Sample records for benchmark residential home

  1. Guide for Benchmarking Residential Energy Efficiency Program...

    Broader source: Energy.gov (indexed) [DOE]

    Guide for Benchmarking Residential Energy Efficiency Program Progress as part of the DOE Better Buildings Program. Guide for Benchmarking Residential Energy Efficiency Program...

  2. Guide to Benchmarking Residential Program Progress Webcast Slides...

    Energy Savers [EERE]

    Guide to Benchmarking Residential Program Progress Webcast Slides Guide to Benchmarking Residential Program Progress Webcast Slides Slides from "Guide to Benchmarking Residential...

  3. Optional Residential Program Benchmarking | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Data and Evaluation Peer Exchange Call Series: Optional Residential Program Benchmarking, Call Slides and Discussion Summary, January 23, 2014. Call Slides and Discussion Summary...

  4. Permanent Home Number: Residential Number

    E-Print Network [OSTI]

    Viglas, Anastasios

    Permanent Home Number: Residential Number: Mobile: Please update my contact details. Signature nominated correspondence address as indicated below. Permanent Home Adress Residential Address Other Address (Must not be a PO Box) Residential Address (Must not be a PO Box) Other - Postal/Optional Address

  5. Optional Residential Program Benchmarking | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOfEnergy Online1 MarchOpti-MNOptional Residential

  6. Residential solar home resale analysis

    SciTech Connect (OSTI)

    Noll, S.A.

    1980-01-01T23:59:59.000Z

    One of the determinants of the market acceptance of solar technologies in the residential housing sector is the value placed upon the solar property at the time of resale. The resale factor is shown to be an important economic parameter when net benefits of the solar design are considered over a typical ownership cycle rather than the life cycle of the system. Although a study of solar resale in Davis, Ca, indicates that those particular homes have been appreciating in value faster than nonsolar market comparables, no study has been made that would confirm this conclusion for markets in other geograhical locations with supporting tests of statistical significance. The data to undertake such an analysis is available through numerous local sources; however, case by case data collection is prohibitively expensive. A recommended alternative approach is to make use of real estate market data firms who compile large data bases and provide multi-variate statistical analysis packages.

  7. RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES

    E-Print Network [OSTI]

    Meier, Alan K.

    2008-01-01T23:59:59.000Z

    Report on Applicability of Residential Ventilation StandardsCharacterization of Residential New Construction PracticesJ - Load Calculation for Residential Winter and Summer Air

  8. Covered Product Category: Residential Whole-Home Gas Tankless...

    Energy Savers [EERE]

    Whole-Home Gas Tankless Water Heaters Covered Product Category: Residential Whole-Home Gas Tankless Water Heaters The Federal Energy Management Program (FEMP) provides acquisition...

  9. Development of an Energy Savings Benchmark for All Residential End-Uses: Preprint

    SciTech Connect (OSTI)

    Hendron, R.; Anderson, R.; Christensen, C.; Eastment, M.; Reeves, P.

    2004-08-01T23:59:59.000Z

    To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, the U.S. Department of Energy (DOE) Residential Buildings Program and the National Renewable Energy Laboratory (NREL) developed the Building America Research Benchmark in 2003. The Benchmark is generally consistent with mid-1990s standard practice, as reflected in the Home Energy Rating System (HERS) Technical Guidelines, with additional definitions that allow the analyst to evaluate all residential end-uses, an extension of the traditional HERS rating approach that focuses on space conditioning and hot water. A series of user profiles, intended to represent the behavior of a''standard'' set of occupants, was created for use in conjunction with the Benchmark. Finally, a set of tools was developed by NREL and other Building America partners to help analysts compare whole-house energy use for a Prototype house to the Benchmark in a fair and consistent manner.

  10. An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California

    E-Print Network [OSTI]

    Hoen, Ben

    2011-01-01T23:59:59.000Z

    Residential Photovoltaic Energy Systems on Home Sales PricesResidential Photovoltaic Energy Systems on Home Sales Prices

  11. Xcel Energy- Residential and Low Income Home Energy Service

    Broader source: Energy.gov [DOE]

    Xcel's Residential Program provides incentives to install energy efficiency measures in homes and small businesses in Xcel service territory. Rebates are available for evaporative cooling systems,...

  12. RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES

    E-Print Network [OSTI]

    Meier, Alan K.

    2008-01-01T23:59:59.000Z

    Measures on Residential Air Conditioner Loads. Proc. ACEEEDeterminants of Central Air Conditioner Duty Cycles. Proc.at the number of air conditioners that might actually

  13. RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES

    E-Print Network [OSTI]

    Meier, Alan K.

    2008-01-01T23:59:59.000Z

    the effectiveness of home heating controls in the UK 60 . Itmobile phones to the home’s heating and cooling system sothe home and track time of operation for heating and cooling

  14. Residential insecticide usage in northern California homes with young XIANGMEI (MAY) WUa

    E-Print Network [OSTI]

    Leistikow, Bruce N.

    Residential insecticide usage in northern California homes with young children XIANGMEI (MAY) WUa of Health and Environment, Seoul National University, Seoul, South Korea Residential insecticide usage and August 2008. Structured telephone interviews were conducted collecting information on residential use

  15. Field Study and Energy-Plus Benchmarks for Energy Saver Homes having Different Envelope Designs

    SciTech Connect (OSTI)

    Shrestha, Som S [ORNL] [ORNL; Childs, Kenneth W [ORNL] [ORNL; Stannard, Eric E [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    An alliance to maximize energy efficiency and cost-effective residential construction (ZEBRAlliance) built and field tested four homes that are 50 percent more energy efficient than a code compliant home. The homes are unoccupied for the duration of a two-year field study, thereby eliminating the confounding issue of occupancy habits. All homes have about the same consistent and scheduled internal load. Each home showcases a unique envelope strategy: 1) structural insulated panel (SIP), 2) optimal value wall framing (OVF), 3) advanced framing featuring the benefits of insulations mixed with phase change materials (PCM), and 4) an exterior insulation and finish system (EIFS). All homes have different weather resistive barriers (WRBs) and/or air barriers to limit air and moisture infiltration. Three homes provide space conditioning and water heating via a ground loop heat exchanger, while the fourth home uses a high efficiency air-to-air heat pump and heat pump water heater. Field performance and results of EnergyPlus V7.0 benchmarks were made for roof and attics as compared to cathedral design and for wall heat flows to validate models. The moisture content of the wall sheathing is shown to prove the protecting effectiveness of WRBs. Temperature distributions through insulations in the wall and ceiling with and without PCMs are described to characterize the performance of the PCM building envelopes.

  16. One of These Homes is Not Like the Other: Residential Energy Consumption Variability

    E-Print Network [OSTI]

    Kelsven, Phillip

    2013-01-01T23:59:59.000Z

    behavior patterns in which American households use energy causes wide variations in total residential energy consumption per home,

  17. Guide to Benchmarking Residential Program Progress - CALL FOR PUBLIC REVIEW

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration andGuidance

  18. Guide for Benchmarking Residential Energy Efficiency Program Progress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration andGuidance onProcedures for

  19. Guide for Benchmarking Residential Energy Efficiency Program Progress |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration andGuidance onProcedures forDepartment of

  20. Better Buildings Residential Network Data & Evaluation Peer Exchange Call Series: Optional Residential Program Benchmarking Call Slides and Discussion Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1, 20114,Residential& Evaluation

  1. Guide for Benchmarking Residential Energy Efficiency Program Progress |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment ofof EnergyEnvironmentalAnalysis

  2. Guide to Benchmarking Residential Program Progress Webcast Slides |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment ofofthe Public Participation of

  3. NREL EFM DATA: Disaggregated Residential Load Cost Data - Datasets...

    Open Energy Info (EERE)

    NREL EFM DATA: Disaggregated Residential Load Cost Data The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data...

  4. NREL EFM DATA: Disaggregated Residential Load Cost Data - Datasets...

    Open Energy Info (EERE)

    Open Data Catalog Dataset Activity Stream NREL EFM DATA: Disaggregated Residential Load Cost Data The following data-set is for a benchmark residential home for all TMY3 locations...

  5. One of These Homes is Not Like the Other: Residential Energy Consumption Variability

    E-Print Network [OSTI]

    Kelsven, Phillip

    2013-01-01T23:59:59.000Z

    the total annual energy consumption. The behavior patternsin total residential energy consumption per home, even whenthe variability in energy consumption can vary by factors of

  6. Pilot Residential Deep Energy Retrofits and the PNNL Lab Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Chandra, Subrato; Parker, Graham B.; Sande, Susan; Blanchard, Jeremy; Stroer, Dennis; McIlvaine, Janet; Chasar, David; Beal, David; Sutherland, Karen

    2012-01-01T23:59:59.000Z

    This report summarizes research investigating the technical and economic feasibility of several pilot deep energy retrofits, or retrofits that save 30% to 50% or more on a whole-house basis while increasing comfort, durability, combustion safety, and indoor air quality. The work is being conducted for the U.S. Department of Energy Building Technologies Program as part of the Building America Program. As part of the overall program, Pacific Northwest National Laboratory (PNNL) researchers are collecting and analyzing a comprehensive dataset that describes pre- and post-retrofit energy consumption, retrofit measure cost, health and comfort impacts, and other pertinent information for each home participating in the study. The research and data collection protocol includes recruitment of candidate residences, a thorough test-in audit, home energy modeling, and generation of retrofit measure recommendations, implementation of the measures, test-out, and continued evaluation. On some homes, more detailed data will be collected to disaggregate energy-consumption information. This multi-year effort began in October 2010. To date, the PNNL team has performed test-in audits on 51 homes in the marine, cold, and hot-humid climate zones, and completed 3 retrofits in Texas, 10 in Florida, and 2 in the Pacific Northwest. Two of the retrofits are anticipated to save 50% or more in energy bills and the others - savings are in the 30% to 40% range. Fourteen other retrofits are under way in the three climate zones. Metering equipment has been installed in seven of these retrofits - three in Texas, three in Florida, and one in the Pacific Northwest. This report is an interim update, providing information on the research protocol and status of the PNNL deep energy retrofit project as of December, 2011. The report also presents key findings and lessons learned, based on the body of work to date. In addition, the report summarizes the status of the PNNL Lab Homes that are new manufactured homes procured with minimal energy-efficiency specifications typical of existing homes in the region, and sited on the PNNL campus. The Lab Homes serve as a flexible test facility (the first of its kind in the Pacific Northwest) to rapidly evaluate energy-efficient and grid-smart technologies that are applicable to residential construction.

  7. HomeSim: Comprehensive, Smart, Residential Electrical Energy Simulation and Scheduling

    E-Print Network [OSTI]

    Simunic, Tajana

    HomeSim: Comprehensive, Smart, Residential Electrical Energy Simulation and Scheduling J. Venkatesh.edu + {jc.junqua, phmorin} @us.panasonic.com Abstract-- Residential energy constitutes 38% of the total energy consumption in the United States [1]. Although a number of building simulators have been proposed

  8. Kansas City Power and Light- Cool Homes Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light (KCP&L) offers rebates to residential customers to help offset the cost of replacing inefficient central AC and heat pump systems with newer, more efficient models....

  9. Residential home heating oil and propane survey, 1991--1992

    SciTech Connect (OSTI)

    Not Available

    1992-05-01T23:59:59.000Z

    This report contains pricing and consumption data on heating oils and propane for the Maine residential sector during the heating season 1991--1992. The information was gathered by survey. (VC)

  10. A Residential Duct Leakage Case Study on 'Good Cents' Homes

    E-Print Network [OSTI]

    Bryant, J. A.; Perez, R.

    2001-01-01T23:59:59.000Z

    of round or rectangular ducts running through their walls, ceilings, attics, and basements. According to the Electric Power Research Institute (EPRI), even energy experts once believed that air duct leakage was insignificant (EPRI, 1992). In the late 1980s..., researchers began to realize that a significant relationship existed between residential air duct systems and energy loss (EPRI, 1996). Previous studies showed that air duct losses on the order of 35% were typical in residential construction (Jump, et...

  11. Residential Research Leading to Net-Zero Energy Homes and Communities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01T23:59:59.000Z

    This fact sheet describes the Advanced Residential Buildings Research at the National Renewable Energy Laboratory and how the group is working to achieve net-zero energy homes and communities.

  12. Risk management with residential real estate derivatives : strategies for home builders

    E-Print Network [OSTI]

    Eddins, Quinn W. (Quinn William)

    2008-01-01T23:59:59.000Z

    This paper examines why and how publicly-traded home builders might use index-based residential property derivatives to manage risk. After describing a number of alternative reasons for hedging, I argue for a paradigm for ...

  13. Buildings Energy Data Book: 2.6 Residential Home Improvement

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate -5 2005 Households and129

  14. Buildings Energy Data Book: 2.6 Residential Home Improvement

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate -5 2005 Households and1296

  15. Buildings Energy Data Book: 2.6 Residential Home Improvement

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate -5 2005 Households and129 Annual1

  16. Buildings Energy Data Book: 2.6 Residential Home Improvement

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate -5 2005 Households and129 Annual12

  17. Buildings Energy Data Book: 2.6 Residential Home Improvement

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate -5 2005 Households and129 Annual123

  18. Buildings Energy Data Book: 2.6 Residential Home Improvement

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate -5 2005 Households and129 Annual1234

  19. Buildings Energy Data Book: 2.6 Residential Home Improvement

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate -5 2005 Households and1296 2010-2011

  20. Anaheim Public Utilities- Residential Home Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Upon request, Anaheim Public Utilities will perform a free home efficiency inspection, in which they will recommend energy saving improvements, rebates and provide some free energy saving devices....

  1. Optimal Battery Configuration in a Residential Home with Time-of-Use Pricing

    E-Print Network [OSTI]

    Simunic, Tajana

    is higher. Energy arbitrage leverages these different energy prices by buying the extra energy when the prices are low, storing it in an energy storage device and then using the stored energy when the priceOptimal Battery Configuration in a Residential Home with Time-of-Use Pricing Baris Aksanli

  2. Guidelines for residential commissioning

    E-Print Network [OSTI]

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-01T23:59:59.000Z

    Potential Benefits of Commissioning California Homes”.Delp. 2000. “Residential Commissioning: A Review of Relatedfor Evaluating Residential Commissioning Metrics” Lawrence

  3. AIM: A Home-Owner Usable Energy Calculator for Existing Residential Homes

    E-Print Network [OSTI]

    Marshall, K.; Moss, M.; Malhotra, M.; Liu, B.; Culp, C.; Haberl, J.; Herbert, C.

    , R., "Impacts of Duct Leakage on Infiltration Rates, Space Conditioning Energy Use, and Peak Electrical Demand in Florida Homes," Proceedings of the ACEEE 1990 Summer Study, Pacific Grove, CA, August 1990. ESL-IC-09-11-09 Proceedings...

  4. Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes

    SciTech Connect (OSTI)

    Lekov, Alex; Franco, Victor; Meyers, Steve

    2010-05-14T23:59:59.000Z

    Residential space and water heating accounts for over 90percent of total residential primary gas consumption in the United States. Condensing space and water heating equipment are 10-30percent more energy-efficient than conventional space and water heating. Currently, condensing gas furnaces represent 40 percent of shipments and are common in the Northern U.S. market. Meanwhile, manufacturers are planning to develop condensing gas storage water heaters to qualify for Energy Star? certification. Consumers, installers, and builders who make decisions about installing space and water heating equipment generally do not perform an analysis to assess the economic impacts of different combinations and efficiencies of space and water heating equipment. Thus, equipment is often installed without taking into consideration the potential life-cycle economic and energy savings of installing space and water heating equipment combinations. Drawing on previous and current analysis conducted for the United States Department of Energy rulemaking on amended standards for furnaces and water heaters, this paper evaluates the extent to which condensing equipment can provide life-cycle cost-effectiveness in a representative sample of single family American homes. The economic analyses indicate that significant energy savings and consumer benefits may result from large-scale introduction of condensing water heaters combined with condensing furnaces in U.S. residential single-family housing, particularly in the Northern region. The analyses also shows that important benefits may be overlooked when policy analysts evaluate the impact of space and water heating equipment separately.

  5. U.S. Residential Photovoltaic (PV) System Prices, Q4 2013 Benchmarks: Cash Purchase, Fair Market Value, and Prepaid Lease Transaction Prices

    SciTech Connect (OSTI)

    Davidson, C.; James, T. L.; Margolis, R.; Fu, R.; Feldman, D.

    2014-10-01T23:59:59.000Z

    The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. This report provides a Q4 2013 update for residential PV systems, based on an objective methodology that closely approximates the book value of a PV system. Several cases are benchmarked to represent common variation in business models, labor rates, and module choice. We estimate a weighted-average cash purchase price of $3.29/W for modeled standard-efficiency, polycrystalline-silicon residential PV systems installed in the United States. This is a 46% decline from the 2013-dollar-adjusted price reported in the Q4 2010 benchmark report. In addition, this report frames the cash purchase price in the context of key price metrics relevant to the continually evolving landscape of third-party-owned PV systems by benchmarking the minimum sustainable lease price and the fair market value of residential PV systems.

  6. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    of Commercial Building Energy Consumption in China, 2008,The China Residential Energy Consumption Survey, Human andfor Residential Energy Consumption in China Nan Zhou,

  7. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    E-Print Network [OSTI]

    Fuller, Merrian C.

    2011-01-01T23:59:59.000Z

    Plan for the Bonneville Power Administration ResidentialOffice (GAO). 2004. Bonneville Power Administration: Betterpage 127) Bonneville Power Administration A History of Home

  8. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    Heat Pump Air Conditioner District Heating Boiler Gas Boiler Electricity Figure 11 Space Heating Technology Shift in Residential

  9. Residential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronic Public ReadingResearch NuclearPowerdefault Sign In

  10. Residential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s OverviewB&W Y-12 LLC for theresidential Sign In About

  11. Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes

    E-Print Network [OSTI]

    Lekov, Alex

    2011-01-01T23:59:59.000Z

    Star Residential Water Heaters: Final criteria analysis.2004. Heat pump water heater technology: Experiences ofmarket research on solar water heaters. National Renewable

  12. Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes

    E-Print Network [OSTI]

    Lekov, Alex

    2011-01-01T23:59:59.000Z

    Star Residential Water Heaters: Final criteria analysis.gas furnaces and water heaters in US new constructioncondensing furnace and water heater and the pay-back period

  13. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    of Commercial Building Energy Consumption in China, 2008,The China Residential Energy Consumption Survey, Human andcan be measured using energy consumption per capita values.

  14. Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices

    E-Print Network [OSTI]

    Hoen, Ben

    2013-01-01T23:59:59.000Z

    Residential Photovoltaic Energy Systems in California: Thethe marginal impacts of photovoltaic (PV) energy systems ons largest market for photovoltaic solar (PV), with nearly

  15. Ota City : characterizing output variability from 553 homes with residential PV systems on a distribution feeder.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Miyamoto, Yusuke (Kandenko, Ibaraki, Japan); Nakashima, Eichi (Kandenko, Ibaraki, Japan); Lave, Matthew

    2011-11-01T23:59:59.000Z

    This report describes in-depth analysis of photovoltaic (PV) output variability in a high-penetration residential PV installation in the Pal Town neighborhood of Ota City, Japan. Pal Town is a unique test bed of high-penetration PV deployment. A total of 553 homes (approximately 80% of the neighborhood) have grid-connected PV totaling over 2 MW, and all are on a common distribution line. Power output at each house and irradiance at several locations were measured once per second in 2006 and 2007. Analysis of the Ota City data allowed for detailed characterization of distributed PV output variability and a better understanding of how variability scales spatially and temporally. For a highly variable test day, extreme power ramp rates (defined as the 99th percentile) were found to initially decrease with an increase in the number of houses at all timescales, but the reduction became negligible after a certain number of houses. Wavelet analysis resolved the variability reduction due to geographic diversity at various timescales, and the effect of geographic smoothing was found to be much more significant at shorter timescales.

  16. High Performance Homes That Use 50% Less Energy Than the DOE Building America Benchmark Building

    SciTech Connect (OSTI)

    Christian, J.

    2011-01-01T23:59:59.000Z

    This document describes lessons learned from designing, building, and monitoring five affordable, energy-efficient test houses in a single development in the Tennessee Valley Authority (TVA) service area. This work was done through a collaboration of Habitat for Humanity Loudon County, the US Department of Energy (DOE), TVA, and Oak Ridge National Laboratory (ORNL).The houses were designed by a team led by ORNL and were constructed by Habitat's volunteers in Lenoir City, Tennessee. ZEH5, a two-story house and the last of the five test houses to be built, provided an excellent model for conducting research on affordable high-performance houses. The impressively low energy bills for this house have generated considerable interest from builders and homeowners around the country who wanted a similar home design that could be adapted to different climates. Because a design developed without the project constraints of ZEH5 would have more appeal for the mass market, plans for two houses were developed from ZEH5: a one-story design (ZEH6) and a two-story design (ZEH7). This report focuses on ZEH6, identical to ZEH5 except that the geothermal heat pump is replaced with a SEER 16 air source unit (like that used in ZEH4). The report also contains plans for the ZEH6 house. ZEH5 and ZEH6 both use 50% less energy than the DOE Building America protocol for energyefficient buildings. ZEH5 is a 4 bedroom, 2.5 bath, 2632 ft2 house with a home energy rating system (HERS) index of 43, which qualifies it for federal energy-efficiency incentives (a HERS rating of 0 is a zero-energy house, and a conventional new house would have a HERS rating of 100). This report is intended to help builders and homeowners build similar high-performance houses. Detailed specifications for the envelope and the equipment used in ZEH5 are compared with the Building America Benchmark building, and detailed drawings, specifications, and lessons learned in the construction and analysis of data gleaned from 94 sensors installed in ZEH5 to monitor electric sub-metered usage, temperature and relative humidity, hot water usage, and heat pump operation for 1 year are presented. This information should be particularly useful to those considering structural insulated panel (SIP) walls and roofing; foundation geothermal heat pumps for space heating and cooling; solar water heaters; and roof-mounted, grid-tied photovoltaic systems. The document includes plans for ZEH6 (adapted from ZEH5), a one-story, high-performance house, as well as projections of how the design might perform in five major metropolitan areas across the TVA service territory. The HERS ratings for this all-electric house vary from 36 (Memphis, Tennessee) to 46 (Bristol, Tennessee).

  17. Exploring California PV Home Premiums

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    of Photovoltaic Energy Systems on Residential Selling PricesResidential Photovoltaic Energy Systems on Home Sales PricesResidential Photovoltaic Energy Systems on Home Sales Prices

  18. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    of primary energy, not including biomass fuels which areResidential Energy Consumption by Fuel (with Biomass) FigurePrimay Energy Consumption by Fuel (without Biomass) 8 of 17

  19. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    LPG is a major energy source, while coal and electricity areoil coal Figure 14 Residential Primary Energy Consumption bytotal primary energy supply in 2000, coal will drop to about

  20. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    E-Print Network [OSTI]

    Fuller, Merrian C.

    2011-01-01T23:59:59.000Z

    average reduction of electricity use. Estimated lifecycle costaverage annual electricity savings per home. Estimated lifecycle costaverage reduction of electricity use 22% PEAK electricity savings in residential sector. Estimated lifecycle cost

  1. Building America Research Benchmark Definition: Updated December 20, 2007

    SciTech Connect (OSTI)

    Hendron, R.

    2008-01-01T23:59:59.000Z

    To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, DOE's Residential Buildings Program and NREL developed the Building America Research Benchmark in consultation with the Building America industry teams. The Benchmark is generally consistent with mid-1990s standard practice, as reflected in the Home Energy Rating System (HERS) Technical Guidelines (RESNET 2002), with additional definitions that allow the analyst to evaluate all residential end-uses, an extension of the traditional HERS rating approach that focuses on space conditioning and hot water. Unlike the reference homes used for HERS, EnergyStar, and most energy codes, the Benchmark represents typical construction at a fixed point in time so it can be used as the basis for Building America's multi-year energy savings goals without the complication of chasing a 'moving target'.

  2. Building America Research Benchmark Definition, Updated December 15, 2006

    SciTech Connect (OSTI)

    Hendron, R.

    2007-01-01T23:59:59.000Z

    To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, DOE's Residential Buildings Program and NREL developed the Building America Research Benchmark in consultation with the Building America industry teams. The Benchmark is generally consistent with mid-1990s standard practice, as reflected in the Home Energy Rating System (HERS) Technical Guidelines (RESNET 2002), with additional definitions that allow the analyst to evaluate all residential end-uses, an extension of the traditional HERS rating approach that focuses on space conditioning and hot water. Unlike the reference homes used for HERS, EnergyStar, and most energy codes, the Benchmark represents typical construction at a fixed point in time so it can be used as the basis for Building America's multi-year energy savings goals without the complication of chasing a ''moving target''.

  3. Building America Research Benchmark Definition: Updated August 15, 2007

    SciTech Connect (OSTI)

    Hendron, R.

    2007-09-01T23:59:59.000Z

    To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, DOE's Residential Buildings Program and NREL developed the Building America Research Benchmark in consultation with the Building America industry teams. The Benchmark is generally consistent with mid-1990s standard practice, as reflected in the Home Energy Rating System (HERS) Technical Guidelines (RESNET 2002), with additional definitions that allow the analyst to evaluate all residential end-uses, an extension of the traditional HERS rating approach that focuses on space conditioning and hot water. Unlike the reference homes used for HERS, EnergyStar, and most energy codes, the Benchmark represents typical construction at a fixed point in time so it can be used as the basis for Building America's multi-year energy savings goals without the complication of chasing a 'moving target'.

  4. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Levine, Mark

    2009-06-01T23:59:59.000Z

    China's rapid economic expansion has propelled it to the rank of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modelling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities. From this analysis, we can conclude that Chinese residential energy consumption will more than double by 2020, from 6.6 EJ in 2000 to 15.9 EJ in 2020. This increase will be driven primarily by urbanization, in combination with increases in living standards. In the urban and higher income Chinese households of the future, most major appliances will be common, and heated and cooled areas will grow on average. These shifts will offset the relatively modest efficiency gains expected according to current government plans and policies already in place. Therefore, levelling and reduction of growth in residential energy demand in China will require a new set of more aggressive efficiency policies.

  5. Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    of photovoltaic (PV) energy systems on home sale prices.Photovoltaic Energy Systems in California: The Effect on Home Sales Prices

  6. Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices

    E-Print Network [OSTI]

    Hoen, Ben

    2013-01-01T23:59:59.000Z

    of photovoltaic (PV) energy systems on home sale prices.Photovoltaic Energy Systems in California: The Effect on Home Sales Prices

  7. Citizens Gas- Residential Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Citizens Gas of Indiana offers rebates to its residential customers for the installation of several types of efficient natural gas appliances. Rebates are generally available for residential homes...

  8. Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices

    E-Print Network [OSTI]

    Hoen, Ben

    2013-01-01T23:59:59.000Z

    solar in new homes may therefore require higher state and federal incentive levels and/or greater customer

  9. Building America Research Benchmark Definition, Updated December 29, 2004

    SciTech Connect (OSTI)

    Hendron, R.

    2005-02-01T23:59:59.000Z

    To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, the U.S. Department of Energy (DOE) Residential Buildings Program and the National Renewable Energy Laboratory (NREL) developed the Building America Research Benchmark in consultation with the Building America industry teams. The Benchmark is generally consistent with mid-1990s standard practice, as reflected in the Home Energy Rating System (HERS) Technical Guidelines (RESNET 2002), with additional definitions that allow the analyst to evaluate all residential end-uses, an extension of the traditional HERS rating approach that focuses on space conditioning and hot water. A series of user profiles, intended to represent the behavior of a ''standard'' set of occupants, was created for use in conjunction with the Benchmark.

  10. Covered Product Category: Residential Whole-Home Gas Tankless Water Heaters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013DepartmentEnterpriseDepartmentof Energy|

  11. An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California

    SciTech Connect (OSTI)

    Hoen, Ben; Cappers, Peter; Wiser, Ryan; Thayer, Mark

    2011-04-19T23:59:59.000Z

    An increasing number of homes in the U.S. have sold with photovoltaic (PV) energy systems installed at the time of sale, yet relatively little research exists that estimates the marginal impacts of those PV systems on home sale prices. A clearer understanding of these possible impacts might influence the decisions of homeowners considering the installation of a PV system, homebuyers considering the purchase of a home with PV already installed, and new home builders considering including PV as an optional or standard product on their homes. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. It finds strong evidence that homes with PV systems sold for a premium over comparable homes without PV systems during this time frame. Estimates for this premium expressed in dollars per watt of installed PV range, on average, from roughly $4 to $5.5/watt across a large number of hedonic and repeat sales model specifications and robustness tests. When expressed as a ratio of the sales price premium of PV to estimated annual energy cost savings associated with PV, an average ratio of 14:1 to 19:1 can be calculated; these results are consistent with those of the more-extensive existing literature on the impact of energy efficiency on sales prices. When the data are split among new and existing homes, however, PV system premiums are markedly affected. New homes with PV show premiums of $2.3-2.6/watt, while existing homes with PV show premiums of more than $6/watt. Reasons for this discrepancy are suggested, yet further research is warranted. A number of other areas where future research would be useful are also highlighted.

  12. Housing and Residential Life

    E-Print Network [OSTI]

    Fernandez, Eduardo

    1 Housing and Residential Life Guidebook 2014-2015 LivingCampus #12;2 fau.edu/housing Welcome! The Housing & Residential Life staff is excited that you've moved home! Florida Atlantic University residence halls and apartments are your home for the 2014-2015 school year. The Housing & Residential Life staff

  13. Specializing in Apartment & Residential Leasing, Sales, Home Purchase and Nationwide Corporate Housing

    E-Print Network [OSTI]

    Bittner, Eric R.

    . And here's more good news: the Houston area is now home to more Fortune 500 companies than any other city Corporate Housing Houston: Unequaled Housing Value Houston is a city of contrasts and surprises, of sky, of energy giants and world-class educational complexes, of Grand Opera and great expanses of year

  14. Covered Product Category: Residential Whole-Home Gas Tankless Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including whole-home gas tankless water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  15. Analysis of Residential System Strategies Targeting Least-Cost Solutions Leading to Net Zero Energy Homes: Preprint

    SciTech Connect (OSTI)

    Anderson, R.; Christensen, C.; Horowitz, S.

    2006-04-01T23:59:59.000Z

    The U. S. Department of Energy's Building America residential systems research project uses an analysis-based system research approach to identify research priorities, identify technology gaps and opportunities, establish a consistent basis to track research progress, and identify system solutions that are most likely to succeed as the initial targets for residential system research projects. This report describes the analysis approach used by the program to determine the most cost-effective pathways to achieve whole-house energy-savings goals. This report also provides an overview of design/technology strategies leading to net zero energy buildings as the basis for analysis of future residential system performance.

  16. Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In this project, researchers from the Consortium for Advanced Residential Buildings team worked with industry partners to develop hydronic system designs that would address performance issues and result in higher overall system efficiencies and improved response times.

  17. Flint Energies- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Flint Energies has partnered with Robins Federal Credit Union to offer affordable financing options to residential customers who wish to upgrade the energy efficiency of homes and residential...

  18. Sharyland Utilities- Residential Standard Offer Program

    Broader source: Energy.gov [DOE]

    Sharyland Utilities offers the Residential and "Hard-to-Reach" Standard Offer Programs, which encourage residential customers to pursue energy saving measures and equipment upgrades in their homes....

  19. Tacoma Power- Residential Weatherization Rebate Program

    Broader source: Energy.gov [DOE]

    Tacoma Power helps residential customers increase the energy efficiency of homes through the utility's residential weatherization program. Weatherization upgrades to windows are eligible for an...

  20. SRP- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    SRP's Residential Energy Efficiency Rebate Program is designed to encourage residential SRP customers to utilize energy efficient appliances and measures at home. Rebates and discounts are...

  1. Building America Research Benchmark Definition, Version 3.1, Updated July 14, 2004

    SciTech Connect (OSTI)

    Hendron, R.

    2005-01-01T23:59:59.000Z

    To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, the U.S. Department of Energy (DOE) Residential Buildings Program and the National Renewable Energy Laboratory (NREL) developed the Building America Research Benchmark in consultation with the Building America industry teams. The Benchmark is generally consistent with mid-1990s standard practice, as reflected in the Home Energy Rating System (HERS) Technical Guidelines (RESNET 2002), with additional definitions that allow the analyst to evaluate all residential end-uses, an extension of the traditional HERS rating approach that focuses on space conditioning and hot water. A series of user profiles, intended to represent the behavior of a ''standard'' set of occupants, was created for use in conjunction with the Benchmark.

  2. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    SciTech Connect (OSTI)

    Fuller, Merrian C.

    2010-09-20T23:59:59.000Z

    Policy makers and program designers in the U.S. and abroad are deeply concerned with the question of how to scale up energy efficiency to a level that is commensurate both to the scale of the energy and climate challenges we face, and to the potential for energy savings that has been touted for decades. When policy makers ask what energy efficiency can do, the answers usually revolve around the technical and economic potential of energy efficiency - they rarely hone in on the element of energy demand that matters most for changing energy usage in existing homes: the consumer. A growing literature is concerned with the behavioral underpinnings of energy consumption. We examine a narrower, related subject: How can millions of Americans be persuaded to divert valued time and resources into upgrading their homes to eliminate energy waste, avoid high utility bills, and spur the economy? With hundreds of millions of public dollars flowing into incentives, workforce training, and other initiatives to support comprehensive home energy improvements, it makes sense to review the history of these programs and begin gleaning best practices for encouraging comprehensive home energy improvements. Looking across 30 years of energy efficiency programs that targeted the residential market, many of the same issues that confronted past program administrators are relevant today: How do we cost-effectively motivate customers to take action? Who can we partner with to increase program participation? How do we get residential efficiency programs to scale? While there is no proven formula - and only limited success to date with reliably motivating large numbers of Americans to invest in comprehensive home energy improvements, especially if they are being asked to pay for a majority of the improvement costs - there is a rich and varied history of experiences that new programs can draw upon. Our primary audiences are policy makers and program designers - especially those that are relatively new to the field, such as the over 2,000 towns, cities, states, and regions who are recipients of American Reinvestment and Recovery Act funds for clean energy programs. This report synthesizes lessons from first generation programs, highlights emerging best practices, and suggests methods and approaches to use in designing, implementing, and evaluating these programs. We examined 14 residential energy efficiency programs, conducted an extensive literature review, interviewed industry experts, and surveyed residential contractors to draw out these lessons.

  3. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    E-Print Network [OSTI]

    Fuller, Merrian C.

    2011-01-01T23:59:59.000Z

    by bundling energy efficiency, solar photovoltaics (PV), andby bundling energy efficiency, solar photovoltaics (PV), andPhotovoltaics Residential Conservation Service Residential Energy Efficiency

  4. Residential Mechanical Precooling

    SciTech Connect (OSTI)

    German, A.; Hoeschele, M.

    2014-12-01T23:59:59.000Z

    This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

  5. Building Technologies Residential Survey

    SciTech Connect (OSTI)

    Secrest, Thomas J.

    2005-11-07T23:59:59.000Z

    Introduction A telephone survey of 1,025 residential occupants was administered in late October for the Building Technologies Program (BT) to gather information on residential occupant attitudes, behaviors, knowledge, and perceptions. The next section, Survey Results, provides an overview of the responses, with major implications and caveats. Additional information is provided in three appendices as follows: - Appendix A -- Summary Response: Provides summary tabular data for the 13 questions that, with subparts, comprise a total of 25 questions. - Appendix B -- Benchmark Data: Provides a benchmark by six categories to the 2001 Residential Energy Consumption Survey administered by EIA. These were ownership, heating fuel, geographic location, race, household size and income. - Appendix C -- Background on Survey Method: Provides the reader with an understanding of the survey process and interpretation of the results.

  6. Technology Benchmarking

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    all benchmarking information from ANL and ORNL. * Comment: "Want to see directional trends" - The recently completed report documenting benchmarking of the Toyota Camry that...

  7. Chemical Emissions of Residential Materials and Products: Review of Available Information The Home Energy Scoring Tool: A

    E-Print Network [OSTI]

    The Home Energy Scoring Tool: A Simplified Asset Rating for Single thereof or the Regents of the University of California. #12;1 The Home Energy Scoring Tool: A Simplified-based computer tool and method for providing an energy asset rating of single-family homes. The resulting Home

  8. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Computing and Visualization INL Logo Home Applied Computing and Visualization Mission Statement Enable advanced modeling and simulation at the Idaho National Laboratory...

  9. Chemical Emissions of Residential Materials and Products: Review of Available Information How well do home energy audits serve

    E-Print Network [OSTI]

    University Richard Diamond, Lawrence Berkeley National Laboratory ABSTRACT Home energy audits administered How well do home energy audits serve the homeowner Energy Audits Serve the Homeowner? Aaron Ingle, Mithra Moezzi, and Loren Lutzenhiser, Portland State

  10. Comparison of the National Green Building Standard (ICC 700-2008) and LEED for Homes to the Residential Provisions of the 2009 IECC for the Delaware Green for Green Program

    SciTech Connect (OSTI)

    Britt, Michelle L.; Makela, Eric J.

    2011-01-30T23:59:59.000Z

    Adhering to Delaware’s Green for Green program specifications results in homes being built to more energy-efficient levels than the 2009 IECC levels. Specifically: • Certifying at the Silver Performance Level for the ICC 700 standard using either the Prescriptive or Performance Paths will result in a residential building that is more efficient than if the building only complied with the 2009 IECC. • Certifying at the Silver level under LEED for Homes standard, including mandatory compliance with ENERGY STAR 2006 and earning two additional energy points will result in a residential building that is more efficient than if the building only complied with the 2009 IECC.

  11. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of great science AsPublic

  12. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of great science

  13. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of great sciencedefault

  14. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energy

  15. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Sign In About |

  16. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Sign In About

  17. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Sign In

  18. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Sign Indefault Sign

  19. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Sign Indefault

  20. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Sign

  1. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Signdefault Sign In

  2. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Signdefault Sign

  3. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Signdefault

  4. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Signdefaultdefault

  5. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault

  6. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault *** The next NSSAB

  7. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergy Storage

  8. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergy Storagedefault Sign In

  9. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergy Storagedefault Sign

  10. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergy Storagedefault

  11. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergy Storagedefaultdefault

  12. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergy

  13. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefault Sign In About |

  14. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefault Sign In About

  15. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefault Sign In

  16. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefault Sign Indefault

  17. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefault Sign

  18. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefault Signdefault

  19. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefault

  20. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefaultAll Events Sign

  1. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefaultAll Events

  2. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefaultAll

  3. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefaultAlldefault Sign

  4. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefaultAlldefault

  5. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High

  6. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers | Contact |

  7. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers | Contact |default

  8. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers | Contact

  9. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers | ContactPages

  10. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers |

  11. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers |default Sign In

  12. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers |default Sign

  13. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers |default

  14. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers |defaultdefault

  15. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers |defaultdefaultATC

  16. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers

  17. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | CareersInterconnection

  18. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About |

  19. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About |Pages default Sign In About

  20. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here ‹FIRST CenterAboutHigh

  1. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here ‹FIRST CenterAboutHighMSA

  2. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here ‹FIRST

  3. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here ‹FIRSTApplied Computing and

  4. Unitil- Residential Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Unitil offers New Hampshire residential customers a number of programs to encourage more energy efficient homes. The Energy Star Appliance Program provides rebates for clothes washers, air...

  5. Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Efficiency Vermont provides financial incentives for its residential customers to install energy efficient equipment in their homes. Eligible Energy Star equipment includes dehumidifiers (seasonal...

  6. Better Buildings Residential Network Peer Exchange Call: Commercial and Multi-family Building Benchmarking and Disclosure, Call Slides, July 25, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1,23,Call: Combining Solar and Home25,

  7. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    E-Print Network [OSTI]

    Fuller, Merrian C.

    2011-01-01T23:59:59.000Z

    2.5%) residential customers installed solar panels. 88% ofsolar thermal water heating, etc. Some key concerns from a customer’

  8. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    E-Print Network [OSTI]

    Fuller, Merrian C.

    2011-01-01T23:59:59.000Z

    Feedback Contact Concessions Baltimore Neighborhood Energy Challenge Energy Smackdown Hood River Conservation Project (HRCP) Houston’s Residential

  9. Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1

    E-Print Network [OSTI]

    Johnson, F.X.

    2010-01-01T23:59:59.000Z

    non-central residential home heating equipment (GAMA1992). (AFUE for residential home heating equipment, depending onManufactured Home Room Heating Market Shares". Lawrence

  10. Pacific Power- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Pacific Power offers incentives for residential customers to improve the energy efficiency of homes through the Home Energy Savings Program. Rebates are provided for various Energy Star rated...

  11. Pacific Power- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Pacific Power offers the Home Energy Savings Program for their residential California customers to improve the efficiency of their homes. Incentives are also available for contractors and newly...

  12. Entergy Arkansas- Residential Energy Efficiency Program (Arkansas)

    Broader source: Energy.gov [DOE]

    Entergy Arkansas offers the Home Energy Solutions Program to help residential customers understand and make energy efficiency improvements in participating homes. Customers can call a toll-free...

  13. Sawnee EMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Sawnee EMC provides a variety of rebates for residential customers building new energy efficient homes or making energy efficiency improvements to existing homes....

  14. Instrumented home energy rating and commissioning

    E-Print Network [OSTI]

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-01T23:59:59.000Z

    Potential Benefits of Commissioning California Homes”.Delp. 2000. “Residential Commissioning: A Review of Related2001. “Residential Commissioning to Assess Envelope and HVAC

  15. Water and Energy Savings using Demand Hot Water Recirculating Systems in Residential Homes: A Case Study of Five Homes in Palo Alto, California

    SciTech Connect (OSTI)

    Ally, M.R.

    2002-11-14T23:59:59.000Z

    This report summarizes a preliminary study aimed at estimating the potential of saving potable water, (and the electrical energy used to heat it), that is presently lost directly to the drain while occupants wait for hot water to arrive at the faucet (point of use). Data were collected from five single-family homes in Palo Alto, California. Despite the small sample size in this study, the results make a compelling case for retrofitting homes with hot water recirculation systems to eliminate unnecessary wastage of water at the point of use. Technical as well as behavioral and attitudinal changes towards water conservation are necessary for a fulfilling and successful conservation effort. This report focuses on the technical issues, but behavioral issues are also noted, which may be factored into future studies involving local and state governments and utility companies.

  16. sttesuhcassa RESIDENTIAL

    E-Print Network [OSTI]

    Schweik, Charles M.

    University Apartments To Amherst Center RON TNASAELPHT TS CENTRAL RESIDENTIAL AREA To Tillson Farm RESIDENTIAL AREA Lorden Field ATHLETIC FIELDS To Telecom, UMass Outreach & UMass Extension at 101 University Drive NORTHEAST RESIDENTIAL AREA ORCHARD HILL RESIDENTIAL AREA Chabad House HAIGIS MALL Newman Center

  17. sttesuhcassa RESIDENTIAL

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Gordon To Amherst Center RON TNASAELPHT TS CENTRAL RESIDENTIAL AREA To Tillson Farm & Intermediate ORCHARD HILL DR. Track & Field ACO SDT KKG SK ADP IGU ZBT BUTTERFIELDTERRACE DZ SOUTHWEST RESIDENTIAL AREA NORTHEAST RESIDENTIAL AREA ORCHARD HILL RESIDENTIAL AREA Chabad House HAIGIS MALL Newman Center Textbook

  18. Edmond Electric- Residential Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Edmond Electric offers rebates to residential customers who install energy-efficient heat pumps. This program applies to installations in both new and existing residential homes and complexes. Air...

  19. Low-rise Residential New Construction Program

    Broader source: Energy.gov [DOE]

     NYSERDA’s Low-rise Residential New Construction Programs are designed to encourage more industry involvement in the building of single-family homes and low-rise residential units that are more...

  20. An Analysis of Predicted vs. Monitored Space Heat Energy Use in 120 Homes : Residential Construction Demonstration Project Cycle II.

    SciTech Connect (OSTI)

    Douglass, John G.; Young, Marvin; Washington State Energy Office.

    1991-10-01T23:59:59.000Z

    The SUNDAY thermal simulation program was used to predict space heat energy consumption for 120 energy efficient homes. The predicted data were found to explain 43.8 percent of the variation in monitored space heat consumption. Using a paired Student's to test, no statistically significant difference could be found between mean predicted space heat and monitored space heat for the entire sample of homes. The homes were grouped into seven classes, sub-samples by total heat loss coefficient. An intermediate class (UA = 300--350 Btu/{degrees}F) was found to significantly over-predict space heat by 25 percent. The same class was over-predicted by 16 percent in the analogous Cycle 1 research, but the sample size was smaller and this was not found to be statistically significant. Several variables that were not directly included as inputs to the simulation were examined with an analysis of covariance model for their ability to improve the simulation's prediction of space heat. The variables having the greatest effect were conditioned floor area, heating system type, and foundation type. The model was able to increase the coefficient of determination from 0.438 to 0.670; a 54 percent increase. While the SUNDAY simulation program to aggregate is able to predict space heat consumption, it should be noted that there is a considerable amount of variation in both the monitored space heat consumption and the SUNDAY predictions. The ability of the program to accurately model an individual house will be constrained by both the quality of input variables and the range of occupant behavior. These constraints apply to any building model.

  1. An Analysis of Predicted vs. Monitored Space Heat Energy Use in 120 Homes :Residential Construction Demonstration Project Cycle II.

    SciTech Connect (OSTI)

    Douglass, John G.; Young, Marvin; Washington State Energy Office.

    1991-10-01T23:59:59.000Z

    The SUNDAY thermal simulation program was used to predict space heat energy consumption for 120 energy efficient homes. The predicted data were found to explain 43.8 percent of the variation in monitored space heat consumption. Using a paired Student`s to test, no statistically significant difference could be found between mean predicted space heat and monitored space heat for the entire sample of homes. The homes were grouped into seven classes, sub-samples by total heat loss coefficient. An intermediate class (UA = 300--350 Btu/{degrees}F) was found to significantly over-predict space heat by 25 percent. The same class was over-predicted by 16 percent in the analogous Cycle 1 research, but the sample size was smaller and this was not found to be statistically significant. Several variables that were not directly included as inputs to the simulation were examined with an analysis of covariance model for their ability to improve the simulation`s prediction of space heat. The variables having the greatest effect were conditioned floor area, heating system type, and foundation type. The model was able to increase the coefficient of determination from 0.438 to 0.670; a 54 percent increase. While the SUNDAY simulation program to aggregate is able to predict space heat consumption, it should be noted that there is a considerable amount of variation in both the monitored space heat consumption and the SUNDAY predictions. The ability of the program to accurately model an individual house will be constrained by both the quality of input variables and the range of occupant behavior. These constraints apply to any building model.

  2. Demonstration Assessment of Light Emitting Diode (LED) Residential Downlights and Undercabinet Lights in the Lane County Tour of Homes, Eugene, Oregon

    SciTech Connect (OSTI)

    Ton, My K.; Richman, Eric E.; Gilbride, Theresa L.

    2008-11-10T23:59:59.000Z

    In August 2008 the Pacific Northwest National Laboratory (PNNL) conducted a light emitting diode (LED) residential lighting demonstration project for the U.S. Department of Energy (DOE), Office of Building Technologies, as part of DOE’s Solid State Lighting (SSL) Technology Demonstration Gateway Program. Two lighting technologies, an LED replacement for downlight lamps (bulbs) and an LED undercabinet lighting fixture, were tested in the demonstration which was conducted in two homes built for the 2008 Tour of Homes in Eugene, Oregon. The homes were built by the Lane County Home Builders Association (HBA), and Future B Homes. The Energy Trust of Oregon (ETO) also participated in the demonstration project. The LED downlight product, the LR6, made by Cree LED Lighting Solutions acts as a screw-in replacement for incandescent and halogen bulbs in recessed can downlights. The second product tested is Phillips/Color Kinetics’ eW® Profile Powercore undercabinet fixture designed to mount under kitchen cabinets to illuminate the countertop and backsplash surfaces. Quantitative and qualitative measurements of light performance and electrical power usage were taken at each site before and after initially installed halogen and incandescent lamps were replaced with the LED products. Energy savings and simple paybacks were also calculated and builders who toured the homes were surveyed for their responses to the LED products. The LED downlight product drew 12 Watts of power, cutting energy use by 82% compared to the 65W incandescent lamp and by 84% compared to the 75W halogen lamp. The LED undercabinet fixture drew 10 watts, cutting energy use by 83% to 90% compared to the halogen product, which was tested at two power settings: a low power 60W setting and a high power 105W setting. The LED downlight consistently provided more light than the halogen and incandescent lamps in horizontal measurements at counter height and floor level. It also outperformed in vertical illuminance measurements taken on the walls, indicating better lateral dispersion of the light. The undercabinet fixture’s light output was midway between the low and high power halogen undercabinet fixture light outputs (35.8 foot candle versus 13.4 fc and 53.4 fc) but it produced a more uniform light (max/min ratio of 7.0 versus 10.8). The color correlated temperature (CCT, the blue or yellowness) of the LED light correlated well with the halogen and incandescent lights (2675 K vs 2700 K). The color rendering of the LED downlight also correlated well at 92 CRI compared to 100 CRI for the halogen and incandescent lamps. The LED undercabinet fixture had measures of 2880 K CCT and 71 CRI compared to the 2700 K and 100 CRI scores for the halogen undercabinet fixture. Builders who toured the homes were surveyed; they gave the LED downlight high marks for brightness, said the undercabinet improved shadows and glare and said both products improved overall visibility, home appearance, and home value. Paybacks on the LED downlight ranged from 7.6 years (assuming electricity cost of 11 c/kWh) to 13.5 years (at 5C/kWh). Paybacks on the LED undercabinet fixture in a new home ranged from 4.4 years (11c/kWh electricity) to 7.6 years (5c/kWh) based on product costs of $95 per LED downlight and $140 per LED undercabinet fixture at 3 hrs per day of usage for the downlight and 2 hrs per day for the undercabinet lighting.

  3. Do PV Systems Increase Residential Selling Prices If So, How Can Practitioners Estimate This Increase?

    E-Print Network [OSTI]

    Hoen, Ben

    2013-01-01T23:59:59.000Z

    of Photovoltaic Energy Systems on Residential Selling Pricesof photovoltaic (PV) energy systems on home sales prices.

  4. PNM- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    PNM also offers the PNM Home Energy Checkup, which gives residential customers a snapshot of their home's electricity use and identifies opportunities to reduce electricity waste. The Home Energy...

  5. Evaluation of the District of Columbia Energy Office Residential Conservation Assistance Program for Natural Gas-Heated Single-Family Homes

    SciTech Connect (OSTI)

    McCold, Lance Neil [ORNL; Schmoyer, Richard L [ORNL

    2007-03-01T23:59:59.000Z

    At the request of the U.S. Department of Energy (DOE), Oak Ridge National Laboratory (ORNL), with assistance from the District of Columbia Energy Office (DCEO) performed an evaluation of part of the DCEO Residential Conservation Assistance Program (RCAP). The primary objective of the evaluation was to evaluate the effectiveness of the DCEO weatherization program. Because Weatherization Assistance Program (WAP) funds are used primarily for weatherization of single-family homes and because evaluating the performance of multi-family residences would be more complex than the project budget would support, ORNL and DCEO focused the study on gas-heated single-family homes. DCEO provided treatment information and arranged for the gas utility to provide billing data for 100 treatment houses and 434 control houses. The Princeton Scorkeeping Method (PRISM) software package was used to normalize energy use for standard weather conditions. The houses of the initial treatment group of 100 houses received over 450 measures costing a little over $180,000, including labor and materials. The average cost per house was $1,811 and the median cost per house was $1,674. Window replacement was the most common measure and accounted for about 35% of total expenditures. Ceiling and floor insulation was installed in 61 houses and accounts for almost 22% of the expenditures. Twenty-seven houses received replacement doors at an average cost of $620 per house. Eight houses received furnace or boiler replacements at an average cost of about $3,000 per house. The control-adjusted average measured savings are about 20 therms/year. The 95% confidence interval is approximately +20 to +60 therms/year. The average pre-weatherization energy consumption of the houses was about 1,100 therm/year. Consequently, the adjusted average savings is approximately 2% ({+-}4%)-not significantly different than zero. Most RCAP expenditures appear to go to repairs. While some repairs may have energy benefits, measures selected to meet repair needs generally have smaller energy benefits per unit cost than measures selected for energy conservation purposes. To the extent that extensive repairs are necessary or desirable, expectations of energy savings need to be adjusted. Since 2002, the DCEO has implemented a number of program improvements it believes enhance program performance. In 2003, DCEO published formal guidance for weatherization in RCAP (DCEO 2003). Consequently, the results of this study may not adequately represent the current performance of the program. DCEO should re-examine current RCAP weatherization patterns and energy savings to assess the effects of program changes.

  6. EWEB- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Eugene Water and Electric Board (EWEB) provides cash incentives to help residential customers increase the energy efficiency of homes through several different rebate programs. Rebates are provided...

  7. Entergy New Orleans- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Entergy New Orleans has designed an incentive program to help residential customers understand and make energy efficiency improvements in eligible homes. Incentives are geared towards both...

  8. Duke Energy- Residential Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Smart $aver® program offers incentives for residential customers to increase the energy efficiency of homes. Incentives are provided for qualifying heating and cooling equipment installation or...

  9. CPS Energy- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    CPS Energy offers a variety of rebates for energy efficiency related improvements to residential homes, including: appliances, HVAC equipment, insulation, and equipment recycling.. Rebate...

  10. (Electric and Gas) Residential New Construction Program

    Broader source: Energy.gov [DOE]

    The Energize CT offers a program designed to encourage the construction of energy efficient homes. The Residential New Construction Program offers incentives targeted at increasing energy...

  11. Black Hills Power- Residential Customer Rebate Program

    Broader source: Energy.gov [DOE]

    Black Hills Power offers cash rebates to residential customers who purchase and install energy efficient equipment in their homes. Incentives exist for water heaters, demand control units, air...

  12. Performance Criteria for Residential Zero Energy Windows

    E-Print Network [OSTI]

    Arasteh, Dariush; Goudey, Howdy; Huang, Joe; Kohler, Christian; Mitchell, Robin

    2006-01-01T23:59:59.000Z

    and Marc LaFrance. 2006. “Zero Energy Windows. ” ProceedingsFuture Advanced Windows for Zero-Energy Homes. ” ASHRAEfor Residential Zero Energy Windows Dariush Arasteh, Howdy

  13. Chelan County PUD- Residential Weatherization Rebate Program

    Broader source: Energy.gov [DOE]

    Chelan County PUD offers cash rebates to residential customers who make energy efficient weatherization improvements to eligible homes. Eligible measures include efficient windows doors as well as...

  14. Fact Sheet: Better Buildings Residential Network | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Fact Sheet: Better Buildings Residential Network, increasing the number of American Homes that are energy efficient. doebbrnfactsheet.pdf More Documents & Publications Fact Sheet...

  15. Empire District Electric- Residential Energy Efficiency Rebate

    Broader source: Energy.gov [DOE]

    The Empire District Electric Company offers rebates for customers who construct highly efficient homes and purchase efficient central air conditioners. Eligible customers include residential...

  16. National Residential Efficiency Measures Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most cost-effective retrofit measures for improving energy efficiency of existing homes. Software developers who require residential retrofit performance and cost data for applications that evaluate residential efficiency measures are the primary audience for this database. In addition, home performance contractors and manufacturers of residential materials and equipment may find this information useful. The database offers the following types of retrofit measures: 1) Appliances, 2) Domestic Hot Water, 3) Enclosure, 4) Heating, Ventilating, and Air Conditioning (HVAC), 5) Lighting, 6) Miscellaneous.

  17. NERSC-8 / Trinity Benchmarks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayedNERSC's ScienceBenchmarks NERSC-8 /

  18. NERSC-8 Benchmarks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayedNERSC's ScienceBenchmarks NERSC-8

  19. Residential Mail Procedures Residential Mail Services

    E-Print Network [OSTI]

    Buehrer, R. Michael

    Residential Mail Procedures Residential Mail Services 23 Owens Hall Blacksburg, VA 24061 Phone.mailservices.vt.edu #12;Residential Mail Procedures Table of Contents General information.................................................................................8 #12;Residential Mail Procedures The following procedures have been establishes by the University

  20. Photovoltaics for residential applications

    SciTech Connect (OSTI)

    Not Available

    1984-02-01T23:59:59.000Z

    Information is given about the parts of a residential photovoltaic system and considerations relevant to photovoltaic power use in homes that are also tied to utility lines. In addition, factors are discussed that influence implementation, including legal and environmental factors such as solar access and building codes, insurance, utility buyback, and system longevity. (LEW)

  1. Combined Heat and Power for Saving Energy and Carbon in Residential Buildings

    E-Print Network [OSTI]

    2000-01-01T23:59:59.000Z

    the potential for CHP in residential homes at the case ofless than 10 kW) CHP for residential buildings. This isstates. Comparison of residential micro CHP technologies to

  2. Rocky Mountain Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers the Home Energy Savings Program for their residential Wyoming customers to improve the energy efficiency of their homes. Incentives are available for energy efficient...

  3. Rocky Mountain Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power provides incentives for residential customers to increase the energy efficiency of homes through the Home Energy Savings Program. Rebates are available through this program for...

  4. Central Georgia EMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Central Georgia Electric Member Corporation (CGEMC) offers rebates for residential customers to increase the energy efficiency of existing homes or to build new energy efficient homes.  This year,...

  5. Hercules Municipal Utility- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Hercules Municipal Utility provides financial incentives for its residential members to increase the energy efficiency of participating homes. Rebates are offered for a variety of home appliances...

  6. Rocky Mountain Power- WattSmart Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers the Home Energy Savings Program for their residential Wyoming customers to improve the energy efficiency of their homes. Incentives are available for energy efficient...

  7. Modesto Irrigation District- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Modesto Irrigation District’s Home Rebate Program offers residential customers cash rebates for the purchase and installation of qualifying energy efficient products installed in existing homes....

  8. Better Buildings Residential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1, 20114,Residential 2014 Building

  9. About Residential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVM Loan Program GoverningWINDPOWERAboutResidential

  10. New Mexico Gas Company- Residential Efficiency Programs

    Broader source: Energy.gov [DOE]

    The New Mexico Gas Company provides incentives for energy saving measures and improvements to residential homes. Rebates are available for adding insulation and for homes which attain Energy Star...

  11. Cedar Falls Utilities- Residential New Construction Program

    Broader source: Energy.gov [DOE]

    Cedar Falls Utilities offers incentives to residential customers who construct new energy efficient homes. A rate discount of 25% is available to customers who meet the 5 Star Home Program criteria...

  12. Austin Energy- Residential Solar PV Rebate Program

    Broader source: Energy.gov [DOE]

    Austin Energy's Solar Rebate Program offers a $1.50 per watt incentive to eligible residential who install photovoltaic (PV) systems on their homes. Rebates are limited to $15,000 per home...

  13. Cowlitz County PUD- Residential Weatherization Plus Program

    Broader source: Energy.gov [DOE]

    Cowlitz County PUD offers an incentive to residential customers who weatherize their homes. Eligible residences can be either site-built or manufactured homes, but must have a permanently installed...

  14. Unitil (Gas)- Residential Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Unitil offers its New Hampshire residential customers a number of programs to encourage more energy efficient homes. The Home Performance with Energy Star Program can help to improve the energy...

  15. Action-Oriented Benchmarking: Using the CEUS Database to Benchmark Commercial Buildings in California

    SciTech Connect (OSTI)

    Mathew, Paul; Mills, Evan; Bourassa, Norman; Brook, Martha

    2008-02-01T23:59:59.000Z

    The 2006 Commercial End Use Survey (CEUS) database developed by the California Energy Commission is a far richer source of energy end-use data for non-residential buildings than has previously been available and opens the possibility of creating new and more powerful energy benchmarking processes and tools. In this article--Part 2 of a two-part series--we describe the methodology and selected results from an action-oriented benchmarking approach using the new CEUS database. This approach goes beyond whole-building energy benchmarking to more advanced end-use and component-level benchmarking that enables users to identify and prioritize specific energy efficiency opportunities - an improvement on benchmarking tools typically in use today.

  16. Commissioning Residential Ventilation Systems: A Combined Assessment of

    E-Print Network [OSTI]

    Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality ventilation systems are being installed in new California homes. Few measurements are available of commissioning residential whole- house ventilation systems that are intended to comply

  17. Holyoke Gas and Electric- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    The Holyoke Gas and Electric (HG&E) Residential Energy Efficiency Program provides residential customers with loans to help make energy saving improvements on eligible homes. The loan provides...

  18. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil pricepropane price05, 2014 Residential

  19. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    E-Print Network [OSTI]

    Fuller, Merrian C.

    2011-01-01T23:59:59.000Z

    home energy upgrades by developing a community that supports behaviorhome energy use, beyond lighting replacements or small changes in behavior.

  20. Enact legislation supporting residential property assessed clean energy financing (PACE)

    SciTech Connect (OSTI)

    Saha, Devashree

    2012-11-15T23:59:59.000Z

    Congress should enact legislation that supports residential property assessed clean energy (PACE) programs in the nation’s states and metropolitan areas. Such legislation should require the Federal Housing Finance Agency (FHFA) to allow Fannie Mae and Freddie Mac to purchase residential mortgages with PACE assessments while at the same time providing responsible underwriting standards and a set of benchmarks for residential PACE assessments in order to minimize financial risks to mortgage holders. Congressional support of residential PACE financing will improve energy efficiency, encourage job creation, and foster economic growth in the nation’s state and metropolitan areas.

  1. Introduction to Benchmarking: Starting a Benchmarking Plan

    Broader source: Energy.gov [DOE]

    Presentation for the Introduction to Benchmarking: Starting a Benchmarking Plan webinar, presented on February 21, 2013 as part of the U.S. Department of Energy's Technical Assistance Program (TAP).

  2. Minnesota Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the Minnesota Residential Energy Code

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01T23:59:59.000Z

    The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Minnesota homeowners. Moving to either the 2009 or 2012 IECC from the current Minnesota Residential Energy Code is cost effective over a 30-year life cycle. On average, Minnesota homeowners will save $1,277 over 30 years under the 2009 IECC, with savings still higher at $9,873 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceed cumulative cash outlays) in 3 years for the 2009 IECC and 1 year for the 2012 IECC. Average annual energy savings are $122 for the 2009 IECC and $669 for the 2012 IECC.

  3. The NERSC PMEMD Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PMEMD The NERSC PMEMD Benchmark Complete Readme Overview Building and Optimization Running and Timing Performance Data Download Benchmark Last edited: 2015-01-06 15:55:50...

  4. The NERSC MILC Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MILC The NERSC MILC Benchmark Complete Readme Overview Building and Optimization Running and Timing Performance Data Download Benchmark Last edited: 2015-01-06 15:12:32...

  5. The NERSC GTC Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GTC The NERSC GTC Benchmark Complete Readme Overview Building and Optimization Running and Timing Performance Data Download Benchmark Last edited: 2015-01-06 15:04:18...

  6. The NERSC CAM Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CAM The NERSC CAM Benchmark Complete Readme Overview Building and Optimization Running and Timing Performance Data Download Benchmark Last edited: 2015-01-06 14:32:44...

  7. The NERSC PARATEC Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PARATEC The NERSC PARATEC Benchmark Complete Readme Overview Building and Optimization Running and Timing Performance Data Download Benchmark Last edited: 2015-01-06 15:16:06...

  8. The NERSC GAMESS Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GAMESS The NERSC GAMESS Benchmark Complete Readme Overview Building and Optimization Running and Timing Performance Data Download Benchmark Last edited: 2015-01-06 14:48:10...

  9. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    E-Print Network [OSTI]

    Fuller, Merrian C.

    2011-01-01T23:59:59.000Z

    Performance with ENERGY STAR Program – New York The HomeCharges, operates the New York Energy $mart initiative. Thisprogram, run by the New York State Energy Research and

  10. Optimizing Hydronic System Performance in Residential Applications, Ithaca, New York (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOfEnergy Online1 MarchOpti-MN ImpactOptimizing

  11. Better Buildings Residential Network Workforce/ Business Partners Peer Exchange Call Series: Home Performance Training & Mentoring: Lessons and Resources Call Slides and Discussion Summary, August 14, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1,23,Call:Trends inWorkforce

  12. Steam System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site EnvironmentalEnergySafelyVirtual ToolkitDecommissioning(September 2014)StatusSteam

  13. Building America Whole-House Solutions for New Homes: Northwest...

    Broader source: Energy.gov (indexed) [DOE]

    Manufactured Home. In this project, the Northwest Energy Efficient Manufactured Housing Program worked with Building America Partnership for Improved Residential...

  14. AMG Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATION OF CONTRACT 1 OTATI OEP AE 2..CNRCCaliforniaAMG

  15. Benchmarks used

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historian ...BESFor41BeforeAllen

  16. Guidelines for residential commissioning

    SciTech Connect (OSTI)

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-31T23:59:59.000Z

    Currently, houses do not perform optimally or even as many codes and forecasts predict, largely because they are field assembled and there is no consistent process to identify problems or to correct them. Residential commissioning is a solution to this problem. This guide is the culmination of a 30-month project that began in September 1999. The ultimate objective of the project is to increase the number of houses that undergo commissioning, which will improve the quality, comfort, and safety of homes for California citizens. The project goal is to lay the groundwork for a residential commissioning industry in California focused on end-use energy and non-energy issues. As such, we intend this guide to be a beginning and not an end. Our intent is that the guide will lead to the programmatic integration of commissioning with other building industry processes, which in turn will provide more value to a single site visit for people such as home energy auditors and raters, home inspectors, and building performance contractors. Project work to support the development of this guide includes: a literature review and annotated bibliography, which facilitates access to 469 documents related to residential commissioning published over the past 20 years (Wray et al. 2000), an analysis of the potential benefits one can realistically expect from commissioning new and existing California houses (Matson et al. 2002), and an assessment of 107 diagnostic tools for evaluating residential commissioning metrics (Wray et al. 2002). In this guide, we describe the issues that non-experts should consider in developing a commissioning program to achieve the benefits we have identified. We do this by providing specific recommendations about: how to structure the commissioning process, which diagnostics to use, and how to use them to commission new and existing houses. Using examples, we also demonstrate the potential benefits of applying the recommended whole-house commissioning approach to such houses.

  17. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    SciTech Connect (OSTI)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Florida Solar Energy Center (FSEC); IBACOS; National Renewable Energy Laboratory (NREL)

    2006-08-01T23:59:59.000Z

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  18. Technology Benchmarking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department ofGeneralWindBuildingOffice28-98ProductionBenchmarking

  19. Progress Energy Carolinas- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Progress Energy provides incentives for residential customers to increase home energy efficiency. Rebates are provided for certain heating and cooling products, duct sealing and repairs, air...

  20. Rocky Mountain Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power provides incentives for residential customers in Idaho to install energy efficient equipment in participating homes. Rebates are available for qualified appliances,...

  1. AEP (Central and North)- Residential Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    The Residential Standard Offer Program and Hard to Reach Standard Offer Program provide incentives to Project Sponsor contractors for installing energy efficiency measures at the homes of...

  2. Lake Region Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lake Region Electric Cooperative (LREC) offers a variety of rebates for residential customers to improve the energy efficiency of homes. Rebates are available for Energy Star refrigerators and...

  3. NorthWestern Energy- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    NorthWestern Energy offers a variety of rebates for residential customers to make energy efficiency improvements in their existing homes. Customers who purchase or implement energy efficient...

  4. Residential Network Members Impact More Than 42,000 Households...

    Energy Savers [EERE]

    Members Impact More Than 42,000 Households Photo of a row of townhomes. Eligible Better Buildings Residential Network members reported completing 27,563 home energy upgrades...

  5. Norwich Public Utilities (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Norwich Public Utilities (NPU) provides residential natural gas customers rebates for upgrading to energy efficient equipment in eligible homes. NPU offers rebates of between $250 - $1050 for...

  6. MidAmerican Energy (Gas)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    MidAmerican Energy offers basic energy efficiency incentives for residential customers in Nebraska to improve the comfort and savings in participating homes. These incentives include gas heating...

  7. Owatonna Public Utilities- Residential Conserve and Save Rebate Program

    Broader source: Energy.gov [DOE]

    Owatonna offers incentives to residential customers who install energy-efficient equipment in homes through the Conserve and Save Rebate Program. Pertinent information on all programs is available...

  8. Plumas-Sierra REC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Plumas-Sierra Rural Electric Cooperative (PSREC) offers several financial incentives for residential customers to improve the efficiency of their homes by upgrading to energy saving appliances and...

  9. South Central Indiana REMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    South Central Indiana REMC, a Touchstone Energy Partner, offers incentives for residential customers to save energy in participating homes. Rebates are available for central air conditioning...

  10. NorthWestern Energy (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    NorthWestern Energy offers a variety of rebates for residential customers to make energy efficiency improvements in their existing homes. Customers who purchase an Energy Star programmable...

  11. CenterPoint Energy (Gas)- Residential Efficiency Rebates (Oklahoma)

    Broader source: Energy.gov [DOE]

    To encourage customers to install high-efficiency natural gas equipment in eligible homes and businesses, CenterPoint Energy offers new construction and retrofit residential and commercial...

  12. Piedmont EMC- Residential Energy Efficient Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Piedmont Electric Membership Corporation (PEMC) offers a financial incentive for residential members to install energy efficient heat pumps and compact fluorescent lighting in eligible homes....

  13. Anoka Municipal Utility- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Anoka Municipal Utilities (AMU) offers incentives for residential customers to install energy-efficient appliances and light bulbs in eligible homes. Rebates are available for Energy Star qualified...

  14. Clark Public Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Clark Public Utilities offers several energy incentives for residential customers to increase the energy efficiency of their homes. Rebates are offered for refrigerators, freezers, clothes washers,...

  15. Farmers Electric Cooperative- Residential/Agricultural Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Farmers Electric Cooperative offers incentives for its residential and agricultural members to increase the energy efficiency of eligible homes and facilities. In order to receive rebates,...

  16. Central Lincoln People's Utility District- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Central Lincoln People's Municipal Utility District (CLPUD) offers a variety of energy efficiency programs for residential customers to save energy in eligible homes. Rebates are available for...

  17. Empire District Electric- Residential Energy Efficiency Rebate Program (Arkansas)

    Broader source: Energy.gov [DOE]

    Empire District Electric Company (EDEC) offers rebates to residential customers for energy audits, weatherization measures, central air conditioning systems, and energy efficient home appliances....

  18. Energy Efficiency Fund (Electric and Gas)- Residential New Construction Program

    Broader source: Energy.gov [DOE]

    The Energy Efficiency Fund offers a program designed to encourage the construction of energy efficient homes. The Residential New Construction Program offers incentives targeted at increasing...

  19. Orcas Power & Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Orcas Power and Light Cooperative offers incentives for residential customers to pursue energy efficiency upgrades in eligible homes. Rebates are offered for Energy Star rated appliances, water...

  20. Xcel Energy (Gas and Electric)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    In addition to home energy audits, Xcel Energy offers rebates to Minnesota residential customers for the purchase of energy efficient HVAC systems, insulation, appliances and lighting equipment....

  1. CenterPoint Energy- Residential and Small Commercial Efficiency Program

    Broader source: Energy.gov [DOE]

    CenterPoint Energy's (CNP) Residential and Small Commercial Standard Offer Program (SOP) provides incentives to encourage contractors to install energy efficiency measures in homes and small...

  2. Rochester Public Utilities- Residential Conserve and Save Rebate

    Broader source: Energy.gov [DOE]

    Rochester Public Utilities (RPU) offers incentives to residential customers for installing energy-efficient equipment in participating homes through the Conserve and Save Rebate Program. These...

  3. Rocky Mountain Power- WattSmart Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power provides incentives for residential customers in Idaho to install energy efficient equipment in participating homes. Rebates are available for qualified appliances,...

  4. City Utilities of Springfield- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    City Utilities of Springfield Missouri provides incentives for residential customers to increase the efficiency of eligible homes. Rebates are available for programmable thermostats, insulation...

  5. Community based outreach strategies in residential energy upgrade programs

    E-Print Network [OSTI]

    McEwen, Brendan (Brendan Carl Francis)

    2012-01-01T23:59:59.000Z

    Home energy upgrades can reduce residential energy consumption and improve indoor conditions, thereby realizing environmental, economic, health and other social benefits. Utilities, government and other actors have established ...

  6. Lower Valley Energy- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lower Valley Energy offers numerous rebates for residential customers who wish to increase the energy efficiency of eligible homes. Rebates are available for weatherization measures, water heaters,...

  7. Verdigris Valley Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are available for room air conditioners, electric water...

  8. Carroll County REMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Carroll County REMC offers incentives to residential customers who purchase and install energy efficiency equipment for the home. Rebates are available on geothermal heat pumps, air source heat...

  9. Turlock Irrigation District- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Turlock Irrigation District (TID) offers a residential rebate program for customers who install energy-efficient equipment in their homes. Eligible equipment includes

  10. NIPSCO (Gas and Electric)- Residential Natural Gas Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Northern Indiana Public Service Corporation (NIPSCO) offers rebates to residential customers that install energy efficient gas and electric measures in homes through the NIPSCO Energy Efficiency...

  11. Residential Energy Efficiency Rebate (Offered by Several Cooperative Utilities)

    Broader source: Energy.gov [DOE]

    Associated Electric Cooperative and many of its member cooperatives offer rebates to residential customers who purchase and install energy efficient equipment for the home. Eligible equipment...

  12. Middle Tennessee EMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Middle Tennessee Electric Membership Corporation (MTEMC) and the Tennessee Valley Authority (TVA) offer incentives for residential customers through the In-Home Energy Evaluation Program. This...

  13. Peninsula Light Company- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Peninsula Light Company offers a rebate program for residential customers who want to install energy efficient products in homes. Rebates are provided for window replacements, water heaters, heat...

  14. City Water Light and Power- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    City Water Light and Power (CWLP) offers rebates to Springfield residential customers for increasing the energy efficiency of participating homes. Rebates are available for geothermal heat pumps,...

  15. STEP Program Benchmark Report

    Broader source: Energy.gov [DOE]

    STEP Program Benchmark Report, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  16. Residential Services Headlease residents

    E-Print Network [OSTI]

    Sussex, University of

    Residential Services Headlease residents handbook 2013-2014 #12;Map of Brighton inside front cover packs Rent 5 Residential Advisor (RA) network 6 Senior residential advisors Residential Student Support Contents Contents Brighton 1 #12;Welcome Congratulations on securing your place at Sussex. Residential

  17. Lakeland Electric- Residential Conservation Rebate Program

    Broader source: Energy.gov [DOE]

    Lakeland Electric offers a conservation program for residential customers to save energy in homes. Rebates are available for Heat Pumps, HVAC tune-ups, attic insulation upgrades, and Energy Star...

  18. Clark Energy- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Clark Energy offers a free energy audit to provide residential customers with suggestions on ways to improve the energy efficiency of participating homes. Rebates are available for customers who...

  19. Chicopee Electric Light- Residential Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Chicopee Electric Light offered rebates to residential customers who install solar photovoltaic systems on their homes. Customer rebates are $0.50 per watt for a maximum of $2,500 per installation.

  20. Oklahoma Natural Gas- Residential Efficiency Rebates (Oklahoma)

    Broader source: Energy.gov [DOE]

    To encourage customers to install high-efficiency natural gas equipment in homes, Oklahoma Natural Gas offers rebates to residential customers and builders for furnace, water heating, or space...

  1. Alameda Municipal Power- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Alameda Municipal Power (AMP) offers a grant to help its residential customers who have electric heat weatherize homes to increase efficiency. To participate, customers must complete and send in a...

  2. Monmouth Power & Light- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Monmouth Power & Light offers a wide range of energy efficiency rebates that encourage residential customers to save energy in their homes. To qualify for these incentives electricity must be...

  3. Minnesota Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Minnesota Power offers a variety of appliance, lighting, and heating and cooling system rebates to its residential customers to help make homes more energy efficient. Rebates are available for...

  4. Washington Gas- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Washington Gas provides a number of rebates to residential customers who utilize energy efficient equipment and measures in the home. Rebate are available for tankless water heaters, storage (tank)...

  5. Kirkwood Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kirkwood Electric offers rebates to its residential customers who install energy-efficient heat pumps and electric hot water heaters in their new and existing homes. Customers will be given a...

  6. Kentucky Power- Residential Efficient HVAC Rebate Program

    Broader source: Energy.gov [DOE]

    Kentucky Power's High Efficiency Heat Pump Program offers a $400 rebate to residential customers living in existing (site-built) homes who upgrade electric resistance heating systems with a new,...

  7. Connexus Energy- Residential Efficient HVAC Rebate Program

    Broader source: Energy.gov [DOE]

    Connexus Energy offers rebates for residential customers to improve the energy efficiency of homes. Rebates are available for air source heat pumps, ductless heat pumps and ground-source heat pumps...

  8. Lumbee River EMC- Residential Weatherization Loan Program

    Broader source: Energy.gov [DOE]

    Lumbee River Electric Membership Corporation (LREMC) offers low interest loans to help its residential members increase the energy efficiency of their homes. Loans up to $10,000 are available for...

  9. Xcel Energy- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    In addition to home energy audits, Xcel Energy offers rebates to North Dakota residential customers for the purchase of energy efficient heating and water heating technologies. Xcel offers rebates...

  10. Benchmarking Non-Hardware Balance of System (Soft) Costs for

    E-Print Network [OSTI]

    Benchmarking Non-Hardware Balance of System (Soft) Costs for U.S. Photovoltaic Systems Using a Data (Soft) Costs for U.S. Photovoltaic Systems Using a Data-Driven Analysis from PV Installer Survey Results process" or "soft" costs--for residential and commercial photovoltaic (PV) systems. Annual expenditure

  11. Building America Research Benchmark Definition: Updated December 19, 2008

    SciTech Connect (OSTI)

    Hendron, R.

    2008-12-01T23:59:59.000Z

    To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, DOE's Residential Buildings Program and NREL developed the Building America Research Benchmark in consultation with the Building America industry teams.

  12. DOE Zero Energy Ready Home Verification...

    Broader source: Energy.gov (indexed) [DOE]

    Zero Energy Ready Home Verification Summary DRAFT REMRate - Residential Energy Analysis and Rating Software v14.5.1 This information does not constitute any warranty of energy...

  13. Cleco Power- Power Miser New Home Program

    Broader source: Energy.gov [DOE]

    Louisiana's Cleco Power offers energy efficiency incentives to eligible customers. Cleco Power offers a rate discount for residential customers building homes that meet the Power Miser Program...

  14. Home Performance Training and Mentoring: Lessons and Resources...

    Energy Savers [EERE]

    Home Performance Training and Mentoring: Lessons and Resources Home Performance Training and Mentoring: Lessons and Resources Better Buildings Residential Network Workforce...

  15. Residential Solar Valuation Rates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to...

  16. ASHRAE and residential ventilation

    SciTech Connect (OSTI)

    Sherman, Max H.

    2003-10-01T23:59:59.000Z

    In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the logical place to provide leadership. This leadership has been demonstrated most recently by the publication of the first nationally recognized standard on ventilation in homes, ASHRAE Standard 62.2-2003, which builds on work that has been part of ASHRAE for many years and will presumably continue. Homeowners and occupants, which includes virtually all of us, will benefit from the application of Standard 62.2 and use of the top ten list. This activity is exactly the kind of benefit to society that the founders of ASHRAE envisioned and is consistent with ASHRAE's mission and vision. ASHRAE members should be proud of their Society for taking leadership in residential ventilation.

  17. Self-benchmarking Guide for Data Centers: Metrics, Benchmarks, Actions

    E-Print Network [OSTI]

    Mathew, Paul

    2010-01-01T23:59:59.000Z

    good practice” for data center infrastructure efficiency metric. Data Center Benchmarking Guidegood practice benchmark and 0.6 kW/ton as a better practice benchmark. Data Center Benchmarking Guide

  18. Factory Flow Benchmarking Report

    E-Print Network [OSTI]

    Shields, Thomas J.

    LAI benchmarked representative part fabrications and some assembly operations within its member companies of the defense aircraft industry. This paper reports the results of this benchmarking effort. In addition, this ...

  19. Better Buildings Residential Network Peer Exchange Call: Combining Solar and Home Performance Services, Call Slides and Discussion Summary, December 11, 2014Better Buildings Residential Network Peer Exchange Call: Combining Solar and Home Performance Services, Call Slides and Discussion Summary, December 11, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1,23,Call: Combining Solar and Home

  20. Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1

    E-Print Network [OSTI]

    Johnson, F.X.

    2010-01-01T23:59:59.000Z

    residential home heating equipment, depending on product class and size. Figure E.6b: Electric Heat Pump

  1. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Marine Climates; January 2006 - December 2006

    SciTech Connect (OSTI)

    Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-12-01T23:59:59.000Z

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Marine Climate Region on a cost neutral basis.

  2. Long Island Power Authority- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Long Island Power Authority offers a variety of incentive programs which help residential customers upgrade to more energy efficient equipment and appliances in their homes. The Cool Homes Program...

  3. Black Hills Energy (Gas)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Black Hills Energy offers its residential Iowa customers incentives to encourage energy efficiency in their homes. Black Hills Energy offers a free home energy evaluation to customers (both owners...

  4. SoCalGas- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    The Southern California Gas Company (SoCalGas) offers The Home Energy Upgrade Financing (HEUF) program to its residential customers interested in making energy efficient improvements to their homes...

  5. Residential Learning University Housing

    E-Print Network [OSTI]

    Rusu, Adrian

    Residential Learning & University Housing Handbook 2008 - 2009 A Guide for Residential Living on the Campus of Rowan University #12;Welcome to Residential Learning & University Housing! The primary purpose of the Office of Residential Life & University Housing is to assist and support students in the pursuit

  6. RESIDENTIAL COLLEGES NORTHWESTERN

    E-Print Network [OSTI]

    Apkarian, A. Vania

    c RESIDENTIAL COLLEGES NORTHWESTERN #12;#12;Dear Northwestern Student: I hope you will review residential colleges. A residential college is a place where you can grow emotionally and intellectually, get and residential college fellows. More than a third of the first-year students living on campus choose to live

  7. Residential Colleges NORTHWESTERN

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Residential Colleges NORTHWESTERN #12;#12;Dear Northwestern Student: I hope you will review residential colleges. A residential college is a place where you can grow emotionally and intellectually, get and residential college fellows. More than a third of the first-year students living on campus choose to live

  8. NYSERDA- Energy Star Home Builders

    Broader source: Energy.gov [DOE]

    NYSERDA offers a program to encourage more industry involvement in the building of Energy Star rated Homes. Incentives are available for newly constructed residential dwellings of 3 stories or less...

  9. DEMCO- Touchstone Energy Home Program

    Broader source: Energy.gov [DOE]

    DEMCO, a Touchstone Energy Cooperative, provides residential customers who have a qualified Touchstone Energy Home, a rebate of up to $0.10 per square foot of living area for electric heat pumps...

  10. Non-Residential Energy Code National and Regional Codes

    E-Print Network [OSTI]

    Non-Residential Energy Code Comparison National and Regional Codes David Baylon Mike Kennedy #12 2003 · ASHRAE 90.1 2001 & addenda · E-Benchmark Guidelines (NBI) #12;Approach · Comparison of the State;Approach (cont.) · Provisions compared ­ Lighting power ­ Lighting controls ­ Mechanical systems ­ Building

  11. NREL: Buildings Research - Residential Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemical andWhat Is aResidential Capabilities

  12. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical squestionnairesquestionnaires AgreementLighting

  13. Residential Weatherization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical squestionnairesquestionnaires53 2.370

  14. Super Energy Efficiency Design (S.E.E.D.) Home Evaluation

    SciTech Connect (OSTI)

    German, A.; Dakin, B.; Backman, C.; Weitzel, E.; Springer, D.

    2012-12-01T23:59:59.000Z

    This report describes the results of evaluation by the Alliance for Residential Building Innovation (ARBI) Building America team of the 'Super Energy Efficient Design' (S.E.E.D) home, a 1,935 sq. ft., single-story spec home located in Tucson, AZ. This prototype design was developed with the goal of providing an exceptionally energy efficient yet affordable home and includes numerous aggressive energy features intended to significantly reduce heating and cooling loads such as structural insulated panel (SIP) walls and roof, high performance windows, an ERV, an air-to-water heat pump with mixed-mode radiant and forced air delivery, solar water heating, and rooftop PV. Source energy savings are estimated at 45% over the Building America B10 Benchmark. System commissioning, short term testing, long term monitoring and detailed analysis of results was conducted to identify the performance attributes and cost effectiveness of the whole house measure package.

  15. Residential Buildings

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Yeara 436INCIDENCE OFResidential

  16. Residential Segmentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical squestionnairesquestionnaires53 2.370 2.359

  17. RESIDENTIAL EXCHANGE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70COMMUNITYResponses:December 11, 2014WD2 MAY2 - March7 -8A

  18. RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES

    E-Print Network [OSTI]

    Meier, Alan K.

    2008-01-01T23:59:59.000Z

    heating, cooling and ventilating controls are more sophisticated than commonly available in North America 29 . Remote

  19. Monash Residential Services Furnishing your Home

    E-Print Network [OSTI]

    Albrecht, David

    (hand bath) Bath/shower mat Toilet amenities Hair dryer Shower caddy Waste basket Cup Toothbrush holder Flyscreens Internet points Blinds/curtains T.V antenna Floor coverings Heating/cooling #12;4 Berwick Campus of inner Melbourne's shopping and business district. The following are some of the main ones only. http

  20. RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES

    E-Print Network [OSTI]

    Meier, Alan K.

    2008-01-01T23:59:59.000Z

    cooling and ventilating controls are more sophisticated than commonly available in North America 29 . Remoteand cooling systems. Future thermostats may reside in PCs, digital picture frames, or other kinds of remote

  1. RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES

    E-Print Network [OSTI]

    Meier, Alan K.

    2008-01-01T23:59:59.000Z

    today: Johnson and Honeywell. In terms of regulating theHeat Regulator Co. ) eventually became Honeywell. Butz’1885 Furnace regulator In 1906 Honeywell produced the first

  2. RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES

    E-Print Network [OSTI]

    Meier, Alan K.

    2008-01-01T23:59:59.000Z

    on boilers, hot water, district heating, spot heating, andwood to charcoal to district heating. www.tecsoc.org/pubs/pellets) or via district heating systems. Air conditioning

  3. RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES

    SciTech Connect (OSTI)

    Meier, Alan K.; Walker, Iain

    2008-03-02T23:59:59.000Z

    This report summarizes results of a literature review, a workshop, and many meetings with demand response and thermostat researchers and implementers. The information obtained from these resources was used to identify key issues of thermostat performance from both energy savings and peak demand perspectives. A research plan was developed to address these issues and activities have already begun to pursue the research agenda.

  4. RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES

    E-Print Network [OSTI]

    Meier, Alan K.

    2008-01-01T23:59:59.000Z

    and Demand Response in Commercial Buildings, Californiain peak building load (a key concern for Demand ResponseBuilding Energy Code Requirements: Title 24 .. 30 Demand Response..

  5. Residential Solar Investment Program

    Broader source: Energy.gov [DOE]

    In March 2012, the CT Green Bank* unveiled its solar photovoltaic residential investment program with the ultimate goal to support 30 megawatts of residential solar photovoltaics (PV). HB 6838...

  6. Residential Energy Audits

    E-Print Network [OSTI]

    Brown, W.

    1985-01-01T23:59:59.000Z

    A series of events coupled with the last five years experience performing Residential Conservation Service (RCS) audits have resulted in renewed efforts by utilities to evaluate the role of residential energy audits. There are utilities where...

  7. Leasing Residential PV Systems

    SciTech Connect (OSTI)

    Rutberg, Michael; Bouza, Antonio

    2013-11-01T23:59:59.000Z

    The article discusses the adoption, consequences and current market status of the leasing of residential photovoltaic systems. It addresses attributed energy savings and market potential of residential system leasing.

  8. Presentation: Better Buildings Residential Program Solution Center...

    Office of Environmental Management (EM)

    Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential...

  9. Collaborating With Utilities on Residential Energy Efficiency...

    Office of Environmental Management (EM)

    on Residential Energy Efficiency Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Collaborating With Utilities on Residential Energy...

  10. Better Buildings Residential Program Solution Center Demonstration...

    Energy Savers [EERE]

    Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution...

  11. Membership Criteria: Better Buildings Residential Network | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Membership Criteria: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network...

  12. Thermal Performance Benchmarking (Presentation)

    SciTech Connect (OSTI)

    Moreno, G.

    2014-11-01T23:59:59.000Z

    This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

  13. AREA COORDINATOR RESIDENTIAL EDUCATION

    E-Print Network [OSTI]

    Bordenstein, Seth

    AREA COORDINATOR RESIDENTIAL EDUCATION VANDERBILT UNIVERSITY, NASHVILLE, TENNESSEE The Office of Housing and Residential Education at Vanderbilt University is seeking applicants for an Area Coordinator. The Area Coordinator is responsible for assisting in the management and operation of a residential area

  14. PROPOSED RESIDENTIAL ALTERNATIVE CALCULATION

    E-Print Network [OSTI]

    PROPOSED RESIDENTIAL ALTERNATIVE CALCULATION MANUAL (ACM) APPROVAL METHOD for the 2013 2012 CEC400201200715DAY #12;201308 Residential ACM Approval Manual 2-2 1. Overview Minimum Modeling Capabilities 1. Overview This Manual explains the requirements for approval of residential Alternative

  15. Energy for 500 million Homes: Drivers and Outlook for

    E-Print Network [OSTI]

    -up analysis of residential building energy consumption in China using data from a wide variety of sourcesLBNL-2417E Energy for 500 million Homes: Drivers and Outlook for Residential Energy Consumption and Outlook for Residential Energy Consumption in China Nan Zhou*, Michael A. McNeil, Mark Levine Keywords

  16. The Net Zero Energy Residential Test Facility, located at the National Institute of Standards

    E-Print Network [OSTI]

    Purpose The Net Zero Energy Residential Test Facility, located at the National Institute of measurement science needed to achieve net- zero energy residential homes. The facility will initially be used's Office of Facilities and Property Management. Net-Zero Energy Residential Test Facility Unique

  17. Residential Wood Residential wood combustion (RWC) is

    E-Print Network [OSTI]

    Residential Wood Combustion Residential wood combustion (RWC) is increasing in Europe because PM2.5. Furthermore, other combustion- related sources of OA in Europe may need to be reassessed. Will it affect global OA emission estimates? Combustion of biofuels is globally one of the major OA sources

  18. Measuring Residential Ventilation System Airflows: Part 1 Laboratory

    E-Print Network [OSTI]

    1 Measuring Residential Ventilation System Airflows: Part 1 ­ Laboratory Evaluation of Airflow: residential, mechanical ventilation, measurement, ASHRAE 62.2, flow hood ABSTRACT Building codes increasingly require tighter homes and mechanical ventilation per ASHRAE Standard 62.2. These ventilation flows must

  19. Energy Audit Results for Residential Building Energy Efficiency

    E-Print Network [OSTI]

    Energy Audit Results for Residential Building Energy Efficiency Forrest City Phases I and II This report analyses complete energy audit results from 28 homes within the Forest City residential complex. Relationships between temperature, humidity, comfort, and energy consumption are detailed. Recommendations

  20. Verification and validation benchmarks.

    SciTech Connect (OSTI)

    Oberkampf, William Louis; Trucano, Timothy Guy

    2007-02-01T23:59:59.000Z

    Verification and validation (V&V) are the primary means to assess the accuracy and reliability of computational simulations. V&V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V&V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the level of achievement in V&V activities, how closely related the V&V benchmarks are to the actual application of interest, and the quantification of uncertainties related to the application of interest.

  1. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006

    SciTech Connect (OSTI)

    Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-12-01T23:59:59.000Z

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

  2. Strategy Guideline: High Performance Residential Lighting

    SciTech Connect (OSTI)

    Holton, J.

    2012-02-01T23:59:59.000Z

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  3. Duke Energy (Electric)- Energy Star Homes Rate Discount Program

    Broader source: Energy.gov [DOE]

    Duke Energy encourages residential customers to buy energy-efficient homes through the utility's [http://www.energystar.gov/index.cfm?c=new_homes.hm_index Energy Star Homes Program], which awards a...

  4. Zero Energy Ready Home Events | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential Buildings Zero Energy Ready Home Zero Energy Ready Home Events Zero Energy Ready Home Events September 2014 < prev next > Sun Mon Tue Wed Thu Fri Sat 31 1 2 3 4 5...

  5. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Existing Homes: Duct Sealing Using Injected Spray Sealant In this project, the Raleigh Housing Authority worked with Building America team, the Advanced Residential Integrated...

  6. Delmarva Power- Home Performance with Energy Star Incentive Program

    Broader source: Energy.gov [DOE]

    Delmarva Power and Light Company offers the Home Performance with Energy Star Program, which provides incentives for residential customers who have audits performed by participating contractors....

  7. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Applications, Ithaca, New York (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications,...

  8. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Applications (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications (Fact Sheet) In this...

  9. Home Performance with ENERGY STAR -- 10 Years of Continued Growth...

    Office of Environmental Management (EM)

    Review Residential Building Audits and Retrofits Better Buildings Neighborhood Program Home Accomplishments History Better Buildings Partners Stories Interviews Videos Contact Us...

  10. Cascade Natural Gas- Conservation Incentives for Existing Homes

    Broader source: Energy.gov [DOE]

    Cascade Natural Gas offers a variety of incentives to residential customers for making energy efficiency improvements to existing homes. Eligible equipment includes furnaces, water heaters,...

  11. Cascade Natural Gas- Conservation Incentives for New Homes

    Broader source: Energy.gov [DOE]

    Cascade Natural Gas offers a variety of incentives to residential customers for including energy efficiency measures in new homes in Washington and Oregon. Incentives are available directly from...

  12. PEPCO- Home Performance with Energy Star Incentive Program

    Broader source: Energy.gov [DOE]

    The Potomac Electric Power Company (PEPCO) offers the Home Performance with Energy Star Program which provides incentives for residential customers who have audits performed by participating...

  13. NorthWestern Energy (Gas)- Residential Energy Efficiency Rebate Program (Montana)

    Broader source: Energy.gov [DOE]

    NorthWestern Energy offers a variety of rebates for residential customers to make energy efficiency improvements in their existing homes. Customers who purchase an Energy Star programmable...

  14. Golden Valley Electric Association- Residential Energy Efficiency Rebate Program for Builders

    Broader source: Energy.gov [DOE]

    Golden Valley Electric Association’s (GVEA) Builder $ense program targets home builders who install electrical energy efficiency measures during construction of residential buildings. Newly...

  15. Alliant Energy Interstate Power and Light (Gas)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Interstate Power and Light (Alliant Energy) offers residential energy efficiency rebates to Iowa customers for a variety of home upgrades. Rebates are available for certain heating, insulation,...

  16. McMinnville Water and Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    McMinnville Water and Light (MWL) offers rebates on energy efficient homes, appliances and equipment to residential customers. Rebates are valid on refrigerators, freezers, clothes washer,...

  17. Baltimore Gas and Electric Company (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Baltimore Gas and Electric Company (BGE) offers rebates for residential customers to improve the energy efficiency of eligible homes. Rebates are available for Energy Star clothes washers,...

  18. An Analysis of the Effects of Photovoltaic Energy Systems on Residential Selling Prices in California.

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    Effects of Residential Photovoltaic Energy Systems on Homeof homes with existing photovoltaic (PV) energy systems havegrid-connected solar photovoltaic (PV) energy systems were

  19. DEPARTMENT OF RESIDENTIAL LIFE Residential Life Staff Manual.

    E-Print Network [OSTI]

    Missouri-Rolla, University of

    1 Appendix A DEPARTMENT OF RESIDENTIAL LIFE Residential Life Staff Manual. Residential Life Program Listing #12;2 MISSOURI S&T RESIDENTIAL LIFE DEPARTMENT Staff Resource Manual 2010--2012 Department of Residential Life Mission: To create educational environments emphasizing learning and development. Service

  20. Healthcare Project Performance Benchmarks

    Broader source: Energy.gov [DOE]

    Reports five major performance metrics that can be used to benchmark proposed energy service company projects within the healthcare industry, disaggregated and reported by major retrofit strategy. Author: U.S. Department of Energy

  1. Marshall Municipal Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    [http://www.marshallutilities.com/index.php Marshall Municipal Utilities (MMU)] offers a variety of incentives for its residential customers to install energy-efficient equipment in their homes. ...

  2. Does anyone have access to 2012 average residential rates by...

    Open Energy Info (EERE)

    Does anyone have access to 2012 average residential rates by utility company? I'm seeing an inconsistency between the OpenEI website and EIA 861 data set. Home > Groups > Utility...

  3. MidAmerican Energy (Gas)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    MidAmerican Energy offers basic energy efficiency incentives for residential customers in Nebraska to improve the comfort and savings in participating homes. These incentives include gas heating...

  4. Florida Power and Light- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Florida Power and Light (FPL) offers rebates to residential customers who implement certain energy efficiency improvements in eligible homes. HVAC rebates are available for the replacement of air...

  5. South Central Indiana REMC- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    South Central Indiana REMC offers a 6.0% interest loan for residential customers interested in making energy efficiency improvements to participating homes. The loan can be used for a variety of...

  6. CoServ Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    CoServ Electric Cooperative's "Think Green Rebate Program" provides a range of incentives encouraging its residential customers to upgrade to high efficiency equipment in their homes. Rebates are...

  7. MidAmerican Energy (Gas)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of homes. Eligible customers are eligible for rebates on furnaces, furnace fan motors,...

  8. Questar Gas- Residential Solar Assisted Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

  9. Questar Gas- Residential Solar Assisted Water Heating Rebate Program (Idaho)

    Broader source: Energy.gov [DOE]

    Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

  10. Progress Energy Carolinas- Residential New Construction Rebate Program (South Carolina)

    Broader source: Energy.gov [DOE]

    Progress Energy's residential new construction program provides cash incentives of up to $4,000 to builders and developers who build new energy-efficient homes and multi-family residences that meet...

  11. Questar Gas- Residential Solar Assisted Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Questar Gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

  12. Ashland Electric Utility- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    City of Ashland Conservation Division has zero-interest loans to help residential customers finance energy efficiency improvements to participating homes. The maximum loan amount is $7,500. The...

  13. Dayton Power and Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Dayton Power and Light offers rebates for heating and cooling to residential customers who purchase and install energy efficient products for the home. Eligible systems and measures include heat...

  14. Progress Energy Carolinas- Residential New Construction Rebate Program (North Carolina)

    Broader source: Energy.gov [DOE]

    Progress Energy's residential new construction program provides cash incentives of up to $4,000 to builders and developers who build new energy-efficient homes and multi-family residences that meet...

  15. Reading Municipal Light Department- Residential ENERGY STAR Appliance Rebate Program

    Broader source: Energy.gov [DOE]

    Reading Municipal Light Department (RMLD) offers rebates to residential customers who install Energy Star appliances in eligible homes. The offer is limited to one rebate per appliance or a maximum...

  16. Florida Public Utilities (Gas)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Florida Public Utilities offers the Energy for Life Conservation Program to its residential natural gas customers to save energy in their homes. Rebates are available for existing residences and...

  17. Fort Pierce Utilities Authority- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Fort Pierce Utilities Authority offers a variety of incentives for their residential customers to save energy in their homes. Rebates are available for room A/C units, insulation upgrades, central...

  18. Snohomish County PUD No 1- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Snohomish County PUD No 1 offers financial incentives for residential customers to increase the energy efficiency of homes. There is also an appliance recycling program that offers $30 for each...

  19. National Grid (Gas) – Residential EnergyWise Rebate Programs

    Broader source: Energy.gov [DOE]

    National Grid's EnergyWise programs encourage energy efficiency amongst its residential customers. Interested customers who heat with gas, oil, or propane should schedule a free home energy audit...

  20. Pee Dee Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Pee Dee Electric Cooperative offers a variety of programs for residential members to save energy in participating homes. Rebates are available for dual fuel heat pumps, geothermal heat pumps, and...

  1. Richland Energy Services- Residential Energy Conservation and Solar Loan Program

    Broader source: Energy.gov [DOE]

    The City of Richland provides low-interest loans to encourageit residential customers to pursue equipment upgrades and home improvement measures that will increase the energy efficiency of their...

  2. New Braunfels Utilities- Residential Solar Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    New Braunfels Utilities offers a rebate for residential customers who purchase and install solar water heating systems on eligible homes. A rebate of the equivalent of $0.265 per kWh is available...

  3. PG&E (Gas)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Pacific Gas and Electric Company (PG&E) offers rebates for residential gas customers who install energy efficient furnaces or water heaters in homes. More information and applications for...

  4. Benchmarking Corporate Energy Management

    E-Print Network [OSTI]

    Norland, D. L.

    BENCHMARKING CORPORATE ENERGY MANAGEMENT Dr. Douglas L. Norland Director of Research and Industrial Programs Alliance to Save Energy Washington, DC ABSTRACT There is growing interest among energy managers in finding out how their company...'s energy management procedures and perfonnance compare to that of other companies. Energy management involves everything from setting goals and targets to implementing best maintenance practices. This paper, however, discusses benchmarking energy...

  5. Guide to Benchmarking Residential Program Progress - CALL FOR...

    Energy Savers [EERE]

    program performance across time and in comparison to others; and report about your performance in effective ways. Guide Overview The Guide also provides: Recommendations...

  6. RESIDENTIAL SERVICES STUDENT CHARTER Introduction

    E-Print Network [OSTI]

    Oakley, Jeremy

    RESIDENTIAL SERVICES STUDENT CHARTER Introduction This Charter sets out the standards of provision. Residential Services are committed to encouraging diversity and inclusiveness within University residences via the Residential Services Annual Report and the internet. Consultation This Charter was developed

  7. 13-Feb-2008 submitted to Energy Engineering Action-Oriented Benchmarking

    E-Print Network [OSTI]

    or gas utilities to maintain energy consumption data for non-residential buildings in a format or absolute energy consumption and intensity indicators. Uses of energy benchmarking as applied to buildings of the data for a building to the Energy Star Portfolio Manager. Effective January 1, 2010 non

  8. Essays on residential desegregation

    E-Print Network [OSTI]

    Wong, Maisy

    2008-01-01T23:59:59.000Z

    Many ethnically diverse countries have policies that encourage integration across ethnic groups. This dissertation investigates the impact and welfare implications of a residential desegregation policy in Singapore, the ...

  9. Residential Solar Rights

    Broader source: Energy.gov [DOE]

    In 2007, New Jersey enacted legislation preventing homeowners associations from prohibiting the installation of solar collectors on certain types of residential properties. The term "solar...

  10. Home Energy Ratings and Building Performance 

    E-Print Network [OSTI]

    Gardner, J.C.

    2008-01-01T23:59:59.000Z

    an accepted method to determine home efficiency based on standards developed and overseen by the Residential Energy Services Network (RESNET), a not-for-profit corporation. The paper will discuss the effect of various building systems and effects of local...

  11. Solar Leasing for Residential Photovoltaic Systems

    Broader source: Energy.gov [DOE]

    This publication examines the solar lease option for residential PV systems and describes two solar lease programs already in place. As a result of the $2,000 cap on the residential ITC being lifted in 2009, the expansion of the solar lease model across the United States may be slower than anticipated. The lease model, though, still offers homeowners some distinct advantages. This publication helps homeowners revisit the comparison between the solar lease and home-equity financing in light of the change to the ITC.

  12. Residential Solar Valuation Rates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingof Enhanced GeothermalInformationResidential Solar

  13. Residential Water Heaters Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingof Enhanced GeothermalInformationResidential

  14. Residential Energy Efficiency Stakeholder Meeting - Spring 2012 |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepository | Department of Energy RequestGasResidential

  15. VAX/VMS benchmarking

    SciTech Connect (OSTI)

    Creel, L.

    1981-07-01T23:59:59.000Z

    Primary emphasis in this report is on the performance of three Digital Equipment Corporation VAX-11/780 computers at the Los Alamos National Laboratory. Programs used in the study are part of the Laboratory's set of benchmark programs. The VAX-11/780 computers each had slightly different configurations that affected the performance of several of the benchmarks. Execution times of these programs on the VAX-11/780s are also compared to those on the Control Data Corporation (CDC) 6600 and Cyber 73 computers.

  16. Advanced Benchmarking: Benchmark Building Energy Use Quickly and Accurately Using EPA's ENERGY STAR Portfolio Manager

    Broader source: Energy.gov [DOE]

    Advanced Benchmarking: Benchmark Building Energy Use Quickly and Accurately Using EPA's ENERGY STAR Portfolio Manager Webinar.

  17. Miscellaneous electricity use in U.S. homes

    E-Print Network [OSTI]

    Sanchez, Marla C.; Koomey, Jonathan G.; Moezzi, Mithra M.; Meier, Alan; Huber, Wolfgang

    1999-01-01T23:59:59.000Z

    1998. Miscellaneous electricity use in the U.S. residentialMiscellaneous Uses of Electricity in Homes'. Presented atThe Latest In "Leaking Electricity" in Homes. Davis Energy

  18. Vectren Energy Delivery of Ohio (Gas)- Energy Star Home Rebate

    Broader source: Energy.gov [DOE]

    Vectren Energy Delivery of Ohio offers a flat rebate to builders of residential single-family Energy Star certified homes that receive gas service from the company. In order to qualify, homes must...

  19. Idaho Power- Rebate Advantage for New Manufactured Homes

    Broader source: Energy.gov [DOE]

    Idaho Power is offering a $1000 sales rebate to customers who purchase a new ENERGY STAR all-electric manufactured home and connect that home to an Idaho Power residential account. In addition, the...

  20. Town of Babylon- Long Island Green Homes Program

    Broader source: Energy.gov [DOE]

    The Long Island Green Homes Program is a self-financing residential retrofit program designed to support a goal of upgrading the energy efficiency of existing homes in the Town of Babylon. The...

  1. Progress Energy Carolinas- Rate Discount for Energy Star Homes

    Broader source: Energy.gov [DOE]

    Progress Energy Carolinas (PEC) offers an incentive to residential customers for improving the energy efficiency of homes. To qualify, the home must meet the standards of the U.S. Environmental...

  2. Piedmont EMC- Rate Discount for Energy Star Homes

    Broader source: Energy.gov [DOE]

    Piedmont Electric Membership Corporation (PEMC) offers an incentive to its residential customers for residing in an energy efficient home. To qualify, the home must meet the standards of the US...

  3. Progress Energy Carolinas- Rate Discount for Energy Star Homes

    Broader source: Energy.gov [DOE]

    Progress Energy Carolinas (PEC) offers an incentive to residential customers for purchasing or building new energy efficient homes. To qualify the home must meet the standards of the US...

  4. Achieving real transparency : optimizing building energy ratings and disclosure in the U.S. residential sector

    E-Print Network [OSTI]

    Nadkarni, Nikhil S. (Nikhil Sunil)

    2012-01-01T23:59:59.000Z

    Residential energy efficiency in the U.S. has the potential to generate significant energy, carbon, and financial savings. Nonetheless, the market of home energy upgrades remains fragmented, and the number of homes being ...

  5. Accelerated Randomized Benchmarking

    E-Print Network [OSTI]

    Christopher Granade; Christopher Ferrie; D. G. Cory

    2014-09-24T23:59:59.000Z

    Quantum information processing offers promising advances for a wide range of fields and applications, provided that we can efficiently assess the performance of the control applied in candidate systems. That is, we must be able to determine whether we have implemented a desired gate, and refine accordingly. Randomized benchmarking reduces the difficulty of this task by exploiting symmetries in quantum operations. Here, we bound the resources required for benchmarking and show that, with prior information, we can achieve several orders of magnitude better accuracy than in traditional approaches to benchmarking. Moreover, by building on state-of-the-art classical algorithms, we reach these accuracies with near-optimal resources. Our approach requires an order of magnitude less data to achieve the same accuracies and to provide online estimates of the errors in the reported fidelities. We also show that our approach is useful for physical devices by comparing to simulations. Our results thus enable the application of randomized benchmarking in new regimes, and dramatically reduce the experimental effort required to assess control fidelities in quantum systems. Finally, our work is based on open-source scientific libraries, and can readily be applied in systems of interest.

  6. Comparison of five benchmarks

    SciTech Connect (OSTI)

    Huss, J. E.; Pennline, J. A.

    1987-02-01T23:59:59.000Z

    Five benchmark programs were obtained and run on the NASA Lewis CRAY X-MP/24. A comparison was made between the programs codes and between the methods for calculating performance figures. Several multitasking jobs were run to gain experience in how parallel performance is measured.

  7. Building Energy Use Benchmarking Guidance

    Broader source: Energy.gov [DOE]

    Guidance describes the Energy Independence and Security Act of 2007 section 432 requirement for benchmarking Federal facilities.

  8. Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1

    E-Print Network [OSTI]

    Johnson, F.X.

    2010-01-01T23:59:59.000Z

    Manufactured Home Room Heating Market Shares". Lawrenceset based on the market share of heating equipment in newMarket for Energy Efficiency in Residential Appliances Including Heating and

  9. Residential Energy Efficiency Customer Service Best Practices...

    Energy Savers [EERE]

    Residential Energy Efficiency Customer Service Best Practices Residential Energy Efficiency Customer Service Best Practices Better Buildings Residential Network Peer Exchange Call...

  10. Landholders, Residential Land Conversion, and Market Signals

    E-Print Network [OSTI]

    Margulis, Harry L.

    2006-01-01T23:59:59.000Z

    465– Margulis: Landholders, Residential Land Conversion, and1983. An Analysis of Residential Developer Location FactorsHow Regulation Affects New Residential Development. New

  11. Fact Sheet: Better Buildings Residential Network

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.govbbrn What Is the Residential Network? The Better Buildings Residential Network connects...

  12. Residential Solar Tax Credit | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptemberAssessmentsMultifamily Residential Savings Category Solar

  13. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    SciTech Connect (OSTI)

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31T23:59:59.000Z

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).

  14. Residential Wind Power

    E-Print Network [OSTI]

    Willis, Gary

    2011-12-16T23:59:59.000Z

    This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

  15. Residential New Construction Program

    Broader source: Energy.gov [DOE]

    The Residential New Construction Program includes three service tiers that can be achieved by completing various energy efficiency measures. The tiers are: Energy Code Plus (Bronze), Vermont ENER...

  16. TES for Residential Settings

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Bouza, Antonio

    2013-07-31T23:59:59.000Z

    The article discusses thermal energy storage approaches for residential buildings. This article addresses both brick bank storage and phase change material technologies. The energy savings and market potential of these thermal energy storage methods are reviewed as well.

  17. National Residential Efficiency Measures Database Webinar Slides...

    Energy Savers [EERE]

    National Residential Efficiency Measures Database Webinar Slides National Residential Efficiency Measures Database Webinar Slides Presentation slides for the Building Technologies...

  18. Conference Agenda: Residential Energy Efficiency Solutions 2012...

    Energy Savers [EERE]

    Conference Agenda: Residential Energy Efficiency Solutions 2012 Conference Agenda: Residential Energy Efficiency Solutions 2012 Presents conference agenda including a general...

  19. Duke Energy (Electric)- Energy Star Homes Rate Discount Program (South Carolina)

    Broader source: Energy.gov [DOE]

    Duke Energy encourages residential customers to buy energy-efficient homes through its [http://www.energystar.gov/index.cfm?c=new_homes.hm_index Energy Star Homes Program], which awards a rate...

  20. Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States

    SciTech Connect (OSTI)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2013-07-01T23:59:59.000Z

    Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  1. Bryant Residential Tutorship BRYANT RESIDENTIAL TUTORSHIP REGULATIONS FOR 2013

    E-Print Network [OSTI]

    Waikato, University of

    Bryant Residential Tutorship 1 BRYANT RESIDENTIAL TUTORSHIP REGULATIONS FOR 2013 BACKGROUND The D. V. Bryant Trust established Bryant Hall on land leased from the University of Waikato in 1971, Bryant Hall has provided a supportive residential environment for first-year students and has also

  2. Decommissioning Benchmarking Study Final Report

    Broader source: Energy.gov [DOE]

    DOE's former Office of Environmental Restoration (EM-40) conducted a benchmarking study of its decommissioning program to analyze physical activities in facility decommissioning and to determine...

  3. RESIDENTIAL PROGRAM FOR LANGUAGE LEARNING

    E-Print Network [OSTI]

    Loudon, Catherine

    RESIDENTIAL PROGRAM FOR LANGUAGE LEARNING Live on-campus in 2014-15 and participate in a unique as part of a residential community in Arroyo Vista! Open to all undergraduate students with 2-3 years

  4. Residential Wood Heating Fuel Exemption

    Broader source: Energy.gov [DOE]

    The New York Department of Taxation and Finance publishes a variety of sales tax reports detailing local tax rates and exemptions, including those for residential energy services. The residential...

  5. Berkeley Program Offers New Option for Financing Residential PV Systems

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01T23:59:59.000Z

    Vehicle for Residential PV Installations: Opportunities andfor Financing Residential PV Systems Mark Bolinger, Lawrencefor residential photovoltaic (PV) systems. Though financing

  6. Questions Asked during the Financing Residential Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Efficiency with Carbon Offsets Transcript Financing Residential Energy Efficiency with Carbon Offsets SERC Photovoltaics for Residential Buildings Webinar...

  7. TAP Webinar: Benchmarking Data Cleansing: A Rite of Passage Along...

    Energy Savers [EERE]

    TAP Webinar: Benchmarking Data Cleansing: A Rite of Passage Along the Benchmarking Journey TAP Webinar: Benchmarking Data Cleansing: A Rite of Passage Along the Benchmarking...

  8. Universal Benchmark Suites Jozo J. Dujmovic

    E-Print Network [OSTI]

    Dujmovic, Jozo J.

    the same universal benchmark suite. This approach substantially reduces the cost of benchmarking. Keywords global increase of the cost of benchmarking. The first step in the development of a method for benchmark1 Universal Benchmark Suites Jozo J. Dujmovic Department of Computer Science San Francisco State

  9. STATE OF CALIFORNIA RESIDENTIAL LIGHTING

    E-Print Network [OSTI]

    STATE OF CALIFORNIA RESIDENTIAL LIGHTING CEC-CF-6R-LTG-01 (Revised 08/09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-LTG-01 Residential Lighting (Page 1 of 6) Site Address: Enforcement Agency: Permit Number: 2008 Residential Compliance Forms August 2009 1. Kitchen Lighting Does project

  10. Residential & Business Services Director's Office

    E-Print Network [OSTI]

    Brierley, Andrew

    Residential & Business Services Director's Office Butts Wynd, North Street, St Andrews, Fife, KY16 by students for students are an integral part of student life and intrinsic to the student residential the residential environment. However, experience tells us that events require careful planning and organisation

  11. Benchmark the Fuel Cost of Steam Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergy Committee onEnergyNaturalField Experiment |Benchmark

  12. Maine Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet)FuelDecadePublication andWithdrawalsResidential

  13. Benchmarking of Competitive Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher Smith,CommercePolicy Languageof

  14. Applications of Integral Benchmark Data

    SciTech Connect (OSTI)

    Giuseppe Palmiotti; Teruhiko Kugo; Fitz Trumble; Albert C. (Skip) Kahler; Dale Lancaster

    2014-10-09T23:59:59.000Z

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) provide evaluated integral benchmark data that may be used for validation of reactor physics / nuclear criticality safety analytical methods and data, nuclear data testing, advanced modeling and simulation, and safety analysis licensing activities. The handbooks produced by these programs are used in over 30 countries. Five example applications are presented in this paper: (1) Use of IRPhEP Data in Uncertainty Analyses and Cross Section Adjustment, (2) Uncertainty Evaluation Methods for Reactor Core Design at JAEA Using Reactor Physics Experimental Data, (3) Application of Benchmarking Data to a Broad Range of Criticality Safety Problems, (4) Cross Section Data Testing with ICSBEP Benchmarks, and (5) Use of the International Handbook of Evaluated Reactor Physics Benchmark Experiments to Support the Power Industry.

  15. Benchmarking Soft Costs for PV Systems in the United States (Presentation)

    SciTech Connect (OSTI)

    Ardani, K.

    2012-06-01T23:59:59.000Z

    This paper presents results from the first U.S. based data collection effort to quantify non-hardware, business process costs for PV systems at the residential and commercial scales, using a bottom-up approach. Annual expenditure and labor hour productivity data are analyzed to benchmark business process costs in the specific areas of: (1) customer acquisition; (2) permitting, inspection, and interconnection; (3) labor costs of third party financing; and (4) installation labor.

  16. Benchmarking foreign electronics technologies

    SciTech Connect (OSTI)

    Bostian, C.W.; Hodges, D.A.; Leachman, R.C.; Sheridan, T.B.; Tsang, W.T.; White, R.M.

    1994-12-01T23:59:59.000Z

    This report has been drafted in response to a request from the Japanese Technology Evaluation Center`s (JTEC) Panel on Benchmarking Select Technologies. Since April 1991, the Competitive Semiconductor Manufacturing (CSM) Program at the University of California at Berkeley has been engaged in a detailed study of quality, productivity, and competitiveness in semiconductor manufacturing worldwide. The program is a joint activity of the College of Engineering, the Haas School of Business, and the Berkeley Roundtable on the International Economy, under sponsorship of the Alfred P. Sloan Foundation, and with the cooperation of semiconductor producers from Asia, Europe and the United States. Professors David A. Hodges and Robert C. Leachman are the project`s Co-Directors. The present report for JTEC is primarily based on data and analysis drawn from that continuing program. The CSM program is being conducted by faculty, graduate students and research staff from UC Berkeley`s Schools of Engineering and Business, and Department of Economics. Many of the participating firms are represented on the program`s Industry Advisory Board. The Board played an important role in defining the research agenda. A pilot study was conducted in 1991 with the cooperation of three semiconductor plants. The research plan and survey documents were thereby refined. The main phase of the CSM benchmarking study began in mid-1992 and will continue at least through 1997. reports are presented on the manufacture of integrated circuits; data storage; wireless technology; human-machine interfaces; and optoelectronics. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  17. Action-Oriented Benchmarking: Concepts and Tools

    E-Print Network [OSTI]

    Mills, Evan; California Energy Commission

    2008-01-01T23:59:59.000Z

    simulation (for design) or energy audits (for retrofit), asconventional benchmarking and energy audits. Whole BuildingBenchmarking Investment-Grade Energy Audit Screen facilities

  18. Next Generation Roofs and Attics for Homes

    SciTech Connect (OSTI)

    Miller, William A [ORNL] [ORNL; Kosny, Jan [ORNL] [ORNL

    2008-01-01T23:59:59.000Z

    Prototype residential roof and attic assemblies were constructed and field tested in a mixed-humid U.S. climate. Summer field data showed that at peak day irradiance the heat transfer penetrating the roof deck dropped almost 90% compared with heat transfer for a conventional roof and attic assembly. The prototype assemblies use a combination of strategies: infrared reflective cool roofs, radiant barriers, above-sheathing ventilation, low-emittance surfaces, insulation, and thermal mass to reduce the attic air temperature and thus the heat transfer into the home. The prototype assemblies exhibited attic air temperatures that did not exceed the peak day outdoor air temperature. Field results were benchmarked against an attic computer tool and simulations made for the densely populated, hot and dry southeastern and central-basin regions of California. New construction in the central basin could realize a 12% drop in ceiling and air-conditioning annual load compared with a code-compliant roof and attic having solar reflectance of 0.25 and thermal emittance of 0.75. In the hot, dry southeastern region of California, the combined ceiling and duct annual load drops by 23% of that computed for a code-compliant roof and attic assembly. Eliminating air leakage from ducts placed in unconditioned attics yielded savings comparable to the best simulated roof and attic systems. Retrofitting an infrared reflective clay tile roof with 1 -in (0.032-m) of EPS foam above the sheathing and improving existing ductwork by reducing air leakage and wrapping ducts with insulation can yield annual savings of about $200 compared with energy costs for pre-1980 construction.

  19. High SEER Residential AC

    SciTech Connect (OSTI)

    Hastbacka, Mildred; Dieckmann, John; Brodrick, James

    2012-07-31T23:59:59.000Z

    This article discusses the new offerings of residential air conditioning systems with very high Seasonal Energy Efficiency Ratio (SEER) ratings, the two regional areas dictating operations standards ("hot, humid" and "hot, dry"), and the potential energy savings these new systems can provide. The article concludes with a brief review of current market potential.

  20. Meeting Residential Ventilation Standards

    E-Print Network [OSTI]

    ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning EngineersLBNL 4591E Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide

  1. STORM WATER Residential

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    STORM WATER QUALITY HOTLINE UCSC Residential Car Washing http THAT MAY CAUSE ENVIRONMENTAL HARM TO THE STORM WATER QUALITY HOTLINE: (831) 459-2553. LIKE US ON FACEBOOK AT UCSC STORM WATER MANAGEMENT PROGRAM! DID YOU KNOW? PRACTICAL SOLUTIONS > USE A COMMERCIAL CAR WASH

  2. Agriculture Residential College

    E-Print Network [OSTI]

    Architecture Students Design Build Solar Pavilion in Old South Baton Rouge Louisiana Sustainable BuildingAgriculture Residential College LSU Sustainability Denise Newell LSU Planning, Design-year institutions Denise S. Newell, PE LEED AP Sustainability Manager scribner@lsu.edu Contact Info "If you had

  3. Residential Furnace Blower Performance

    E-Print Network [OSTI]

    conditioner performance1 , standby power, as well as igniter and combustion air blower power. Energy savings for a typical three-and-a-half ton air conditioner with typical California ducts are 45 kWh. Peak demand combinations of blowers and residential furnaces were tested for air moving performance. The laboratory test

  4. MICRO-CHP System for Residential Applications

    SciTech Connect (OSTI)

    Joseph Gerstmann

    2009-01-31T23:59:59.000Z

    This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

  5. NERSC-5 Application Benchmarks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayedNERSC's Science Gateways5

  6. NERSC-6 Benchmarks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayedNERSC's Science Gateways56/7

  7. miniFE Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T.External Links ExternalMethane Hydrates

  8. The NERSC CAM Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth's Lower MantleThe MolecularProjectCAM The

  9. The NERSC GAMESS Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth's Lower MantleThe MolecularProjectCAM

  10. The NERSC GTC Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth's Lower MantleThe MolecularProjectCAMGTC

  11. The NERSC MILC Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth's Lower MantleTheOptimization Running

  12. The NERSC PARATEC Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth's Lower MantleTheOptimization

  13. The NERSC PMEMD Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth's Lower MantleTheOptimizationPMEMD The

  14. GTC NERSC-8 Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbell isOklahoma City,GENERALGEGNU »GROMACSGTC

  15. Kansas City Power and Light- Home Performance with ENERGY STAR

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light (KCP&L) offers rebates to residential customers towards the cost of an ENERGY STAR Home Energy Assessment and a portion of the installed efficiency improvements....

  16. Mississippi Power- EarthCents New Home Program

    Broader source: Energy.gov [DOE]

    Mississippi Power offers incentives to its residential customers to help offset the cost of installing energy efficient measures in new homes. A three-level program is offered to encourage the...

  17. Orlando Utilities Commission- Home Energy Efficiency Fix-Up Program

    Broader source: Energy.gov [DOE]

    Orlando Utilities Commission's Home Energy Fix-Up Program provides assistance to low-income residential customers. To qualify for the program the total annual family income must be less than $40...

  18. Kansas City Power & Light- Home Performance Rebate with ENERGY STAR

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light (KCP&L) offers rebates to residential customers towards the cost of an ENERGY STAR Home Energy Assessment and a portion of the installed efficiency improvements....

  19. Kansas City Power & Light- Home Performance with ENERGY STAR

    Broader source: Energy.gov [DOE]

    Kansas City Power & Light (KCP&L) offers rebates to residential customers of KCP&L's Greater Missouri Operations towards the cost of an ENERGY STAR Home Energy Assessment and a portion...

  20. New Hampshire Electric Co-Op- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    New Hampshire Electric Co-Op provides a number of energy efficiency incentive programs for residential members. First, members can receive a free Home Energy Analysis through the [http://www.nhec...

  1. Port Angeles Public Works and Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Port Angeles Public Works and Utilities offers a rebate program to encourage residential customers to increase the energy efficiency of their homes. The rebates apply to qualifying installations in...

  2. Baltimore Gas and Electric Company (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Baltimore Gas and Electric Company (BGE) offers the Smart Energy Savers Program for residential natural gas customers to improve the energy efficiency of eligible homes. Rebates are available...

  3. Taunton Municipal Lighting Plant- Residential and Non-Profit Weatherization Program (Massachusetts)

    Broader source: Energy.gov [DOE]

    Taunton Municipal Lighting Plant (TMLP) offers the 'House N Home' Thermal Rebate Program which provides financial incentives to residential and non-Profit customers for making buildings more energy...

  4. Central Hudson Gas and Electric (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Home Energy SavingsCentral Program offers customers rebates of up to $1,000 on energy efficient equipment and measures for residential gas customers who upgrade heating, cooling or ventilation...

  5. Central Hudson Gas and Electric (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Home Energy SavingsCentral Program offers customers rebates of between $25 and $600 for energy efficient equipment and measures. This is for residential electric customers who upgrade heating,...

  6. Cleantech to Market Projects Spring 2011 1. Residential Ventilation Controller; PI -Iain Walker

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Cleantech to Market Projects ­ Spring 2011 1. Residential Ventilation Controller; PI - Iain Walker As homes become more airtight optimizing for energy efficiency. Researchers have designed a smart ventilation system

  7. Self-benchmarking Guide for Laboratory Buildings: Metrics, Benchmarks, Actions

    E-Print Network [OSTI]

    Mathew, Paul

    2010-01-01T23:59:59.000Z

    Site Energy Intensity (BTU/sf-yr). A Performance BenchmarkAnnual natural gas energy use (Million BTU) dE3: Annual fueloil energy use (Million BTU) dE4: Annual other fuel energy

  8. Advanced Technology Vehicle Benchmark and Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartmentDepartment ofBenchmark and Assessment

  9. Advanced Technology Vehicle Lab Benchmarking - Level 1 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartmentDepartment ofBenchmark and

  10. Advanced Technology Vehicle Lab Benchmarking - Level 1 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartmentDepartment ofBenchmark andEnergy 1 DOE

  11. Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartmentDepartment ofBenchmark andEnergy 1

  12. Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartmentDepartment ofBenchmark andEnergy

  13. Better Buildings Residential Program - 2014 BTO Peer Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergy CommitteeDepartmentResidential Buildings »

  14. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.: Preprint

    SciTech Connect (OSTI)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2014-01-01T23:59:59.000Z

    Residential heat pump water heaters (HPWHs) have recently reemerged on the U.S. market. These units have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine what actual in use energy consumption of a HPWH may be in different regions of the U.S., annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the U.S. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

  15. PowerChoice Residential Customer Response to TOU Rates

    E-Print Network [OSTI]

    Peters, Jane S.

    2010-01-01T23:59:59.000Z

    Savings from Residential Energy Demand Feedback Devices. ”residential energy consumption, load shifting, consumption feedback

  16. Outlook for Industrial Energy Benchmarking 

    E-Print Network [OSTI]

    Hartley, Z.

    2000-01-01T23:59:59.000Z

    OUTLOOK FOR INDUSTRIAL ENERGY BENCHMARKING Zoe Hartley Environmental Protection Specialist U.S. Environmental Protection Agency Washington, DC ABSTRACT The U.S. Environmental Protection Agency is exploring options to sponsor an ~d~ ~~gy...

  17. Outlook for Industrial Energy Benchmarking

    E-Print Network [OSTI]

    Hartley, Z.

    The U.S. Environmental Protection Agency is exploring options to sponsor an industrial energy efficiency benchmarking study to identify facility specific, cost-effective best practices and technologies. Such a study could help develop a common...

  18. Fast System Level Benchmarks for Multicore Architectures

    E-Print Network [OSTI]

    Sen, Alper

    Fast System Level Benchmarks for Multicore Architectures Alper Sen, Gokcehan Kara Etem Deniz, Smail level synthetic benchmarks from traditional bench- marks. Synthetic benchmarks have similar performance behavior as the original benchmarks that they are generated from and they can run faster. Synthetics can

  19. Lehigh University Office of Residential Services

    E-Print Network [OSTI]

    Napier, Terrence

    Lehigh University Office of Residential Services Resident Check-Out Form Students are expected and furniture of all personal property. Residential Services is not responsible for any personal items left and residential administration staff for billing purposes. Signature

  20. RESIDENTIAL BURGLARY DATE: November 25, 2014

    E-Print Network [OSTI]

    Rose, Michael R.

    RESIDENTIAL BURGLARY DATE: November 25, 2014 INCIDENT / LOCATION: Residential Burglary in Vista Del 22, 2014, at approximately 11:07 pm, the UCI Police Department received a report of a residential

  1. http://warren.ucsd.edu 1 Residential

    E-Print Network [OSTI]

    Tsien, Roger Y.

    http://warren.ucsd.edu 1 Warren Resources Residential Life Student Conduct University Resources Off and Employment 10 Section II: Residential Life Introduction 11 Residential Life Policies 13 Section III: Student

  2. Achieving Energy Savings Through Residential Energy Use Behavior

    E-Print Network [OSTI]

    Office PIER Buildings End-use Energy Efficiency Research Program www.energy.ca.gov/research/buildings May and purchasing decisions, are important factors in achieving energy savings in buildings. However, little efficiency programs for the residential sector? Technologies such as smart meters and home area networks

  3. Net Zero Residential Test Facility Gaithersburg, MD Solar Photovoltaic Panels

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    1 Net Zero Residential Test Facility Gaithersburg, MD Solar Photovoltaic Panels Solar Thermal;NZERTF Gaithersburg, MD 3 Objectives Demonstrate Net-Zero Energy for a home similar in nature: · Demonstrate Net-Zero Energy Usage · Measure All Building Loads (Sensible and Latent) · Operate Dedicated

  4. Optimal Control of Residential Energy Storage Under Price Fluctuations

    E-Print Network [OSTI]

    Optimal Control of Residential Energy Storage Under Price Fluctuations Peter van de ven Department.hegde,laurent.massoulie,theodoros.salonidis}@technicolor.com Abstract--An increasing number of retail energy markets exhibit price fluctuations and provide home users the oppor- tunity to buy energy at lower than average prices. However, such cost savings are hard to realize

  5. Implementation of Benchmarking Transportation Logistics Practices and Future Benchmarking Organizations

    SciTech Connect (OSTI)

    Thrower, A.W. [U.S. Department of Energy, Office of Civilian Radioactive Waste Management, Washington, DC (United States); Patric, J. [Booz Allen Hamilton, Washington, DC (United States); Keister, M. [Idaho National Laboratory, Idaho Falls, ID (United States)

    2008-07-01T23:59:59.000Z

    The purpose of the Office of Civilian Radioactive Waste Management's (OCRWM) Logistics Benchmarking Project is to identify established government and industry practices for the safe transportation of hazardous materials which can serve as a yardstick for design and operation of OCRWM's national transportation system for shipping spent nuclear fuel and high-level radioactive waste to the proposed repository at Yucca Mountain, Nevada. The project will present logistics and transportation practices and develop implementation recommendations for adaptation by the national transportation system. This paper will describe the process used to perform the initial benchmarking study, highlight interim findings, and explain how these findings are being implemented. It will also provide an overview of the next phase of benchmarking studies. The benchmarking effort will remain a high-priority activity throughout the planning and operational phases of the transportation system. The initial phase of the project focused on government transportation programs to identify those practices which are most clearly applicable to OCRWM. These Federal programs have decades of safe transportation experience, strive for excellence in operations, and implement effective stakeholder involvement, all of which parallel OCRWM's transportation mission and vision. The initial benchmarking project focused on four business processes that are critical to OCRWM's mission success, and can be incorporated into OCRWM planning and preparation in the near term. The processes examined were: transportation business model, contract management/out-sourcing, stakeholder relations, and contingency planning. More recently, OCRWM examined logistics operations of AREVA NC's Business Unit Logistics in France. The next phase of benchmarking will focus on integrated domestic and international commercial radioactive logistic operations. The prospective companies represent large scale shippers and have vast experience in safely and efficiently shipping spent nuclear fuel and other radioactive materials. Additional business processes may be examined in this phase. The findings of these benchmarking efforts will help determine the organizational structure and requirements of the national transportation system. (authors)

  6. Residential Clean Energy Grant Program

    Broader source: Energy.gov [DOE]

    Maryland's Residential Clean Energy Grant Program, administered by the Maryland Energy Administration (MEA), provides financial incentives to homeowners that install solar water-heating systems or...

  7. NYSEG (Gas)- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    NYSEG is offering residential natural gas customers rebates for installing energy efficient equipment. Customers can complete one rebate application for multiple pieces of equipment as long as...

  8. Efficient Residential Water Heaters Webinar

    Broader source: Energy.gov [DOE]

    A webinar by Jerone Gagliano, director of Energy Engineering Performance Systems Development, about residential water heating technology and how to choose the right water heater.

  9. Evaluation of evolving residential electricity tariffs

    SciTech Connect (OSTI)

    Lai, Judy; DeForest, Nicholas; Kiliccote, Sila; Stadler, Michael; Marnay, Chris; Donadee, Jon

    2011-03-22T23:59:59.000Z

    Residential customers in California's Pacific Gas and Electric (PG&E) territory have seen several electricity rate structure changes in the past decade. A relatively simple two-tiered pricing system (charges by usage under/over baseline for the home's climate zone) was replaced in the summer of 2001 by a more complicated five-tiered system (usage below baseline and up to 30percent, 100percent, 200percent, and 300percent+ over baseline). In 2009, PG&E began the process of upgrading its residential customers to Smart Meters and laying the groundwork for time of use pricing, due to start in 2011. This paper examines the history of the tiered pricing system, discusses the problems the utility encountered with its Smart Meter roll out, and evaluates the proposed dynamic pricing incentive structures. Scenario analyses of example PG&E customer bills will also be presented. What would these residential customers pay if they were still operating under a tiered structure, and/or if they participated in peak hour reductions?

  10. Post-Retrofit Residential Assessments

    SciTech Connect (OSTI)

    Lancaster, Ross; lutzenhiser, Loren; Moezzi, Mithra; Widder, Sarah H.; Chandra, Subrato; Baechler, Michael C.

    2012-04-30T23:59:59.000Z

    This study examined a range of factors influencing energy consumption in households that had participated in residential energy-efficiency upgrades. The study was funded by a grant from the U.S. Department of Energy’s Pacific Northwest National Laboratory and was conducted by faculty and staff of Portland State University Center for Urban Studies and Department of Economics. This work was made possible through the assistance and support of the Energy Trust of Oregon (ETO), whose residential energy-efficiency programs provided the population from which the sample cases were drawn. All households in the study had participated in the ETO Home Performance with Energy Star (HPwES) program. A number of these had concurrently pursued measures through other ETO programs. Post-retrofit energy outcomes are rarely investigated on a house-by-house basis. Rather, aggregate changes are ordinarily the focus of program impact evaluations, with deviation from aggregate expectations chalked up to measurement error, the vagaries of weather and idiosyncrasies of occupants. However, understanding how homes perform post-retrofit on an individual basis can give important insights to increase energy savings at the participant and the programmatic level. Taking a more disaggregated approach, this study analyzed energy consumption data from before and after the retrofit activity and made comparisons with engineering estimates for the upgrades, to identify households that performed differently from what may have been expected based on the estimates. A statistical analysis using hierarchal linear models, which accounted for weather variations, was performed looking separately at gas and electrical use during the periods before and after upgrades took place. A more straightforward comparison of billing data for 12-month periods before and after the intervention was also performed, yielding the majority of the cases examined. The later approach allowed total energy use and costs to be assessed but did not account for weather variation. From this statistical analysis, 18 study participants were selected and interviewed. The participants completed an in-home interview covering a range of topics, including changes in occupancy and additional changes to the homes that may have affected energy use. The goal of the interviews was to identify factors that may have contributed to unusual energy performance. These factors were identified by their frequency of occurrence in outperforming or underperforming homes, or simply by identifying factors that had the largest impact on overall savings. The motivations and levels of satisfaction with the outcomes of the upgrades were covered in detail, as well as extensive discussions of behaviors pertaining to thermal control, lighting, water, and appliance use. Most of cases studied achieved substantial energy savings, although it was more common for the projected savings to be greater than the demonstrated savings. Two factors that played a very large role in savings variation were 1) changes in occupancy and 2) fenestration improvements outside of the incentive programs. Motivation for pursuing the upgrades (e.g., environmental sustainability vs. comfort or cost savings) did not seem to play any role in achieving savings. Participants generally were more concerned with maintaining aesthetics through lighting than comfort through heating or cooling. They also seemed more likely to turn the lights off when leaving a room than to turn the heat off when leaving the home.

  11. Building America Residential Energy Efficiency Technical Update...

    Energy Savers [EERE]

    Residential Energy Efficiency Technical Update Meeting: August 2011 Building America Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link...

  12. Building America Residential Energy Efficiency Research Planning...

    Energy Savers [EERE]

    Building America Residential Energy Efficiency Research Planning Meeting: October 2011 Building America Residential Energy Efficiency Research Planning Meeting: October 2011 On...

  13. Covered Product Category: Residential Central Air Conditioners...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Central Air Conditioners Covered Product Category: Residential Central Air Conditioners The Federal Energy Management Program (FEMP) provides acquisition guidance for residential...

  14. Building America Residential Buildings Energy Efficiency Meeting...

    Energy Savers [EERE]

    Building America Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link...

  15. Entergy Mississippi- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Entergy Mississippi offers residential energy efficiency programs to help residential customers save energy by providing rebates for lighting, heating and cooling equipment, A/C tune ups, and...

  16. Solar Now! Residential Brochure | Department of Energy

    Energy Savers [EERE]

    Information Resources Solar Now Residential Brochure Solar Now Residential Brochure Four Oregon organizations have teamed up to help Oregon homeowners learn about and install...

  17. Evaluation of evolving residential electricity tariffs

    E-Print Network [OSTI]

    Lai, Judy

    2011-01-01T23:59:59.000Z

    residential electricity tariffs Judy Lai, Nicholas DeForest,residential electricity tariffs Judy Lai – Senior Researchfrom the current 5-tiered tariff to time variable pricing,

  18. Residential Energy Efficiency Research Planning Meeting Summary...

    Energy Savers [EERE]

    Residential Energy Efficiency Research Planning Meeting Summary Report Residential Energy Efficiency Research Planning Meeting Summary Report This report summarizes key findings...

  19. Better Buildings Residential Network Case Study: Partnerships...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships, from the U.S....

  20. Better Buildings Residential Network Membership Form | Department...

    Energy Savers [EERE]

    Membership Form Better Buildings Residential Network Membership Form Membership form from the U.S. Department of Energy's Better Buildings Residential Network Recommended...

  1. Residential Energy Efficiency Customer Service Best Practices...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Efficiency Customer Service Best Practices Peer Exchange Call Residential Energy Efficiency Customer Service Best Practices Peer Exchange Call January 22, 2015...

  2. Residential Exchange History Fact Sheet - June 2007

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    history of BPA's Residential Exchange Program June 2007 F rom its start, the Residential Exchange Program (REP) has been a source of nearly continuous controversy. Its roots go...

  3. Better Buildings Residential Network Factsheet: Case Study: Partnerships

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1, 20114,Residential&DrivingBetter

  4. Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total Delivered Residential Energy Consumption,

  5. National Residential Efficiency Measures Database | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDyn NOPRNancy SutleyNationalOverview |Residential

  6. WINDExchange: Residential-Scale 30-Meter Wind Maps

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,EagaAboutDeploymentAboutResidential-Scale

  7. Residential Building Industry Consulting Services | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewableGeothermal Field | Open EnergyResidential

  8. "2013 Retail Power Marketers Sales- Residential"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. TotalRevenue"Residential"

  9. Benchmarking Nonlinear Turbulence Simulations on Alcator C-Mod

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehaviorBenchmarking

  10. Benchmarking & Transparency Policy and Program Impact Evaluation Handbook

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2, 2015Energyon23264 Prepared for the U.S.Benchmarking

  11. STATE OF CALIFORNIA RESIDENTIAL ADDITIONS

    E-Print Network [OSTI]

    STATE OF CALIFORNIA RESIDENTIAL ADDITIONS CEC- CF-1R ADD (Revised 03/10) CALIFORNIA ENERGY COMMISSION Prescriptive Certificate of Compliance: CF-1R ADD Residential Additions (Page 1 of 8) Site Address Orientation: N, E, S, W or Degrees ________ Conditioned Floor Area of Addition (CFA): New Addition Size: Less

  12. The 1986 residential occupant survey

    SciTech Connect (OSTI)

    Ivey, D.L.; Alley, P.K.

    1987-04-01T23:59:59.000Z

    In 1986, Pacific Northwest Laboratory developed the Residential Occupant Survey-Spring '86, which was implemented. The overall purpose of the study was to collect demographic, attitudinal, and behavioral data related to the use and conservation of electricity in dwellings participating in the Bonneville Power Administration's End-Use Load and Conservation Assessment Program (ELCAP). Information was collected on the respondents' perceptions of the energy efficiency of their dwelling, temperature the dwelling was kept when people were at home and awake during the last heating season, which rooms, if any, were not heated during the last heating season, number of times the dwelling was unoccupied for at least one week, number of times pets were let out of the dwelling per day, attitudes toward energy use and conservation and several socio-demographic variables such as age, sex, and total household income. The results of the data analyses showed age to be an important factor for reported indoor temperature and perceived energy efficiency of the dwelling. The results also showed that almost 60% of the ELCAP occupants do not heat one or more rooms during the heating season, and almost 45% of the ELCAP dwellings were unoccupied for at least one week during the reporting period. In terms of the reported allocation of household income for household energy expenses, the results showed that the reported dollar amount spent for the expenses remained relatively constant over income levels.

  13. Radiation Detection Computational Benchmark Scenarios

    SciTech Connect (OSTI)

    Shaver, Mark W.; Casella, Andrew M.; Wittman, Richard S.; McDonald, Ben S.

    2013-09-24T23:59:59.000Z

    Modeling forms an important component of radiation detection development, allowing for testing of new detector designs, evaluation of existing equipment against a wide variety of potential threat sources, and assessing operation performance of radiation detection systems. This can, however, result in large and complex scenarios which are time consuming to model. A variety of approaches to radiation transport modeling exist with complementary strengths and weaknesses for different problems. This variety of approaches, and the development of promising new tools (such as ORNL’s ADVANTG) which combine benefits of multiple approaches, illustrates the need for a means of evaluating or comparing different techniques for radiation detection problems. This report presents a set of 9 benchmark problems for comparing different types of radiation transport calculations, identifying appropriate tools for classes of problems, and testing and guiding the development of new methods. The benchmarks were drawn primarily from existing or previous calculations with a preference for scenarios which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22. From a technical perspective, the benchmarks were chosen to span a range of difficulty and to include gamma transport, neutron transport, or both and represent different important physical processes and a range of sensitivity to angular or energy fidelity. Following benchmark identification, existing information about geometry, measurements, and previous calculations were assembled. Monte Carlo results (MCNP decks) were reviewed or created and re-run in order to attain accurate computational times and to verify agreement with experimental data, when present. Benchmark information was then conveyed to ORNL in order to guide testing and development of hybrid calculations. The results of those ADVANTG calculations were then sent to PNNL for compilation. This is a report describing the details of the selected Benchmarks and results from various transport codes.

  14. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in the Hot-Dry and Mixed-Dry Climates

    SciTech Connect (OSTI)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); Florida Solar Energy Center (FSEC); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-01-01T23:59:59.000Z

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost neutral basis.

  15. Energy Optimization (Electric)- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    The Energy Optimization Programs, administered by WECC, provides residential electric incentives for the following Michigan utilities:

  16. FIELD EVALUATION OF IMPROVED METHODS FOR MEASURING THE AIR LEAKAGE OF DUCT SYSTEMS UNDER NORMAL OPERATING CONDITIONS IN 51 HOMES

    SciTech Connect (OSTI)

    Paul W. Francisco; Larry Palmiter; Erin Kruse; Bob Davis

    2003-10-18T23:59:59.000Z

    Duct leakage in forced-air distribution systems has been recognized for years as a major source of energy losses in residential buildings. Unfortunately, the distribution of leakage across homes is far from uniform, and measuring duct leakage under normal operating conditions has proven to be difficult. Recently, two new methods for estimating duct leakage at normal operating conditions have been devised. These are called the nulling test and the Delta-Q test. Small exploratory studies have been done to evaluate these tests, but previously no large-scale study on a broad variety of homes has been performed to determine the accuracy of these new methods in the field against an independent benchmark of leakage. This sort of study is important because it is difficult in a laboratory setting to replicate the range of leakage types found in real homes. This report presents the results of a study on 51 homes to evaluate these new methods relative to an independent benchmark and a method that is currently used. An evaluation of the benchmark procedure found that it worked very well for supply-side leakage measurements, but not as well on the return side. The nulling test was found to perform well, as long as wind effects were minimal. Unfortunately, the time and difficulty of setup can be prohibitive, and it is likely that this method will not be practical for general use by contractors except in homes with no return ducts. The Delta-Q test was found to have a bias resulting in overprediction of the leakage, which qualitatively confirms the results of previous laboratory, simulation, and small-scale field studies. On average the bias was only a few percent of the air handler flow, but in about 20% of the homes the bias was large. A primary flaw with the Delta-Q test is the assumption that the pressure between the ducts and the house remain constant during the test, as this assumption does not hold true. Various modifications to the Delta-Q method were evaluated as possible improvements. Only one of these modifications provided improved results. This modification requires measuring the duct pressure relative to the house at either every pressure station within the Delta-Q test or at the extremes of the house pressure range involved in the Delta-Q test. If the pressures are only measured at the extremes, then calculated pressures at the other pressure stations are obtained via interpolation. Using these pressures reduced the bias in the Delta-Q test by about one-third.

  17. About the Better Buildings Residential Network | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Residential Network About the Better Buildings Residential Network The Better Buildings Residential Network connects energy efficiency programs and partners to share...

  18. What Explains Manhattan's Declining Share of Residential Construction?

    E-Print Network [OSTI]

    DAVIDOFF, THOMAS

    2007-01-01T23:59:59.000Z

    Share of Residential Construction? Thomas Davido? ? June 20,market. Residential construction in Manhattan has fallento total US residential construction over the last 45 years.

  19. Residential Forced Air System Cabinet Leakage and Blower Performance

    E-Print Network [OSTI]

    Walker, Iain S.

    2010-01-01T23:59:59.000Z

    CA.   CEC (2008b).  Residential Alternative Calculation Standard for Air Handlers in Residential Space Conditioning of Standards Options for Residential Air Handler Fans.   

  20. Financing Non-Residential Photovoltaic Projects: Options and Implications

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01T23:59:59.000Z

    of panel titled “Financing Residential and Small CommercialL ABORATORY Financing Non-Residential Photovoltaic Projects:1 2. Policy Support for Non-Residential PV