional mechanisms needed to ensure that it delivers real impact. "...This paper aims to provide a fact base on the current sources of Fast

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

MHK Projects | Open Energy Information  

Open Energy Info (EERE)

MHK Projects MHK Projects Jump to: navigation, search << Return to the MHK database homepage Click one of the following Marine Hydrokinetic Projects for more information: Loading... 40MW Lewis project ADM 3 ADM 4 ADM 5 AW Energy EMEC AWS II Admirality Inlet Tidal Energy Project Agucadoura Alaska 1 Alaska 13 Alaska 17 Alaska 18 Alaska 24 Alaska 25 Alaska 28 Alaska 31 Alaska 33 Alaska 35 Alaska 36 Alaska 7 Algiers Cutoff Project Algiers Light Project Amity Point Anconia Point Project Angoon Tidal Energy Plant Aquantis Project Ashley Point Project Astoria Tidal Energy Atchafalaya River Hydrokinetic Project II Avalon Tidal Avondale Bend Project BW2 Tidal Bar Field Bend Barfield Point Bayou Latenache Belair Project Belleville BioSTREAM Pilot Plant Bluemill Sound Bondurant Chute Bonnybrook Wastewater Facility Project 1

102

Axisymmetric bending oscillations of stellar disks  

E-Print Network [OSTI]

Self-gravitating stellar disks with random motion support both exponentially growing and, in some cases, purely oscillatory axisymmetric bending modes, unlike their cold disk counterparts. A razor-thin disk with even a very small degree of random motion in the plane is both unstable and possesses a discrete spectrum of neutral modes, irrespective of the sharpness of the edge. Random motion normal to the disk plane has a stabilizing effect but at the same time allows bending waves to couple to the internal vibrations of the particles, which causes the formerly neutral modes to decay through Landau damping. Focusing first on instabilities, I here determine the degree of random motion normal to the plane needed to suppress global, axisymmetric, bending instabilities in a family of self-gravitating disks. As found previously, bending instabilities are suppressed only when the thickness exceeds that expected from a na\\"\\i ve local criterion when the degree of pressure support within the disk plane is comparable to, or exceeds, the support from rotation. A modest disk thickness is adequate for the bending stability of most disk galaxies, except perhaps near their centers. The discretization of the neutral spectrum in a zero-thickness disk is due to the existence of a turning point for bending waves in a warm disk, which is absent when the disk is cold. When the disk is given a finite thickness, the discrete neutral modes generally become strongly damped through wave-particle interactions. It is surprising therefore that I find some simulations of warm, stable disks can support (quasi-)neutral, large-scale, bending modes that decay very slowly, if at all.

J A Sellwood

1996-04-21T23:59:59.000Z

103

Better Buildings Showcase Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Better Buildings Showcase Projects Better Buildings Showcase Projects Showcase projects are initial projects started within 9 months of becoming a Better Buildings Challenge...

104

Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploring the Standard Model Exploring the Standard Model       You've heard a lot about the Standard Model and the pieces are hopefully beginning to fall into place. However, even a thorough understanding of the Standard Model is not the end of the story but the beginning. By exploring the structure and details of the Standard Model we encounter new questions. Why do the most fundamental particles have the particular masses we observe? Why aren't they all symmetric? How is the mass of a particle related to the masses of its constituents? Is there any other way of organizing the Standard Model? The activities in this project will elucidate but not answer our questions. The Standard Model tells us how particles behave but not necessarily why they do so. The conversation is only beginning. . . .

105

DOE Hydrogen Analysis Repository: Quick Starting Fuel Processors - A  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quick Starting Fuel Processors - A Feasibility Study Quick Starting Fuel Processors - A Feasibility Study Project Summary Full Title: Quick Starting Fuel Processors - A Feasibility Study Project ID: 164 Principal Investigator: Shabbir Ahmed Brief Description: This project studied the feasibility of fast-starting fuel processors to meet DOE goals for on-board fuel processing. Keywords: On-board fuel processor Purpose Study the feasibility of developing fast-starting fuel processors that can meet DOE's targets, investigate designs and strategies capable of meeting the start-up targets, and validate models using experimental and hardware data. Performer Principal Investigator: Shabbir Ahmed Organization: Argonne National Laboratory (ANL) Address: 9700 South Cass Ave Argonne, IL 60439 Telephone: 630-252-4553

106

PROJECT REQUEST FORM PROJECT HOLDER INFORMATION  

E-Print Network [OSTI]

PROJECT REQUEST FORM Last Name: Email: PROJECT HOLDER INFORMATION UCID:Last Name: Email: Institute if different than Project Holder) First Name: Project Short Name: (50 characters max) (for eFIN view only) Project Title: PROJECT INFORMATION Start Date (MM/DD/YYYY): End Date (MM/DD/YYYY): For Questions or HELP

de Leon, Alex R.

107

Microsoft Word - CX-NorthBendWoodPoles_FY13_WEB.docx  

Broader source: Energy.gov (indexed) [DOE]

North Bend District Wood Pole Replacement Projects North Bend District Wood Pole Replacement Projects PP&A Project No.: 2658 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance Location: Various transmission lines located in Douglas, Linn, and Lane counties, Oregon. Refer to Project Location Attachment for transmission lines and corresponding structure locations. Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to replace deteriorating wood poles and associated structural/electrical components (e.g. cross arms, insulators, guy anchors, etc.) along the subject transmission lines. Replacement will be in-kind and will utilize the existing holes to minimize ground disturbance. If necessary, an auger will be used to remove any loose soil from

108

Twisting and Bending Stress in DNA Minicircles  

E-Print Network [OSTI]

The interplay between bending of the molecule axis and appearance of disruptions in circular DNA molecules, with $\\sim 100$ base pairs, is addressed. Three minicircles with different radii and almost equal content of AT and GC pairs are investigated. The DNA sequences are modeled by a mesoscopic Hamiltonian which describes the essential interactions in the helix at the level of the base pair and incorporates twisting and bending degrees of freedom. Helix unwinding and bubble formation patterns are consistently computed by a path integral method that sums over a large number of molecule configurations compatible with the model potential. The path ensembles are determined, as a function of temperature, by minimizing the free energy of the system. Fluctuational openings appear along the helix to release the stress due to the bending of the molecule backbone. In agreement with the experimental findings, base pair disruptions are found with larger probability in the smallest minicircle of \\textit{66-bps} whose bending angle is $\\sim 6^{o} $. For this minicircle, a sizeable untwisting is obtained with the helical repeat showing a step-like increase at $\\tau =\\,315K$. The method can be generalized to determine the bubble probability profiles of open ends linear sequences.

Marco Zoli

2014-03-25T23:59:59.000Z

109

Project Fact Sheet Project Update  

E-Print Network [OSTI]

medical and dental centre; shop and café area for students and vacation accommodation centre. The new & Figures: Budget: £51,074,000 Funding Source: Capital Plan Construction Project Programme: Start on Site

110

START Signed | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Our History NNSA Timeline START Signed START Signed July 31, 1991 START Signed Russia Moscow, USSR President Bush signs the Strategic Arms Reduction Treaty (START), which...

111

Property:Project Installed Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Installed Capacity (MW) Installed Capacity (MW) Jump to: navigation, search Property Name Project Installed Capacity (MW) Property Type String Pages using the property "Project Installed Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 + MHK Projects/ADM 5 + 1 + MHK Projects/AWS II + 1 + MHK Projects/Admirality Inlet Tidal Energy Project + 22 + MHK Projects/Agucadoura + 2 + MHK Projects/Alaska 18 + 10 + MHK Projects/Alaska 36 + 10 + MHK Projects/Algiers Cutoff Project + 16 + MHK Projects/Algiers Light Project + 0 + MHK Projects/Anconia Point Project + 0 + MHK Projects/Ashley Point Project + 0 + MHK Projects/Astoria Tidal Energy + 300 + MHK Projects/Avondale Bend Project + 0 + MHK Projects/Bar Field Bend + 0 +

112

Feasibility of Starting a Waterjet Fabrication Plant in Amman, Jordan  

E-Print Network [OSTI]

Engineering Management Field Project Feasibility of Starting a Waterjet Fabrication Plant in Amman, Jordan By Khaled A. Ahmad Spring Semester, 2010 An EMGT Field Project report submitted to the Engineering Management... and library search support. 3 Preface It has been my desire for a long time to investigate what it takes to start a water jet fabrication plant in Amman, Jordan to precisely cut marble, granite, and ceramics. I worked in the manufacturing...

Ahmad, Khaled A.

2010-05-14T23:59:59.000Z

113

Bend, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Bend, OR) (Redirected from Bend, OR) Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0581728°, -121.3153096° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0581728,"lon":-121.3153096,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

114

Alaska START | Department of Energy  

Office of Environmental Management (EM)

awareness and training programs, and identification and implementation of renewable energy and energy efficiency opportunities. Through the START, each Alaska Native community...

115

Hydrazine engine start system air start performance and controls sizing  

SciTech Connect (OSTI)

Hydrazine has been used as an energy source in many applications to fuel in-flight main engine starting. In a current application, an existing hydrazine engine start system (ESS) design was adapted to meet new fuel control requirements. This paper presents a brief system description, historical context, and the motivating factors for the hydrazine controls changes and three case studies of controls design and analysis from the ESS program. 4 refs.

Johnson, A.T.

1992-01-01T23:59:59.000Z

116

Getting Started: What to Ask the Developer  

Broader source: Energy.gov (indexed) [DOE]

GETTING STARTED: WHAT TO ASK THE DEVELOPER? GETTING STARTED: WHAT TO ASK THE DEVELOPER? Below is a list of preliminary questions to think about when approached by a developer or technology representative for developing clean energy resources on tribal lands. For more assistance, contact the DOE Office of Indian Energy at indianenergy@hq.doe.gov. Resources: * Which resources have been identified as being available? * What data was used to identify the resources? * Has the development of all available resources been evaluated separately as well as optimally combined with others? * What is the effective resource capacity? Development: * What is the proposed scale (MW capacity) for the project? * How will construction be accomplished? * How long will development and construction to commercial operation date (COD) take?

117

Big Bend sees big environmental push  

SciTech Connect (OSTI)

The 1800 MW Big Bend Power Station is a coal-fired facility in Tampa Bay, Florida, USA owned by Tampa Electric. It has four pulverized coal- fired steam units equipped with FGD scrubbers and electrostatic precipitators. Currently the addition of selective catalytic reduction (SCR) systems is under consideration. The Unit 4 SCR retrofit was completed in June 2007; the remaining three systems are scheduled for completion by 2010. Boiler draft systems will be modified to a balance draft design to accommodate the increased pressure drop of the new systems. 3-D computer models were developed to determine constructability due to the tight clearance at the site. 1 photo.

Blankinship, S.

2007-10-15T23:59:59.000Z

118

Bending behavior of general unsymmetric laminates  

E-Print Network [OSTI]

] matr1x 1s appropriately called the bending-stretching coupling stiffness matrix. The midplane strains and curvatures are (Ugural 1981) o au C = ~ x ax' o av C y ay' o au av y = ? +- xy ay ax (17a, b, c) a2w K x ax~ a 2w K a 2w K = -2 xy... axay (18a, b, c) Substituting the above 1nto equation (12) and performing the matrix operations gives the following expression for the stra1n energy in a general laminate U = Q]) [ A [au )2 + 2A [au av ) + A [av )2 + 2A [ ? ? + ? ? ] 11 ax 12 ax ay...

Danielson, Kent Thomas

2012-06-07T23:59:59.000Z

119

Department of Energy Announces Start of Western Area Power Administration  

Broader source: Energy.gov (indexed) [DOE]

Start of Western Area Power Start of Western Area Power Administration Recovery Act Project Department of Energy Announces Start of Western Area Power Administration Recovery Act Project September 16, 2009 - 12:00am Addthis WASHINGTON, DC - With the goal of bringing new jobs and green power to the West, Energy Secretary Steven Chu announced today a large-scale transmission project to be financed using funding from the American Recovery and Reinvestment Act. The Western Area Power Administration will use borrowing authority under the Recovery Act to help build the $213 million Montana-Alberta Tie Limited (MATL) transmission project between Great Falls, Montana, and Lethbridge, Alberta. Almost two-thirds of the 214-mile transmission line will be located on U.S. soil, creating American

120

Getting Started Videoconference | Argonne Leadership Computing...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Getting Started Videoconference Start Date: Dec 9 2014 - 8:30am Event Website: https:www.alcf.anl.govworkshopsgetting-started-videoconference-winte... Miscellaneous...

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

START Application - Final | Department of Energy  

Office of Environmental Management (EM)

START ApplicationFINAL0.pdf More Documents & Publications START-Alaska Application Alaska START Application Fact Sheet: Collaboration of Oak Ridge, Argonne, and Livermore (CORAL)...

122

Science Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argonne Argonne Science Project Ideas! Our Science Project section provides you with sample classroom projects and experiments, online aids for learning about science, as well as ideas for Science Fair Projects. Please select any project below to continue. Also, if you have an idea for a great project or experiment that we could share, please click our Ideas page. We would love to hear from you! Science Fair Ideas Science Fair Ideas! The best ideas for science projects are learning about and investigating something in science that interests you. NEWTON has a list of Science Fair linkd that can help you find the right topic. Toothpick Bridge Web Sites Toothpick Bridge Sites! Building a toothpick bridge is a great class project for physics and engineering students. Here are some sites that we recommend to get you started!

123

Isogeometric rotation-free bending-stabilized cables: Statics, dynamics, bending strips and coupling with shells  

Science Journals Connector (OSTI)

Abstract An isogeometric cable formulation is derived from a 3D continuum, where large-deformation kinematics and the St. VenantKirchhoff constitutive law are assumed. It is also assumed that the cable cross-sections remain circular, planar, and orthogonal to the cable middle curve during the deformation. The cable geometry representation reduces to a curve in 3D space, and, because only displacement degrees of freedom are employed, only membrane and bending effects are accounted for in the modeling. Torsion is neglected and bending is confined to an osculating plane of the curve. In the case structural loading and response are confined to a plane, the formulation is reduced to a 2D EulerBernoulli beam of finite thickness. Bending terms also stabilize the cable formulation in the presence of compressive forces. The resulting cable formulation is validated in the regime of linear and nonlinear statics, and nonlinear dynamics. The concept of bending strips is extended to the case of multiple cables, and cable-shell coupling is also investigated. The formulation is presented in sufficient mathematical detail for straightforward computer implementation.

S.B. Raknes; X. Deng; Y. Bazilevs; D.J. Benson; K.M. Mathisen; T. Kvamsdal

2013-01-01T23:59:59.000Z

124

Bending vibration measurement on rotors by laser vibrometry  

Science Journals Connector (OSTI)

A new technique is proposed for noncontact measurement of bending vibration directly from a rotating component. This notoriously difficult and previously unattained measurement is a...

Miles, Toby; Lucas, Margaret; Rothberg, Steve

1996-01-01T23:59:59.000Z

125

APS Bending Magnet X-rays and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irradiation of Nd-Fe-B Permanent Magnets with Irradiation of Nd-Fe-B Permanent Magnets with APS Bending Magnet X-rays and 60 Co γ-rays J. Alderman and P.K. Job APS Operations Division Advanced Photon Source J. Puhl Ionizing Radiation Division National Institute of Standards and Technology June 2000 Table of Contents Introduction Radiation-Induced Demagnetization of Permanent Magnets Resources Required γ-ray Irradiation Results and Analysis of γ-ray Irradiation X-ray Irradiation Results and Analysis of X-ray Irradiation Summary and Conclusions Acknowledgements References Tables and Figures Introduction The Advanced Photon Source (APS), as well as other third-generation synchrotron light sources, uses permanent magnets in the insertion devices to produce x-rays for scientific

126

Bend, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Bend, Oregon: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0581728°, -121.3153096° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0581728,"lon":-121.3153096,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Introduction to Matlab Starting Matlab  

E-Print Network [OSTI]

Introduction to Matlab · Starting Matlab ­ right click the desktop and choose open terminal ­ type matlab · Commands in Matlab ­ enter commands at the prompt >> ­ ; will suppress output ­ , separates commands ­ >> help elfun lists elementary math functions, i.e. ex is exp(x). ­ Matlab is case sensitive

Mead, Jodi L.

128

Starting apparatus for internal combustion engines  

DOE Patents [OSTI]

This report is a patent description for a system to start an internal combustion engine. Remote starting and starting by hearing impaired persons are addressed. The system monitors the amount of current being drawn by the starter motor to determine when the engine is started. When the engine is started the system automatically deactivates the starter motor. Five figures are included.

Dyches, G.M.; Dudar, A.M.

1995-01-01T23:59:59.000Z

129

Before We Start Sign in  

E-Print Network [OSTI]

: CentOS 6 · Recommended uses: ­ Parallel Matlab (28 nodes/224 cores) ­ Beginning: · Ensure that the needs of computaHonal intensive research projects are met

Crawford, T. Daniel

130

Getting Started Videoconferences | Argonne Leadership Computing...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Services User Support Machine Status Presentations Training & Outreach Getting Started Videoconferences Getting Started with ParaView Mira Performance Boot Camp 2014 Data...

131

2005 Getting Started with Epics Videos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Video Library APS Colloquium Videos * 2007 * 2006 * 2005 * 2004 Getting Started with Epics * 2005 * 2004 2005 Getting Started with Epics Videos ASD Controls and AOD BCDA have...

132

Starting Points | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

(M&O) Contract Competition Starting Points Starting Points Kansas City Plant Related Web Pages Summary Kansas City Plant Home Page Kansas City Plant Contracts DOE Directives...

133

Preliminary assessment of potential CDM early start projects in Brazil  

E-Print Network [OSTI]

a clean, renewable energy source in Brazil. Contact WINROCKa clean, renewable energy source in Brazil. Contact: WINROCKof a clean, renewable energy source in Brazil. The hydro

Meyers, S.; Sathaye, J.; Lehman, B.; Schumacher, K.; van Vliet, O.; Moreira, J.R.

2000-01-01T23:59:59.000Z

134

Major Projects with Quick Starts & Jobs Creation Office of Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

which will all come from DOE's Clean Coal program. Most will come from our Regional Carbon Sequestration Partnerships; others will come from a Third Round of the Clean Coal...

135

Existing generating assets squeezed as new project starts slow  

SciTech Connect (OSTI)

Most forecasting reports concentrate on political or regulatory events to predict future industry trends. Frequently overlooked are the more empirical performance trends of the principal power generation technologies. Solomon and Associates queried its many power plant performance databases and crunched some numbers to identify those trends. Areas of investigation included reliability, utilization (net output factor and net capacity factor) and cost (operating costs). An in-depth analysis for North America and Europe is presented in this article, by region and by regeneration technology. 4 figs., 2 tabs.

Jones, R.B.; Tiffany, E.D. [HSB Solomon Associates LLC (USA)

2009-01-15T23:59:59.000Z

136

Year in Project: Date Started in Beekeeping I  

E-Print Network [OSTI]

be easily removed from a wooden box. His invention led to many improvements in beekeeping equipment. Today may use honey for quick energy. In the medical profession, honey has been used for its antiseptic qualities in burn ointments and in the preparation of medicines. Throughout history, honey has been used

Ginzel, Matthew

137

Reactive scattering in the bending-corrected rotating linear model  

SciTech Connect (OSTI)

We review the theory and applications of the Bending-Corrected Rotating Linear Model (BCRLM) to problems in the quantum description of reactions between atoms and diatomic molecules. 110 refs.

Walker, R.B.; Hayes, E.F.

1985-01-01T23:59:59.000Z

138

Rapid starting methanol reactor system  

DOE Patents [OSTI]

The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

Chludzinski, Paul J. (38 Berkshire St., Swampscott, MA 01907); Dantowitz, Philip (39 Nancy Ave., Peabody, MA 01960); McElroy, James F. (12 Old Cart Rd., Hamilton, MA 01936)

1984-01-01T23:59:59.000Z

139

Fruit and Vegetable Servings in Local Farm-Sourced and Standard Lunches Offered to Children in a Head Start Program  

E-Print Network [OSTI]

This project compared servings of fruits and vegetables consumed in farm-to-school lunches to that in conventional lunches served to students attending a Head Start preschool. The sample used was the student population of a Head Start preschool...

Johnson, Amy M.

2010-04-25T23:59:59.000Z

140

PHEV Engine Cold Start Emissions Management  

Broader source: Energy.gov [DOE]

Coordination of engine and powertrain supervisory control strategies to minimize cold start emissions

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Clean Cities: Starting a Clean Cities Coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coalitions Coalitions Printable Version Share this resource Send a link to Clean Cities: Starting a Clean Cities Coalition to someone by E-mail Share Clean Cities: Starting a Clean Cities Coalition on Facebook Tweet about Clean Cities: Starting a Clean Cities Coalition on Twitter Bookmark Clean Cities: Starting a Clean Cities Coalition on Google Bookmark Clean Cities: Starting a Clean Cities Coalition on Delicious Rank Clean Cities: Starting a Clean Cities Coalition on Digg Find More places to share Clean Cities: Starting a Clean Cities Coalition on AddThis.com... Locations Starting Coalitions Contacts Starting a Clean Cities Coalition Starting a Clean Cities coalition can be a great first step toward reducing petroleum use in your area. The U.S. Department of Energy (DOE) grants official Clean Cities designation to coalitions that exhibit

142

New Project Opportunities  

E-Print Network [OSTI]

/year. Most projects will be sponsored by between four and ten companies. The cost of participation may changeNew Project Opportunities PIMS: Porphyry Indicator Minerals The characteristics and relative, the next phase of this project has started and MDRU are looking for industry partners. Exploring Lithocaps

Michelson, David G.

143

Microstructural, Electrical, and Mechanical Properties of Graphene Films on Flexible Substrate Determined by Cyclic Bending Test  

Science Journals Connector (OSTI)

Three kinds of graphene/polyimide specimen were prepared via transfer from graphene with thicknesses of 1, 2, and 3 nm, respectively. A self-designed bending tester was applied to carry out cyclic bending tests with various bending cycles and bending ...

Ba-Son Nguyen; Jen Fin Lin; Dung-Ching Perng

2014-10-17T23:59:59.000Z

144

Argonne starts huilding huge bubble chamber  

Science Journals Connector (OSTI)

Argonne starts huilding huge bubble chamber ... Construction has started on the $10 million bubble chamber to be built at Argonne National Laboratory, Argonne, 111. ... Claimed by Argonne to be the world's largest chamber, it will be completed in 1969. ...

1967-06-26T23:59:59.000Z

145

STARTING TODAY: Bloomberg, Daniels, Musk, Pickens, Chu and Energy Leaders  

Broader source: Energy.gov (indexed) [DOE]

STARTING TODAY: Bloomberg, Daniels, Musk, Pickens, Chu and Energy STARTING TODAY: Bloomberg, Daniels, Musk, Pickens, Chu and Energy Leaders Headline 3-Day ARPA-E Summit STARTING TODAY: Bloomberg, Daniels, Musk, Pickens, Chu and Energy Leaders Headline 3-Day ARPA-E Summit February 25, 2013 - 1:59pm Addthis NEWS MEDIA CONTACT (202) 586-4940 Follow @energy on Twitter for live coverage of the ARPA-E Summit. Check the energy.gov blog for daily wrapups and photo galleries. WASHINGTON - Building on the President's call in his State of the Union address to further American energy independence through innovation, key thought leaders from academia, business, and government will come together next week to discuss cutting-edge energy issues at the Advanced Research Projects Agency - Energy's (ARPA-E) fourth annual Energy Innovation

146

Saving Energy and Money Starts at Home | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Money Starts at Home Money Starts at Home Saving Energy and Money Starts at Home July 28, 2010 - 2:28pm Addthis Kevin Brosnahan What does this mean for me? The first step to getting your home drastically more energy efficient is by getting a professionally conducted home energy audit. Energysavers.gov has tons of facts on keeping your home energy efficient. Every year, the typical U.S. family spends about $1,900 on home utility bills. Unfortunately, a large portion of that energy is wasted - and subsequently, families are spending their hard-earned dollars on that wasted energy. For many low-income Americans, these energy bills absorb quite a significant amount of family income. The good news is that there are easy, no-cost or low-cost projects that you can do in one day to save energy and money at home. One of the best

147

Big Bend Preventorium Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Preventorium Greenhouse Low Temperature Geothermal Facility Preventorium Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Big Bend Preventorium Greenhouse Low Temperature Geothermal Facility Facility Big Bend Preventorium Sector Geothermal energy Type Greenhouse Location Big Bend, California Coordinates 39.6982182°, -121.4608015° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

148

Bending properties of foamed aluminum panels and sandwiches  

SciTech Connect (OSTI)

The foamed panels and sandwiches were prepared by powder metallurgical route using various matrix alloys. The effect of the apparent density, geometry and structure of the foam on its bending stiffness was studied with respect to the results of the four-point-bending. It has been shown that the modulus of elasticity of the foam cannot be related only to its apparent density, because the distribution of the cell-wall material along the thickness of the foamed panel is not uniform. Therefore the real moment of inertia of the foam`s cross-section should be used for the calculation of bending stiffness. This moment can be determined from the square weight of the foamed sample.

Simancik, F.; Kovacik, J.; Minarikova, N. [Inst. of Materials and Machine Mechanics, Bratislava (Slovakia)

1998-12-31T23:59:59.000Z

149

Project Number: IST-2001-33100 Project Acronym: PROFUNDIS  

E-Print Network [OSTI]

and achievements . . . . . . . . . . . . . . 15 3 Project management and coordination 15 4 Cost breakdown 15 5Project Number: IST-2001-33100 Project Acronym: PROFUNDIS Title : Proofs of Functionality;cation: Public Contract start date 1 January 2002 Duration: 3 years Project co-ordinator: Joachim Parrow

Parrow, Joachim

150

Project Number: IST-2001-33100 Project Acronym: PROFUNDIS  

E-Print Network [OSTI]

and achievements . . . . . . . . . . . . . . 17 3 Project management and coordination 17 4 Cost breakdown 17 5Project Number: IST-2001-33100 Project Acronym: PROFUNDIS Title : Proofs of Functionality Classification: Public Contract start date 1 January 2002 Duration: 3 years Project co-ordinator: Joachim Parrow

Parrow, Joachim

151

Subfreezing Start/Stop Protocol for an Advanced Metallic Open-Flowfield Fuel Cell Stack  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Subfreezing Start/Stop Protocol for an Advanced Subfreezing Start/Stop Protocol for an Advanced Subfreezing Start/Stop Protocol for an Advanced Subfreezing Start/Stop Protocol for an Advanced Subfreezing Start/Stop Protocol for an Advanced Metallic Open Metallic Open Metallic Open Metallic Open- - - -Flowfield Flowfield Flowfield Flowfield Fuel Cell Stack Fuel Cell Stack Fuel Cell Stack Fuel Cell Stack Presented at: US DOE New Projects Kickoff Meeting Washington, DC 13-14 February 2007 Alternative Energy Efficient Simple Clean Today Alternative Energy Efficient Simple Clean Today Objective Objective Objective Objective This project will demonstrate a PEM fuel cell stack that is able to perform and start up in subfreezing conditions, respecting allowed energy budget, and showing limited impact at extreme temperatures over multiple

152

Thru-thickness bending stress distribution at elevated temperatures  

E-Print Network [OSTI]

), and the second was the bending process (structural). The five different temperatures collected during the thermal analysis were a uniform temperature of 75oF, a 1100oF uniform temperature as a result of furnace heating, both five and ten minutes of air...

Christian, Lee Conner

2005-08-29T23:59:59.000Z

153

Fast Start Financing | Open Energy Information  

Open Energy Info (EERE)

Fast Start Financing Fast Start Financing Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fast Start Financing Agency/Company /Organization: Government of the Netherlands Partner: United Nations Environment Programme, United Nations Development Programme, United Nations Framework Convention on Climate Change, World Bank Topics: Finance, Market analysis Resource Type: Maps Website: www.faststartfinance.org/home Fast Start Financing Screenshot References: Fast Start Financing [1] Overview "www.faststartfinance.org aims to provide transparency about the amount, direction and use of fast start climate finance, in turn building trust in its delivery and impact. Development of the website was initiated by the government of the Netherlands, with support from the governments of Costa Rica, Colombia,

154

SWERA/Getting Started | Open Energy Information  

Open Energy Info (EERE)

Getting Started Getting Started < SWERA Jump to: navigation, search SWERA logo.png Solar and Wind Energy Resource Assessment (SWERA) Getting StartedPowered by OpenEI Getting Started Data Sets Analysis Tools About SWERA How to use SWERA Users can start from the SWERA home page to assess renewable energy data available for their country. Begin by clicking on the SWERA icon next to "Getting Started" and then clicking on a geographic location of interest on the map displayed. Clicking a country on the map will present the user with the option to view that country's profile in OpenEI or open the OpenCarto GIS analysis tool, allowing the user to search, visualize and explore the data. The tool provides a legend display for data searching, meta data information, detailed resource information provision at click, temporal

155

Start II, red ink, and Boris Yeltsin  

SciTech Connect (OSTI)

Apart from the vulnerability implied by the START II treaty, it will bear the burden of the general political opposition to the Yeltsin administration. START II will be seen as part of an overall Yeltsin-Andrei Kozyrev foreign policy that is under fire for selling out Russian national interests in Yugoslavia, the Persian Gulf, and elsewhere. This article discusses public opinion concerning START II, the cost of its implementation, and the general purpose of the treaty.

Arbatov, A.

1993-04-01T23:59:59.000Z

156

Getting Started Videoconference | Argonne Leadership Computing...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News & Events Web Articles In the News Upcoming Events Past Events Informational Materials Photo Galleries Getting Started Videoconference Event Sponsor: Argonne Leadership...

157

START Alaska Historical Energy Usage Spreadsheet | Department...  

Broader source: Energy.gov (indexed) [DOE]

Alaska Historical Energy Usage Spreadsheet START Alaska Historical Energy Usage Spreadsheet Communities applying for the DOE Office of Indian Energy Strategic Technical Assistance...

158

Off to a flying jump-start  

Science Journals Connector (OSTI)

... take flight. Could this also be how their distant ancestors got off the ground? John Whitfield investigates. start in life, explains David Adam. Once a body is off ...

John Whitfield

2000-03-10T23:59:59.000Z

159

PHEV Engine Cold Start Emissions Management  

Broader source: Energy.gov (indexed) [DOE]

Cold Start Emissions Management Paul Chambon, Dr. David Smith Oak Ridge National Laboratory Dr. David Irick, Dean Deter The University of Tennessee Poster Location P-05 2 Managed...

160

Could Gila Bend, Arizona, Become the Solar Capital of the World? |  

Broader source: Energy.gov (indexed) [DOE]

Could Gila Bend, Arizona, Become the Solar Capital of the World? Could Gila Bend, Arizona, Become the Solar Capital of the World? Could Gila Bend, Arizona, Become the Solar Capital of the World? November 15, 2011 - 9:57am Addthis Serving approximately 9,000 homes with clean renewable energy, the Paloma and Cotton Center solar plants highlight the rapidly rising solar corridor in Gila Bend, Arizona. | Photo courtesy of the town of Gila Bend, Arizona. Serving approximately 9,000 homes with clean renewable energy, the Paloma and Cotton Center solar plants highlight the rapidly rising solar corridor in Gila Bend, Arizona. | Photo courtesy of the town of Gila Bend, Arizona. Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs "Gila Bend had essentially been economically stagnant for the last two

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The influence of return bends on the downstream pressure drop and condensation heat transfer in tubes  

E-Print Network [OSTI]

The influence of return bends on the downstream pressure drop and heat transfer coefficient of condensing refrigerant R-12 was studied experimentally. Flow patterns in glass return bends of 1/2 to 1 in. radius and 0.315 ...

Traviss, Donald P.

1971-01-01T23:59:59.000Z

162

Riparian wetlands and visitor use management in Big Bend National Park, Texas'  

E-Print Network [OSTI]

to the Mexican States of Chihuahua and Coahuila. Big Bend National Park contains about 27,000 acres of wetland

163

Property:Project Nearest Body of Water | Open Energy Information  

Open Energy Info (EERE)

Nearest Body of Water Nearest Body of Water Jump to: navigation, search Property Name Project Nearest Body of Water Property Type String Pages using the property "Project Nearest Body of Water" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + North Atlantic Ocean + MHK Projects/ADM 3 + Galway Bay site close to Spiddal + MHK Projects/ADM 5 + government Pilot Zone + MHK Projects/Algiers Light Project + Mississippi River + MHK Projects/Anconia Point Project + Mississippi River + MHK Projects/Ashley Point Project + Mississippi River + MHK Projects/Astoria Tidal Energy + East River + MHK Projects/Avalon Tidal + Ingram Thorofare + MHK Projects/Avondale Bend Project + Mississippi River + MHK Projects/BW2 Tidal + Maurice River +

164

DOE Announces Webinars on Kick-Starting an Energy Management Program,  

Broader source: Energy.gov (indexed) [DOE]

Kick-Starting an Energy Management Kick-Starting an Energy Management Program, SunShot Incubator Projects, and More DOE Announces Webinars on Kick-Starting an Energy Management Program, SunShot Incubator Projects, and More December 20, 2013 - 8:58am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars January 7: Live Webinar on Kick-starting Your Energy Management Program Webinar Sponsor: EERE's Better Buildings Initiative The Energy Department will present a live webinar titled "Kick-Starting

165

Big Bend, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bend, Wisconsin: Energy Resources Bend, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8814034°, -88.2067573° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8814034,"lon":-88.2067573,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

166

City of West Bend, Iowa (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Bend Bend Place Iowa Utility Id 20364 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Rates Commercial Commercial Electric Rates (3 Phase) Commercial Industrial Electric Rates Industrial Residential Electric Rates Residential Rural Electric Rates (3 Phase) Commercial Rural Electric Rates (Single Phase) Commercial Average Rates Residential: $0.0755/kWh Commercial: $0.0716/kWh Industrial: $0.0795/kWh References

167

Post Oak Bend City, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Oak Bend City, Texas: Energy Resources Oak Bend City, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.6320777°, -96.3135917° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.6320777,"lon":-96.3135917,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

168

Fort Bend County, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bend County, Texas: Energy Resources Bend County, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.5692614°, -95.8142885° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.5692614,"lon":-95.8142885,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

169

South Bend, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bend, Indiana: Energy Resources Bend, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6833813°, -86.2500066° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6833813,"lon":-86.2500066,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

170

Gila Bend, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bend, Arizona: Energy Resources Bend, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.9478236°, -112.7168305° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.9478236,"lon":-112.7168305,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

171

Bessemer Bend, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bessemer Bend, Wyoming: Energy Resources Bessemer Bend, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7580196°, -106.5203123° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7580196,"lon":-106.5203123,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

172

Big Bend Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Big Bend Hot Springs Geothermal Area Big Bend Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Big Bend Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0217,"lon":-121.9183,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

173

Wisconsin Start-up Taps into Wind Supply Chain | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Start-up Taps into Wind Supply Chain Start-up Taps into Wind Supply Chain Wisconsin Start-up Taps into Wind Supply Chain August 10, 2010 - 2:00pm Addthis Renewegy, LLC received a $525,000 Recovery Act loan to help start its smaller-scale wind turbine business. This fall, the company will begin production on its first batch of turbine systems. | Photo courtesy of Renewegy Renewegy, LLC received a $525,000 Recovery Act loan to help start its smaller-scale wind turbine business. This fall, the company will begin production on its first batch of turbine systems. | Photo courtesy of Renewegy Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? Renewegy received $525,000 Recovery Act loan to start wind turbine business Business hired 16 people and projects at least three more by end of

174

Project Year Project Title  

E-Print Network [OSTI]

the cost of the project to labor only. The efficacy of the examples will be assessed through their useProject Year 2012-2013 Project Title Sight-Reading at the Piano Project Team Ken Johansen, Peabody) Faculty Statement The goal of this project is to create a bank of practice exercises that student pianists

Gray, Jeffrey J.

175

Project Year Project Team  

E-Print Network [OSTI]

design goals for this project include low cost (less than $30 per paddle) and robustness. The projectProject Year 2001 Project Team Faculty: Allison Okamura, Mechanical Engineering, Whiting School Project Title Haptic Display of Dynamic Systems Audience 30 to 40 students per year, enrolled

Gray, Jeffrey J.

176

Project Year Project Team  

E-Print Network [OSTI]

-year section of the summer project will cost $1344.) This project will be measured by the CER surveys conductedProject Year 2005 Project Team Sean Greenberg, Faculty, Philosophy Department, Krieger School of Arts & Sciences; Kevin Clark, Student, Philosophy Department, Krieger School of Arts & Sciences Project

Gray, Jeffrey J.

177

WestStart CALSTART | Open Energy Information  

Open Energy Info (EERE)

WestStart CALSTART WestStart CALSTART Jump to: navigation, search Name WestStart-CALSTART Place Pasadena, California Zip 91106 Product String representation "WestStart-CALST ... nd create jobs." is too long. Coordinates 29.690847°, -95.196308° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.690847,"lon":-95.196308,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

178

START USING THE NEW ONLINE METER  

E-Print Network [OSTI]

START USING THE NEW ONLINE METER REQUEST FORM TOOL CAS login Logging in with your Princeton Net and convenient way for departments to send outgoing metered mail with Mail Services! The new Online Meter Request

Singh, Jaswinder Pal

179

Janices start at Training & Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Janice's start at Training & Technology Janice West Christman, Vice President, Y-12 Quality Assurance, agreed to share her story the week she was retiring. Maybe I caught her at...

180

The Physics of Tokamak Start-up  

SciTech Connect (OSTI)

Tokamak start-up on present-day devices usually relies on inductively induced voltage from a central solenoid. In some cases inductive startup is assisted with auxiliary power from electron cyclotron radio frequency heating. ITER, the National Spherical Torus eXperiment Upgrade and JT60, now under construction, will make use of the understanding gained from present-day devices to ensure successful start-up. Design of a spherical tokamak (ST) with DT capability for nuclear component testing would require an alternative to a central solenoid because the small central column in an ST has insufficient space to provide shielding for the insulators in the solenoid. Alternative start-up techniques such as induction using outer poloidal field coils, electron Bernstein wave start-up, coaxial helicity injection and point source helicity injection have been used with success, but require demonstration of scaling to higher plasma current.

D. Mueller

2012-11-13T23:59:59.000Z

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The physics of tokamak start-up  

SciTech Connect (OSTI)

Tokamak start-up on present-day devices usually relies on inductively induced voltage from a central solenoid. In some cases, inductive startup is assisted with auxiliary power from electron cyclotron radio frequency heating. International Thermonuclear Experimental Reactor, the National Spherical Torus Experiment Upgrade and JT60, now under construction, will make use of the understanding gained from present-day devices to ensure successful start-up. Design of a spherical tokamak (ST) with DT capability for nuclear component testing would require an alternative to a central solenoid because the small central column in an ST has insufficient space to provide shielding for the insulators in the solenoid. Alternative start-up techniques such as induction using outer poloidal field coils, electron Bernstein wave start-up, coaxial helicity injection, and point source helicity injection have been used with success, but require demonstration of scaling to higher plasma current.

Mueller, D. [Princeton Plasma Physics Laboratory, P.O. Box 451 Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, P.O. Box 451 Princeton, New Jersey 08543 (United States)

2013-05-15T23:59:59.000Z

182

Does Head Start help hispanic children?  

Science Journals Connector (OSTI)

Poor educational attainment is a persistent problem among US hispanic children, relative to non-hispanics. Many of these children are immigrants and/or come from households that use a minority language in the home. This paper examines the effects of participation in a government sponsored preschool program called Head Start on these children. We find that large and significant benefits accrue to Head Start children when we compare them to siblings who did not participate in the program. On average, Head Start closes at least 1/4 of the gap in test scores between hispanic children and non-hispanic white children, and 2/3 of the gap in the probability of grade repetition. However, we find that the benefits of Head Start are not evenly distributed across sub-groups.

Janet Currie; Duncan Thomas

1999-01-01T23:59:59.000Z

183

Research Assistantship Available Starting Spring 2013  

E-Print Network [OSTI]

Research Assistantship Available Starting Spring 2013 A research assistantship is available including fac- ulty and students from electrical engineering, computer science, biological sciences Spring 2013 and be funded through Spring 2015. Inter- ested students should submit a resume to David

Koppelman, David M.

184

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Louise Pasternack, Chemistry Department, Krieger School, Krieger School of Arts & Sciences Project Title Introductory Chemistry Lab Demonstrations Audience an interactive virtual lab manual that will facilitate understanding of the procedures and techniques required

Gray, Jeffrey J.

185

Project Year Project Team  

E-Print Network [OSTI]

(Karl) Zhang, Undergraduate Student, Biomedical Engineering, Whiting School of Engineering; Cheryl Kim Audio, Digital Video Project Abstract The goal of this project is to develop online modular units

Gray, Jeffrey J.

186

Line Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(PDCI) Upgrade Project Whistling Ridge Energy Project Line Rebuild, Relocation and Substation Projects Wind Projects Line Projects BPA identifies critical infrastructure and...

187

Newberry EGS Demonstration Project Environmental Analysis (EA)  

Broader source: Energy.gov (indexed) [DOE]

Newberry Volcano Enhanced Geothermal System (EGS) Demonstration Project UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT (BLM) DOI-BLM-OR-P000-2011-0003-EA DOE/EA-1897 ENVIRONMENTAL ASSESSMENT DECEMBER 2011 Location: Federal Geothermal Leases on the West Flank of Newberry Volcano, Deschutes County, 22 miles south of Bend, Oregon Applicant: Davenport Newberry Holdings LLC and AltaRock Energy, Inc. 225 NW Franklin Avenue, Suite 1 Bend, OR 97701 Tel: 541-323-1190 Lead Agency: U.S. Department of the Interior,

188

Current SunShot Incubator Projects  

Broader source: Energy.gov [DOE]

Projects funded under the SunShot Incubator Program allow start-up businesses to yield breakthrough technologies and game-changing insights. The following projects are in progress. SunShot Incubator 7 and 8.

189

Project Year Project Title  

E-Print Network [OSTI]

that incorporate video taped procedures for student preview. Solution This project will create videos for more to study the procedure and techniques before coming to class. Our previous fellowship project addressedProject Year 2009 Project Title Enhancing Biology Laboratory Preparation through Video

Gray, Jeffrey J.

190

Project Year Project Team  

E-Print Network [OSTI]

, there is no resource available to view the procedure before class. Solution The purpose of this project is to capture available to view the procedure before class. The purpose #12;of this project is to capture variousProject Year 2007 Project Team Kristina Obom, Faculty, Advanced Academic Programs, Krieger School

Gray, Jeffrey J.

191

Project Year Project Title  

E-Print Network [OSTI]

Project Year 2013-2014 Project Title German Online Placement Exam Project Team Deborah Mifflin to increased cost. As well, it lacked listening comprehension, writing and speaking components providing support, we will use Blackboard for this project. The creation will require numerous steps

Gray, Jeffrey J.

192

Reversible Bending Fatigue Testing on Zry-4 Surrogate Rods  

SciTech Connect (OSTI)

Testing high-burnup spent nuclear fuel (SNF) presents many challenges in areas such as specimen preparation, specimen installation, mechanical loading, load control, measurements, data acquisition, and specimen disposal because these tasks are complicated by the radioactivity of the test specimens. Research and comparison studies conducted at Oak Ridge National Laboratory (ORNL) resulted in a new concept in 2010 for a U-frame testing setup on which to perform hot-cell reversible bending fatigue testing. Subsequently, the three-dimensional finite element analysis and the engineering design of components were completed. In 2013 the ORNL team finalized the upgrade of the U-frame testing setup and the integration of the U-frame setup into a Bose dual linear motor test bench to develop a cyclic integrated reversible-bending fatigue tester (CIRFT). A final check was conducted on the CIRFT test system in August 2013, and the CIRFT was installed in the hot cell in September 2013 to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The fatigue responses of Zircaloy-4 (Zry-4) cladding and the role of pellet pellet and pellet clad interactions are critical to SNF vibration integrity, but such data are not available due to the unavailability of an effective testing system. While the deployment of the developed CIRFT test system in a hot cell will provide the opportunity to generate the data, the use of a surrogate rod has proven quite effective in identifying the underlying deformation mechanism of an SNF composite rod under an equivalent loading condition. This paper presents the experimental results of using surrogate rods under CIRFT reversible cyclic loading. Specifically, monotonic and cyclic bending tests were conducted on surrogate rods made of a Zry-4 tube and alumina pellet inserts, both with and without an epoxy bond.

Wang, Jy-An John [ORNL; Wang, Hong [ORNL; Bevard, Bruce Balkcom [ORNL; Howard, Rob L [ORNL

2014-01-01T23:59:59.000Z

193

Particle deposition in ventilation ducts: Connectors, bends anddeveloping flow  

SciTech Connect (OSTI)

In ventilation duct flow the turbulent flow profile is commonly disturbed or not fully developed and these conditions are likely to influence particle deposition to duct surfaces. Particle deposition rates at eight S-connectors, in two 90{sup o} duct bends and in two ducts where the turbulent flow profile was not fully developed were measured in a laboratory duct system with both galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. In the steel duct system, experiments with nominal particle diameters of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition of particles with nominal diameters of 1, 3, 5, 8 and 13 {micro}m was measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces. Deposition at S-connectors, in bends and in straight ducts with developing turbulence was often greater than deposition in straight ducts with fully developed turbulence for equal particle sizes, air speeds and duct surface orientations. Deposition rates at all locations were found to increase with an increase in particle size or air speed. High deposition rates at S-connectors resulted from impaction and these rates were nearly independent of the orientation of the S-connector. Deposition rates in the two 90{sup o} bends differed by more than an order of magnitude in some cases, probably because of the difference in turbulence conditions at the bend inlets. In straight steel ducts where the turbulent flow profile was developing, the deposition enhancement relative to fully developed turbulence generally increased with air speed and decreased with downstream distance from the duct inlet. This enhancement was greater at the duct ceiling and wall than at the duct floor. In insulated ducts, deposition enhancement was less pronounced overall than in steel ducts. Trends that were observed in steel ducts were present, but weaker, in insulated ducts.

Sippola, Mark R.; Nazaroff, William W.

2004-03-01T23:59:59.000Z

194

Ice plug employed on subsea pipeline bend during repair  

SciTech Connect (OSTI)

The first controlled-temperature ice plug in the bend of an offshore gas trunkline has been carried out for Phillips Petroleum Co. Norway on its Norpipe A.S. platform in the German sector of the North Sea. The procedure was part of a subsea valve repair operation. The ice plug was successfully formed offshore and tested to a differential pressure of 1,450 psi. Repair of two valves required only 5 days during which time gas production was operating at close to 50--60% via the platform bypass, says the service company. The paper discusses the procedure.

NONE

1997-12-22T23:59:59.000Z

195

CleanStart | Open Energy Information  

Open Energy Info (EERE)

CleanStart CleanStart Jump to: navigation, search Name CleanStart Place McClellan, California Zip CA 95652 Product US Business Technology Incubator located in California. Coordinates 38.668696°, -121.394799° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.668696,"lon":-121.394799,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

196

2003 American Solar Challenge Official Starting Lineup  

Broader source: Energy.gov (indexed) [DOE]

American Solar Challenge Official Starting Lineup American Solar Challenge Official Starting Lineup Starting Team Car # Time 9:00 Kansas State University 28 9:01 University of Minnesota 35 9:02 University of Missouri - Rolla 42 9:03 University of Missouri - Columbia 43 9:04 University of Toronto 11 9:05 University of Waterloo 24 9:06 North Dakota State University 22 9:07 Auburn University 7 9:08 CalSol 254 9:09 Principia College 32 9:10 Queen's University 100 9:11 Western Michigan University 786 9:12 Purdue University 314 9:13 University of Pennsylvania 76 9:14 Iowa State University 9 9:15 Texas A&M University 12 9:16 McGill University 66 9:17 University of Arizona 8 9:18 Stanford University 16 9:19 California Polytechnic State University - SLO 5

197

Property:StartYear | Open Energy Information  

Open Energy Info (EERE)

StartYear StartYear Jump to: navigation, search This is a property of type Date. The allowed values for this property are: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 1988 1987 1986 1985 1984 1983 1982 1981 Subproperties This property has the following 1 subproperty: M Morocco-NREL Energy Activities Pages using the property "StartYear" Showing 25 pages using this property. (previous 25) (next 25) A ASEAN-GIZ Regional Environmentally Sustainable Cities Programme - RESCP + 2007 + Afghanistan-NREL Mission + 2009 + Africa - CCS capacity building + 2010 + Algeria-DLR Resource Assessments + 2007 + Asia Pacific Partnership on Clean Development and Climate + 2006 + B Bangladesh-DLR Resource Assessments + 2001 + Bangladesh-GTZ Renewable Energy and Energy Efficiency Programme + 2007 +

198

DOE Order Self Study Modules - Getting Started  

Broader source: Energy.gov (indexed) [DOE]

Getting Started DOE Orders Self-Study Program Getting Started August 2011 1 U.S. DEPARTMENT OF ENERGY ORDERS SELF-STUDY PROGRAM GETTING STARTED This course was developed using the Criterion Referenced Instruction (CRI) method of training. That means the course contains only the information you need to perform your job. You will be shown the learning objectives at the beginning of the course. If you think you can demonstrate competency without additional instruction, you may complete the practice at any time. When you complete all of the practices successfully, you may ask the course manager for the criterion test. The familiar level requires that you understand and remember the material. The general level requires that you understand the applicability of the material. If you are unsure of the level of proficiency

199

Getting Started | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Getting Started Getting Started Create a Profile Students working in lab Your candidate profile is your way to communicate to our recruiters information about your experience, education, and job preferences. Feel free to update it as frequently as necessary. You may attach resumes and transcripts to the profile. Additionally, you must release your profile for us to access it. You may enter the profile and release it for viewing by our recruiters at any time. Apply For Jobs The profile you create is considered a crucial part of your employment application. Once you have completed your profile, you can start applying for jobs. To apply for job openings simply use the job search to find something that interests you and click apply inside the job posting. You can apply for as many jobs as you like. College program opportunities, such

200

It Starts with Science... | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

It Starts with Science... It Starts with Science... It Starts with Science... Addthis Description Secretary Chu sits down with a journalism student at Carnegie Mellon's Education City campus in Qatar to discuss the value of science in education and what attracted him to the study of Physics. Speakers Secretary Steven Chu, Thouria Mahmoud Duration 3:09 Topic Science Education Energy Economy Credit Energy Department Video THOURIA MAHMOUD: And I'm a student in Northwestern in Qatar, a sophomore in journalism. And now we're in Carnegie Mellon University in Qatar, and I'm talking to Mr. Secretary. If you had any advice for students who are, like, looking forward to pursue any science major, what would you tell them? SECRETARY OF ENERGY STEVEN CHU: In universities they call a liberal arts

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Project Information Form Project Title Spatial Dynamics of the Logistics Industry and Implications for Freight  

E-Print Network [OSTI]

or organization) Caltrans $50,000 Total Project Cost $50,000 Agency ID or Contract Number DTRT13-G-UTC29 StartProject Information Form Project Title Spatial Dynamics of the Logistics Industry and Implications and End Dates August 15, 2014 to August 14 2015 Brief Description of Research Project This project

California at Davis, University of

202

Power Plant Optimization Demonstration Projects Cover Photos:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 SEPTEMBER 2007 5 SEPTEMBER 2007 Power Plant Optimization Demonstration Projects Cover Photos: * Top left: Coal Creek Station * Top right: Big Bend Power Station * Bottom left: Baldwin Energy Complex * Bottom right: Limestone Power Plant A report on four projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Great River Energy * Tampa Electric Company * Pegasus Technologies * NeuCo. , Inc.  Power Plant Optimization Demonstration Projects Executive Summary .......................................................................................4 Background: Power Plant Optimization ......................................................5 Lignite Fuel Enhancement Project ...............................................................8

203

Introduction to Benchmarking: Starting a Benchmarking Plan  

Broader source: Energy.gov (indexed) [DOE]

management plan * Identify billing errors * Verify pre- and post-project energy use, GHG emissions, and energy costs * Communicating results in meaningful terms * Assess...

204

Permeability of shale by the beam-bending method  

Science Journals Connector (OSTI)

The beam-bending method permits measurement of liquid permeability in the nanoDarcy range in a few minutes to a few hours. This technique has been applied successfully to determine the permeability, as well as the viscoelastic properties, of isotropic materials with low permeability, such as gels, porous glass, and cement paste. The method has been extended to measure transversely anisotropic materials, such as sedimentary rock, to find the permeability parallel and perpendicular to the bedding. In this study, measurements have been made on a set of shales from varying depths and locations in the continental United States. The measured permeabilities range 0.009400 nanoDarcies (nD=10?21m2). The permeability in the direction parallel to the bedding orientation was larger than that perpendicular to the bedding orientation, by a factor ranging from 1.2 to 6. This is the first instance of using the beam-bending method to measure the permeabilities of shale in different orientations. The measured permeabilities were compared to the KozenyCarman and KatzThompson models. The pore geometry parameters used in the models, such as the pore size distribution, characteristic pore diameters, porosity, and tortuosity were measured using mercury intrusion porosimetry (MIP), gravimetry, and electrical conductivity, respectively. The measured permeability values match better with the predictions from the KatzThompson equation.

Jie Zhang; George W. Scherer

2012-01-01T23:59:59.000Z

205

Status of the American alligator and potential resource management problems at the Brazos Bend State Park  

E-Print Network [OSTI]

25 4 Alligator populations in Brazos Bend State Park's lakes by size-class distribution 27 5 Significant difference between day mal night counts 35 6 Comparisons of the distribution of day, and night counts by months 38 7 Tukey's studentized... alligators at Brazos Bend State Park 52 6 Concentric kilometer radius of user-public to Brazos Bend and Huntsville State Park 60 ZNTRODVCTION Taking time out for recreational activities, is a prominent pastime in our fast-paced world. Great distances...

Onadeko, Samuel Akinyele

2012-06-07T23:59:59.000Z

206

Getting Started Advanced Search for Funding Opportunities  

E-Print Network [OSTI]

Getting Started Advanced Search for Funding Opportunities For Assistance Delete Criteria to Update Search Funding ­ Finding Additional Sources Saving and Printing SPIN Search Results Past funding opportunities can be searched in InfoEd to: · find opportunities that were added prior to your account set

Duchowski, Andrew T.

207

Particle Physics at the LHC start  

Science Journals Connector (OSTI)

......Switzerland I present a concise review of the major issues and...brief overview of the Standard Model and of QCD, I...sector of the minimal Standard Model is so far just...start is as follows. The Standard Model (SM)1) is a...going on. The current plan is to collect 1 fb-1......

Guido Altarelli

2011-01-01T23:59:59.000Z

208

First Sustained Burning Plasma. Starts in 2019.  

E-Print Network [OSTI]

-T fusion power density is approximated by: Plasma pressure in atmospheres We need >1MWm-3 for an economic system -- need a few Atmospheres of plasma pressure. Can we hold it with a magnetic field? MagneticITER JET (to scale) JET (to scale) First Sustained Burning Plasma. Starts in 2019. BASIC PARAMETERS

209

Health Coaching Available Starting November 20th  

E-Print Network [OSTI]

Health Coaching Available Starting November 20th ! If you've completed your health survey and printed your report, which explains what you are doing well and what you can do better, health coaches are now available. . Our health coaches can work with you to help you take your health to the next level

Marsh, David

210

Health&Safety PreventionStartsHere  

E-Print Network [OSTI]

Health&Safety atWork PreventionStartsHere Workers have the right to: · Know about workplace hazards and what to do about them. · Participate in solving workplace health and safety problems. · Refuse work they believe is unsafe. Workers must: · Follow the law and workplace health and safety policies and procedures

Czarnecki, Krzysztof

211

Getting Started Quick Search for Collaborators  

E-Print Network [OSTI]

Getting Started Quick Search for Collaborators For Assistance Advanced Search for Collaborators the Advanced Search feature of GENIUS / CV Database to search for collaborators, and using the "Full Profile" in blue sidebar on left of screen. 2. Select the hyperlinked "Advanced Search." 3. Advanced Search

Stuart, Steven J.

212

Verifying the INF and START treaties  

SciTech Connect (OSTI)

The INF and START Treaties form the basis for constraints on nuclear weapons. Their verification provisions are one of the great success stories of modern arms control and will be an important part of the foundation upon which the verification regime for further constraints on nuclear weapons will be constructed.

Ifft, Edward [School of Foreign Service, Georgetown University, Washington, DC 20057 (United States)

2014-05-09T23:59:59.000Z

213

Calculation of closed orbit errors due to misalignment of combined function magnets with large bend angle  

SciTech Connect (OSTI)

The effects of different misalignments of bending magnets with very small bending radius ({rho} < lm) and very large bending angle ({Phi}{sub b} = 180, in some cases 360{degree}) are discussed. These magnets are represented by n segments. A method is given to calculate misalignments of a segment at any {alpha} < {Phi}{sub b} bend angle from the misalignments of the whole (rigid) magnet. This method is then used to calculate distorted closed orbits for the SXLS ring. 6 refs., 10 figs., 1 tab.

Bozoki, E.S.

1990-01-01T23:59:59.000Z

214

MagLab Feature Stories: Big Bend Teachers Tackle Pioneering Science...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Big Bend interns came from Leon Countys Deerlake Middle and Astoria Park Elementary schools and the Challenger Center; Gadsden Countys Shanks Middle School; and...

215

Projectivities and Projective Embeddings  

Science Journals Connector (OSTI)

In this chapter, we aim to prove some of the main achievements in the theory of generalized polygons. First, we want to show what the little projective group and the groups of projectivities of some Moufang po...

Hendrik van Maldeghem

1998-01-01T23:59:59.000Z

216

Project Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Questions Keeler-Pennwalt Wood Pole Removal Line Projects Line Rebuild, Relocation and Substation Projects Spacer Damper Replacement Program Wind Projects Project Overview BPA...

217

Accelerating projects  

SciTech Connect (OSTI)

This chapter describes work at ORNL in the period around 1950, when the laboratory was evolving from its original mission of research aimed at producing the atomic bomb, to a new mission, which in many ways was unclear. The research division from Y-12 merged with the laboratory, which gave an increased work force, access to a wide array of equipment, and the opportunity to work on a number of projects related to nuclear propulsion. The first major project was for a nuclear aircraft. From work on this program, a good share of the laboratories work in peaceful application of nuclear energy would spring. A major concern was the development of light weight shielding to protect the crew and materials in such a plane. To do such shielding work, the laboratory employed existing, and new reactors. The original plans called for the transfer of reactor work to Argonne, but because of their own research load, and the needs of the lab, new reactor projects were started at the lab. They included the Low Intensity Test Reactor, the Swimming Pool Reactor, the Bulk Shielding Reactor, the Tower Shielding Facility, and others. The laboratory was able to extend early work on calutrons to accelerator development, pursuing both electrostatic accelerators and cyclotrons. The aircraft project also drove the need for immense quantities of scientific data, with rapid analysis, which resulted the development of divisions aimed at information support and calculational support. The laboratory also expanded its work in the effects of radiation and cells and biological systems, as well as in health physics.

Not Available

1992-01-01T23:59:59.000Z

218

Project Year Project Title  

E-Print Network [OSTI]

operators, matrix indexing, vector computations, loops, functions, and plotting graphs, among others basic arithmetic operators, matrix indexing, and vector computations in MATLAB. After creatingProject Year 2011-2012 Project Title Online Tutorial for MATLAB Project Team Eileen Haase, Whiting

Gray, Jeffrey J.

219

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2005 Project Team Krysia Hudson, Faculty, School of Nursing, Undergraduate Instruction for Educational Resources Project Title Enhanced Web-based Learning Environments for Beginning Nursing Students (e.g., demonstrations of procedures or tasks) into the WBL systems, it will be possible to increase

Gray, Jeffrey J.

220

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Michael McCloskey, Cognitive Science/Neuroscience, Krieger of Arts & Sciences Project Title Cognitive Neuropsychology Audience The initial audience to access. The current procedure calls for individual students or researchers to contact the faculty member

Gray, Jeffrey J.

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Project Year Project Title  

E-Print Network [OSTI]

Project Year 2011-2012 Project Title Using M-Health and GIS Technology in the Field to Improve into teams and having each team use a different m-health data collection tool (e.g., cellular phones, smart health patterns. The Tech Fellow, Jacqueline Ferguson, will assist in creating an m-health project

Gray, Jeffrey J.

222

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Gregory Hager, Computer Science, Whiting School of Engineering Fellow: Alan Chen, Biomedical Engineering, Whiting School of Engineering Project Title Robotics is complicated, time-consuming, and costly, making a robot for an introductory-level class is not practical

Gray, Jeffrey J.

223

Project Proposal Project Logistics  

E-Print Network [OSTI]

Project Proposal · Project Logistics: ­ 2-3 person teams ­ Significant implementation, worth 55 and anticipated cost of copying to/from host memory. IV. Intellectual Challenges - Generally, what makes this computation worthy of a project? - Point to any difficulties you anticipate at present in achieving high

Hall, Mary W.

224

Property:StartDate | Open Energy Information  

Open Energy Info (EERE)

StartDate" StartDate" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 1 April 2008 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 + 1 August 2008 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December 2008 + 1 December 2008 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 + 1 February 2008 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 + 1 February 2009 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 + 1 January 2008 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2009 + 1 January 2009 +

225

Eine Einfhrung Getting Started with MATLAB  

E-Print Network [OSTI]

MATLAB Eine Einführung Getting Started with MATLAB ?bersetzt und gestaltet von Robert Wilke und Ulf Informatik und Mathematik FH Regensburg Prof. Dr. H.-J. Wagner und Prof. Dr. H.-W. Goelden Version 2.0 MATLAB-Version 5.3 1 #12;Hinweise Alle Beispiele wurden mit MATLAB Version 5.3 getestet. Wenn auf Ihrem Computer

Hinze, Michael

226

Microsoft Word - BigBendSootblowerPPA_Final_061306.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6/1234 6/1234 Big Bend Power Station Neural Network-Sootblower Optimization A DOE Assessment June 2006 U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory National Energy Technology Laboratory Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name,

227

Numerical Simulation of the Flow of a Power Law Fluid in an Elbow Bend  

E-Print Network [OSTI]

A numerical study of flow of power law fluid in an elbow bend has been carried out. The motivation behind this study is to analyze the velocity profiles, especially the pattern of the secondary flow of power law fluid in a bend as there are several...

Kanakamedala, Karthik

2010-07-14T23:59:59.000Z

228

Towards photonic integrated circuits : design and fabrication of passive InP waveguide bends  

E-Print Network [OSTI]

Waveguide bends, in the (In,Ga)(As,P) material system, have been simulated, fabricated and tested. A process is developed for waveguides of 1 [micro]m through 7[micro]m widths. Waveguides containing S-bends of varying ...

Rodriguez, Sarah J. (Sarah Janelle), 1979-

2004-01-01T23:59:59.000Z

229

HIV-1 Fusion Peptide Decreases Bending Energy and Promotes Curved Fusion Intermediates  

E-Print Network [OSTI]

HIV-1 Fusion Peptide Decreases Bending Energy and Promotes Curved Fusion Intermediates Stephanie in human immunodeficiency virus (HIV) infection is fusion between the viral envelope and the T x-ray scattering is that the bending modulus KC is greatly reduced upon addition of the HIV fusion

Nagle, John F.

230

Damping of bending waves in truss beams by electrical transmission lines with PZT actuators  

E-Print Network [OSTI]

Damping of bending waves in truss beams by electrical transmission lines with PZT actuators F. dell of the truss beam with an electrical transmission line by a line distribution of PZT actuators. It has been-order transmission line, and that such a line is not suitable to damp bending waves. In the present paper, we propose

Boyer, Edmond

231

Transformation optofluidics for large-angle light bending and tuning{{ L. K. Chin,a  

E-Print Network [OSTI]

Transformation optofluidics for large-angle light bending and tuning{{ Y. Yang,*a L. K. Chin,a J. M DOI: 10.1039/c2lc40442g Transformation optics is a new art of light bending by designing materials with spatially variable parameters for developing wave-manipulation devices. Here, we introduce a transformation

Zheludev, Nikolay

232

National High Magnetic Field Laboratory - Science Starts Here...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Features > Science Starts Here Arrow Science Starts Here: Forest White Forest White Forest White. Name Forest White. Current position Assistant Professor, Massachusetts Institute...

233

National High Magnetic Field Laboratory - Science Starts Here...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facts & Features > Science Starts Here Arrow Science Starts Here: Vivien Zapf Vivien Zapf Vivien Zapf. Name Vivien Zapf. Age 29. Current position Scientific staff member, Los...

234

Isotope effect in normal-to-local transition of acetylene bending modes  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

The normal-to-local transition for the bending modes of acetylene is considered a prelude to its isomerization to vinylidene. Here, such a transition in fully deuterated acetylene is investigated using a full-dimensional quantum model. It is found that the local benders emerge at much lower energies and bending quantum numbers than in the hydrogen isotopomer HCCH. This is accompanied by a transition to a second kind of bending mode called counter-rotator, again at lower energies and quantum numbers than in HCCH. These transitions are also investigated using bifurcation analysis of two empirical spectroscopic fitting Hamiltonians for pure bending modes, which helps to understand the origin of the transitions semiclassically as branchings or bifurcations out of the trans and normal bend modes when the latter become dynamically unstable. The results of the quantum model and the empirical bifurcation analysis are in very good agreement.

Ma, Jianyi [University of New Mexico, Albuquerque, NM, (United States); Xu, Dingguo [University of New Mexico, Albuquerque, NM, (United States) and Sichuan Univ. (China); Guo, Hua [University of New Mexico, Albuquerque, NM, (United States); Tyng, Vivian [Univ. of Oregon, Eugene, OR (United States); Kellman, Michael E. [Univ. of Oregon, Eugene, OR (United States)

2012-01-03T23:59:59.000Z

235

New Jersey SmartStart Buildings - Direct Install Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

New Jersey SmartStart Buildings - Direct Install Program New Jersey SmartStart Buildings - Direct Install Program New Jersey SmartStart Buildings - Direct Install Program < Back Eligibility Commercial Industrial Local Government Nonprofit Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Other Construction Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Lesser of 70% of project costs or $75,000 per project; annual entity cap of $250,000 Program Info Funding Source New Jersey Societal Benefits Charge (public benefits fund); ARRA State New Jersey Program Type State Rebate Program Rebate Amount Varies Provider c/o TRC Energy Services The Direct Install program offers turn-key energy efficiency solutions to qualified industrial and commercial customers that, with some exceptions,

236

First LNG from North field overcomes feed, start-up problems  

SciTech Connect (OSTI)

Qatar Gas LNG is the first LNG project in the gas-development program of the world`s largest gas reservoir, North field. The LNG plant was completed within the budget and schedule. The paper discusses the LNG plant design, LNG storage and loading, alternative mercaptan removal, layout modification, information and control systems, training, data management systems, start-up, and performance testing.

Redha, A.; Rahman, A.; Al-Thani, N.H. [Qatar Liquefied Gas Co., Doha (Qatar); Ishikura, Masayuki; Kikkawa, Yoshitsugi [Chiyoda Corp., Yokohama (Japan)

1998-08-24T23:59:59.000Z

237

Southwest region solar pond study for three sites: Tularosa Basin, Malaga Bend, and Canadian River  

SciTech Connect (OSTI)

In the study, the Bureau of Reclamation investigated the technical and economic feasibility of using solar salt-gradient ponds to generate power and to produce freshwater in Bureau projects at three sites--the Canadian River at Logan, New Mexico; Malaga Bend on the Pecos River near Carlsbad, New Mexico; and the Tularosa Basin in the vicinity of Alamogordo, New Mexico. The ponds would be used to generate electric power that could be integrated with the Bureau's power grid or used in combination with thermal energy from the ponds to power commercially available desalination systems to produce freshwater. Results of the economic analysis, which concentrated primarily on the Tularosa Basin site, showed that solar-pond-generated intermediate load power would cost between 62 and 90 mills/kWh and between 52 and 83 mills/kWh for baseload power. This results in benefit-cost ratios of approximately 2.0 and 1.3 for intermediate and baseload, respectively, when compared to similar facilities powered by fossil fuels. The cost savings are even more pronounced when comparing the two (solar versus fossil fuel) as a source of power for conventional distillation and membrane-type desalination systems.

Boegli, W.J.; Dahl, M.M.; Remmers, H.E.

1984-08-01T23:59:59.000Z

238

Funding & Financing for Energy Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Projects Projects Funding & Financing for Energy Projects A concentrating solar power system being installed in Gila Bend, Arizona. | Photo by Dennis Schroeder. A concentrating solar power system being installed in Gila Bend, Arizona. | Photo by Dennis Schroeder. Are you a state, local or tribal government, or private sector partner, looking for resources or financing to support an energy project? Learn about funding and financing opportunities. AT THE ENERGY DEPARTMENT Loan Programs Office: The Energy Department's Loan Program Office guarantees loans to eligible clean energy projects and provides direct loans to eligible manufacturers of advanced technology vehicles and components. Learn about how the Energy Department's loan programs are accelerating domestic commercial deployment of advanced technologies at a

239

Off-fault Damage Associated with a Localized Bend in the North Branch San Gabriel Fault, California  

E-Print Network [OSTI]

and microstructural study focused on structural domains before, within, and after the fault bend on both sides of the fault. Subsidiary fault fabrics are similar in all domains outside the bend, which suggests a steady state fracture density and orientation...

Becker, Andrew 1987-

2012-08-15T23:59:59.000Z

240

Project Information Form Project Title White Paper on Climate Adaptation for State DOTs and Local Agencies  

E-Print Network [OSTI]

Project Information Form Project Title White Paper on Climate Adaptation for State DOTs and Local each agency or organization) DOT $30,000 Total Project Cost $30,000 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates January 2014 to December 2014 Brief Description of Research Project

California at Davis, University of

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Project Title Improved Emission Models for Project Evaluation (MOVES-Matrix) University Georgia Institute of Technology  

E-Print Network [OSTI]

Project Title Improved Emission Models for Project Evaluation (MOVES-Matrix) University Georgia or organization) DOT - $92,292.15 Total Project Cost $92,292.15 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates November 2013 - June 2015 Brief Description of Research Project Local governments are using

California at Davis, University of

242

Project Information Form Project Title Impact of Legislative Mandates on Transportation Workforce Capacity  

E-Print Network [OSTI]

or organization) DOT $95,000 Total Project Cost $95,000 Agency ID or Contract Number DTRT13-G-UTC29 Start and EndProject Information Form Project Title Impact of Legislative Mandates on Transportation Workforce Dates August 1, 2014 to July 31, 2015 Brief Description of Research Project The transportation industry

California at Davis, University of

243

Project Information Form Project Title Accelerating Commercialization of Alternative and Renewable Fuels and  

E-Print Network [OSTI]

or organization) CEC $344,546 Total Project Cost $344,546 Agency ID or Contract Number DTRT13-G-UTC29 StartProject Information Form Project Title Accelerating Commercialization of Alternative and Renewable and End Dates June 30, 2014 to June 30, 2016 Brief Description of Research Project Alternative

California at Davis, University of

244

Project Information Form Project Title Using Connected Vehicle Technology for Advanced Signal Control  

E-Print Network [OSTI]

,387 Total Project Cost $59,387 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates 4/14/2014 ­ 9Project Information Form Project Title Using Connected Vehicle Technology for Advanced Signal/30/15 Brief Description of Research Project Today's conventional traffic control strategies typically rely

California at Davis, University of

245

Project Information Form Project Title Designing and Analyzing Policies for Renewable Fuels  

E-Print Network [OSTI]

or organization) US DOT $38,942 Total Project Cost $38,942 Agency ID or Contract Number DTRT13-G-UTC29 StartProject Information Form Project Title Designing and Analyzing Policies for Renewable Fuels and End Dates September 1, 2014 to August 31, 2015 Brief Description of Research Project Federal and state

California at Davis, University of

246

Project Information Form Project Title Designing and Analyzing Policies for Renewable Fuels  

E-Print Network [OSTI]

or organization) US DOT $38,925 Total Project Cost $38,925 Agency ID or Contract Number DTRT13-G-UTC29 StartProject Information Form Project Title Designing and Analyzing Policies for Renewable Fuels and End Dates September 1, 2014 to August 31, 2015 Brief Description of Research Project Federal and state

California at Davis, University of

247

Project Information Form Project Title Intercity Travel in Northeaster Non-metropolitan Regions: What Roles do  

E-Print Network [OSTI]

) USDOT $73,000 Total Project Cost $73,000 Agency ID or Contract Number DTRT13-G-UTC29 Start and End DatesProject Information Form Project Title Intercity Travel in Northeaster Non-metropolitan Regions September 2014 to August 2016 Brief Description of Research Project Little is known about intercity travel

California at Davis, University of

248

Project Information Form Project Title Intercity Travel in Northeastern Non-metropolitan Regions: What Roles do  

E-Print Network [OSTI]

) USDOT $73,000 Total Project Cost $73,000 Agency ID or Contract Number DTRT13-G-UTC29 Start and End DatesProject Information Form Project Title Intercity Travel in Northeastern Non-metropolitan Regions September 2014 to August 2016 Brief Description of Research Project Little is known about intercity travel

California at Davis, University of

249

Project Information Form Project Title Advanced Energy Management Strategy Development for Plug-in Hybrid  

E-Print Network [OSTI]

,365 Total Project Cost $58,365 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates April 1, 2014Project Information Form Project Title Advanced Energy Management Strategy Development for Plug ­ September 30, 2015 Brief Description of Research Project Plug-in hybrid vehicles (PHEVs) have great

California at Davis, University of

250

Project Information Form Project Title White Paper of Assessing Transportation Financing Options from a Green  

E-Print Network [OSTI]

or organization) US DOT $23,700 Total Project Cost $23,700 Agency ID or Contract Number DTRT13-G-UTC29 StartProject Information Form Project Title White Paper of Assessing Transportation Financing Options and End Dates June 15, 2014 to August 31, 2014 Brief Description of Research Project The Highway Trust

California at Davis, University of

251

Project Information Form Project Title Program for Vehicle Regulatory Reform: Assessing Life Cycle-Based  

E-Print Network [OSTI]

,931.44 Total Project Cost $98,931.44 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates November 1Project Information Form Project Title Program for Vehicle Regulatory Reform: Assessing Life Cycle, 2014 ­ October 31, 2015 Brief Description of Research Project Current greenhouse gas emissions

California at Davis, University of

252

Project Information Form Project Title Managing Roadway Systems to Reduce GHG Emissions and Improve  

E-Print Network [OSTI]

or organization) $25,217 Total Project Cost $25,217 Agency ID or Contract Number DTRT13-G-UTC29 Start and EndProject Information Form Project Title Managing Roadway Systems to Reduce GHG Emissions and Improve Dates 4/1/14 ­ 3/30/15 Brief Description of Research Project There have been a variety of traffic

California at Davis, University of

253

A QuickStart Guide to printing a  

E-Print Network [OSTI]

A QuickStart Guide to printing a 3D model starting from a block of bytes Bridget CarragherStart Guide to printing a 3D model starting from a block of bytes This is currently a three step process. (1 and selecting a new size (of 3 inches for example). Once you have done this, choose Print from the File menu

254

Bending waves due to a moving harmonic force.  

Science Journals Connector (OSTI)

In many structurally induced and flow?induced vibration problems the harmonic forcing function is not stationary but moves with a velocity V 0. The effect of the forcing function velocity V 0 upon the free vibrational wave?number characteristics of a membrane and a plate is analyzed. The Mach numberM is defined to be the ratio of the velocity V 0 to the wave speed of the bending waves. For the membrane the effect of the Mach number is to increase the wave number (shorter wavelength) ahead of the forcing function and to decrease the wave number (longer wavelength) behind it. At supersonic speeds no disturbances travel ahead of the forcing function and both wave numbers lead to trailing waves. These results are equivalent to the classical Doppler?shifted results. The results of the plate are more complex. The right and left traveling waves retain their basic properties with the magnitude of the wave number changing monotomically as a function of the Mach numberM. The near?field decaying disturbances also retain their basic properties but immediately obtain components that induce the decaying disturbances to become left traveling waves with decaying components. At Mach numbers greater than 2 these disturbances become pure waves trailing without any decaying factor. The importance of each of these components as a function of the Mach number is discussed.

Mauro Pierucci

1992-01-01T23:59:59.000Z

255

Influence of the chord bending on the ultimate capacity of RHS-T joint  

SciTech Connect (OSTI)

Using FE technique, an extensive parameter study is carried out in order to investigate the influence of the chord bending moment on the ultimate axial load capacity of T-joint in RHS. By separating the effect of chord bending moment from the effect of concentrated load, failure of T-Joint in RHS can be described in a clear manner. Using the regression analysis, an interaction formula between the ultimate axial load capacity and the chord bending moment has been obtained which will form a basis for the investigation into the behavior of multiplanar T-joints and the behavior of multiplanar X-joints in RHS.

Yu, Y.; Wardenier, J. [Delft Univ. of Technology (Netherlands)

1995-12-31T23:59:59.000Z

256

Project Year Project Team  

E-Print Network [OSTI]

; Ian Sims, Student, Electrical and Computer Engineering, Whiting School of Engineering Project Title and Jazz Theory/Keyboard I & II. Technologies Used Digital Audio, Digital Video, Graphic Design, HTML

Gray, Jeffrey J.

257

EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project  

Broader source: Energy.gov (indexed) [DOE]

73: W.A. Parish Post-Combustion CO2 Capture and Sequestration 73: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX SUMMARY This EIS evaluates the environmental impacts of a proposal to provide financial assistance for a project proposed by NRG Energy, Inc (NRG). DOE selected NRG's proposed W.A. Parish Post-Combustion CO2 Capture and Sequestration Project for a financial assistance award through a competitive process under the Clean Coal Power Initiative Program. NRG would design, construct and operate a commercial-scale carbon dioxide (CO2) capture facility at its existing W.A. Parish Generating Station in Fort Bend County, Texas; deliver the CO2 via a new pipeline to the existing West Ranch oil field in Jackson

258

EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project  

Broader source: Energy.gov (indexed) [DOE]

EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX SUMMARY This EIS evaluates the environmental impacts of a proposal to provide financial assistance for a project proposed by NRG Energy, Inc (NRG). DOE selected NRG's proposed W.A. Parish Post-Combustion CO2 Capture and Sequestration Project for a financial assistance award through a competitive process under the Clean Coal Power Initiative Program. NRG would design, construct and operate a commercial-scale carbon dioxide (CO2) capture facility at its existing W.A. Parish Generating Station in Fort Bend County, Texas; deliver the CO2 via a new pipeline to the existing West Ranch oil field in Jackson

259

dlCC Opt: Optimization Software for Renewable Energy Projects...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

indicators of project opportunities. Many existing programs require the user to enter the size (kW) of the renewable energy system in order to start calculations. However,...

260

DUF6 Project Continues on Success Track | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

processed. PADUCAH, Ky. - After more than doubling production in fiscal year 2013, the Depleted Uranium Hexafluoride (DUF6) Conversion Project is moving from start-up mode to...

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Project Brief: These works, part of the project to complete the RSM and Bessemer Buildings, involve refurbishment of level 3  

E-Print Network [OSTI]

Project Brief: These works, part of the project to complete the RSM and Bessemer Buildings, involve.ac.uk/researchservices/ contractsandcec/fp7/cooperation/nano Construction Project Team: Project Facts & Figures: Budget: £2,024,000 Funding Source: SRIF III Construction Project Programme: Start on Site: December 2007 End Date: Nov 2008

262

Bending Elasticity of Anti-Parallel b-Sheets Seungho Choe and Sean X. Sun  

E-Print Network [OSTI]

fluctuations of the structure at room temperature. By matching the probability distributions of elastic strainsBending Elasticity of Anti-Parallel b-Sheets Seungho Choe and Sean X. Sun Department of Mechanical

Sun, Sean

263

Simulation of parametric ship rolling: Effects of hull bending and torsional elasticity  

Science Journals Connector (OSTI)

An enhanced mechanical model for simulating ship body oscillations and both the induced fluxural ... coupled heave-pitch-roll motions, and the effects of bending and torsional elasticity of the...

R. Nabergoj; A. Tondl

1994-10-01T23:59:59.000Z

264

Measurements of emittance growth through the achromatic bend at the BNL Accelerator Test Facility  

SciTech Connect (OSTI)

Measurements of emittance growth in a high peak current beam as it passes through an achromatic double bend are summarized. Experiments were performed using the ATF at Brookhaven National Laboratory by X.J. Wang and D. Kehne as a collaboration resulting from the proposal attached at the end of the document. The ATF consists off an RF gun (1 MeV), two sections of linac (40-75 MeV), a diagnostic section immediately following the linac, a 20{degree} bend magnet, a variable aperture slit at a high dispersion point, 5 quadrupoles, then another 20{degree} bend followed by another diagnostic section. The TRANSPORT deck describing the region from the end of the linac to the end of the diagnostic line following the achromatic bends is attached to the end of this document. Printouts of the control screens are also attached.

Wang, X.J.; Kehne, D.

1997-07-01T23:59:59.000Z

265

Energy losses in thermally cycled optical fibers constrained in small bend radii  

SciTech Connect (OSTI)

High energy laser pulses were fired into a 365?m diameter fiber optic cable constrained in small radii of curvature bends, resulting in a catastrophic failure. Q-switched laser pulses from a flashlamp pumped, Nd:YAG laser were injected into the cables, and the spatial intensity profile at the exit face of the fiber was observed using an infrared camera. The transmission of the radiation through the tight radii resulted in an asymmetric intensity profile with one half of the fiber core having a higher peak-to-average energy distribution. Prior to testing, the cables were thermally conditioned while constrained in the small radii of curvature bends. Single-bend, double-bend, and U-shaped eometries were tested to characterize various cable routing scenarios.

Guild, Eric; Morelli, Gregg

2012-09-23T23:59:59.000Z

266

Regional variation in the mechanical properties of the vertebral column during lateral bending in Morone saxatilis  

Science Journals Connector (OSTI)

...focusing on the lower frequencies relevant to much...the much higher frequencies associated with the startle response, may result in...lower and higher frequencies of bending, to...tissues involved in energy storage in the system are...

2012-01-01T23:59:59.000Z

267

Curvature-induced radiation of surface plasmon polaritons propagating around bends  

SciTech Connect (OSTI)

We present a theoretical study of the curvature-induced radiation of surface plasmon polaritons propagating around bends at metal-dielectric interfaces. We explain qualitatively how the curvature leads to distortion of the phase front, causing the fields to radiate energy away from the metal-dielectric interface. We then quantify, both analytically and numerically, radiation losses and energy transmission efficiencies of surface plasmon polaritons propagating around bends with varying radii as well as sign of curvature.

Hasegawa, Keisuke; Noeckel, Jens U.; Deutsch, Miriam [Department of Physics, University of Oregon, 1371 East 13th Aveenue, Eugene, Oregon 97403 (United States)

2007-06-15T23:59:59.000Z

268

Seismic mapping of alluvial fans and sub-fan bedrock in Big Bend National Park, Texas  

E-Print Network [OSTI]

Layered Models Anomalous Time-Distance Plots Error Analysis Geologic Interpretations of Results CONCLUSIONS RECOMMENDATIONS REFERENCES ~ APPENDIX VITA 7 8 10 11 16 16 18 23 29 32 32 45 47 50 52 LIST OF FIGURES Figure Page 1 Ground...-water resource investigation study area Big Bend National Park, Texas 2 Location of seismic surveys within the Big Bend study area 3 Comparison of seismic surveys to driller's logs 12 4 Hypothetical three-layer case with dipping layers 20 5 Representative...

Monti, Joseph

1984-01-01T23:59:59.000Z

269

Project Fact Sheet Project Update  

E-Print Network [OSTI]

Project Fact Sheet Project Update: Project Brief: The works cover the refurbishment of floors 4, 5 operating theatre. The Bionanotechnology Centre is one of the projects funded from the UK Government's £20.imperial.ac.uk/biomedeng Construction Project Team: Project Facts & Figures: Budget: £13,095,963 Funding Source: SRIF II and Capital

270

Sandia National Laboratories: Power Production Started on All...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyPower Production Started on All Three SWiFT Turbines Power Production Started on All Three SWiFT Turbines Sandia Maps Multiple Paths to Cleaner, Low-Temp Diesels CRF...

271

NNSA Authorizes Start-Up of Highly Enriched Uranium Materials...  

National Nuclear Security Administration (NNSA)

Releases NNSA Authorizes Start-Up of Highly Enriched Uranium ... NNSA Authorizes Start-Up of Highly Enriched Uranium Materials Facility at Y-12 applicationmsword icon R-10-01...

272

Project Year Project Team  

E-Print Network [OSTI]

An Engineer's Guide to the Structures of Baltimore Audience Students from the Krieger School of Arts City, interfaced through a course website, the team will integrate descriptions of structural behavior format. Technologies Used HTML/Web Design, MySQL Project Abstract Structural analysis is typically taught

Gray, Jeffrey J.

273

Project Year Project Team  

E-Print Network [OSTI]

information systems (GIS) tools to design maps that integrate data for visualizing geographic concepts School of Engineering Project Title GIS & Introductory Geography Audience Undergraduate students on how to use the Internet for geographic research, and an interactive introduction to GIS through online

Gray, Jeffrey J.

274

Project Management Project Managment  

E-Print Network [OSTI]

­ Inspired by agile methods #12;Background · Large-scale software development & IT projects, plagued relations #12;One Agile Approach to Scheduling · The creative nature of game development resist heavy up Problems ­incompatible platforms, 3rd party etc. #12;Is Games Development Similar? · Yes & No

Stephenson, Ben

275

New Jersey SmartStart Buildings - Pay for Performance Program | Department  

Broader source: Energy.gov (indexed) [DOE]

New Jersey SmartStart Buildings - Pay for Performance Program New Jersey SmartStart Buildings - Pay for Performance Program New Jersey SmartStart Buildings - Pay for Performance Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Varies for each program milestone $1 M per utility account (gas and electric) per year $2 M per project $4 M per entity per year Program Info State New Jersey Program Type State Rebate Program Rebate Amount $/kWh, $/therm, and $/sq. ft. incentives, vary based on expected energy

276

RHIC Project | Superconducting Magnet Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RHIC Project RHIC Project The Superconducting Magnet Division supplied 1740 magnetic elements, in 888 cryostats, for the RHIC facility at BNL. Of these, 780 magnetic elements were manufactured by Northrop-Grumman (Bethpage, NY) and 360 were made by Everson Electric (Bethlehem, PA). The magnets made in industry used designs developed at BNL. The first cooldown of the magnets for the RHIC engineering run was in 1999. Since then, the magnets have operated very reliably. arc dipole coil and yoke Arc dipole coil and yoke, with magnetic flux lines The magnets provide modest field (3.45 Teslas in the arc dipoles) in a cost-effective design. Key features in the principal bending and focusing magnets include the use of NbTi Rutherford cable, a single-layer coil, and cold iron as both yoke and collar. The magnets operate in forced-flow

277

Project Accounts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

» Project Accounts » Project Accounts Project Accounts Overview Project accounts are designed to facilitate collaborative computing by allowing multiple users to use the same account. All actions performed by the project account are traceable back to the individual who used the project account to perform those actions via gsisshd accounting logs. Requesting a Project Account PI's, PI proxies and project managers are allowed to request a project account. In NIM do "Actions->Request a Project Account" and fill in the form. Select the repository that the Project Account is to use from the drop-down menu, "Sponsoring Repository". Enter the name you want for the account (8 characters maximum) and a description of what you will use the account for and then click on the "Request Project Account" button. You

278

Project Information Form Project Title Routing Strategies for Efficient Deployment of Alt. Fuel Vehicles for  

E-Print Network [OSTI]

agency or organization) US DOT $90,000 Total Project Cost $90,000 Agency ID or Contract Number DTRT13-GProject Information Form Project Title Routing Strategies for Efficient Deployment of Alt. Fuel-UTC29 Start and End Dates May 16, 2014 to May 31, 2015 Brief Description of Research Project

California at Davis, University of

279

Project Fact Sheet Project Update  

E-Print Network [OSTI]

Project Fact Sheet Project Update: Project Brief: A state of the art facility, at Hammersmith information visit the Faculty of Medicine web pages http://www1.imperial.ac.uk/medicine/ Construction Project Team: Project Facts & Figures: Budget: £60 000 000 Funding Source: SRIF II (Imperial College), GSK, MRC

280

Project Fact Sheet Project Update  

E-Print Network [OSTI]

Project Fact Sheet Project Update: Project Brief: The refurbishment of the instrumentation equipment. This project encompasses refurbishment work on over 1,150m2 of laboratory space across four, the completed project will allow researchers to expand their work in satellite instrumentation, the fabrication

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Decision of the Wind Power Projects Based on Cost-Efficient Method  

Science Journals Connector (OSTI)

To start from the investment characteristics of wind power projects, account for wind power projects in the life-cycle costs and project income, decision analysis and application of cost-effectiveness of wind pow...

Gao Hong; Gao Wu; Lu Guo

2013-01-01T23:59:59.000Z

282

EIA-Voluntary Reporting of Greenhouse Gases Program - Getting Started  

U.S. Energy Information Administration (EIA) Indexed Site

Getting Started Getting Started Voluntary Reporting of Greenhouse Gases Program Getting Started Form EIA-1605 may seem daunting at first, even for entities that have reported under the original program. That's why EIA has developed the Getting Started page to help entities take a systematic approach to reporting their emissions and reductions. The Voluntary Reporting of Greenhouse Gases Program suggests that prospective reporters familiarize themselves with the specific requirements for reporting their entity's inventory and reductions by answering the questions embodied in the 10 steps below. In addition, EIA has prepared the interactive Getting Started tool to help reporters determine what parts of Form EIA-1605 they need to complete. Getting Started Tool Getting Started PDF Tables

283

Berkeley Lab Technology Spawns Successful Start-up Companies | Department  

Broader source: Energy.gov (indexed) [DOE]

Berkeley Lab Technology Spawns Successful Start-up Companies Berkeley Lab Technology Spawns Successful Start-up Companies Berkeley Lab Technology Spawns Successful Start-up Companies October 25, 2010 - 10:58am Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What are the key facts? Three start-up companies using Berkeley-developed technology have either had highly successful launches or closed major deals in the last several months. Ed. Note cross posted from Berkeley Lab News Center, written by Julie Chao. What do a smart window company, a microbial analysis start-up and waste-heat recovery start-up have in common? They're all located in the San Francisco Bay Area and they're all based on technology developed at Lawrence Berkeley National Laboratory. What's more, these three start-up companies have either had highly

284

Volume Project  

E-Print Network [OSTI]

Math 13900. Volume Project. For the following project, you may use any materials. This must be your own original creation. Construct a right pyramid with a base...

rroames

2010-01-12T23:59:59.000Z

285

Manhattan Project: Suggested Readings  

Office of Scientific and Technical Information (OSTI)

SUGGESTED READINGS SUGGESTED READINGS Resources > Readings The literature on the Manhattan Project is extensive. The purpose of this web page is not to catalogue it, but only to suggest a very select few places to start. For more exhaustive lists of secondary works relating to the early history of nuclear energy, consult the bibliographies of the books listed below. Suggested Surveys of the Manhattan Project Gosling, F. G. The Manhattan Project: Making the Atomic Bomb. DOE/MA-0001; Washington: History Division, Department of Energy, January 1999. An overview history by the Chief Historian of the Department of Energy and the basis for most of the "Events" in this web site. The best short survey for the general reader. Revised with additional photographs in January 2010 as DOE/MA-0002 Revised and available in .pdf format.

286

Project Information Form Project Title White Paper on the Future of Passenger Travel Demand in the United  

E-Print Network [OSTI]

each agency or organization) Caltrans $26,383 Total Project Cost $26,383 Agency ID or Contract NumberProject Information Form Project Title White Paper on the Future of Passenger Travel Demand DTRT13-G-UTC29 Start and End Dates September 2014 to June 2015 Brief Description of Research Project

California at Davis, University of

287

Project Information Form Project Title White Paper on the Effectiveness of Land Use and Demand Strategies in  

E-Print Network [OSTI]

DOT $12,000 Cal Trans Total Project Cost $42,533 Agency ID or Contract Number DTRT13-G-UTC29 StartProject Information Form Project Title White Paper on the Effectiveness of Land Use and Demand and End Dates June 30, 2014 to January 30, 2015 Brief Description of Research Project Reducing vehicle

California at Davis, University of

288

Project Controls  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.

1997-03-28T23:59:59.000Z

289

Knowledge Practices Laboratory Integrated Project  

E-Print Network [OSTI]

27490 KP-LAB Knowledge Practices Laboratory Integrated Project Information Society Technologies D6. Map-It. The installer program for Map-It v2.0.0 is available at: http://www.kp-lab.org/intranet-lab.org/intranet/testable-tools/kp-lab-tools/map-it/getting-started-with-map-it 3. Change Laboratory

Paris-Sud XI, Université de

290

Property:Incentive/StartDateString | Open Energy Information  

Open Energy Info (EERE)

StartDateString StartDateString Jump to: navigation, search Property Name Incentive/StartDateString Property Type String Description Start Date string property. Use this property in queries until the Property:Incentive/StartDate property is populated with valid dates only. Currently, some are populated with additional notes included. Pages using the property "Incentive/StartDateString" Showing 25 pages using this property. (previous 25) (next 25) 3 30% Business Tax Credit for Solar (Vermont) + 01/01/2009 + A AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) + 3/11/2011 + AEP Appalachian Power - Residential Home Retrofit Program (West Virginia) + 3/11/2011 + AEP Ohio - Commercial Self Direct Rebate Program (Ohio) + 1/1/2008 +

291

Bending elasticity of a curved amphiphilic film decorated anchored copolymers: a small angle neutron scattering study  

E-Print Network [OSTI]

Microemulsion droplets (oil in water stabilized by a surfactant film) are progressively decorated with increasing amounts of poly ethylene- oxide (PEO) chains anchored in the film by the short aliphatic chain grafted at one end of the PEO chain . The evolution of the bending elasticity of the surfactant film with increasing decoration is deduced from the evolution in size and polydispersity of the droplets as reflected by small angle neutron scattering. The optimum curvature radius decreases while the bending rigidity modulus remains practically constant. The experimental results compare well with the predictions of a model developed for the bending properties of a curved film decorated by non-adsorbing polymer chains, which takes into account, the finite curvature of the film and the free diffusion of the chains on the film.

Jacqueline Appell; Christian Ligoure; Gregoire Porte

2004-06-30T23:59:59.000Z

292

Development of bending characteristics for the TPX TF magnet coil cable-in-conduit conductor  

SciTech Connect (OSTI)

The conductor for the toroidal field (TF) magnet coils for the Tokamak Physics experiment (TPX) is an assembly of stranded Nb{sub 3}Sn superconductor sheathed by an Incoloy 908 conduit. The coil shape, when coupled with stiffness of the cable-in-conduit conductor (CICC) is such that conventional magnet winding techniques cannot be utilized. Therefore a bending and forming method will be employed in the TF coils. The cable will be reacted after bending because the reaction process hardens the conduit and also lowers the strain the cable can withstand without performance degradation. The Incoloy 908 conduit also work hardens quickly, necessitating the production of the required coil shape in one step without correction. This paper discusses the limiting processes for forming the TPX TF magnet geometry, the methods utilized in establishing the CICC bending characteristics and the methods employed to account for material springback so that a coil can be manufactured accurately and efficiently.

Grut, K.E.; Holbrook, R.L.; Hook, E.; Antaya, T.A. [Babcock and Wilcox, Lynchburg, VA (United States)

1996-12-31T23:59:59.000Z

293

Probing the limit of one-dimensional heat transfer under extreme bending strain  

Science Journals Connector (OSTI)

Theoretically, when a one-dimensional (1D) ballistic thermal conductor is mechanically bent beyond its elastic limit, nonlinear structural buckling will develop and reduce the transmission of phonons. However, because of limited mechanical strengths and short phonon mean free paths of most materials, no experimental works are capable of testing this fundamental limit of heat transfer so far. Here, we utilize the superior mechanical strength and the high thermal conductivity of single-wall carbon nanotubes (SWCNTs) to investigate the heat transfer phenomena at a previously inaccessible experimental regime. Surprisingly, even when the SWCNTs are bent far beyond their critical angles and curvatures, their thermal conductivities remain intact under cyclic bending. Moreover, the observed robustness of heat transfer is found to be independent of structural kinks, defects, dislocations, bending angles, or curvatures. Our results demonstrate that SWCNTs are exceptional 1D thermal conductors capable of sustaining high transmission of phonons under extreme bending strain.

Victor Lee, Renkun Chen, and Chih-Wei Chang

2013-01-08T23:59:59.000Z

294

COST BREAKDOWN AWARD NO: START DATE: EXPIRATION DATE: FISCAL...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COST BREAKDOWN AWARD NO: START DATE: EXPIRATION DATE: FISCAL YEAR BREAKDOWN OF FUNDS ELEMENTS FY FY FY FY FY TOTAL Direct Labor Overhead Materials Supplies Travel Other Direct...

295

Sandia National Laboratories: reducing start-up risks for solar...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

start-up risks for solar thermal generation Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy...

296

Assess your starting point | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assess your starting point Assess your starting point Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Read the ENERGY STAR Guidelines for Energy Management Get buy-in from leadership and staff Make a commitment Assess your starting point Use Portfolio Manager Save energy Find financing Earn recognition Communicate your success

297

Ground-water hydrology of the Panther Junction area of Big Bend National Park, Texas  

E-Print Network [OSTI]

GROUND-WATER HYDROLOGY OF THE PANTHER JUNCTION AREA OF BIG BEND NATIONAL PARK, TEXAS A Thesis by JOHN LAWRENCE GIBSON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1983 Major Subject: Geology GROUND-WATER HYDROLOGY OF THE PANTHER JUNCTION AREA OF BIG BEND NATIONAL PARK, TEXAS A Thesis by JOHN LAWRENCE GIBSON Approved as to style and content by: Melv'n C. Schroeder (Chairman...

Gibson, John Lawrence

2012-06-07T23:59:59.000Z

298

A hydrogeological evaluation of alluvial fans in northern Big Bend National Park, Texas, using geophysical methods  

E-Print Network [OSTI]

OF THE SEISMIC AND RESISTIVITY DATA INTERPRETATIONS CONCLUSIONS REFERENCES. APPENDIX. VITA. Page viii ix 9 11 11 15 16 17 17 19 24 28 35 40 46 46 48 52 52 54 55 59 92 97 100 104 106 LIST OF TABLES Table Page True seism1c... Representative four-layer case from the Big Bend Park study area 33 Frequency distribution of seismic velocities. . 34 10 Anomalous time-distance plots from the Bio Bend Park study area 37 Comparison of results from seismic sounding to driller's logs from...

Archer, Jerry Alan

1982-01-01T23:59:59.000Z

299

Seasonal Price Change and Costs of Storing Grain Sorghum in the Coastal Bend.  

E-Print Network [OSTI]

or to store it in commercial I elevators for later sale. During the harvest months of -- June and July, the grain sorghum price in the Coastal E Bend usually is similar to the average Texas price, with the June price slightly above and the July price... slightly below the State price. After July the Coastal Bend " prices move away from, and above, the average Texas price. If price later in the season moves above the har- vest price by an amount that more than covers the farmer's storage costs, he...

Whitney, Howard S.; Moore, Clarence A.

1957-01-01T23:59:59.000Z

300

TEST SYSTEM FOR EVALUATING SPENT NUCLEAR FUEL BENDING STIFFNESS AND VIBRATION INTEGRITY  

SciTech Connect (OSTI)

Transportation packages for spent nuclear fuel (SNF) must meet safety requirements specified by federal regulations. For normal conditions of transport, vibration loads incident to transport must be considered. This is particularly relevant for high-burnup fuel (>45 GWd/MTU). As the burnup of the fuel increases, a number of changes occur that may affect the performance of the fuel and cladding in storage and during transportation. The mechanical properties of high-burnup de-fueled cladding have been previously studied by subjecting defueled cladding tubes to longitudinal (axial) tensile tests, ring-stretch tests, ring-compression tests, and biaxial tube burst tests. The objective of this study is to investigate the mechanical properties and behavior of both the cladding and the fuel in it under vibration/cyclic loads similar to the sustained vibration loads experienced during normal transport. The vibration loads to SNF rods during transportation can be characterized by dynamic, cyclic, bending loads. The transient vibration signals in a specified transport environment can be analyzed, and frequency, amplitude and phase components can be identified. The methodology being implemented is a novel approach to study the vibration integrity of actual SNF rod segments through testing and evaluating the fatigue performance of SNF rods at defined frequencies. Oak Ridge National Laboratory (ORNL) has developed a bending fatigue system to evaluate the response of the SNF rods to vibration loads. A three-point deflection measurement technique using linear variable differential transformers is used to characterize the bending rod curvature, and electromagnetic force linear motors are used as the driving system for mechanical loading. ORNL plans to use the test system in a hot cell for SNF vibration testing on high burnup, irradiated fuel to evaluate the pellet-clad interaction and bonding on the effective lifetime of fuel-clad structure bending fatigue performance. Technical challenges include pure bending implementation, remote installation and detachment of the SNF test specimen, test specimen deformation measurement, and identification of a driving system suitable for use in a hot cell. Surrogate test specimens have been used to calibrate the test setup and conduct systematic cyclic tests. The calibration and systematic cyclic tests have been used to identify test protocol issues prior to implementation in the hot cell. In addition, cyclic hardening in unidirectional bending and softening in reverse bending were observed in the surrogate test specimens. The interface bonding between the surrogate clad and pellets was found to impact the bending response of the surrogate rods; confirming this behavior in the actual spent fuel segments will be an important aspect of the hot cell test implementation,

Wang, Jy-An John [ORNL] [ORNL; Wang, Hong [ORNL] [ORNL; Bevard, Bruce Balkcom [ORNL] [ORNL; Howard, Rob L [ORNL] [ORNL; Flanagan, Michelle [U.S. Nuclear Regulatory Commission] [U.S. Nuclear Regulatory Commission

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

LIMB demonstration project extension  

SciTech Connect (OSTI)

The main objectives of this project are: (1) To demonstrate the general applicability of Limestone Injection Multistage Burner (LIMB) technology by testing 3 coals and 4 sorbents (total of 12 coal/sorbent combinations) at the Ohio Edison Edgewater Plant. (2) To demonstrate that Coolside is a viable technology for improving precipitator performance and reducing sulfur dioxide emissions while acceptance operability is maintained. During the past quarter, activities for phase I, design and permitting, and phase II, construction, shakedown and start-up were completed for phase III, operation, data collection, reporting and disposition, activities continued with consol completing the revisions to the Coolside Topical report, the completion of LIMB Extension testing, and the start of demobilization and restoration.

Not Available

1991-12-16T23:59:59.000Z

302

he NCAR and Vaisala collaboration project  

E-Print Network [OSTI]

T he NCAR and Vaisala collaboration project started in 1998 and built on a mutual effort uncertainties at very cold temperatures. The ATD-Vaisala correction procedures compile these sometimes and drop- sondes to support short-term research projects around the world. Researchers often use the ATD

Wang, Junhong

303

NSLS-II Project Schedule  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NSLS-II Project Schedule NSLS-II Project Schedule Major Milestone Event Major Milestone Event Preliminary Schedule CD-0 (approve Mission Need) 4th quarter, FY2005 CD-1 (approve Alternative Selection and Cost Range) 4th quarter, FY2007 CD-2 (approve Performance Baseline) 1st quarter, FY2008 CD-3 (approve Start of Construction) 2nd quarter, FY2009 CD-4 (approve Start of Operations) FY2015 Critical Decisions The five Critical Decisions are major milestones approved by the Secretarial Acquisition Executive or Acquisition Executive that establish the mission need, recommended alternative, Acquisition Strategy, the Performance Baseline, and other essential elements required to ensure that the project meets applicable mission, design, security, and safety requirements. Each Critical Decision marks an increase in commitment of

304

Getting Started with MATLAB The Language of Technical Computing  

E-Print Network [OSTI]

Getting Started with MATLAB® Version 7 MATLAB ® The Language of Technical Computing #12;How to Contact The MathWorks: www.mathworks.com Web comp.soft-sys.matlab Newsgroup supportWorks Web site. Getting Started with MATLAB © COPYRIGHT 1984 - 2004 by The MathWorks, Inc. The software

deYoung, Brad

305

Starting your career in Russia Country Guide for International Students  

E-Print Network [OSTI]

Starting your career in Russia Country Guide for International Students #12;Country profile Main country, Russia. You stand at the beginning of an exciting career, but what are the steps you need to take provides you with practical advice about returning to work in Russia, to help you make a successful start

Neirotti, Juan Pablo

306

DOE/EA-1683: Finding of No Significant Impact Department of Energy Loan Guarantee to Abengoa Solar Inc. for the Solana Concentrating Solar Power Facility Near Gila Bend, Arizona (05/06/10)  

Broader source: Energy.gov (indexed) [DOE]

FINDING OF NO SIGNIFICANT IMPACT FINDING OF NO SIGNIFICANT IMPACT DEPARTMENT OF ENERGY LOAN GUARANTEE TO ABENGOA SOLAR INC. FOR THE SOLANA CONCENTRATING SOLAR POWER FACILITY NEAR GILA BEND, ARIZONA AGENCY: U.S. Department of Energy, Loan Guarantee Program Office ACTION: Finding of No Significant Impact SUMMARY: The U.S. Department of Energy (DOE) has conducted an environmental assessment (EA) that analyzed the potential environmental impacts associated with a 280 Megawatt (MW) concentrating solar power (CSP) plant (Solana Generating Plant) and associated 230 kilovolt transmission line (Solana Gen-Tie) proposed by Abengoa Solar Inc. (Abengoa) near Gila Bend, Arizona (Solana Project). DOE, through its Loan Guarantee Program Office (LGPO), proposes to provide a Federal loan guarantee pursuant to Title XVII of the

307

PSNH - Municipal Smart Start Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PSNH - Municipal Smart Start Program PSNH - Municipal Smart Start Program PSNH - Municipal Smart Start Program < Back Eligibility Local Government Savings Category Other Maximum Rebate Not specified Program Info State New Hampshire Program Type Utility Loan Program Rebate Amount No up front costs: Payments made over time with the savings obtained from lower energy costs. Provider Public Service of New Hampshire Public Service of New Hampshire (PSNH), an electric utility, offers the Smart Start Program to Municipal customers. This program assists municipalities in reducing energy consumption and electric bills at facilities by installing energy-saving measures. Payment for services and products will be made over time with the savings obtained from lower energy costs. Under the Smart Start Program, PSNH pays all of the costs associated

308

Property:Incentive/StartDate | Open Energy Information  

Open Energy Info (EERE)

StartDate StartDate Jump to: navigation, search Property Name Incentive/StartDate Property Type Date Description Start Date. In order to see all values for this property, Property:Incentive/StartDateString should be used in queries until only valid dates are in this property. Currently, some entries include notes after the date or are just notes. Subproperties This property has the following 50 subproperties: A Alcohol Fuels Exemption (Hawaii) Alternative Energy Personal Property Tax Exemption (Michigan) Anne Arundel County - Solar and Geothermal Equipment Property Tax Credits (Maryland) B Broward County - Energy Sense Appliance Rebate Program (Florida) C CCEF - Commercial, Industrial, Institutional PV Grant Program (Connecticut) California Solar Initiative - Solar Thermal Program (California)

309

Projection Systems  

Science Journals Connector (OSTI)

As a general rule, broad-band sources which employ projection optics are the most difficult to evaluate. In addition to the problems encountered in evaluating exposed lamps, one must characterize the projected...

David Sliney; Myron Wolbarsht

1980-01-01T23:59:59.000Z

310

Circle Project  

E-Print Network [OSTI]

This project asks students to decide if a collection of points in space do or do not lie on a ... The project is accessible to linear algebra students who have studied...

311

Hydropower Projects  

Broader source: Energy.gov [DOE]

This report covers the Wind and Water Power Technologies Office's hydropower project funding from fiscal years 2008 to 2014.

312

Visual Languages `94 Repenning, A., "Bending Icons: Syntactic and Semantic Transformation of Icons," Proceedings of the 1994 IEEE  

E-Print Network [OSTI]

Visual Languages `94 Reprint: Repenning, A., "Bending Icons: Syntactic and Semantic Transformation of Icons," Proceedings of the 1994 IEEE Symposium on Visual Languages, St. Louis, MO, 1994, pp. 296-303. Bending Icons: Syntactic and Semantic Transformations of Icons Alex Repenning Department of Computer

Repenning, Alexander

313

hat started out as a quest for a gradu-ate research project may  

E-Print Network [OSTI]

's a huge thing. People have been working on this for 20 years." He uses the example of sickle cell anemia to illustrate the importance of the discovery. "Sickle cell anemia is caused by an abnormality in the three

314

CUNY Unit Project Name Baruch Jump-starting Veterans' Career Success  

E-Print Network [OSTI]

in Leadership in Transportation Industry SPS HIM York Onsite RN-BSN Program at North Shore LIJ Forest Hills Page

Rosen, Jay

315

Buckling of a soap film spanning a flexible loop resistant to bending and twisting  

Science Journals Connector (OSTI)

...a soap film spanning a flexible loop resistant to bending and twisting Aisa Biria 1 Eliot Fried 2...A generalization of the Euler-Plateau problem to account for the energy contribution due to twisting of the bounding loop is proposed. Euler-Lagrange...

2014-01-01T23:59:59.000Z

316

Scientia Horticulturae 99 (2004) 331343 Effect of shoot-bending on productivity and  

E-Print Network [OSTI]

of Environmental Horticulture, University of California, Davis, CA 95616-8587, USA Accepted 4 June 2003 Abstract styles, two soil-less horticultural systems with different growing media (Coir versus UC Mix) were tested to capture light, with this shoot-bending, it is theoretically possi- ble to maintain the lower canopy height

Lieth, J. Heinrich

317

LOCKING-FREE FINITE ELEMENT METHOD FOR A BENDING MOMENT FORMULATION OF TIMOSHENKO BEAMS  

E-Print Network [OSTI]

LOCKING-FREE FINITE ELEMENT METHOD FOR A BENDING MOMENT FORMULATION OF TIMOSHENKO BEAMS FELIPE LEPE for Timo- shenko beams. It is known that standard finite elements applied to this model lead to wrong results when the thickness of the beam t is small. Here, we consider a mixed formulation in terms

Rodríguez, Rodolfo

318

Guided wave radiation from a point source in the proximity of a pipe bend  

SciTech Connect (OSTI)

Throughout the oil and gas industry corrosion and erosion damage monitoring play a central role in managing asset integrity. Recently, the use of guided wave technology in conjunction with tomography techniques has provided the possibility of obtaining point-by-point maps of wall thickness loss over the entire volume of a pipeline section between two ring arrays of ultrasonic transducers. However, current research has focused on straight pipes while little work has been done on pipe bends which are also the most susceptible to developing damage. Tomography of the bend is challenging due to the complexity and computational cost of the 3-D elastic model required to accurately describe guided wave propagation. To overcome this limitation, we introduce a 2-D anisotropic inhomogeneous acoustic model which represents a generalization of the conventional unwrapping used for straight pipes. The shortest-path ray-tracing method is then applied to the 2-D model to compute ray paths and predict the arrival times of the fundamental flexural mode, A0, excited by a point source on the straight section of pipe entering the bend and detected on the opposite side. Good agreement is found between predictions and experiments performed on an 8 diameter (D) pipe with 1.5 D bend radius. The 2-D model also reveals the existence of an acoustic lensing effect which leads to a focusing phenomenon also confirmed by the experiments. The computational efficiency of the 2-D model makes it ideally suited for tomography algorithms.

Brath, A. J.; Nagy, P. B. [Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH 45221 (United States); Simonetti, F. [Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH 45221,USA and Cincinnati NDE, Cincinnati, OH 45244 (United States); Instanes, G. [ClampOn AS, 5162 Laksevaag, Bergen, Norway and Cincinnati NDE, Cincinnati, OH 45244 (United States)

2014-02-18T23:59:59.000Z

319

START Fact Sheet START, June 2014 1 The Evolution of the Islamic State of Iraq and the Levant (ISIL)  

E-Print Network [OSTI]

START Fact Sheet � START, June 2014 1 FACT SHEET The Evolution of the Islamic State of Iraq PREVIOUSLY POSITIVE 1) The group currently known as Islamic State of Iraq and the Levant (ISIL, to Iraq.2 At the request of al-Qa'ida leaders, Zarqawi began facilitating the move of militants into Iraq

Hill, Wendell T.

320

OpenEI:Projects | Open Energy Information  

Open Energy Info (EERE)

Projects are focused efforts to improve some piece of OpenEI. Each Projects are focused efforts to improve some piece of OpenEI. Each effort is coordinated via one or more project pages within the "OpenEI:" wiki namespace. Anyone is free to participate in any projects. If you'd like to start an OpenEI Project, simply create a new project page and link to it in the "Active Projects" section below. OpenEI Projects are largely based on the concept of Wikiprojects in Wikipedia. Active Projects Motion Charts - describes how OpenEI admins can create widgets for motion charts Geographic Pages - developing perfect "place energy profile" pages in OpenEI. Images - collecting energy-related images in the OpenEI wiki. Public Resources - identifying energy datasets and other digital resources that are already public and could be made available in OpenEI.

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

What's an ideal energy efficiency project?  

E-Print Network [OSTI]

What?s an ideal energy efficiency project? 1 The Supermarket Industry 2 Supermarket Industry ? The?Project ? The?Challenges ? The?Benefits 3 How it started 4 The Project ? Supermarkets?? built?to?waste ?No...?natural?lighting?or?poor?design ? Excessive?artificial?lighting ?Open?refrigerated?cabinets ?Massive?heat/cool?fighting 5 What does this cause? ?Very?large?lighting?loads ? Increased?glare ?Huge?refrigeration?loads ?Cold?customers ? Increased?space?heating ?Poor...

Dazeley, J.

2012-01-01T23:59:59.000Z

322

Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Projects Power Projects Contact SN Customers Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates You are here: SN Home page > About SNR Power Projects Central Valley: In California's Central Valley, 18 dams create reservoirs that can store 13 million acre-feet of water. The project's 615 miles of canals irrigate an area 400 miles long and 45 miles wide--almost one third of California. Powerplants at the dams have an installed capacity of 2,099 megawatts and provide enough energy for 650,000 people. Transmission lines total about 865 circuit-miles. Washoe: This project in west-central Nevada and east-central California was designed to improve the regulation of runoff from the Truckee and Carson river systems and to provide supplemental irrigation water and drainage, as well as water for municipal, industrial and fishery use. The project's Stampede Powerplant has a maximum capacity of 4 MW.

323

Healy Clean Coal Project  

SciTech Connect (OSTI)

The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

None

1997-12-31T23:59:59.000Z

324

16 Projects To Advance Hydropower Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

16 Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology September 6, 2011 - 11:24am Addthis U.S. Department Energy Secretary Steven Chu and U.S. Department of the Interior Secretary Ken Salazar announced nearly $17 million in funding over the next three years for research and development projects to advance hydropower technology. The list of 16 projects in 11 different states can be found here. Applicant Location Award Amount; Funding is from DOE unless otherwise noted Description Sustainable Small Hydro (Topic Areas 1.1. and 1.2) Earth by Design Bend, OR $1,500,000 This project will develop and test a new low-head modular hydropower technology in a canal in Oregon's North Unit Irrigation District to produce cost-competitive electricity.

325

16 Projects To Advance Hydropower Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Projects To Advance Hydropower Technology Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology September 6, 2011 - 11:24am Addthis U.S. Department Energy Secretary Steven Chu and U.S. Department of the Interior Secretary Ken Salazar announced nearly $17 million in funding over the next three years for research and development projects to advance hydropower technology. The list of 16 projects in 11 different states can be found here. Applicant Location Award Amount; Funding is from DOE unless otherwise noted Description Sustainable Small Hydro (Topic Areas 1.1. and 1.2) Earth by Design Bend, OR $1,500,000 This project will develop and test a new low-head modular hydropower technology in a canal in Oregon's North Unit Irrigation District to produce cost-competitive electricity.

326

Template:DivStartLeft | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Template Edit History Facebook icon Twitter icon » Template:DivStartLeft Jump to: navigation, search This is the 'DivStartLeft' template. It is used in conjuction with Template:DivEnd to put surround the "free text" area in the geothermal region template. Usage It should be called in the following format: {{DivStartLeft}} Retrieved from "http://en.openei.org/w/index.php?title=Template:DivStartLeft&oldid=403880" Categories: Templates Formatting Templates What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

327

START and Online Education Program Update Webinar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

START and Online Education Program Update Webinar START and Online Education Program Update Webinar START and Online Education Program Update Webinar January 30, 2013 11:00AM MST Webinar The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs, Office of Energy Efficiency and Renewable Energy Tribal Energy Program, and Western Area Power Administration are pleased to continue their sponsorship of the Tribal Renewable Energy Webinar Series. Attend this webinar to get an overview of the START program, activities, and accomplishments, and learn about DOE's new renewable energy education curriculum for Tribes, delivered through a new online training platform. The webinar will be held from 11 a.m. to 12:30 p.m. Mountain time. Why You Should Attend Find ways to promote tribal energy sufficiency and foster economic

328

GRR/GRR Getting Started | Open Energy Information  

Open Energy Info (EERE)

GRR Getting Started GRR Getting Started < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Print PDF Getting Started with the Roadmap The Geothermal Regulatory Roadmap has 3 main parts: Flowcharts, Narratives, and Reference Materials, described in more detail below. GRR Product Overview For more information, watch the GRR Product Overview (Video) (approximate length: 10 minutes), or download the Original PowerPoint Presentation. Contents 1 Getting Started with the Roadmap 1.1 1. Flowcharts 1.1.1 Flowchart Shapes 1.1.2 Flowchart Colors 1.1.3 Flowchart Features 1.1.4 Element Features 1.1.5 Example 1.2 2. Narratives 1.3 3. Reference Material 1.4 Did we miss a permit? 1.5 Does content need updating? 1.6 Are you an agency with regulatory authority over a required permit?

329

Help:Starting a new page | Open Energy Information  

Open Energy Info (EERE)

Starting a new page Starting a new page Jump to: navigation, search An example of how to add a company to the Solar Gateway There are several ways to start a new page. These can vary based on the type of page started, as well as the wiki and namespace. The first thing you should do is know which topic area your page falls under. OpenEI has several gateways around specific topics, such as Solar, Wind, and Geothermal. In these Gateways, you'll immediately see forms for adding content. Forms were created to standardize the information you put in, and make it fast and easy to get your content published on OpenEI. For example, in the Solar Gateway, you'll see a map of Solar Energy companies, under which you can add a new company that will add a new page and populate the map. Companies, like many other categories of information

330

DOE Provides $30 Million to Jump Start Bioenergy Research Centers |  

Broader source: Energy.gov (indexed) [DOE]

30 Million to Jump Start Bioenergy Research Centers 30 Million to Jump Start Bioenergy Research Centers DOE Provides $30 Million to Jump Start Bioenergy Research Centers October 1, 2007 - 2:49pm Addthis DOE Bioenergy Research Center Investment Tops $400 Million WASHINGTON, DC-The U.S. Department of Energy (DOE) today announced it has invested nearly $30 million in end-of-fiscal-year (2007) funds to accelerate the start-up of its three new Bioenergy Research Centers, bringing total DOE Bioenergy Research Center investment to over $400 million. The three DOE Bioenergy Research Centers-located in Oak Ridge, Tennessee; Madison, Wisconsin; and near Berkeley, California-selected by DOE this June, bring together multidisciplinary teams of leading scientists to advance research needed to make cellulosic ethanol and other biofuels

331

Property:Building/StartPeriod | Open Energy Information  

Open Energy Info (EERE)

StartPeriod StartPeriod Jump to: navigation, search This is a property of type Date. Start of the period (first day o the month) Pages using the property "Building/StartPeriod" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1 January 2004 + Sweden Building 05K0002 + 1 January 2004 + Sweden Building 05K0003 + 1 January 2004 + Sweden Building 05K0004 + 1 January 2004 + Sweden Building 05K0005 + 1 October 2004 + Sweden Building 05K0006 + 1 October 2004 + Sweden Building 05K0007 + 1 October 2004 + Sweden Building 05K0008 + 1 October 2004 + Sweden Building 05K0009 + 1 October 2004 + Sweden Building 05K0010 + 1 October 2004 + Sweden Building 05K0011 + 1 October 2004 + Sweden Building 05K0012 + 1 January 2004 + Sweden Building 05K0013 + 1 October 2004 +

332

Modeling Cold Start in a Polymer-Electrolyte Fuel Cell  

E-Print Network [OSTI]

Boundary conditions used for fuelcell simulations. 3.12to the Problem of Cold Start 1.1 PolymerElectrolyte Fuelin Polymer Electrolyte Fuel Cells II. Parametric Study,

Balliet, Ryan

2010-01-01T23:59:59.000Z

333

Science on Saturday starts Jan. 11 | Princeton Plasma Physics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Primary tabs View(active tab) High Resolution News Science on Saturday starts Jan. 11 By Jeanne Jackson DeVoe January 10, 2014 Tweet Widget Google Plus One Share on Facebook Joshua...

334

Visualizing Mathematics Modules 1 (Dis)Orientation--Getting Started  

E-Print Network [OSTI]

-Ray, http://www.povray.org · SketchUp, http://www.sketchup.com 4. Mathematical tools for describing three your own computer, install the software listed above. Start playing with SketchUp, GeoGebra, and Open

Lee, Carl

335

INFRARED THERMAL IMAGING OF AUTOMOBILES: Identification of Cold Start Vehicles  

E-Print Network [OSTI]

INFRARED THERMAL IMAGING OF AUTOMOBILES: Identification of Cold Start Vehicles Angela M. Monateri at the infrared image from an automobile. ·The camera was set up with a FEAT 3000 unit to compare emissions vs

Denver, University of

336

St. Gobain Innovation Competition for Start-Ups  

Broader source: Energy.gov [DOE]

The Saint-Gobain NOVA Innovation Competition rewards start-ups offering the most innovative solutions in the field of habitat, sustainable products, advanced materials, renewable energy sources and high-efficiency building solutions.

337

Cold-Start Performance and Emissions Behavior of Alcohol Fuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emissions Behavior of Alcohol Fuels in an SIDI Engine Using Transient Hardware-In-Loop Test Meth Cold-Start Performance and Emissions Behavior of Alcohol Fuels in an SIDI Engine...

338

Science on Saturday starts Jan. 11 | Princeton Plasma Physics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science on Saturday starts Jan. 11 By Jeanne Jackson DeVoe January 10, 2014 Tweet Widget Google Plus One Share on Facebook Joshua E. G. Peek, a Hubble Fellow at Columbia...

339

Virtual start-up of plants using formal methods  

Science Journals Connector (OSTI)

Control software of a manufacturing system is usually designed separated from the real plant or its simulation. Undesired behavior can occur after transferring software to the controller. At best, errors are recognized when starting-up, but there can ...

Sebastian Preu; e; Christian Gerber; Hans-Michael Hanisch

2011-02-01T23:59:59.000Z

340

Clean Start/McClellan Technology Incubator | Open Energy Information  

Open Energy Info (EERE)

Start/McClellan Technology Incubator Start/McClellan Technology Incubator Jump to: navigation, search Logo: Clean Start/McClellan Technology Incubator Name Clean Start/McClellan Technology Incubator Address 5022 Bailey Loop Place McClellan, California Zip 95652 Region Bay Area Coordinates 38.657365°, -121.390278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.657365,"lon":-121.390278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Photovoltaic module start-up for the International Space Station  

SciTech Connect (OSTI)

The International Space Station (ISS) US On-Orbit Segment Electric Power System (EPS) uses four photovoltaic modules (PVMs). Each PVM consists of solar array wings (SAW) for converting solar flux to electric power, nickel-hydrogen batteries for electric energy storage, electronic boxes for electric voltage control and power switching, and a thermal control system (TCS) for maintaining selected PVM components within their normal operating temperature ranges. Each PVM consists of two independent power channels, which are started sequentially. The start-up consists of deploying the SAW and photovoltaic radiator (PVR), initialization and check out of all hardware, thermally conditioning batteries, and charging batteries. After start-up, each PVM power channel is able to generate, store, and distribute electric power to ISS loads. Electric power to support start-up of the first PVM is provided by the NSTS via two auxiliary power converter units (APCUs), one per channel. During sunlit periods, the SAW provides power for the battery heaters (for thermal conditioning, as needed) and battery charging. During eclipse periods, the APCU maintains the channel in a standby mode. After start-up is complete, the APCU is disconnected and the PVM operates independently. The process used to start-up the first PVM on the ISS is described in this paper. Procedures used to bring dormant batteries to their normal operating temperature range and then to charge them to 100% state of charge (SOC) are also described. Total time required to complete start-up and the APCU power required during start-up are computed and compared to the requirements.

Hajela, G.P.; Hague, L.M. [Rockwell International, Canoga Park, CA (United States). Rocketdyne Div.

1996-12-31T23:59:59.000Z

342

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCS CCS August 20-22, 2013 2 Presentation Outline * Benefits to the program * Project overall objectives * Technical status * Project summary * Conclusions and future plans 3 Benefit to the Program * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * This research project develops a reservoir scale CO 2 plume migration model at the Sleipner project, Norway. The Sleipner project in the Norwegian North Sea is the world's first commercial scale geological carbon storage project. 4D seismic data have delineated the CO 2 plume migration history. The relatively long history and high fidelity data make

343

A Case Study applying Process and Project Alignment Methodology  

E-Print Network [OSTI]

A Case Study applying Process and Project Alignment Methodology Paula Ventura Martins1 & Alberto process and (2) analyze projects, starting an SPI effort. In order to evaluate ProPAM, a study case Martins A Case Study Applying & Alberto Rodrigues da Silva Process and Project Alignment Methodology 64

da Silva, Alberto Rodrigues

344

UCPath Project Status Report Report Date September 7, 2012 Project Director  

E-Print Network [OSTI]

this transition. Project Status Project Management Start Date Finish Date Status Decisions, Issues and Risks 1 areas have been completed. The Management Workgroup has agreed to begin preliminary planning to convert the case management/knowledge management tool. The UCPath PMO has completed initial mapping of entry

Talley, Lynne D.

345

Project Information Form Project Title Strategies for Transitioning to Zero-Emission Vehicles--Freight  

E-Print Network [OSTI]

,884 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates June 1, 2014 � August 15, 2014 Brief Description of Research Project According to the EIA, freight modes accounted for 29% of transportation fuel, not anticipated) Web Links Reports Project website http://ncst.ucdavis.edu/white-paper/ucd-dot-wp3-1b #12;

California at Davis, University of

346

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test and Evaluation of Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing wells Project Number: FE0009599 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background information - Project Concept (MICP) - Ureolytic Biomineralization, Biomineralization Sealing * Accomplishments to Date - Site Characterization - Site Preparation - Experimentation and Modeling - Field Deployable Injection Strategy Development * Summary

347

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LBNL's Consolidated Sequestration Research Program (CSRP) Project Number FWP ESD09-056 Barry Freifeld Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefits and Goals of GEO-SEQ * Technical Status - Otway Project (CO2CRC) - In Salah (BP, Sonatrach and Statoil) - Ketzin Project (GFZ, Potsdam) - Aquistore (PTRC) * Accomplishments and Summary * Future Plans 3 Benefit to the Program * Program goals being addressed: - Develop technologies to improve reservoir storage capacity estimation - Develop and validate technologies to ensure 99 percent storage permanence.

348

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1-23, 2012 1-23, 2012 2 Presentation Outline I. Benefits II. Project Overview III. Technical Status A. Background B. Results IV. Accomplishments V. Summary 3 Benefit to the Program * Program goals. - Prediction of CO 2 storage capacity. * Project benefits. - Workforce/Student Training: Support of 3 student GAs in use of multiphase flow and geochemical models simulating CO 2 injection. - Support of Missouri DGLS Sequestration Program. 4 Project Overview: Goals and Objectives Project Goals and Objectives. 1. Training graduate students in use of multi-phase flow models related to CO 2 sequestration. 2. Training graduate students in use of geochemical models to assess interaction of CO

349

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center for Coal's Center for Coal's FY10 Carbon Sequestration Peer Review February 8 - 12, 2010 2 Collaborators * Tissa Illangasekare (Colorado School of Mines) * Michael Plampin (Colorado School of Mines) * Jeri Sullivan (LANL) * Shaoping Chu (LANL) * Jacob Bauman (LANL) * Mark Porter (LANL) 3 Presentation Outline * Benefit to the program * Project overview * Project technical status * Accomplishments to date * Future Plans * Appendix 4 Benefit to the program * Program goals being addressed (2011 TPP): - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * Project benefit: - This project is developing system modeling capabilities that can be used to address challenges associated with infrastructure development, integration, permanence &

350

Discontinued Projects  

Broader source: Energy.gov [DOE]

This page lists projects that received a loan or a loan guarantee from DOE, but that are considered discontinued by LPO for one of several reasons.

351

project management  

National Nuclear Security Administration (NNSA)

the Baseline Change Proposal process. Two 400,000-gallon fire protection water supply tanks and associated pumping facilities were added. Later in the project, an additional...

352

Custom Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Incentive Payment - The ESIP works with utility, industry, and BPA to complete the measurement and verification, reporting and development of a custom project completion...

353

Ion-beam-induced bending of freestanding amorphous nanowires: The importance of the substrate material and charging  

SciTech Connect (OSTI)

Ion-beam irradiation offers great flexibility and controllability in the construction of freestanding nanostructures with multiple advanced functionalities. Here, we present and discuss the bending of free-standing nanowires, against, towards, and ultimately parallel to a flux of directional ion irradiation. Bending components both along and perpendicular to the incident ion beam were observed, and the bending behavior was found to depend both on the ion beam scanning strategy and on the conductivity of the supporting substrate. This behavior is explained by an ion-irradiation-related electrostatic interaction. Our findings suggest the prospect of exploiting this technique to engineer 3D nanostructures for advanced applications.

Cui, Ajuan; Li, Wuxia; Liu, Zhe; Luo, Qiang; Gu, Changzhi [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)] [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Fenton, J. C. [London Centre for Nanotechnology, University College London, London WC1E 7JE (United Kingdom)] [London Centre for Nanotechnology, University College London, London WC1E 7JE (United Kingdom); Shen, Tiehan H. [Joule Physics Laboratory, University of Salford, Manchester M5 4WT (United Kingdom)] [Joule Physics Laboratory, University of Salford, Manchester M5 4WT (United Kingdom)

2013-05-27T23:59:59.000Z

354

Whistling Ridge Energy Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(PDCI) Upgrade Project Whistling Ridge Energy Project Line Rebuild, Relocation and Substation Projects Wind Projects Whistling Ridge Energy Project Bonneville Power...

355

HVOF coatings of Diamalloy 2002 and Diamalloy 4010 onto steel: Tensile and bending response of coatings  

SciTech Connect (OSTI)

HVOF coating of Diamalloy 2002 powders and Diamalloy 4010 powders as well as two-layered coatings consisting of these powders is carried out. In the two-layered structure, Diamalloy 4010 is sprayed at the substrate surface while Diamalloy 2002 is sprayed on the top of Diamalloy 4010 coating. The mechanical properties of the coatings are examined through tensile and three-point bending tests. The coating microstructure and morphology are examined using the Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD). It is found that the coating produced is free from defects including voids and cracks. The failure mechanism of coating during tensile and three-point bending tests is mainly crack formation and propagation in the coating. The elastic modulus of coating produced from Diamalloy 2002 is higher than that of Diamalloy 4010 coating, which is due to the presence of 12% WC in the coating.

Al-Shehri, Y. A.; Hashmi, M. S. J. [School of Mechanical and Manufacturing Eng., DCU, Dublin (Ireland); Yilbas, B. S. [Mech. Eng. Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

2011-01-17T23:59:59.000Z

356

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Snøhvit CO Snøhvit CO 2 Storage Project Project Number: FWP-FEW0174 Task 4 Principal Investigators: L. Chiaramonte, *J.A. White Team Members: Y. Hao, J. Wagoner, S. Walsh Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Benefit to Program * Project Goals and Objectives * Technical Status * Summary & Accomplishments * Appendix 3 Benefit to the Program * The research project is focused on mechanical

357

Project title:  

Broader source: Energy.gov (indexed) [DOE]

Project title: Roseville Elverta (RSC-ELV) OPGW Replacement Project Project title: Roseville Elverta (RSC-ELV) OPGW Replacement Project Requested By: David Young Mail Code : N1410 Phone: 916-353-4542 Date Submitted: 5/4/2011 Date Required: 5/7/2011 Description of the Project: Purpose and Need The Western Area Power Administration (Western), Sierra Nevada Region (SNR), is responsible for the operation and maintenance (O&M) of federally owned and operated transmission lines, Switchyards, and facilities throughout California. Western and Reclamation must comply with the National Electric Safety Code, Western States Coordinating Council (WECC), and internal directives for protecting human safety, the physical environment, and maintaining the reliable operation of the transmission system. There is an existing OPGW communications fiber on the transmission towers between Roseville and Elverta

358

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

InSalah CO InSalah CO 2 Storage Project Project Number: FWP-FEW0174 Task 2 Principal Investigator: W. McNab Team Members: L. Chiaramonte, S. Ezzedine, W. Foxall, Y. Hao, A. Ramirez, *J.A. White Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Benefit to Program * Project Goals and Objectives * Technical Status * Accomplishments * Summary * Appendix 3 Benefit to the Program * The research project is combining sophisticated

359

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Space Geodesy, Seismology, Space Geodesy, Seismology, and Geochemistry for Monitoring Verification and Accounting of CO 2 in Sequestration Sites DE-FE0001580 Tim Dixon, University of South Florida Peter Swart, University of Miami U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to program * Goals & objectives * Preliminary InSAR results (site selection phase) * Project location * Project installed equipment * Specific project results * Summary 3 Benefit to the Program * Focused on monitoring, verification, and accounting (MVA) * If successful, our project will demonstrate the utility of low cost, surface

360

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Storage R&D Project Review Meeting Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 DE-FE0001159 Advanced Technologies for Monitoring CO 2 Saturation and Pore Pressure in Geologic Formations Gary Mavko Rock Physics Project/Stanford University 2 Presentation Outline * Benefit to the Program * Project Overview * Motivating technical challenge * Approach * Technical Status - Laboratory results - Theoretical modeling * Summary Mavko: Stanford University 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations. - Develop technologies to demonstrate that 99% of injected CO 2 remains in injection zones. * Project benefits statement.

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Volume Injection of CO Large Volume Injection of CO 2 to Assess Commercial Scale Geological Sequestration in Saline Formations in the Big Sky Region Project Number: DE-FC26-05NT42587 Dr. Lee Spangler Big Sky Carbon Sequestration Partnership Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Goals and Objectives * Project overview * Kevin Dome characteristics * Project design philosophy * Infrastructure * Modeling * Monitoring * Project Opportunities 3 Benefit to the Program Program goals being addressed. * Develop technologies that will support industries' ability to predict CO

362

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Research on Probabilistic and Research on Probabilistic Hydro-Thermo-Mechanical (HTM) Modeling of CO 2 Geological Sequestration (GS) in Fractured Porous Rocks Project DE-FE0002058 Marte Gutierrez, Ph.D. Colorado School of Mines U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the program (Program goals addressed and Project benefits) * Project goals and objectives * Technical status - Project tasks * Technical status - Key findings * Lessons learned * Summary - Accomplishments to date 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries'

363

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Complexity and Choice of Complexity and Choice of Model Approaches for Practical Simulations of CO 2 Injection, Migration, Leakage, and Long- term Fate Karl W. Bandilla Princeton University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Project Number DE-FE0009563 2 Presentation Outline * Project Goals and Objectives * Project overview * Accomplishments * Summary 3 Benefit to the Program * The aim of the project is to develop criteria for the selection of the appropriate level of model complexity for CO 2 sequestration modeling at a given site. This will increase the confidence in modeling results, and reduce computational cost when appropriate.

364

Environmental isotope and geochemical investigation of groundwater in Big Bend National Park, Texas  

E-Print Network [OSTI]

in the Panther Junction and Rio Grande Village Areas of Big Bend National Park, Texas. The regional groundwater flow in the Panther Junction area is interpreted to occur in a radially outward direction away from the Chisos Mountain slopes. This interpretation... s Physiographic Setting Panther Junction Area. Rio Grande Village Area. Climate and Vegetation. Previous Work Geology. Hydrogeology 1 3 3 6 6 6 7 8 8 9 GEOLOGY. Regional Geology. Geology of the Panther Junction Geologv of the Rio Grande Village...

Lopez Sepulveda, Hector Javier

2012-06-07T23:59:59.000Z

365

Additional solutions to the free bending waves of a fluid loaded thick plate  

Science Journals Connector (OSTI)

Different researchers over the last few years have presented results showing how the root loci of the free bending waves of a fluid loaded infinite plate vary as a function of frequency and fluid properties. The purpose of this paper is to present other possible solutions of this paper and to indicate how the different modes can for few typical cases of interest shift from one Riemann sheet to the other.

Mauro Pierucci

1981-01-01T23:59:59.000Z

366

Cyclone aerosol sampling and particle deposition in tubing elements following elbow bends  

E-Print Network [OSTI]

on Deposition. Influence of an Elbow Bend on Straight Tube Deposition. . . Discussion of Errors. . . . . . . . . . . . . . 27 3l 35 SUMMARY AND CONCLUSIONS. 36 Ambient Air Sampling Aerosol Transport . 36 37 FUTI JRE WORK 38 Ambient Air Sampling... Cunningham's correction factor for a particle reference particle concentration concetration of the sodium fluoroscein collected at the inlet to the system cutpoint diameter aerodynamic equivalent diameter cyclone body diameter cyclone outlet tube...

Wente, William Baker

1995-01-01T23:59:59.000Z

367

Beam deflection into a quadrant by a positionally stationary magnetic bending system  

SciTech Connect (OSTI)

A system of postionally stationary magnets is analyzed for the continuously variable deflection of a 50 MeV electron beam. The system is composed of a collection of horizontal and vertical bending magnets, quadrupoles, and a final deflection magnet that is conical in shape and capable of deflections of plus or minus 50 degrees simultaneously in both horizonal and vertical planes. Throughout the system the beam is assumed to be focused by its own magnetic self-field, the electric self-field being neutralized by background ions. The motion of the beam in the externally applied magnetic fields may then be considered as single particle motion. The system of bending magnets and quadrupoles pre-conditions the beam by introducing the proper displacements and angles at the entrance to the final deflection magnet for momentum deviations up to plus or minus one percent. The displacements and angles are determined by the chromaticity of the final deflection and are a function of the bending angles in the two planes. The total system is then doubly achromatic in both planes. The preconditioning magnets are of standard accelerator beam transport design while the conical deflection magnet is of a design fashioned from a television deflection coil scaled up by about a factor of 10 in size.

Paul, A.C.; Neil, V.K.

1980-06-20T23:59:59.000Z

368

Microstructural and textural evolution of AZ61 magnesium alloy sheet during bidirectional cyclic bending  

SciTech Connect (OSTI)

In this work, the microstructural and textural evolution in the sheets of AZ61 magnesium alloy was studied by means of bidirectional cyclic bending for 8 passes at 623 K. The bended samples were examined by optical microscopy and electron backscatter diffraction analysis. The results showed that a gradient structure with fine grains about 3 ?m in the regions near two surfaces and, in contrast, coarse grains in the middle of the sheet were formed. The evident grain refinement was attributed to twin-assisted dynamic recrystallization and continuous dynamic recrystallization induced by kink bands. The texture intensity was clearly reduced, resulting in a negative gradient distribution, with the texture intensity decreases from the center of the sheet to two surfaces. The weakened texture greatly facilitated the reduction of the yield strength. A higher fracture elongation and a slightly improved ultimate tensile strength were achieved concurrently. - Highlights: The AZ61 Mg alloy is deformed at 623 K by bidirectional cyclic bending. A symmetric gradient distribution of fine grains along the thickness is formed. The basal texture in the regions near two surfaces is weakened significantly.

Huo, Qinghuan; Yang, Xuyue, E-mail: yangxuyue@mail.csu.edu.cn; Ma, Jijun; Sun, Huan; Qin, Jia; Jiang, Yupei

2013-05-15T23:59:59.000Z

369

Widget:ExpandableTextStart | Open Energy Information  

Open Energy Info (EERE)

ExpandableTextStart ExpandableTextStart Jump to: navigation, search This widget allows text to start hidden then expand and re-hide when clicked. Users will see "....[read more]" when hidden and "[show less]" when expanded. (configurable in Widget:ExpandableTextEnd) This widget does not allow any parameters. Users of this widget must use the Start and End variants of the widget, as shown below. While slightly less convenient for the wiki content developer to use two widgets, this allows full wikitext in the expandable text area, which would otherwise just be limited to plaintext. Usage: Be what you would seem to be - or if you'd like it put more simply {{#Widget:ExpandableTextStart}}- Never imagine yourself not to be otherwise than what it might appear to others that what you were or might have been was not otherwise than what you had been would have appeared to them to be otherwise. Lewis Carroll (1832 - 1898) from '''Alice's Adventures in Wonderland and Through the Looking Glass.'''

370

Widget:ExpandableBoxStart | Open Energy Information  

Open Energy Info (EERE)

ExpandableBoxStart ExpandableBoxStart Jump to: navigation, search The widget creates an expandable text box which can contain any standard wiki content. The box will be collapsed upon page load and can be expanded by clicking anywhere on the box. Once expanded, the box can be collapsed by clicking anywhere on the box header (the original box). Users of this widget must use the Start and End variants of the widget, as shown below. While slightly less convenient for the wiki content developer to use two widgets, this allows full wikitext in the expandable text area, which would otherwise just be limited to plaintext. Note: You must also use the accompanying variant of this widget: Widget:ExpandableBoxEnd Parameters label - text label of the box header (optional, default "More

371

Apps for Energy Public Voting Starts Today! | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Apps for Energy Public Voting Starts Today! Apps for Energy Public Voting Starts Today! Apps for Energy Public Voting Starts Today! May 17, 2012 - 3:53pm Addthis The Energy Department's digital team tested out Apps for Energy submissions in preparation for public voting. | Photo by Hantz Leger. The Energy Department's digital team tested out Apps for Energy submissions in preparation for public voting. | Photo by Hantz Leger. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs How can I participate? View the Apps for Energy submissions and vote for your favorite! Back in April, we launched Apps for Energy -- challenging developers to build mobile and web applications that bring Green Button electricity data to life. You answered our call -- sending in innovative, creative and fun

372

Entergy Arkansas - CitySmart Quick Start Energy Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

Entergy Arkansas - CitySmart Quick Start Energy Efficiency Program Entergy Arkansas - CitySmart Quick Start Energy Efficiency Program Entergy Arkansas - CitySmart Quick Start Energy Efficiency Program < Back Eligibility Institutional Local Government Schools Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount One Measure: $0.10/kWh saved in first year Two Measures: $0.11/kWh saved in first year Three Measures: $0.12/kWh saved in first year Comprehensive Measures (4 +): $0.14/kWh saved in first year Benchmarking/Master Planning: Free to eligible customers Provider Entergy Arkansas, Inc. The CitySmart Program is an energy efficiency program designed to provide

373

Spring Forward and Start Saving Money | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Forward and Start Saving Money Forward and Start Saving Money Spring Forward and Start Saving Money March 8, 2013 - 10:15am Addthis Installing blinds or draperies can help you save on cooling costs during the summer months. | Photo courtesy of ©iStockphoto.com/powershot Installing blinds or draperies can help you save on cooling costs during the summer months. | Photo courtesy of ©iStockphoto.com/powershot Jason Lutterman Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Follow these spring tips to save money in your home. March has begun, and as millions around the world prepare to "spring forward" one hour for Daylight Saving Time on March 10th, you might consider this as an opportunity to also save some money to use in the

374

Environmental Justice Starts with Education | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Environmental Justice Starts with Education Environmental Justice Starts with Education Environmental Justice Starts with Education December 15, 2010 - 4:50pm Addthis Bill Valdez Bill Valdez Principal Deputy Director Today, Obama Administration officials and hundreds of advocates of environmental justice gathered at the White House Summit on Environmental Justice to discuss green jobs and clean energy, and open up a dialogue on these and other issues. We owe these advocates a big thank you for their work to make sure every American has clean water to drink, clean air to breathe, and clean communities to live in. The office of Economic Impact and Diversity is helping coordinate the Department's efforts to promote environmental justice both internally and with communities. Community education is one of the most important parts of what we do at the

375

scriptEnv - loading modules before starting a script  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

scriptEnv - loading modules before starting a script scriptEnv - loading modules before starting a script scriptEnv - loading modules before starting a script In some cases a script needs to load modules before the script can be executed, but it can often be inconvenient or impossible to provide wrapper scripts which load the needed modules. CGI scripts on the gpweb resources or in the NERSC portal environment which require the genepool-specific python/perl/R or databases configuration modules are a strong example of this. NERSC provides the scriptEnv as a custom drop-in replacement for /usr/bin/env. scriptEnv loads your selected modules to allow your scripts to run easily and reproducibly. After constructing your scriptEnv, you only need replace the shebang line of your script to use your custom scriptEnv

376

Testimony Before the Senate Armed Services Committee, New START Treaty  

National Nuclear Security Administration (NNSA)

Before the Senate Armed Services Committee, New START Treaty Before the Senate Armed Services Committee, New START Treaty Hearing | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Congressional Testimony > Testimony Before the Senate Armed Services Committee, ... Congressional Testimony Testimony Before the Senate Armed Services Committee, New START Treaty

377

Profits and Losses from On-farm Drying and Storage of Grain Sorghum in Central Texas and the Coastal Bend.  

E-Print Network [OSTI]

Bulletin 887 On-Farm Drainam' . 'N @ and Storage. of storage of grain sorghuni in the Coastal Bend area was 34 cents per hundred- weight and 30 cents per...

Hildreth, R. J.; Moore, C. A.

1958-01-01T23:59:59.000Z

378

Yucca Mountain Site Characterization Project Plan  

SciTech Connect (OSTI)

The purpose of this document is to describe the Yucca Mountain Site Characterization Project (YMP) and establish an approved YMP baseline against which overall YMP progress and management effectiveness shall be measured. For the sake of brevity, this document will be referred to as the Project Plan throughout this document. This Project Plan only addresses activities up to the submittal of the repository license application (LA) to the Nuclear Regulatory Commission (NRC). A new Project Plan will be submitted to establish the technical, cost, and schedule baselines for the final design and construction phase of development extending through the start of repository operations, assuming that the site is determined to be suitable.

Gertz, C.P.; Bartlett, J.

1992-01-01T23:59:59.000Z

379

Rubric for LInC Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fermilab Leadership Institute Integrating Internet, Instruction and Curriculum Project List The Fermilab LInC "Publishable Quality" Rubric To get "percent total" add all items successfully executed. Subtract those not applicable from total possible, and divide that number into total successfully executed items. Engaged Learning Pedagogy (weighted 30%) Percent total for engaged learning = __________ A. The web pages for students/participants invite and motivate them to start on the project by offering a task or situation that piques their curiosity in the project (invitation to learn/hook) come up with questions, concerns, issues, hypotheses, or problem-solving suggestions that guide their investigation and overall participation in the project

380

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCS: CCS: Life Cycle Water Consumption for Carbon Capture and Storage Project Number 49607 Christopher Harto Argonne National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Benefit to the Program * Program goals being addressed. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness. * Project benefits statement. - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2). - This work will help identify water related constraints

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leakage Mitigation Leakage Mitigation using Engineered Biomineralized Sealing Technologies Project Number: FE0004478 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background Information * Accomplishments to Date - Injection strategy development (control and prediction) - Large core tests - ambient pressure - Large core tests - high pressure - Small core tests - high pressure - MCDP, permeability and porosity assessments * Progress Assessment and Summary

382

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 Leakage Mitigation CO2 Leakage Mitigation using Engineered Biomineralized Sealing Technologies Project Number FE0004478 Lee H Spangler, Al Cunningham, Robin Gerlach Energy Research Institute Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Motivation * Background information * Large core tests - ambient pressure * Large core tests - high pressure 3 Benefit to the Program Program goals being addressed. Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. Project benefits statement. The Engineered Biomineralized Sealing Technologies

383

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCS CCS Project Number 49607 Christopher Harto Argonne National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Benefit to the Program * Program goals being addressed. - Increased control of reservoir pressure, reduced risk of CO2 migration, and expanded formation storage capacity. * Project benefits statement. - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2). - This work will help identify water related constraints on CCS deployment and provide insight into

384

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Multiphase of Multiphase Flow for Improved Injectivity and Trapping 4000.4.641.251.002 Dustin Crandall, URS PI: Grant Bromhal, NETL ORD Morgantown, West Virginia U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the program * Project overview * Breakdown of FY12 project tasks * Facilities and personnel * Task progress to date * Planned task successes * Tech transfer and summary 3 Benefit to the Program * Program goal being addressed - Develop technologies that will support industries' ability to predict CO

385

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Resources International, Inc. Advanced Resources International, Inc. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefit to the Program * Program goal being addressed: - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Project benefits statement: - This research seeks to develop a set of robust mathematical modules to predict how coal and shale permeability and

386

Load bearing capacity of API X65 pipe with dent defect under internal pressure and in-plane bending  

Science Journals Connector (OSTI)

The objective of this study was to investigate the effect of the dent magnitude on the collapse behavior of a dented pipe subjected to a combined internal pressure and in-plane bending. The plastic collapse behavior and bending moment of the dented pipe containing several dent dimensions were evaluated using elasticplastic finite element (FE) analyses. The indenters used to manufacture the dents on the API 5L X65 pipe were hemispherical rods with diameters of 40, 80, 160 and 320mm. Dent depths of 19, 38, 76, 114 and 152mm were introduced to the pipe with a diameter of 762mm and a wall thickness of 17.5mm. A closing or opening in-plane bending load was applied to the dented pipes pressurized under an internal pressure equivalent to atmospheric pressure as well as pressures of 4, 8, and 16MPa. The FE analyses results showed that the plastic collapse behavior of the dented pipes was significantly governed by the bending mode and the dent geometry. Moment-bending angle curves for the dented pipe were obtained from computer simulations and evaluated with a variety of factors in the FE analyses. The load bearing capacity of the dented pipes under the combined load was evaluated by TES (Twice Elastic Slope) moments. The load bearing capacity of the pipe containing up to a 5% dent depth of the outer diameter was not reduced in comparison to that of the plain pipe. The opening bending mode had a higher load bearing capacity than the closing bending mode under the combined load regardless of dent depth. The TES moment decreased with increasing dent depth and internal pressure regardless of the bending modes.

Jong-hyun Baek; Young-pyo Kim; Woo-sik Kim; Jae-min Koo; Chang-sung Seok

2012-01-01T23:59:59.000Z

387

Time frames for geothermal project development  

SciTech Connect (OSTI)

Geothermal development can generally be broken down into distinct phases: Exploration and Leasing; Project Development And Feasibility Studies; Well Field Development; Project Finance, Construction and Start-up Operations; and Commercial Operations. Each phase represents different levels of cost and risk and different types of management teams that are needed to assess and manage the project and associated risk. Orderly transitions of management at each major phase are needed. Exploration programs are largely science based, the primary focus of the science based investigations should be to: secure the lease position, and develop sufficient information to identify and characterize an economical geothermal resource. Project development specialists build on the exploration data to: pull together a project design, develop a detailed cost estimate; prepare an environmental assessment; and collect all data needed for project financing. Construction specialist build from the development phase to: develop detailed engineering, procure equipment and materials, schedule and manage the facilities construction programs, and start and test the power plant. Operations specialists take over from construction during start-up and are responsible for sustainable and reliable operations of the resource and power generation equipment over the life of the project.

McClain, David W.

2001-04-17T23:59:59.000Z

388

Western Pond Turtle Head-starting and Reintroduction, 2005-2006 Annual Report.  

SciTech Connect (OSTI)

This report covers the results of the western pond turtle head-starting and reintroduction project for the period of October 2005-September 2006. Wild hatchling western pond turtles from the Columbia River Gorge were reared at the Woodland Park and Oregon zoos in 2005 and 2006 as part of the recovery effort for this Washington State endangered species. The objective of the program is to reduce losses to introduced predators like bullfrogs and largemouth bass by raising the hatchlings to a size where they are too large to be eaten by most of these predators. Twenty-six turtles were placed at the Woodland Park Zoo and 62 at the Oregon Zoo in fall 2005. These turtles joined two that were held back from release in summer 2005 due to their small size. All 90 juvenile turtles were released at three sites in the Columbia Gorge in 2006. Twenty-eight juvenile turtles were released at the Klickitat ponds, 22 at the Klickitat lake, 21 at the Skamania site, and 19 at Pierce National Wildlife Refuge (NWR). This brought the total number of head-start turtles released since 1991 to 944; 285 for the Klickitat ponds, 158 for the Klickitat lake, 227 for the Skamania pond complex, and 274 at Pierce NWR. In 2006, 20 females from the Klickitat population were equipped with transmitters and monitored for nesting activity. Fifteen nests were located and protected; these produced 55 hatchlings. The hatchlings were collected in September and transported to the Oregon and Woodland Park zoos for rearing in the head-start program. One wild hatchling captured in spring 2006 was placed in the head-start program to attain more growth in captivity. During the 2006 field season trapping effort, 414 western pond turtles were captured in the Columbia Gorge, including 374 previously head-started turtles. These recaptures, together with confirmed nesting by head-start females and visual resightings, indicate the program is succeeding in boosting juvenile recruitment to increase the populations. Records were also collected on 179 individual painted turtles captured in 2006 during trapping efforts at Pierce NWR, to gather baseline information on this native population.

Van Leuven, Susan; Allen, Harriet; Slavens, Kate (Washington Department of Fish and Wildlife, Wildlife Management Program, Olympia, WA)

2006-11-01T23:59:59.000Z

389

Western Pond Turtle Head-starting and Reintroduction; 2003-2004 Annual Report.  

SciTech Connect (OSTI)

This report covers the results of the western pond turtle head-starting and reintroduction project for the period of October 2003-September 2004. Wild hatchling western pond turtles from the Columbia River Gorge were reared at the Woodland Park and Oregon Zoos in 2003 and 2004 as part of the recovery effort for this Washington State endangered species. The objective of the program is to reduce losses to introduced predators like bullfrogs and largemouth bass by raising the hatchlings to a size where they are too large to be eaten by most of these predators. Sixty-nine turtles were over-wintered at the Woodland Park Zoo and 69 at the Oregon Zoo. Of these, 136 head-started juvenile turtles were released at three sites in the Columbia Gorge in 2004. Two were held back to attain more growth in captivity. Thirty-four were released at the Klickitat ponds, 19 at the Klickitat lake, 21 at the Skamania site, and 62 at Pierce National Wildlife Refuge (NWR). This brought the total number of head-start turtles released since 1991 to 246 for the Klickitat ponds, 114 for the Klickitat lake, 167 for the Skamania pond complex, and 250 at Pierce NWR. In 2004, 32 females from the two Columbia Gorge populations were equipped with transmitters and monitored for nesting activity. Twenty-one of the females nested and produced 85 hatchlings. The hatchlings were collected in September and October and transported to the Woodland Park and Oregon zoos for rearing in the head-start program. Data collection for a four-year telemetry study of survival and habitat use by juvenile western pond turtles at Pierce NWR concluded in 2004. Radio transmitters on study animals were replaced as needed until all replacements were in service; afterward, the turtles were monitored until their transmitters failed. The corps of study turtles ranged from 39 in August 2003 to 2 turtles at the end of August 2004. These turtles showed the same seasonal pattern of movements between summer water and upland winter habitats observed in previous years. During the 2004 field season trapping effort, 345 western pond turtles were captured in the Columbia Gorge, including 297 previously head-started turtles. These recaptures, together with confirmed nesting by head-start females and visual resightings, indicate the program is succeeding in boosting juvenile recruitment to increase the populations. Records were also collected on 224 individual painted turtles captured in 2004 during trapping efforts at Pierce NWR, to gather baseline information on this native population. Bonneville Power Administration (BPA) funded approximately 60% of program activities in the Columbia River Gorge from October 2003 through September 2004.

Van Leuven, Susan; Allen, Harriet; Slavin, Kate (Washington Department of Fish and Wildlife, Wildlife Management Program, Olympia, WA)

2004-09-01T23:59:59.000Z

390

Western Pond Turtle Head-starting and Reintroduction; 2004-2005 Annual Report.  

SciTech Connect (OSTI)

This report covers the results of the western pond turtle head-starting and reintroduction project for the period of October 2004-September 2005. Wild hatchling western pond turtles from the Columbia River Gorge were reared at the Woodland Park and Oregon Zoos in 2004 and 2005 as part of the recovery effort for this Washington State endangered species. The objective of the program is to reduce losses to introduced predators like bullfrogs and largemouth bass by raising the hatchlings to a size where they are too large to be eaten by most of these predators. Thirty-five turtles were placed at the Woodland Park Zoo and 53 at the Oregon Zoo. Of these, 77 head-started juvenile turtles were released at three sites in the Columbia Gorge in 2005. Four were held back to attain more growth in captivity. Eleven were released at the Klickitat ponds, 22 at the Klickitat lake, 39 at the Skamania site, and 5 at Pierce National Wildlife Refuge (NWR). This brought the total number of head-start turtles released since 1991 to 257 for the Klickitat ponds, 136 for the Klickitat lake, 206 for the Skamania pond complex, and 255 at Pierce NWR. In 2005, 34 females from the two Columbia Gorge populations were equipped with transmitters and monitored for nesting activity. Twenty-four nests were located and protected; these produced 90 hatchlings. The hatchlings were collected in September and transported to the Oregon and Woodland Park zoos for rearing in the head-start program. During the 2005 field season trapping effort, 486 western pond turtles were captured in the Columbia Gorge, including 430 previously head-started turtles. These recaptures, together with confirmed nesting by head-start females and visual resightings, indicate the program is succeeding in boosting juvenile recruitment to increase the populations. Records were also collected on 216 individual painted turtles captured in 2005 during trapping efforts at Pierce NWR, to gather baseline information on this native population. Bonneville Power Administration (BPA) funded approximately 75% of program activities in the Columbia River Gorge from October 2004 through September 2005.

Van Leuven, Susan; Allen, Harriet; Slavin, Kate (Washington Department of Fish and Wildlife, Wildlife Management Program, Olympia, WA)

2005-09-01T23:59:59.000Z

391

Development of U-Frame Bending System for Studying the Vibration Integrity of Spent Nuclear Fuel  

SciTech Connect (OSTI)

A bending fatigue system developed to evaluate the response of spent nuclear fuel rods to vibration loads is presented. Design and analysis, fabrication, modification, calibration, and instrumentation are described. The system is composed of a U-frame testing setup for imposing bending loads on the spent fuel rod test specimen and a method for measuring the curvature of the rod during bending. The U-frame setup consists of two rigid arms, linking members, and linkages to a universal testing machine. The test specimen s curvature of bending is obtained through a three-point deflection measurement method consisting of three LVDTs mounted to the side connecting plates of the U-frame to capture the deformation of the test specimen. The system has some unique features: 1) The test specimen is installed by simple insertion using linear bearings incorporated with rigid sleeves. 2) Reverse cyclic bending tests can be carried out effectively and efficiently by push and pull at the loading point of the setup. Any test machine with a linear motion function can be used to drive the setup. 3) The embedded and preloaded linear roller bearings eliminate the backlash that exists in the conventional reverse bend tests. 4) The number of linkages between the U-frame and the universal machine is minimized. Namely, there are only two linkages needed at the two loading points of a U-frame setup, whereas a conventional four/three-point bend test frame requires four linkages. 5) The curvature measurement is immune to the effects arising from compliant layers and the rigid body motion of the machine. The compliant layers are used at the holding areas of the specimen to prevent contact damage. The tests using surrogate specimens composed of SS cladding/tube revealed several important phenomena that may cast light on the expected response of a spent fuel rod: 1) Cyclic quasi-static load (10 N/s under force control) in compressive mode (with respect to that at the loading point of the U-frame) produced increased irreversible or plastic curvature and also increased flexural rigidity of the surrogate rod. 2) Dynamic cyclic load (at least 1 Hz) in compressive mode resulted in increased flexural rigidity of the surrogate rod prior to SS cladding fracture. 3) Pellets and epoxy bonding exhibited various effects on the response of surrogate rods during the loading process as validated from static tests. 4) Dynamic cyclic load (2 Hz) in reverse mode demonstrated a substantial cyclic softening before the fracture of the surrogate rod. The degree of decrease in flexural rigidity was consistent in both measurement and on-line monitoring. The developed U-frame system is thus verified and demonstrated to be ready for further pursuit in hot-cell tests.

Wang, Hong [ORNL; Wang, Jy-An John [ORNL; Tan, Ting [ORNL; Jiang, Hao [ORNL; Cox, Thomas S [ORNL; Howard, Rob L [ORNL; Bevard, Bruce Balkcom [ORNL; Flanagan, Michelle E [ORNL

2013-01-01T23:59:59.000Z

392

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SUMNER SUMNER COUNTY, KANSAS Project Number DE-FE0006821 W. Lynn Watney Kansas Geological Survey Lawrence, KS U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Fountainview Wednesday 8-21-12 1:10-1:35 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary Small Scale Field Test Wellington Field Regional Assessment of deep saline Arbuckle aquifer Acknowledgements & Disclaimer Acknowledgements * The work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant DE-FE0002056 and DE- FE0006821, W.L. Watney and Jason Rush, Joint PIs. Project is managed and

393

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0-22, 2013 0-22, 2013 Collaborators Zhengrong Wang, Yale University Kevin Johnson, University of Hawaii 2 Presentation Outline * Program Focus Area and DOE Connections * Goals and Objectives * Scope of Work * Technical Discussion * Accomplishments to Date * Project Wrap-up * Appendix (Organization Chart, Gantt Chart, and Bibliography 3 Benefit to the Program * Program goals addressed: - Technology development to predict CO 2 storage capacity - Demonstrate fate of injected CO 2 and most common contaminants * Project benefits statement: This research project conducts modeling, laboratory studies, and pilot-scale research aimed at developing new technologies and new systems for utilization of basalt formations for long term subsurface storage of CO 2 . Findings from this project

394

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

behavior of shales as behavior of shales as seals and storage reservoirs for CO2 Project Number: Car Stor_FY131415 Daniel J. Soeder USDOE/NETL/ORD U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Project Overview: Goals and Objectives * Program Goals - Support industry's ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness * Project Objectives - Assess how shales behave as caprocks in contact with CO 2 under a variety of conditions - Assess the viability of depleted gas shales to serve as storage reservoirs for sequestered CO

395

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO CO 2 leakage and cap rock remediation DE-FE0001132 Runar Nygaard Missouri University of Science and Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation Outline * Benefit to the program * Project overview * Technical status * Accomplishments to date * Summary 2 3 Benefit to the Program * Program goals being addressed. - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * Project benefits statement. - The project develops a coupled reservoir and geomechanical modeling approach to simulate cap rock leakage and simulate the success of remediation

396

LUCF Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RZWR'HVLJQDQG RZWR'HVLJQDQG +RZWR'HVLJQDQG ,PSOHPHQW&DUERQ ,PSOHPHQW&DUERQ 0HDVXULQJDQG0RQLWRULQJ 0HDVXULQJDQG0RQLWRULQJ $.WLYLWLHVIRU/8&) $.WLYLWLHVIRU/8&) 3URMH.WV 3URMH.WV Sandra Brown Winrock International sbrown@winrock.org Winrock International 2 3URMH.WGHVLJQLVVXHV 3URMH.WGHVLJQLVVXHV z Baselines and additionality z Leakage z Permanence z Measuring and monitoring z Issues vary with projects in developed versus developing countries Winrock International 3 /HDNDJH /HDNDJH z Leakage is the unanticipated loss or gain in carbon benefits outside of the project's boundary as a result of the project activities-divide into two types: - Primary leakage or activity shifting outside project area - Secondary leakage or market effects due to

397

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Web-based CO Web-based CO 2 Subsurface Modeling Geologic Sequestration Training and Research Project Number DE-FE0002069 Christopher Paolini San Diego State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Project benefits and goals. * Web interface for simulating water-rock interaction. * Development of, and experience teaching, a new Carbon Capture and Sequestration course at San Diego State University. * Some noteworthy results of student research and training in CCS oriented geochemistry. * Status of active student geochemical and geomechancal modeling projects.

398

Project Title:  

Broader source: Energy.gov (indexed) [DOE]

Repair flowline 61-66-SX-3 Repair flowline 61-66-SX-3 DOE Code: Project Lead: Wes Riesland NEPA COMPLIANCE SURVEY # 291 Project Information Date: 3/1 1/2010 Contractor Code: Project Overview In order to repair this line it was decided to trench a line aproximately 100 feet and tie it into the line at 71-3- 1. What are the environmental sx-3. This will get us out of the old flow line which has been repaired 5-6 times. this will mitigate the chances impacts? of having spills in the future. 2. What is the legal location? This flowline runs from the well77-s-1 0 to the B-2-10 manifold.+ "/-,~?X3 3. What is the duration of the project? Approximately 10 hours(1 day) to complete 4. What major equipment will be used backhoe and operator and one hand if any (work over rig. drilling rig.

399

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Co-Sequestration Co-Sequestration Studies Project Number 58159 Task 2 B. Peter McGrail Pacific Northwest National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Program Focus Area and DOE Connections * Goals and Objectives * Scope of Work * Technical Discussion * Accomplishments to Date * Project Wrap-up * Appendix (Organization Chart, Gantt Chart, and Bibliography 3 Benefit to the Program * Program goals addressed: - Technology development to predict CO 2 and mixed gas storage capacity in various geologic settings - Demonstrate fate of injected mixed gases * Project benefits statement:

400

Project X  

E-Print Network [OSTI]

provided by Project X would be a cost- effective approach toin Section I and for the cost estimate necessary as part ofby DOE order 413.3b. The cost range required for CD-0 will

Holmes, Steve

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Model Complexity in Geological Carbon Model Complexity in Geological Carbon Sequestration: A Design of Experiment (DoE) & Response Surface (RS) Uncertainty Analysis Project Number: DE-FE-0009238 Mingkan Zhang 1 , Ye Zhang 1 , Peter Lichtner 2 1. Dept. of Geology & Geophysics, University of Wyoming, Laramie, Wyoming 2. OFM Research, Inc., Santa Fe, New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Project major goals and benefits; * Detailed project objectives & success criteria; * Accomplishments to date; * Summary of results; * Appendix (organization chart; Gantt chart; additional results). Dept. of Geology & Geophysics, University of Wyoming

402

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Region Region DE-FE0001812 Brian J. McPherson University of Utah U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Acknowledgements * NETL * Shell * Tri-State * Trapper Mining * State of Colorado 3 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 4 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 5 Benefit to the Program Program Goals Being Addressed by this Project

403

California Hydrogen Infrastructure Project  

SciTech Connect (OSTI)

Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a ???¢????????real-world???¢??????? retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation???¢????????s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products???¢???????? Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user???¢????????s fueling experience.

Edward C. Heydorn

2013-03-12T23:59:59.000Z

404

MATLAB Tutorial Getting Started with Calculations, Graphing and Programming  

E-Print Network [OSTI]

MATLAB Tutorial Getting Started with Calculations, Graphing and Programming Nicholas R. Kirchner UI 2 Calculations with MATLAB Standard Calculations and Variables Matrices and Vectors 3 Graphing NRK;Matrices and Vectors, Definitions MATLAB is short for MATrix LABoratory. It was built for high-speed matrix

Weinberger, Hans

405

Search Technology Internet Start-Ups Business Computing Companies  

E-Print Network [OSTI]

#12;Search Technology Internet Start-Ups Business Computing Companies Inside Technology Bits Blog engineer at Google, uses statistical analysis of data to help improve the company's search engine » Cellphones, Cameras, Computers and more Personal Tech » Advertise on NYTimes.com Search All NYTimes

Oyet, Alwell

406

Quick Start Guide: Completing Your CHP September 2013  

E-Print Network [OSTI]

Quick Start Guide: Completing Your CHP September 2013 This Laboratory Safety Manual (LSM) is your of what the Washington Department of Labor and Industries calls a "Chemical Hygiene Plan (CHP)." The CHP is required for all laboratories that use hazardous chemicals. EH&S developed much of your CHP for you

Wilcock, William

407

A quick start guide designed to help you successfully  

E-Print Network [OSTI]

will be locked out of your myProvidence account for a period of time. 2. Call the myProvidence Help Desk at 8772012 A quick start guide designed to help you successfully complete steps in the Health Engagement conversations (PEBB calls these "e-lessons"). · Tools for meeting your personal health goals. Before you begin

Oregon, University of

408

MATLAB Tutorial Getting Started with Calculations, Graphing and Programming  

E-Print Network [OSTI]

MATLAB Tutorial Getting Started with Calculations, Graphing and Programming Nicholas R. Kirchner University of Minnesota Thursday, August 30, 2012 #12;Outline 1 MATLAB installation NRK (University of Minnesota) MATLAB 2012.08.30 2 / 28 #12;Outline 1 MATLAB installation 2 The MATLAB UI NRK (University

Weinberger, Hans

409

Getting Started with Plain TEX D. R. Wilkins  

E-Print Network [OSTI]

Getting Started with Plain TEX D. R. Wilkins April 18, 1994 Contents 1 Introduction to Plain TEX 2 1.1 What is Plain TEX? . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 A Typical Plain TEX . . . . . . . . . . . . . . . . 4 2 Producing Simple Documents using Plain TEX 6 2.1 Producing Ordinary Text using Plain TEX

410

1Center for Wireless Technology Eindhoven Where innovation starts  

E-Print Network [OSTI]

1Center for Wireless Technology Eindhoven Where innovation starts Department of Electrical Engineering Center for Wireless Technology Eindhoven #12;2 3Center for Wireless Technology Eindhoven Wireless communication Wireless communication is an integral and increasingly important aspect of our daily lives

Franssen, Michael

411

Fall 2011 CSC Help Desk Information Starting August 29, 2011  

E-Print Network [OSTI]

Fall 2011 CSC Help Desk Information Starting August 29, 2011 Teaching assistants maintain a help. These assistants focus on programming and basic system issues. Each of the assistants can help with Java or C programming and may be able to help with almost anything dealing with undergraduate courses. Help

Papalaskari, Mary-Angela

412

Technology Services @ Pitt 2014 2015 PittStart  

E-Print Network [OSTI]

Technology Services @ Pitt 2014 ­ 2015 PittStart #12;Technology Services @ Pitt · We provide the technology tools and services that make your life at Pitt easier! Visit us at technology.pitt.edu Presentation available at technology.pitt.edu\\pittstart #12;Technology Services @ Pitt facebook

Jiang, Huiqiang

413

Preparing for Project Implementation Financing Project Implementation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Project Implementation Financing Project Implementation Save Energy Now LEADER Web Conference Project Implementation Seminar Series Save Energy Now LEADER Web Conference...

414

Context at the start The idea about a Centre for the study of Regulated Industries started in 1989 with the  

E-Print Network [OSTI]

which are required in the RPI-x system. The Central Electricity Generating Board (CEGB) was split up monopoly' parts (ie, competitive electricity generation, natural monopoly transmission and distribution, followed by the privatisation of the restructured electricity industry, which started in 1990

Burton, Geoffrey R.

415

LIMB Demonstration Project Extension  

SciTech Connect (OSTI)

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (1) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems; (2) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit; and (3) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater. The demonstration project consists of several distinct phases: a preliminary phase to develop the LIMB process design applicable to the host boiler, a construction and start-up phase, and an operating and evaluation phase. The first major activity, the development of the Edgewater LIMB design, was completed in January 1986 and detailed engineering is now complete. Major boiler-related components were installed during a September 1986 boiler outage. Start-up activities began in March of 1987 with tuning of the low NO{sub x} burners. Sorbent injection activities were underway as of July 1987. 3 figs.

Not Available

1991-09-15T23:59:59.000Z

416

Structural basis for DNA bending by the architectural transcription factor LEF-1  

Science Journals Connector (OSTI)

... Initial protein structures were calculated with the program DIANA25 using the redundant dihedral angle constraint (REDAC) strategy26. Beginning with 40 randomized starting structures, three ... ) strategy26. Beginning with 40 randomized starting structures, three REDAC cycles were applied, followed by a single cycle using only experimental restraints and a ...

John J. Love; Xiang Li; David A. Case; Klaus Giese; Rudolf Crosschedl; Peter E. Wright

1995-08-31T23:59:59.000Z

417

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Monitoring Geological CO Monitoring Geological CO 2 Sequestration using Perfluorocarbon and Stable Isotope Tracers Project Number FEAA-045 Tommy J. Phelps and David R. Cole* Oak Ridge National Laboratory Phone: 865-574-7290 email: phelpstj@ornl.gov (*The Ohio State University) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Developing the Technologies and Building the Infrastructure for CO 2 Storage August 22, 2013 2 Project Overview: Goals and Objectives Goal: Develop methods to interrogate subsurface for improved CO 2 sequestration, field test characterization and MVA, demonstrate CO 2 remains in zone, and tech transfer. Objectives: 1. Assessment of injections in field. PFT gas tracers are analyzed by GC-ECD to

418

Project Homepage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Middle School Home Energy Audit Middle School Home Energy Audit Project Homepage NTEP Home - Project Homepage - Teacher Homepage - Student Pages Abstract: This set of lessons provides an opportunity for midlevel students to gain a basic understanding of how energy is turned into power, how power is measured using a meter, the costs of those units and the eventual reduction of energy consumption and cost to the consumer. Introduction to Research: By conducting energy audits of their own homes and completing exercises to gain baclground information, students begin to see the importance of energy in their daily lives. By using the Internet as a research tool, students gain develop research skills as they gain knowledge for their project. They use e-mail to collaborate with energy experts and share results with other

419

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Title: DEVELOPING A Title: DEVELOPING A COMPREHENSIVE RISK ASSESMENT FRAMEWORK FOR GEOLOGICAL STORAGE OF CO2 Ian Duncan University of Texas U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline 1. Benefit to the Program 2. Goals and Objectives 3. Technical Status Project 4. Accomplishments to Date 5. Summary 3 Benefit to the Program The research project is developing a comprehensive understanding of the programmatic (business), and technical risks associated with CCS particularly the likelihood of leakage and its potential consequences. This contributes to the Carbon Storage Program's effort of ensuring 99 percent CO

420

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Storage R&D Project Review Meeting Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Acknowledgments Dave Harris, Kentucky Geological Survey Dave Barnes, Western Michigan University John Rupp, Indiana Geological Survey Scott Marsteller, Schlumberger Carbon Services John McBride, Brigham Young University * Project is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal Institute * ConocoPhillips: in-kind match * Western Kentucky Carbon Storage Foundation: matching funding * SeisRes 2020, Houston: VSP acquisition and processing

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Analyze Spatial and Temporal to Analyze Spatial and Temporal Heterogeneities in Reservoir and Seal Petrology, Mineralogy, and Geochemistry: Implications for CO 2 Sequestration Prediction, Simulation, and Monitoring Project Number DE-FE0001852 Dr. Brenda B. Bowen Purdue University (now at the University of Utah) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Introduction to the project * Tasks * Student training * Student research successes * Lessons learned and future plans 3 Benefit to the Program * Addresses Carbon Storage Program major goals: - Develop technologies that will support industries' ability to predict CO

422

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Results from Simulation Project Results from Simulation Framework for Regional Geologic CO 2 Storage Infrastructure along Arches Province of Midwest United States DOE Award No. DE-FE0001034 Ohio Dept. of Dev. Grant CDO/D-10-03 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting August 21-23, 2012 Joel Sminchak and Neeraj Gupta Battelle Energy Systems sminchak@battelle.org, 614-424-7392 gupta@battelle.org, 614-424-3820 BUSINESS SENSITIVE 2 Presentation Outline 1. Technical Status 2. Background (CO 2 Sources, Geologic Setting) 3. Injection Well history 4. Geocellular Model Development 5. Geological Data (Geological dataset, Geostatistics) 6. Geocellular porosity/permeability model development 7. Pipeline Routing Analysis

423

Research projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Yuan » Research projects Yuan » Research projects Research projects Research Interests Scientific computing, domain decomposition methods Linear solvers for sparse matrices Computational plasma physics Grid generation techniques GPU computing Current Research PDSLin: A hybrid linear solver for large-scale highly-indefinite linear systems The Parallel Domain decomposition Schur complement based Linear solver (PDSLin), which implements a hybrid (direct and iterative) linear solver based on a non-overlapping domain decomposition technique called chur complement method, and it has two levels of parallelism: a) to solve independent subdomains in parallel and b) to apply multiple processors per subdomain. In such a framework, load imbalance and excessive communication lead to the performance bottlenecks, and several techniques are developed

424

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SECARB Anthropogenic Test: SECARB Anthropogenic Test: CO 2 Capture/Transportation/Storage Project # DE-FC26-05NT42590 Jerry Hill, Southern Sates Energy Board Richard A. Esposito, Southern Company U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation Outline * Benefit to the Program * Project Overview * Technical Status - CO 2 Capture - CO 2 Transportation - CO 2 Storage * Accomplishments to Date * Organization Chart * Gantt Chart * Bibliography * Summary Benefit to the Program 1. Predict storage capacities within +/- 30% * Conducted high resolution reservoir characterization of the Paluxy saline formation key

425

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigation of the CO Investigation of the CO 2 Sequestration in Depleted Shale Gas Formations Project Number DE-FE-0004731 Jennifer Wilcox, Tony Kovscek, Mark Zoback Stanford University, School of Earth Sciences U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Project Benefits * Technical Status * Imaging at mm- to micron-scales using CT - Permeability measurements and application of the Klinkenberg effect - Molecular Dynamics simulations for permeability and viscosity estimates * Accomplishments to Date * Summary Stanford University 3 Benefit to the Program * Carbon Storage Program major goals

426

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fidelity Computational Analysis of Fidelity Computational Analysis of CO2 Trappings at Pore-scales Project Number: DE-FE0002407 Vinod Kumar (vkumar@utep.edu) & Paul Delgado (pmdelgado2@utep.edu) University of Texas at El Paso U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Collaborators: Dr. C. Harris (Shell Oil Company/Imperial College), Dr. G. Bromhal (NETL), Dr. M. Ferer (WVU/NETL), Dr. D. Crandall (NETL-Ctr), and Dr. D. McIntyre (NETL). 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status - Pore-network modeling - Conductance derivation for irregular geom. - Pore-to-CFD Computations

427

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Number (DE-FE0002056) W. Lynn Watney & Jason Rush (Joint PIs) Kansas Geological Survey Lawrence, KS 66047 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary KANSAS STATE UNIVERSITY Bittersweet Energy Inc. Partners FE0002056 Devilbiss Coring Service Basic Energy Services Wellington Field Operator Industrial and Electrical Power Sources of CO 2 Southwest Kansas CO 2 -EOR Initiative Industry Partners (modeling 4 Chester/Morrowan oil fields to make CO2 ready) +drilling and seismic contractors TBN

428

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Number (DE-FE0002056) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 W. Lynn Watney & Jason Rush (Joint PIs) Kansas Geological Survey Lawrence, KS 66047 Brighton 1&2 2:40 August 20, 2013 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary ORGANIZATIONAL STRUCTURE Modeling CO 2 Sequestration in Saline A quifer and Depleted Oil Reservoir to Evaluate Regional CO 2 Sequestration Potential of Ozark Plateau A quifer System, South-Central Kansas Co-Principal Investigators Co-Principal Investigators Kerry D. Newell -- stratigraphy, geochemistry

429

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tracer for Tracking Permanent CO 2 Storage in Basaltic Rocks DE-FE0004847 Jennifer Hall Columbia University in the City of New York U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Conservative and Reactive Tracer Techniques * Accomplishments to Date * Summary 3 Benefit to the Program * The goal of the project is to develop and test novel geochemical tracer techniques for quantitative monitoring, verification and accounting of stored CO 2 . These techniques contribute to the Carbon Storage Program's

430

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Geotechnical Site and Geotechnical Site Investigations for the Design of a CO 2 Rich Flue Gas Direct Injection Facility Project Number DOE Grant FE0001833 Paul Metz Department of Mining & Geological Engineering University of Alaska Fairbanks U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Presentation Outline * Benefit to the Program * Project Overview: Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix: Not Included in Presentation 3 Benefit to the Program * Carbon Storage Program Major Goals: - Develop technologies that will support industries' ability to

431

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scale CO Scale CO 2 Injection and Optimization of Storage Capacity in the Southeastern United States Project Number: DE-FE0010554 George J. Koperna, Jr. Shawna Cyphers Advanced Resources International U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Presentation Outline * Program Goals * Benefits Statement * Project Overview - Goals - Objectives * Technical Status * Accomplishments to Date * Summary * Appendix USDOE/NETL Program Goals * Support industry's ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop and validate technologies to ensure 99 percent storage permanence. * Develop technologies to improve reservoir storage

432

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SUMNER COUNTY, KANSAS DE-FE0006821 W. Lynn Watney, Jason Rush, Joint PIs Kansas Geological Survey The University of Kansas Lawrence, KS U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Brighton 1&2 Wednesday 8-21-13 1:10-1:35 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary 2 Small Scale Field Test Wellington Field Regional Assessment of deep saline Arbuckle aquifer Project Team DOE-NETL Contract #FE0006821 KANSAS STATE UNIVERSITY 3 L. Watney (Joint PI), J. Rush (Joint PI), J. Doveton, E. Holubnyak, M. Fazelalavi, R. Miller, D. Newell, J. Raney

433

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seal Repair Using Seal Repair Using Nanocomposite Materials Project Number DE-FE0009562 John Stormont, Mahmoud Reda Taha University of New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Ed Matteo, Thomas Dewers Sandia National Laboratories 2 Presentation Outline * Introduction and overview * Materials synthesis * Materials testing and characterization * Annular seal system testing * Numerical simulation * Summary 3 Benefit to the Program * BENEFITS STATEMENT: The project involves the development and testing of polymer-cement nanocomposites for repairing flaws in annular wellbore seals. These materials will have superior characteristics compared to conventional

434

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity Project Number DE-FE0002112 PIs Drs. John Kaszuba and Kenneth Sims Virginia Marcon University of Wyoming U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status - Results - Conclusions - Next Steps * Summary 3 Benefit to the Program * Program goal being addressed. - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. - Monitoring, Verification, and Accounting (MVA). MVA technologies seek to monitor, verify, and

435

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impact of CO Impact of CO 2 Injection on the Subsurface Microbial Community in an Illinois Basin CCS Reservoir: Integrated Student Training in Geoscience and Geomicrobiology Project Number (DEFE0002421) Dr. Yiran Dong Drs. Bruce W. Fouke, Robert A. Sanford, Stephen Marshak University of Illinois-Urbana Champaign U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Technical status * Results and discussion * Summary * Appendix 3 Benefit to the Program This research project has developed scientific, technical and institutional collaborations for the development of

436

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mohammad Piri and Felipe Pereira Mohammad Piri and Felipe Pereira University of Wyoming U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 2013 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status o Experimentation: core-flooding and IFT/CA o Pore-scale modeling modeling * Accomplishments to Date * Summary University of Wyoming 3 Benefit to the Program * Program goal: o 'Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.' * Benefits statement: o The research project is focused on performing reservoir conditions experiments to measure steady-state relative permeabilities,

437

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MVA Tools MVA Tools Sam Clegg, Kristy Nowak-Lovato, Ron Martinez, Julianna Fessenden, Thom Rahn, & Lianjie Huang Los Alamos National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview - Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix - Organization Chart - Bibliography 3 Project Overview: Goals and Objectives * Surface MVA - Frequency Modulated Spectroscopy - Quantitatively identify CO2, H2S and CH4 seepage from geologic sequestration sites - Distinguish anthropogenic CO2 from natural CO2 emissions * CO2 carbon stable isotope measurements

438

Project Final Report UBC LBS Project Services1 Project Final Report UBC LBS Project Services2  

E-Print Network [OSTI]

Project Final Report UBC LBS Project Services1 #12;Project Final Report UBC LBS Project Services2 EXECUTIVE SUMMARY The purpose of the UBC Project Services web-based project management portal project on campus within Project Services, and with the rest of the UBC community. We began this project by defining

439

Project Checklists | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Checklists Checklists Project Checklists Below are links to project checklists, model request for proposals, and model power purchase contracts that Tribes can use for energy development projects. Connecting to the Grid: A Guide to Distributed Generation Interconnection Issues Discusses the Interstate Renewable Energy Council's (IREC's) model interconnection standards for generators up to 10 megawatts (MW) and IREC's model net-metering rules for generators up to 2 MW in capacity. Includes information on safety, power quality, and codes, legal and procedural issues, net metering, and electrical inspectors. Source: Interstate Renewable Energy Council. Getting Started: What to Ask the Developer This document provides a list of preliminary questions for Tribes to think about when approached by a developer or technology representative for

440

Effect of dynamic bending of level ice on ship's continuous-mode icebreaking  

Science Journals Connector (OSTI)

Abstract This paper focuses on the influences of the dynamic effects of shipicewater interaction on ship performance, ship motions, and ice resistance. The effects of the dynamic bending of ice wedges and ship speeds are especially investigated. The study is carried out using a numerical procedure simulating ship operations in level ice with ship motions in six degrees of freedom (DOFs). A case study is conducted with the Swedish icebreaker Tor Viking II. The 3-D hull geometry of the ship is modeled based on the lines drawing. The predicted performance of the ship is compared with data from full-scale ice trials.

Xiang Tan; Kaj Riska; Torgeir Moan

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Divisional isolation using electro-pneumatic controls at Entergy`s River Bend Power Station  

SciTech Connect (OSTI)

In 1991, The Service Water System at River Bend Nuclear Plant was modified from an open flume system to a closed system. Closing the system presented some unique challenges to the Design Engineering staff with respect to compliance to The Nuclear Regulatory Commission`s Regulatory Guide 1.75 (RG 1.75). This paper will explain the mechanical and electrical changes made to the plant in order to maintain compliance with the applicable regulations and the reasoning for the design decisions involved.

Finkenaur, R.G. III [Entergy Operations, Inc., St. Francisville, LA (United States). River Bend Station

1995-10-01T23:59:59.000Z

442

The structure and the bending potential of the 2A1 state of Ph2  

E-Print Network [OSTI]

. 2 Best values were found for the PH bond lenqth, equilibrium bending angles and the 3 parameters of a bendinq potential. The potential function consisted of a Lorentzian added to a quadratic harmonic oscillator potential. The kinetic enerqy... of Changes in the Parameters. II. CV Values For the Five Models. III. The Values of B for the Different Models. v -1 IV. The First Four Vibrational Energy Levels in cm Page 22 24 25 31 vii LIST OF FIGURES Figure 1. The PH2 Molecule...

Allen, Clinton William

1976-01-01T23:59:59.000Z

443

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 BROWN 2 Presentation Outline * Benefits & overview of deriving acrylates from coupling carbon dioxide and ethylene * Chemical catalysis approach: background and battles left to fight * Experimental assessment of the viability of thermochemical acrylate production * Perspectives for the future BROWN 3 Benefit to the Program * This project identifies the critical catalyst features necessary to promote carbon dioxide coupling with ethylene to acrylate at molybdenum catalysts. This research demonstrates the viability of acrylate production

444

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool to Improve CO2 Sequestration DE FE0004542 Larry Murdoch, Clemson University Stephen Moysey, Clemson University Leonid Germanovich, Georgia Tech Cem Ozan, Baker Hughes Sihyun Kim, Georgia Tech Glenn Skawski, Clemson University Alex Hanna, Clemson University Johnathan Ebenhack, Clemson University Josh Smith, Clemson University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool, Larry Murdoch Project Review Meeting, 23 Aug. 2013 2 Presentation Outline * Preliminaries

445

Hallmark Project  

Broader source: Energy.gov (indexed) [DOE]

Project Project Commercialization of the Secure SCADA Communications Protocol, a cryptographic security solution for device-to-device communication Increased connectivity and automation in the control systems that manage the nation's energy infrastructure have improved system functionality, but left systems more vulnerable to cyber attack. Intruders could severely disrupt control system operation by sending fabricated information or commands to control system devices. To ensure message integrity, supervisory control and data acquisition (SCADA) systems require a method to validate device-to- device communication and verify that information has come from a trusted source and not been altered in transit. The Secure SCADA Communications Protocol (SSCP) provides message

446

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DE-FE0001836: DE-FE0001836: Numerical modeling of geomechanical processes related to CO 2 injection within generic reservoirs Andreas Eckert & Runar Nygaard Missouri University of Science & Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Objectives, Benefits and Outcomes * Technical status: Project summary - Teaching - Reservoir scale (Geomechanics & Fluid flow simulation) - Borehole scale (Wellbore integrity & wellbore trajectory planning) * Conclusions * Appendix 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries'

447

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DE-FE0002225: DE-FE0002225: Actualistic and geochemical modeling of reservoir rock, CO 2 and formation fluid interaction, Citronelle oil field, Alabama West Virginia University & University of Alabama Presenter: Dr. Amy Weislogel (WVU) Co-PI: Dr. Rona Donahoe (UA) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits * Overview & Project Map * Reservoir Geochemical Characterization * Formation Fluid Geochemistry * Geochemical Modeling * Summary 3 Benefit to the Program * Develop technologies that will support industries'

448

Cloudnet Project  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

Hogan, Robin

449

New Jersey SmartStart Buildings - New Construction and Retrofits |  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » New Jersey SmartStart Buildings - New Construction and Retrofits New Jersey SmartStart Buildings - New Construction and Retrofits < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate General: incentives may be limited to $500,000 per utility account per year. Custom Measures: limited to lesser of $0.16/kWh or $1.60/therm saved annually; 50% of total costs; or buydown to a 1-year payback period Program Info Funding Source New Jersey Societal Benefits Charge (public benefits fund)

450

Green Start-Ups: Opportunities, Technology, and Financing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Green Start-Ups: Opportunities, Technology, and Financing Green Start-Ups: Opportunities, Technology, and Financing Speaker(s): Stephen Lin Date: December 19, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Dale Sartor Please join us for a brown bag lunch to hear about a new green technology and new ways of doing business in Asia, the US and in between. A foreign-invented power efficiency technology will be described and demonstrated. Entrepreneurial plans for its deployment in the US will be described including a pilot with the San Francisco Giants. Besides giving the Giants 5% savings with no upfront cost, the entrepreneurial team hopes to develop a proof-of-concept test case where Securitized Energy Savings (SESs) are created for green and social investors. A brief introduction on carbon credits and Voluntary Emission Reduction credits (VERs) will be

451

EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass  

Broader source: Energy.gov (indexed) [DOE]

EA-1925: Midnight Point and Mahogany Geothermal Exploration EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon SUMMARY This EA evaluates Ormat Nevada, Inc.'s (Ormat's) proposed geothermal project consists of drilling up to 16 wells for geothermal exploration approximately 70 miles southeast of Bend, Oregon and 50 miles northwest of Burns, Oregon just south of U.S. Highway 20. The proposed project includes three distinct drilling areas. Up to three wells would be drilled on lands managed by the Bureau of Land Management (BLM) Prineville District (Mahogany), up to ten wells would be drilled on lands managed by the BLM Burns District (Midnight Point), and up to three wells would be drilled on

452

EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass  

Broader source: Energy.gov (indexed) [DOE]

5: Midnight Point and Mahogany Geothermal Exploration 5: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon SUMMARY This EA evaluates Ormat Nevada, Inc.'s (Ormat's) proposed geothermal project consists of drilling up to 16 wells for geothermal exploration approximately 70 miles southeast of Bend, Oregon and 50 miles northwest of Burns, Oregon just south of U.S. Highway 20. The proposed project includes three distinct drilling areas. Up to three wells would be drilled on lands managed by the Bureau of Land Management (BLM) Prineville District (Mahogany), up to ten wells would be drilled on lands managed by the BLM Burns District (Midnight Point), and up to three wells would be drilled on

453

START Site Visit Examines Viability of Tribal Community Solar...  

Broader source: Energy.gov (indexed) [DOE]

Solar Project August 21, 2013 - 12:50pm Addthis From left to right: James Jensen, Tom Johnson, Jody Rosier, and Rebecca Kauffman of Southern Ute Alternative Energy, and Otto...

454

Dynamic optimization of a plate reactor start-up  

E-Print Network [OSTI]

Dynamic optimization of a plate reactor start-up Staffan Haugwitz, Per Hagander and John Bagterp Jørgensen Lund-Lyngby-?lborg-dagen 061101 Staffan Haugwitz et al Control of a plate reactor #12;Process configurations : 2 inj. / 1 cool zone T T T T T T T T T T Reactor outletReactant A Reactant B Cooling water uB1 u

455

December 6, 2012 2013 Geographic Project Review  

E-Print Network [OSTI]

and Conservation Council (Council) and Bonneville Power Administration (Bonneville) announce the start. Section 4(h)(10)(A) of the Power Act then calls on the Bonneville to use its funds and other authorities areas of the Columbia Basin for Fiscal Years 2014-2018 Dear Project Sponsors: The Northwest Power

456

Materials Science Division Project Safety Review  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Miller, Electron Microscopes Miller, Electron Microscopes Project No. 20006.3 Materials Science Division Project Safety Review Safety Analysis Form (03/08) Date of Submission March 12, 2010 FWP No.: 58405 Project Title User Experimental Work with Electron Microscopes in the Electron Microscopy Center This Safety Analysis Form (SAF) supersedes previous versions of 20006 and its modifications. Is this a (check one) new submission renewal supplemental modification X Principal Investigator(s) Dean Miller Other Participants (excluding administrative support personnel) EMC staff and EMC users (Attach participant signature sheet) Project dates: Start: March 2010 End: Open-ended This form is to be completed for all new investigations or experimental projects that are conducted in MSD laboratories, and for all ongoing such projects that undergo significant change from their original

457

Finite element analysis of bending in a threaded connector for a 5 1/2-in. Marine riser  

SciTech Connect (OSTI)

This paper describes the development of a new finite element modelling technique for performing nonlinear bending analysis of tubulars and its application to a threaded connector for a 5-1/2 inch production tubing marine riser. A finite element technique has been developed for analyzing bending loads applied to an axisymmetric geometry. The method uses a Fourier series solution. The first two terms of the series are solved simultaneously, allowing nonlinearities to be included since the method does not use superposition, which normally requires linearity. Existing methods of analysis require either a linear elastic assumption, and axisymmetric approximation of bending loads, or a full three dimensional analysis. The new technique includes nonlinearities in mechanical properties, gapping, and friction. It is more accurate than the method where axisymmetric loads are applied so that pipe OD stresses are the same as those that would result from bending. The model is considerably less complicated to use than a three dimensional model and is also considerably less expensive. The method described above is applied to a 5-1/2 inch threaded connector. The connector is analyzed under make-up, tension, pressure, bending, and shear loads. Predictions include average and reversing stresses in the pin and box wall and at stress concentrations. These predictions can be used to evaluate the fatigue life of the connector.

Allen, M.B.; Eichberger, L.C.

1984-05-01T23:59:59.000Z

458

Breaking the paradigm: Revitalizing the liquid radwaste program at River Bend Station  

SciTech Connect (OSTI)

In December 1995, River Bend Station established the goal of becoming a liquid radwaste {open_quotes}zero discharge{close_quotes} plant by 1998. A new paradigm was required to reduce River Bend Station`s annual discharge volume from over 7.5 million gallons in 1995 to {open_quotes}zero{close_quotes} gallons in two years. Changes instituted to date include. (1) Creation of a cross-discipline natural work team (NWT) responsible for radwaste improvements. (2) Enhanced walnut shell filter performance using a polymer filter aid. (3) Activated charcoal to reduce total organic carbon (TOC). (4) Improved operating practices based upon data review and trending. (5) Improved operability of radwaste equipment. Results are encouraging. The volume discharged January through May 1996, including a 39 day refueling outage, is 1.25 million gallons. Only one discharge has occurred since March 2. Historically, discharge volume during a similar five month period has exceeded 3 million gallons. No additional discharges are planned for 1996. Additional improvements are being actively evaluated. These include more effective radwaste train media, UV/O3 decomposition of TOC, adding non-precoated filters to the radwaste stream, reverse osmosis and real-time trending of inleakage volume and TOC and source term reduction.

Mallory, C.C. II; Lewis, C.A. [Entergy, St. Francisville, LA (United States)

1996-10-01T23:59:59.000Z

459

Motor regulation results in distal forces that bend partially disintegrated Chlamydomonas axonemes into circular arcs  

E-Print Network [OSTI]

The bending of cilia and flagella is driven by forces generated by dynein motor proteins. These forces slide adjacent microtubule doublets within the axoneme, the motile cytoskeletal structure. To create regular, oscilla- tory beating patterns, the activities of the axonemal dyneins must be coordinated both spatially and temporally. It is thought that coordination is mediated by stresses or strains, which build up within the moving axoneme, and somehow regulate dynein activity. While experimenting with axonemes subjected to mild proteolysis, we observed pairs of doublets associate with each other and form bends with almost constant curvature. By model- ing the statics of a pair of filaments, we show that the activity of the motors concentrates at the distal tips of the doublets. Furthermore, we show that this distribution of motor activity accords with models in which curvature, or curvature-induced normal forces, regulates the activity of the motors. These observations, together with our theoretical analysis, provide evidence that dynein activity can be regulated by curvature or normal forces, which may, therefore, play a role in coordinating the beating of cilia and flagella.

V. Mukundan; P. Sartori; V. F. Geyer; F. Julicher; J. Howard

2014-04-08T23:59:59.000Z

460

SiC-CMC-Zircaloy-4 Nuclear Fuel Cladding Performance during 4-Point Tubular Bend Testing  

SciTech Connect (OSTI)

The U.S. Department of Energy Office of Nuclear Energy (DOE NE) established the Light Water Reactor Sustainability (LWRS) program to develop technologies and other solutions to improve the reliability, sustain the safety, and extend the life of current reactors. The Advanced LWR Nuclear Fuel Development Pathway in the LWRS program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. Recent investigations of potential options for accident tolerant nuclear fuel systems point to the potential benefits of silicon carbide (SiC) cladding. One of the proposed SiC-based fuel cladding designs being investigated incorporates a SiC ceramic matrix composite (CMC) as a structural material supplementing an internal Zircaloy-4 (Zr-4) liner tube, referred to as the hybrid clad design. Characterization of the advanced cladding designs will include a number of out-of-pile (nonnuclear) tests, followed by in-pile irradiation testing of the most promising designs. One of the out-of-pile characterization tests provides measurement of the mechanical properties of the cladding tube using four point bend testing. Although the material properties of the different subsystems (materials) will be determined separately, in this paper we present results of 4-point bending tests performed on fully assembled hybrid cladding tube mock-ups, an assembled Zr-4 cladding tube mock-up as a standard and initial testing results on bare SiC-CMC sleeves to assist in defining design parameters. The hybrid mock-up samples incorporated SiC-CMC sleeves fabricated with 7 polymer impregnation and pyrolysis (PIP) cycles. To provide comparative information; both 1- and 2-ply braided SiC-CMC sleeves were used in this development study. Preliminary stress simulations were performed using the BISON nuclear fuel performance code to show the stress distribution differences for varying lengths between loading points and clad configurations. The 2-ply sleeve samples show a higher bend momentum compared to those of the 1-ply sleeve samples. This is applicable to both the hybrid mock-up and bare SiC-CMC sleeve samples. Comparatively both the 1- and 2-ply hybrid mock-up samples showed a higher bend stiffness and strength compared with the standard Zr-4 mock-up sample. The characterization of the hybrid mock-up samples showed signs of distress and preliminary signs of fraying at the protective Zr-4 sleeve areas for the 1-ply SiC-CMC sleeve. In addition, the microstructure of the SiC matrix near the cracks at the region of highest compressive bending strain shows significant cracking and flaking. The 2-ply SiC-CMC sleeve samples showed a more bonded, cohesive SiC matrix structure. This cracking and fraying causes concern for increased fretting during the actual use of the design. Tomography was proven as a successful tool to identify open porosity during pre-test characterization. Although there is currently insufficient data to make conclusive statements regarding the overall merit of the hybrid cladding design, preliminary characterization of this novel design has been demonstrated.

IJ van Rooyen; WR Lloyd; TL Trowbridge; SR Novascone; KM Wendt; SM Bragg-Sitton

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Classroom Projects -- Part One  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

One One Nature Bulletin No. 609 September 17, 1960 Forest Preserve District of Cook County Daniel Ryan, President Roberts Mann, Conservation Editor David H. Thompson, Senior Naturalist CLASSROOM PROJECTS -- PART ONE The essence, the fundamental purpose, of the outdoor education program conducted by our department is stated briefly in the introductory words of a book -- Natural Science Through the Seasons, by J. A. Partridge -- which we use and recommend for teachers: "To initiate children into the romance and wonder of science, and to enhance their natural desire to get to know the world around them and find an explanation of its phenomena. In this bulletin are a few examples of many projects that appeal to younsters and have proven successful in giving pupils more insight into their surroundings, including the flora and fauna, than can be obtained solely from books. These brief outlines are offered as starting points in areas of exploration and study. They may be supplemented by use of our nature bulletins, Partridge's book, the Golden Nature Guides, and publications by agencies such as the Illinois State Museum and the Illinois Office of Public Instruction.

462

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

RCS1 Sub-station HV Installation completed in April 2011 In defects until April 2012 For more Project Manager: Rob Pask Phase 2a RCS1 Sub-station enclosing works completed in December 2010 Phase 2b when completed will provide a new 11,000 volt electrical substation, switching gear and associated

463

Computational procedures for weighted projective spaces  

E-Print Network [OSTI]

This is a pdf print of the homonymous Maple file, freely available at http://www.maplesoft.com/applications/view.aspx?SID=127621, providing procedures which are able to produce the toric data associated with a (polarized) weighted projective space i.e. fans, polytopes and their equivalences. More originally it provides procedures which are able to detect a weights vector Q starting from either a fan or a polytope: we will call this process the recognition of a (polarized) weighted projective space. Moreover it gives procedures connecting polytopes of a polarized weighted projective space with an associated fan and viceversa.

Rossi, Michele

2011-01-01T23:59:59.000Z

464

Project 211  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

26507 26507 304-285-4133 dawn.deel@netl.doe.gov Jack C. Pashin Geological Survey of Alabama P.O. Box 869999 Tuscaloosa, AL 35486 205-349-2852 jpashin@gsa.state.al.us Sequestration GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO 2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA Background The amount of carbon dioxide (CO 2 ) in the Earth's atmosphere has risen substantially since the start of the industrial age. This increase is attributed widely to the burning of fossil fuels, and if current trends in resource utilization continue, anthropogenic CO 2 emissions will triple during the 21st century. Among the principal ways CO 2 emissions from power plants can be addressed is to sequester this greenhouse gas in geologic formations. Within the number of geologic formations that can potentially store CO

465

Western Pond Turtle Head-starting and Reintroduction; 2002-2003 Progress Report.  

SciTech Connect (OSTI)

This report covers the results of the western pond turtle head-starting and reintroduction project for the period of June 2002-September 2003. Wild hatchling western pond turtles from the Columbia River Gorge were reared at the Woodland Park and Oregon Zoos in 2002 and 2003 as part of the recovery effort for this Washington State endangered species. The objective of the program is to reduce losses to introduced predators like bullfrogs and largemouth bass by raising the hatchlings to a size where they are too large to be eaten by most of these predators. In 2002, 27 females from the two Columbia Gorge populations were equipped with transmitters and monitored until they nested. Four more females carrying old transmitters were also monitored; only one of these transmitters lasted through the nesting season. In 2003, 30 females were monitored. Twenty-three of the females monitored in 2002 nested and produced 84 hatchlings. The hatchlings were collected in fall 2002 and reared in captivity at the Woodland Park and Oregon zoos in the head-start program. Twenty-seven of the turtles monitored in 2003 nested. Six of the turtles nested twice, producing a total of 33 nests. The nests will be checked in September and October 2003 for hatchlings. Of 121 head-started juvenile western pond turtles collected in the Columbia Gorge during the 2001 nesting season, 119 were released at three sites in the Columbia Gorge in 2002, and 2 held over for additional growth. Of 86 turtles reared in the head-start program at the Woodland Park and Oregon Zoos fall 2002 through summer 2003, 67 were released at sites in the Columbia Gorge in summer of 2003, and 15 held over for more growth. Fifty-nine juveniles were released at Pierce National Wildlife Refuge in July 2002, and 51 released there in July 2003. Sixteen of those released in 2002 and 16 released in 2003 were instrumented with radio transmitters and monitored for varying amounts of time for survival and habitat use between the time of release and August 2003, together with juveniles from the 2001 release which were monitored from June 2001 through August 2003, and juveniles from the 2000 release which were monitored from August 2000 through August 2003. The number of functioning transmitters varied due to transmitter failures and detachments, and availability of replacement transmitters, as well as opportunities to recapture turtles. By August 15, 2003, a total of 39 turtles were being monitored: 6 from the 2000 release, 8 from the 2001 release, 10 from the 2002 release, and 15 from the 2003 release. During the 2002 field season trapping effort, 280 turtles were captured in the Columbia Gorge, including 236 previously head-started turtles. During the 2003 trapping season, 349 turtles were captured in the Columbia Gorge; 304 of these had been head-started. These recaptures, together with confirmed nesting by head-start females and visual re-sightings, indicate the program is succeeding in boosting juvenile recruitment to increase the populations. Records were also collected on 160 individual painted turtles captured in 2002 and 189 painted turtles captured in 2003 during trapping efforts at Pierce NWR, to gather baseline information on this native population. Eight female painted turtles were monitored by telemetry during the 2002 nesting season; 4 nests were recorded for these animals, plus 35 nests located incidentally. Preferred habitat for nesting was identified based on the telemetry results, to be considered in anticipating future turtle habitat needs and in management planning at Pierce NWR. Bonneville Power Administration (BPA) funding supported activities in the Columbia River Gorge from June 2002 through September 2003.

Van Leuven, Susan; Allen, Harriet; Slavin, Kate (Washington Department of Fish and Wildlife, Wildlife Management Program, Olympia, WA)

2004-02-01T23:59:59.000Z

466

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigating the Fundamental Investigating the Fundamental Scientific Issues Affecting the Long-term Geologic Storage of Carbon Dioxide Project Number DE-FE0000397 Lee H Spangler Energy Research Institute Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Computational tool development * Laboratory studies to understand subsurface CO 2 behavior * Analog studies to inform risk analysis * Near surface detection technologies / testing * Mitigation method development 3 Benefit to the Program Program goals being addressed. * Develop technologies that will support industries' ability to predict CO

467

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FE/NETL CTS Cost Models and FE/NETL CTS Cost Models and Benefits Assessment of Carbon Storage R&D Program David Morgan Benefits Division Office of Program Planning and Analysis National Energy Technology Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 OFFICE OF FOSSIL ENERGY 2 Presentation Outline * Overview of benefits assessment * Overview of FE/NETL models used to assess benefits of CO 2 capture and storage * Benefits evaluation of Storage Program's R&D projects using a model to estimate costs of CO 2 storage in a saline aquifer * Description of model used to estimate costs of

468

Project 307  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INTEGRATING MONO ETHANOL AMINE (MEA) INTEGRATING MONO ETHANOL AMINE (MEA) REGENERATION WITH CO 2 COMPRESSION AND PEAKING TO REDUCE CO 2 CAPTURE COSTS Background In Phase I, Trimeric Corporation, in collaboration with the University of Texas at Austin, performed engineering and economic analyses necessary to determine the feasibility of novel MEA processing schemes aimed at reducing the cost of CO 2 capture from flue gas. These novel MEA-based CO 2 capture schemes are designed for integration into coal-fired power plants with the aim of reducing costs and improving efficiency. Primary Project Goal The primary goal of this project was to reduce the cost of MEA scrubbing for the recovery of CO 2 from flue gas by improved process integration. CONTACTS Sean I. Plasynski Sequestration Technology Manager

469

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1-23, 2012 1-23, 2012 2 Presentation Outline * Benefit to the program * Project overview: Why 14 C for MVA? * Technical status: Cartridges, injections, lasers * Summary * Organizational chart * Collaborators 3 Benefit to the Program * Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. Permanent storage of CO 2 can be demonstrated by adding carbon-14 ( 14 C) prior to injection. This research project aims to demonstrate this by tagging fossil CO 2 with 14 C at a field site. When completed, this system will show that 14 C can be a safe and effective tracer for sequestered CO 2 . A laser-based 14 C measurement method is being adapted for continuous monitoring. This technology contributes to the Carbon Storage Program's effort of ensuring 99 percent

470

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leakage Pathways and Leakage Pathways and Mineralization within Caprocks for Geologic Storage of CO 2 Project DE-FC26-0xNT4 FE0001786 James P. Evans Utah State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits * Goals and Objectives * Relationship to overall program goals * Overview of seal bypass * Technical status; bypass systems - Field based studies - Technological advances * Accomplishments and Summary * Appendices 3 Benefit to the Program * Program goals addressed * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.

471

Project 301  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2006 2006 Combustion Technologies CONTACTS Robert R. Romanosky Advanced Research Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4721 robert.romanosky@netl.doe.gov Arun C. Bose Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4467 arun.bose@netl.doe.gov ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION Background Over the past years, environmental concerns regarding pollutants have grown dramatically. Current annual greenhouse gas (GHG) emissions are 12% higher than they were in 1992. In addition, carbon dioxide (CO 2 ) emissions are projected to increase by an additional 34% over the next 20 years. About one third of carbon emissions in the

472

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Michael G. Waddell Earth Sciences and Resources Institute University of South Carolina U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 20-22, 2013 2 Presentation Outline * Project goals and benefits * Overview of the geology of the South Georgia Rift basin in SC * Results of petrographic and core analysis from the Rizer #1 * Future investigations in the SGR * Summary 3 Benefit to the Program Program Goals: * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop technologies to demonstrate that 99 percent of injected

473

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Micro-Structured Sapphire Fiber Sensors for Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High-T and Dynamic Gas Pressure in Harsh Environments DE-FE0001127 Investigators: Hai Xiao, Hai-Lung Tsai, Missouri University of Science and Technology Junhang Dong, University of Cincinnati Program Manager: Norm Popkie, Gasification Division, NETL DOE Project Kickoff Meeting in the NETL Pittsburgh December 15, 2009 Outline * Background * Objectives * Project Elements * Management Plan * Research Plan and Approaches * Risk Management * Summary Background * Demands: High-performance, reliable, in situ sensors are highly demanded for advanced process control and lifecycle management in existing and future advanced power and fuel systems - Improved efficiency/safety/reliability/availability/maintainability

474

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mart Oostrom Mart Oostrom Pacific Northwest National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline  Project overview  Sub-Task 1: Investigation of CO 2 migration in heterogeneous porous media  Sub-Task 2: Modeling CCUS deployment in China  Summary Collaboration with China on Clean Energy Research 3 Benefit to the Program The Clean Energy Partnership was established by a memorandum of understanding between the Chinese Academy of Sciences, the National Energy Technology Laboratory and the Pacific Northwest National Laboratory in May of 2009 with the goal of significantly reducing the environmental emissions and improving the efficiency of

475

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of Evaluation of Geophysical Methods for Monitoring and Tracking CO 2 Migration in the Subsurface PI: Jeffrey Daniels Co-PI: Robert Burns & Franklin Schwartz Students: Michael Murphy & Kyle Shalek The Ohio State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 FOA Number: DE-FOA-0000032 NETL Award Number: DE-FE0002441 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary 3 Benefit to the Program * Program Goal: Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones

476

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

capillary trapping (FE0004956), Bryant, UT-Austin capillary trapping (FE0004956), Bryant, UT-Austin Influence of Local Capillary Trapping on Containment System Effectiveness DE-FE0004956 Steven Bryant The University of Texas at Austin U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Local capillary trapping (FE0004956), Bryant, UT-Austin Local capillary trapping (FE0004956), Bryant, UT-Austin 2 Presentation Outline * Motivation and relevance to Program * Project goals * Technical status * Accomplishments * Summary * Future plans Local capillary trapping (FE0004956), Bryant, UT-Austin Local capillary trapping (FE0004956), Bryant, UT-Austin

477

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brian Turk Research Triangle Institute U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Project benefits and objectives * Carbon gasification * Carbon reactivity studies * Catalyst development * Techno-economic analysis * Summary 3 Benefit to the Program * Program goal: Reduce CO 2 emissions by developing beneficial uses that meet the DOE net cost metric of $10/MT for captured CO 2 that will mitigate CO 2 emissions in areas where geological storage may not be an optimal solution * Benefits statement: Development of a commercial process for converting CO 2 and a carbon source into a commodity chemical at a

478

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved Caprock Integrity and Improved Caprock Integrity and Risk Assessment Techniques Project Number (FE0009168) Michael Bruno, PhD, PE GeoMechanics Technologies U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Introduction and Motivation 2 A primary requirement for long-term geologic storage and containment of carbon dioxide is ensuring caprock integrity. Large-scale CO2 injection requires improved and advanced simulation tools and risk assessment techniques to better predict and help control system failures, and to enhance performance of geologic storage. GeoMechanics Technologies is developing enhanced simulation and risk analysis approaches to assess and

479

Irene Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irene Station, African Weather Bureau Irene Station, African Weather Bureau The photos on this site come from the Southern Hemisphere Additional Ozonesondes (SHADOZ) project. Additional photos can be found on the SHADOZ Project Web Site. Photo of the Dobson 89 Instrument The Irene Weather Office Agnes Phahlane sits behind the Dobson and collects Total Ozone Data The lab at the Irene station Cal Archer Prepares an ozonesonde Flight Preparations The balloon is readied The release Back to the SAFARI 2000 Photo Page Index Other Sites: Skukuza, MISR Validation Site | Skukuza, Eddy Covariance Site | C-130 Flight Photos | Sua Pan Site | Irene Weather Station | Fire Studies | Kalahari Transect | Kalahari Transect Sites for Canopy Structure Data | ORNL DAAC Home || ORNL Home || NASA || Privacy, Security, Notices || Data

480

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive Monitoring and Uncertainty Assessment of CO 2 Plume Migration DOE-FE0004962 Steven Bryant The University of Texas at Austin U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin 2 Presentation Outline * Motivation and relevance to Program * Project goals * Technical status * Accomplishments * Summary * Future plans Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin

Note: This page contains sample records for the topic "bend project start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basin-Scale Leakage Risks from Basin-Scale Leakage Risks from Geologic Carbon Sequestration: Impact on CCS Energy Market Competitiveness Catherine A. Peters Jeffery P. Fitts Michael A. Celia Princeton University Paul D. Kalb Vatsal Bhatt Brookhaven National Laboratory Elizabeth J. Wilson Jeffrey M. Bielicki Melisa Pollak University of Minnesota DOE Award DE-FE0000749 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to CCUS research program * Project Goals & Objectives * Technical Status  Thrust I - Reservoir-scale simulations of leakage potential with permeability evolution

482

Project Description  

Broader source: Energy.gov (indexed) [DOE]

Project Description Project Description The Energy Policy Act of 2005 (EPAct 2005), the Energy Independence and Security Act of 2007 (EISA 2007), and Presidential Executive Order 13423 all contain requirements for Federal facilities to decrease energy consumption and increase the use of renewable energy by the year 2015. To provide leadership in meeting these requirements, DOE, in partnership with the General Services Administration (GSA), has installed a rooftop solar electric, or PV, system on the roof of DOE's headquarters in Washington, D.C. The 205 kilowatt (kW) installation is one of the largest of its kind in the Nation's capital. A display in the For- restal building will show the power output of the PV system during the day and the energy produced over

483

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Modeling CO for Modeling CO 2 Processes: Pressure Management, Basin-Scale Models, Model Comparison, and Stochastic Inversion ESD09-056 Jens T. Birkholzer with Abdullah Cihan, Marco Bianchi, Quanlin Zhou, Xiaoyi Liu, Sumit Mukhopadhyay, Dorothee Rebscher, Barbara Fialeix Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview and Technical Status - Task 1: Optimization of Brine Extraction for Pressure Management and Mitigation - Task 2: Basin-scale Simulation of CO 2 Storage in the Northern Plains - Prairie Basal Aquifer - Task 3: Sim-SEQ Model Comparison

484

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beneficial Use of CO Beneficial Use of CO 2 in Precast Concrete Production DE-FE0004285 Yixin Shao, Yaodong Jia Liang Hu McGill University 3H Company U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation outline * Goals and objectives * Benefits to the program * Project overview * Technical status * Accomplishment to date * Summary 2 Objective Masonry blocks Fiber-cement panels Prefabricated buildings Concrete pipes To develop a carbonation process to replace steam curing in precast concrete production for energy reduction, and carbon storage and utilization. Goals * CO 2 sequestration capacity by cement:

485

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University of Kansas Center for Research University of Kansas Center for Research Kansas Geological Survey U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 20-22, 2013 Presentation Outline * Benefits, objectives, overview * Methods * Background & setting * Technical status * Accomplishments * Summary Benefit to the Program * Program goal addressed: Develop technologies that will support the industries' ability to predict CO 2 storage capacity in geologic formations to within ± 30 percent. * Program goal addressed: This project will confirm - via a horizontal test boring - whether fracture attributes derived from 3-D seismic PSDM Volumetric Curvature (VC) processing are real. If

486

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brian Turk Research Triangle Institute U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Project benefits and objectives * Carbon reactivity studies * Catalyst mechanism studies * Catalyst development * Test results * Summary 3 Benefit to the Program * Program goal: Reduce CO 2 emissions by developing beneficial uses that meet the DOE net cost metric of $10/MT for captured CO 2 that will mitigate CO 2 emissions in areas where geological storage may not be an optimal solution * Benefits statement: Development of a commercial process for converting CO 2 and a carbon source into a commodity chemical at a

487

FUSRAP Project  

Office of Legacy Management (LM)

Project Project 23b 14501 FUSRAP TECHNICAL BULLETIN N O . - R 3 v . L DATE: 1.2 9-99 SUBJECT : Pr.pec.d BY T r m L u d Approval Summary of the results for the Springdale characterization activities performed per WI-94-015, Rev. 0. TUO separate radiological characterization surveys and a limited cherical characterization survey were performed on the Springdale Site in Octcjer and December, 1993. The design of the radiological surveys were to supplement and define existing ORNL surveys. The limited cher.ica1 characterization survey was performed to assist in the completion of waste disposal paperwork. Radiological contamination is primarily ir. the 'belt cutting and belt fabrication'areas of the building with a small erea of contamination in the south end of the building. The chemiccl sac~le

488

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0-22, 2013 0-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview: Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefit to the Program * Advanced simulation tool for quantifying transport in porous and fractured geological formations during CO 2 sequestration that includes all mechanisms: convection, diffusion, dissolution and chemical reactions * A simulator that can fully model these processes does not currently exist * Simulator will contribute to our ability to predict CO 2 storage capacity in geologic formations, to within ±30 percent 4 Project Overview: Goals and Objectives Comprehensive reservoir simulator for investigation of CO 2 non-isothermal, multiphase flow and long-term storage in

489

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thomas J. Wolery Thomas J. Wolery Lawrence Livermore National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 LLNL-PRES-574632 2 Team Members * Roger Aines * Bill Bourcier * Tom Wolery * Tom Buscheck * Tom Wolfe (consultant) * Mike DiFilippo (consultant) * Larry Lien (Membrane Development Specialists) 3 Presentation Outline * Overview of Active CO 2 Reservoir Management (ACRM) * Subsurface Reservoir Management: Made Possible by Brine Production, Yielding Many Benefits * Brine Disposal Options - What brines are out there? - What are the treatment options? 4 Benefit to the Program * This project is identifying and evaluating

490

Project-Based Engineering Education at Brown University  

E-Print Network [OSTI]

in calculation-based, creative design projects, start- ing in their first semester engineering courseProject-Based Engineering Education at Brown University The School of Engineering at Brown. At the same time, students develop strong theoretical foundations in different areas of engineering before

491

Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend  

DOE Patents [OSTI]

A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

Ortiz, M.G.

1998-02-10T23:59:59.000Z

492

Cold start characteristics of ethanol as an automobile fuel  

DOE Patents [OSTI]

An alcohol fuel burner and decomposer in which one stream of fuel is preheated by passing it through an electrically heated conduit to vaporize the fuel, the fuel vapor is mixed with air, the air-fuel mixture is ignited and combusted, and the combustion gases are passed in heat exchange relationship with a conduit carrying a stream of fuel to decompose the fuel forming a fuel stream containing hydrogen gas for starting internal combustion engines, the mass flow of the combustion gas being increased as it flows in heat exchange relationship with the fuel carrying conduit, is disclosed.

Greiner, Leonard (2750-C Segerstrom, Santa Ana, CA 92704)

1982-01-01T23:59:59.000Z

493

Microsoft PowerPoint - EastBend_NETL Meeting_Nov 18_ 2009 MK_rev2.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

II CO II CO 2 Sequestration Test Cincinnati Arch MRCSP Site for: Regional Carbon Sequestration Partnerships Annual Review November 16-19, 2009 by: Mark E. Kelley, P.G. (Battelle) 2 Acknowledgements - Traci Rodosta, DOE/NETL Program Mgr - Darlene Radcliffe, Duke Energy, Director, Environmental Technology & Fuel Policy - Brian Weisker, Plant Manger for Duke Energy East Bend Station - Joe Clark, Technical Manager, Duke Energy East Bend Station - Kentucky Geological Survey (Steve Greb and others) - Indiana Geological Survey (John Rupp and others) - Ohio Geological Survey (Larry Wickstrom and others) - Bill Rike Consulting Geologist - Sarah Wade, AJW Incorporated - Battelle Staff - Dave Ball (Program Manager), Neeraj Gupta (Technical Advisor), Matt Place (Field Lead), Linc Remmert,

494

The application of boundary layer removal to a 90 degree bend used as a flow turing device  

E-Print Network [OSTI]

pressure losses in the 1. 5 foot duct were assumed to conform to the following formula: 10 Pt ='' ~fL V oss The efficiency of the bend was determined from the ra- tio of the air power available after the 90 degree deflec- tion to the air power... pressure losses in the 1. 5 foot duct were assumed to conform to the following formula: 10 Pt ='' ~fL V oss The efficiency of the bend was determined from the ra- tio of the air power available after the 90 degree deflec- tion to the air power...

Smith, Edward Harrison

2012-06-07T23:59:59.000Z

495

Role of elastic bending stress on magnetism of a manganite thin film studied by polarized neutron reflectometry  

SciTech Connect (OSTI)

We measured the magnetization depth profile of a (La{sub 1-x}Pr{sub x}){sub 1-y}Ca{sub y}MnO{sub 3} (x = 0.60 {+-} 0.04, y = 0.20 {+-} 0.03) film using polarized neutron reflectometry as a function of applied elastic bending stress and temperature. We found unequivocal and until now elusive direct evidence that the exclusive application of compressive or tensile bending stress along the magnetic easy axis increases or decreases, respectively, the saturation magnetization of the film. Furthermore, we obtained a coupling coefficient relating strain to the depth-dependent saturation magnetization.

Singh, S. [Los Alamos National Laboratory (LANL); Fitzsimmons, M. R. [Los Alamos National Laboratory (LANL); Lookman, T [Los Alamos National Laboratory (LANL); Jeen, Hyoung Jeen [ORNL; Biswas, A [University of Florida, Gainesville; Roldan Gutierrez, Manuel A [ORNL; Varela del Arco, Maria [ORNL

2012-01-01T23:59:59.000Z

496

Role of elastic bending stress on magnetism of a manganite thin film studied by polarized neutron reflectometry  

Science Journals Connector (OSTI)

We measured the magnetization depth profile of a (La1?xPrx)1?yCayMnO3 (x = 0.60 0.04, y = 0.20 0.03) film using polarized neutron reflectometry as a function of applied elastic bending stress and temperature. We found unequivocal and until now elusive direct evidence that the exclusive application of compressive or tensile bending stress along the magnetic easy axis increases or decreases, respectively, the saturation magnetization of the film. Furthermore, we obtained a coupling coefficient relating strain to the depth-dependent saturation magnetization.

Surendra Singh; M. R. Fitzsimmons; T. Lookman; H. Jeen; A. Biswas; M. A. Roldan; M. Varela

2012-06-29T23:59:59.000Z

497

Research Projects | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Projects Basic Energy Science Projects AA (Fossil Energy) Projects EERE-VT Projects EERE-ED Projects ARPA-E Projects...

498

Long Pulse EBW Start-up Experiments in MAST  

E-Print Network [OSTI]

The non-solenoid start-up technique reported here relies on a double mode conversion for electron Bernstein wave (EBW) excitation. It consists of the mode conversion of the ordinary mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance and experiences a subsequent X to EBW mode conversion near the upper hybrid resonance. Finally the excited EBW mode is totally absorbed at the Doppler shifted electron cyclotron resonance. The absorption of EBW remains high even in cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [V. Shevchenko et al, Nuclear Fusion 50, 022004 (2010)]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results ...

Shevchenko, V F; Caughman, J B; Diem, S; Mailloux, J; Brien, M R O; Peng, M; Saveliev, A N; Takase, Y; Tanaka, H; Taylor, G

2015-01-01T23:59:59.000Z

499

The Manhattan Project -- Its Story  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project -- Its Story Project -- Its Story Establishment · Operations · Immediate Influences · Long-term Influences · Other Info More About the Manhattan Project atom image Courtesy Argonne National Laboratory The Manhattan Project -- Its Background This year is the 70th anniversary of the establishment of the Manhattan Project, a predecessor of the U.S. Department of Energy. To honor its impacts on science and history, various aspects of its background, establishment, operations, and immediate and long-term influences will be revisited. It started during the fall of 1939, when President F. D. Roosevelt was made aware of the possibility that German scientists were racing to build an atomic bomb and was warned that Hitler would be more than willing to resort to such a weapon. As a result, Roosevelt set up the Advisory Committee on Uranium, consisting of both civilian and military representatives, to study the current state of research on uranium and to recommend an appropriate role for the federal government. The result was limited military funding for isotope separation and the work on chain reactions by Enrico Fermi and Leo Szilard at Columbia University.

500

Carcinogens in the Workplace: Where to Start Cleaning Up  

Science Journals Connector (OSTI)

...Society. Through the auspices of Martin Schwarzschild of Princeton, they were able to borrow...an unusually high-quality 36-inch mirror, in-tended as a backup for a National...project but never used. The loan of the mirror propelled the group to upgrade their...

THOMAS H. MAUGH II

1977-09-23T23:59:59.000Z