National Library of Energy BETA

Sample records for bend magnet energy

  1. Curvature-Induced Bunch Self-Interaction for an Energy-Chirped Bunch in Magnetic Bends

    SciTech Connect (OSTI)

    Rui Li

    2006-01-04

    The curvature-induced bunch collective interaction in magnetic bends can be studied using effective forces in the canonical formulation of the coherent synchrotron radiation (CSR) effect. In this paper, for an electron distribution moving ultrarelativistically in a bending system, the dynamics of a particle in the electron distribution is derived from the Hamiltonian of the particle in terms of the bunch internal coordinates. The consequent Vlasov equation manifests explicitly how the phase space distribution is perturbed by the effective CSR forces. In particular, we study the impact of an initial linear energy chirp of the bunch on the behavior of the effective longitudinal CSR force, which arises due to the modification of the retardation relation as a result of the energy-chirping-induced longitudinal-horizontal correlation of the bunch distribution (bunch tilt) in dispersive regions.

  2. Bend, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Energy Companies in Bend, Oregon Davenport Power LLC Geopower Texas Co IdaTech plc Northwest Geothermal Company PV Powered Inc Silvan Power Company SunEnergy Power Corp...

  3. Property:BendingMeasurement | Open Energy Information

    Open Energy Info (EERE)

    Type String Description MHK Bending Measurement Categories Used in FormTemplate MHKSensor & MHKInstrument Allows Values Angle (Bending);Strain (Bending);3-axis...

  4. Great Bend, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Great Bend, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.1538473, -96.8020228 Show Map Loading map... "minzoom":false,"mapp...

  5. Gila Bend, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Gila Bend, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.9478236, -112.7168305 Show Map Loading map... "minzoom":false,"mappingse...

  6. Light bending by nonlinear electrodynamics under strong electric and magnetic field

    SciTech Connect (OSTI)

    Kim, Jin Young; Lee, Taekoon E-mail: tlee@kunsan.ac.kr

    2011-11-01

    We calculate the bending angles of light under the strong electric and magnetic fields by a charged black hole and a magnetized neutron star according to the nonlinear electrodynamics of Euler-Heisenberg interaction. The bending angle of light by the electric field of charged black hole is computed from geometric optics and a general formula is derived for light bending valid for any orientation of the magnetic dipole. The astronomical significance of the light bending by magnetic field of a neutron star is discussed.

  7. Mission Bend, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    by expanding it. Mission Bend is a census-designated place in Fort Bend County and Harris County, Texas.1 References US Census Bureau 2005 Place to 2006 CBSA Retrieved...

  8. Horseshoe Bend Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Developer Exergy Development Group Energy Purchaser Idaho Power Location West of Great Falls MT Coordinates 47.497516, -111.432567 Show Map Loading map......

  9. Big Bend, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Big Bend is a village in Waukesha County, Wisconsin. It falls under Wisconsin's 1st...

  10. Post Oak Bend City, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Post Oak Bend City is a town in Kaufman County, Texas. It falls under Texas's 5th congressional district.12 References...

  11. North Bend, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. North Bend is a city in King County, Washington. It falls under Washington's 8th congressional district.12...

  12. Big Bend Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Big Bend Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Big Bend Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  13. Fort Bend County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Power Technology Inc Power Tube Inc RRI Energy Inc formerly known as Reliant Energy Inc Red River Biodiesel Ltd Reliant Energy Ridge Energy Storage and Grid Services LP Simbol...

  14. MHK Projects/Bar Field Bend | Open Energy Information

    Open Energy Info (EERE)

    Bar Field Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zo...

  15. MHK Projects/Miller Bend Project | Open Energy Information

    Open Energy Info (EERE)

    Miller Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP...

  16. MHK Projects/St Rose Bend | Open Energy Information

    Open Energy Info (EERE)

    Rose Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5...

  17. MHK Projects/Hickman Bend Project | Open Energy Information

    Open Energy Info (EERE)

    Hickman Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMA...

  18. Big Bend Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Electric Coop, Inc Jump to: navigation, search Name: Big Bend Electric Coop, Inc Place: Washington Phone Number: 509-659-1700; 866-844-2363 -- After Hours: 509-659-0487;...

  19. Energy losses in thermally cycled optical fibers constrained in small bend radii

    SciTech Connect (OSTI)

    Guild, Eric; Morelli, Gregg

    2012-09-23

    High energy laser pulses were fired into a 365μm diameter fiber optic cable constrained in small radii of curvature bends, resulting in a catastrophic failure. Q-switched laser pulses from a flashlamp pumped, Nd:YAG laser were injected into the cables, and the spatial intensity profile at the exit face of the fiber was observed using an infrared camera. The transmission of the radiation through the tight radii resulted in an asymmetric intensity profile with one half of the fiber core having a higher peak-to-average energy distribution. Prior to testing, the cables were thermally conditioned while constrained in the small radii of curvature bends. Single-bend, double-bend, and U-shaped eometries were tested to characterize various cable routing scenarios.

  20. Commissioning of horizontal-bend superconducting magnet for Jefferson Lab's 11-GeV super high momentum spectrometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Eric; Brindza, Paul D.; Lassiter, Steven R.; Fowler, Mike J.; Fenker, Howard C.; DeKamp, Jon C.

    2016-03-02

    Commissioning characteristics of the Superconducting High Momentum Spectrometer (SHMS) Horizontal Bend (HB) magnet was presented. Pre-commissioning peer review of the magnet uncovered issues with eddy currents in the thermal shield, resulting in additional testing and modeling of the magnet. A three-stage test plan was discussed. A solution of using a small dump resistor and a warm thermal shield was presented. Analyses illustrated that it was safe to run the magnet to full test current. As a result, the HB magnet was successfully cooled to 4 K and reached its maximum test current of 4000 A.

  1. Goos-Hänchen effect and bending of spin wave beams in thin magnetic films

    SciTech Connect (OSTI)

    Gruszecki, P. Krawczyk, M.; Romero-Vivas, J.; Dadoenkova, Yu. S.; Dadoenkova, N. N.; Lyubchanskii, I. L.

    2014-12-15

    For magnon spintronic applications, the detailed knowledge of spin wave (SW) beam dispersion, transmission (reflection) of SWs passing through (reflected from) interfaces, or borders or the scattering of SWs by inhomogeneities is crucial. These wave properties are decisive factors on the usefulness of a particular device. Here, we demonstrate, using micromagnetic simulations supported by an analytical model, that the Goos-Hänchen (GH) shift exists for SW reflecting from thin film edge and that with the effect becomes observable. We show that this effect will exist for a broad range of frequencies in the dipole-exchange range, with the magnetization degree of pinning at the film edge as the crucial parameter, whatever its nature. Moreover, we have also found that the GH effect can be accompanied or even dominating by a bending of the SW beam due to the inhomogeneity of the internal magnetic field. This inhomogeneity, created by demagnetizing field taking place at the film edge, causes gradual change of SWs refractive index. The refraction of the SW beams by the non-uniformity of the magnetic field enables the exploration of graded index magnonics and metamaterial properties for the transmission and processing of information at nanoscale.

  2. Theoretical analysis of the background intensity distribution in X-ray Birefringence Imaging using synchrotron bending-magnet radiation

    SciTech Connect (OSTI)

    Sutter, John P. Dolbnya, Igor P.; Collins, Stephen P.; Harris, Kenneth D. M.; Edwards-Gau, Gregory R.; Palmer, Benjamin A.

    2015-04-28

    In the recently developed technique of X-ray Birefringence Imaging, molecular orientational order in anisotropic materials is studied by exploiting the birefringence of linearly polarized X-rays with energy close to an absorption edge of an element in the material. In the experimental setup, a vertically deflecting high-resolution double-crystal monochromator is used upstream from the sample to select the appropriate photon energy, and a horizontally deflecting X-ray polarization analyzer, consisting of a perfect single crystal with a Bragg reflection at Bragg angle of approximately 45°, is placed downstream from the sample to measure the resulting rotation of the X-ray polarization. However, if the experiment is performed on a synchrotron bending-magnet beamline, then the elliptical polarization of the X-rays out of the electron orbit plane affects the shape of the output beam. Also, because the monochromator introduces a correlation between vertical position and photon energy to the X-ray beam, the polarization analyzer does not select the entire beam, but instead selects a diagonal stripe, the slope of which depends on the Bragg angles of the monochromator and the polarization analyzer. In the present work, the final background intensity distribution is calculated analytically because the phase space sampling methods normally used in ray traces are too inefficient for this setup. X-ray Birefringence Imaging data measured at the Diamond Light Source beamline B16 agree well with the theory developed here.

  3. Design and Fabrication of the Superconducting Horizontal Bend Magnet for the Super High Momentum Spectrometer at Jefferson Lab

    SciTech Connect (OSTI)

    Chouhan, Shailendra S.; DeKamp, Jon; Burkhart, E. E,; Bierwagen, J.; Song, H.; Zeller, Albert F.; Brindza, Paul D.; Lassiter, Steven R.; Fowler, Michael J.; Sun, Qiuli

    2015-06-01

    A collaboration exists between NSCL and JLab to design and build JLab's Super High Momentum Spectrometer (SHMS) horizontal bend magnet that allows the bending of the 12 GeV/c particles horizontally by 3 to allow SHMS to reach angles as low as 5.5. Two full size coils have been wound and are cold tested for both magnetic and structural properties. Each coil is built from 90 layers of single-turn SSC outer conductor cable. An initial test coil with one third the turns was fabricated to demonstrate that the unique saddle shape with fully contoured ends could be wound with Rutherford superconducting cable. Learned lessons during the trial winding were integrated into the two complete full-scale coils that are now installed in the helium vessel. The fabrication of the iron yoke, cold mass, and thermal shield is complete, and assembly of the vacuum vessel is in progress. This paper presents the process and progress along with the modified magnet design to reduce the fringe field in the primary beam region and also includes the impact of the changes on coil forces and coil restraint system.

  4. Ultrafast dynamics of liquid water: Energy relaxation and transfer processes of the OH stretch and the HOH bend

    SciTech Connect (OSTI)

    Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

    2015-08-27

    The vibrational energy relaxation and transfer processes of the OH stretching and the HOH bending vibrations in liquid water are investigated via the theoretical calculation of the pump-probe spectra obtained from non-equilibrium molecular dynamics simulations with the TTM3-F interaction potential. The excitation of the OH stretch induces an instantaneous response of the high frequency librational motions in the 600-1000 cm-1 range. In addition, the excess energy of the OH stretch of a water molecule quickly transfers to the OH stretches of molecules in its first hydration shell with a time constant of ~50 fs, followed by relaxation to the HOH bends of the surrounding molecules with a time constant of 230 fs. The excitation of the HOH bend also results in the ultrafast excitation of the high frequency librational motions. The energy of the excited HOH bend of a water molecule decays, with a time constant of 200 fs, mainly to the relaxation of the HOH bends of its surrounding molecules. The energies of the HOH bends were found to transfer quickly to the intermolecular motions via the coupling with the high frequency librational motions. The excess energy of the OH stretch or the HOH bend relaxes to the high frequency intermolecular librational motions and eventually to the hot ground state with a time scale of ~1 ps via the coupling with the librational and translational motions. The energy relaxation and transfer processes were found to depend on the local hydrogen bonding network; the relaxations of the excess energy of the OH stretch and the HOH bend of four- and five-coordinated molecules are faster than those of a three-coordinated molecule due to the delocalization of the vibrational motions of the former (four- and five-coordinated molecules) compared to those of the later (three-coordinated molecules). The present results highlight the importance of the high frequency intermolecular librational modes in facilitating the ultrafast energy relaxation process in

  5. Superconducting magnetic energy storage

    SciTech Connect (OSTI)

    Hassenzahl, W.

    1988-08-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  6. Passive, achromatic, nearly isochronous bending system

    DOE Patents [OSTI]

    Douglas, David R.; Yunn, Byung C.

    2004-05-18

    A particle beam bending system having a geometry that applies active bending only beyond the chord of the orbit for any momentum component. Using this bending configuration, all momentum components emerge dispersed in position only; all trajectories are parallel by construction. Combining a pair of such bends with reflective symmetry produces a bend cell that is, by construction, achromatic to all orders. By the particular choice of 45.degree. individual bends, a pair of such achromats can be used as the basis of a 180.degree. recirculation arc. Other rational fractions of a full 180.degree. bend serve equally well (e.g., 2 bends/cell.times.90.degree./bend.times.1 cell /arc; 2 bends/cell.times.30.degree./bend.times.3 cells/arc, etc), as do combinations of multiple bending numerologies (e.g., 2 bends/cell.times.22.5.degree./bend.times.2 cells+2 bends/cell.times.45.degree./bend.times.1 cell). By the choice of entry pole face rotation of the first magnet and exit pole face rotation of the second magnet (with a value to be determined from the particular beam stability requirements imposed by the choice of bending angle and beam properties to be used in any particular application), desirable focusing properties can be introduced and beam stability can be insured.

  7. A BEAMLINE FOR HIGH PRESSURE STUDIES AT THE ADVANCED LIGHT SOURCE WITH A SUPERCONDUCTING BENDING MAGNET AS THE SOURCE

    SciTech Connect (OSTI)

    Kunz, M; MacDowell, A A; Caldwell, W A; Cambie, D; Celestre, R S; Domning, E E; Duarte, R M; Gleason, A; Glossinger, J; Kelez, N; Plate, D W; Yu, T; Zaug, J M; Padmore, H A; Jeanloz, R; Alivisatos, A P; Clark, S M

    2005-04-19

    A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on Beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 Tesla superconducting bending magnet (superbend). Useful x-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness preserving optics of the beamline. These optics are comprised of: a plane parabola collimating mirror (M1), followed by a Kohzu monochromator vessel with a Si(111) crystals (E/{Delta}E {approx} 7000) and a W/B{sub 4}C multilayer (E/{Delta}E {approx} 100), and then a toroidal focusing mirror (M2) with variable focusing distance. The experimental enclosure contains an automated beam positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detectors (CCD or image-plate detector). Future developments aim at the installation of a second end station dedicated for in situ laser-heating on one hand and a dedicated high-pressure single-crystal station, applying both monochromatic as well as polychromatic techniques.

  8. A Beamline for High-Pressure Studies at the Advanced Light Sourcewith a Superconducting Bending Magnet as the Source

    SciTech Connect (OSTI)

    Kunz, Martin; MacDowell, Alastair A.; Caldwell, Wendel A.; Cambie, Daniella; Celestre, Richard S.; Domning, Edward E.; Duarte,Robert M.; Gleason, Arianna E.; Glossinger, James M.; Kelez, Nicholas; Plate, David W.; Yu, Tony; Zaug, Joeseph M.; Padmore, Howard A.; Jeanloz,Raymond; Alivisatos, A. Paul; Clark, Simon M.

    2005-06-30

    A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on Beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 Tesla superconducting bending magnet (superbend). Useful x-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness preserving optics of the beamline. These optics are comprised of: a plane parabola collimating mirror (M1), followed by a Kohzu monochromator vessel with a Si(111) crystals (E/DE {approx}7000) and a W/B4C multilayers (E/DE {approx} 100), and then a toroidal focusing mirror (M2) with variable focusing distance. The experimental enclosure contains an automated beam positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detectors (CCD or image-plate detector). Future developments aim at the installation of a second end station dedicated for in situ laser-heating on one hand and a dedicated high-pressure single-crystal station, applying both monochromatic as well as polychromatic techniques.

  9. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, Melvin L.

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  10. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  11. Regenerator for Magnetic Refrigerants - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Building Energy Efficiency Building Energy Efficiency Advanced Materials Advanced Materials Find More Like This Return to Search Regenerator for Magnetic Refrigerants Ames Laboratory Contact AMES About This Technology Technology Marketing SummaryIowa State University and Ames Laboratory researchers have developed a new magnetic material that can be used at low temperatures (sub liquid hydrogen) for magnetic refrigerators. Magnetic refrigeration is

  12. Aqua Magnetics Inc | Open Energy Information

    Open Energy Info (EERE)

    Zip: 32937 Sector: Ocean Product: Manufactures patented system that converts ocean wave energy into electric power. References: Aqua-Magnetics Inc1 This article is a stub. You...

  13. Regenerator for Magnetic Refrigerants - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regenerator for Magnetic Refrigerants Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Ames Laboratory researchers have developed a new magnetic material that can be used at low temperatures (sub liquid hydrogen) for magnetic refrigerators. Description Magnetic refrigeration is being investigated as an alternative to conventional gas compressor technology for cooling and heating because of its potential to save energy and reduce operating costs. The potential

  14. UNIQUE FEATURES IN MAGNET DESIGNS FOR R AND D ENERGY RECOVERY LINAC AT BNL.

    SciTech Connect (OSTI)

    MENG,W.; JAIN, A.; GANETIS, G.; KAYRAN, D.; LITVINENKO, V.N.; LONGO, C.; MAHLER, G.; POZDEYEV, E.; TUOZZOLO, J.

    2007-06-25

    In this paper we describe the unique features and analysis techniques used on the magnets for a R&D Energy Recovery Linac (ERL) [1] under construction at the Collider Accelerator Department at BNL. The R&D ERL serves as a test-bed for future BNL ERLs, such as an electron-cooler-ERL at RHIC [2] and a future 20 GeV ERL electron-hadron at eRHIC [3]. Here we present select designs of various dipole and quadruple magnets which are used in Z-bend merging systems [4] and the returning loop, 3-D simulations of the fields in aforementioned magnets, particle tracking analysis, and the magnet's influence on beam parameters. We discuss an unconventional method of setting requirements on the quality of magnetic field and transferring them into measurable parameters as well as into manufacturing tolerances. We compare selected simulation with results of magnetic measurements. A 20 MeV R&D ERL (Fig. 1) is in an advanced phase of construction at the Collider-Accelerator Department at BNL, with commissioning planned for early 2009. In the R&D ERL, an electron beam is generated in a 2 MeV superconducting RF photo-gun, next is accelerated to 20 MeV in a 5 cell SRF linac, subsequently passed through a return loop, then decelerated to 2 MeV in the SRF linac, and finally is sent to a beam dump. The lattice of the R&D ERL is designed with a large degree of flexibility to enable the covering of a vast operational parameter space: from non-achromatic lattices to achromatic with positive, zero and negative R56 parameter. It also allows for large range tunability of Rlz and lattice RS4 parameters (which are important for transverse beam-break-up instability). Further details of the R&D ERL can be found elsewhere in these proceedings [5]. The return loop magnets are of traditional design with the following exceptions: (a) The bending radius of the 60{sup o} dipole magnets is 20 cm, which is rather small. We use 15{sup o} edges on both sides of the dipoles to split very strong focusing evenly

  15. Magnetic Springs, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Magnetic Springs, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3528377, -83.2613063 Show Map Loading map... "minzoom":false,"mappin...

  16. Inductrack magnet configuration - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6871 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Return to Search Inductrack magnet configuration United States Patent

  17. Ground Magnetics | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Magnetics Details Activities (25) Areas (19) Regions (0) NEPA(1) Exploration...

  18. Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant...

    Office of Scientific and Technical Information (OSTI)

    Magnetic Fusion Energy Power Plant with Thick Liquid-Walls Citation Details In-Document Search Title: Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant with Thick ...

  19. Magnetic chicane for terahertz management

    DOE Patents [OSTI]

    Benson, Stephen; Biallas, George Herman; Douglas, David; Jordan, Kevin Carl; Neil, George R.; Michelle D. Shinn; Willams, Gwyn P.

    2010-12-28

    The introduction of a magnetic electron beam orbit chicane between the wiggler and the downstream initial bending dipole in an energy recovering Linac alleviates the effects of radiation propagated from the downstream bending dipole that tend to distort the proximate downstream mirror of the optical cavity resonator.

  20. Inductrack magnet configuration - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    33,217 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Inductrack magnet configuration United

  1. Inductrack magnet configuration - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    64,880 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Inductrack magnet configuration United

  2. Inductrack magnet configuration - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    49 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Return to Search Inductrack magnet configuration United States Patent Application

  3. Bend-over

    SciTech Connect (OSTI)

    Little, J.W.; Rosenbloom, J.A. )

    1994-04-01

    Historically, the phenomenon of bend-over has been the subject of speculation in the natural gas industry. It is thought to occur in the natural gas local distribution company (LDC) sendout curve at extremely low temperatures and as the result of a number of factors. When a significant portion of the heating appliances on an LDC's system are running at maximum capacity, they can consume no more gas in response to lower outdoor ambient temperature. This is the most common justification for bend-over. With the virtual demise of the merchant function of the natural gas pipeline industry in the US under Federal Energy Regulatory Commission (FERC) Order 636A and other unbundling orders, bend-over in the natural gas sendout curve takes on added significance. LDCs are faced with a potentially bewildering array of decisions affecting gas supplies that previously were handled by the pipelines. Paramount is how much peak-day capacity to buy. LDCs have always faced a risk of under- or over-contracting for supplies; now the risk is even greater. Both LDCs and their regulators have begun to question and investigate appropriate measurement and levels of reserve margin within the context of gas supply planning and integrated resource planning (IRP). The existence of bend-over would indicate that the reliability of an LDC's gas supplies is better than previously expected, and that the LDC implicitly has a greater reserve margin than suggested in most demand forecasts. This is an important consideration for LDC management since it would suggest that LDCs are better positioned for new load and growth in the customer base.

  4. Progress with high-field superconducting magnets for high-energy colliders

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ~10 T at 1.9 K. Fields above 10 T became possible with the use of Nb$_3$Sn superconductors.more » Nb$_3$Sn accelerator magnets can provide operating fields up to ~15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. Furthermore, this review discusses the status and main results of Nb$_3$Sn accelerator magnet research and development and work toward 20-T magnets.« less

  5. Progress with high-field superconducting magnets for high-energy colliders

    SciTech Connect (OSTI)

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ~10 T at 1.9 K. Fields above 10 T became possible with the use of Nb$_3$Sn superconductors. Nb$_3$Sn accelerator magnets can provide operating fields up to ~15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. Furthermore, this review discusses the status and main results of Nb$_3$Sn accelerator magnet research and development and work toward 20-T magnets.

  6. Measurement of magnetic fluctuation induced energy transport

    SciTech Connect (OSTI)

    Fiksel, G.; Prager, S.C.; Shen, W.; Stoneking, M.

    1993-11-01

    The local electron energy flux produced by magnetic fluctuations has been measured directly in the MST reversed field pinch (over the radial range r/a > 0.75). The flux, produced by electrons traveling parallel to a fluctuating magnetic field, is obtained from correlation between the fluctuations in the parallel heat flux and the radial magnetic field. The fluctuation induced flux is large (100 kW/cm{sup 2}) in the ``core`` (r/a < 0.85) and small (< 10--30 kW/cm{sup 2}) in the edge.

  7. Reversal bending fatigue testing

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Tan, Ting

    2014-10-21

    Embodiments for apparatuses for testing reversal bending fatigue in an elongated beam are disclosed. Embodiments are configured to be coupled to first and second end portions of the beam and to apply a bending moment to the beam and create a pure bending condition in an intermediate portion of the beam. Embodiments are further configured to cyclically alternate the direction of the bending moment applied to the beam such that the intermediate portion of the beam cyclically bends in opposite directions in a pure bending condition.

  8. Qi County DMEGC Magnetics New Energy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Qi County DMEGC Magnetics New Energy Co Ltd Jump to: navigation, search Name: Qi County DMEGC Magnetics New Energy Co Ltd Place: Henan Province, China Sector: Solar Product:...

  9. Compaction managed mirror bend achromat

    DOE Patents [OSTI]

    Douglas, David

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  10. Toroidal constant-tension superconducting magnetic energy storage units

    DOE Patents [OSTI]

    Herring, J. Stephen

    1992-01-01

    A superconducting magnetic energy storage unit is provided in which the magnet is wound in a toroidal fashion such that the magnetic field produced is contained only within the bore of the magnet, and thus producing a very low external field. The superconducting magnet includes a coolant channel disposed through the wire. The bore of the magnet comprises a storage volume in which cryogenic coolant is stored, and this volume supplies the coolant to be delivered to the coolant channel in the magnet.

  11. Magnet Motor Corp | Open Energy Information

    Open Energy Info (EERE)

    Magnet Motor Corp Jump to: navigation, search Name: Magnet Motor Corp. Place: Starnberg, Germany Zip: 82319 Sector: Vehicles Product: Magnet motor Corp has been developing and...

  12. Category:Magnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Magnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Magnetic Techniques page? For detailed information on Magnetic...

  13. Permanent magnet energy conversion machine with magnet mounting arrangement

    DOE Patents [OSTI]

    Hsu, John S.; Adams, Donald J.

    1999-01-01

    A hybrid permanent magnet dc motor includes three sets of permanent magnets supported by the rotor and three sets of corresponding stators fastened to the surrounding frame. One set of magnets operates across a radial gap with a surrounding radial gap stator, and the other two sets of magnets operate off the respective ends of the rotor across respective axial gaps.

  14. Microhole Tubing Bending Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Oglesby, Ken

    A downhole tubing bending study was made and is reported herein. IT contains a report and 2 excel spreadsheets to calculate tubing bending and to estimate contact points of the tubing to the drilled hole wall (creating a new support point).

  15. Microhole Tubing Bending Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Oglesby, Ken

    2012-01-01

    A downhole tubing bending study was made and is reported herein. IT contains a report and 2 excel spreadsheets to calculate tubing bending and to estimate contact points of the tubing to the drilled hole wall (creating a new support point).

  16. High-Energy Composite Permanent Magnets: High-Energy Permanent Magnets for Hybrid Vehicles and Alternative Energy

    SciTech Connect (OSTI)

    2010-02-15

    Broad Funding Opportunity Announcement Project: The University of Delaware is developing permanent magnets that contain less rare earth material and produce twice the energy of the strongest rare earth magnets currently available. The University of Delaware is creating these magnets by mixing existing permanent magnet materials with those that are more abundant, like iron. Both materials are first prepared in the form of nanoparticles via techniques ranging from wet chemistry to ball milling. After that, the nanoparticles must be assembled in a 3-D array and consolidated at low temperatures to form a magnet. With small size particles and good contact between these two materials, the best qualities of each allow for the development of exceptionally strong composite magnets.

  17. Toroidal constant-tension superconducting magnetic energy storage units

    DOE Patents [OSTI]

    Herring, J.S.

    1992-11-03

    A superconducting magnetic energy storage unit is provided in which the magnet is wound in a toroidal fashion such that the magnetic field produced is contained only within the bore of the magnet, and thus producing a very low external field. The superconducting magnet includes a coolant channel disposed through the wire. The bore of the magnet comprises a storage volume in which cryogenic coolant is stored, and this volume supplies the coolant to be delivered to the coolant channel in the magnet. 6 figs.

  18. Using Magnets to Keep Cool: Breakthrough Technology Boosts Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency of Refrigerators | Department of Energy Magnets to Keep Cool: Breakthrough Technology Boosts Energy Efficiency of Refrigerators Using Magnets to Keep Cool: Breakthrough Technology Boosts Energy Efficiency of Refrigerators July 29, 2014 - 2:13pm Addthis Researchers demonstrate General Electric's magnetocaloric system. | Photo courtesy of General Electric Researchers demonstrate General Electric's magnetocaloric system. | Photo courtesy of General Electric Antonio Bouza Antonio

  19. Category:Ground Magnetics | Open Energy Information

    Open Energy Info (EERE)

    Ground Magnetics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Ground Magnetics page? For detailed information on Ground...

  20. THE MAGNETIC ENERGY-HELICITY DIAGRAM OF SOLAR ACTIVE REGIONS

    SciTech Connect (OSTI)

    Tziotziou, Kostas; Georgoulis, Manolis K.; Raouafi, Nour-Eddine

    2012-11-01

    Using a recently proposed nonlinear force-free method designed for single-vector magnetograms of solar active regions, we calculate the instantaneous free magnetic energy and relative magnetic helicity budgets in 162 vector magnetograms corresponding to 42 different active regions. We find a statistically robust, monotonic correlation between the free magnetic energy and the relative magnetic helicity in the studied regions. This correlation implies that magnetic helicity, in addition to free magnetic energy, may be an essential ingredient for major solar eruptions. Eruptive active regions appear well segregated from non-eruptive ones in both free energy and relative helicity with major (at least M-class) flares occurring in active regions with free energy and relative helicity exceeding 4 Multiplication-Sign 10{sup 31} erg and 2 Multiplication-Sign 10{sup 42} Mx{sup 2}, respectively. The helicity threshold agrees well with estimates of the helicity contents of typical coronal mass ejections.

  1. Energy-dependent crossover from anisotropic to isotropic magnetic...

    Office of Scientific and Technical Information (OSTI)

    Energy-dependent crossover from anisotropic to isotropic magnetic dispersion in lightly-doped La1.96Sr0.04CuO4 Citation Details In-Document Search Title: Energy-dependent crossover...

  2. Superconducting magnetic energy storage for asynchronous electrical systems

    DOE Patents [OSTI]

    Boenig, H.J.

    1984-05-16

    It is an object of the present invention to provide superconducting magnetic energy storage for a plurality of asynchronous electrical systems. It is a further object of the present invention to provide load leveling and stability improvement in a plurality of independent ac systems using a single superconducting magnetic energy storage coil.

  3. Ground Magnetics (Nannini, 1986) | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics (Nannini, 1986) Exploration Activity Details Location Unspecified Exploration...

  4. Conversion of magnetic energy in the magnetic reconnection layer of a laboratory plasma

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yamada, Masaaki; Yoo, Jongsoo; Jara-Almonte, Jonathan; Ji, Hantao; Kulsrud, Russell M.; Myers, Clayton E.

    2014-09-10

    Magnetic reconnection, in which magnetic field lines break and reconnect to change their topology, occurs throughout the universe. The essential feature of reconnection is that it energizes plasma particles by converting magnetic energy. Despite the long history of reconnection research, how this energy conversion occurs remains a major unresolved problem in plasma physics. Here we report that the energy conversion in a laboratory reconnection layer occurs in a much larger region than previously considered. The mechanisms for energizing plasma particles in the reconnection layer are identified, and a quantitative inventory of the converted energy is presented for the first timemore » in a well defined reconnection layer; 50% of the magnetic energy is converted to particle energy, 2/3 of which transferred to ions and 1/3 to electrons. Our results are compared with simulations and space measurements, for a key step toward resolving one of the most important problems in plasma physics.« less

  5. Conversion of magnetic energy in the magnetic reconnection layer of a laboratory plasma

    SciTech Connect (OSTI)

    Yamada, Masaaki; Yoo, Jongsoo; Jara-Almonte, Jonathan; Ji, Hantao; Kulsrud, Russell M.; Myers, Clayton E.

    2014-09-10

    Magnetic reconnection, in which magnetic field lines break and reconnect to change their topology, occurs throughout the universe. The essential feature of reconnection is that it energizes plasma particles by converting magnetic energy. Despite the long history of reconnection research, how this energy conversion occurs remains a major unresolved problem in plasma physics. Here we report that the energy conversion in a laboratory reconnection layer occurs in a much larger region than previously considered. The mechanisms for energizing plasma particles in the reconnection layer are identified, and a quantitative inventory of the converted energy is presented for the first time in a well defined reconnection layer; 50% of the magnetic energy is converted to particle energy, 2/3 of which transferred to ions and 1/3 to electrons. Our results are compared with simulations and space measurements, for a key step toward resolving one of the most important problems in plasma physics.

  6. Tunable Magnetic Regenerator/Refrigerant - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Contact AMES About This Technology ... generation and absorption in adiabatic magnetization and demagnetization. This invention uses a specific mix of rare ...

  7. Refrigeration options for the Advanced Light Source Superbend Dipole Magnets

    SciTech Connect (OSTI)

    Green, M.A.; Hoyer, E.H.; Schlueter, R.D.; Taylor, C.E.; Zbasnik, J.; Wang, S.T.

    1999-07-09

    The 1.9 GeV Advance Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL) produces photons with a critical energy of about 3.1 kev at each of its thirty-six 1.3 T gradient bending magnets. It is proposed that at three locations around the ring the conventional gradient bending magnets be replaced with superconducting bending magnets with a maximum field of 5.6 T. At the point where the photons are extracted, their critical energy will be about 12 keV. In the beam lines where the SuperBend superconducting magnets are installed, the X ray brightness at 20 keV will be increased over two orders of magnitude. This report describes three different refrigeration options for cooling the three SuperBend dipoles. The cooling options include: (1) liquid helium and liquid nitrogen cryogen cooling using stored liquids, (2) a central helium refrigerator (capacity 70 to 100 W) cooling all of the SuperBend magnets, (3) a Gifford McMahon (GM) cryocooler on each of the dipoles. This paper describes the technical and economic reasons for selecting a small GM cryocooler as the method for cooling the SuperBend dipoles on the LBNL Advanced Light Source.

  8. CMC Magnetics Corporation | Open Energy Information

    Open Energy Info (EERE)

    Taiwan Sector: Solar Product: A Taiwanese compact disk manufacturer who has set up a solar cell unit. References: CMC Magnetics Corporation1 This article is a stub. You can...

  9. Scientists discuss progress toward magnetic fusion energy at 2013 AAAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    annual meeting | Princeton Plasma Physics Lab Scientists discuss progress toward magnetic fusion energy at 2013 AAAS annual meeting February 21, 2013 Tweet Widget Google Plus One Share on Facebook Scientists participating in the worldwide effort to develop magnetic fusion energy for generating electricity gave progress reports to the 2013 annual meeting of the American Association for the Advancement of Science in Boston. Speaking were physicists George "Hutch" Neilson of the U.S.

  10. Gear Trains Employing Magnetic Coupling - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    100176674 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Gear Trains Employing Magnetic

  11. Magnetic levitation system for moving objects - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5,722,326 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Magnetic levitation system for moving

  12. Flywheel energy storage with superconductor magnetic bearings

    DOE Patents [OSTI]

    Weinberger, Bernard R.; Lynds, Jr., Lahmer; Hull, John R.

    1993-01-01

    A flywheel having superconductor bearings has a lower drag to lift ratio that translates to an improvement of a factor of ten in the rotational decay rate. The lower drag results from the lower dissipation of melt-processed YBCO, improved uniformity of the permanent magnet portion of the bearings, operation in a different range of vacuum pressure from that taught by the art, and greater separation distance from the rotating members of conductive materials.

  13. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    DOE Patents [OSTI]

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  14. Optimal electron, phonon, and magnetic characteristics for low energy thermally induced magnetization switching

    SciTech Connect (OSTI)

    Atxitia, U.; Ostler, T. A.; Chantrell, R. W.; Chubykalo-Fesenko, O.

    2015-11-09

    Using large-scale computer simulations, we thoroughly study the minimum energy required to thermally induced magnetization switching (TIMS) after the application of a femtosecond heat pulse in transition metal-rare earth ferrimagnetic alloys. We find that for an energy efficient TIMS, a low ferrimagnetic net magnetization with a strong temperature dependence is the relevant factor for the magnetic system. For the lattice and electron systems, the key physics for efficient TIMS is a large electron-phonon relaxation time. Importantly, we show that as the cooling time of the heated electrons is increased, the minimum power required to produce TIMS can be reduced by an order of magnitude. Our results show the way to low power TIMS by appropriate engineering of magnetic heterostructures.

  15. Experimental estimation of dynamic plastic bending moments by plastic hinge models

    SciTech Connect (OSTI)

    Sogo, T.; Ujihashi, S.; Matsumoto, H.; Adachi, T.

    1995-12-31

    In the present paper, the experimental estimation of dynamic plastic bending moments for metallic materials is investigated. The three-point bending, test under impact and static loads is applied to aluminum alloy (JIS A6063S) and mild steel (JIS SS400). It is confirmed that tile dynamic bending deformations in three-point bending test can be modeled as a plastic hinge, tile experimental results show that the consumed energies of the specimens are proportional to the bending angles. The ratio of the consumed energy to the bending angle is approximately equal to the plastic bending moment. In the case of aluminum alloy, the dynamic plastic bending moments for the different average bending angular velocities coincide with the static plastic bending moments. On the other hand, in the case of mild steel, the dynamic plastic bending moments are proportional to the average bending angular velocities. As a result, we confirm that the present method based on the plastic hinge model and the consumed energy is efficient for determining tile dynamic plastic bending moment.

  16. Global energetics of solar flares. I. Magnetic energies

    SciTech Connect (OSTI)

    Aschwanden, Markus J.; Xu, Yan; Jing, Ju E-mail: yan.xu@njit.edu

    2014-12-10

    We present the first part of a project on the global energetics of solar flares and coronal mass ejections that includes about 400 M- and X-class flares observed with Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). We calculate the potential (E{sub p} ), the nonpotential (E {sub np}) or free energies (E {sub free} = E {sub np} – E{sub p} ), and the flare-dissipated magnetic energies (E {sub diss}). We calculate these magnetic parameters using two different NLFFF codes: the COR-NLFFF code uses the line-of-sight magnetic field component B{sub z} from HMI to define the potential field, and the two-dimensional (2D) coordinates of automatically detected coronal loops in six coronal wavelengths from AIA to measure the helical twist of coronal loops caused by vertical currents, while the PHOT-NLFFF code extrapolates the photospheric three-dimensional (3D) vector fields. We find agreement between the two codes in the measurement of free energies and dissipated energies within a factor of ≲ 3. The size distributions of magnetic parameters exhibit powerlaw slopes that are approximately consistent with the fractal-diffusive self-organized criticality model. The magnetic parameters exhibit scaling laws for the nonpotential energy, E{sub np}∝E{sub p}{sup 1.02}, for the free energy, E{sub free}∝E{sub p}{sup 1.7} and E{sub free}∝B{sub φ}{sup 1.0}L{sup 1.5}, for the dissipated energy, E{sub diss}∝E{sub p}{sup 1.6} and E{sub diss}∝E{sub free}{sup 0.9}, and the energy dissipation volume, V∝E{sub diss}{sup 1.2}. The potential energies vary in the range of E{sub p} = 1 × 10{sup 31}-4 × 10{sup 33} erg, while the free energy has a ratio of E {sub free}/E{sub p} ≈ 1%-25%. The Poynting flux amounts to F {sub flare} ≈ 5 × 10{sup 8}-10{sup 10} erg cm{sup –2} s{sup –1} during flares, which averages to F {sub AR} ≈ 6 × 10{sup 6} erg cm{sup –2} s{sup –1} during the entire observation

  17. Low-energy magnetic radiation: Deviations from GOE

    SciTech Connect (OSTI)

    Frauendorf, S.; Schwengner, R.; Wimmer, K.

    2014-10-15

    A pronounced spike at low energy in the strength function for magnetic radiation (LEMAR) is found by means of Shell Model calculations, which explains the experimentally observed enhancement of the dipole strength. LEMAR originates from statistical low-energy M1-transitions between many excited complex states. Re-coupling of the proton and neutron high-j orbitals generates the strong magnetic radiation. LEMAR is closely related to Magnetic Rotation. LEMAR is predicted for nuclides participating in the r-process of element synthesis and is expected to change the reaction rates. An exponential decrease of the strength function and a power law for the size distribution of the B(M1) values are found, which strongly deviate from the ones of the GOE of random matrices, which is commonly used to represent complex compound states.

  18. Superconducting magnetic energy storage for asynchronous electrical systems

    DOE Patents [OSTI]

    Boenig, Heinrich J.

    1986-01-01

    A superconducting magnetic energy storage coil connected in parallel between converters of two or more ac power systems provides load leveling and stability improvement to any or all of the ac systems. Control is provided to direct the charging and independently the discharging of the superconducting coil to at least a selected one of the ac power systems.

  19. Low energy spread ion source with a coaxial magnetic filter

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette

    2000-01-01

    Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as ion projection lithography (IPL) and radioactive ion beam production. The addition of a radially extending magnetic filter consisting of a pair of permanent magnets to the multicusp source reduces the energy spread considerably due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. A coaxial multicusp ion source designed to further reduce the energy spread utilizes a cylindrical magnetic filter to achieve a more uniform axial plasma potential distribution. The coaxial magnetic filter divides the source chamber into an outer annular discharge region in which the plasma is produced and a coaxial inner ion extraction region into which the ions radially diffuse but from which ionizing electrons are excluded. The energy spread in the coaxial source has been measured to be 0.6 eV. Unlike other ion sources, the coaxial source has the capability of adjusting the radial plasma potential distribution and therefore the transverse ion temperature (or beam emittance).

  20. Energy Upgrade of the Siam Photon Source

    SciTech Connect (OSTI)

    Rugmai, S.; Rujirawat, S.; Hoyes, G. G.; Prawanta, S.; Kwankasem, A.; Siriwattanapitoon, S.; Suradet, N.; Pimol, P.; Junthong, N.; Boonsuya, S.; Janpuang, P.; Prawatsri, P.; Klysubun, P.

    2007-01-19

    The energy upgrade of the storage ring is part of the plans to develop x-ray production capability of the Siam Photon Source. Simulations have been carried out. The bending magnet power supply has been replaced. Energy of the injected 1 GeV beam from the injector is then ramped up 20% in the storage ring. Studies for modification of bending magnet poles have been done to evaluate possibility of further increasing the beam energy to 1.4 GeV in the future. Studies of the energy upgrade plan and details of energy ramping process, together with beam measurements are presented.

  1. The transfer between electron bulk kinetic energy and thermal energy in collisionless magnetic reconnection

    SciTech Connect (OSTI)

    Lu, San; Lu, Quanming; Huang, Can; Wang, Shui

    2013-06-15

    By performing two-dimensional particle-in-cell simulations, we investigate the transfer between electron bulk kinetic and electron thermal energy in collisionless magnetic reconnection. In the vicinity of the X line, the electron bulk kinetic energy density is much larger than the electron thermal energy density. The evolution of the electron bulk kinetic energy is mainly determined by the work done by the electric field force and electron pressure gradient force. The work done by the electron gradient pressure force in the vicinity of the X line is changed to the electron enthalpy flux. In the magnetic island, the electron enthalpy flux is transferred to the electron thermal energy due to the compressibility of the plasma in the magnetic island. The compression of the plasma in the magnetic island is the consequence of the electromagnetic force acting on the plasma as the magnetic field lines release their tension after being reconnected. Therefore, we can observe that in the magnetic island the electron thermal energy density is much larger than the electron bulk kinetic energy density.

  2. ReNeW: Magnetic Fusion Energy Research Needs for the ITER Era...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ReNeW: Magnetic Fusion Energy Research Needs for the ITER Era Citation Details In-Document Search Title: ReNeW: Magnetic Fusion Energy Research Needs for the ITER Era Authors: ...

  3. Energy confinement and magnetic field generation in the SSPX spheromak

    SciTech Connect (OSTI)

    Hudson, B; McLean, H S; Wood, R D; Hooper, E B; Hill, D N; Jayakumar, J; Moller, J; Romero-Talamas, C; Casper, T A; LoDestro, L L; Pearlstein, L D; Johnson, III, J A; Mezonlin, E

    2008-02-11

    The Sustained Spheromak Physics Experiment (SSPX) [E.B. Hooper, et. al., Nuclear Fusion, Vol. 39, No. 7] explores the physics of efficient magnetic field buildup and energy confinement, both essential parts of advancing the spheromak concept. Extending the spheromak formation phase increases the efficiency of magnetic field generation with the maximum edge magnetic field for a given injector current (B/I) from 0.65 T/MA previously to 0.9 T/MA. We have achieved the highest electron temperatures (T{sub e}) recorded for a spheromak with T{sub e} > 500 eV, toroidal magnetic field {approx}1 T and toroidal current ({approx}1 MA) [R.D. Wood, D.N. Hill, H.S. McLean, E.B. Hooper, B.F. Hudson, J.M. Moller, 'Improved magnetic field generation efficiency and higher temperature spheromak plasmas', submitted to Physical Review Letters]. Extending the sustainment phase to > 8 ms extends the period of low magnetic fluctuations (< 1 %) by 50%. The NIMROD 3-D resistive MHD code [C.R. Sovinec, T.A. Gianakon, E.D. Held, S.E. Kruger and D.D. Schnack, The NIMROD Team, Phys. Plasmas 10, 1727 (2003)] reproduces the observed flux amplification {Psi}{sub pol}/{Psi}{sub gun}. Successive gun pulses are demonstrated to maintain the magnetic field in a quasi-steady state against resistive decay. Initial measurements of neutral particle flux in multi-pulse operation show charge-exchange power loss < 1% of gun input power and dominantly collisional majority ion heating. The evolution of electron temperature shows a distinct and robust feature of spheromak formation: a hollow-to-peaked T{sub e}(r) associated with q {approx} 1/2.

  4. Superconducting magnetic energy storage apparatus structural support system

    DOE Patents [OSTI]

    Withers, Gregory J.; Meier, Stephen W.; Walter, Robert J.; Child, Michael D.; DeGraaf, Douglas W.

    1992-01-01

    A superconducting magnetic energy storage apparatus comprising a cylindrical superconducting coil; a cylindrical coil containment vessel enclosing the coil and adapted to hold a liquid, such as liquefied helium; and a cylindrical vacuum vessel enclosing the coil containment vessel and located in a restraining structure having inner and outer circumferential walls and a floor; the apparatus being provided with horizontal compression members between (1) the coil and the coil containment vessel and (2) between the coil containment vessel and the vacuum vessel, compression bearing members between the vacuum vessel and the restraining structure inner and outer walls, vertical support members (1) between the coil bottom and the coil containment vessel bottom and (2) between the coil containment vessel bottom and the vacuum vessel bottom, and external supports between the vacuum vessel bottom and the restraining structure floor, whereby the loads developed by thermal and magnetic energy changes in the apparatus can be accommodated and the structural integrity of the apparatus be maintained.

  5. Could Gila Bend, Arizona, Become the Solar Capital of the World?

    Broader source: Energy.gov [DOE]

    Serving approximately 9,000 homes with clean renewable energy, the Paloma and Cotton Center solar plants highlight the rapidly rising solar corridor in Gila Bend, Arizona.

  6. Bend, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    lse,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers":"","locations":"text":"","title":"","link":null,"lat":44.0581728,"lon":-121.3153096,"alt":0,"address":"","...

  7. Fiscal year 1984 Department of Energy authorization (magnetic fusion energy)

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    Volume V of the hearing record covers two days of testimony by representatives of laboratories and industries involved in fusion energy research, followed by Alvin W. Trivelpiece and others of DOE, on the need to encourage industrial involvement and responsibility in the fusion energy effort. The fusion community expressed optimism for the program, but noted the limitations in program imposed by DOE budgets. Trivelpiece responded that the $467 million budget reflects strong support from the administration. There was disagreement among the witnesses on the direction that engineering efforts should take and whether DOE offices are guilty of meddling in the program. Appendices with additional material and statements for the record follow each day's testimony. (DCK)

  8. High-Energy Permanent Magnets for Hybrid Vehicles and Alternative Energy Uses

    SciTech Connect (OSTI)

    Hadjipanayis, George C.; McCallum, William R.; Sellmyer, David J.; Harris, Vincent; Carpenter, Everett E.; Liu, Jinfang

    2013-12-17

    The report summarizes research undertaken by a multidisciplinary team aimed at the development of the next generation high-energy permanent magnets. The principal approach was relied on bottom-up fabrication of anisotropic nanocomposite magnets. Our efforts resulted in further development of the theoretical concept and fabrication principles for the nanocomposites and in synthesis of a range of rare-earth-based hard magnetic nanoparticles. Even though we did not make a breakthrough in the assembly of these hard magnetic particles with separately prepared Fe(Co) nanoparticles and did not obtain a compact nanocomposite magnet, our performed research will help to direct the future efforts, in particular, towards nano-assembly via coating, when the two phases which made the nanocomposite are first organized in core-shell-structured particles. Two other approaches were to synthesize (discover) new materials for the traditional singe-material magnets and the nanocomposite magnets. Integrated theoretical and experimental efforts lead to a significant advance in nanocluster synthesis technique and yielded novel rare-earth-free nanostructured and nanocomposite materials. Examination of fifteen R-Fe-X alloy systems (R = rare earth), which have not been explored earlier due to various synthesis difficulties reveal several new ferromagnetic compounds. The research has made major progress in bottom-up manufacturing of rare-earth-containing nanocomposite magnets with superior energy density and open new directions in development of higher-energy-density magnets that do not contain rare earths. The advance in the scientific knowledge and technology made in the course of the project has been reported in 50 peer-reviewed journal articles and numerous presentations at scientific meetings.

  9. Method for uniformly bending conduits

    DOE Patents [OSTI]

    Dekanich, S.J.

    1984-04-27

    The present invention is directed to a method for bending metal tubing through various radii while maintaining uniform cross section of the tubing. The present invention is practical by filling the tubing to a sufficient level with water, freezing the water to ice and bending the ice-filled tubing in a cooled die to the desired radius. The use of the ice as a filler material provides uniform cross-sectional bends of the tubing and upon removal of the ice provides an uncontaminated interior of the tubing which will enable it to be used in its intended application without encountering residual contaminants in the tubing due to the presence of the filler material.

  10. Polarization swings reveal magnetic energy dissipation in blazars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Haocheng; Chen, Xuhui; Böttcher, Markus; Guo, Fan; Li, Hui

    2015-05-01

    The polarization signatures of blazar emissions are known to be highly variable. In addition to small fluctuations of the polarization angle around a mean value, large (≳ 180°) polarization angle swings are observed. We suggest that such phenomena can be interpreted as arising from light-travel-time effects within an underlying axisymmetric emission region. We present the first simultaneous fitting of the multi-wavelength spectrum, variability, and time-dependent polarization features of a correlated optical and gamma-ray flaring event of the prominent blazar 3C279, which was accompanied by a drastic change in its polarization signatures. This unprecedented combination of spectral, variability, and polarization informationmore » in a coherent physical model allows us to place stringent constraints on the particle acceleration and magnetic-field topology in the relativistic jet of a blazar, strongly favoring a scenario in which magnetic energy dissipation is the primary driver of the flare event.« less

  11. Polarization swings reveal magnetic energy dissipation in blazars

    SciTech Connect (OSTI)

    Zhang, Haocheng; Chen, Xuhui; Bttcher, Markus; Guo, Fan; Li, Hui

    2015-05-01

    The polarization signatures of blazar emissions are known to be highly variable. In addition to small fluctuations of the polarization angle around a mean value, large (? 180) polarization angle swings are observed. We suggest that such phenomena can be interpreted as arising from light-travel-time effects within an underlying axisymmetric emission region. We present the first simultaneous fitting of the multi-wavelength spectrum, variability, and time-dependent polarization features of a correlated optical and gamma-ray flaring event of the prominent blazar 3C279, which was accompanied by a drastic change in its polarization signatures. This unprecedented combination of spectral, variability, and polarization information in a coherent physical model allows us to place stringent constraints on the particle acceleration and magnetic-field topology in the relativistic jet of a blazar, strongly favoring a scenario in which magnetic energy dissipation is the primary driver of the flare event.

  12. Polarization swings reveal magnetic energy dissipation in blazars

    SciTech Connect (OSTI)

    Zhang, Haocheng; Chen, Xuhui; Böttcher, Markus; Guo, Fan; Li, Hui

    2015-05-01

    The polarization signatures of blazar emissions are known to be highly variable. In addition to small fluctuations of the polarization angle around a mean value, large (≳ 180°) polarization angle swings are observed. We suggest that such phenomena can be interpreted as arising from light-travel-time effects within an underlying axisymmetric emission region. We present the first simultaneous fitting of the multi-wavelength spectrum, variability, and time-dependent polarization features of a correlated optical and gamma-ray flaring event of the prominent blazar 3C279, which was accompanied by a drastic change in its polarization signatures. This unprecedented combination of spectral, variability, and polarization information in a coherent physical model allows us to place stringent constraints on the particle acceleration and magnetic-field topology in the relativistic jet of a blazar, strongly favoring a scenario in which magnetic energy dissipation is the primary driver of the flare event.

  13. Capacitive energy storage and recovery for synchrotron magnets

    SciTech Connect (OSTI)

    Koseki, K.

    2014-06-15

    Feasibility studies on capacitive energy storage and recovery in the main-ring synchrotron of the Japan Proton Accelerator Research Complex were conducted by circuit simulation. The estimated load fluctuation was 96 MVA in total for dipole magnets, which is likely to induce a serious disturbance in the main grid. It was found that the energy stored in the magnets after the excitation period can be recovered to the storage capacitor by controlling the voltage across the energy-storage capacitor using a pulse-width-modulation converter and reused in the next operational cycle. It was also found that the power fluctuation in the main grid can be reduced to 12 MVA. An experimental evaluation of an aluminum metalized film capacitor revealed that capacitance loss was induced by a fluctuating voltage applied to the storage capacitor when applying the proposed method. The capacitance loss was induced by corona discharge around the edges of segmented electrodes of a self-healing capacitor. The use of aluminum-zinc alloy was evaluated as a countermeasure to mitigate the effect induced by the corona discharge. For a zinc content of 8%, which was optimized experimentally, a capacitor with a sufficient life time expectancy of 20 years and a working potential gradient of 250 V/?m was developed.

  14. Used MRI magnets get a second chance at life in high-energy physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high-energy and nuclear physics experiments. The two new magnets have a strength of 4 Tesla, not as strong as the newest generation of MRI magnets but ideal for benchmarking ...

  15. Jiangxi Jinli Permanent Magnet Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Jinli Permanent Magnet Technology Co Ltd Jump to: navigation, search Name: Jiangxi Jinli Permanent Magnet Technology Co Ltd Place: Ganzhou, Jiangxi Province, China Sector: Wind...

  16. Hengdian Group DMEGC Magnetics Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hengdian Group DMEGC Magnetics Co Ltd Jump to: navigation, search Name: Hengdian Group DMEGC Magnetics Co Ltd Place: Dongyang, Zhejiang Province, China Zip: 322118 Product:...

  17. Reduction of Beam Emittance of Pep-X Using Quadruple Bend Achromat Cell

    SciTech Connect (OSTI)

    Wang, Min-Huey; Cai, Yunhai; Hettel, Robert; Nosochkov, Yuri; /SLAC

    2009-05-26

    SLAC National Accelerator Laboratory is studying an option of building a high brightness synchrotron light source machine, PEP-X, in the existing PEP-II tunnel [1, 2]. By replacing 6 arcs of FODO cells of PEPII High Energy Ring (HER) with two arcs of DBA and four arcs of TME and installation of 89.3 m long damping wiggler an ultra low beam emittance of 0.14 nm-rad (including intra-beam scattering) at 4.5 GeV is achieved. In this paper we study the possibility to further reduce the beam emittance by releasing the constraint of the dispersion free in the DBA straight. The QBA (Quadruple Bend Achromat) cell is used to replace the DBA. The ratio of outer and inner bending angle is optimized. The dispersion function in the non-dispersion straight is controlled to compromise with lower emittance and beam size at the dispersion straight. An undulator of period length 23 mm, maximum magnetic field of 1.053 T, and total periods of 150 is used to put in the 30 straights to simulate the effects of these IDs on the beam emittance and energy spread. The brightness including all the ID effects is calculated and compared to the original PEP-X design.

  18. Magnetic-Bearing Chiller Compressors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Deployment » Magnetic-Bearing Chiller Compressors Magnetic-Bearing Chiller Compressors Centrifugal, two-stage, magnetic-bearing chiller compressors equipped with variable-speed drives are a relatively new technology that operates at a high efficiency. Based on this case study, independent analysis by the U.S. Department of the Navy has verified that magnetic bearing compressors operate more efficiently than reciprocating and screw compressors, especially during partial load

  19. Low-Energy Magnetic Field Separation of Hydrocarbons using Nanostructu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SN: superparamagnetic nanoparticles NA: nanostructured adsorbent ... treatment Synthesis of magnetic nanoparticles (Fe 2 Co) - Utilize scaled solid-state ...

  20. Louisiana Nuclear Profile - River Bend

    U.S. Energy Information Administration (EIA) Indexed Site

    River Bend" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,974,"8,363",98.0,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,974,"8,363",98.0 "Data for 2010" "BWR = Boiling

  1. Advantages of customer/supplier involvement in the upgrade of River Bend`s IST program

    SciTech Connect (OSTI)

    Womack, R.L.; Addison, J.A.

    1996-12-01

    At River Bend Station, IST testing had problems. Operations could not perform the test with the required repeatability; engineering could not reliably trend test data to detect degradation; licensing was heavily burdened with regulatory concerns; and maintenance could not do preventative maintenance because of poor prediction of system health status. Using Energy`s Total Quality principles, it was determined that the causes were: lack of ownership, inadequate test equipment usage, lack of adequate procedures, and lack of program maintenance. After identifying the customers and suppliers of the IST program data, Energy management put together an upgrade team to address these concerns. These customers and suppliers made up the IST upgrade team. The team`s mission was to supply River Bend with a reliable, functional, industry correct and user friendly IST program. The IST program in place went through a verification process that identified and corrected over 400 individual program discrepancies. Over 200 components were identified for improved testing methods. An IST basis document was developed. The operations department was trained on ASME Section XI testing. All IST tests have been simplified and shortened, due to heavy involvement by operations in the procedure development process. This significantly reduced testing time, resulting in lower cost, less dose and greater system availability.

  2. Isotope effect in normal-to-local transition of acetylene bending modes

    SciTech Connect (OSTI)

    Ma, Jianyi; Xu, Dingguo; Guo, Hua; Tyng, Vivian; Kellman, Michael E.

    2012-01-01

    The normal-to-local transition for the bending modes of acetylene is considered a prelude to its isomerization to vinylidene. Here, such a transition in fully deuterated acetylene is investigated using a full-dimensional quantum model. It is found that the local benders emerge at much lower energies and bending quantum numbers than in the hydrogen isotopomer HCCH. This is accompanied by a transition to a second kind of bending mode called counter-rotator, again at lower energies and quantum numbers than in HCCH. These transitions are also investigated using bifurcation analysis of two empirical spectroscopic fitting Hamiltonians for pure bending modes, which helps to understand the origin of the transitions semiclassically as branchings or bifurcations out of the trans and normal bend modes when the latter become dynamically unstable. The results of the quantum model and the empirical bifurcation analysis are in very good agreement.

  3. Isotope effect in normal-to-local transition of acetylene bending modes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Jianyi; Xu, Dingguo; Guo, Hua; Tyng, Vivian; Kellman, Michael E.

    2012-01-01

    The normal-to-local transition for the bending modes of acetylene is considered a prelude to its isomerization to vinylidene. Here, such a transition in fully deuterated acetylene is investigated using a full-dimensional quantum model. It is found that the local benders emerge at much lower energies and bending quantum numbers than in the hydrogen isotopomer HCCH. This is accompanied by a transition to a second kind of bending mode called counter-rotator, again at lower energies and quantum numbers than in HCCH. These transitions are also investigated using bifurcation analysis of two empirical spectroscopic fitting Hamiltonians for pure bending modes, which helpsmore » to understand the origin of the transitions semiclassically as branchings or bifurcations out of the trans and normal bend modes when the latter become dynamically unstable. The results of the quantum model and the empirical bifurcation analysis are in very good agreement.« less

  4. Scaling the energy conversion rate from magnetic field reconnection to different bodies

    SciTech Connect (OSTI)

    Mozer, F. S.; Hull, A.

    2010-10-15

    Magnetic field reconnection is often invoked to explain electromagnetic energy conversion in planetary magnetospheres, stellar coronae, and other astrophysical objects. Because of the huge dynamic range of magnetic fields in these bodies, it is important to understand energy conversion as a function of magnetic field strength and related parameters. It is conjectured theoretically and shown experimentally that the energy conversion rate per unit area in reconnection scales as the cube of an appropriately weighted magnetic field strength divided by the square root of an appropriately weighted density. With this functional dependence, the energy release in flares on the Sun, the large and rapid variation of the magnetic flux in the tail of Mercury, and the apparent absence of reconnection on Jupiter and Saturn, may be understood. Electric fields at the perihelion of the Solar Probe Plus mission may be tens of V/m.

  5. Magnetic Material for PM Motors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Magnetic Material for PM Motors Magnetic Material for PM Motors 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. pmp_23_anderson.pdf (2.23 MB) More Documents & Publications Permanent Magnet Development for Automotive Traction Motors Vehicle Technologies Office: 2009 Propulsion Materials R&D Annual Progress Report Iver Anderson, Division of Materials Sciences and Engineering, The Ames Laboratory,

  6. Method of making fully dense anisotropic high energy magnets

    SciTech Connect (OSTI)

    Chatterjee, D.K.

    1990-01-09

    This patent describes a method of making anisotropic permanent magnets. It comprises extruding a rare earth, transition metal, magnetic alloy together with an oxygen-getter material at a temperature of from about 600{degrees} C to about 1000{degrees} C at an extrusion ratio of from about 10:1 to about 26:1 the rare earth, transition metal, magnetic alloy and the oxygen-getter material being disposed within an extrusion zone in Separate and discrete locations.

  7. PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING...

    Office of Scientific and Technical Information (OSTI)

    Channeling through Bent Crystals Mack, Stephanie; Ottawa U. SLAC 43 PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING; CRYSTAL LATTICES; DETECTION; FORTRAN;...

  8. Ground Magnetics At Silver Peak Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Silver Peak Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Silver Peak Area (DOE GTP) Exploration Activity...

  9. Ground Magnetics At Alum Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Alum Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Alum Area (DOE GTP) Exploration Activity Details Location...

  10. Controlled Source Frequency-Domain Magnetics | Open Energy Information

    Open Energy Info (EERE)

    of the ground where magnetic field measurements are recorded. The locations of the field measurement stations are identified using a Global Positioning System (GPS). The measured...

  11. Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant...

    Office of Scientific and Technical Information (OSTI)

    A fusion power plant is described that utilizes a new version of the tandem mirror device including spinning liquid walls. The magnetic configuration is evaluated with an ...

  12. Ground Magnetics At Coso Geothermal Area (1984) | Open Energy...

    Open Energy Info (EERE)

    alteration along faults suggests that hot fluid filled fractures with high permeability. References Roquemore, G. R. (10 May 1984) Ground magnetic survey in the Coso...

  13. Cerium-Based Magnets: Novel High Energy Permanent Magnet Without Critical Elements

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: Ames Laboratory will develop a new class of permanent magnets based on the more commonly available element cerium for use in both EVs and renewable power generators. Cerium is 4 times more abundant and significantly less expensive than the rare earth element neodymium, which is frequently used in today’s most powerful magnets. Ames Laboratory will combine other metal elements with cerium to create a new magnet that can remain stable at the high temperatures typically found in electric motors. This new magnetic material will ultimately be demonstrated in a prototype electric motor, representing a cost-effective and efficient alternative to neodymium-based motors.

  14. Note: Experimental platform for magnetized high-energy-density plasma studies at the omega laser facility

    SciTech Connect (OSTI)

    Fiksel, G.; Agliata, A.; Barnak, D.; Brent, G.; Chang, P. -Y.; Folnsbee, L.; Gates, G.; Hasset, D.; Lonobile, D.; Magoon, J.; Mastrosimone, D.; Shoup, III, M. J.; Betti, R.

    2015-01-12

    Here, an upgrade of the pulsed magnetic field generator magneto-inertial fusion electrical discharge system [O. Gotchev et al., Rev. Sci. Instrum. 80, 043504 (2009)] is described. The device is used to study magnetized high-energy-density plasma and is capable of producing a pulsed magnetic field of tens of tesla in a volume of a few cubic centimeters. The magnetic field is created by discharging a high-voltage capacitor through a small wire-wound coil. The coil current pulse has a duration of about 1 μs and a peak value of 40 kA. Compared to the original, the updated version has a larger energy storage and improved switching system. In addition, magnetic coils are fabricated using 3-D printing technology which allows for a greater variety of the magnetic field topology.

  15. Method for providing slip energy control in permanent magnet electrical machines

    DOE Patents [OSTI]

    Hsu, John S.

    2006-11-14

    An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.

  16. Perspectives on Permanent Magnetic Materials for Energy Conversion and Power Generation

    SciTech Connect (OSTI)

    Lewis, LH; Jimenez-Villacorta, F

    2012-07-18

    Permanent magnet development has historically been driven by the need to supply larger magnetic energy in ever smaller volumes for incorporation in an enormous variety of applications that include consumer products, transportation components, military hardware, and clean energy technologies such as wind turbine generators and hybrid vehicle regenerative motors. Since the 1960s, the so-called rare-earth "supermagnets," composed of iron, cobalt, and rare-earth elements such as Nd, Pr, and Sm, have accounted for the majority of global sales of high-energy-product permanent magnets for advanced applications. In rare-earth magnets, the transition-metal components provide high magnetization, and the rare-earth components contribute a very large magnetocrystalline anisotropy that donates high resistance to demagnetization. However, at the end of 2009, geopolitical influences created a worldwide strategic shortage of rare-earth elements that may be addressed, among other actions, through the development of rare-earth-free magnetic materials harnessing sources of magnetic anisotropy other than that provided by the rare-earth components. Materials engineering at the micron scale, nanoscale, and Angstrom scales, accompanied by improvements in the understanding and characterization of nanoscale magnetic phenomena, is anticipated to result in new types of permanent magnetic materials with superior performance. DOI: 10.1007/s11661-012-1278-2 (C) The Minerals, Metals & Materials Society and ASM International 2012

  17. High energy product permanent magnet having improved intrinsic coercivity and method of making same

    DOE Patents [OSTI]

    Ramesh, Ramamoorthy; Thomas, Gareth

    1990-01-01

    A high energy rare earth-ferromagnetic metal permanent magnet is disclosed which is characterized by improved intrinsic coercivity and is made by forming a particulate mixture of a permanent magnet alloy comprising one or more rare earth elements and one or more ferromagnetic metals and forming a second particulate mixture of a sintering alloy consisting essentially of 92-98 wt. % of one or more rare earth elements selected from the class consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and mixtures of two or more of such rare earth elements, and 2-8 wt. % of one or more alloying metals selected from the class consisting of Al, Nb, Zr, V, Ta, Mo, and mixtures of two or more of such metals. The permanent magnet alloy particles and sintering aid alloy are mixed together and magnetically oriented by immersing the mixture in an axially aligned magnetic field while cold pressing the mixture. The compressed mixture is then sintered at a temperature above the melting point of the sintering aid and below the melting point of the permanent magnet alloy to thereby coat the particle surfaces of the permanent magnetic alloy particles with the sintering aid while inhibiting migration of the rare earth element in the sintering aid into the permanent magnet alloy particles to thereby raise the intrinsic coercivity of the permanent magnet alloy without substantially lowering the high energy of the permanent magnet alloy.

  18. Superconductive magnetic energy storage (SMES) external fields and safety considerations

    SciTech Connect (OSTI)

    Polk, C. . Dept. of Electrical Engineering); Boom, R.W.; Eyssa, Y.M. . Applied Superconductivity Center)

    1992-01-01

    This paper addresses preferred SMES configurations and the external magnetic fields which they generate. Possible biological effects of fields are reviewed briefly. It is proposed that SMES units be fenced at the 10 gauss (1 mT) level to keep unrestricted areas safe, even for persons with cardiac pacemakers. For a full size 5000 MWh (1.8 {times} 10 {sup 13} J) SMES the magnetic field decreases to 10 gauss at a radial distance of 2 km from the center of the coil. Other considerations related to the environmental impact of large SMES magnetic fields are discussed briefly.

  19. Effects of repetitive bending on the magnetoresistance of a flexible spin-valve

    SciTech Connect (OSTI)

    Kwon, J.-H.; Kwak, W.-Y.; Cho, B. K.; Choi, H. Y.; Kim, G. H.

    2015-05-07

    A positive magnetostrictive single layer (CoFe) and top-pinned spin-valve structure with positive magnetostrictive free (NiFe) and pinned (CoFe) layers were deposited on flexible polyethylene terephthalate film to investigate the changes in the magnetic properties in flexible environments, especially with a repetitive bending process. It was found that the stress, applied by repetitive bending, changes significantly the magnetic anisotropy of both layers in a single and spin-valve structure depending on the direction of applied stress. The changes in magnetic anisotropy were understood in terms of the inverse magnetostriction effect (the Villari effect) and the elastic recovery force from the flexibility of the polymer substrate. Repetitive bending with tensile stress transverse (or parallel) to the magnetic easy axis was found to enhance (or reduce) the magnetic anisotropy and, consequently, the magnetoresistance ratio of a spin-valve. The observed effects of bending stress in this study should be considered for the practical applications of electro-magnetic devices, especially magneto-striction sensor.

  20. Guangzhou Wintonic Battery Magnet Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Province, China Zip: 510800 Product: Guangzhou City - based producer of NiMH, NiCd and Lithium-Ion rechargeable batteries. References: Guangzhou Wintonic Battery & Magnet Co Ltd1...

  1. METHOD FOR EXCHANGING ENERGY WITH A PLASMA BY MAGNETIC PUMPING

    DOE Patents [OSTI]

    Hall, L.S.

    1963-12-31

    A method of heating a plasma confined by a static magnetic field is presented. A time-varying magnetic field having a rise time to a predetermined value substantially less than its fall time is applied to a portion of the plasma. Because of the much shorter rise time, the plasma is reversibly heated. This cycle is repeated until the desired plasma temperature is reached. (AEC)

  2. Using Magnets to Keep Cool: Breakthrough Technology Boosts Energy...

    Office of Environmental Management (EM)

    ...eerebuildings for more information, and visit EnergySaver.gov for tips on how clean energy technologies already on the market can help consumers save money by saving energy. ...

  3. Using Magnets to Keep Cool: Breakthrough Technology Boosts Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    funded by the Energy Department has led to a major breakthrough in refrigeration systems that could yield big energy savings for consumers and greatly reduce carbon pollution. ...

  4. Method for producing through extrusion an anisotropic magnet with high energy product

    DOE Patents [OSTI]

    Chandhok, Vijay K.

    2004-09-07

    A method for producing an anisotropic magnet with high energy product through extrusion and, more specifically, by placing a particle charge of a composition from the which magnet is to be produced in a noncircular container, heating the container and particle charge and extruding the container and particle charge through a noncircular extrusion die in such a manner that one of the cross-sectional axes or dimension of the container and particle charge is held substantially constant during the extrusion to compact the particle charge to substantially full density by mechanical deformation produced during the extrusion to achieve a magnet with anisotropic magnetic properties along the axes or dimension thereof and, more specifically, a high energy product along the transverse of the smallest cross-sectional dimension of the extruded magnet.

  5. THE LIMIT OF MAGNETIC-SHEAR ENERGY IN SOLAR ACTIVE REGIONS

    SciTech Connect (OSTI)

    Moore, Ronald L.; Falconer, David A.; Sterling, Alphonse C.

    2012-05-01

    It has been found previously, by measuring from active-region magnetograms a proxy of the free energy in the active region's magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region's magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a coronal mass ejection/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy-limit line in (flux content, free-energy proxy) phase space. Here, we present evidence that specifies the underlying magnetic condition that gives rise to the free-energy limit and the accompanying main sequence of explosive active regions. Using a suitable free-energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free-energy limit, the ratio of magnetic-shear free energy to the non-free magnetic energy the potential field would have is of the order of one in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free-energy limit. Evidently, most active regions in which this core-field energy ratio is much less than one cannot be triggered to explode; as this ratio approaches one, most active regions become capable of exploding; and when this ratio is one, most active regions are compelled to explode.

  6. Statistical study of free magnetic energy and flare productivity of solar active regions

    SciTech Connect (OSTI)

    Su, J. T.; Jing, J.; Wang, S.; Wang, H. M.; Wiegelmann, T.

    2014-06-20

    Photospheric vector magnetograms from the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory are utilized as the boundary conditions to extrapolate both nonlinear force-free and potential magnetic fields in solar corona. Based on the extrapolations, we are able to determine the free magnetic energy (FME) stored in active regions (ARs). Over 3000 vector magnetograms in 61 ARs were analyzed. We compare FME with the ARs' flare index (FI) and find that there is a weak correlation (<60%) between FME and FI. FME shows slightly improved flare predictability relative to the total unsigned magnetic flux of ARs in the following two aspects: (1) the flare productivity predicted by FME is higher than that predicted by magnetic flux and (2) the correlation between FI and FME is higher than that between FI and magnetic flux. However, this improvement is not significant enough to make a substantial difference in time-accumulated FI, rather than individual flare, predictions.

  7. Note: Experimental platform for magnetized high-energy-density plasma studies at the omega laser facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fiksel, G.; Agliata, A.; Barnak, D.; Brent, G.; Chang, P. -Y.; Folnsbee, L.; Gates, G.; Hasset, D.; Lonobile, D.; Magoon, J.; et al

    2015-01-12

    Here, an upgrade of the pulsed magnetic field generator magneto-inertial fusion electrical discharge system [O. Gotchev et al., Rev. Sci. Instrum. 80, 043504 (2009)] is described. The device is used to study magnetized high-energy-density plasma and is capable of producing a pulsed magnetic field of tens of tesla in a volume of a few cubic centimeters. The magnetic field is created by discharging a high-voltage capacitor through a small wire-wound coil. The coil current pulse has a duration of about 1 μs and a peak value of 40 kA. Compared to the original, the updated version has a larger energymore » storage and improved switching system. In addition, magnetic coils are fabricated using 3-D printing technology which allows for a greater variety of the magnetic field topology.« less

  8. MAGNETIC ENERGY CASCADE IN SPHERICAL GEOMETRY. I. THE STELLAR CONVECTIVE DYNAMO CASE

    SciTech Connect (OSTI)

    Strugarek, A.; Brun, A. S.; Mathis, S.

    2013-02-20

    We present a method to characterize the spectral transfers of magnetic energy between scales in simulations of stellar convective dynamos. The full triadic transfer functions are computed thanks to analytical coupling relations of spherical harmonics based on the Clebsch-Gordan coefficients. The method is applied to mean field {alpha}{Omega} dynamo models as benchmark tests. From a physical standpoint, the decomposition of the dynamo field into primary and secondary dynamo families proves very instructive in the {alpha}{Omega} case. The same method is then applied to a fully turbulent dynamo in a solar convection zone, modeled with the three-dimensional MHD Anelastic Spherical Harmonics code. The initial growth of the magnetic energy spectrum is shown to be non-local. It mainly reproduces the kinetic energy spectrum of convection at intermediate scales. During the saturation phase, two kinds of direct magnetic energy cascades are observed in regions encompassing the smallest scales involved in the simulation. The first cascade is obtained through the shearing of the magnetic field by the large-scale differential rotation that effectively cascades magnetic energy. The second is a generalized cascade that involves a range of local magnetic and velocity scales. Non-local transfers appear to be significant, such that the net transfers cannot be reduced to the dynamics of a small set of modes. The saturation of the large-scale axisymmetric dipole and quadrupole is detailed. In particular, the dipole is saturated by a non-local interaction involving the most energetic scale of the magnetic energy spectrum, which points to the importance of the magnetic Prandtl number for large-scale dynamos.

  9. Bending-induced Symmetry Breaking of Lithiation in Germanium...

    Office of Scientific and Technical Information (OSTI)

    Bending-induced Symmetry Breaking of Lithiation in Germanium Nanowires Citation Details In-Document Search Title: Bending-induced Symmetry Breaking of Lithiation in Germanium ...

  10. Progress Letter Report on Bending Fatigue Test System Development...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Progress Letter Report on Bending Fatigue Test System Development for ... Title: Progress Letter Report on Bending Fatigue Test System Development for Spent Nuclear ...

  11. Big Bend Preventorium Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Big Bend Preventorium Greenhouse Low Temperature Geothermal Facility Facility Big Bend...

  12. Study of energy conversion and partitioning in the magnetic reconnection layer of a laboratory plasma

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yamada, Masaaki; Yoo, Jongsoo; Jara-Almonte, Jonathan; Daughton, William; Ji, Hantao; Kulsrud, Russell M.; Myers, Clayton E.

    2015-05-15

    The most important feature of magnetic reconnection is that it energizes plasma particles by converting magnetic energy to particle energy, the exact mechanisms by which this happens are yet to be determined despite a long history of reconnection research. Recently, we have reported our results on the energy conversion and partitioning in a laboratory reconnection layer in a short communication [Yamada et al., Nat. Commun. 5, 4474 (2014)]. The present paper is a detailed elaboration of this report together with an additional dataset with different boundary sizes. Our experimental study of the reconnection layer is carried out in the two-fluidmore » physics regime where ions and electrons move quite differently. We have observed that the conversion of magnetic energy occurs across a region significantly larger than the narrow electron diffusion region. A saddle shaped electrostatic potential profile exists in the reconnection plane, and ions are accelerated by the resulting electric field at the separatrices. These accelerated ions are then thermalized by re-magnetization in the downstream region. A quantitative inventory of the converted energy is presented in a reconnection layer with a well-defined, variable boundary. We also carried out a systematic study of the effects of boundary conditions on the energy inventory. This study concludes that about 50% of the inflowing magnetic energy is converted to particle energy, 2/3 of which is ultimately transferred to ions and 1/3 to electrons. When assisted by another set of magnetic reconnection experiment data and numerical simulations with different sizes of monitoring box, it is also observed that the observed features of energy conversion and partitioning do not depend on the size of monitoring boundary across the range of sizes tested from 1.5 to 4 ion skin depths.« less

  13. Study of energy conversion and partitioning in the magnetic reconnection layer of a laboratory plasma

    SciTech Connect (OSTI)

    Yamada, Masaaki; Yoo, Jongsoo; Jara-Almonte, Jonathan; Daughton, William; Ji, Hantao; Kulsrud, Russell M.; Myers, Clayton E.

    2015-05-15

    The most important feature of magnetic reconnection is that it energizes plasma particles by converting magnetic energy to particle energy, the exact mechanisms by which this happens are yet to be determined despite a long history of reconnection research. Recently, we have reported our results on the energy conversion and partitioning in a laboratory reconnection layer in a short communication [Yamada et al., Nat. Commun. 5, 4474 (2014)]. The present paper is a detailed elaboration of this report together with an additional dataset with different boundary sizes. Our experimental study of the reconnection layer is carried out in the two-fluid physics regime where ions and electrons move quite differently. We have observed that the conversion of magnetic energy occurs across a region significantly larger than the narrow electron diffusion region. A saddle shaped electrostatic potential profile exists in the reconnection plane, and ions are accelerated by the resulting electric field at the separatrices. These accelerated ions are then thermalized by re-magnetization in the downstream region. A quantitative inventory of the converted energy is presented in a reconnection layer with a well-defined, variable boundary. We also carried out a systematic study of the effects of boundary conditions on the energy inventory. This study concludes that about 50% of the inflowing magnetic energy is converted to particle energy, 2/3 of which is ultimately transferred to ions and 1/3 to electrons. When assisted by another set of magnetic reconnection experiment data and numerical simulations with different sizes of monitoring box, it is also observed that the observed features of energy conversion and partitioning do not depend on the size of monitoring boundary across the range of sizes tested from 1.5 to 4 ion skin depths.

  14. MAGNETIC ENERGY AND HELICITY IN TWO EMERGING ACTIVE REGIONS IN THE SUN

    SciTech Connect (OSTI)

    Liu, Y.; Schuck, P. W.

    2012-12-20

    The magnetic energy and relative magnetic helicity in two emerging solar active regions, AR 11072 and AR 11158, are studied. They are computed by integrating over time the energy and relative helicity fluxes across the photosphere. The fluxes consist of two components: one from photospheric tangential flows that shear and braid field lines (shear term), the other from normal flows that advect magnetic flux into the corona (emergence term). For these active regions: (1) relative magnetic helicity in the active-region corona is mainly contributed by the shear term, (2) helicity fluxes from the emergence and the shear terms have the same sign, (3) magnetic energy in the corona (including both potential energy and free energy) is mainly contributed by the emergence term, and (4) energy fluxes from the emergence term and the shear term evolved consistently in phase during the entire flux emergence course. We also examine the apparent tangential velocity derived by tracking field-line footpoints using a simple tracking method. It is found that this velocity is more consistent with tangential plasma velocity than with the flux transport velocity, which agrees with the conclusion by Schuck.

  15. Non-Rare Earth magnetic materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation pm035_mcguire_2011_o.pdf (397.61 KB) More Documents & Publications Non-Rare Earth magnetic materials (Agreement ID:19201) Vehicle Technologies Office: 2011 Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office Merit Review 2014: Applied ICME for New Propulsion Materials (Agreement ID:26391) Project ID:18865

  16. Plasma parameters and electron energy distribution functions in a magnetically focused plasma

    SciTech Connect (OSTI)

    Samuell, C. M.; Blackwell, B. D.; Howard, J.; Corr, C. S. [Plasma Research Laboratory, Research School of Physics and Engineering, Australian National University, Canberra (Australia)

    2013-03-15

    Spatially resolved measurements of ion density, electron temperature, floating potential, and the electron energy distribution function (EEDF) are presented for a magnetically focused plasma. The measurements identify a central plasma column displaying Maxwellian EEDFs at an electron temperature of about 5 eV indicating the presence of a significant fraction of electrons in the inelastic energy range (energies above 15 eV). It is observed that the EEDF remains Maxwellian along the axis of the discharge with an increase in density, at constant electron temperature, observed in the region of highest magnetic field strength. Both electron density and temperature decrease at the plasma radial edge. Electron temperature isotherms measured in the downstream region are found to coincide with the magnetic field lines.

  17. The extent of power-law energy spectra in collisionless relativistic magnetic reconnection in pair plasma

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Werner, G. R.; Uzdensky, D. A.; Cerutti, B.; Nalewajko, K.; Begelman, M. C.

    2015-12-30

    Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron–positron plasmas, for a wide range of upstream magnetizations σ and system sizes L. The particle spectra are well-represented by a power lawmore » $${\\gamma }^{-\\alpha }$$, with a combination of exponential and super-exponential high-energy cutoffs, proportional to σ and L, respectively. As a result, for large L and σ, the power-law index α approaches about 1.2.« less

  18. MAGNETIC ENERGY PARTITION BETWEEN THE CORONAL MASS EJECTION AND FLARE FROM AR 11283

    SciTech Connect (OSTI)

    Feng, L.; Li, Y. P.; Gan, W. Q.; Wiegelmann, T.; Inhester, B.; Su, Y.; Sun, X. D.

    2013-03-01

    On 2011 September 6, an X-class flare and a halo coronal mass ejection (CME) were observed from Earth erupting from the same active region AR 11283. The magnetic energy partition between them has been investigated. SDO/HMI vector magnetograms were used to obtain the coronal magnetic field using the nonlinear force-free field (NLFFF) extrapolation method. The free magnetic energies before and after the flare were calculated to estimate the released energy available to power the flare and the CME. For the flare energetics, thermal and nonthermal energies were derived using the RHESSI and GOES data. To obtain the radiative output, SDO/EVE data in the 0.1-37 nm waveband were utilized. We have reconstructed the three-dimensional (3D) periphery of the CME from the coronagraph images observed by STEREO-A, B, and SOHO. The mass calculations were then based on a more precise Thomson-scattering geometry. The subsequent estimate of the kinetic and potential energies of the CME took advantage of the more accurate mass, and the height and speed in a 3D frame. The released free magnetic energy resulting from the NLFFF model is about 6.4 Multiplication-Sign 10{sup 31} erg, which has a possible upper limit of 1.8 Multiplication-Sign 10{sup 32} erg. The thermal and nonthermal energies are lower than the radiative output of 2.2 Multiplication-Sign 10{sup 31} erg from SDO/EVE for this event. The total radiation covering the whole solar spectrum is probably a few times larger. The sum of the kinetic and potential energy of the CME could go up to 6.5 Multiplication-Sign 10{sup 31} erg. Therefore, the free energy is able to power the flare and the CME in AR 11283. Within the uncertainty, the flare and the CME may consume a similar amount of free energy.

  19. Magnetic and thermal energy flow during disruptions in DIII-D

    SciTech Connect (OSTI)

    Hyatt, A.W.; Lee, R.L.; Humphreys, D.A.; Kellman, A.G.; Taylor, P.L.; Cuthbertson, J.W.; Lasnier, C.J.

    1996-07-01

    The authors present results from disruption experiments where they measure magnetic energy flow across a closed surface surrounding the plasma using a Poynting flux analysis to measure the electromagnetic power, bolometers to measure radiation power and IR scanners to measure radiation and particle heat conduction to the divertor. The initial and final stored energies within the volume are found using the full equilibrium reconstruction code EFIT. From this analysis they calculate an energy balance and find that they can account for all energy deposited on the first wall and the divertor to within about 10%.

  20. Quadrupole magnet for a rapid cycling synchrotron

    SciTech Connect (OSTI)

    Witte, H.; Berg, J. S.

    2015-05-03

    Rapid Cycling Synchrotrons (RCS) feature interleaved warm and cold dipole magnets; the field of the warm magnets is used to modulate the average bending field depending on the particle energy. It has been shown that RCS can be an attractive option for fast acceleration of particles, for example, muons, which decay quickly. In previous studies it was demonstrated that in principle warm dipole magnets can be designed which can provide the required ramp rates, which are equivalent to frequencies of about 1 kHz. To reduce the losses it is beneficial to employ two separate materials for the yoke; it was also shown that by employing an optimized excitation coil geometry the eddy current losses are acceptable. In this paper we show that the same principles can be applied to quadrupole magnets targeting 30 T/m with a repetition rate of 1kHz and good field quality.

  1. Sunlight Solar Energy Inc SSE | Open Energy Information

    Open Energy Info (EERE)

    Solar Energy Inc SSE Jump to: navigation, search Name: Sunlight Solar Energy, Inc (SSE) Place: Bend, Oregon Zip: 97701 Sector: Solar Product: Bend (OR)-based solar integration firm...

  2. Aerosol deposition in bends with turbulent flow

    SciTech Connect (OSTI)

    McFarland, A.R.; Gong, H.; Wente, W.B.

    1997-08-01

    The losses of aerosol particles in bends were determined numerically for a broad range of design and operational conditions. Experimental data were used to check the validity of the numerical model, where the latter employs a commercially available computational fluid dynamics code for characterizing the fluid flow field and Lagrangian particle tracking technique for characterizing aerosol losses. Physical experiments have been conducted to examine the effect of curvature ratio and distortion of the cross section of bends. If it curvature ratio ({delta} = R/a) is greater than about 4, it has little effect on deposition, which is in contrast with the recommendation given in ANSI N13.1-1969 for a minimum curvature ratio of 10. Also, experimental results show that if the tube cross section is flattened by 25% or less, the flattening also has little effect on deposition. Results of numerical tests have been used to develop a correlation of aerosol penetration through a bend as a function of Stokes number (Stk), curvature ratio ({delta}) and the bend angle ({theta}). 17 refs., 10 figs., 2 tabs.

  3. Ion energy-angle distribution functions at the plasma-material interface in oblique magnetic fields

    SciTech Connect (OSTI)

    Khaziev, Rinat; Curreli, Davide

    2015-04-15

    The ion energy-angle distribution (IEAD) at the wall of a magnetized plasma is of fundamental importance for the determination of the material processes occurring at the plasma-material interface, comprising secondary emissions and material sputtering. Here, we present a numerical characterization of the IEAD at the wall of a weakly collisional magnetized plasma with the magnetic field inclined at an arbitrary angle with respect to the wall. The analysis has been done using two different techniques: (1) a fluid-Monte Carlo method, and (2) particle-in-cell simulations, the former offering a fast but approximate method for the determination of the IEADs, the latter giving a computationally intensive but self-consistent treatment of the plasma behavior from the quasi-neutral region to the material boundary. The two models predict similar IEADs, whose similarities and differences are discussed. Data are presented for magnetic fields inclined at angles from normal to grazing incidence (0°–85°). We show the scaling factors of the average and peak ion energy and trends of the pitch angle at the wall as a function of the magnetic angle, for use in the correlation of fluid plasma models to material models.

  4. MAGNETS

    DOE Patents [OSTI]

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  5. Prototyping Energy Efficient Thermo-Magnetic & Induction Hardening for Heat Treat & Net Shape Forming Applications

    SciTech Connect (OSTI)

    Aquil Ahmad

    2012-08-03

    Within this project, Eaton undertook the task of bringing about significant impact with respect to sustainability. One of the major goals for the Department of Energy is to achieve energy savings with a corresponding reduction in carbon foot print. The use of a coupled induction heat treatment with high magnetic field heat treatment makes possible not only improved performance alloys, but with faster processing times and lower processing energy, as well. With this technology, substitution of lower cost alloys for more exotic alloys became a possibility; microstructure could be tailored for improved magnetic properties or wear resistance or mechanical performance, as needed. A prototype commercial unit has been developed to conduct processing of materials. Testing of this equipment has been conducted and results demonstrate the feasibility for industrial commercialization.

  6. Independent control of electron energy and density using a rotating magnetic field in inductively coupled plasmas

    SciTech Connect (OSTI)

    Kondo, Takahiro; Ohta, Masayuki; Ito, Tsuyohito; Okada, Shigefumi

    2013-09-21

    Effects of a rotating magnetic field (RMF) on the electron energy distribution function (EEDF) and on the electron density are investigated with the aim of controlling the radical composition of inductively coupled plasmas. By adjusting the RMF frequency and generation power, the desired electron density and electron energy shift are obtained. Consequently, the amount and fraction of high-energy electrons, which are mostly responsible for direct dissociation processes of raw molecules, will be controlled externally. This controllability, with no electrode exposed to plasma, will enable us to control radical components and their flux during plasma processing.

  7. The formation of reverse shocks in magnetized high energy density supersonic plasma flows

    SciTech Connect (OSTI)

    Lebedev, S. V. E-mail: l.suttle10@imperial.ac.uk; Suttle, L.; Swadling, G. F.; Bennett, M.; Bland, S. N.; Burdiak, G. C.; Chittenden, J. P.; Grouchy, P. de; Hall, G. N.; Hare, J. D.; Kalmoni, N.; Niasse, N.; Patankar, S.; Smith, R. A.; Suzuki-Vidal, F.; Burgess, D.; Clemens, A.; Ciardi, A.; Sheng, L.; Yuan, J.; and others

    2014-05-15

    A new experimental platform was developed, based on the use of supersonic plasma flow from the ablation stage of an inverse wire array z-pinch, for studies of shocks in magnetized high energy density physics plasmas in a well-defined and diagnosable 1-D interaction geometry. The mechanism of flow generation ensures that the plasma flow (Re{sub M} ∼ 50, M{sub S} ∼ 5, M{sub A} ∼ 8, V{sub flow} ≈ 100 km/s) has a frozen-in magnetic field at a level sufficient to affect shocks formed by its interaction with obstacles. It is found that in addition to the expected accumulation of stagnated plasma in a thin layer at the surface of a planar obstacle, the presence of the magnetic field leads to the formation of an additional detached density jump in the upstream plasma, at a distance of ∼c/ω{sub pi} from the obstacle. Analysis of the data obtained with Thomson scattering, interferometry, and local magnetic probes suggests that the sub-shock develops due to the pile-up of the magnetic flux advected by the plasma flow.

  8. Neutral beamline with ion energy recovery based on magnetic blocking of electrons

    DOE Patents [OSTI]

    Stirling, W.L.

    1980-07-01

    A neutral beamline generator with energy recovery of the full-energy ion component of the beam based on magnetic blocking of electrons is provided. Ions from a positive ion source are accelerated to the desired beam energy from a slightly positive potential level with respect to ground through a neutralizer cell by means of a negative acceleration voltage. The unneutralized full-energy ion component of the beam exiting the neutralizer are retarded and slightly deflected and the elecrons in the neutralizer are blocked by a magnetic field generated transverse to the beamline. An electron collector in the form of a coaxial cylinder surrounding and protruding axial a few centimeters beyond the neutralizer exit terminates the electrons which exit the neutralizer in an E x B drift to the collector when the collector is biased a few hundred volts positive with respect to the neutralizer voltage. The neutralizer is operated at the negative acceleration voltage. The neutralizer is operated at the negative acceleration voltage, and the deflected full energy ions are decelerated and the charge collected at ground potential thereby expending none of their energy received from the acceleration power supply.

  9. Neutral beamline with ion energy recovery based on magnetic blocking of electrons

    DOE Patents [OSTI]

    Stirling, William L.

    1982-01-01

    A neutral beamline generator with energy recovery of the full-energy ion ponent of the beam based on magnetic blocking of electrons is provided. Ions from a positive ion source are accelerated to the desired beam energy from a slightly positive potential level with respect to ground through a neutralizer cell by means of a negative acceleration voltage. The unneutralized full-energy ion component of the beam exiting the neutralizer are retarded and slightly deflected and the electrons in the neutralizer are blocked by a magnetic field generated transverse to the beamline. An electron collector in the form of a coaxial cylinder surrounding and protruding axial a few centimeters beyond the neutralizer exit terminates the electrons which exit the neutralizer in an E x B drift to the collector when the collector is biased a few hundred volts positive with respect to the neutralizer voltage. The neutralizer is operated at the negative acceleration voltage, and the deflected full energy ions are decelerated and the charge collected at ground potential thereby expending none of their energy received from the acceleration power supply.

  10. Fracture of surface cracks loaded in bending

    SciTech Connect (OSTI)

    Chao, Y.J.; Reuter, W.G.

    1997-12-31

    Theoretical background of the constraint effect in brittle fracture of solids is reviewed. Fracture test data from D6-aC, a high strength steel, using three-point-bend (SE(B)) specimens and surface cracked plate (SC(B)) specimens under bending are presented. It is shown that the SE(B) data has an elevated fracture toughness for increasing a/W, i.e., a crack geometry with a larger T/K corresponds to a higher K{sub c} which is consistent with the theoretical prediction. The fundamental fracture properties, i.e., the critical strain and the critical distance, determined from the SE(B) test data are then applied to the interpretation and prediction of the SC(B) test data. Reasonable agreement is achieved for the crack growth initiation site and the load.

  11. Effect of magnetic field strength on deposition rate and energy flux in a dc magnetron sputtering system

    SciTech Connect (OSTI)

    Ekpe, Samuel D.; Jimenez, Francisco J.; Field, David J.; Davis, Martin J.; Dew, Steven K.

    2009-11-15

    Variations in the magnetic field strongly affect the plasma parameters in a magnetron sputtering system. This in turn affects the throughput as well as the energy flux to the substrate. The variation in the magnetic field in this study, for a dc magnetron process, is achieved by shifting the magnet assembly slightly away from the target. Measurements of the plasma parameters show that while the electron density at the substrate increases with decrease in magnetic field, the electron temperature decreases. The cooling of the electron temperature is consistent with results reported elsewhere. The deposition rate per input magnetron power is found to increase slightly with the decrease in magnetic field for the process conditions considered in this study. Results suggest that the energy flux to the substrate tends to show a general decrease with the shift in the magnet assembly.

  12. APPARATUS FOR MINIMIZING ENERGY LOSSES FROM MAGNETICALLY CONFINED VOLUMES OF HOT PLASMA

    DOE Patents [OSTI]

    Post, R.F.

    1961-10-01

    An apparatus is described for controlling electron temperature in plasma confined in a Pyrotron magnetic containment field. Basically the device comprises means for directing low temperature electrons to the plasma in controlled quantities to maintain a predetermined optimum equilibrium electron temperature whereat minimum losses of plasma ions due to ambipolar effects and energy damping of the ions due to dynamical friction with the electrons occur. (AEC)

  13. COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS

    SciTech Connect (OSTI)

    CHARLES M. WEBER

    2008-06-24

    As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment

  14. Magnetic reconnection in high-energy-density laser-produced plasmas

    SciTech Connect (OSTI)

    Fox, W.; Bhattacharjee, A.; Germaschewski, K.

    2012-05-15

    Recently, novel experiments on magnetic reconnection have been conducted in laser-produced plasmas in a high-energy-density regime. Individual plasma bubbles self-generate toroidal, mega-gauss-scale magnetic fields through the Biermann battery effect. When multiple bubbles are created at small separation, they expand into one another, driving reconnection of this field. Reconnection in the experiments was reported to be much faster than allowed by both Sweet-Parker, and even Hall-MHD theories, when normalized to the nominal magnetic fields self-generated by single bubbles. Through particle-in-cell simulations (both with and without a binary collision operator), we model the bubble interaction at parameters and geometry relevant to the experiments. This paper discusses in detail the reconnection regime of the laser-driven experiments and reports the qualitative features of simulations. We find substantial flux-pileup effects, which boost the relevant magnetic field for reconnection in the current sheet. When this is accounted for, the normalized reconnection rates are much more in line with standard two-fluid theory of reconnection. At the largest system sizes, we additionally find that the current sheet is prone to breakup into plasmoids.

  15. Calculation of the transverse kicks generated by the bends of a hollow electron lens

    SciTech Connect (OSTI)

    Stancari, Giulio

    2014-03-25

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam in high-energy accelerators. They were used in the Fermilab Tevatron collider for abort-gap clearing, beam-beam compensation, and halo scraping. A beam-beam compensation scheme based upon electron lenses is currently being implemented in the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. This work is in support of a conceptual design of hollow electron beam scraper for the Large Hadron Collider. It also applies to the implementation of nonlinear integrable optics with electron lenses in the Integrable Optics Test Accelerator at Fermilab. We consider the axial asymmetries of the electron beam caused by the bends that are used to inject electrons into the interaction region and to extract them. A distribution of electron macroparticles is deposited on a discrete grid enclosed in a conducting pipe. The electrostatic potential and electric fields are calculated using numerical Poisson solvers. The kicks experienced by the circulating beam are estimated by integrating the electric fields over straight trajectories. These kicks are also provided in the form of interpolated analytical symplectic maps for numerical tracking simulations, which are needed to estimate the effects of the electron lens imperfections on proton lifetimes, emittance growth, and dynamic aperture. We outline a general procedure to calculate the magnitude of the transverse proton kicks, which can then be generalized, if needed, to include further refinements such as the space-charge evolution of the electron beam, magnetic fields generated by the electron current, and longitudinal proton dynamics.

  16. THE STORAGE AND DISSIPATION OF MAGNETIC ENERGY IN THE QUIET SUN CORONA DETERMINED FROM SDO/HMI MAGNETOGRAMS

    SciTech Connect (OSTI)

    Meyer, K. A.; Sabol, J.; Mackay, D. H.; Van Ballegooijen, A. A.

    2013-06-20

    In recent years, higher cadence, higher resolution observations have revealed the quiet-Sun photosphere to be complex and rapidly evolving. Since magnetic fields anchored in the photosphere extend up into the solar corona, it is expected that the small-scale coronal magnetic field exhibits similar complexity. For the first time, the quiet-Sun coronal magnetic field is continuously evolved through a series of non-potential, quasi-static equilibria, deduced from magnetograms observed by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, where the photospheric boundary condition which drives the coronal evolution exactly reproduces the observed magnetograms. The build-up, storage, and dissipation of magnetic energy within the simulations is studied. We find that the free magnetic energy built up and stored within the field is sufficient to explain small-scale, impulsive events such as nanoflares. On comparing with coronal images of the same region, the energy storage and dissipation visually reproduces many of the observed features. The results indicate that the complex small-scale magnetic evolution of a large number of magnetic features is a key element in explaining the nature of the solar corona.

  17. IMPLICATIONS OF MASS AND ENERGY LOSS DUE TO CORONAL MASS EJECTIONS ON MAGNETICALLY ACTIVE STARS

    SciTech Connect (OSTI)

    Drake, Jeremy J.; Cohen, Ofer; Yashiro, Seiji; Gopalswamy, Nat

    2013-02-20

    Analysis of a database of solar coronal mass ejections (CMEs) and associated flares over the period 1996-2007 finds well-behaved power-law relationships between the 1-8 A flare X-ray fluence and CME mass and kinetic energy. We extrapolate these relationships to lower and higher flare energies to estimate the mass and energy loss due to CMEs from stellar coronae, assuming that the observed X-ray emission of the latter is dominated by flares with a frequency as a function of energy dn/dE = kE {sup -{alpha}}. For solar-like stars at saturated levels of X-ray activity, the implied losses depend fairly weakly on the assumed value of {alpha} and are very large: M-dot {approx}5 Multiplication-Sign 10{sup -10} M{sub sun} yr{sup -1} and E-dot {approx}0.1 L{sub sun}. In order to avoid such large energy requirements, either the relationships between CME mass and speed and flare energy must flatten for X-ray fluence {approx}> 10{sup 31} erg, or the flare-CME association must drop significantly below 1 for more energetic events. If active coronae are dominated by flares, then the total coronal energy budget is likely to be up to an order of magnitude larger than the canonical 10{sup -3} L {sub bol} X-ray saturation threshold. This raises the question of what is the maximum energy a magnetic dynamo can extract from a star? For an energy budget of 1% of L {sub bol}, the CME mass loss rate is about 5 Multiplication-Sign 10{sup -11} M {sub Sun} yr{sup -1}.

  18. Superconducting magnetic energy storage (SMES) program, January 1-December 31, 1981

    SciTech Connect (OSTI)

    Rogers, J.D. (comp.)

    1982-02-01

    Work reported is on the development of a 30 MJ superconducting magnetic energy storage (SMES) unit for use by the Bonneville Power Administration (BPA) to stabilize power oscillations on their Pacific AC Intertie. The 30 MJ superconducting coil manufacture was completed. Design of the seismic mounting of the coil to the nonconducting dewar lid and a concrete foundation is complete. The superconducting application VAR (SAVAR) control study indicated a low economic advantage and the SAVAR program was terminated. An economic and technological evaluation of superconducting fault current limiter (SFCL) was completed and the results are reported.

  19. Superconducting magnetic energy storage. (Latest citations from the INSPEC database). Published Search

    SciTech Connect (OSTI)

    1997-10-01

    The bibliography contains citations concerning research, development, and assessment of superconducting magnetic energy storage (SMES) technology. References discuss the design and performance of toroidal and solenoid type SMES systems for military, space mission, and electric utility applications. Topics include active and reactive power control, power system stability and diagnosis, power supply quality, uninterruptible power supplies, and SMES systems for critical industrial and military uses. Cost analysis and optimization, marketing, and environmental issues are reviewed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  20. Sequential Activation of Molecular Breathing and Bending during...

    Office of Scientific and Technical Information (OSTI)

    Sequential Activation of Molecular Breathing and Bending during Spin-Crossover Photoswitching Revealed by Femtosecond Optical and X-Ray Absorption Spectroscopy Citation Details...

  1. Superconducting flat tape cable magnet

    DOE Patents [OSTI]

    Takayasu, Makoto

    2015-08-11

    A method for winding a coil magnet with the stacked tape cables, and a coil so wound. The winding process is controlled and various shape coils can be wound by twisting about the longitudinal axis of the cable and bending following the easy bend direction during winding, so that sharp local bending can be obtained by adjusting the twist pitch. Stack-tape cable is twisted while being wound, instead of being twisted in a straight configuration and then wound. In certain embodiments, the straight length should be half of the cable twist-pitch or a multiple of it.

  2. Ground state energy of an exciton in a spherical quantum dot in the presence of an external magnetic field

    SciTech Connect (OSTI)

    Jahan K, Luhluh Boda, Aalu; Chatterjee, Ashok

    2015-05-15

    The problem of an exciton trapped in a three dimensional Gaussian quantum dot is studied in the presence of an external magnetic field. A variational method is employed to obtain the ground state energy of the exciton as a function of the quantum dot size, the confinement strength and the magnetic field. It is also shown that the variation of the size of the exciton with the radius of the quantum dot.

  3. Model and simulation of a flywheel energy storage system at a utility substation using electro-magnetic transients programs

    SciTech Connect (OSTI)

    Weissbach, R.S.; Karady, G.G.; Farmer, R.G.

    1996-11-01

    A flywheel energy storage system for use as an uninterruptible power supply at a utility substation to replace electrochemical batteries has been modeled. The model is developed using the Electro-Magnetic Transients Program (EMTP). Models for the flywheel, permanent magnet (synchronous) motor/generator, rectifiers and inverter have been included. Transient response for loss of power and clearing of a short circuit fault, as well as variation of load voltage due to the flywheel spinning down, is presented.

  4. Ground Magnetics At San Emidio Desert Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Magnetics At San Emidio Desert Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At San Emidio Desert Area (DOE...

  5. INTERPRETING ERUPTIVE BEHAVIOR IN NOAA AR 11158 VIA THE REGION'S MAGNETIC ENERGY AND RELATIVE-HELICITY BUDGETS

    SciTech Connect (OSTI)

    Tziotziou, Kostas; Georgoulis, Manolis K.; Liu Yang

    2013-08-01

    In previous works, we introduced a nonlinear force-free method that self-consistently calculates the instantaneous budgets of free magnetic energy and relative magnetic helicity in solar active regions (ARs). Calculation is expedient and practical, using only a single vector magnetogram per computation. We apply this method to a time series of 600 high-cadence vector magnetograms of the eruptive NOAA AR 11158 acquired by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory over a five-day observing interval. Besides testing our method extensively, we use it to interpret the dynamical evolution in the AR, including eruptions. We find that the AR builds large budgets of both free magnetic energy and relative magnetic helicity, sufficient to power many more eruptions than the ones it gave within the interval of interest. For each of these major eruptions, we find eruption-related decreases and subsequent free-energy and helicity budgets that are consistent with the observed eruption (flare and coronal mass ejection (CME)) sizes. In addition, we find that (1) evolution in the AR is consistent with the recently proposed (free) energy-(relative) helicity diagram of solar ARs, (2) eruption-related decreases occur before the flare and the projected CME-launch times, suggesting that CME progenitors precede flares, and (3) self terms of free energy and relative helicity most likely originate from respective mutual terms, following a progressive mutual-to-self conversion pattern that most likely stems from magnetic reconnection. This results in the non-ideal formation of increasingly helical pre-eruption structures and instigates further research on the triggering of solar eruptions with magnetic helicity firmly placed in the eruption cadre.

  6. Design, Manufacture and Testing of A Bend-Twist D-Spar

    SciTech Connect (OSTI)

    Ong, Cheng-Huat; Tsai, Stephen W.

    1999-06-01

    Studies have indicated that an adaptive wind turbine blade design can significantly enhance the performance of the wind turbine blade on energy capture and load mitigation. In order to realize the potential benefits of aeroelastic tailoring, a bend-twist D-spar, which is the backbone of a blade, was designed and fabricated to achieve the objectives of having maximum bend-twist coupling and fulfilling desirable structural properties (031 & GJ). Two bend-twist D-spars, a hybrid of glass and carbon fibers and an all-carbon D-spar, were fabricated using a bladder process. One of the D-spars, the hybrid D-spar, was subjected to a cantilever static test and modal testing. Various parameters such as materials, laminate schedule, thickness and internal rib were examined in designing a bend-twist D-spar. The fabrication tooling, the lay-up process and the joint design for two symmetric clamshells are described in this report. Finally, comparisons between the experimental test results and numerical results are presented. The comparisons indicate that the numerical analysis (static and modal analysis) agrees well with test results.

  7. The impact of Hall physics on magnetized high energy density plasma jets

    SciTech Connect (OSTI)

    Gourdain, P.-A.; Seyler, C. E.; Atoyan, L.; Greenly, J. B.; Hammer, D. A.; Kusse, B. R.; Pikuz, S. A.; Potter, W. M.; Schrafel, P. C.; Shelkovenko, T. A.

    2014-05-15

    Hall physics is often neglected in high energy density plasma jets due to the relatively high electron density of such jets (n{sub e} ∼ 10{sup 19} cm{sup −3}). However, the vacuum region surrounding the jet has much lower densities and is dominated by Hall electric field. This electric field redirects plasma flows towards or away from the axis, depending on the radial current direction. A resulting change in the jet density has been observed experimentally. Furthermore, if an axial field is applied on the jet, the Hall effect is enhanced and ignoring it leads to serious discrepancies between experimental results and numerical simulations. By combining high currents (∼1 MA) and magnetic field helicity (15° angle) in a pulsed power generator such as COBRA, plasma jets can be magnetized with a 10 T axial field. The resulting field enhances the impact of the Hall effect by altering the density profile of current-free plasma jets and the stability of current-carrying plasma jets (e.g., Z-pinches)

  8. Summary of the report of the Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy

    SciTech Connect (OSTI)

    Holdren, J.P.; Berwald, D.H.; Budnitz, R.J.; Crocker, J.G.; Delene, J.G.; Endicott, R.D.; Kazimi, M.S.; Krakowski, R.A.; Logan, B.G.; Schultz, K.R.

    1987-09-10

    The Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy (ESECOM) has assessed magnetic fusion energy's prospects for providing energy with economic, environmental, and safety characteristics that would be attractive compared with other energy sources (mainly fission) available in the year 2015 and beyond. ESECOM gives particular attention to the interaction of environmental, safety, and economic characteristics of a variety of magnetic fusion reactors, and compares them with a variety of fission cases. Eight fusion cases, two fusion-fission hybrid cases, and four fission cases are examined, using consistent economic and safety models. These models permit exploration of the environmental, safety, and economic potential of fusion concepts using a wide range of possible materials choices, power densities, power conversion schemes, and fuel cycles. The ESECOM analysis indicates that magnetic fusion energy systems have the potential to achieve costs-of-electricity comparable to those of present and future fission systems, coupled with significant safety and environmental advantages. 75 refs., 2 figs., 24 tabs.

  9. Methods and apparatus for twist bend coupled (TCB) wind turbine blades

    DOE Patents [OSTI]

    Moroz, Emilian Mieczyslaw; LeMieux, David Lawrence; Pierce, Kirk Gee

    2006-10-10

    A method for controlling a wind turbine having twist bend coupled rotor blades on a rotor mechanically coupled to a generator includes determining a speed of a rotor blade tip of the wind turbine, measuring a current twist distribution and current blade loading, and adjusting a torque of a generator to change the speed of the rotor blade tip to thereby increase an energy capture power coefficient of the wind turbine.

  10. Low-energy planar magnetic defects in BaFe2As2: Nanotwins, twins, antiphase, and domain boundaries

    SciTech Connect (OSTI)

    Khan, Suffian N. [Ames Laboratory; Alam, Aftab [Ames Laboratory; Johnson, Duane D. [Ames Laboratory

    2013-11-27

    In BaFe2As2, structural and magnetic planar defects begin to proliferate below the structural phase transition, affecting descriptions of magnetism and superconductivity. We study, using density-functional theory, the stability and magnetic properties of competing antiphase and domain boundaries, twins and isolated nanotwins (twin nuclei), and spin excitations proposed and/or observed. These nanoscale defects have a very low surface energy (22210 m Jm?2), with twins favorable to the mesoscale. Defects exhibit smaller moments confined near their boundariesmaking a uniform-moment picture inappropriate for long-range magnetic order in real samples. Nanotwins explain features in measured pair distribution functions so should be considered when analyzing scattering data. All these defects can be weakly mobile and/or can have fluctuations that lower assessed ordered moments from longer spatial and/or time averaging and should be considered directly.

  11. Low-energy planar magnetic defects in BaFe2As2: Nanotwins, twins, antiphase, and domain boundaries

    SciTech Connect (OSTI)

    Khan, S. N. [Ames Laboratory] [Ames Laboratory; Alam, A. [Ames Laboratory] [Ames Laboratory; Johnson, Duane D. [University of Illinois, Urbana-Champaign] [University of Illinois, Urbana-Champaign

    2013-01-01

    In BaFe2As2, structural and magnetic planar defects begin to proliferate below the structural phase transition, affecting descriptions of magnetism and superconductivity.We study, using density-functional theory, the stability and magnetic properties of competing antiphase and domain boundaries, twins and isolated nanotwins (twin nuclei), and spin excitations proposed and/or observed. These nanoscale defects have a very low surface energy (22 210 m Jm 2), with twins favorable to the mesoscale. Defects exhibit smaller moments confined near their boundaries making a uniform-moment picture inappropriate for long-range magnetic order in real samples. Nanotwins explain features in measured pair distribution functions so should be considered when analyzing scattering data. All these defects can be weakly mobile and/or can have fluctuations that lower

  12. Quantum chaos and statistical properties of energy levels: Numerical study of the hydrogen atom in a magnetic field

    SciTech Connect (OSTI)

    Delande, D.; Gay, J.C.

    1986-10-20

    The transition to chaos in ''the hydrogen atom in a magnetic field'' is numerically studied and shown to lead to well-defined signature on the energy-level fluctuations. Upon an increase in the energy, the calculated statistics evolve from Poisson to Gaussian orthogonal ensemble according to the regular or chaotic character of the classical motion. Several methods are employed to test the generic nature of these distributions.

  13. Cast-stone sectors for lining bends in pipework

    SciTech Connect (OSTI)

    Chechulin, V.A.; Novikov, A.I.; Karpov, V.M.; Sotnik, A.A.; Sedyshev, B.L.

    1987-03-01

    The authors disclose an efficient method for lining the bends of pipelines used to deliver coal dust to the burners of coal-fired power plants or to transport coal slurries in mining and preparation enterprises. The method consists of melting a wear-resistant silicate compound and casting it in the form of rings whose increased width on the outboard side accounts for the angle of the bend when the rings are installed consecutively inside the pipe. Enhanced service life estimations and cost benefit analyses are given for pipe bends thus lined in both of the above applications.

  14. Proceedings of the third symposium on the physics and technology of compact toroids in the magnetic fusion energy program

    SciTech Connect (OSTI)

    Siemon, R.E.

    1981-03-01

    This document contains papers contributed by the participants of the Third Symposium on Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program. Subjects include reactor aspects of compact toroids, energetic particle rings, spheromak configurations (a mixture of toroidal and poloidal fields), and field-reversed configurations (FRC's that contain purely poloidal field).

  15. Force-free field modeling of twist and braiding-induced magnetic energy in an active-region corona

    SciTech Connect (OSTI)

    Thalmann, J. K.

    2014-01-01

    The theoretical concept that braided magnetic field lines in the solar corona may dissipate a sufficient amount of energy to account for the brightening observed in the active-region (AR) corona has only recently been substantiated by high-resolution observations. From the analysis of coronal images obtained with the High Resolution Coronal Imager, first observational evidence of the braiding of magnetic field lines was reported by Cirtain et al. (hereafter CG13). We present nonlinear force-free reconstructions of the associated coronal magnetic field based on Solar Dynamics Observatory/Helioseismic and Magnetic Imager vector magnetograms. We deliver estimates of the free magnetic energy associated with a braided coronal structure. Our model results suggest (?100 times) more free energy at the braiding site than analytically estimated by CG13, strengthening the possibility of the AR corona being heated by field line braiding. We were able to appropriately assess the coronal free energy by using vector field measurements and we attribute the lower energy estimate of CG13 to the underestimated (by a factor of 10) azimuthal field strength. We also quantify the increase in the overall twist of a flare-related flux rope that was noted by CG13. From our models we find that the overall twist of the flux rope increased by about half a turn within 12 minutes. Unlike another method to which we compare our results, we evaluate the winding of the flux rope's constituent field lines around each other purely based on their modeled coronal three-dimensional field line geometry. To our knowledge, this is done for the first time here.

  16. Gold nanomembranes resist bending in new experiment | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to bending and stretching - the very things we wanted to measure. We needed a non-invasive way to make nanoparticle tubes without changing those properties." The team found...

  17. Studies on soliton energy at critical and noncritical densities of negative ions in an inhomogeneous magnetized warm plasma

    SciTech Connect (OSTI)

    Singh, Dhananjay K.; Malik, Hitendra K.

    2007-11-15

    Considering an inhomogeneous plasma having finite-temperature negative and positive ions, and the isothermal electrons in the presence of an external magnetic field, the solitons at noncritical and critical densities of the negative ions are studied through Korteweg-deVries (KdV) and modified Korteweg-deVries (mKdV) equations, respectively. The compressive (rarefactive) KdV solitons are found to propagate when the negative ion concentration is less (greater) than the critical density of the negative ions. At the critical density, both the compressive and the rarefactive solitons of equal amplitudes are found to occur. The energies of the compressive KdV soliton and the mKdV solitons are found to increase and that of the rarefactive KdV soliton is found to decrease with the negative ion density. Soliton energy for both the KdV and the mKdV solitons gets lowered under the effect of stronger magnetic field. The effect of ion temperature is to increase the energy of the compressive KdV soliton, whereas the energy of the rarefactive KdV soliton as well as of the mKdV solitons gets decreased. The variation of the energy with the obliqueness of the magnetic field is different for the KdV and the mKdV solitons.

  18. Magnetic Processing A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets

    SciTech Connect (OSTI)

    Mackiewicz-Ludtka, G.; Ludtka, G.M.; Ray, P.; Magee, J.

    2010-09-10

    Thermomagnetic Magnetic Processing is an exceptionally fertile, pervasive and cross-cutting technology that is just now being recognized by several major industry leaders for its significant potential to increase energy efficiency and materials performance for a myriad of energy intensive industries in a variety of areas and applications. ORNL has pioneered the use and development of large magnetic fields in thermomagnetically processing (T-MP) materials for altering materials phase equilibria and transformation kinetics. ORNL has discovered that using magnetic fields, we can produce unique materials responses. T-MP can produce unique phase stabilities & microstructures with improved materials performance for structural and functional applications not achieved with traditional processing techniques. These results suggest that there are unprecedented opportunities to produce significantly enhanced materials properties via atomistic level (nano-) microstructural control and manipulation. ORNL (in addition to others) have shown that grain boundary chemistry and precipitation kinetics are also affected by large magnetic fields. This CRADA has taken advantage of ORNLs unique, custom-designed thermo-magnetic, 9 Tesla superconducting magnet facility that enables rapid heating and cooling of metallic components within the magnet bore; as well as ORNLs expertise in high magnetic field (HMF) research. Carpenter Technologies, Corp., is a a US-based industrial company, that provides enhanced performance alloys for the Aerospace and Specialty Steel products. In this CRADA, Carpenter Technologies, Corp., is focusing on applying ORNLs Thermomagnetic Magnetic Processing (TMP) technology to improve their current and future proprietary materials product performance and open up new markets for their Aerospace and Specialty Steel products. Unprecedented mechanical property performance improvements have been demonstrated for a high strength bainitic alloy industrial

  19. Energy harvesting using martensite variant reorientation mechanism in a NiMnGa magnetic shape memory alloy

    SciTech Connect (OSTI)

    Karaman, I.; Basaran, B.; Karaca, H. E.; Karsilayan, A. I.; Chumlyakov, Y. I.

    2007-04-23

    Magnetic shape memory alloys demonstrate significant potential for harvesting waste mechanical energy utilizing the Villari effect. In this study, a few milliwatts of power output are achieved taking advantage of martensite variant reorientation mechanism in Ni{sub 51.1}Mn{sub 24}Ga{sub 24.9} single crystals under slowly fluctuating loads (10 Hz) without optimization in the power conversion unit. Effects of applied strain range, bias magnetic field, and loading frequency on the voltage output are revealed. Anticipated power outputs under moderate frequencies are predicted showing that the power outputs higher than 1 W are feasible.

  20. MHK Projects/Linwood Bend | Open Energy Information

    Open Energy Info (EERE)

    e":"ROADMAP","zoom":5,"types":"ROADMAP","SATELLITE","HYBRID","TERRAIN","geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":""...

  1. MHK Projects/Matthews Bend | Open Energy Information

    Open Energy Info (EERE)

    e":"ROADMAP","zoom":5,"types":"ROADMAP","SATELLITE","HYBRID","TERRAIN","geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":""...

  2. MHK Projects/Island 35 Bend | Open Energy Information

    Open Energy Info (EERE)

    bel":"","visitedicon":"" Project Profile Project Start Date 112009 Project City Richardson, TN Project StateProvince Tennessee Project Country United States Project Resource...

  3. MHK Projects/Old Town Bend | Open Energy Information

    Open Energy Info (EERE)

    Project Country United States Project Resource Click here Current Tidal Project Nearest Body of Water Mississippi River Coordinates 34.3713, -90.7493 Project Phase Phase 1...

  4. MHK Projects/Island 14 Bend | Open Energy Information

    Open Energy Info (EERE)

    Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 132 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0 Number of Build Out...

  5. Toledo Bend Project Joint Oper | Open Energy Information

    Open Energy Info (EERE)

    SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

  6. MHK Projects/Springfield Bend | Open Energy Information

    Open Energy Info (EERE)

    itedicon":"","lines":,"polygons":,"circles":,"rectangles":,"copycoords":false,"static":false,"wmsoverlay":"","layers":,"controls":"pan","zoom","type","scale","streetview...

  7. MHK Projects/Vicksburg Bend | Open Energy Information

    Open Energy Info (EERE)

    *MHK TechnologiesSmarTurbine Project Licensing FERC License Docket Number P-14012 Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  8. MHK Projects/Milliken Bend Project | Open Energy Information

    Open Energy Info (EERE)

    itedicon":"","lines":,"polygons":,"circles":,"rectangles":,"copycoords":false,"static":false,"wmsoverlay":"","layers":,"controls":"pan","zoom","type","scale","streetview...

  9. MHK Projects/Georgetown Bend | Open Energy Information

    Open Energy Info (EERE)

    33.5735, -91.1986 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 117 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  10. MHK Projects/Cow Island Bend | Open Energy Information

    Open Energy Info (EERE)

    35.0269, -90.2792 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 152 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  11. MHK Projects/Fitler Bend | Open Energy Information

    Open Energy Info (EERE)

    32.8007, -91.1586 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 152 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  12. MHK Projects/Kempe Bend Project | Open Energy Information

    Open Energy Info (EERE)

    31.8622, -91.3073 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 54 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  13. MHK Projects/Saint Catherine Bend | Open Energy Information

    Open Energy Info (EERE)

    31.4111, -91.4953 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 190 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  14. MHK Projects/Little Cypress Bend | Open Energy Information

    Open Energy Info (EERE)

    36.3482, -89.5892 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 127 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  15. MHK Projects/Davis Island Bend | Open Energy Information

    Open Energy Info (EERE)

    32.1299, -91.0636 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 147 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  16. MHK Projects/Avondale Bend Project | Open Energy Information

    Open Energy Info (EERE)

    29.9301, -90.2215 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 18 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  17. MHK Projects/Kenner Bend Project | Open Energy Information

    Open Energy Info (EERE)

    29.9596, -90.2868 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 45 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  18. MHK Projects/Morgan Bend Crossing Project | Open Energy Information

    Open Energy Info (EERE)

    30.7879, -91.5469 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 94 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  19. MHK Projects/Remy Bend Project | Open Energy Information

    Open Energy Info (EERE)

    30.0121, -90.754 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 28 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  20. MHK Projects/Gouldsboro Bend Project | Open Energy Information

    Open Energy Info (EERE)

    29.9177, -90.0673 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 20 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  1. EVOLUTION AND DISTRIBUTION OF MAGNETIC FIELDS FROM ACTIVE GALACTIC NUCLEI IN GALAXY CLUSTERS. I. THE EFFECT OF INJECTION ENERGY AND REDSHIFT

    SciTech Connect (OSTI)

    Xu Hao; Li Hui; Li Shengtai; Collins, David C.; Norman, Michael L. E-mail: hli@lanl.go E-mail: dcollins@physics.ucsd.ed

    2010-12-20

    We present a series of cosmological magnetohydrodynamic simulations that simultaneously follow the formation of a galaxy cluster and evolution of magnetic fields ejected by an active galactic nucleus (AGN). Specifically, we investigate the influence of both the epoch of the AGN (z {approx} 3-0.5) and the AGN energy ({approx}3 x 10{sup 57}- 2 x 10{sup 60} erg) on the final magnetic field distribution in a relatively massive cluster (M{sub vir} {approx} 10{sup 15} M{sub sun}). We find that as long as the AGN magnetic fields are ejected before the major mergers in the cluster formation history, magnetic fields can be transported throughout the cluster and can be further amplified by the intracluster medium (ICM) turbulence caused by hierarchical mergers during the cluster formation process. The total magnetic energy in the cluster can reach {approx}10{sup 61} erg, with micro Gauss fields distributed over the {approx}Mpc scale. The amplification of the total magnetic energy by the ICM turbulence can be significant, up to {approx}1000 times in some cases. Therefore even weak magnetic fields from AGNs can be used to magnetize the cluster to the observed level. The final magnetic energy in the ICM is determined by the ICM turbulent energy, with a weak dependence on the AGN injection energy. We discuss the properties of magnetic fields throughout the cluster and the synthetic Faraday rotation measure maps they produce. We also show that high spatial resolution over most of the magnetic regions of the cluster is very important to capture the small-scale dynamo process and maintain the magnetic field structure in our simulations.

  2. Study on the Mechanical Instability of MICE Coupling Magnets

    SciTech Connect (OSTI)

    Wang, Li; Pan, Heng; Gou, Xing Long; Wu, Hong; Zheng, Shi Xian; Green, Michael A

    2011-05-04

    The superconducting coupling solenoid magnet is one of the key equipment in the Muon Ionization Cooling Experiment (MICE). The coil has an inner radius of 750 mm, length of 281 mm and thickness of 104 mm at room temperature. The peak induction in the coil is about 7.3 T with a full current of 210 A. The mechanical disturbances which might cause the instability of the impregnated superconducting magnet involve the frictional motion between conductors and the cracking of impregnated materials. In this paper, the mechanical instability of the superconducting coupling magnet was studied. This paper presents the numerical calculation results of the minimum quench energy (MQE) of the coupling magnet, as well as the dissipated strain energy in the stress concentration region when the epoxy cracks and the frictional energy caused by 'stick-slip' of the conductor based on the bending theory of beam happens. Slip planes are used in the coupling coil and the frictional energy due to 'slow slip' at the interface of the slip planes was also investigated. The dissipated energy was compared with MQE, and the results show that the cracking of epoxy resin in the region of shear stress concentration is the main factor for premature quench of the coil.

  3. OSTIblog Articles in the magnetic Topic | OSTI, US Dept of Energy Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information magnetic Topic The Kondo Effect Phenomena by Kathy Chambers 22 Mar, 2016 in Brookhaven National Laboratory (BNL) researcher Ignace Jarrige shown with the sample used in the magnetic refrigeration experiment. Courtesy BNL Brookhaven National Laboratory (BNL) researcher Ignace Jarrige shown with the sample used in the magnetic refrigeration experiment. Courtesy BNL For more than 50 years, scientists around the world have attempted to understand the

  4. High Field Magnets for a Future High Energy Proton-proton Collider...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    brief review of current progress, the talk will describe the key issues facing future development and present a roadmap for moving high field accelerator magnet technology forward...

  5. Inductively Driven, 3D Liner Compression of a Magnetized Plasma to Megabar Energy Densities

    SciTech Connect (OSTI)

    Slough, John

    2015-02-01

    To take advantage of the smaller scale, higher density regime of fusion an efficient method for achieving the compressional heating required to reach fusion gain conditions must be found. What is proposed is a more flexible metallic liner compression scheme that minimizes the kinetic energy required to reach fusion. It is believed that it is possible to accomplish this at sub-megajoule energies. This however will require operation at very small scale. To have a realistic hope of inexpensive, repetitive operation, it is essential to have the liner kinetic energy under a megajoule which allows for the survivability of the vacuum and power systems. At small scale the implosion speed must be reasonably fast to maintain the magnetized plasma (FRC) equilibrium during compression. For limited liner kinetic energy, it becomes clear that the thinnest liner imploded to the smallest radius consistent with the requirements for FRC equilibrium lifetime is desired. The proposed work is directed toward accomplishing this goal. Typically an axial (Z) current is employed for liner compression. There are however several advantages to using a θ-pinch coil. With the θ-pinch the liner currents are inductively driven which greatly simplifies the apparatus and vacuum system, and avoids difficulties with the post implosion vacuum integrity. With fractional flux leakage, the foil liner automatically provides for the seed axial compression field. To achieve it with optimal switching techniques, and at an accelerated pace however will require additional funding. This extra expense is well justified as the compression technique that will be enabled by this funding is unique in the ability to implode individual segments of the liner at different times. This is highly advantageous as the liner can be imploded in a manner that maximizes the energy transfer to the FRC. Production of shaped liner implosions for additional axial compression can thus be readily accomplished with the modified power

  6. Electromagnetic modeling of the energy distribution of a metallic cylindrical parabolic reflector covered with a magnetized plasma layer

    SciTech Connect (OSTI)

    Niknam, A. R. Khajehmirzaei, M. R.; Davoudi-Rahaghi, B.; Rahmani, Z.; Jazi, B.; Abdoli-Arani, A.

    2014-07-15

    The energy distribution along the focal axis of a long metallic cylindrical parabolic reflector with a plasma layer on its surface in the presence of an external magnetic field is investigated. The effects of some physical parameters, such as the plasma frequency, the wave frequency and the thickness of plasma layer on the energy distribution and the reflected and transmitted electromagnetic fields, are simulated. These investigations for both S- and P-polarizations have been done separately. It is found that the maximum value of the reflected intensity increases by increasing the incident wave frequency and by decreasing the plasma layer thickness and the plasma frequency for both polarizations. Furthermore, the results show that the increase of the magnetic field strength can cause an increase in the reflected intensity for S-polarization and a slight decrease for P-polarization.

  7. Comparison of electric and magnetic quadrupole focusing for the low energy end of an induction-linac-ICF (Inertial-Confinement-Fusion) driver

    SciTech Connect (OSTI)

    Kim, C.H.

    1987-04-01

    This report compares two physics designs of the low energy end of an induction linac-ICF driver: one using electric quadrupole focusing of many parallel beams followed by transverse combining; the other using magnetic quadrupole focusing of fewer beams without beam combining. Because of larger head-to-tail velocity spread and a consequent rapid current amplification in a magnetic focusing channel, the overall accelerator size of the design using magnetic focusing is comparable to that using electric focusing.

  8. Amplifying Magnetic Fields in High Energy Density Plasmas | U.S. DOE Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ecosystem | Department of Energy Amped Up! Magazine - Accelerating Clean Energy through an Innovation Ecosystem The Office of Energy Efficiency and Renewable Energy (EERE) has a new acting assistant secretary in David Friedman who plans to continue to support EERE’s clean energy revolution and help strengthen its innovation ecosystem. The Office of Energy Efficiency and Renewable Energy (EERE) has a new acting assistant secretary in David Friedman who plans to continue to support EERE's

  9. Bending of solitons in weak and slowly varying inhomogeneous plasma

    SciTech Connect (OSTI)

    Mukherjee, Abhik Janaki, M. S. Kundu, Anjan

    2015-12-15

    The bending of solitons in two dimensional plane is presented in the presence of weak and slowly varying inhomogeneous ion density for the propagation of ion acoustic soliton in unmagnetized cold plasma with isothermal electrons. Using reductive perturbation technique, a modified Kadomtsev-Petviashvili equation is obtained with a chosen unperturbed ion density profile. The exact solution of the equation shows that the phase of the solitary wave gets modified by a function related to the unperturbed inhomogeneous ion density causing the soliton to bend in the two dimensional plane, while the amplitude of the soliton remains constant.

  10. Electromagnetic momentum and the energymomentum tensor in a linear medium with magnetic and dielectric properties

    SciTech Connect (OSTI)

    Crenshaw, Michael E.

    2014-04-15

    In a continuum setting, the energymomentum tensor embodies the relations between conservation of energy, conservation of linear momentum, and conservation of angular momentum. The well-defined total energy and the well-defined total momentum in a thermodynamically closed system with complete equations of motion are used to construct the total energymomentum tensor for a stationary simple linear material with both magnetic and dielectric properties illuminated by a quasimonochromatic pulse of light through a gradient-index antireflection coating. The perplexing issues surrounding the Abraham and Minkowski momentums are bypassed by working entirely with conservation principles, the total energy, and the total momentum. We derive electromagnetic continuity equations and equations of motion for the macroscopic fields based on the material four-divergence of the traceless, symmetric total energymomentum tensor. We identify contradictions between the macroscopic Maxwell equations and the continuum form of the conservation principles. We resolve the contradictions, which are the actual fundamental issues underlying the AbrahamMinkowski controversy, by constructing a unified version of continuum electrodynamics that is based on establishing consistency between the three-dimensional Maxwell equations for macroscopic fields, the electromagnetic continuity equations, the four-divergence of the total energymomentum tensor, and a four-dimensional tensor formulation of electrodynamics for macroscopic fields in a simple linear medium.

  11. MSM Self-Energies at Finite Temperature in the Presence of Weak Magnetic Fields: Towards a Full Symmetry Restoration Study

    SciTech Connect (OSTI)

    Tejeda-Yeomans, Maria Elena; Navarro, Jorge; Sanchez, Angel; Piccinelli, Gabriella

    2008-07-02

    The study of the universe's primordial plasma at high temperature plays an important role when tackling different questions in cosmology, such as the origin of the matter-antimatter asymmetry. In the Minimal Standard Model (MSM) neither the amount of CP violation nor the strength of the phase transition are enough to produce and preserve baryon number during the Electroweak Phase Transition (EWPT), which are two of the three ingredients needed to develop baryon asymmetry. In this talk we present the first part of the analysis done within a scenario where it is viable to have improvements to the aforementioned situation: we work with the degrees of freedom in the broken symmetry phase of the MSM and analyze the development of the EWPT in the presence of a weak magnetic field. More specifically, we calculate the particle self-energies that include the effects of the weak magnetic field, needed for the MSM effective potential up to ring diagrams.

  12. High order magnetic optics for high dynamic range proton radiography at a kinetic energy 800 MeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sjue, Sky K. L.; Morris, Christopher L.; Merrill, Frank Edward; Mariam, Fesseha Gebre; Saunders, Alexander

    2016-01-14

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the protonimaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane.more » Furthermore, comparison with a series of static calibrationimages demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.« less

  13. Tension bending ratcheting tests of 304 stainless steel

    SciTech Connect (OSTI)

    Larson, L.D.; Jones, D.P.; Rapp, D.G.

    1996-12-31

    This paper discusses results of an experimental program conducted to investigate the strain ratcheting behavior of 304 stainless steel under various combinations of applied membrane load and displacement controlled cyclic bending strain. Tests were performed on uniaxial specimens at temperatures of 70 F (21 C) and 550 F (288 C). Bending strain, ratchet strain and axial displacement of the specimens were monitored throughout the tests. Membrane stress to monotonic yield stress ratios of 2/3, 1/2, and 1/3 were tested with pseudo-elastic bending stress to yield stress ratios ranging from 1.4 to 10.7. Test output was in the form of plots of cumulative axial membrane strain versus cycles up to the point of shakedown, i.e., the point at which no additional progressive strain was observed. Shakedown was demonstrated in the 500 F tests but not the room temperature tests. The 550 F results are shown in terms of shakedown membrane strain versus equivalent bending stress ratio for each of the tested membrane stress ratios. The cyclic and monotonic stress-strain curves for the test materials are presented to enable the use of various models for predicting the ratcheting and shakedown behavior. The results may be used to develop improved ratcheting and shakedown rules permitting a relaxation of the traditional ratcheting rules in the ASME Boiler and Pressure Vessel Code.

  14. The Clinch Bend Regional Industrial Site and economic development opportunities

    SciTech Connect (OSTI)

    1995-12-31

    This effort focuses initially on the Clinch Bend site. Other sites and developable tracts of land are identified with the assistance of communities in proximity to Oak Ridge, the State of Tennessee, and others, and compared with the projected site requirements for large industrial facilities.

  15. MULTIPASS MUON RLA RETURN ARCS BASED ON LINEAR COMBINED-FUNCTION MAGNETS

    SciTech Connect (OSTI)

    Vasiliy Morozov, Alex Bogacz, Yves Roblin, Kevin Beard

    2011-09-01

    Recirculating Linear Accelerators (RLA) are an efficient way of accelerating short-lived muons to the multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. In this paper we present a design of a two-pass RLA return arc based on linear combined function magnets, in which both charge muons with momenta different by a factor of two are transported through the same string of magnets. The arc is composed of 60{sup o}-bending symmetric super cells allowing for a simple arc geometry closing. By adjusting the dipole and quadrupole components of the combined-function magnets, each super cell is designed to be achromatic and to have zero initial and final periodic orbit offsets for both muon momenta. Such a design provides a greater compactness than, for instance, an FFAG lattice with its regular alternating bends and is expected to possess a large dynamic aperture characteristic of linear-field lattices.

  16. Elimination of surface band bending on N-polar InN with thin GaN capping

    SciTech Connect (OSTI)

    Kuzmík, J. Haščík, Š.; Kučera, M.; Kúdela, R.; Dobročka, E.; Adikimenakis, A.; Mičušík, M.; Gregor, M.; Plecenik, A.; Georgakilas, A.

    2015-11-09

    0.5–1 μm thick InN (0001) films grown by molecular-beam epitaxy with N- or In-polarity are investigated for the presence of native oxide, surface energy band bending, and effects introduced by 2 to 4 monolayers of GaN capping. Ex situ angle-resolved x-ray photo-electron spectroscopy is used to construct near-surface (GaN)/InN energy profiles, which is combined with deconvolution of In3d signal to trace the presence of InN native oxide for different types of polarity and capping. Downwards surface energy band bending was observed on bare samples with native oxide, regardless of the polarity. It was found that the In-polar InN surface is most readily oxidized, however, with only slightly less band bending if compared with the N-polar sample. On the other hand, InN surface oxidation was effectively mitigated by GaN capping. Still, as confirmed by ultra-violet photo-electron spectroscopy and by energy band diagram calculations, thin GaN cap layer may provide negative piezoelectric polarization charge at the GaN/InN hetero-interface of the N-polar sample, in addition to the passivation effect. These effects raised the band diagram up by about 0.65 eV, reaching a flat-band profile.

  17. Residual stress analysis of alloy 600 U-bends, reverse U-bends, and C-rings: Final report

    SciTech Connect (OSTI)

    Rudd, C.O.

    1994-11-01

    Over the last several years, one of the leading causes of alloy 600 steam generator tubing leaks has been the primary-side-initiated, intergranular stress corrosion cracking (IGSCC) in heavily cold-worked regions of the U-bends or tubesheet expansion transitions. Field and laboratory experiences have demonstrated that high residual stresses contribute significantly to the initiation of primary water stress corrosion cracking (PWSCC). EPRI initiated this project to measure and quantify the magnitude of these residual stresses in steam generator tubes as well as in various laboratory tests specimens. the objectives were: To measure the residual stresses in steam generator tube U-bends; To measure residual stresses in reverse U-bend (RUB) specimens as well as residual stresses and X-ray diffraction peak broadening in C-ring specimens used in laboratory tests; and To determine whether residual stress occurs as a result of exposure to steam generator operating temperature. Using an advanced X-ray instrument, investigators measured residual stresses on both the outside diameter (OD) and inside diameter (ID) surfaces and subsurfaces of steam generator U-bends and on the test surfaces of laboratory RUB and C-ring specimens. They measured these residual stresses in the hoop and axial directions and also calculated equivalent stresses. Results are discussed. 25 refs., 92 figs., 6 tabs.

  18. Vulcan Power Company | Open Energy Information

    Open Energy Info (EERE)

    Vulcan Power Company Jump to: navigation, search Name: Vulcan Power Company Place: Bend, Oregon Zip: 97702 Sector: Geothermal energy Product: Oregon-based geothermal power plant...

  19. Earth's magnetic field as a radiator to detet cosmic ray electrons of energy >10/sup 12/ eV

    SciTech Connect (OSTI)

    Stephens, S.A.; Balasubrahmanyan, V.K.

    1983-10-01

    We have examined in detail the synchrotron emission by electrons of energy greater than a few TeV in the earth's magnetic field. The photon spectrum lies in the X-ray and ..gamma.. ray region. As the emission takes place in a narrow cone along the direction of the electron, the photons would be incident nearly along a straight line on a detector. This unique feature provides the signature to identify the electron unambiguously. The mean energy of the photons being proportional to the square of the electron energy allows us to determine the energy accurately. Though it may appear that one needs to know the arrival direction of electrons to obtain its energy, we have shown that an omnidirectional detector can be satisfactorily used to estimate the energy. We also show that the colleting power of the detector is a sensitive function of the area of the detector A, the energy of electron E/sub 0/, and the number of photons required to identify an electron n/sub ..gamma../; asymptotically the collecting power is proportional to A/sup 1.43/ E/sub 0/n/sub ..gamma..//sup -1.8/. An instrument, with an energy threshold for the detection of photons can be used to measure reliably the integral flux of electrons, even if it has limited energy resolution. We have calculated the event rate expected by using an ideal balloon-borne detector capable of detecting above 20 keV at 4 g cm/sup -2/ of atmospheric depth over Palestine Texas, and compared with the expected rates using instruments based on currently available techniques of detection.

  20. Experimental study of magnetically confined hollow electron beams in the Tevatron as collimators for intense high-energy hadron beams

    SciTech Connect (OSTI)

    Stancari, G.; Annala, G.; Shiltsev, V.; Still, D.; Valishev, A.; Vorobiev, L.; /Fermilab

    2011-03-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable losses. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and tested at Fermilab for this purpose. It was installed in one of the Tevatron electron lenses in the summer of 2010. We present the results of the first experimental tests of the hollow-beam collimation concept on 980-GeV antiproton bunches in the Tevatron.

  1. Note: Rigid holder to host and bend a crystal for multiple volume reflection of a particle beam

    SciTech Connect (OSTI)

    Carassiti, V.; Melchiorri, M.

    2010-06-15

    A holder to lodge and bend a silicon crystal to excite multivolume reflection of a high-energy particle beam has been designed and fabricated. A mechanically robust and stable structure fastens a crystal at best condition for experiments. The holder has allowed the observation of 12-time repeated volume reflection with very high efficiency. We detail the most important features behind the construction of the holder together with the characterization of the crystal being bent by the holder.

  2. Effect of Triplet Magnet Vibrations on RHIC Performance with High Energy Protons

    SciTech Connect (OSTI)

    Minty, M.

    2010-05-23

    In this report we present recent experimental data from the Relativistic Heavy Ion Collider (RHIC) illustrating effects resulting from {approx}10 Hz vibrations of the triplet quadrupole magnets in the interactions regions and evaluate the impact of these vibrations on RHIC collider performance. Measurements revealed modulation of the betatron tunes of appreciable magnitude relative to the total beam-beam parameter. Comparison of the discrete frequencies in the spectra of the measured beam positions and betatron tunes confirmed a common source. The tune modulations were shown to result from feed-down in the sextupole magnets in the interaction regions. In addition we show that the distortions to the closed orbit of the two counter-rotating beams produced a modulated crossing angle at the interaction point(s).

  3. X-ray Tube with Magnetic Electron Steering - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Find More Like This Return to Search X-ray Tube with Magnetic Electron Steering Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (802 KB) Technology Marketing Summary Sandia National Laboratories has created an improved efficiency compact X-ray source to address a wide range of applications. The high average power large area X-ray tube provides increased X-ray generation efficiency

  4. Operational history of Fermilab's 1500 W refrigerator used for energy saver magnet production testing

    SciTech Connect (OSTI)

    Bianchi, A.J.; Barger, R.K.; Johnson, F.B.; McGuire, K.J.; Pinyan, K.D.; Wilson, F.W.; Cooper, W.E.

    1985-09-01

    The 1500 W helium refrigerator system utilizes two oil-injected screw compressors staged to feed a liquid nitrogen pre-cooled cold box. Refrigeration is provided by two Sulzer TGL-22 magnetic/gas bearing turbines. The refrigerator feeds six magnet test stands via a 10,000 L dewar and subcooler equipped distribution box. The design of the controls has permitted the system to be routinely operated 24 hours/day, seven days/week with only five operators. It has operated approximately 90% of the 4-1/2 years prior to shutting down in 1984 for a period of one year to move the compressor skid. Scheduled maintenance, failures, repairs and holidays are about equal to the 10% off time. The equipment described was used to test approximately 1200 superconducting magnets for the Fermilab accelerator ring. The seven year operating experience is presented as an equipment and technique review. Compressor hours currently exceed 42,000 and turbine hours exceed 39,000 each. Failure rates, causes, preventive maintenance, monitoring practices and equipment, and modifications are examined along with notes on some of the more successful applications of technique and equipment. 4 refs.

  5. Investigations of high-energy electrons of the microwave discharge plasma at configuration of the 'Magnetor' Bi-dipole magnetic confinement system by X-ray radiation analyses

    SciTech Connect (OSTI)

    Krashevskaya, G. V. Kurnaev, V. A.; Salakhutdinov, G. Kh.; Tsventoukh, M. M.

    2011-12-15

    The results of the investigations of a group of fast electrons in a microwave discharge plasma in the 'Magnetor' magnetic trap are presented. The data on the presence and location of this group of electrons is important for estimating the total plasma pressure taking the previous probe measurements into account. Fast electrons are found to be localized within the magnetic separatrix in the region of confinement of the main plasma. The maximal energy of fast electrons is higher than 25 keV.

  6. Level statistics for continuous energy spectra with application to the hydrogen atom in crossed electric and magnetic fields

    SciTech Connect (OSTI)

    Hegerfeldt, G.C.; Henneberg, R. (Institut fuer Theoretische Physik, University of Goettingen, D-37073 Goettingen (Germany))

    1994-05-01

    The statistical analysis of energy levels, a powerful tool in the study of quantum systems, is applicable to discrete spectra. Here we propose an approach to carry level statistics over to continuous energy spectra, paradoxical as this may sound at first. The approach proceeds in three steps, first a discretization of the spectrum by cutoffs, then a statistical analysis of the resulting discrete spectra, and finally a determination of the limit distributions as the cutoffs are removed. In this way the notions of Wigner and Poisson distributions for nearest-neighbor spacing (NNS), usually associated with quantum chaos and regularity, can be carried over to systems with a purely continuous energy spectrum. The approach is demonstrated for the hydrogen atom in perpendicular electric and magnetic fields. This system has a purely continuous energy spectrum from [minus][infinity] to [infinity]. Depending on the field parameters, we find for the NNS a Poisson or a Wigner distribution, or a transitional behavior. We also outline how to determine physically relevant resonances in our approach by a stabilization method.

  7. MidMissouri Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    search Name: MidMissouri Energy LLC Place: Malta Bend, Missouri Zip: 65339 Product: Bioethanol producer using corn as feedstock. References: MidMissouri Energy LLC1 This article...

  8. Some new schemes for producing high-accuracy elliptical X-ray mirrors by elastic bending

    SciTech Connect (OSTI)

    Padmore, H.A.; Howells, M.R.; Irick, S.; Renner, T.; Sandler, R.; Koo, Y.-M.

    1996-08-01

    Although x-ray micro-foci can be produced by a variety of diffractive methods, grazing incidence mirrors are the only route to an achromatic focus. In this paper we describe our efforts to produce elliptically shaped mirrors with the very high figure accuracy necessary for producing a micro-focus. The motivation for this work is provided by the need to produce achromatic foci for a range of applications ranging from tunable micro-focus x-ray photoelectron spectroscopy ({mu}-XPS) at soft x-ray energies to micro-focus white beam x-ray diffraction ({mu}-XRD) at hard x-ray energies. We describe the methodology of beam bending, a practical example of a system we have produced for {mu}-XRD, and results demonstrating the production of a surface with micro-radian figure accuracy.

  9. Magnetic Pair Spectrometer Studies of Electromagnetic Transitions...

    Office of Scientific and Technical Information (OSTI)

    Warburton, E. K. PHYSICS; BRANCHING RATIO; CARBON 13; CARBON 14; DECAY; DEUTERON BEAMS; ELECTRIC CHARGES; ENERGY; ENERGY LEVELS; ERRORS; LIFETIME; MAGNETIC FIELDS; MAGNETIC...

  10. Magnetic Pair Spectrometer Studies of Electromagnetic Transitions...

    Office of Scientific and Technical Information (OSTI)

    English Subject: PHYSICS; BRANCHING RATIO; CARBON 13; CARBON 14; DECAY; DEUTERON BEAMS; ELECTRIC CHARGES; ENERGY; ENERGY LEVELS; ERRORS; LIFETIME; MAGNETIC FIELDS; MAGNETIC...

  11. Control of Prestressing Force in Rod for Reducing Bending in Beams

    SciTech Connect (OSTI)

    Wong, M. B.

    2010-05-21

    This paper presents a method to determine the prestressing force required in a rod for reducing the bending effects in a beam. The rod is positioned underneath the beam such that the prestressing force is counteracting the effects of beam bending. It has been found that the prestressing force may also increase the bending as a result of P-delta effect. Therefore, the choice of both the prestressing force and the rod eccentricity from the beam axis is important in determining the appropriate actions to resist the bending of the beam. Over-prestressing the rod may even induce bending or buckling failure in the beam in the reverse direction.

  12. CRYOGENIC MAGNETS

    DOE Patents [OSTI]

    Post, R.F.; Taylor, C.E.

    1963-05-21

    A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)

  13. Low-energy planar magnetic defects in BaFe2As2: Nanotwins, twins...

    Office of Scientific and Technical Information (OSTI)

    These nanoscale defects have a very low surface energy (22-210 m Jm-2), with twins favorable to the mesoscale. Defects exhibit smaller moments confined near their boundaries-making ...

  14. SiC-CMC-Zircaloy-4 Nuclear Fuel Cladding Performance during 4-Point Tubular Bend Testing

    SciTech Connect (OSTI)

    IJ van Rooyen; WR Lloyd; TL Trowbridge; SR Novascone; KM Wendt; SM Bragg-Sitton

    2013-09-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE NE) established the Light Water Reactor Sustainability (LWRS) program to develop technologies and other solutions to improve the reliability, sustain the safety, and extend the life of current reactors. The Advanced LWR Nuclear Fuel Development Pathway in the LWRS program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. Recent investigations of potential options for “accident tolerant” nuclear fuel systems point to the potential benefits of silicon carbide (SiC) cladding. One of the proposed SiC-based fuel cladding designs being investigated incorporates a SiC ceramic matrix composite (CMC) as a structural material supplementing an internal Zircaloy-4 (Zr-4) liner tube, referred to as the hybrid clad design. Characterization of the advanced cladding designs will include a number of out-of-pile (nonnuclear) tests, followed by in-pile irradiation testing of the most promising designs. One of the out-of-pile characterization tests provides measurement of the mechanical properties of the cladding tube using four point bend testing. Although the material properties of the different subsystems (materials) will be determined separately, in this paper we present results of 4-point bending tests performed on fully assembled hybrid cladding tube mock-ups, an assembled Zr-4 cladding tube mock-up as a standard and initial testing results on bare SiC-CMC sleeves to assist in defining design parameters. The hybrid mock-up samples incorporated SiC-CMC sleeves fabricated with 7 polymer impregnation and pyrolysis (PIP) cycles. To provide comparative information; both 1- and 2-ply braided SiC-CMC sleeves were used in this development study. Preliminary stress simulations were performed using the BISON nuclear fuel performance code to show the stress distribution differences for varying lengths between loading points

  15. Reversible Bending Fatigue Testing on Zry-4 Surrogate Rods

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L

    2014-01-01

    Testing high-burnup spent nuclear fuel (SNF) presents many challenges in areas such as specimen preparation, specimen installation, mechanical loading, load control, measurements, data acquisition, and specimen disposal because these tasks are complicated by the radioactivity of the test specimens. Research and comparison studies conducted at Oak Ridge National Laboratory (ORNL) resulted in a new concept in 2010 for a U-frame testing setup on which to perform hot-cell reversible bending fatigue testing. Subsequently, the three-dimensional finite element analysis and the engineering design of components were completed. In 2013 the ORNL team finalized the upgrade of the U-frame testing setup and the integration of the U-frame setup into a Bose dual linear motor test bench to develop a cyclic integrated reversible-bending fatigue tester (CIRFT). A final check was conducted on the CIRFT test system in August 2013, and the CIRFT was installed in the hot cell in September 2013 to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The fatigue responses of Zircaloy-4 (Zry-4) cladding and the role of pellet pellet and pellet clad interactions are critical to SNF vibration integrity, but such data are not available due to the unavailability of an effective testing system. While the deployment of the developed CIRFT test system in a hot cell will provide the opportunity to generate the data, the use of a surrogate rod has proven quite effective in identifying the underlying deformation mechanism of an SNF composite rod under an equivalent loading condition. This paper presents the experimental results of using surrogate rods under CIRFT reversible cyclic loading. Specifically, monotonic and cyclic bending tests were conducted on surrogate rods made of a Zry-4 tube and alumina pellet inserts, both with and without an epoxy bond.

  16. Particle deposition in ventilation ducts: Connectors, bends anddeveloping flow

    SciTech Connect (OSTI)

    Sippola, Mark R.; Nazaroff, William W.

    2004-03-01

    In ventilation duct flow the turbulent flow profile is commonly disturbed or not fully developed and these conditions are likely to influence particle deposition to duct surfaces. Particle deposition rates at eight S-connectors, in two 90{sup o} duct bends and in two ducts where the turbulent flow profile was not fully developed were measured in a laboratory duct system with both galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. In the steel duct system, experiments with nominal particle diameters of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition of particles with nominal diameters of 1, 3, 5, 8 and 13 {micro}m was measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces. Deposition at S-connectors, in bends and in straight ducts with developing turbulence was often greater than deposition in straight ducts with fully developed turbulence for equal particle sizes, air speeds and duct surface orientations. Deposition rates at all locations were found to increase with an increase in particle size or air speed. High deposition rates at S-connectors resulted from impaction and these rates were nearly independent of the orientation of the S-connector. Deposition rates in the two 90{sup o} bends differed by more than an order of magnitude in some cases, probably because of the difference in turbulence conditions at the bend inlets. In straight steel ducts where the turbulent flow profile was developing, the deposition enhancement relative to fully developed turbulence generally increased with air speed and decreased with downstream distance from the duct inlet. This enhancement was greater at the duct ceiling and wall than at the duct floor. In insulated ducts, deposition enhancement was less pronounced overall

  17. Ice plug employed on subsea pipeline bend during repair

    SciTech Connect (OSTI)

    1997-12-22

    The first controlled-temperature ice plug in the bend of an offshore gas trunkline has been carried out for Phillips Petroleum Co. Norway on its Norpipe A.S. platform in the German sector of the North Sea. The procedure was part of a subsea valve repair operation. The ice plug was successfully formed offshore and tested to a differential pressure of 1,450 psi. Repair of two valves required only 5 days during which time gas production was operating at close to 50--60% via the platform bypass, says the service company. The paper discusses the procedure.

  18. Electromagnetic radiation from positive-energy bound electrons in the Coulomb field of a nucleus at rest in a strong uniform magnetic field

    SciTech Connect (OSTI)

    Arsenyev, S. A.; Koryagin, S. A.

    2012-06-15

    A classical analysis is presented of the electromagnetic radiation emitted by positive-energy electrons performing bound motion in the Coulomb field of a nucleus at rest in a strong uniform magnetic field. Bounded trajectories exist and span a wide range of velocity directions near the nucleus (compared to free trajectories with similar energies) when the electron Larmor radius is smaller than the distance at which the electron-nucleus Coulomb interaction energy is equal to the mechanical energy of an electron. The required conditions occur in magnetic white dwarf photospheres and have been achieved in experiments on production of antihydrogen. Under these conditions, the radiant power per unit volume emitted by positive-energy bound electrons is much higher than the analogous characteristic of bremsstrahlung (in particular, in thermal equilibrium) at frequencies that are below the electron cyclotron frequency but higher than the inverse transit time through the interaction region in a close collision in the absence of a magnetic field. The quantum energy discreteness of positive-energy bound states restricts the radiation from an ensemble of bound electrons (e.g., in thermal equilibrium) to nonoverlapping spectral lines, while continuum radiative transfer is dominated by linearly polarized bremsstrahlung.

  19. A double crystal monochromator using tangentially bend crystals in combination with toroidal mirror focusing

    SciTech Connect (OSTI)

    Feng, Jun, Thompson,A.C.; Padmore,H.A.

    2000-02-24

    resolution, fixing the curvature gives approximately ideal resolution over typically 2 keV for the ALS bending magnet source. A further simplification is that the whole optical system will be inside the shield wall, with only a small pipe emerging from the shield wall to feed a standard commercial diffraction system. This means that the mirror will be at only 6.5 m from the source. This means that the toroidal mirror can be as short as 300 mm while collecting most of the vertical radiation fan. In addition, as the required tangential slope error is related to the angular size of the source, putting the mirror close reduces the slope error requirements substantially. These aspects together should result in a simple, low cost and very high performance system for small crystal, small molecule cr2048llography.

  20. Understanding Superconducting Magnetic Energy Storage (SMES) technology, applications, and economics, for end-use workshop

    SciTech Connect (OSTI)

    Ferraro, R.J.; McConnell, B.W.

    1993-06-01

    The overall objective of this project was to determine the state-of-the-art and to what extent existing SMES is a viable option in meeting the needs of utilities and their customers for improving electric service power quality. By defining and analyzing SMES electrical/mechanical performance characteristics, and comparing SMES application benefits with competitive stored energy systems, industry will be able to determine SMES unique applications and potential market penetration. Building on this information base, it would also be possible to evaluate the impact of high temperature superconductors (77 K and 20-35 K) on SMES technology applications. The authors of this report constructed a network of industry contacts and research consultants that were used to collect, update, and analyze ongoing SMES R&D and marketing activities in industries, utilities, and equipment manufacturers. These key resources were utilized to assemble performance characteristics on existing SMES, battery, capacitor, flywheel, and high temperature superconductor (HTS) stored energy technologies. From this information, preliminary stored energy system comparisons were accomplished. In this way, the electric load needs would be readily comparable to the potential solutions and applications offered by each aforementioned energy storage technology.

  1. Fracture behavior of ceramic laminates in bending-I. Modeling of crack propagation

    SciTech Connect (OSTI)

    Phillipps, A.J.; Clegg, W.J.; Clyne, T.W. . Dept. of Materials Science and Metallurgy)

    1993-03-01

    This paper concerns the fracture behavior of specimens made up of ceramic sheets, separated by thin interlayers, which act to deflect cracks and thus to prevent catastrophic failure of the specimen. The treatment is divided into two parts. In this paper, the behavior of this type of material during bending is quantitatively modeled. The model is based on through-thickness cracks propagating when a critical stress is reached and interfacial cracks then advancing a distance dictated by the available energy. The variation in laminae strengths is modeled using a Monte Carlo method to determine the strength of successive laminae for a given Weibull modulus. The model is used to predict load/displacement plots and to explore the effects of changes in loading geometry and specimen variables, including Young's modulus, lamina strength, loading span, interfacial toughness, as well as lamina and sample thickness. A distinction is drawn between the energy actually absorbed in causing complete failure of the specimen as measured from the area under the load/displacement curve, and the amount of energy necessary to cause the crack propagation which occurred. These differ if the energy available to drive the interfacial cracks is more than sufficient for them to reach the ends of the specimen or if energy is dissipated elsewhere in the system. A criterion is derived by which specimens can be designed so as to minimize the difference between these two quantities. The significance of this concept in optimizing the toughness of these laminated materials is briefly discussed.

  2. Experiments and analyses on undermatched interleaf specimens in bending

    SciTech Connect (OSTI)

    Parks, D.M.; Ganti, S.; McClintock, F.A.; Epstein, J.S.; Lloyd, L.R.; Reuter, W.G.

    1995-12-31

    Model weldment fracture specimens have been fabricated, tested, and analyzed using finite elements. The specimens consist of an interleaf of commercially pure titanium diffusion-bonded to a harder alloy titanium. A deep edge crack is introduced symmetrically into the interleaf, and the specimens are loaded in pure bending. Variation of the thickness (2h) of the soft interleaf layer provides insight into effects of weld geometry in strongly undermatched weldments tested in plane strain bending. Ductile crack growth (beyond blunting) initiated at loads giving J {doteq} 95 kJ/m{sup 2} in all specimens. In the thickest interleaf geometries, stable tearing was obtained, but in the thinnest interleaf (2h {doteq} 3mm), crack initiation resulted in a massive pop-in of 5.4 mm across an initial ligament of 12 mm. Finite element studies show that the thinnest interleaf geometry had slightly higher peak stress triaxiality at the beginning of cracking, and that the highest triaxiality extended over a larger region than in the thicker interleaf specimens loaded to the same initiation J-values. More importantly, the blockage of plastic straining above and below the crack tip in the 3 mm interleaf specimen forced higher values of plastic strain to spread forward into the {+-} 45{degree} sector of highest stress triaxiality directly ahead of the crack tip. The higher strains, in conjunction with the slightly higher stress triaxiality, led to the unstable pop-in initiation.

  3. A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems

    SciTech Connect (OSTI)

    Onar, Omer C

    2012-01-01

    This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

  4. Funding & Financing for Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Funding & Financing for Energy Projects A concentrating solar power system being installed in Gila Bend, Arizona. | Photo by Dennis Schroeder. A concentrating solar power system being installed in Gila Bend, Arizona. | Photo by Dennis Schroeder. Are you a state, local or tribal government, or private sector partner, looking for resources or financing to support an energy project? Learn about funding and financing opportunities. AT THE ENERGY DEPARTMENT Loan Programs Office: The

  5. Finite element residual stress analysis of induction heating bended ferritic steel piping

    SciTech Connect (OSTI)

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae

    2014-10-06

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.

  6. Ultrafast dynamics of liquid water: Frequency fluctuations of the OH stretch and the HOH bend

    SciTech Connect (OSTI)

    Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

    2013-07-28

    Frequency fluctuations of the OH stretch and the HOH bend in liquid water are reported from the third-order response function evaluated using the TTM3-F potential for water. The simulated two-dimensional infrared (IR) spectra of the OH stretch are similar to previously reported theoretical results. The present study suggests that the frequency fluctuation of the HOH bend is faster than that of the OH stretch. The ultrafast loss of the frequency correlation of the HOH bend is due to the strong couplings with the OH stretch as well as the intermolecular hydrogen bond bend.

  7. Bending stiffness and interlayer shear modulus of few-layer graphene

    SciTech Connect (OSTI)

    Chen, Xiaoming; Yi, Chenglin; Ke, Changhong

    2015-03-09

    Interlayer shear deformation occurs in the bending of multilayer graphene with unconstrained ends, thus influencing its bending rigidity. Here, we investigate the bending stiffness and interlayer shear modulus of few-layer graphene through examining its self-folding conformation on a flat substrate using atomic force microscopy in conjunction with nonlinear mechanics modeling. The results reveal that the bending stiffness of 26 layers graphene follows a square-power relationship with its thickness. The interlayer shear modulus is found to be in the range of 0.360.49?GPa. The research findings show that the weak interlayer shear interaction has a substantial stiffening effect for multilayer graphene.

  8. Propagation speed of rotation signals for field lines undergoing magnetic reconnection

    SciTech Connect (OSTI)

    Lapenta, Giovanni; Goldman, Martin; Newman, David; Markidis, Stefano

    2013-10-15

    Reconnection is associated with two bending of the magnetic field lines. Considering the usual plane of a 2D reconnection simulation, the first bending is in-plane and produces the needed topological changes by bringing oppositely directed filed lines in proximity. The second is typical of fast reconnection and is out of plane, leading to the formation of the Hall magnetic field. This second rotation has recently been observed to proceed at superAlfvénic speeds and to carry substantial energy fluxes (Shay et al., Phys. Rev. Lett. 107, 065001 (2011)). We revisit these rotations with a new diagnostics based on dispersing a multitude of virtual probes into a kinetic simulation, akin the approach of multi spacecraft missions. The results of the new diagnostics are compared with the theory of characteristics applied to the two fluid model. The comparison of virtual probes and the method of characteristics confirm the findings relative to the out of plane rotation and uncover the existence of two families of characteristics. Both are observed in the simulation. The early stage of reconnection develops on the slower compressional branch and the later faster phase develops on the faster torsional branch. The superAlfvénic signal is only relevant in the second phase.

  9. 2,"Big Bend Dam","Hydroelectric","USCE-Missouri River District",520

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Oahe","Hydroelectric","USCE-Missouri River District",714 2,"Big Bend Dam","Hydroelectric","USCE-Missouri River District",520 3,"Big Stone","Coal","Otter Tail Power Co",475.6 4,"Fort Randall","Hydroelectric","USCE-Missouri River District",360

  10. Making permanent magnets more powerful and less expensive | The...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Making permanent magnets more powerful and less expensive Today's high-tech and clean energy capabilities are extremely reliant on powerful permanent magnets. Permanent magnets...

  11. High-energy magnetic excitations in overdoped La 2 - x Sr x CuO 4 studied by neutron and resonant inelastic x-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wakimoto, S.; Ishii, K.; Kimura, H.; Fujita, M.; Dellea, G.; Kummer, K.; Braicovich, L.; Ghiringhelli, G.; Debeer-Schmitt, L. M.; Granroth, G. E.

    2015-05-21

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L₃ edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2-xSrxCuO₄ with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (π,π) direction agree with the dispersion relation of the spin wave in the nondoped La₂CuO₄ (LCO), which is consistent with themore » previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L₃ edge, we have measured the dispersion relations of the so-called paramagnon mode along both (π,π) and (π,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (π,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (π,π) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (π/2,π/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (π,π) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. A possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (π,π) direction as detected by the x-ray scattering.« less

  12. Role of elastic bending stress on magnetism of a manganite thin...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Journal Name: Physical Review B; Journal Volume: 85; Journal Issue: 21 ... Export Metadata Endnote Excel CSV XML Save to My Library Send to Email Send to Email ...

  13. The Effect of Element Formulation on the Prediction of Boost Effects in Numerical Tube Bending

    SciTech Connect (OSTI)

    Bardelcik, A.; Worswick, M.J.

    2005-08-05

    This paper presents advanced FE models of the pre-bending process to investigate the effect of element formulation on the prediction of boost effects in tube bending. Tube bending experiments are conducted with 3'' (OD) IF (Interstitial-Free) steel tube on a fully instrumented Eagle EPT-75 servo-hydraulic mandrel-rotary draw tube bender. Experiments were performed in which the bending boost was varied at three levels and resulted in consistent trends in the strain and thickness distribution within the pre-bent tubes. A numerical model of the rotary draw tube bender was used to simulate pre-bending of the IF tube with the three levels of boost from the experiments. To examine the effect of element formulation on the prediction of boost, the tube was modeled with shell and solid elements. Both models predicted the overall strain and thickness results well, but showed different trends in each of the models.

  14. Magnet Lattice Design for the Transmission of Power Using Particle Beams

    SciTech Connect (OSTI)

    Marley, Daniel; /North Carolina State U. /SLAC

    2012-08-24

    As the amount of electricity generated by renewable energy sources continues to increase, the current method of power transmission will not serve as an adequate method for transmitting power over very long distances. A new method for transmitting power is proposed using particle beams in a storage ring. Particle beams offer an incredibly energy efficient alternative to transmission lines in transmitting power over very long distances. A thorough investigation of the magnet lattice design for this storage ring is presented. The design demonstrates the ability to design a ring with stable orbits over a 381.733 km circumference. Double bend achromats and FODO cells are implemented to achieve appropriate {beta} functions and dispersion functions for 9-11 GeV electron beams.

  15. Harmonics suppression of vacuum chamber eddy current induced fields with application to the Superconducting Super Collider (SSC) Low Energy Booster (LEB) Magnets

    SciTech Connect (OSTI)

    Schlueter, R.D.; Halbach, K.

    1991-12-04

    This memo presents the formulation of an expression for eddy currents induced in a thin-walled conductor due to a time-dependent electromagnet field excitation. Then follows an analytical development for prediction of vacuum chamber eddy current induced field harmonics in iron-core electromagnets. A passive technique for harmonics suppression is presented with specific application to the design of the Superconducting Super Collider (SSC) Low Energy B (LEB) Magnets.

  16. Permanent Magnet Skew Quadrupoles for the Low Emittance LER Lattice of PEP-II

    SciTech Connect (OSTI)

    Decker, F.-J.; Anderson, S.; Kharakh, D.; Sullivan, M.; /SLAC

    2011-07-05

    The vertical emittance of the low energy ring (LER) in the PEP-II B-Factory was reduced by using skew quadrupoles consisting of permanent magnet material. The advantages over electric quadrupoles or rotating existing normal quadrupoles are discussed. To assure a high field quality, a Biot-Savart calculation was used to cancel the natural 12-pole component by using different size poles over a few layers. A magnetic measurement confirmed the high quality of the magnets. After installation and adjusting the original electric 12 skew and 16 normal quadrupoles the emittance contribution from the region close to the interaction point, which was the biggest part in the original design, was considerably reduced. To strengthen the vertical behavior of the LER beam, a low emittance lattice was developed. It lowered the original vertical design emittance from 0.54 nm-rad to 0.034 nm-rad. In order to achieve this, additional skew quadrupoles were required to bring the coupling correction out of the arcs and closer to the detector solenoid in the straight (Fig. 1). It is important, together with low vertical dispersion, that the low vertical emittance is not coupled into the horizontal, which is what we get if the coupling correction continues into the arcs. Further details of the lattice work is described in another paper; here we concentrate on the development of the permanent skew (PSK) quadrupole solution. Besides the permanent magnets there are two other possibilities, using electric magnets or rotating normal quadrupoles. Electric magnets would have required much more additional equipment like magnets stands, power supply, and new vacuum chamber sections. Rotating existing quadrupoles was also not feasible since they are mostly mounted together with a bending magnet on the same support girder.

  17. Band bending at ferroelectric surfaces and interfaces investigated by x-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Apostol, Nicoleta Georgiana

    2014-11-24

    This work reports on the use of X-ray photoelectron spectroscopy to quantify band bending at ferroelectric free surfaces and at their interfaces with metals. Surfaces exhibiting out-of-plane ferroelectric polarization are characterized by a band bending, due to the formation of a dipole layer at the surface, composed by the uncompensated polarization charges (due to ionic displacement) and to the depolarization charge sheet of opposite sign, composed by mobile charge carriers, which migrate near surface, owing to the depolarization electric field. To this surface band bending due to out-of-plane polarization states, metal-semiconductor Schottky barriers must be considered additionally when ferroelectrics are covered by metal layers. It is found that the net band bending is not always an algebraic sum of the two effects discussed above, since sometimes the metal is able to provide additional charge carriers, which are able to fully compensate the surface charge of the ferroelectric, up to the vanishing of the ferroelectric band bending. The two cases which will be discussed in more detail are Au and Cu deposited by molecular beam epitaxy on PbZr{sub 0.2}Ti{sub 0.8}O{sub 3}(001) single crystal thin layers, prepared by pulsed laser deposition. Gold forms unconnected nanoparticles, and their effect on the band bending is the apparition of a Schottky band bending additional to the band bending due to the out-of-plane polarization. Copper, starting with a given thickness, forms continuous metal layers connected to the ground of the system, and provide electrons in sufficient quantity to compensate the band bending due to the out-of-plane polarization.

  18. Digital Method of Analyzing the Bending Stiffness of Non-Crimp Fabrics

    SciTech Connect (OSTI)

    Soteropoulos, Dimitri; Fetfatsidis, Konstantine; Sherwood, James A.; Langworthy, Joanna [Department of Mechanical Engineering, University of Massachusetts, Lowell One University Ave., Lowell, MA 01854 (United States)

    2011-05-04

    A digital-analytical method for characterizing the bending behavior of NCFs (Non-Crimp Fabrics) is developed. The study is based on a hanging fabric loaded to a known displacement. The image of the deformed fabric is captured digitally, and then analyzed to describe the deformed shape of the beam using x-y coordinates. The bending stiffness of the fabric is then determined through an iterative method using a finite element method (ABAQUS). This effective bending stiffness is of importance in the formation of wave defects in NCFs during manufacturing processes such as thermoforming, vacuum assisted resin transfer molding, and compression molding.

  19. The importance of jet bending in gamma-ray AGNsrevisited

    SciTech Connect (OSTI)

    Graham, P. J.; Tingay, S. J.

    2014-04-01

    We investigate the hypothesis that ?-ray-quiet active galactic nuclei (AGNs) have a greater tendency for jet bending than ?-ray-loud AGNs, revisiting the analysis of Tingay et al. We perform a statistical analysis using a large sample of 351 radio-loud AGNs along with ?-ray identifications from the Fermi Large Area Telescope (LAT). Our results show no statistically significant differences in jet-bending properties between ?-ray-loud and ?-ray-quiet populations, indicating that jet bending is not a significant factor for ?-ray detection in AGNs.

  20. Late Cenozoic paleomagnetism and chronology of Andean basins of Bolivia: Evidence for possible oroclinal bending

    SciTech Connect (OSTI)

    MacFadden, B.J. ); Anaya, F.; Perez, H. ); Naeser, C.W. ); Zeitler, P.K. ); Campbell, K.E. Jr. )

    1990-07-01

    New paleomagnetic and radioisotopic data are reported from two late Tertiary high-elevation, non-marine basins in the eastern Cordillera of Bolivia. (1) Quebrada Honda, located at 22{degree}S lat., consists of a 300 m thick section containing abundant Santacrucian or Friasian (middle Miocene) fossil mammals. This locality is constrained by mean {sup 40}K/{sup 40}Ar ages of 12.83 {plus minus} 0.11 Ma and 11.96 {plus minus} 0.11 Ma, and the local magnetostratigraphy is correlated to chrons C5AA through C5A on the Magnetic Polarity Time Scale (MPTS). The fossil mammals from Quebrada Honda have an extrapolated age of about 13.0 to 12.7 Ma. (2) Micana, located at 17{degree}S lat., consists of a 205 m thick section containing late Miocene fossil mammals, including a megatheriid sloth and the tiny mesothere Microtypotherium cf. M. choquecotense. The locality is constrained by a fission-track age determination of 6.9 {plus minus} 1.1 Ma, and the local magnetostratigraphy is correlated to Chron 7 on the MPTS. The fossil mammals from this section have an extrapolated age of about 7.3 to 7.4 Ma. In conjunction with two other published data sets (Ocros, 13{degree}S, and Salla, 17{degree}S), these late Tertiary Andean localities indicate counterclockwise rotation at 13{degree}S, negligible rotation at 17{degree}S, and clockwise rotation at 22{degree}S. These data could represent local small-block rotations on a scale greater than about 6 km{sup 2}. However, these data are also consistent with a model of late Neogene bending of the Bolivian Orocline.

  1. Energy-dependent crossover from anisotropic to isotropic magnetic dispersion in lightly-doped La1.96Sr0.04CuO4

    SciTech Connect (OSTI)

    Matsuda, Masaaki; Granroth, Garrett E; Fujita, M.; Yamada, K.; Tranquada, John M.

    2013-01-01

    Inelastic neutron scattering experiments have been performed on lightly-doped La$_{1.96}$Sr$_{0.04}$CuO$_{4}$, which shows diagonal incommensurate spin correlations at low temperatures. We previously reported that this crystal, with a single orthorhombic domain, exhibits the ``hourglass" dispersion at low energies [Phys. Rev. Lett. 101, 197001 (2008)]. In this paper, we investigate in detail the energy evolution of the magnetic excitations up to 65 meV. It is found that the anisotropic excitations at low energies, dispersing only along the spin modulation direction, crossover to an isotropic, conical dispersion that resembles spin waves in the parent compound La$_2$CuO$_{4}$. The change from two-fold to full symmetry on crossing the waist of the hourglass reproduces behavior first identified in studies of underdoped YBa$_2$Cu$_3$O$_{6+x}$. We discuss the significance of these results.

  2. Permanent-magnet flowmeter having improved output-terminal means

    DOE Patents [OSTI]

    August, C.; Myers, H.J.

    1981-10-26

    Disclosed is an improved permanent magnet flowmeter capable of withstanding bending stresses in the direction of induced emf signals. The flowmeter includes a unique terminal arrangement integrally formed with the flowmeter by trepanning opposing wall sections of the flowmeter body. The terminal arrangement provides increased flowmeter sensitivity by increasing the strength of the induced emf signals.

  3. Permanent magnet flowmeter having improved output terminal means

    DOE Patents [OSTI]

    August, Charles; Myers, Harry J.

    1984-01-01

    Disclosed is an improved permanent magnet flowmeter capable of withstanding bending stresses in the direction of induced emf signals. The flowmeter includes a unique terminal arrangement integrally formed with the flowmeter by trepanning opposing wall sections of the flowmeter body. The terminal arrangement provides increased flowmeter sensitivity by increasing the strength of the induced emf signals.

  4. High-energy magnetic excitations in overdoped La2-xSrxCuO4 studied by neutron and resonant inelastic X-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wakimoto, S.; Ishii, K.; Kimura, H.; Fujita, M.; Dellea, G.; Kummer, K.; Braicovich, L.; Ghiringhelli, G.; Debeer-Schmitt, Lisa M.; Granroth, Garrett E.

    2015-05-21

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L3 edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2₋xSrxCuO4 with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (π,π) direction agree with the dispersion relation of the spin wave in the nondoped La2CuO4 (LCO), which is consistent with themore » previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L3 edge, we have measured the dispersion relations of the so-called paramagnon mode along both (π,π) and (π,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (π,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (π,π) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (π/2,π/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (π,π) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. Lastly, we find a possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (π,π) direction as detected by the x-ray scattering.« less

  5. Curvature of a cantilever beam subjected to an equi-biaxial bending moment

    SciTech Connect (OSTI)

    Krulevitch, P.; Johnson, G.C.

    1998-04-28

    Results from a finite element analysis of a cantilever beam subjected to an equi-biaxial bending moment demonstrate that the biaxial modulus E/(I-v) must be used even for narrow beams.

  6. Characterization of Optical Fiber Strength Under Applied Tensile Stress and Bending Stress

    SciTech Connect (OSTI)

    P.E. Klingsporn

    2011-08-01

    Various types of tensile testing and bend radius tests were conducted on silica core/silica cladding optical fiber of different diameters with different protective buffer coatings, fabricated by different fiber manufacturers. The tensile tests were conducted to determine not only the average fiber strengths at failure, but also the distribution in fracture strengths, as well as the influence of buffer coating on fracture strength. The times-to-failure of fiber subjected to constant applied bending stresses of various magnitudes were measured to provide a database from which failure times of 20 years or more, and the corresponding minimum bend radius, could be extrapolated in a statistically meaningful way. The overall study was done to provide an understanding of optical fiber strength in tensile loading and in applied bending stress as related to applications of optical fiber in various potential coizfgurations for weapons and enhanced surveillance campaigns.

  7. Numerical simulations of the bending of narrow-angle-tail radio jets by ram pressure or pressure gradients

    SciTech Connect (OSTI)

    Soker, N.; Sarazin, C.L.; O'Dea, C.P.

    1988-04-01

    Three-dimensional numerical hydrodynamic simulations are used to study the bending of radio jets. The simulations are compared with observations of jets in narrow-angle-tail radio sources. Two mechanisms for the observed bending are considered: direct bending of quasi-continuous jets by ram pressure from intergalactic gas and bending by pressure gradients in the interstellar gas of the host galaxy, the pressure gradients themselves being the result of ram pressure by intergalactic gas. It is shown that the pressure gradients are much less effective in bending jets, implying that the jets have roughly 30 times lower momentum fluxes if they are bent by this mechanism. Ram-pressure bending produces jets with kidney-shaped cross sections; when observed from the side, these jets appear to have diffuse extensions on the downstream side. On the other hand, pressure-gradient bending causes the jets to be densest near their upstream side. 31 references.

  8. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  9. Low-energy magnetic response and Yb valence in the Kondo insulator YbB{sub 12}

    SciTech Connect (OSTI)

    Alekseev, P. A.; Nefeodova, E. V.; Staub, U.; Mignot, J.-M.; Lazukov, V. N.; Sadikov, I. P.; Soderholm, L.; Wassermann, S. R.; Paderno, Yu. B.; Shitsevalova, N. Yu.

    2001-02-01

    X-ray absorption and high-resolution inelastic neutron-scattering experiments on the Kondo insulator YbB{sub 12} are reported. The ytterbium L{sub 3}-edge spectrum consists of a single white line with no observable temperature dependence between 10 and 295 K, indicating that the Yb valence is closer to 3+ than was concluded from previous high-resolution photoemission and XPS results. The neutron measurements confirm the existence of a gap in the magnetic excitation spectrum for T=5K, and show that its gradual suppression as temperature increases is due to the appearance of an extra quasielastic component in the magnetic dynamical response.

  10. Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009

    SciTech Connect (OSTI)

    2009-06-08

    Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a

  11. Final Report- Transforming PV installations toward dispatchable, schedulable energy solutions

    Office of Energy Efficiency and Renewable Energy (EERE)

    Awardee: AE Solar EnergyLocation: Bend, ORSubprogram: Systems IntegrationFunding Program: SEGIS-ACProject: Transforming PV installations toward dispatchable, schedulable energy solutionsPrincipal...

  12. Fiscal Year 1983 Department of Energy budget review (magnetic-fusion energy). Volume V. Hearings before the Subcommittee on Energy Research and Production of the Committee on Science and Technology, US House of Representatives, Ninety-Seventh Congress, Second Session, March 23-24, 1982

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Volume V covers two days of budget hearings on the magnetic-fusion-energy program. The nine witnesses included Alvin W. Trivelpiece of the DOE Office of Energy Research and John F. Clarke, Director for Fusion Energy of the Office of Energy Research. Witnesses were asked to respond to questions about the level of funding, the technical progress of the program, and the appropriate timing and level of industrial development. Two panels of interested members of industry and the fusion-energy community testified. The record includes their statements and additional material submitted for the record. (DCK)

  13. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  14. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  15. The 12 GeV Energy Upgrade at Jefferson Laboratory

    SciTech Connect (OSTI)

    Pilat, Fulvia C.

    2012-09-01

    Two new cryomodules and an extensive upgrade of the bending magnets at Jefferson Lab has been recently completed in preparation for the full energy upgrade in about one year. Jefferson Laboratory has undertaken a major upgrade of its flagship facility, the CW re-circulating CEBAF linac, with the goal of doubling the linac energy to 12 GeV. I will discuss here the main scope and timeline of the upgrade and report on recent accomplishments and the present status. I will then discuss in more detail the core of the upgrade, the new additional C100 cryomodules, their production, tests and recent successful performance. I will then conclude by looking at the future plans of Jefferson Laboratory, from the commissioning and operations of the 12 GeV CEBAF to the design of the MEIC electron ion collider.

  16. Magnetized Turbulent Dynamo in Protogalaxies

    SciTech Connect (OSTI)

    Leonid Malyshkin; Russell M. Kulsrud

    2002-01-28

    The prevailing theory for the origin of cosmic magnetic fields is that they have been amplified to their present values by the turbulent dynamo inductive action in the protogalactic and galactic medium. Up to now, in calculation of the turbulent dynamo, it has been customary to assume that there is no back reaction of the magnetic field on the turbulence, as long as the magnetic energy is less than the turbulent kinetic energy. This assumption leads to the kinematic dynamo theory. However, the applicability of this theory to protogalaxies is rather limited. The reason is that in protogalaxies the temperature is very high, and the viscosity is dominated by magnetized ions. As the magnetic field strength grows in time, the ion cyclotron time becomes shorter than the ion collision time, and the plasma becomes strongly magnetized. As a result, the ion viscosity becomes the Braginskii viscosity. Thus, in protogalaxies the back reaction sets in much earlier, at field strengths much lower than those which correspond to field-turbulence energy equipartition, and the turbulent dynamo becomes what we call the magnetized turbulent dynamo. In this paper we lay the theoretical groundwork for the magnetized turbulent dynamo. In particular, we predict that the magnetic energy growth rate in the magnetized dynamo theory is up to ten times larger than that in the kinematic dynamo theory. We also briefly discuss how the Braginskii viscosity can aid the development of the inverse cascade of magnetic energy after the energy equipartition is reached.

  17. Magnetic Materials Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-ID-C: Soft X-ray Magnetic Spectroscopy This beamline operates in the soft x-ray energy spectrum (500 - 2700 eV) using an electromagnetic helical undulator to provide circularly...

  18. Cosmic magnetism

    SciTech Connect (OSTI)

    Seymour, P.

    1986-01-01

    This book deals with the cosmic magnetism in a non-mathematical way. It uses Faraday's very powerful and highly pictorial concept of lines of magnetic force and their associated physical properties to explain the structure and behavior of magnetic fields in extraterrestrial objects. Contents include: forces of nature; magnetic field of earth; solar and interplanetary magnetic fields; magnetic fields in the solar system; stars and pulsars; and magnetic fields of the milky way and other galaxies.

  19. EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal to provide financial assistance for a project proposed by NRG Energy, Inc (NRG). DOE selected NRG’s proposed W.A. Parish Post-Combustion CO2 Capture and Sequestration Project for a financial assistance award through a competitive process under the Clean Coal Power Initiative Program. NRG would design, construct and operate a commercial-scale carbon dioxide (CO2) capture facility at its existing W.A. Parish Generating Station in Fort Bend County, Texas; deliver the CO2 via a new pipeline to the existing West Ranch oil field in Jackson County, Texas, for use in enhanced oil recovery operations; and demonstrate monitoring techniques to verify the permanence of geologic CO2 storage.

  20. SEM in situ MiniCantilever Beam Bending of U-10Mo/Zr/Al Fuel Elements

    SciTech Connect (OSTI)

    Mook, William; Baldwin, Jon K.; Martinez, Ricardo M.; Mara, Nathan A.

    2014-06-16

    In this work, the fracture behavior of Al/Zr and Zr/dU-10Mo interfaces was measured via the minicantilever bend technique. The energy dissipation rates were found to be approximately 3.7-5 mj/mm2 and 5.9 mj/mm2 for each interface, respectively. It was found that in order to test the Zr/U-10Mo interface, location of the hinge of the cantilever was a key parameter. While this test could be adapted to hot cell use through careful alignment fixturing and measurement of crack lengths with an optical microscope (as opposed to SEM, which was used here out of convenience), machining of the cantilevers via MiniMill in such a way as to locate the interfaces at the cantilever hinge, as well as proper placement of a femtosecond laser notch will continue to be key challenges in a hot cell environment.

  1. Manufacturing the MFTF magnet

    SciTech Connect (OSTI)

    Dalder, E.N.C.; Hinkle, R.E.; Hodges, A.J.

    1980-10-13

    The Mirror Fusion Test Facility (MFTF) is a large mirror program experiment for magnetic fusion energy. It will combine and extend the near-classical plasma confinement achieved in 2XIIB with advanced neutral-beam and magnet technologies. The product of ion density and confinement time will be improved more than an order of magnitude, while the superconducting magnet weight will be extrapolated from 15 tons in Baseball II to 375 tons in MFTF. Recent reactor studies show that the MFTF will traverse much of the distance in magnet technology towards the reactor regime.

  2. Magnetic switches and circuits

    SciTech Connect (OSTI)

    Nunnally, W.C.

    1982-05-01

    This report outlines the use of saturable inductors as switches in lumped-element, magnetic-pulse compression circuits is discussed and the characteristic use of each is defined. In addition, the geometric constraints and magnetic pulse compression circuits used in short-pulse, low-inductance systems are considered. The scaling of presaturation leakage currents, magnetic energy losses, and switching times with geometrical and material parameters are developed to aid in evaluating magnetic pulse compression systems in a particular application. Finally, a scheme for increasing the couping coefficient in saturable stripline transformers is proposed to enable their use in the short-pulse, high-voltage regime.

  3. Ulysses observations of magnetic waves due to newborn interstellar pickup ions. II. Application of turbulence concepts to limiting wave energy and observability

    SciTech Connect (OSTI)

    Cannon, Bradford E.; Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J.; Murphy, Neil; Nuno, Raquel G. E-mail: Charles.Smith@unh.edu E-mail: Bernie.Vasquez@unh.edu E-mail: Neil.Murphy@jpl.nasa.gov

    2014-06-01

    The low-frequency magnetic waves that arise from the isotropization of newborn interstellar pickup ions (PUIs) are reasonably well described by linear and quasi-linear kinetic theory in so far as those theories predict the wave frequency and polarization in the spacecraft frame. Those theories fail to describe the scarce observability of the waves. Quasilinear theory predicts that the wave power should accumulate over long periods of time as the relatively weak kinetic instability slowly adds power to the observed spectrum. At the same time it has been argued that the same wave energy must serve as a secondary source of thermal ion heating in the outer heliosphere once the initial turbulence is depleted. To the extent that turbulent transport of the wave energy acts against the spectrally confined accumulation of wave energy, turbulence should be a limiting factor in observability. We argue that turbulence does limit the observability of the waves and we use turbulence theory to predict the observed wave energy. We compare this prediction against a database of 502 wave observations attributed to newborn interstellar PUIs observed by the Ulysses spacecraft.

  4. Passive magnetic bearing system

    DOE Patents [OSTI]

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  5. Magnetic Filtration Process, Magnetic Filtering Material, and Method of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forming Magnetic Filtering Material - Energy Innovation Portal Industrial Technologies Industrial Technologies Find More Like This Return to Search Magnetic Filtration Process, Magnetic Filtering Material, and Method of Forming Magnetic Filtering Material Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryORNL researchers developed a new method for filtering materials and managing wastewater. This invention offers an integrated, intensified process

  6. Magnetic reconnection | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic reconnection Subscribe to RSS - Magnetic reconnection Magnetic reconnection (henceforth called "reconnection") refers to the breaking and reconnecting of oppositely directed magnetic field lines in a plasma. In the process, magnetic field energy is converted to plasma kinetic and thermal energy. Physicist Fatima Ebrahimi conducts computer simulations that indicate the efficiency of an innovative fusion start-up technique Physicist Fatima Ebrahimi at the U.S. Department of

  7. Residual and applied stress analysis of an alloy 600 row 1 U-bend: Final report

    SciTech Connect (OSTI)

    Ruud, C.O.

    1987-09-01

    Residual stresses in Inconel alloy 600, row 1, U-bend tubes, used in heat exchanges in nuclear reactors, were studied using an advanced x-ray diffraction instrument. Both axial and circumferential (hoop) stresses on the extrados, intrados, and flanks on the O.D. surface of several U-bends were mapped. The I.D. surface residual stresses at the extrados of the U-bend were mapped on one tube and subsurface stress measurements were made on the I.D. and O.D. surfaces of that tube. Service loads were simulated on one tube to ascertain combined effect of residual and applied stresses. Data from wall thickness and profilometry measurements were also correlated with residual stress measurements. 21 refs., 42 figs.

  8. Household magnets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Household magnets Chances are very good that you have experimented with magnets. People have been fascinated with magnetism for thousands of years. As familiar to us as they may be, magnets still have some surprises for us. Here is a small collection of some of our favorite magnet experiments. What happens when we break a magnet in half? Radio Shack sells cheap ceramic magnets in several shapes. Get a ring shaped magnet and break it with pliers or a tap with a hammer. Try to put it back

  9. Injection of electrons with predominantly perpendicular energy into an area of toroidal field ripple in a tokamak plasma to improve plasma confinement

    DOE Patents [OSTI]

    Ono, Masayuki; Furth, Harold

    1993-01-01

    An electron injection scheme for controlling transport in a tokamak plasma. Electrons with predominantly perpendicular energy are injected into a ripple field region created by a group of localized poloidal field bending magnets. The trapped electrons then grad-B drift vertically toward the plasma interior until they are detrapped, charging the plasma negative. Calculations indicate that the highly perpendicular velocity electrons can remain stable against kinetic instabilities in the regime of interest for tokamak experiments. The penetration distance can be controlled by controlling the "ripple mirror ratio", the energy of the injected electrons, and their v.sub..perp. /v.sub.51 ratio. In this scheme, the poloidal torque due to the injected radial current is taken by the magnets and not by the plasma. Injection is accomplished by the flat cathode containing an ECH cavity to pump electrons to high v.sub..perp..

  10. Magnetic Field Mapping and Integral Transfer Function Matching of the Prototype Dipoles for the NSLS-II at BNL

    SciTech Connect (OSTI)

    He, P.; Jain, A., Gupta, R., Skaritka, J., Spataro, C., Joshi, P., Ganetis, G., Anerella, M., Wanderer, P.

    2011-03-28

    The National Synchrotron Light Source-II (NSLS-II) storage ring at Brookhaven National Laboratory (BNL) will be equipped with 54 dipole magnets having a gap of 35 mm, and 6 dipoles having a gap of 90 mm. Each dipole has a field of 0.4 T and provides 6 degrees of bending for a 3 GeV electron beam. The large aperture magnets are necessary to allow the extraction of long-wavelength light from the dipole magnet to serve a growing number of users of low energy radiation. The dipoles must not only have good field homogeneity (0.015% over a 40 mm x 20 mm region), but the integral transfer functions and integral end harmonics of the two types of magnets must also be matched. The 35 mm aperture dipole has a novel design where the yoke ends are extended up to the outside dimension of the coil using magnetic steel nose pieces. This design increases the effective length of the dipole without increasing the physical length. These nose pieces can be tailored to adjust the integral transfer function as well as the homogeneity of the integrated field. One prototype of each dipole type has been fabricated to validate the designs and to study matching of the two dipoles. A Hall probe mapping system has been built with three Group 3 Hall probes mounted on a 2-D translation stage. The probes are arranged with one probe in the midplane of the magnet and the others vertically offset by {+-}10 mm. The field is mapped around a nominal 25 m radius beam trajectory. The results of measurements in the as-received magnets, and with modifications made to the nose pieces are presented.

  11. Synthesis and magnetization studies of nanopowder Fe₇₀Ni₂₀Cr₁₀ alloys prepared by high energy milling

    SciTech Connect (OSTI)

    Chater, R.; Bououdina, M.; Chaanbi, D.; Abbas, H.

    2013-05-01

    Nanocrystalline Fe{sub 1–x–y}NixCry (x=20, y=10% in Wt)) alloy samples were prepared by mechanical alloying process. Fe, Ni and Cr elemental powders have been ball milled in a planetary mill for various periods of time, up to 27 h. XRD analysis allowed the determination of the structure of the mixture, the average crystallite size and the lattice parameter as a function of milling time. The complete formation of FeNiCr is observed after 27 h milling. With increasing milling time from 0 to 27 h, it is observed that the lattice parameter increases from 0.3515 to 0.3593 nm as well as an increase of microstrain from 0.15 to 0.40%, whereas the grain size decreases from 48 to 13 nm. Grain morphology of the powders at different formation stages was examined using SEM. Saturation magnetization and coercive fields derived from the hysteresis curves are discussed as a function of milling time. - Graphical abstract: Fe₇₀Ni₂₀Cr₁₀ nanopowders were prepared using a planetary ball mill. The structure and microstructure vary with milling time; thereby important modifications of the magnetic properties were observed and discussed. Highlights: • Nanocrystalline Fe₇₀Ni₂₀Cr₁₀ alloy were prepared by the mechanical alloying process. • The complete formation of Fe₇₀Ni₂₀Cr₁₀ is observed after 24 h milling. • With increasing milling time, the grain size decreases, while the strain increases. • The SEM images allowed following the morphology of the materials at different stages. • Ms and HC derived from the hysteresis are discussed as a function of milling time.

  12. Energy Sources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sources Energy Sources June 6, 2016 Installing a concentrating solar power system in Gila Bend, Arizona. The curved mirrors are tilted toward the sun, focusing sunlight on tubes that run the length of the mirrors. The reflected sunlight heats a fluid flowing through the tubes. The hot fluid then is used to boil water in a conventional steam-turbine generator to produce electricity. | Photo by Dennis Schroeder. Top 6 Things You Didn't Know About Solar Energy Counting down our list of top things

  13. Small and Powerful: Pushing the Boundaries of Nano-Magnets |...

    Office of Science (SC) Website

    and Powerful: Pushing the Boundaries of Nano-Magnets Basic Energy Sciences (BES) BES ... Small and Powerful: Pushing the Boundaries of Nano-Magnets Newly discovered particles ...

  14. Recycling Magnets from the Factory Floor | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Hub led by the Ames Laboratory, recovers valuable rare-earth magnetic material from manufacturing waste and creates useful magnets out of it. Ames Laboratory...

  15. ENERGY

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Department of ENERGY Department of Energy Quadrennial Technology Review-2015 Framing Document http:energy.govqtr 2015-01-13 Page 2 The United States faces serious ...

  16. EIS-0296: South Oregon Coast Reinforcement Project, Coos Bay/North Bend, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration proposes to build a 500- kilovolt (kV) transmission line and new substation to reinforce electrical service to the southern coast of the state of Oregon. Nucor Steel, a division of Nucor Corporation, may build a new steel mill in the Coos Bay/North Bend, Oregon, area.

  17. EIS-0296: South Oregon Coast Reinforcement Project, Coos Bay/North Bend, Oregon

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA's proposed action to build a 500- kilovolt (kV) transmission line and new substation to reinforce electrical service to the southern coast of the state of Oregon. Nucor Steel, a division of Nucor Corporation, may build a new steel mill in the Coos Bay/North Bend, Oregon, area.

  18. Guided wave radiation from a point source in the proximity of a pipe bend

    SciTech Connect (OSTI)

    Brath, A. J.; Nagy, P. B.; Simonetti, F.; Instanes, G.

    2014-02-18

    Throughout the oil and gas industry corrosion and erosion damage monitoring play a central role in managing asset integrity. Recently, the use of guided wave technology in conjunction with tomography techniques has provided the possibility of obtaining point-by-point maps of wall thickness loss over the entire volume of a pipeline section between two ring arrays of ultrasonic transducers. However, current research has focused on straight pipes while little work has been done on pipe bends which are also the most susceptible to developing damage. Tomography of the bend is challenging due to the complexity and computational cost of the 3-D elastic model required to accurately describe guided wave propagation. To overcome this limitation, we introduce a 2-D anisotropic inhomogeneous acoustic model which represents a generalization of the conventional unwrapping used for straight pipes. The shortest-path ray-tracing method is then applied to the 2-D model to compute ray paths and predict the arrival times of the fundamental flexural mode, A0, excited by a point source on the straight section of pipe entering the bend and detected on the opposite side. Good agreement is found between predictions and experiments performed on an 8” diameter (D) pipe with 1.5 D bend radius. The 2-D model also reveals the existence of an acoustic lensing effect which leads to a focusing phenomenon also confirmed by the experiments. The computational efficiency of the 2-D model makes it ideally suited for tomography algorithms.

  19. Photomechanical bending mechanics of polydomain azobenzene liquid crystal polymer network films

    SciTech Connect (OSTI)

    Cheng Liang; Torres, Yanira; Oates, William S.; Lee, Kyung Min; McClung, Amber J.; Baur, Jeffery; White, Timothy J.

    2012-07-01

    Glassy, polydomain azobenzene liquid crystal polymer networks (azo-LCNs) have been synthesized, characterized, and modeled to understand composition dependence on large amplitude, bidirectional bending, and twisting deformation upon irradiation with linearly polarized blue-green (440-514 nm) light. These materials exhibit interesting properties for adaptive structure applications in which the shape of the photoresponsive material can be rapidly reconfigured with light. The basis for the photomechanical output observed in these materials is absorption of actinic light by azobenzene, which upon photoisomerization dictates an internal stress within the local polymer network. The photoinduced evolution of the underlying liquid crystal microstructure is manifested as macroscopic deformation of the glassy polymer film. Accordingly, this work examines the polarization-controlled bidirectional bending of highly concentrated azo-LCN materials and correlates the macroscopic output (observed as bending) to measured blocked stresses upon irradiation with blue-green light of varying polarization. The resulting photomechanical output is highly dependent on the concentration of crosslinked azobenzene mesogens employed in the formulation. Experiments that quantify photomechanical bending and photogenerated stress are compared to a large deformation photomechanical shell model to quantify the effect of polarized light interactions with the material during static and dynamic polarized light induced deformation. The model comparisons illustrate differences in internal photostrain and deformation rates as a function of composition and external mechanical constraints.

  20. High-energy accelerator for beams of heavy ions

    DOE Patents [OSTI]

    Martin, Ronald L.; Arnold, Richard C.

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  1. Circular polarization of obliquely propagating whistler wave magnetic field

    SciTech Connect (OSTI)

    Bellan, P. M.

    2013-08-15

    The circular polarization of the magnetic field of obliquely propagating whistler waves is derived using a basis set associated with the wave partial differential equation. The wave energy is mainly magnetic and the wave propagation consists of this magnetic energy sloshing back and forth between two orthogonal components of magnetic field in quadrature. The wave electric field energy is small compared to the magnetic field energy.

  2. Longitudinal Gradient Dipole Magnet Prototype for APS at ANL

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kashikhin, V. S.; Borland, M.; Chlachidze, G.; Decker, G.; Dejus, R.; DiMarco, J.; Doose, C. L.; Gardner, T. J.; Harding, D. J.; Jaski, M. S.; et al

    2016-01-26

    We planned an upgrade of the Advanced Photon Source at Argonne National Laboratory (ANL). The main goal of the upgrade is to improve the storage ring performance based on more advanced optics. One of the key magnet system elements is bending dipole magnets having a field strength change along the electron beam path. Moreover, a prototype of one such longitudinal gradient dipole magnet has been designed, built, and measured in a collaborative effort of ANL and Fermilab. Our paper discusses various magnetic design options, the selected magnet design, and the fabrication technology. The prototype magnet has been measured by rotationalmore » coils, a stretched wire, and a Hall probe. Measurement results are discussed and compared with simulations.« less

  3. Modeling the Effects of (lambda)-gun on SSPX Operation: Mode Spectra, Internal Magnetic Field Structure, and Energy Confinement

    SciTech Connect (OSTI)

    Hooper, E

    2005-08-23

    The Sustained Spheromak Physics Experiment (SSPX) shows considerable sensitivity to the value of the injected (''gun'') current, I{sub gun}, parameterized by the relative values of {lambda}{sub gun} = {mu}{sub 0}I{sub gun}/{Psi}{sub gun} (with {Psi}{sub gun} the bias poloidal magnetic flux) to the lowest eigenvalue of {del} x B = {lambda}{sub FC}B in the flux conserver geometry. This report discusses modeling calculations using the NIMROD resistive-MHD code in the SSPX geometry. The behavior is found to be very sensitive to the profile of the safety factor, q, with the excitation of interior MHD modes at low-order resonant surfaces significantly affecting the evolution. Their evolution affects the fieldline topology (closed flux, islands, stochastic fieldlines confined by KAM surfaces, and open fieldlines), and thus electron temperature and other parameters. Because of this sensitivity, a major effect is the modification of the q-profile by the current on the open fieldlines in the flux core along the geometric axis. The time-history of a discharge can thus vary considerably for relatively small changes in I{sub gun}. The possibility of using this sensitivity for feedback control of the discharge evolution is discussed, but modeling of the process is left for future work.

  4. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Energy National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Energy Overview Charlie McMillan, Director of Los Alamos National Laboratory 0:50 Director McMillan on energy security With energy use increasing across the nation and the world, Los Alamos National Laboratory is using its world-class scientific capabilities to enhance

  5. Property:FERC License Docket Number | Open Energy Information

    Open Energy Info (EERE)

    Tidal Energy + P-14232 + MHK ProjectsCarrolton Bend Project + P-12833 + MHK ProjectsCat Island Project + P-12919 + MHK ProjectsClaiborne Island Project + P-12860 + MHK...

  6. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Surface/Near Surface Indication - Characterization of Surface Anomalies from Magnetic Particle and Liquid Penetrant Indications

    SciTech Connect (OSTI)

    Griffin, John

    2014-02-20

    The systematic study and characterization of surface indications has never been conducted. Producers and users of castings do not have any data on which they can reliably communicate the nature of these indications or their effect on the performance of parts. Clearly, the ultimate intent of any work in this area is to eliminate indications that do in fact degrade properties. However, it may be impractical physically and/or financially to eliminate all surface imperfections. This project focused on the ones that actually degrade properties. The initial work was to identify those that degrade properties. Accurate numerical simulations of casting service performance allow designers to use the geometric flexibility of castings and the superior properties of steel to produce lighter weight and more energy efficient components for transportation systems (cars and trucks), construction, and mining. Accurate simulations increase the net melting energy efficiency by improving casting yield and reducing rework and scrap. Conservatively assuming a 10% improvement in yield, approximately 1.33 x 1012 BTU/year can be saved with this technology. In addition, CO2 emissions will be reduced by approximately 117,050 tons per year.

  7. EXOTIC MAGNETS FOR ACCELERATORS.

    SciTech Connect (OSTI)

    WANDERER, P.

    2005-09-18

    Over the last few years, several novel magnet designs have been introduced to meet the requirements of new, high performance accelerators and beam lines. For example, the FAIR project at GSI requires superconducting magnets ramped at high rates ({approx} 4 T/s) in order to achieve the design intensity. Magnets for the RIA and FAIR projects and for the next generation of LHC interaction regions will need to withstand high doses of radiation. Helical magnets are required to maintain and control the polarization of high energy protons at RHIC. In other cases, novel magnets have been designed in response to limited budgets and space. For example, it is planned to use combined function superconducting magnets for the 50 GeV proton transport line at J-PARC to satisfy both budget and performance requirements. Novel coil winding methods have been developed for short, large aperture magnets such as those used in the insertion region upgrade at BEPC. This paper will highlight the novel features of these exotic magnets.

  8. Ames Lab 101: Rare-Earth Magnets

    ScienceCinema (OSTI)

    McCallum, Bill

    2012-08-29

    Senior Scientist, Bill McCallum, briefly discusses rare-earth magnets and their uses and how Ames Lab is research new ways to save money and energy using magnets.

  9. Change in magnetic and structural properties of FeRh thin films by gold cluster ion beam irradiation with the energy of 1.67?MeV/atom

    SciTech Connect (OSTI)

    Koide, T.; Iwase, A. [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Saitoh, Y. [Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Sakamaki, M.; Amemiya, K. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Matsui, T., E-mail: t-matsui@21c.osakafu-u.ac.jp [Research Organization for the 21st Century, Osaka Prefecture University Sakai, Osaka 599-8531 (Japan)

    2014-05-07

    The effect of energetic cluster ion beam irradiation on magnetic and structural properties of FeRh thin films have been investigated. The cluster ions used in the present studies consist of a few gold atoms with the energy of 1.67?MeV/gold atom. Saturation magnetization of the sample irradiated with Au3 cluster ion beam (280?emu/cc) is larger than that for the irradiated sample with Au1 ion beam (240?emu/cc) for the same irradiation ion fluence. These results can also be confirmed by the X-ray magnetic circular dichroism (XMCD) measurement; the XMCD signal for Au3 cluster ion irradiation is larger than that for Au1 ion irradiation. Since the ion beam irradiation induced magnetization of FeRh is significantly correlated with the amount of the lattice defects in the samples, cluster ion beam irradiation can be considered to effectively introduce the lattice defects in B2-type FeRh rather than the single ion beam. Consequently, cluster ion irradiation is better than single ion irradiation for the viewpoint of saturation magnetization, even if the same irradiation energy is deposited in the samples.

  10. Corrosion test qualification for in situ stress relief of recirculating steam generators' U-bends

    SciTech Connect (OSTI)

    Monter, J.V.; Miglin, B.P.; Lauer, J.A.

    1989-02-01

    Highly stressed alloy 600 is susceptible to intergranular stress corrosion cracking (IGSCC) in high-purity water at nuclear steam generator (NSG) operating temperatures. Two regions in recirculating steam generators (RSG) are particularly prone to primary-side-initiated SCC: tube expansion transitions of the tube in the tubesheet and tight radii tube bends. One remedial measure to improve IGSCC in these regions is to heat the tubes and thus relieve the residual stresses that contribute significantly to the cracking problem. This article describes a corrosion test program using the accelerated SCC environments of sodium tetrathionate and sodium hydroxide to qualify an in situ stress-relief process for the most SCC-susceptible U-bends in an RSG.

  11. Light bending in the galactic halo by Rindler-Ishak method

    SciTech Connect (OSTI)

    Bhattacharya, Amrita; Nandi, Kamal K.; Isaev, Ruslan; Scalia, Massimo; Cattani, Carlo E-mail: subfear@gmail.com E-mail: ccattani@unisa.it

    2010-09-01

    After the work of Rindler and Ishak, it is now well established that the bending of light is influenced by the cosmological constant ? appearing in the Schwarzschild-de Sitter spacetime. We show that their method, when applied to the exact Mannheim-Kazanas-de Sitter solution of the Weyl conformal gravity, nicely yields the expected answer together with several other physically interesting new terms. Apart from ?, the solution is parametrized by a conformal parameter ?, which is known to play a dominant role in the galactic halo gravity. The application of the method yields exactly the same ?? correction to Schwarzschild bending as obtained by standard methods. Different cases are analyzed, which include some corrections to the special cases considered in the original paper by Rindler and Ishak.

  12. A new hydrocarbon empirical potential in angle bending calculation for the molecular dynamics simulation

    SciTech Connect (OSTI)

    Ping, Tan Ai; Hoe, Yeak Su

    2014-07-10

    Typically, short range potential only depends on neighbouring atoms and its parameters function can be categorized into bond stretching, angle bending and bond rotation potential. In this paper, we present our work called Angle Bending (AB) potential, whereas AB potential is the extension of our previous work namely Bond Stretching (BS) potential. Basically, potential will tend to zero after truncated region, potential in specific region can be represented by different piecewise polynomial. We proposed the AB piecewise potential which is possible to solve a system involving three atoms. AB potential able to handle the potential of covalent bonds for three atoms as well as two atoms cases due to its degeneracy properties. Continuity for the piecewise polynomial has been enforced by coupling with penalty methods. There are still plenty of improvement spaces for this AB potential. The improvement for three atoms AB potential will be studied and further modified into torsional potential which are the ongoing current research.

  13. Effects of bending stresses and tube curvature on remote field eddy current signals

    SciTech Connect (OSTI)

    Sutherland, J.; Atherton, D.L.

    1997-01-01

    The effects of bending stresses and tube curvature on remote field eddy current signals were investigated. This technique is a recognized method for the nondestructive evaluation of ferromagnetic tubing, as used in heat exchangers and boiler systems. Different stress states were examined (elastic stress, plastic deformation, and residual stress) and found to give distinctive behavior. Elastic and residual stresses can appear as wall loss, depending on the operating frequency and baseline used for inspection and interpretation.

  14. Results of High Velocity Tests at Tampa Electric Company`s Big Bend 4 FGD System.

    SciTech Connect (OSTI)

    DeKraker, D.P.

    1997-10-15

    Test were conducted at the Big Bend Station to determine the feasibility of scrubbing gas from an additional boiler in the existing FGD system. Testing was accomplished by increasing the gas flow from the D absorber tower and measuring the performance of this module. Key performance aspects evaluated during the testing include mist eliminator performance, SO2 removal efficiency, oxidation of absorbed SO2, and limestone utilization.

  15. Ion-beam-induced bending of freestanding amorphous nanowires: The importance of the substrate material and charging

    SciTech Connect (OSTI)

    Cui, Ajuan; Li, Wuxia; Liu, Zhe; Luo, Qiang; Gu, Changzhi; Fenton, J. C.; Shen, Tiehan H.

    2013-05-27

    Ion-beam irradiation offers great flexibility and controllability in the construction of freestanding nanostructures with multiple advanced functionalities. Here, we present and discuss the bending of free-standing nanowires, against, towards, and ultimately parallel to a flux of directional ion irradiation. Bending components both along and perpendicular to the incident ion beam were observed, and the bending behavior was found to depend both on the ion beam scanning strategy and on the conductivity of the supporting substrate. This behavior is explained by an ion-irradiation-related electrostatic interaction. Our findings suggest the prospect of exploiting this technique to engineer 3D nanostructures for advanced applications.

  16. Fiscal Year 1987 Department of Energy Authorization (magnetic fusion energy). Hearings before the Subcommittee on Energy Research and Production of the Committee on Science and Technology, House of Representatives, Ninety-Ninth Congress, Second Session, February 25, 26, 1986, Volume V

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    Volume V of the hearing record covers two days of hearings on the magnetic fusion energy programs. Alvin Trivelpiece of DOE, Stephen Dean of Fusion Power Associates, Allen Mense of the Institute of Electrical and Electronic Engineers, and George Miley of the University Fusion Association testified on the impact of budget reductions and the role of international cooperation in the fusion energy effort. Trivelpiece reviewed progress of the past 25 years, and discussed the problem of funding long-range energy options during an energy surplus. International collaboration has focused on the Engineering Test Reactor (ETR) program. Rep. Mike McCormack described some of the myths surrounding fusion research and its goals, and outlined three lines of approach toward reaching the goal of producing fusion electricity. Others commended changes in policy direction as being helpful despite budget cuts.

  17. Magnetic reconnection launcher

    DOE Patents [OSTI]

    Cowan, Maynard

    1989-01-01

    An electromagnetic launcher includes a plurality of electrical stages which are energized sequentially in synchrony with the passage of a projectile. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile by magnetic reconnection as the gap portion of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile at both the rear vertical surface of the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils and fit loosely within the gap between the opposing coils.

  18. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Energy Research into alternative forms of energy, and improving and securing the power grid, is a major national security imperative. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets Pajarito Powder, LLC, a fuel-cell-catalyst company based in Albuquerque, is one of the voucher recipients that will partner with Los Alamos. Fuel-cell technology companies win small-business aid Pajarito Powder, LLC, (Albuquerque), NanoSonic (Pembroke, Va.)

  19. Energy

    Office of Legacy Management (LM)

    ..) ".. _,; ,' . ' , ,; Depar?.me.nt ,of.' Energy Washington; DC 20585 : . ' , - $$ o"\ ' ~' ,' DEC ?;$ ;y4,,, ~ ' .~ The Honorable John Kalwitz , 200 E. Wells Street Milwaukee, W~isconsin 53202, . . i :. Dear,Mayor 'Kalwitz: " . " Secretary of Energy Hazel' O'Leary has announceha new,approach 'to,openness in " the Department of Ene~rgy (DOE) and its communications with'the public. In -. support of~this initiative, we areipleased to forward the enclosed information

  20. Imaging exotic properties of nanoscale magnetic lattices | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy's Office of Basic Energy Sciences, we have shown the signature of magnetic induction associated with a "magnetic monopole" defect for the first time. Some of the most...

  1. Development of U-Frame Bending System for Studying the Vibration Integrity of Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Wang, Hong; Wang, Jy-An John; Tan, Ting; Jiang, Hao; Cox, Thomas S; Howard, Rob L; Bevard, Bruce Balkcom; Flanagan, Michelle E

    2013-01-01

    A bending fatigue system developed to evaluate the response of spent nuclear fuel rods to vibration loads is presented. Design and analysis, fabrication, modification, calibration, and instrumentation are described. The system is composed of a U-frame testing setup for imposing bending loads on the spent fuel rod test specimen and a method for measuring the curvature of the rod during bending. The U-frame setup consists of two rigid arms, linking members, and linkages to a universal testing machine. The test specimen s curvature of bending is obtained through a three-point deflection measurement method consisting of three LVDTs mounted to the side connecting plates of the U-frame to capture the deformation of the test specimen. The system has some unique features: 1) The test specimen is installed by simple insertion using linear bearings incorporated with rigid sleeves. 2) Reverse cyclic bending tests can be carried out effectively and efficiently by push and pull at the loading point of the setup. Any test machine with a linear motion function can be used to drive the setup. 3) The embedded and preloaded linear roller bearings eliminate the backlash that exists in the conventional reverse bend tests. 4) The number of linkages between the U-frame and the universal machine is minimized. Namely, there are only two linkages needed at the two loading points of a U-frame setup, whereas a conventional four/three-point bend test frame requires four linkages. 5) The curvature measurement is immune to the effects arising from compliant layers and the rigid body motion of the machine. The compliant layers are used at the holding areas of the specimen to prevent contact damage. The tests using surrogate specimens composed of SS cladding/tube revealed several important phenomena that may cast light on the expected response of a spent fuel rod: 1) Cyclic quasi-static load (10 N/s under force control) in compressive mode (with respect to that at the loading point of the U

  2. State-to-state photodissociation of carbonyl sulfide ({nu}{sub 2}=0,1|JlM). II. The effect of initial bending on coherence of S({sup 1}D{sub 2}) polarization

    SciTech Connect (OSTI)

    Brom, Alrik J. van den; Rakitzis, T. Peter; Janssen, Maurice H. M. [Laser Center and Department of Chemistry, Vrije Universiteit, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Department of Physics, University of Crete, Heraklion 71110, Greece and Institute of Electronic Structure and Laser of the Foundation for Research and Technology-Hellas (IESL-FORTH), P.O. Box 1527, 71110 Heraklion (Greece); Laser Center and Department of Chemistry, Vrije Universiteit, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2005-10-22

    Photodissociation studies using ion imaging are reported, measuring the coherence of the polarization of the S({sup 1}D{sub 2}) fragment from the photolysis of single-quantum state-selected carbonyl sulfide (OCS) at 223 and 230 nm. A hexapole state-selector focuses a molecular beam of OCS parent molecules in the ground state ({nu}{sub 2}=0 vertical bar JM=10) or in the first excited bending state ({nu}{sub 2}=1 vertical bar JlM=111). At 230 nm photolysis the Im[a{sub 1}{sup (1p}{sub arallel}{sup ,perpendicular})] moment for the fast S({sup 1}D{sub 2}) channel increases by about 50% when the initial OCS parent state changes from the vibrationless ground state to the first excited bending state. No dependence on the initial bending state is found for photolysis at 223 nm. We observe separate rings in the slow channel of the velocity distribution of S({sup 1}D{sub 2}) correlating to single CO(J) rotational states. The additional available energy for photolysis at 223 nm is found to be channeled mostly into the CO(J) rotational motion. An improved value for the OC-S bond energy D{sub 0}=4.292 eV is reported.

  3. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, John A.; Stone, Roger R.; Fabyan, Joseph

    1987-01-01

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  4. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1987-10-06

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines. 3 figs.

  5. Energy

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    M onthly Energy Re< view Ila A a m 0 II 8 IIIW *g U In this issue: New data on nuclear electricity in Eastern Europe (Table 10.4) 9'Ij a - Ordering Information This publication...

  6. When Metal Organic Frameworks Turn into One-Dimensional Magnets...

    Office of Science (SC) Website

    Contact Information Basic Energy Sciences U.S. Department of Energy SC-22Germantown ... one-dimensional chains of transition metal magnets (green sections of structure). ...

  7. Four-point Bend Testing of Irradiated Monolithic U-10Mo Fuel

    SciTech Connect (OSTI)

    Rabin, B. H.; Lloyd, W. R.; Schulthess, J. L.; Wright, J. K.; Lind, R. P.; Scott, L.; Wachs, K. M.

    2015-03-01

    This paper presents results of recently completed studies aimed at characterizing the mechanical properties of irradiated U-10Mo fuel in support of monolithic base fuel qualification. Mechanical properties were evaluated in four-point bending. Specimens were taken from fuel plates irradiated in the RERTR-12 and AFIP-6 Mk. II irradiation campaigns, and tests were conducted in the Hot Fuel Examination Facility (HFEF) at Idaho National Laboratory (INL). The monolithic fuel plates consist of a U-10Mo fuel meat covered with a Zr diffusion barrier layer fabricated by co-rolling, clad in 6061 Al using a hot isostatic press (HIP) bonding process. Specimens exhibited nominal (fresh) fuel meat thickness ranging from 0.25 mm to 0.64 mm, and fuel plate average burnup ranged from approximately 0.4 x 1021 fissions/cm3 to 6.0 x 1021 fissions/cm3. After sectioning the fuel plates, the 6061 Al cladding was removed by dissolution in concentrated NaOH. Pre- and post-dissolution dimensional inspections were conducted on test specimens to facilitate accurate analysis of bend test results. Four-point bend testing was conducted on the HFEF Remote Load Frame at a crosshead speed of 0.1 mm/min using custom-designed test fixtures and calibrated load cells. All specimens exhibited substantially linear elastic behavior and failed in a brittle manner. The influence of burnup on the observed slope of the stress-strain curve and the calculated fracture strength is discussed.

  8. Overview of the APT high-energy beam transport and beam expanders

    SciTech Connect (OSTI)

    Shafer, R.E.; Blind, B.; Gray, E.R.

    1997-08-01

    The APT high energy beam transport (HEBT) and beam expanders convey the 1700-MeV, 100-mA cw proton beam from the linac to the tritium target/blanket assembly, or a tuning beam stop. The HEBT includes extensive beam diagnostics, collimators, and beam jitter correction, to monitor and control the 170-MW beam prior to expansion. A zero-degree beamline conveys the beam to the beam stop, and an achromatic bend conveys the beam to the tritium production target. Nonlinear beam expanders make use of higher-order multipole magnets and dithering dipoles to expand the beam to a uniform-density, 16-cm wide by 160-cm high rectangular profile on the tritium-production target. The overall optics design will be reviewed, and beam simulations will be presented.

  9. Control of Springback in Sheet Metal U-bending Through Design Experiment

    SciTech Connect (OSTI)

    Chirita, Bogdan; Brabie, Gheorghe

    2007-05-17

    For the U-bending of sheet metals, springback represents the most important failure mode that is affecting the parts. The purpose of this study was to develop a method for the reduction or the elimination of springback from the designing stage of the forming process. This paper describes a numerical procedure that combines simulation of springback by finite element method with a fractional factorial design and proposes the optimization of the forming parameters and tools geometry for the reduction of springback intensity. At the end of the study we were able to obtain an important improvement of part precision using the parameters predicted by the factorial design.

  10. Magnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    in the vicinity of hydrothermal activity and indicate the presence of the geothermal reservoir and conduit structures such as faults or dikes. 3 In addition, it is possible...

  11. Magnetic filtration process, magnetic filtering material, and...

    Office of Scientific and Technical Information (OSTI)

    The present invention provides magnetically responsive activated carbon, and a method of forming magnetically responsive activated carbon. The method of forming magnetically ...

  12. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1985-02-12

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  13. Magnetic nanotubes

    DOE Patents [OSTI]

    Matsui, Hiroshi; Matsunaga, Tadashi

    2010-11-16

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  14. Method for making an improved magnetic encoding device

    DOE Patents [OSTI]

    Fox, Richard J.

    1981-01-01

    A magnetic encoding device and method for making the same are provided for use as magnetic storage mediums in identification control applications which give output signals from a reader that are of shorter duration and substantially greater magnitude than those of the prior art. Magnetic encoding elements are produced by uniformly bending wire or strip stock of a magnetic material longitudinally about a common radius to exceed the elastic limit of the material and subsequently mounting the material so that it is restrained in an unbent position on a substrate of nonmagnetic material. The elements are spot weld attached to a substrate to form a binary coded array of elements according to a desired binary code. The coded substrate may be enclosed in a plastic laminate structure. Such devices may be used for security badges, key cards, and the like and may have many other applications.

  15. Stiffness, thermal expansion, and thermal bending formulation of stiffened, fiber-reinforced composite panels

    SciTech Connect (OSTI)

    Collier, C.S.

    1993-01-01

    A method is presented for formulating stiffness terms and thermal coefficients of stiffened, fiber-reinforced composite panels. The method is robust enough to handle panels with general cross sectional shapes, including those which are unsymmetric and/or unbalanced. Nonlinear, temperature and load dependent constitutive material data of each laminate are used to 'build-up' the stiffened panel membrane, bending, and membrane-bending coupling stiffness terms and thermal coefficients. New thermal coefficients are introduced to quantify panel response from through-the-thickness temperature gradients. A technique of implementing this capability with a single plane of shell finite elements using the MSC/NASTRAN analysis program (FEA) is revealed that provides accurate solutions of entire airframes or engines with coarsely meshed models. An example of a composite, hat-stiffened panel is included to demonstrate errors that occur when an unsymmetric panel is symmetrically formulated as traditionally done. The erroneous results and the correct ones produced from this method are compared to analysis from discretely meshed three-dimensional FEA. 14 refs.

  16. The shape of the DNA minor groove directs binding by the DNA-bending protein Fis

    SciTech Connect (OSTI)

    Stella, Stefano; Cascio, Duilio; Johnson, Reid C.

    2010-06-21

    The bacterial nucleoid-associated protein Fis regulates diverse reactions by bending DNA and through DNA-dependent interactions with other control proteins and enzymes. In addition to dynamic nonspecific binding to DNA, Fis forms stable complexes with DNA segments that share little sequence conservation. Here we report the first crystal structures of Fis bound to high- and low-affinity 27-base-pair DNA sites. These 11 structures reveal that Fis selects targets primarily through indirect recognition mechanisms involving the shape of the minor groove and sequence-dependent induced fits over adjacent major groove interfaces. The DNA shows an overall curvature of {approx}65{sup o}, and the unprecedented close spacing between helix-turn-helix motifs present in the apodimer is accommodated by severe compression of the central minor groove. In silico DNA structure models show that only the roll, twist, and slide parameters are sufficient to reproduce the changes in minor groove widths and recreate the curved Fis-bound DNA structure. Models based on naked DNA structures suggest that Fis initially selects DNA targets with intrinsically narrow minor grooves using the separation between helix-turn-helix motifs in the Fis dimer as a ruler. Then Fis further compresses the minor groove and bends the DNA to generate the bound structure.

  17. Bond-bending isomerism of Au2I3-: Competition between covalent bonding and aurophilicity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Wan -Lu; Liu, Hong -Tao; Jian, Tian; Lopez, Gary V.; Piazza, Zachary A.; Huang, Dao -Ling; Chen, Teng -Teng; Su, Jing; Yang, Ping; Chen, Xin; et al

    2015-10-13

    We report a joint photoelectron spectroscopy and theoretical investigation of the gaseous Au2I3– cluster, which is found to exhibit two types of isomers due to competition between Au–I covalent bonding and Au–Au aurophilic interactions. The covalent bonding favors a bent IAuIAuI– structure with an obtuse Au–I–Au angle (100.7°), while aurophilic interactions pull the two Au atoms much closer, leading to an acutely bent structure (72.0°) with an Au–Au distance of 3.08 Å. The two isomers are separated by a small barrier and are nearly degenerate with the obtuse isomer being slightly more stable. At low temperature, only the obtuse isomermore » is observed; distinct experimental evidence is observed for the co-existence of a combination of isomers with both acute and obtuse bending angles at room temperature. As a result, the two bond-bending isomers of Au2I3– reveal a unique example of one molecule being able to oscillate between different structures as a result of two competing chemical forces.« less

  18. Molecular origin of the difference in the HOH bend of the IR spectra between liquid water and ice

    SciTech Connect (OSTI)

    Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

    2013-02-07

    The intensity of the HOH bend in the IR spectrum of ice is significantly smaller than the corresponding one in liquid water. This difference in the IR intensities of the HOH bend in the two systems is investigated using MD simulations with the flexible, polarizable, ab-initio based TTM3-F model for water, a potential that correctly reproduces the experimentally observed increase of the HOH bend in liquid water and ice from the water monomer value. We have identified two factors that are responsible for the difference in the intensity of the HOH bend in liquid water and ice: (i) the decrease of the intensity of the HOH bend in ice caused by the strong anti-correlation between the permanent dipole moment of a molecule and the induced dipole moment of a neighboring hydrogen bond acceptor molecule and (ii) the weakening of this anti-correlation by the disordered hydrogen bond network in liquid water. The presence of the anti-correlation in ice is further confirmed by ab initio electronic structure calculations of water pentamer clusters extracted from the trajectories of the MD simulations for ice and liquid water.

  19. Combined Effects of Gravity, Bending Moment, Bearing Clearance, and Input Torque on Wind Turbine Planetary Gear Load Sharing: Preprint

    SciTech Connect (OSTI)

    Guo, Y.; Keller, J.; LaCava, W.

    2012-09-01

    This computational work investigates planetary gear load sharing of three-mount suspension wind turbine gearboxes. A three dimensional multibody dynamic model is established, including gravity, bending moments, fluctuating mesh stiffness, nonlinear tooth contact, and bearing clearance. A flexible main shaft, planetary carrier, housing, and gear shafts are modeled using reduced degrees-of-freedom through modal compensation. This drivetrain model is validated against the experimental data of Gearbox Reliability Collaborative for gearbox internal loads. Planet load sharing is a combined effect of gravity, bending moment, bearing clearance, and input torque. Influences of each of these parameters and their combined effects on the resulting planet load sharing are investigated. Bending moments and gravity induce fundamental excitations in the rotating carrier frame, which can increase gearbox internal loads and disturb load sharing. Clearance in carrier bearings reduces the bearing load carrying capacity and thus the bending moment from the rotor can be transmitted into gear meshes. With bearing clearance, the bending moment can cause tooth micropitting and can induce planet bearing fatigue, leading to reduced gearbox life. Planet bearings are susceptible to skidding at low input torque.

  20. Kinetic Simulations of Relativistic Radiative Magnetic Reconnection |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility This visualization shows the increased plasma density inside flux ropes In three dimensions, magnetic reconnection occurs between "ropes" of magnetic flux; this figure, from a supercomputer simulation of reconnection in ultra-relativistic electron-positron plasma, shows the increased plasma density inside flux ropes. During reconnection, magnetic energy is transferred to plasma particles; the accelerated particles emit high-energy X-rays and

  1. Core/coil assembly for use in superconducting magnets and method for assembling the same

    DOE Patents [OSTI]

    Kassner, David A.

    1979-01-01

    A core/coil assembly for use in a superconducting magnet of the focusing or bending type used in syncronous particle accelerators comprising a coil assembly contained within an axial bore of the stacked, washer type, carbon steel laminations which comprise the magnet core assembly, and forming an interference fit with said laminations at the operating temperature of said magnet. Also a method for making such core/coil assemblies comprising the steps of cooling the coil assembly to cryogenic temperatures and drawing it rapidly upwards into the bore of said stacked laminations.

  2. Magnetic monopoles

    SciTech Connect (OSTI)

    Fryberger, D.

    1984-12-01

    In this talk on magnetic monopoles, first the author briefly reviews some historical background; then, the author describes what several different types of monopoles might look like; and finally the author discusses the experimental situation. 81 references.

  3. Mineral Magnetism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 8, 2016 Small piles of rare earth elements In the United States, rare-earth elements used in strong magnets, such as neodymium and samarium, are scarce due to limits on ...

  4. Magnetic reconnection launcher

    DOE Patents [OSTI]

    Cowan, M.

    1987-04-06

    An electromagnetic launcher includes a plurality of electrical stages which are energized sequentially in the launcher with the passage of a projectiles. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils. The gap portion of the projectile permits substantially unrestricted distribution of the induced currents so that current densities are only high where the useful magnetic force is high. This allows designs which permit ohmic oblation from the rear surfaces of the gap portion of the projectile allowing much high velocities to be achieved. An electric power apparatus controls the electric power supplied to the opposing coils until the gap portion of the projectile substantially occupies the gap between the coils, at which time the coils are supplied with peak current quickly. 8 figs.

  5. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOE Patents [OSTI]

    Ortiz, M.G.

    1998-02-10

    A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  6. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOE Patents [OSTI]

    Ortiz, Marcos German

    1998-01-01

    A system for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  7. Comparison of ring compression testing to three point bend testing for unirradiated ZIRLO cladding

    SciTech Connect (OSTI)

    None, None

    2015-04-01

    Safe shipment and storage of nuclear reactor discharged fuel requires an understanding of how the fuel may perform under the various conditions that can be encountered. One specific focus of concern is performance during a shipment drop accident. Tests at Savannah River National Laboratory (SRNL) are being performed to characterize the properties of fuel clad relative to a mechanical accident condition such as a container drop. Unirradiated ZIRLO tubing samples have been charged with a range of hydride levels to simulate actual fuel rod levels. Samples of the hydrogen charged tubes were exposed to a radial hydride growth treatment (RHGT) consisting of heating to 400°C, applying initial hoop stresses of 90 to 170 MPa with controlled cooling and producing hydride precipitates. Initial samples have been tested using both a) ring compression test (RCT) which is shown to be sensitive to radial hydride and b) three-point bend tests which are less sensitive to radial hydride effects. Hydrides are generated in Zirconium based fuel cladding as a result of coolant (water) oxidation of the clad, hydrogen release, and a portion of the released (nascent) hydrogen absorbed into the clad and eventually exceeding the hydrogen solubility limit. The orientation of the hydrides relative to the subsequent normal and accident strains has a significant impact on the failure susceptability. In this study the impacts of stress, temperature and hydrogen levels are evaluated in reference to the propensity for hydride reorientation from the circumferential to the radial orientation. In addition the effects of radial hydrides on the Quasi Ductile Brittle Transition Temperature (DBTT) were measured. The results suggest that a) the severity of the radial hydride impact is related to the hydrogen level-peak temperature combination (for example at a peak drying temperature of 400°C; 800 PPM hydrogen has less of an impact/ less radial hydride fraction than 200 PPM hydrogen for the same thermal

  8. Device and method for measuring fluid flow in a conduit having a gradual bend

    DOE Patents [OSTI]

    Ortiz, M.G.; Boucher, T.J.

    1998-11-10

    A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  9. Device and method for measuring fluid flow in a conduit having a gradual bend

    DOE Patents [OSTI]

    Ortiz, Marcos German; Boucher, Timothy J

    1998-01-01

    A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  10. Transmission spectra of a double-clad fibre structure under bending

    SciTech Connect (OSTI)

    Zlodeev, I V; Ivanov, Oleg V

    2013-06-30

    We have studied a fibre-optic structure whose operation relies on conversion of core and cladding modes that are coupled across the interface between two fibres differing in refractive index profile. The structure contains a section of an SM630 double-clad, small-core, single-mode fibre inserted between two SMF-28 standard fibres. We have measured the transmission spectrum of the structure when the SM630 fibre was bent and analysed the mode structure of the double-clad fibre and the origin of dips in its transmission spectrum. The resonance dips have been found to shift to longer wavelengths with increasing fibre curvature. We have evaluated the shift as a function of the length of the inserted fibre, its bend direction and the nature of the input fibre. (fiber optics)

  11. Promising Technology: Magnetic Bearing Variable-Speed Centrifugal Chillers

    Broader source: Energy.gov [DOE]

    Magnetic bearing variable speed centrifugal chillers save energy compared to conventional chillers by eliminating friction with the magnetic bearings and by improving efficiency at partial loads with the variable speed drive. In addition to saving energy, the magnetic bearings eliminate the maintenance costs associated with lubricating conventional metal bearings.

  12. Current trends in non-accelerator particle physics: 1, Neutrino mass and oscillation. 2, High energy neutrino astrophysics. 3, Detection of dark matter. 4, Search for strange quark matter. 5, Magnetic monopole searches

    SciTech Connect (OSTI)

    He, Yudong |

    1995-07-01

    This report is a compilation of papers reflecting current trends in non-accelerator particle physics, corresponding to talks that its author was invited to present at the Workshop on Tibet Cosmic Ray Experiment and Related Physics Topics held in Beijing, China, April 4--13, 1995. The papers are entitled `Neutrino Mass and Oscillation`, `High Energy Neutrino Astrophysics`, `Detection of Dark Matter`, `Search for Strange Quark Matter`, and `Magnetic Monopole Searches`. The report is introduced by a survey of the field and a brief description of each of the author`s papers.

  13. International magnetic pulse compression

    SciTech Connect (OSTI)

    Kirbie, H.C.; Newton, M.A.; Siemens, P.D.

    1991-04-01

    Although pulsed-power engineering traditionally has been practiced by a fairly small, close community in the areas of defense and energy research, it is becoming more common in high-power, high-energy commercial pursuits such as material processing and lasers. This paper is a synopsis of the Feb. 12--14, 1990 workshop on magnetic switching as it applies primarily to pulse compression (power transformation). During the course of the Workshop at Granlibakken, a great deal of information was amassed and a keen insight into both the problems and opportunities as to the use of this switching approach was developed. The segmented workshop format proved ideal for identifying key aspects affecting optimum performance in a variety of applications. Individual groups of experts addressed network and system modeling, magnetic materials, power conditioning, core cooling and dielectrics, and finally circuits and application. At the end, they came together to consolidate their input and formulate the workshop's conclusions, identifying roadblocks or suggesting research projects, particularly as they apply to magnetic switching's trump card -- its high-average-power-handling capability (at least on a burst-mode basis). The workshop was especially productive both in the quality and quantity of information transfer in an environment conducive to a free and open exchange of ideas. We will not delve into the organization proper of this meeting, rather we wish to commend to the interested reader this volume, which provides the definitive and most up-to-date compilation on the subject of magnetic pulse compression from underlying principles to current state of the art as well as the prognosis for the future of magnetic pulse compression as a consensus of the workshop's organizers and participants.

  14. Progress Report on the g-2 Storage Ring Magnet System

    SciTech Connect (OSTI)

    Bunce, G.A.; Cullen, J.; Danby, G.; Green, M.A.; Jackson, J.; Jia, L.; Krienen, F.; Meier, R.; Meng, W.; Morse, W.; Pai, C.; Polk, I.; Prodell, A.; Shutt, R.; Snydstrup, L.; Yamamoto, A.

    1995-06-01

    The 3.1 GeV muon storage ring for the g-2 experiment at Brookhaven National Laboratory has three large solenoid magnets that form a continuous 1.451 tesla storage ring dipole with an average beam bend radius of 7.1 meters. In addition to the three storage ring solenoids, there is an inflector dipole with nested dipole coils that create very little stray magnetic field. A superconducting shield on the inflector gets rid of most of the remaining stray flux. This paper reports on the progress made on the storage ring solenoid magnet system and the inflector as of June 1995. The results of cryogenic system tests are briefly reported.

  15. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underlying the magnetocaloric effect is the idea that magnetism is the result of the ... with the magnetic field, the magnetic entropy (disorder) of the system decreases; if ...

  16. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Underlying the magnetocaloric effect is the idea that magnetism is the result of the ... with the magnetic field, the magnetic entropy (disorder) of the system decreases; if ...

  17. In-situ scanning electron microscopy study of fracture events during back-end-of-line microbeam bending tests

    SciTech Connect (OSTI)

    Vanstreels, K. Zahedmanesh, H.; Bender, H.; Gonzalez, M.; De Wolf, I.; Lefebvre, J.; Bhowmick, S.

    2014-11-24

    This paper demonstrates the direct observation of crack initiation, crack propagation, and interfacial delamination events during in-situ microbeam bending tests of FIB milled BEOL structures. The elastic modulus and the critical force of fracture of the BEOL beam samples were compared for beams of different length and width.

  18. Development of Radically Enhanced alnico Magnets (DREAM) for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy product permanent magnet of the alnico type in bulk final shapes without rare earth elements that will be competitive with existing commercial RE-based magnets on a cost ...

  19. Permanent Magnet Development for Automotive Traction Motors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Permanent Magnet Development for Automotive Traction Motors Permanent Magnet Development for Automotive Traction Motors 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ape015_anderson_2010_o.pdf (2.46 MB) More Documents & Publications Permanent Magnet Development for Automotive Traction Motors Permanent Magnet Development for Automotive Traction Motors Permanent Magnet Development for

  20. SOLAR MAGNETIC TRACKING. IV. THE DEATH OF MAGNETIC FEATURES

    SciTech Connect (OSTI)

    Lamb, D. A.; Howard, T. A.; DeForest, C. E.; Parnell, C. E.; Welsch, B. T.

    2013-09-10

    The removal of magnetic flux from the quiet-Sun photosphere is important for maintaining the statistical steady state of the magnetic field there, for determining the magnetic flux budget of the Sun, and for estimating the rate of energy injected into the upper solar atmosphere. Magnetic feature death is a measurable proxy for the removal of detectable flux, either by cancellation (submerging or rising loops, or reconnection in the photosphere) or by dispersal of flux. We used the SWAMIS feature tracking code to understand how nearly 2 Multiplication-Sign 10{sup 4} magnetic features die in an hour-long sequence of Hinode/SOT/NFI magnetograms of a region of the quiet Sun. Of the feature deaths that remove visible magnetic flux from the photosphere, the vast majority do so by a process that merely disperses the previously detected flux so that it is too small and too weak to be detected, rather than completely eliminating it. The behavior of the ensemble average of these dispersals is not consistent with a model of simple planar diffusion, suggesting that the dispersal is constrained by the evolving photospheric velocity field. We introduce the concept of the partial lifetime of magnetic features, and show that the partial lifetime due to Cancellation of magnetic flux, 22 hr, is three times slower than previous measurements of the flux turnover time. This indicates that prior feature-based estimates of the flux replacement time may be too short, in contrast with the tendency for this quantity to decrease as resolution and instrumentation have improved. This suggests that dispersal of flux to smaller scales is more important for the replacement of magnetic fields in the quiet Sun than observed bipolar cancellation. We conclude that processes on spatial scales smaller than those visible to Hinode dominate the processes of flux emergence and cancellation, and therefore also the quantity of magnetic flux that threads the photosphere.

  1. Reversal bending fatigue test system for investigating vibration integrity of spent nuclear fuel during transportation

    SciTech Connect (OSTI)

    Wang, Jy -An; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L.; Flanagan, Michelle E.

    2014-09-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S.Nuclear Regulatory Commission needs in the area of safety and security of SNF storage and transportation operations. The ORNL developed test system can perform reversal bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot cell operation, including remote installation and detachment of the SNF test specimen, in situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U frame set-up equipped with uniquely designed grip rigs to protect the SNF rod sample and to ensure valid test results, and uses three specially designed linear variable differential transformers to obtain the in situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy and SS cladding with alumina pellet inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength. The

  2. Reversal bending fatigue test system for investigating vibration integrity of spent nuclear fuel during transportation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Jy -An; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L.; Flanagan, Michelle E.

    2014-09-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S.Nuclear Regulatory Commission needs in the areamore » of safety and security of SNF storage and transportation operations. The ORNL developed test system can perform reversal bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot cell operation, including remote installation and detachment of the SNF test specimen, in situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U frame set-up equipped with uniquely designed grip rigs to protect the SNF rod sample and to ensure valid test results, and uses three specially designed linear variable differential transformers to obtain the in situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy and SS cladding with alumina pellet inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength

  3. Reversible Bending Fatigue Test System for Investigating Vibration Integrity of Spent Nuclear Fuel during Transportation

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L; Flanagan, Michelle

    2013-01-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety and security of spent nuclear fuel storage and transport operations. The ORNL developed test system can perform reversible-bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot-cell operation, including remote installation and detachment of the SNF test specimen, in-situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U-frame set-up equipped with uniquely designed grip rigs, to protect SNF rod and to ensure valid test results, and use of 3 specially designed LVDTs to obtain the in-situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy, and SS cladding with alumina pellets inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength. The failure behaviors observed from

  4. Thermomagnetic burn control for magnetic fusion reactor

    DOE Patents [OSTI]

    Rawls, John M.; Peuron, Unto A.

    1982-01-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors (30a, 30b, etc.) formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma (12) and a toroidal field coil (18). A mechanism (60) for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  5. Thermomagnetic burn control for magnetic fusion reactor

    DOE Patents [OSTI]

    Rawls, J.M.; Peuron, A.U.

    1980-07-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma and a toroidal field coil. A mechanism for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  6. Bending response of 3-D woven and braided preform composite materials

    SciTech Connect (OSTI)

    Pochiraju, K.; Parvizi-Majidi, A.; Chou, T.W.; Shah, B.

    1994-12-31

    Three dimensional textile carbon-epoxy composites exhibit general anisotropy. Further, these materials may possess different modulus in uniaxial tension than that in compression. In an earlier material characterization effort, the tension, compression, and shear properties of these composites were determined. In this paper, theoretical modeling of flexure of the textile composites and experimental correlation are presented. Four point bending tests were conducted according to STM D709 standards to determine the load to mid-span deflection relationships for typical textile composites. The results of experimental analysis are compared with classical beam theory, theory of elasticity solutions considering material orthotropy and shear deflection, and finite element analysis considering material orthotropy and finite deformation/rotations. The derivation of a harmonic function, required for the theory of elasticity solution, is described in the paper. Homogeneous orthotropic elastic properties are assumed for the 3-D textile composites, which is a reasonable approximation for specimens considerably larger than the repeated geometric unit of the fiber preform. The so called ``flex modulus`` is determined from the experimental data.

  7. Ultrahigh strain-rate bending of copper nanopillars with laser-generated shock waves

    SciTech Connect (OSTI)

    Colorado, H. A.; Department of Mechanical Engineering, Universidad de Antioquia, Medellin ; Navarro, A.; Prikhodko, S. V.; Yang, J. M.; Ghoniem, N.; Gupta, V.; Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, California 90095

    2013-12-21

    An experimental study to bend FIB-prepared cantilevered single crystal Cu nanopillars of several hundred nanometers in diameter and length at ultrahigh strain rate is presented. The deformation is induced by laser-generated stress waves, resulting in local strain rates exceeding 10{sup 7} s{sup ?1}. Loading of nano-scale Cu structures at these extremely short loading times shows unique deformation characteristics. At a nominal stress value of 297 MPa, TEM examination along with selected area electron diffraction characterization revealed that twins within the unshocked Cu pillars interacted with dislocations that nucleated from free surfaces of the pillars to form new subgrain boundaries. MD simulation results were found to be consistent with the very low values of the stress required for dislocation activation and nucleation because of the extremely high surface area to volume ratio of the nanopillars. Specifically, simulations show that the stress required to nucleate dislocations at these ultrahigh strain rates is about one order of magnitude smaller than typical values required for homogeneous nucleation of dislocation loops in bulk copper single crystals under quasi-static conditions.

  8. Piezoresistive characterization of bottom-up, n-type silicon microwires undergoing bend deformation

    SciTech Connect (OSTI)

    McClarty, Megan M.; Oliver, Derek R. E-mail: Derek.Oliver@umanitoba.ca; Bruce, Jared P.; Freund, Michael S. E-mail: Derek.Oliver@umanitoba.ca

    2015-01-12

    The piezoresistance of silicon has been studied over the past few decades in order to characterize the material's unique electromechanical properties and investigate their wider applicability. While bulk and top-down (etched) micro- and nano-wires have been studied extensively, less work exists regarding bottom-up grown microwires. A facile method is presented for characterizing the piezoresistance of released, phosphorus-doped silicon microwires that have been grown, bottom-up, via a chemical vapour deposition, vapour-liquid-solid process. The method uses conductive tungsten probes to simultaneously make electrical measurements via direct ohmic contact and apply mechanical strain via bend deformation. These microwires display piezoresistive coefficients within an order of magnitude of those expected for bulk n-type silicon; however, they show an anomalous response at degenerate doping concentrations (?10{sup 20?}cm{sup ?3}) when compared to lower doping concentrations (?10{sup 17?}cm{sup ?3}), with a stronger piezoresistive coefficient exhibited for the more highly doped wires. This response is postulated to be due to the different growth mechanism of bottom-up microwires as compared to top-down.

  9. Crack opening area estimates in pressurized through-wall cracked elbows under bending

    SciTech Connect (OSTI)

    Franco, C.; Gilles, P.; Pignol, M.

    1997-04-01

    One of the most important aspects in the leak-before-break approach is the estimation of the crack opening area corresponding to potential through-wall cracks at critical locations during plant operation. In order to provide a reasonable lower bound to the leak area under such loading conditions, numerous experimental and numerical programs have been developed in USA, U.K. and FRG and widely discussed in literature. This paper aims to extend these investigations on a class of pipe elbows characteristic of PWR main coolant piping. The paper is divided in three main parts. First, a new simplified estimation scheme for leakage area is described, based on the reference stress method. This approach mainly developed in U.K. and more recently in France provides a convenient way to account for the non-linear behavior of the material. Second, the method is carried out for circumferential through-wall cracks located in PWR elbows subjected to internal pressure. Finite element crack area results are presented and comparisons are made with our predictions. Finally, in the third part, the discussion is extended to elbows under combined pressure and in plane bending moment.

  10. Finite element modeling of concentrating solar collectors for evauation of gravity loads, bending, and optical characterization.

    SciTech Connect (OSTI)

    Christian, Joshua M.; Ho, Clifford Kuofei

    2010-04-01

    Understanding the effects of gravity and wind loads on concentrating solar power (CSP) collectors is critical for performance calculations and developing more accurate alignment procedures and techniques. This paper presents a rigorous finite-element model of a parabolic trough collector that is used to determine the impact of gravity loads on bending and displacements of the mirror facets and support structure. The geometry of the LUZ LS-2 parabolic trough collector was modeled using SolidWorks, and gravity-induced loading and displacements were simulated in SolidWorks Simulation. The model of the trough collector was evaluated in two positions: the 90{sup o} position (mirrors facing upward) and the 0{sup o} position (mirrors facing horizontally). The slope errors of the mirror facet reflective surfaces were found by evaluating simulated angular displacements of node-connected segments along the mirror surface. The ideal (undeformed) shape of the mirror was compared to the shape of the deformed mirror after gravity loading. Also, slope errors were obtained by comparing the deformed shapes between the 90{sup o} and 0{sup o} positions. The slope errors resulting from comparison between the deformed vs. undeformed shape were as high as {approx}2 mrad, depending on the location of the mirror facet on the collector. The slope errors resulting from a change in orientation of the trough from the 90{sup o} position to the 0{sup o} position with gravity loading were as high as {approx}3 mrad, depending on the location of the facet.

  11. Magnetic Reconnection

    SciTech Connect (OSTI)

    Masaaki Yamada, Russell Kulsrud and Hantao Ji

    2009-09-17

    We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.

  12. Magnetically focused liquid drop radiator

    DOE Patents [OSTI]

    Botts, T.E.; Powell, J.R.; Lenard, R.

    1984-12-10

    A magnetically focused liquid drop radiator for application in rejecting energy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  13. Magnetically insulated transmission line oscillator

    DOE Patents [OSTI]

    Bacon, Larry D.; Ballard, William P.; Clark, M. Collins; Marder, Barry M.

    1988-01-01

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields arfe produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap.

  14. Magnetically insulated transmission line oscillator

    DOE Patents [OSTI]

    Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.

    1987-05-19

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.

  15. SU-E-T-359: Measurement of Various Metrics to Determine Changes in Megavoltage Photon Beam Energy

    SciTech Connect (OSTI)

    Gao, S; Balter, P; Rose, M; Simon, W

    2014-06-01

    Purpose: To examine the relationship between photon beam energy and various metrics for energy on the flattened and flattening filter free (FFF) beams generated by the Varian TrueBeam. Methods: Energy changes were accomplished by adjusting the bending magnet current 10% from the nominal value for the 4, 6, 8, and 10 MV flattened and 6 and 10 MV FFF beams. Profiles were measured for a 3030 cm{sup 2} field using a 2D ionization chamber array and a 3D water Scanner which was also used to measure PDDs. For flattened beams we compared several energy metrics; PDD at 10 cm depth in water (PDD(10)); the variation over the central 80% of the field (Flat); and the average of the highest reading along each diagonal divided by the CAX value, diagonal normalized flatness (FDN). For FFF beams we examined PDD(10), FDN, and the width of a chosen isodose level in a 3030 cm{sup 2} field (W(d%)). Results: Changes in PDD(10) were nearly linear with changes in energy for both flattened and FFF beams as were changes in FDN. Changes in W(d%) were also nearly linear with energy for the FFF beams. PDD(10) was not as sensitive to changes in energy compared to the other metrics for either flattened or FFF beams. Flat was not as sensitive to changes in energy compared to FDN for flattened beams and its behavior depends on depth. FDN was the metric that had the highest sensitivity to the changes in energy for flattened beams while W(d%) was the metric that had highest sensitivity to the changes in energy for FFF beams. Conclusions: The metric FDN was found to be most sensitive to energy changes for flattened beams, while the W(d%) was most sensitive to energy changes for FFF beams.

  16. Exchange-Spring Magnets: Nanocomposite Exchange-Spring Magnets for Motor and Generator Applications

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: ANL will develop a cost-effective exchange-spring magnet to use in the electric motors of wind generators and EVs that uses no rare earth materials. This ANL exchange-spring magnet combines a hard magnetic outer shell with a soft magnetic inner corecoupling these together increases the performance (energy density and operating temperature). The hard and soft magnet composite particles would be created at the molecular level, followed by consolidation in a magnetic field. This process allows the particles to be oriented to maximize the magnetic properties of low-cost and abundant metals, eliminating the need for expensive imported rare earths. The ultimate goal of this project is to demonstrate this new type of magnet in a prototype electric motor.

  17. Methods and apparatus for measurement of the resistivity of geological formations from within cased wells in presence of acoustic and magnetic energy sources

    DOE Patents [OSTI]

    Vail, III, William B.

    1991-01-01

    Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation.

  18. Methods and apparatus for measurement of the resistivity of geological formations from within cased wells in presence of acoustic and magnetic energy sources

    DOE Patents [OSTI]

    Vail, W.B. III.

    1991-08-27

    Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation. 9 figures.

  19. RAPID/BulkTransmission/Environment/Arizona | Open Energy Information

    Open Energy Info (EERE)

    and Magnetic Field Regulations Electric and magnetic fields (EMF) are invisible areas of energy that surround any electrical device including transmission lines, electrical...

  20. RAPID/BulkTransmission/Environment/Colorado | Open Energy Information

    Open Energy Info (EERE)

    and Magnetic Field Regulations Electric and magnetic fields (EMF) are invisible areas of energy that surround any electrical device including transmission lines, electrical...

  1. RAPID/BulkTransmission/Environment/Wyoming | Open Energy Information

    Open Energy Info (EERE)

    and Magnetic Field Regulations Electric and magnetic fields (EMF) are invisible areas of energy that surround any electrical device including transmission lines, electrical...

  2. RAPID/BulkTransmission/Environment/New Mexico | Open Energy Informatio...

    Open Energy Info (EERE)

    and Magnetic Field Regulations Electric and magnetic fields (EMF) are invisible areas of energy that surround any electrical device including transmission lines, electrical...

  3. RAPID/BulkTransmission/Environment/Utah | Open Energy Information

    Open Energy Info (EERE)

    and Magnetic Field Regulations Electric and magnetic fields (EMF) are invisible areas of energy that surround any electrical device including transmission lines, electrical...

  4. RAPID/BulkTransmission/Environment/Idaho | Open Energy Information

    Open Energy Info (EERE)

    and Magnetic Field Regulations Electric and magnetic fields (EMF) are invisible areas of energy that surround any electrical device including transmission lines, electrical...

  5. RAPID/BulkTransmission/Environment/California | Open Energy Informatio...

    Open Energy Info (EERE)

    and Magnetic Field Regulations Electric and magnetic fields (EMF) are invisible areas of energy that surround any electrical device including transmission lines, electrical...

  6. RAPID/BulkTransmission/Environment/Montana | Open Energy Information

    Open Energy Info (EERE)

    and Magnetic Field Regulations Electric and magnetic fields (EMF) are invisible areas of energy that surround any electrical device including transmission lines, electrical...

  7. Energy Storage Systems 2014 Peer Review Presentations - Poster...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Energy Storage Systems 2014 Peer Review Presentations - Poster Session 8 OE's Energy ... KB) Superconducting Magnet Energy Storage System with Direct Power Electronics Interface - ...

  8. Assessment of acreage and vegetation change in Florida`s Big Bend tidal wetlands using satellite imagery

    SciTech Connect (OSTI)

    Raabe, E.A.; Stumpf, R.P.

    1997-06-01

    Fluctuations in sea level and impending development on the west coast of Florida have aroused concern for the relatively pristine tidal marshes of the Big Bend. Landsat Thematic Mapper (TM) images for 1986 and 1995 are processed and evaluated for signs of change. The images cover 250 km of Florida`s Big Bend Gulf Coast, encompassing 160,000 acres of tidal marshes. Change is detected using the normalized difference vegetation index (NDVI) and land cover classification. The imagery shows negligible net loss or gain in the marsh over the 9-year period. However, regional changes in biomass are apparent and are due to natural disturbances such as low winter temperatures, fire, storm surge, and the conversion of forest to marsh. Within the marsh, the most prominent changes in NDVI and in land cover result from the recovery of mangroves from freezes, a decline of transitional upland vegetation, and susceptibility of the marsh edge and interior to variations in tidal flooding.

  9. Magnetically coupled system for mixing

    DOE Patents [OSTI]

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2015-09-22

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  10. Magnetically coupled system for mixing

    SciTech Connect (OSTI)

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2014-04-01

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  11. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Axisymmetric Magnetic Mirror Fusion-Fission Hybrid Citation Details ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  12. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Axisymmetric Magnetic Mirror Fusion-Fission Hybrid Citation Details ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  13. Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities...

    Office of Scientific and Technical Information (OSTI)

    Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities and Diagnostic ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  14. Proximity-induced magnetism in transition-metal substituted graphene...

    Office of Scientific and Technical Information (OSTI)

    Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified ...

  15. CHANDRA AND HST IMAGING OF THE QUASARS PKS B0106+013 AND 3C 345: INVERSE COMPTON X-RAYS AND MAGNETIZED JETS

    SciTech Connect (OSTI)

    Kharb, P.; Lister, M. L.; Hogan, B. S.; Marshall, H. L.

    2012-04-01

    }13 Degree-Sign are obtained for the two quasars. Broadband (radio-optical-X-ray) spectral energy distribution (SED) modeling of individual jet components in both quasars suggests that the optical emission is from the synchrotron mechanism, while the X-rays are produced via the inverse Compton mechanism from relativistically boosted cosmic microwave background seed photons. The locations of the upstream X-ray termination peaks strongly suggest that the sites of bulk jet deceleration lie upstream (by a few kiloparsecs) of the radio hot spots in these quasars. These regions are also the sites of shocks or magnetic field dissipation, which reaccelerate charged particles and produce high-energy optical and X-ray photons. This is consistent with the best-fit SED modeling parameters of magnetic field strength and electron power-law indices being higher in the jet termination regions compared to the cores. The shocked jet regions upstream of the radio hot spots, the kiloparsec-scale jet wiggles and a 'nose cone'-like jet structure in 0106+013, and the V-shaped radio structure in 3C 345, are all broadly consistent with instabilities associated with Poynting-flux-dominated jets. A greater theoretical understanding and more sensitive numerical simulations of jets spanning parsec to kiloparsec scales are needed, however, to make direct quantitative comparisons.

  16. Proximity-induced magnetism in transition-metal substituted graphene

    SciTech Connect (OSTI)

    Crook, Charles B.; Constantin, Costel; Ahmed, Towfiq; Zhu, Jian -Xin; Balatsky, Alexander V.; Haraldsen, Jason T.

    2015-08-03

    We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, where the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic and carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction.

  17. Geometry and controls on fracturing in a natural fault-bend fold: Rosario field, Maracaibo basin, Venezuela

    SciTech Connect (OSTI)

    Apotria, T.G.; Wilkerson, M.S.; Knewtson, S.L.

    1996-08-01

    The Rosario oil field lies between the Perija Mountain front and Lake Maracaibo and produces from fractured Cretaceous carbonates and Tertiary clastics. We interpret the structure as a detached fault-bend fold which ramps through Cretaceous Cogollo and La Luna carbonates and flattens into an upper detachment at the base of the Upper Cretaceous Colon Shale. The structural relief formed primarily during the Mid Miocene and younger. Seismic and well control on the three-dimensional geometry illustrates the effects of (1) lithology and displacement variation on fold geometry, (2) an oblique footwall ramp on hangingwall faulting, and (3) fold curvature on fracturing and hydrocarbon production. Fold geometry at different structural levels is strongly controlled by lithology. Stiff Cogollo and La Luna carbonates exhibit kink-style folding above the upper fault-bend. The weak Colon Shale decouples the faulted carbonates from the concentrically folded Tertiary clastics. Regions of enhanced faulting and fracturing of Cretaceous carbonates are a function of structural position. We observe normal faults in the hangingwall where the strike of the footwall ramp changes from N20{degrees}E to N65{degrees}E. Fold curvature highlights fold hinges, yet distributed faulting is seismically imaged in the forelimb, suggesting that rocks fracture as they migrate through the ramp-upper flat fault-bend. Production rates are higher near the forelimb relative to the flat crestal region.

  18. Magnetic domain structure and domain-wall energy in UFe{sub 8}Ni{sub 2}Si{sub 2} and UFe{sub 6}Ni{sub 4}Si{sub 2} intermetallic compounds

    SciTech Connect (OSTI)

    Wyslocki, J.J.; Suski, W.; Wochowski, K.

    1994-03-01

    Magnetic domain structures in the UFe{sub 8}Ni{sub 2}Si{sub 2} and UFe{sub 6}Ni{sub 4}Si{sub 2} compounds were studied using the powder pattern method. The domain structure observed is typical for uniaxial materials. The domain-wall energy density {gamma} was determined from the average surface domain width D{sub s} observed on surfaces perpendicular to the easy axis as equal to 16 erg/cm{sup 2} for UFe{sub 8}Ni{sub 2}Si{sub 2} and 10 erg/cm{sup 2} for UFe{sub 6}Ni{sub 4}Si{sub 2}. Moreover, the critical diameter for single domain particle D{sub c} was calculated for the studied compounds.

  19. Foliated breccias in the active Portuguese Bend landslide complex, California: bearing on melange genesis

    SciTech Connect (OSTI)

    Larue, D.K.; Hudleston, P.J.

    1987-05-01

    The active portion of the Portuguese Bend landslide complex is approximately 3 km/sup 2/ in area and 30-50 m thick. Measured displacement rates range from less than one to greater than 30 mm/day on different parts of the landslide, with total displacements over the last 30 yrs ranging from about 10 to greater than 150 m. Six types of breccia, each locally with a foliated matrix, were recognized in the active landslide complex and are absent outside the landslide complex. Slide-body breccias are of two types, the first formed by extensional fracturing during bulk pure shear at the top of the landslide (slide-top breccia) and the second by flow of tuffaceous shales and fracture of embedded siliceous shales during simple shear deep in the landslide to the basal decollement (slide-bottom breccias). Slide-margin breccias, also in simple shear, are produced on the lateral margins of individual slide blocks accompanying wrench-fault motion. Other breccias (fault-ramp breccias) are formed during motion over ramps. Colluvial deposits within tension gashes (crack-fill breccias) and at the toe of the slide (slide-toe breccias) represent a fifth breccia type. Diapirs originating from over-pressured zones at the slide base also contain breccia. Recognition of different breccia types in ancient rocks would be difficult, because fabrics in the different types are similar. Foliations are defined by: scaly cleavage, compositional banding and color banding (in shear zones), stretched mud clasts, and aligned hard grains. Foliated breccias are synonymous with melanges. The authors regard the six breccia types described herein as representing the principal types of melange that occur in ancient accretionary settings.

  20. Strain rate and inertial effects on impact loaded single-edge notch bend specimens

    SciTech Connect (OSTI)

    Vargas, P.M.; Dodds, R.H. Jr.

    1995-12-31

    Many problems in fracture mechanics of ductile metals involve surface breaking defects located in structures subjected to impact or blast. When the severity of impact loads is sufficient to produce large inelastic deformations, the assessment of crack-tip conditions must include the effects of plasticity, strain rate and inertia. This work examines the interaction of impact loading, inelastic material deformation and rate sensitivity with the goal of improving the interpretation of ductile fracture toughness values measured under dynamic loading. The authors focus on shallow and deeply notched bend test specimens, SE(B)s, employed routinely to measure the static fracture toughness of a material. A thorough understanding of the test specimen`s dynamic behavior is a prerequisite to the application of measured fracture properties in structural applications. Three-dimensional, nonlinear dynamic analyses are performed for SE(B) fracture specimens subjected to impact loading. Loading rates obtained in conventional drop tower tests are applied in the analyses. An explicit time integration procedure coupled with an efficient (one-point) element integration scheme is employed to compute the dynamic response of the specimen. Strain-rate sensitivity is introduced via a new, efficient implementation of the Bodner-Partom viscoplastic constitutive model. Material properties for A533B steel are used in the analyses. Static analyses of the SE(B) specimens provide baseline responses for assessment of inertial effects. Similarly, dynamic analyses using a strain-rate insensitive material provide reference responses for the assessment of strain rate effects. Strains at key locations on the specimens and the support reactions are extracted from the analyses to assess the accuracy of static formulas commonly used to estimate applied J values. Inertial effects on the applied J are quantified by examining the acceleration component of J evaluated through a domain integral procedure.

  1. Diagnosing collisions of magnetized, high energy density plasma flows using a combination of collective Thomson scattering, Faraday rotation, and interferometry (invited)

    SciTech Connect (OSTI)

    Swadling, G. F. Lebedev, S. V.; Hall, G. N.; Patankar, S.; Stewart, N. H.; Smith, R. A.; Burdiak, G. C.; Grouchy, P. de; Skidmore, J.; Suttle, L.; Suzuki-Vidal, F.; Bland, S. N.; Kwek, K. H.; Pickworth, L.; Bennett, M.; Hare, J. D.; Harvey-Thompson, A. J.; Rozmus, W.; Yuan, J.

    2014-11-15

    A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7–14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnostics are used to constrain analysis, increasing the accuracy of interpretation.

  2. Beamline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamline Scientific Applications SAXSWAXS Solution Scattering Fiber diffraction Anomalous SAXS Source characteristics Bending Magnet Port 6A Electron Beam energy 1.3 GeV Dipole...

  3. Beamline 10.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet (beamline optics collect 0.166 horizontal mrad) Energy range 2.5-17 keV Monochromator Monochromatic,...

  4. Beamline 7.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Diagnostic beamline GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range Port 1: 17 keV transmission though...

  5. Beamline 3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Diagnostic beamline GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 1-2 keV transmission through...

  6. Beamline 6.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print EUV Calibrations Scientific discipline: Applied sciences GENERAL BEAMLINE INFORMATION Operational Now Source characteristics Bend magnet Energy range 25-1300 eV...

  7. Superconducting magnet

    DOE Patents [OSTI]

    Satti, John A. (Naperville, IL)

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  8. Energy 101: Geothermal Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Energy 101: Geothermal Energy

  9. Novel Flux Coupling Machine without Permanent Magnets | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ape005_hsu_2011_o.pdf (325.23 KB) More Documents & Publications Novel Flux Coupling Machine without Permanent Magnets A New Class of Switched Reluctance Motors without Permanent Magnets A New Class of Switched Reluctance Motors without Permanent Magnets

  10. Permanent magnet assembly

    DOE Patents [OSTI]

    Chell, Jeremy; Zimm, Carl B.

    2006-12-12

    A permanent magnet assembly is disclosed that is adapted to provide a magnetic field across an arc-shaped gap. Such a permanent magnet assembly can be used, for example, to provide a time-varying magnetic field to an annular region for use in a magnetic refrigerator.

  11. Energy for Keeps: Electricity and Renewable Energy Teacher Information...

    Office of Environmental Management (EM)

    Activities provided include The Energy Times, Going for a Spin: Making a Model, Steam Turbine and Getting Current: Generating Electricity Using a Magnet, Watt's My Line?, Grime ...

  12. Superconducting magnet development in Japan

    SciTech Connect (OSTI)

    Yasukochi, K.

    1983-05-01

    The present state of R and D works on the superconducting magnet and its applications in Japan are presented. On electrical rotating machines, 30 MVA superconducting synchronous rotary condenser (Mitsubishi and Fuji) and 50 MVA generator are under construction. Two ways of ship propulsion by superconducting magnets are developing. A superconducting magnetically levitated and linear motor propelled train ''MAGLEV'' was developed by the Japan National Railways (JNR). The superconducting magnet development for fusion is the most active field in Japan. The Cluster Test program has been demonstrated on a 10 T Nb/sub 3/Sn coil and the first coil of Large Coil Task in IEA collaboration has been constructed and the domestic test was completed in JAERI. These works are for the development of toroidal coils of the next generation tokamak machine. R and D works on superconducting ohmic heating coil are in progress in JAERI and ETL. The latter group has constructed 3.8 MJ pulsed coil. A high ramp rate of changing field in pulsed magnet, 200 T/s, has been tested successfully. High Energy Physics Laboratory (KEK) are conducting active works. The superconducting ..mu.. meson channel and ..pi.. meson channel have been constructed and are operating successfully. KEK has also a project of big accelerator named ''TRISTAN'', which is similar to ISABELLE project of BNL. Superconducting synchrotron magnets are developed for this project. The development of superconducting three thin wall solenoid has been started. One of them, CDF, is progressing under USA-Japan collaboration.

  13. Exact physical model for magnets in storage rings

    SciTech Connect (OSTI)

    Maletic, D.; Ruggiero, A.G.

    1992-12-31

    In this report we try to make estimates of both kinematic and field effects on the stability of a particle motion, by employing a truly Maxwellian representation of the magnetic field in exact equations of motion. For this purpose we adopt a simple FODO cell model, which repeats periodically to infinity. This model includes only quadrupoles and drifts, leaving out the bending magnets to avoid the problem of the trajectory curvature. We think this model is a physically consistent approximation of a storage ring. We derive several models with different levels of approximation and compare them by evaluating the importance of these effects. The relevance to long-term stability is being investigated in the meantime by comparing the different models with extensive computer simulations. The results will be shown in a subsequent report.

  14. Superconducting sector magnet for the deuteron cyclotron DC-1

    SciTech Connect (OSTI)

    Alenitskij, Y.G.; Vasilenko, A.T.; Zaplatin, N.L.; Mironov, S.V.; Morozov, N.A.; Pryanichnikov, V.I.; Samsonov, E.V.; Sukhanov, V.I.; Chesnov, A.F.; Chesnova, S.I. )

    1992-01-01

    In this paper the results of calculations of a superconducting magnet with a cold pole for a cyclotron to deuteron energy 100 MeV are presented. The maximum induction in the magnet is 4.5 T, stored energy 5 MJ, mean current density in coil 9 {center dot} 10{sup 7} A/m{sup 2}. The scheme and main parameters of the magnet protection system and cryogenic provision system are described. The results of calculation of magnetic and thermal forces acting on the coil and its case are presented. The status of the manufacture of the magnetic system elements is considered.

  15. Ashman Technologies | Open Energy Information

    Open Energy Info (EERE)

    has developed various permanent magnet high-speed generators and various flywheel energy storage applications funded by NASA and NASA GRC has extensively tested these...

  16. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    arts. Activities provided include The Energy Times, Going for a Spin: Making a Model, Steam Turbine and Getting Current: Generating Electricity Using a Magnet, Watt's My Line?,...

  17. Try This: Household Magnets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Now which is stronger, gravity or magnetism? What is going on? How do flexible refrigerator magnets work? Get two of these magnets, they are often the size of a business card....

  18. Improved magnetic encoding device and method for making the same. [Patent application

    DOE Patents [OSTI]

    Fox, R.J.

    A magnetic encoding device and method for making the same are provided for use as magnetic storage media in identification control applications that give output signals from a reader that are of shorter duration and substantially greater magnitude than those of the prior art. Magnetic encoding elements are produced by uniformly bending wire or strip stock of a magnetic material longitudinally about a common radius to exceed the elastic limit of the material and subsequently mounting the material so that it is restrained in an unbent position on a substrate of nonmagnetic material. The elements are spot weld attached to a substrate to form a binary coded array of elements according to a desired binary code. The coded substrate may be enclosed in a plastic laminate structure. Such devices may be used for security badges, key cards, and the like and may have many other applications. 7 figures.

  19. A Study On Critical Thinning In Thin-walled Tube Bending Of Al-Alloy 5052O Via Coupled Ductile Fracture Criteria

    SciTech Connect (OSTI)

    Li Heng; Yang He; Zhan Mei

    2010-06-15

    Thin-walled tube bending(TWTB) method of Al-alloy tube has attracted wide applications in aerospace, aviation and automobile,etc. While, under in-plane double tensile stress states at the extrados of bending tube, the over-thinning induced ductile fracture is one dominant defect in Al-alloy tube bending. The main objective of this study is to predict the critical wall-thinning of Al-alloy tube bending by coupling two ductile fracture criteria(DFCs) into FE simulation. The DFCs include Continuum Damage Mechanics(CDM)-based model and GTN porous model. Through the uniaxial tensile test of the curved specimen, the basic material properties of the Al-alloy 5052O tube is obtained; via the inverse problem solution, the damage parameters of both the two fracture criteria are interatively determined. Thus the application study of the above DFCs in the TWTB is performed, and the more reasonable one is selected to obtain the critical thinning of Al-alloy tube in bending. The virtual damage initiation and evolution (when and where the ductile fracture occurs) in TWTB are investigated, and the fracture mechanisms of the voided Al-alloy tube in tube bending are consequently discussed.

  20. Simulations by PPPL physicists suggest that external magnetic fields can

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    calm plasma instabilities | Princeton Plasma Physics Lab Simulations by PPPL physicists suggest that external magnetic fields can calm plasma instabilities By Raphael Rosen August 15, 2016 Tweet Widget Google Plus One Share on Facebook Magnetic Perturbations (Photo by Gerrit Kramer) Magnetic Perturbations Physicists led by Gerrit Kramer at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have conducted simulations that suggest that applying magnetic fields to

  1. Los Alamos achieves world-record pulsed magnetic field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos achieves world-record pulsed magnetic field Los Alamos achieves world-record pulsed magnetic field Researchers have set a new world record for the strongest magnetic field produced by a nondestructive magnet. August 23, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

  2. Simulations by PPPL physicists suggest that external magnetic fields can

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    calm plasma instabilities | Princeton Plasma Physics Lab Simulations by PPPL physicists suggest that external magnetic fields can calm plasma instabilities By Raphael Rosen August 15, 2016 Tweet Widget Google Plus One Share on Facebook Magnetic Perturbations (Photo by Gerrit Kramer) Magnetic Perturbations Physicists led by Gerrit Kramer at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have conducted simulations that suggest that applying magnetic fields to

  3. Magnetization of neutron matter

    SciTech Connect (OSTI)

    Bigdeli, M.

    2011-09-21

    In this paper, we compute magnetization of neutron matter at strong magnetic field using the lowest order constrained variational (LOCV) technique.

  4. INVERSE CASCADE OF NONHELICAL MAGNETIC TURBULENCE IN A RELATIVISTIC FLUID

    SciTech Connect (OSTI)

    Zrake, Jonathan [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Menlo Park, CA 94025 (United States)

    2014-10-20

    The free decay of nonhelical relativistic magnetohydrodynamic turbulence is studied numerically, and found to exhibit cascading of magnetic energy toward large scales. Evolution of the magnetic energy spectrum P{sub M} (k, t) is self-similar in time and well modeled by a broken power law with subinertial and inertial range indices very close to 7/2 and 2, respectively. The magnetic coherence scale is found to grow in time as t {sup 2/5}, much too slow to account for optical polarization of gamma-ray burst afterglow emission if magnetic energy is to be supplied only at microphysical length scales. No bursty or explosive energy loss is observed in relativistic MHD turbulence having modest magnetization, which constrains magnetic reconnection models for rapid time variability of GRB prompt emission, blazars, and the Crab nebula.

  5. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy,and Related Fields

    SciTech Connect (OSTI)

    Grisham, L. R.; Kwan, J. W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  6. CMI Unique Facility: Thermal Analysis in High Magnetic Fields | Critical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Institute Thermal Analysis in High Magnetic Fields The ability to measure Thermal Analysis in High Magnetic Fields is one of more than a dozen unique facilities developed by the Critical Materials Institute, an Energy Innovation Hub of the U.S. Department of Energy. CMI researchers at Oak Ridge National Laboratory are able to measure materials over a wider range of conditions because they adapted commercial thermal analysis components to be compatible with high magnetic fields and

  7. Cold energy

    SciTech Connect (OSTI)

    Wallace, John P.

    2015-12-04

    Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.

  8. MAGNETIC DENSITOMETER

    DOE Patents [OSTI]

    McCann, J.A.; Jones, R.H.

    1961-08-15

    A magnetic densitometer for locating defects and metallic inclusions in materials is described. The apparatus consists of two primary coils connected in series opposition and adapted te be placed in inductive relation to the material under test, a source of constant frequency alternating current coupled across the primary coil combination, a pick-up coil disposed in symmetrical inductive relationship with said primary coils, a phase-shifter coupled to the output of the energizing source. The output of the phase-shifter is coupled in series with the pick-up coil. An amplifier is provided selective to the third harmonic of the energizing source frequency. The series combination of the pick-up coil and the phase-shifter output are connected across the input of the amplifier, and an amplitude comparitor is coupled to the output of the amplifier and the energizing source for comparing the instantaneous amplitude of the amplifier output and the instantaneous output of the energizing source and producing an output proportional to the difference in amplitude. A recorder is coupled to the output of the amplitude comparison means to give an indication of the amplitude difference, thereby providing a permanent presentation of the character of the changes in characteristics exhibited by the material under test. (AEC)

  9. Solar Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Blog Solar Blog RSS The SunShot Initiative's Solar Blog features the latest stories about the work of the solar energy technologies office within the Department of Energy. Learn more about us. August 4, 2016 Giant Leap Technologies uses microfluidics to bend light toward a solar at the top of the plant. Each solar thermal power plant shown is a football field in size. | <em>Photo courtesy of Giant Leap Technologies</em> Cutting-Edge Science Drives SunShot Projects The

  10. Method using photo-induced and thermal bending of MEMS sensors

    DOE Patents [OSTI]

    Datskos, Panagiotis G.

    2001-01-01

    A method for measuring chemical analytes and physical forces by measuring changes in the deflection of a microelectromechanical cantilever structure while it is being irradiated by a light having an energy above the band gap of the structure.

  11. Permanent-magnet-less machine having an enclosed air gap

    DOE Patents [OSTI]

    Hsu, John S.

    2013-03-05

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  12. Permanent-magnet-less machine having an enclosed air gap

    DOE Patents [OSTI]

    Hsu, John S.

    2012-02-07

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  13. Magnetic multilayer structure

    DOE Patents [OSTI]

    Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2016-07-05

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  14. Magnetic Membrane System

    DOE Patents [OSTI]

    McElfresh, Michael W.; ; Lucas, Matthew S.

    2004-12-30

    The present invention provides a membrane with magnetic particles. In one embodiment the membrane is created by mixing particles in a non-magnetic base. The membrane may act as an actuator, a sensor, a pump, a valve, or other device. A magnet is operatively connected to the membrane. The magnet acts on and changes the shape of the membrane.

  15. Acceleration during magnetic reconnection

    SciTech Connect (OSTI)

    Beresnyak, Andrey; Li, Hui

    2015-07-16

    The presentation begins with colorful depictions of solar x-ray flares and references to pulsar phenomena. Plasma reconnection is complex, could be x-point dominated or turbulent, field lines could break due to either resistivity or non-ideal effects, such as electron pressure anisotropy. Electron acceleration is sometimes observed, and sometimes not. One way to study this complex problem is to have many examples of the process (reconnection) and compare them; the other way is to simplify and come to something robust. Ideal MHD (E=0) turbulence driven by magnetic energy is assumed, and the first-order acceleration is sought. It is found that dissipation in big (length >100 ion skin depths) current sheets is universal and independent on microscopic resistivity and the mean imposed field; particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. One example of such flow is spontaneous reconnection. This explains hot electrons with a power-law tail in solar flares, as well as ultrashort time variability in some astrophysical sources.

  16. Perpendicularly magnetized {tau}-MnAl (001) thin films epitaxied on GaAs

    SciTech Connect (OSTI)

    Nie, S. H.; Zhu, L. J.; Lu, J.; Pan, D.; Wang, H. L.; Yu, X. Z.; Xiao, J. X.; Zhao, J. H.

    2013-04-15

    Perpendicularly magnetized {tau}-MnAl films have been epitaxied on GaAs (001) by molecular-beam epitaxy. Crystalline quality and magnetic properties of the samples were strongly dependent on growth temperature. The highest coercivity of 10.7 kOe, saturation magnetization of 361.4 emu/cm{sup 3}, perpendicular magnetic anisotropy constant of 13.65 Merg/cm{sup 3}, and magnetic energy product of 4.44 MGOe were achieved. These tunable magnetic properties make MnAl films valuable as excellent and cost-effective alternative for not only high density perpendicular magnetic recording storage and spintronics devices but also permanent magnets.

  17. Conversion of magnetic energy in the magnetic reconnection layer...

    Office of Scientific and Technical Information (OSTI)

    field lines break and reconnect to change their topology, occurs throughout the universe. The essential feature of reconnection is that it energizes plasma particles by...

  18. Recycling Magnets | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recycling Magnets Recycling Magnets July 15, 2013 The cost of a nuclear or particle physics experiment can be enormous, several hundred million dollars for the Large Hadron Collider Experiments, ATLAS and CMS at CERN, several tens of millions of dollars for an experiment like our GlueX experiment in Hall D, being built as part of our upgrade project. Among the expensive components of many experiments is a large magnet or sometimes more than one magnet. Sometimes the magnets have interesting

  19. Magnetic Damping For Maglev

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, S.; Cai, Y.; Rote, D. M.; Chen, S. S.

    1998-01-01

    Magnetic damping is one of the important parameters that control the response and stability of maglev systems. An experimental study to measure magnetic damping directly is presented. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters, such as conductivity, gap, excitation frequency, and oscillation amplitude, on magnetic damping. The experimental technique is capable of measuring all of the magnetic damping coefficients, some of which cannot be measured indirectly.

  20. Bending testing and characterization of surrogate nuclear fuel rods made of Zircaloy-4 cladding and aluminum oxide pellets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Hong; Wang, Jy-An John

    2016-07-20

    We studied behavior of surrogate nuclear fuel rods made of Zircaloy-4 (Zry-4) cladding with alumina pellets under reversed cyclic bending. Tests were performed under load or moment control at 5 Hz, and an empirical correlation was established between rod fatigue life and amplitude of the applied moment. Fatigue response of Zry-4 cladding was further characterized by using flexural rigidity. Degradation of flexural rigidity was shown to depend on the moment applied and the prefatigue condition of specimens. Pellet-to-pellet interface (PPI), pellet-to-cladding interface (PCI), and pellet condition all affect surrogate rod failure. Bonding/debonding of PPI/PCI and pellet fracturing contribute to surrogatemore » rod bending fatigue. Also, the effect of sensor spacing on curvature measurement using three-point deflections was studied; the method based on effective specimen gauge length is effective in sensor spacing correction. Finally, we developed the database and gained understanding in this study such that it will serve as input to analysis of SNF vibration integrity.« less

  1. Effects of toughness anisotropy and combined tension, torsion, and bending loads on fracture behavior of ferritic nuclear pipe

    SciTech Connect (OSTI)

    Mohan, R.; Marshall, C.; Ghadiali, N.; Wilkowski, G.

    1997-04-01

    This paper summarizes work on angled through-wall-crack initiation and combined loading effects on ferritic nuclear pipe performed as part of the Nuclear Regulatory Commission`s research program entitled {open_quotes}Short Cracks In Piping an Piping Welds{close_quotes}. The reader is referred to Reference 1 for details of the experiments and analyses conducted as part of this program. The major impetus for this work stemmed from the observation that initially circumferentially oriented cracks in carbon steel pipes exhibited a high tendency to grow at a different angle when the cracked pipes were subjected to bending or bending plus pressure loads. This failure mode was little understood, and the effect of angled crack grown from an initially circumferential crack raised questions about how cracks in a piping system subjected to combined loading with torsional stresses would behave. There were three major efforts undertaken in this study. The first involved a literature review to assess the causes of toughness anisotropy in ferritic pipes and to develop strength and toughness data as a function of angle from the circumferential plane. The second effort was an attempt to develop a screening criterion based on toughness anisotropy and to compare this screening criterion with experimental pipe fracture data. The third and more significant effort involved finite element analyses to examine why cracks grow at an angle and what is the effect of combined loads with torsional stresses on a circumferentially cracked pipe. These three efforts are summarized.

  2. Magnetic levitation system for moving objects

    DOE Patents [OSTI]

    Post, Richard F.

    1998-01-01

    Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds.

  3. Magnetic levitation system for moving objects

    DOE Patents [OSTI]

    Post, R.F.

    1998-03-03

    Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds. 7 figs.

  4. Digital lock-in detection of site-specific magnetism in magnetic materials

    DOE Patents [OSTI]

    Haskel, Daniel; Lang, Jonathan C.; Srajer, George

    2008-07-22

    The polarization and diffraction characteristics of x-rays incident upon a magnetic material are manipulated to provide a desired magnetic sensitivity in the material. The contrast in diffracted intensity of opposite helicities of circularly polarized x-rays is measured to permit separation of magnetic signals by element type and by atomic environment. This allows for the direct probing of magnetic signals from elements of the same species in nonequivalent atomic environments to better understand the behavior and characteristics of permanent magnetic materials. By using known crystallographic information together with manipulation of the polarization of x-rays having energies tuned near element-specific electronic excitations and by detecting and comparing the incident and diffracted photons at the same frequency, more accurate magnetic measurements can be made over shorter observation periods.

  5. Nanocomposite Magnets: Transformational Nanostructured Permanent Magnets

    SciTech Connect (OSTI)

    2010-10-01

    Broad Funding Opportunity Announcement Project: GE is using nanomaterials technology to develop advanced magnets that contain fewer rare earth materials than their predecessors. Nanomaterials technology involves manipulating matter at the atomic or molecular scale, which can represent a stumbling block for magnets because it is difficult to create a finely grained magnet at that scale. GE is developing bulk magnets with finely tuned structures using iron-based mixtures that contain 80% less rare earth materials than traditional magnets, which will reduce their overall cost. These magnets will enable further commercialization of HEVs, EVs, and wind turbine generators while enhancing U.S. competitiveness in industries that heavily utilize these alternatives to rare earth minerals.

  6. FEA Simulations of Magnets with Grain Oriented Steel

    SciTech Connect (OSTI)

    Witte H.

    2012-08-06

    One of the potential successors of the Large Hadron Collider is a Muon Col- lider. Muons are short-lived particles, which therefore require fast acceleration. One potential avenue is a very fast cycling cyclotron, where the bending is sup- plied by a combination of fixed-field superconducting magnets and fast ramping normal conducting iron-cored coils. Due to the high ramping rate (around 1 kHz) eddy current and hysteresis losses are a concern. One way to overcome these is by using grain-oriented soft-iron, which promises superior magnetic properties in the direction of the grains. This note summarizes efforts to include the anisotropic material properties of grain-oriented steel in finite element analysis to predict the behaviour of the dipole magnets for this accelerator. It was found that including anisotropic material properties has a detrimental effect on model convergence. During this study it was not possible to include grain oriented steel with an accuracy necessary to study the field quality of a dipole magnet.

  7. EA-1897: AltaRock's Newberry Volcano EGS Demonstration near Bend, Oregon

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to create an Enhanced Geothermal Systems (EGS) Demonstration Project involving new technology, techniques, and advanced monitoring protocols for the purpose of testing the feasibility and viability of EGS for renewable energy production.

  8. Magnetic switch coupling to synchronize magnetic modulators

    DOE Patents [OSTI]

    Reed, K.W.; Kiekel, P.

    1999-04-27

    Apparatus for synchronizing the output pulses from a pair of magnetic switches is disclosed. An electrically conductive loop is provided between the pair of switches with the loop having windings about the core of each of the magnetic switches. The magnetic coupling created by the loop removes voltage and timing variations between the outputs of the two magnetic switches caused by any of a variety of factors. The only remaining variation is a very small fixed timing offset caused by the geometry and length of the loop itself. 13 figs.

  9. Magnetic switch coupling to synchronize magnetic modulators

    DOE Patents [OSTI]

    Reed, Kim W.; Kiekel, Paul

    1999-01-01

    Apparatus for synchronizing the output pulses from a pair of magnetic switches. An electrically conductive loop is provided between the pair of switches with the loop having windlings about the core of each of the magnetic switches. The magnetic coupling created by the loop removes voltage and timing variations between the outputs of the two magnetic switches caused by any of a variety of factors. The only remaining variation is a very small fixed timing offset caused by the geometry and length of the loop itself.

  10. Local thermodynamics of a magnetized, anisotropic plasma

    SciTech Connect (OSTI)

    Hazeltine, R. D.; Mahajan, S. M.; Morrison, P. J.

    2013-02-15

    An expression for the internal energy of a fluid element in a weakly coupled, magnetized, anisotropic plasma is derived from first principles. The result is a function of entropy, particle density and magnetic field, and as such plays the role of a thermodynamic potential: it determines in principle all thermodynamic properties of the fluid element. In particular it provides equations of state for the magnetized plasma. The derivation uses familiar fluid equations, a few elements of kinetic theory, the MHD version of Faraday's law, and certain familiar stability and regularity conditions.

  11. Nonlinear simulations to optimize magnetic nanoparticle hyperthermia

    SciTech Connect (OSTI)

    Reeves, Daniel B. Weaver, John B.

    2014-03-10

    Magnetic nanoparticle hyperthermia is an attractive emerging cancer treatment, but the acting microscopic energy deposition mechanisms are not well understood and optimization suffers. We describe several approximate forms for the characteristic time of Néel rotations with varying properties and external influences. We then present stochastic simulations that show agreement between the approximate expressions and the micromagnetic model. The simulations show nonlinear imaginary responses and associated relaxational hysteresis due to the field and frequency dependencies of the magnetization. This suggests that efficient heating is possible by matching fields to particles instead of resorting to maximizing the power of the applied magnetic fields.

  12. Magnets for Muon 6D Cooling Channels

    SciTech Connect (OSTI)

    Johnson, Rolland; Flanagan, Gene

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  13. Magnetic infrasound sensor

    DOE Patents [OSTI]

    Mueller, Fred M. (Los Alamos, NM); Bronisz, Lawrence (Los Alamos, NM); Grube, Holger (Los Alamos, NM); Nelson, David C. (Santa Fe, NM); Mace, Jonathan L. (Los Alamos, NM)

    2006-11-14

    A magnetic infrasound sensor is produced by constraining a permanent magnet inside a magnetic potential well above the surface of superconducting material. The magnetic infrasound sensor measures the position or movement of the permanent magnet within the magnetic potential well, and interprets the measurements. Infrasound sources can be located and characterized by combining the measurements from one or more infrasound sensors. The magnetic infrasound sensor can be tuned to match infrasound source types, resulting in better signal-to-noise ratio. The present invention can operate in frequency modulation mode to improve sensitivity and signal-to-noise ratio. In an alternate construction, the superconductor can be levitated over a magnet or magnets. The system can also be driven, so that time resolved perturbations are sensed, resulting in a frequency modulation version with improved sensitivity and signal-to-noise ratio.

  14. SCALING LAW OF RELATIVISTIC SWEET-PARKER-TYPE MAGNETIC RECONNECTION

    SciTech Connect (OSTI)

    Takahashi, Hiroyuki R.; Kudoh, Takahiro; Masada, Youhei; Matsumoto, Jin

    2011-10-01

    Relativistic Sweet-Parker-type magnetic reconnection is investigated by relativistic resistive magnetohydrodynamic (RRMHD) simulations. As an initial setting, we assume anti-parallel magnetic fields and a spatially uniform resistivity. A perturbation imposed on the magnetic fields triggers magnetic reconnection around a current sheet, and the plasma inflows into the reconnection region. The inflows are then heated due to ohmic dissipation in the diffusion region and finally become relativistically hot outflows. The outflows are not accelerated to ultrarelativistic speeds (i.e., Lorentz factor {approx_equal} 1), even when the magnetic energy dominates the thermal and rest mass energies in the inflow region. Most of the magnetic energy in the inflow region is converted into the thermal energy of the outflow during the reconnection process. The energy conversion from magnetic to thermal energy in the diffusion region results in an increase in the plasma inertia. This prevents the outflows from being accelerated to ultrarelativistic speeds. We find that the reconnection rate R obeys the scaling relation R{approx_equal}S{sup -0.5}, where S is the Lundquist number. This feature is the same as that of non-relativistic reconnection. Our results are consistent with the theoretical predictions of Lyubarsky for Sweet-Parker-type magnetic reconnection.

  15. Itinerant magnetism in metallic CuFe2Ge2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shanavas, K. V.; Singh, David J.; He, Ruihua

    2015-03-25

    Theoretical calculations are performed to understand the electronic structure and magnetic properties of CuFe2Ge2. The band structure reveals large electron density N(EF) at the Fermi level suggesting a strong itinerant character of magnetism. The Fermi surface is dominated by two dimensional sheet like structures, with potentially strong nesting between them. The magnetic ground state appears to be ferromagnetic along a and antiferromagnetic in other directions. The results show that CuFe2Ge2 is an antiferromagnetic metal, with similarities to the Fe-based superconductors; such as magnetism with substantial itinerant character and coupling between magnetic order and electrons at the Fermi energy.

  16. Electronic band structure of magnetic bilayer graphene superlattices

    SciTech Connect (OSTI)

    Pham, C. Huy; Nguyen, T. Thuong

    2014-09-28

    Electronic band structure of the bilayer graphene superlattices with ?-function magnetic barriers and zero average magnetic flux is studied within the four-band continuum model, using the transfer matrix method. The periodic magnetic potential effects on the zero-energy touching point between the lowest conduction and the highest valence minibands of pristine bilayer graphene are exactly analyzed. Magnetic potential is shown also to generate the finite-energy touching points between higher minibands at the edges of Brillouin zone. The positions of these points and the related dispersions are determined in the case of symmetric potentials.

  17. Thermal to electricity conversion using thermal magnetic properties

    DOE Patents [OSTI]

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  18. Tamper resistant magnetic stripes

    DOE Patents [OSTI]

    Naylor, Richard Brian; Sharp, Donald J.

    1999-01-01

    This invention relates to a magnetic stripe comprising a medium in which magnetized particles are suspended and in which the encoded information is recorded by actual physical rotation or alignment of the previously magnetized particles within the flux reversals of the stripe which are 180.degree. opposed in their magnetic polarity. The magnetized particles are suspended in a medium which is solid, or physically rigid, at ambient temperatures but which at moderately elevated temperatures, such as 40.degree. C., is thinable to a viscosity permissive of rotation of the particles therein under applications of moderate external magnetic field strengths within acceptable time limits.

  19. Cylindrical Hall Thrusters with Permanent Magnets

    SciTech Connect (OSTI)

    Raitses, Yevgeny; Merino, Enrique; Fisch, Nathaniel J.

    2010-10-18

    The use of permanent magnets instead of electromagnet coils for low power Hall thrusters can offer a significant reduction of both the total electric power consumption and the thruster mass. Two permanent magnet versions of the miniaturized cylindrical Hall thruster (CHT) of different overall dimensions were operated in the power range of 50W-300 W. The discharge and plasma plume measurements revealed that the CHT thrusters with permanent magnets and electromagnet coils operate rather differently. In particular, the angular ion current density distribution from the permanent magnet thrusters has an unusual halo shape, with a majority of high energy ions flowing at large angles with respect to the thruster centerline. Differences in the magnetic field topology outside the thruster channel and in the vicinity of the channel exit are likely responsible for the differences in the plume characteristics measured for the CHTs with electromagnets and permanent magnets. It is shown that the presence of the reversing-direction or cusp-type magnetic field configuration inside the thruster channel without a strong axial magnetic field outside the thruster channel does not lead to the halo plasma plume from the CHT. __________________________________________________

  20. USING CORONAL CELLS TO INFER THE MAGNETIC FIELD STRUCTURE AND CHIRALITY OF FILAMENT CHANNELS

    SciTech Connect (OSTI)

    Sheeley, N. R. Jr.; Warren, H. P.; Martin, S. F.; Panasenco, O.

    2013-08-01

    Coronal cells are visible at temperatures of {approx}1.2 MK in Fe XII coronal images obtained from the Solar Dynamics Observatory and Solar Terrestrial Relations Observatory spacecraft. We show that near a filament channel, the plumelike tails of these cells bend horizontally in opposite directions on the two sides of the channel like fibrils in the chromosphere. Because the cells are rooted in magnetic flux concentrations of majority polarity, these observations can be used with photospheric magnetograms to infer the direction of the horizontal field in filament channels and the chirality of the associated magnetic field. This method is similar to the procedure for inferring the direction of the magnetic field and the chirality of the fibril pattern in filament channels from H{alpha} observations. However, the coronal cell observations are easier to use and provide clear inferences of the horizontal field direction for heights up to {approx}50 Mm into the corona.

  1. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging...

  2. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in...

  3. A New Twist on the Magnetic Equilibrium of a Toroidal Plasma...

    Office of Science (SC) Website

    A New Twist on the Magnetic Equilibrium of a Toroidal Plasma Fusion Energy Sciences (FES) ... A New Twist on the Magnetic Equilibrium of a Toroidal Plasma The reversed field pinch's ...

  4. Magnetic Systems Mimic Granular Materials | U.S. DOE Office of...

    Office of Science (SC) Website

    ... magnetic x-ray photon correlation spectroscopy" that uses coherent x-ray beams (similar to laser light) whose energy is tuned to resonantly interact with atomic magnetic moments. ...

  5. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, News, News & Events, Renewable Energy, Systems Analysis, Systems Engineering,...

  6. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, News, News & Events, Renewable Energy, Systems Analysis, Systems Engineering,...

  7. Active magnetic regenerator

    DOE Patents [OSTI]

    Barclay, John A.; Steyert, William A.

    1982-01-01

    The disclosure is directed to an active magnetic regenerator apparatus and method. Brayton, Stirling, Ericsson, and Carnot cycles and the like may be utilized in an active magnetic regenerator to provide efficient refrigeration over relatively large temperature ranges.

  8. An exact solution for the history-dependent material and delamination behavior of laminated plates subjected to cylindrical bending

    SciTech Connect (OSTI)

    Williams, Todd O

    2009-01-01

    The exact solution for the history-dependent behavior of laminated plates subjected to cylindrical bending is presented. The solution represents the extension of Pagano's solution to consider arbitrary types of constitutive behaviors for the individual lamina as well as arbitrary types of cohesive zones models for delamination behavior. Examples of the possible types of material behavior are plasticity, viscoelasticity, viscoplasticity, and damaging. Examples of possible CZMs that can be considered are linear, nonlinear hardening, as well as nonlinear with softening. The resulting solution is intended as a benchmark solution for considering the predictive capabilities of different plate theories. Initial results are presented for several types of history-dependent material behaviors. It is shown that the plate response in the presence of history-dependent behaviors can differ dramatically from the elastic response. These results have strong implications for what constitutes an appropriate plate theory for modeling such behaviors.

  9. New Superconducting Magnet Will Lead to Next Generation of Wind Turbine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generators | Department of Energy Superconducting Magnet Will Lead to Next Generation of Wind Turbine Generators New Superconducting Magnet Will Lead to Next Generation of Wind Turbine Generators September 12, 2014 - 11:08am Addthis AML Superconductivity and Magnetics, in conjunction with the U.S. Department of Energy's (DOE's) Argonne National Laboratory, recently announced that their superconducting magnet system passed a landmark reliability test, demonstrating its potential suitability

  10. FIRST 100 T NON-DESTRUCTIVE MAGNET

    SciTech Connect (OSTI)

    J. R. SIMS; ET AL

    1999-10-01

    The first 100 T non-destructive (100 T ND) magnet and power supplies as currently designed are described. This magnet will be installed as part of the user facility research equipment at the National High Magnetic Field Laboratory (NHMFL) Pulsed Field Facility at Los Alamos National Laboratory. The 100 T ND magnet will provide a 100 T pulsed field of 5 ms duration (above 90% of full field) in a 15 mm diameter bore once per hour. Magnet operation will be non-destructive. The magnet will consist of a controlled power outer coil set which produces a 47 T platform field in a 225 mm diameter bore. Located within the outer coil set will be a 220 mm outer diameter capacitor powered insert coil. Using inertial energy storage a synchronous motor/generator will provide ac power to a set of seven ac-dc converters rated at 64 MW/80 MVA each. These converters will energize three independent coil circuits to create 170 MJ of field energy in the outer coil set at the platform field of 47 T. The insert will then be energized to produce the balance of the 100 T peak field using a 2.3 MJ, 18 kV (charged to 15 kV), 14.4 mF capacitor bank controlled with solid-state switches. The magnet will be the first of its kind and the first non-destructive, reusable 100 T pulsed magnet. The operation of the magnet will be described along with special features of its design and construction.

  11. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Cool Magnetic Molecules Print Wednesday, 25 May 2011 00:00 Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost

  12. Magnetic core studies at LBNL and LLNL

    SciTech Connect (OSTI)

    Molvik, A.W.; Faltens, A.; Reginato, L.; Blaszkiewicz, M.; Smith, C.; Wood, R.

    1997-09-20

    The objective of this work is to minimize the cost of the materials and maximize the performance of magnetic cores, a major cost component of a Heavy-Ion-Fusion, HIF, induction accelerator driver. This includes selection of the alloy for cost and performance, and maximizing the performance of each alloy evaluated. The two major performance parameters are the magnetic flux swing and the energy loss. The volt seconds of the cores, obtained from the flux swing with Faraday's Law, determines the beam energy and duration. Core losses from forming domains and moving their boundaries are a major factor in determining the efficiency of an induction accelerator.

  13. Noble gas magnetic resonator

    DOE Patents [OSTI]

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  14. Magnetic nanohole superlattices

    DOE Patents [OSTI]

    Liu, Feng

    2013-05-14

    A magnetic material is disclosed including a two-dimensional array of carbon atoms and a two-dimensional array of nanoholes patterned in the two-dimensional array of carbon atoms. The magnetic material has long-range magnetic ordering at a temperature below a critical temperature Tc.

  15. Iron dominated magnets

    SciTech Connect (OSTI)

    Fischer, G.E.

    1985-07-01

    These two lectures on iron dominated magnets are meant for the student of accelerator science and contain general treatments of the subjects design and construction. The material is arranged in the categories: General Concepts and Cost Considerations, Profile Configuration and Harmonics, Magnetic Measurements, a few examples of ''special magnets'' and Materials and Practices. Extensive literature is provided.

  16. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOE Patents [OSTI]

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  17. Nanoscale, multidimensional artificial magnet created

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an array of magnetic nano-islands along a geometry that is not found in natural magnets. ... an array of magnetic nano-islands along a geometry that is not found in natural magnets. ...

  18. Sandia-Univ. of Rochester Win Funding to Demonstrate Fuel Magnetization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Laser Heating Tools for Low-Cost Fusion Energy Sandia-Univ. of Rochester Win Funding to Demonstrate Fuel Magnetization and Laser Heating Tools for Low-Cost Fusion Energy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy

  19. Charge-density wave and magnetic phase diagram of chromium alloys

    SciTech Connect (OSTI)

    Fishman, R.S.; Jiang, X.W.

    1996-08-08

    The magnetic phase diagrams of all dilute Cr alloys can be explained by a simple theoretical model with coupled spin- and charge-density waves and a finite electron reservoir. If the charge-density wave and electron reservoir are sufficiently large, the paramagnetic to commensurate spin-density wave transition becomes strongly first order, as found in Cr{sub 1- x}Fe{sub x} and Cr{sub 1-x}Si{sub x} alloys. The observed discontinuity of the slope dT{sub N}/dx at the triple point and the bending of the CI phase boundary are also natural consequences of this model.

  20. Passive energy dump for superconducting coil protection

    DOE Patents [OSTI]

    Luton, J.N. Jr.

    1973-01-16

    The patent describes a passive resistance type energy dump for the protection of the coils of a superconducting magnet. Insertion heaters are immersed in a rigid container filled with a fusible alloy. The energy dump is connected across the coils of the superconducting magnet wherein individual heater elements are connected singly to the windings or otherwise according to the energy dumping requirements upon transition of the magnet to a normal state.

  1. Magnetically attached sputter targets

    DOE Patents [OSTI]

    Makowiecki, D.M.; McKernan, M.A.

    1994-02-15

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.

  2. Neutrons find "missing" magnetism of plutonium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrons find "missing" magnetism of plutonium Neutrons find "missing" magnetism of plutonium Groundbreaking work at two Department of Energy national laboratories has confirmed plutonium's magnetism, which scientists have long theorized but have never been able to experimentally observe. July 10, 2015 Doug Abernathy, left, ARCS instrument scientist at Oak Ridge National Laboratory, and Marc Janoschek, Los Alamos National Laboratory, prepare their sample for experiments at

  3. Magnetic Centrifugal Mass Filter Abraham J. Fetterman and Nathaniel J.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fisch | Princeton Plasma Physics Lab Magnetic Centrifugal Mass Filter Abraham J. Fetterman and Nathaniel J. Fisch This invention is of a magnetic centrifugal mass filter that can separate ions of different mass or ions of different energies into separate streams. The filter, which uses both the centrifugal and magnetic confinement of ions, can be used to separate radioactive fission products from nuclear waste or from spent nuclear fuel in a nonproliferative manner. No.: M-818

  4. Permanent Magnet Development for Automotive Traction Motors | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ape015_anderson_2011_o.pdf (1.01 MB) More Documents & Publications Permanent Magnet Development for Automotive Traction Motors Permanent Magnet Development for Automotive Traction Motors Vehicle Technologies Office Merit Review 2015: Development of Radically Enhanced alnico Magnets (DREaM) for Traction Drive

  5. Nuclear magnetic resonance offers new insights into Pu 239

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear magnetic resonance offers new insights into Pu 239 Nuclear magnetic resonance offers new insights into Pu 239 Fingerprint of element found by LANL/Japanese team. May 29, 2012 How would the detonation of a nuclear energy source afffect an incoming asteroid? Georgios Koutroulakis and H. Yasuoka in the condensed-matter NMR lab at Los Alamos National Laboratory after having observed the magnetic resonance signal of Pu 239 for the first time. Get Expertise Scientist Eric Bauer Condensed

  6. Production of Materials with Superior Properties Utilizing High Magnetic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field - Energy Innovation Portal Electricity Transmission Electricity Transmission Early Stage R&D Early Stage R&D Advanced Materials Advanced Materials Find More Like This Return to Search Production of Materials with Superior Properties Utilizing High Magnetic Field Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication UT-B ID 200401490 Magnetic 7 29 12.pdf (291 KB) Technology Marketing SummaryProcessing materials in a magnetic

  7. Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet

    Office of Scientific and Technical Information (OSTI)

    interfaces: A comprehensive study of Gd/Ni (Journal Article) | SciTech Connect Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet interfaces: A comprehensive study of Gd/Ni Citation Details In-Document Search Title: Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet interfaces: A comprehensive study of Gd/Ni Thin film magnetic heterostructures with competing interfacial coupling and Zeeman energy provide a fertile ground to study phase transition

  8. Proximity-driven enhanced magnetic order at ferromagnetic-insulator-magnetic-topological-insulator interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Mingda; Zhu, Yimei; Chang, Cui -Zu; Kirby, B. J.; Jamer, Michelle E.; Cui, Wenping; Wu, Lijun; Wei, Peng; Heiman, Don; Li, Ju; et al

    2015-08-17

    Magnetic exchange driven proximity effect at a magnetic-insulator–topological-insulator (MI-TI) interface provides a rich playground for novel phenomena as well as a way to realize low energy dissipation quantum devices. In this study, we report a dramatic enhancement of proximity exchange coupling in the MI/magnetic-TI EuS/Sb2–xVxTe3 hybrid heterostructure, where V doping is used to drive the TI (Sb2Te3) magnetic. We observe an artificial antiferromagneticlike structure near the MI-TI interface, which may account for the enhanced proximity coupling. The interplay between the proximity effect and doping in a hybrid heterostructure provides insights into the engineering of magnetic ordering.

  9. Proximity-driven enhanced magnetic order at ferromagnetic-insulator-magnetic-topological-insulator interface

    SciTech Connect (OSTI)

    Li, Mingda; Zhu, Yimei; Chang, Cui -Zu; Kirby, B. J.; Jamer, Michelle E.; Cui, Wenping; Wu, Lijun; Wei, Peng; Heiman, Don; Li, Ju; Moodera, Jagadeesh S.; Katmis, Ferhat

    2015-08-17

    Magnetic exchange driven proximity effect at a magnetic-insulator–topological-insulator (MI-TI) interface provides a rich playground for novel phenomena as well as a way to realize low energy dissipation quantum devices. In this study, we report a dramatic enhancement of proximity exchange coupling in the MI/magnetic-TI EuS/Sb2–xVxTe3 hybrid heterostructure, where V doping is used to drive the TI (Sb2Te3) magnetic. We observe an artificial antiferromagneticlike structure near the MI-TI interface, which may account for the enhanced proximity coupling. The interplay between the proximity effect and doping in a hybrid heterostructure provides insights into the engineering of magnetic ordering.

  10. Hybrid-secondary uncluttered permanent magnet machine and method

    DOE Patents [OSTI]

    Hsu, John S.

    2005-12-20

    An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.

  11. SCALE DEPENDENCE OF MAGNETIC HELICITY IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Brandenburg, Axel; Subramanian, Kandaswamy; Balogh, Andre; Goldstein, Melvyn L. E-mail: kandu@iucaa.ernet.in E-mail: melvyn.l.goldstein@nasa.gov

    2011-06-10

    We determine the magnetic helicity, along with the magnetic energy, at high latitudes using data from the Ulysses mission. The data set spans the time period from 1993 to 1996. The basic assumption of the analysis is that the solar wind is homogeneous. Because the solar wind speed is high, we follow the approach first pioneered by Matthaeus et al. by which, under the assumption of spatial homogeneity, one can use Fourier transforms of the magnetic field time series to construct one-dimensional spectra of the magnetic energy and magnetic helicity under the assumption that the Taylor frozen-in-flow hypothesis is valid. That is a well-satisfied assumption for the data used in this study. The magnetic helicity derives from the skew-symmetric terms of the three-dimensional magnetic correlation tensor, while the symmetric terms of the tensor are used to determine the magnetic energy spectrum. Our results show a sign change of magnetic helicity at wavenumber k {approx} 2 AU{sup -1} (or frequency {nu} {approx} 2 {mu}Hz) at distances below 2.8 AU and at k {approx} 30 AU{sup -1} (or {nu} {approx} 25 {mu}Hz) at larger distances. At small scales the magnetic helicity is positive at northern heliographic latitudes and negative at southern latitudes. The positive magnetic helicity at small scales is argued to be the result of turbulent diffusion reversing the sign relative to what is seen at small scales at the solar surface. Furthermore, the magnetic helicity declines toward solar minimum in 1996. The magnetic helicity flux integrated separately over one hemisphere amounts to about 10{sup 45} Mx{sup 2} cycle{sup -1} at large scales and to a three times lower value at smaller scales.

  12. Audit Report: IG-0539 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Passive Magnetic Resonance Anomaly Mapping at Environmental Management Sites The Department of Energy's Office of Environmental Management supports the development and deployment...

  13. Back to School! | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    classroom too...and this is a great place to start. Addthis Related Articles Cherrill Spencer is a Magnet Engineer at SLAC National Accelerator Laboratory. Women @ Energy:...

  14. High-energy X-ray focusing and applications to pair distribution function investigation of Pt and Au nanoparticles at high pressures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hong, Xinguo; Ehm, Lars; Zhong, Zhong; Ghose, Sanjit; Duffy, Thomas S.; Weidner, Donald J.

    2016-02-23

    We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K–B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10–15 μm) has been achieved at energies of 66 and 81keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DACmore » can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. In conclusion, the coupling of sagittally bent Laue crystals with K–B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source.« less

  15. Application Of A New Semi-Empirical Model For Forming Limit Prediction Of Sheet Material Including Superposed Loads Of Bending And Shearing

    SciTech Connect (OSTI)

    Held, Christian; Liewald, Mathias; Schleich, Ralf; Sindel, Manfred

    2010-06-15

    The use of lightweight materials offers substantial strength and weight advantages in car body design. Unfortunately such kinds of sheet material are more susceptible to wrinkling, spring back and fracture during press shop operations. For characterization of capability of sheet material dedicated to deep drawing processes in the automotive industry, mainly Forming Limit Diagrams (FLD) are used. However, new investigations at the Institute for Metal Forming Technology have shown that High Strength Steel Sheet Material and Aluminum Alloys show increased formability in case of bending loads are superposed to stretching loads. Likewise, by superposing shearing on in plane uniaxial or biaxial tension formability changes because of materials crystallographic texture. Such mixed stress and strain conditions including bending and shearing effects can occur in deep-drawing processes of complex car body parts as well as subsequent forming operations like flanging. But changes in formability cannot be described by using the conventional FLC. Hence, for purpose of improvement of failure prediction in numerical simulation codes significant failure criteria for these strain conditions are missing. Considering such aspects in defining suitable failure criteria which is easy to implement into FEA a new semi-empirical model has been developed considering the effect of bending and shearing in sheet metals formability. This failure criterion consists of the combination of the so called cFLC (combined Forming Limit Curve), which considers superposed bending load conditions and the SFLC (Shear Forming Limit Curve), which again includes the effect of shearing on sheet metal's formability.

  16. Magnetic dipole interactions in crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnston, David

    2016-01-13

    transition temperature T m and the ordered moment, magnetic heat capacity, and anisotropic magnetic susceptibility χ versus temperature T . The anisotropic Weiss temperature θ p in the Curie-Weiss law for T>T m is calculated. A quantitative study of the competition between FM and AFM ordering on cubic Bravais lattices versus the demagnetization factor in the absence of FM domain effects is presented. The contributions of Heisenberg exchange interactions and of the MDIs to T m and to θ p are found to be additive, which simplifies analysis of experimental data. Some properties in the magnetically-ordered state versus T are presented, including the ordered moment and magnetic heat capacity and, for AFMs, the dipolar anisotropy of the free energy and the perpendicular critical field. The anisotropic χ for dipolar AFMs is calculated both above and below the Néel temperature T N and the results are illustrated for a simple tetragonal lattice with c/a>1, c/a=1 (cubic), and c/a<1 , where a change in sign of the χ anisotropy is found at c/a=1 . Finally, following the early work of Keffer [Phys. Rev. 87, 608 (1952)], the dipolar anisotropy of χ above T N =69 K of the prototype collinear Heisenberg-exchange-coupled tetragonal compound MnF 2 is calculated and found to be in excellent agreement with experimental single-crystal literature data above 130 K, where the smoothly increasing deviation of the experimental data from the theory on cooling from 130 K to T N is deduced to arise from dynamic short-range collinear c -axis AFM ordering in this temperature range driven by the exchange interactions.« less

  17. MULTISCALE DYNAMICS OF SOLAR MAGNETIC STRUCTURES

    SciTech Connect (OSTI)

    Uritsky, Vadim M.; Davila, Joseph M.

    2012-03-20

    Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries. We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.

  18. Magnetic circular dichroism in x-ray absorption and core-level photoemission

    SciTech Connect (OSTI)

    Tobin, J.G.; Waddill, G.D.; Gouder, T.H.; Colmenares, C.A.; Pappas, D.P.

    1993-03-17

    Here is reported observation of magnetic circular dichroism in both x-ray absorption and core-level photoemission of ultra thin magnetic films using circularly polarized x-rays. Iron films (1--4 ML) grown on a Cu(001) substrate at 150 K and magnetized perpendicular to the surface show dramatic changes in the L{sub 2,3} branching ratio for different x-ray polarizations. For linearly-polarized x-rays perpendicular to the magnetic axis of the sample the branching ratio was 0.75. For films {ge} 2 ML, this ratio varied from 0.64 to 0.85 for photon spin parallel and anti-parallel, respectively, to the magnetic axis. This effect was observed either by changing the x-ray helicity for a fixed magnetic axis, or by reversing the magnetic axis for a fixed x-ray helicity. Our observation can be analyzed within a simple one-electron picture, if the raw branching ratios are no so that the linear value becomes statistical Furthermore, warming the films to {approximately}300 K eliminated this effect, indicating a loss of magnetization in the film over a temperature range of {approximately}30 K. Finally, reversing the relative orientation of the photon spin and the magnetic axis from parallel to anti-parallel allowed measurement of the exchange splitting of the Fe 2p and 3p core levels which were found to be 0.3 eV and 0.2 eV. respectively. These results are consistent with earlier studies, but the use of off-plane circularly-polarized x-rays from a bending magnet monochromator offers {approximately}2 orders of magnitude greater intensity than typical spin-polarization measurements. Finally, we have performed preliminary x-ray absorption studies of UFe{sub 2}, demonstrating the feasibilty of MCD measurements in 5f as well as 3d materials.

  19. Applied magnetism: A supply-driven materials challenge

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rios, Orlando; McCall, Scott K.

    2016-05-27

    Permanent magnets are important in many green energy technologies including wind turbine generators and hybrid-electric vehicle motors. For these applications, volume and weight are important factors driving the overall design, and therefore a high energy density, or energy product, is an important figure of merit. This quantity defines the magnetic energy contained in a given volume of material, and so higher energy density magnets enable smaller, lighter applications. Currently, the most powerful magnets suitable for commercial purposes contain rare earth elements (REE), usually neodymium and dysprosium in the neodymium-iron-boride class of magnets. However, for select applications, often requiring high temperatures,more » samarium cobalt is the alloy of choice. These magnets have energy densities several times greater than their nearest non-REE-based competitor, which for some applications is the defining factor in creating a viable device. The global supply of these REE is overwhelmingly produced in China, which in 2015 mined more than ten times as much as the next largest producer (Australia). Such market domination effectively creates a single source of supply, leaving industries which rely on REE consumption susceptible to price shocks and supply disruptions of these critical materials. Furthermore, this supply sensitivity may act as a drag on the adaptation rate of green energy technologies, particularly for large-scale users.« less

  20. Conventional magnetic superconductors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wolowiec, C. T.; White, B. D.; Maple, M. B.

    2015-07-01

    We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led tomore » the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.« less