Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bench scale research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

B3.6 SWCX for Indoor Bench-Scale Research Project and Conventional Lab Operations-  

Broader source: Energy.gov (indexed) [DOE]

6 SWCX for Indoor Bench-Scale Research Project and Conventional Lab Operations- 6 SWCX for Indoor Bench-Scale Research Project and Conventional Lab Operations- Revision 0 Sitewide Categorical Exclusion for Indoor Bench-Scale Research Projects and Conventional Laboratory Operations Introduction LAs defined in the U.S. Department of Energy's (DOE) Richland Operations Office Integrated Management System Procedure, NEPA Analysis at Hanford, a sitewide categorical exclusion is: An application of DOE categorical exclusions described in 10 CFR 1021, Appendices A and B, which may apply to Hanford Site proposed actions (activities) that are "sitewide" in nature and extent, ·which the cognizant DOE Hanford NCO has determined fit \Vithin the scope (i.e., same nature and intent, and of the same or lesser scope) of DOE categorical exclusions described in 10

2

Bench-Scale Fermentation Laboratory (Fact Sheet), National Bioenergy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bench-Scale Fermentation Laboratory Bench-scale process development capabilities for the conversion of biomass to sugars, fuels, and chemicals NREL is a national laboratory of the...

3

The research bench meets industry: New facility scales up production of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Video: Scenes from Argonne's Materials Engineering Research Facility Video: Scenes from Argonne's Materials Engineering Research Facility Scenes from Argonne's Materials Engineering Research Facility Experiments can keep researchers on their feet all day long. Process R&D chemist Kris Pupek moves between fume hoods in the Materials Engineering Research Facility's process research and development lab, while lab-mate Trevor Dzwiniel records data in his notebook. Experiments can keep researchers on their feet all day long. Process R&D chemist Kris Pupek moves between fume hoods in the Materials Engineering Research Facility's process research and development lab, while lab-mate Trevor Dzwiniel records data in his notebook. Argonne material engineer YoungHo Shin prepares a coin cell battery in a glovebox in the Materials Engineering Research Facility. Once it is prepared, the battery can be tested to determine the energy output characteristics of a cathode material for lithium-ion batteries.

4

NETL: Mercury Emissions Control Technologies - Bench Scale Kinetics of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bench Scale Kinetics of Mercury Reactions in FGD Liquors Bench Scale Kinetics of Mercury Reactions in FGD Liquors When research into the measurement and control of Hg emissions from coal-fired power plants began in earnest in the early 1990s, it was observed that oxidized mercury can be scrubbed at high efficiency in wet FGD systems, while elemental mercury can not. In many cases, elemental mercury concentrations were observed to increase slightly across wet FGD systems, but this was typically regarded as within the variability of the measurement methods. However, later measurements have shown substantial re-emissions from some FGD systems. The goal of this project is to develop a fundamental understanding of the aqueous chemistry of mercury (Hg) absorbed by wet flue gas desulfurization (FGD) scrubbing liquors. Specifically, the project will determine the chemical reactions that oxidized mercury undergoes once absorbed, the byproducts of those reactions, and reaction kinetics.

5

NETL: IEP - Bench-Scale Silicone Process for Low-Cost CO2 Capture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bench-Scale Silicone Process for Low-Cost CO2 Capture Bench-Scale Silicone Process for Low-Cost CO2 Capture Project No.: FE0007502 GE Global Research and their project partners are conducting research on the use of a novel silicone solvent to capture CO2 with a continuous bench-scale system. The project will utilize both computational and experimental methods. Previously measured experimental data from a continuous laboratory-scale CO2 capture system will be used to design this bench-scale system. Data from the bench-scale system, such as kinetics and mass transfer information, will be used to determine scale-up effects and needed design parameters to develop a scale-up strategy, update cost of electricity (COE) calculations and perform a technical and economic feasibility study. A manufacturing plan for the aminosilicone solvent and a price model will be used for optimization. The final objective of the program is to demonstrate, at the bench-scale, a process that achieves 90 percent CO2 capture efficiency with less than a 35 percent increase in the COE. Development of this scalable bench-scale process combined with a rigorous process model and thorough manufacturability analysis for the solvent, will enable a practical technology path to later development at larger scales and commercialization. The technology will eventually be retrofittable to coal-based power plants.

6

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2008 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research January 1 - March 31, 2008, DOE/SC-ARM/P-08-007 iii Contents 1. Data Availability ................................................................................................................................... 1 2. Site Visit Requests, Archive Accounts, and Research Computer Accounts ......................................... 2 3. Safety ....................................................................................................................................................

7

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 Comparison of Meteorological Measurements from Sparse and Dense Surface Observation Networks in the U.S. Southern Great Plains February 2008 J.W. Monroe Climate Research Section, Environmental Science Division/Argonne National Laboratory Cooperative Institute for Mesoscale Meteorological Studies/University of Oklahoma M.T. Ritsche, M. Franklin Climate Research Section, Environmental Science Division/Argonne National Laboratory, K.E. Kehoe Cooperative Institute for Mesoscale Meteorological Studies/University of Oklahoma Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DISCLAIMER This report was prepared as an account of work sponsored by the U.S.

8

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM-0707 ARM-0707 Report on the ARM Climate Research Facility EXPANSION WORKSHOP October 31 - November 1, 2007 Reston, Virginia Prepared for the U.S. Department of Energy under Contract DE AC05 76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 DOE/SC-ARM-0707 iii Executive Summary The U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) within the Office of Biological and Environmental Research (BER) to provide the infrastructure needed to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on radiative feedback processes in the atmosphere. Designated as a national user facility the ACRF

9

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 Cloud Occurrence Frequency at the Barrow, Alaska, ARM Climate Research Facility for 2008 Third Quarter 2009 ARM and Climate Change Prediction Program Metric Report M. Jensen, Brookhaven National Laboratory K. Johnson, Brookhaven National Laboratory J.H. Mather, Pacific Northwest National Laboratory June 2009 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

10

Mercury capture in bench-scale absorbers  

SciTech Connect (OSTI)

This paper gives,a brief overview of research being conducted at Argonne National Laboratory on the capture of mercury by both dry sorbents and wet scrubbers. The emphasis in the research is on development of a better understanding of the key factors that control the capture of mercury. Future work is expected to utilize that information for the development of new or modified process concepts featuring enhanced mercury capture capabilities. The results and conclusions to date from the Argonne -research on dry sorbents can be summarized as follows: lime hydrates, either regular or high-surface-area, are `not effective in removing mercury; mercury removals are enhanced by the addition of activated carbon; mercury removals with activated carbon decrease with increasing temperature, larger particle size, and decreasing mercury concentration in the gas; and chemical pretreatment (e.g., with sulfur or (CaCl{sub 2}) can greatly increase the removal capacity of activated carbon. Preliminary results from the wet scrubbing research include: no removal of elemental mercury is obtained under normal scrubber operating conditions; mercury removal is improved by the addition of packing or production of smaller gas bubbles to increase the gas-liquid contact area; polysulfide solutions do not appear promising for enhancing mercury removal in typical FGC systems; stainless steel packing appears to have beneficial properties for mercury removal and should be investigated further; and other chemical additives may offer greatly enhanced removals.

Livengood, C.D.; Huang, H.S.; Mendelsohn, M.H.; Wu, J.M.

1994-08-01T23:59:59.000Z

11

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 Time Series of Aerosol Column Optical Depth at the Barrow, Alaska, ARM Climate Research Facility for 2008 Fourth Quarter 2009 ARM and Climate Change Prediction Program Metric Report C. Flynn, Pacific Northwest National Laboratory A.S. Koontz, Pacific Northwest National Laboratory J.H. Mather, Pacific Northwest National Laboratory September 2009 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

12

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 ACRF Instrumentation Status: New, Current, and Future December 2008 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DISCLAIMER This report was prepared as an account of work sponsored b y the U.S. Government. Neither the United States nor any agency thereof, nor any of their em ployees, makes any warranty, express or i mplied, or assu mes

13

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 RACORO Science and Operations Plan December 2008 Dr. Andrew M. Vogelmann, Principal Investigator* RACORO Steering Committee (RSC): Andrew Vogelmann - Brookhaven National Laboratory Greg McFarquhar - University of Illinois John Ogren and Graham Feingold - NOAA/Earth System Research Laboratory Dave Turner - University of Wisconsin-Madison Jennifer Comstock and Chuck Long - Pacific Northwest National Laboratory ARM Aerial Vehicles Program (AVP) Technical Operations Office Beat Schmid and Jason Tomlinson - Pacific Northwest National Laboratory Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Haf Jonsson - Naval Postgraduate School *Brookhaven National Laboratory Bldg 490-D Upton, NY 11973 Tel: (631)-344-4421, Fax: (631) 344-2060

14

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Atmospheric Properties from the 2006 Niamey Deployment and Climate Simulation with a Geodesic Grid Coupled Climate Model Second Quarter 2008 ARM and Climate Change Prediction Program Report M. Jensen/Brookhaven National Laboratory K. Johnson/Brookhaven National Laboratory J. Mather/Pacific Northwest National Laboratory D. Randall/Colorado State University March 2008 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DISCLAIMER This report was prepared as an account of work sponsored by the U.S.

15

CMC Bench Scale Material Test Plan  

SciTech Connect (OSTI)

The test plan detailed in this topical report supports Task 3.5 of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources - Advanced Gasification Systems Development (AGSD)''. The purpose of these tests is to verify that materials planned for use in an advanced gasifier pilot plant will withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) has developed this test plan with technical assistance from ceramic scientists at the Dept. of Energy Oak Ridge National Laboratory and Albany Research Center who will perform the environmental exposure tests.

Mark Fitzsimmons; Gerard Pelletier; Dave Grimmett

2006-05-30T23:59:59.000Z

16

Bench Scale Saltcake Dissolution Test Report  

SciTech Connect (OSTI)

A potential scenario for retrieving saltcake from single shell tanks is the ''Rainbird{reg_sign} sprinkler'' method. Water is distributed evenly across the surface of the saltcake and allowed to percolate by gravity through the waste. The salt dissolves in the water, forming a saturated solution. The saturated liquid is removed by a saltwell pump situated near the bottom of the tank. By this method, there is never a large inventory of liquid in the tank that could pose a threat of leakage. There are many variables or factors that can influence the hydrodynamics of this retrieval process. They include saltcake porosity; saltwell pumping rate; salt dissolution chemistry; factors that could promote flow channeling (e.g. tank walls, dry wells, inclusions or discontinuities in the saltcake); method of water distribution; plug formation due to crystal formations or accumulation of insoluble solids. A brief literature search indicates that very little experimental data exist on these aspects of saltcake dissolution (Wiersma 1996, 1997). The tests reported here were planned (Herting, 2000) to provide preliminary data and information for planning future, scaled-up tests of the sprinkler method.

BECHTOLD, D.B.; PACQUET, E.A.

2000-12-06T23:59:59.000Z

17

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 ACRF Instrumentation Status: New, Current, and Future August 2008 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not

18

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6.1 6.1 Retrieving Temperature and Moisture Profiles from AERI Radiance Observations: AERIPROF Value-Added Product Technical Description Revision 1 W.F. Feltz D.D. Turner H.B. Howell W.L. Smith R.O. Knuteson H.M. Woolf J. Comstock C. Sivaraman R. Mahon T.Halter April 2007 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,

19

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 The Status of the ACRF Millimeter Wave Cloud Radars (MMCRs), the Path Forward for Future MMCR Upgrades, the Concept of 3D Volume Imaging Radar and the UAV Radar P. Kollias, M. Miller Brookhaven National Laboratory K. Widener, R. Marchand, T. Ackerman Pacific Northwest National Laboratory December 2005 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,

20

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 ACRF Instrumentation Status: New, Current, and Future June 2008 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not

Note: This page contains sample records for the topic "bench scale research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 ISDAC Flight Planning Document S.J. Ghan G. McFarquhar A. Korolev P. Liu W. Strapp H. Verlinde M. Wolde April 2008 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service

22

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 Evaluation of A New Mixed-Phase Cloud Microphysics Parameterization with the NCAR Climate Atmospheric Model (CAM3) and ARM Observations Fourth Quarter 2007 ARM Metric Report September 2007 Xiaohong Liu and Steven J. Ghan Pacific Northwest National Laboratory Richland, Washington Shaocheng Xie, James Boyle, and Stephen A. Klein Lawrence Livermore National Laboratory Livermore, California Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research X. Liu et al., September 2007, DOE/SC-ARM/P-07-012 Summary Mixed-phase clouds are composed of a mixture of cloud droplets and ice crystals. The cloud microphysics in mixed-phase clouds can significantly impact cloud optical depth, cloud radiative forcing,

23

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 ACRF Instrumentation Status: New, Current, and Future November 2008 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not

24

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 Science Overview Document Indirect and Semi-Direct Aerosol Campaign (ISDAC) April 2008 November 2007 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor an agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service

25

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 ACRF Instrumentation Status: New, Current, and Future October 2008 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not

26

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 ACRF Instrumentation Status: New, Current, and Future September 2008 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not

27

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 Atmospheric Properties from the 2006 Niamey Deployment and Climate Simulation with a Geodesic Grid Coupled Climate Model First Quarter 2008 ARM and Climate Change Prediction Program Report J. Mather/Pacific Northwest National Laboratory D. Randall/Colorado State University December 2007 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,

28

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Atmospheric Properties from the 2006 Niamey Deployment and Climate Simulation with a Geodesic Grid Coupled Climate Model Third Quarter 2008 ARM and Climate Change Prediction Program Report J. Mather/Pacific Northwest National Laboratory D. Randall/Colorado State University C. Flynn/Pacific Northwest National Laboratory June 2008 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

29

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Investigation of the Downwelling LW Differences Between the Niamey AMF Main and Supplementary Sites C.N. Long/Pacific Northwest National Laboratory, Richland, WA P. Gotseff/National Renewable Energy Laboratory, Golden, CO E.G. Dutton/National Oceanic and Atmospheric Administration, Boulder, CO April 2008 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,

30

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 ARM Value-Added Product (VAP) Monthly Status Report ARM Translator Team J. Comstock C. Flynn M. Jensen C. Long S. McFarlane D. Turner S. Xie October 1, 2007 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service

31

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 ACRF Instrumentation Status: New, Current, and Future November - December 2007 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not

32

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 ACRF Instrumentation Status: New, Current, and Future February 2008 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not

33

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 ACRF Instrumentation Status: New, Current, and Future September - October 2007 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not

34

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 A Year of Radiation Measurements at the North Slope of Alaska Second Quarter 2009 ARM and Climate Change Prediction Program Metric Report S.A. McFarlane/Pacific Northwest National Laboratory Y. Shi/Pacific Northwest National Laboratory C.N. Long/Pacific Northwest National Laboratory April 2009 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,

35

NETL: Bench-Scale High-Performance Thin Film Composite Hollow Fiber  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bench-Scale High-Performance Thin Film Composite Hollow Fiber Membranes for Post-Combustion Carbon Dioxide Capture Bench-Scale High-Performance Thin Film Composite Hollow Fiber Membranes for Post-Combustion Carbon Dioxide Capture Project No.: DE-FE0007514 GE Global Research is developing high performance thin film polymer composite hollow fiber membranes and advanced processes for economical post-combustion carbon dioxide (CO2) capture from pulverized coal flue gas at temperatures typical of existing flue gas cleanup processes. The project will optimize the novel membranes at the bench scale, including tuning the properties of a novel phosphazene polymer in a coating solution and fabricating highly engineered porous hollow fiber supports. The project will also define the processes for coating the fiber support to manufacture ultrathin, defect-free composite hollow fiber membranes. Physical, chemical, and mechanical stability of the materials (individual and composite) towards coal flue gas components will be evaluated using exposure and performance tests. Membrane fouling and cleanability studies will define long term performance. Technical and economic feasibility analyses will be conducted to evaluate the overall performance and impact of the process on the cost of electricity (COE). Membranes based on coupling this novel selective material (phosphazene-based polymer) with an engineered hollow fiber support have the potential to meet DOE cost and performance goals.

36

Goethite Bench-scale and Large-scale Preparation Tests  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetium that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the ferrous ion, Fe{sup 2+}-Fe{sup 2+} is oxidized to Fe{sup 3+} - in the presence of goethite seed particles. Rhenium does not mimic that process; it is not a strong enough reducing agent to duplicate the TcO{sub 4}{sup -}/Fe{sup 2+} redox reactions. Laboratory tests conducted in parallel with these scaled tests identified modifications to the liquid chemistry necessary to reduce ReO{sub 4}{sup -} and capture rhenium in the solids at levels similar to those achieved by Um (2010) for inclusion of Tc into goethite. By implementing these changes, Re was incorporated into Fe-rich solids for testing at VSL. The changes also changed the phase of iron that was in the slurry product: rather than forming goethite ({alpha}-FeOOH), the process produced magnetite (Fe{sub 3}O{sub 4}). Magnetite was considered by Pacific Northwest National Laboratory (PNNL) and VSL to probably be a better product to improve Re retention in the melter because it decomposes at a higher temperature than goethite (1538 C vs. 136 C). The feasibility tests at VSL were conducted using Re-rich magnetite. The tests did not indicate an improved retention of Re in the glass during vitrification, but they did indicate an improved melting rate (+60%), which could have significant impact on HLW processing. It is still to be shown whether the Re is a solid solution in the magnetite as {sup 99}Tc was determined to be in goethite.

Josephson, Gary B.; Westsik, Joseph H.

2011-10-23T23:59:59.000Z

37

NETL: Bench-Scale Development of a Non-Aqueous Solvent CO2 Capture Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bench-Scale Development of a Non-Aqueous Solvent (NAS) CO2 Capture Process for Coal-Fired Power Plants Bench-Scale Development of a Non-Aqueous Solvent (NAS) CO2 Capture Process for Coal-Fired Power Plants Project No.: DE-FE0013865 Research Triangle Institute (RTI) is continuing the development process for a non-aqueous solvent (NAS)-based CO2 capture process that was originated at laboratory scale under an ARPA-E project. This project will conduct bench-scale testing to show the potential of the technology to reduce the parasitic energy penalty. Key technical and economic challenges and uncertainties to be addressed include solvent makeup cost, scalable regenerator design, development of a complete NAS process arrangement, and improved confidence in the capital cost estimate that will enable the scale up of the process. One major focus is identification of best-candidate NAS formulations. This will entail reducing solvent makeup costs by reducing the formulation cost. In addition, efforts will be made to reduce evaporative and degradation losses while maintaining the desired CO2 absorption chemistry. A second focus area involves advancing the design of the process. This will be done by developing and evaluating the effectiveness of two process units specific to NASs - the NAS Recovery/Wash Section and NAS Regenerator. As the project proceeds, the testing campaign will evaluate thermal regeneration energy requirements [kJt / kg CO2] and develop a detailed understanding of the operation of the process. Preliminary analyses indicate that the NAS process can reduce energy consumption by 30 to 50 percent compared to current state of the art CO2 capture processes.

38

NETL: Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent Project No.: DE-FE0013687 GE global is constructing and operating a continuous, bench-scale CO2 capture system that employs a phase-changing silicone solvent . Experimental data obtained at the laboratory scale in a previous ARPA-E funded project, including mass transfer and kinetic information, is being used to determine process scalability and perform a techno-economic assessment of the commercial scale process. The manufacturability of the solvent is being examined to obtain the material needed for bench-scale testing. Data obtained from the bench-scale system will include mass transfer parameters, kinetic parameters, heat transfer parameters, solvent stability, effects of flue gas contaminants, and recommended operating conditions. Other data such as absorption/desorption isotherms and solvent regeneration energy will be determined in laboratory testing. The solvent manufacturing cost, the bench-scale engineering data, and the laboratory property data will be used to complete the techno-economic assessment and to develop a scale-up strategy for commercialization.

39

Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors  

SciTech Connect (OSTI)

This document is the final report for Cooperative Agreement DE-FC26-04NT42314, 'Kinetics Study of Mercury Reactions in FGD Liquors'. The project was co-funded by the U.S. DOE National Energy Technology Laboratory and EPRI. The objective of the project has been to determine the mechanisms and kinetics of the aqueous reactions of mercury absorbed by wet flue gas desulfurization (FGD) systems, and develop a kinetics model to predict mercury reactions in wet FGD systems. The model may be used to determine optimum wet FGD design and operating conditions to maximize mercury capture in wet FGD systems. Initially, a series of bench-top, liquid-phase reactor tests were conducted and mercury species concentrations were measured by UV/visible light spectroscopy to determine reactant and byproduct concentrations over time. Other measurement methods, such as atomic absorption, were used to measure concentrations of vapor-phase elemental mercury, that cannot be measured by UV/visible light spectroscopy. Next, a series of bench-scale wet FGD simulation tests were conducted. Because of the significant effects of sulfite concentration on mercury re-emission rates, new methods were developed for operating and controlling the bench-scale FGD experiments. Approximately 140 bench-scale wet FGD tests were conducted and several unusual and pertinent effects of process chemistry on mercury re-emissions were identified and characterized. These data have been used to develop an empirically adjusted, theoretically based kinetics model to predict mercury species reactions in wet FGD systems. The model has been verified in tests conducted with the bench-scale wet FGD system, where both gas-phase and liquid-phase mercury concentrations were measured to determine if the model accurately predicts the tendency for mercury re-emissions. This report presents and discusses results from the initial laboratory kinetics measurements, the bench-scale wet FGD tests, and the kinetics modeling efforts.

Gary Blythe; John Currie; David DeBerry

2008-03-31T23:59:59.000Z

40

BENCH-SCALE STEAM REFORMING OF ACTUAL TANK 48H WASTE  

SciTech Connect (OSTI)

Fluidized Bed Steam Reforming (FBSR) has been demonstrated to be a viable technology to remove >99% of the organics from Tank 48H simulant, to remove >99% of the nitrate/nitrite from Tank 48H simulant, and to form a solid product that is primarily carbonate based. The technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration Fluidized Bed Steam Reformer1 (ESTD FBSR) at the Hazen Research Inc. (HRI) facility in Golden, CO. The purpose of the Bench-scale Steam Reformer (BSR) testing was to demonstrate that the same reactions occur and the same product is formed when steam reforming actual radioactive Tank 48H waste. The approach used in the current study was to test the BSR with the same Tank 48H simulant and same Erwin coal as was used at the ESTD FBSR under the same operating conditions. This comparison would allow verification that the same chemical reactions occur in both the BSR and ESTD FBSR. Then, actual radioactive Tank 48H material would be steam reformed in the BSR to verify that the actual tank 48H sample reacts the same way chemically as the simulant Tank 48H material. The conclusions from the BSR study and comparison to the ESTD FBSR are the following: (1) A Bench-scale Steam Reforming (BSR) unit was successfully designed and built that: (a) Emulated the chemistry of the ESTD FBSR Denitration Mineralization Reformer (DMR) and Carbon Reduction Reformer (CRR) known collectively as the dual reformer flowsheet. (b) Measured and controlled the off-gas stream. (c) Processed real (radioactive) Tank 48H waste. (d) Met the standards and specifications for radiological testing in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF). (2) Three runs with radioactive Tank 48H material were performed. (3) The Tetraphenylborate (TPB) was destroyed to > 99% for all radioactive Bench-scale tests. (4) The feed nitrate/nitrite was destroyed to >99% for all radioactive BSR tests the same as the ESTD FBSR. (5) The radioactive Tank 48H DMR product was primarily made up of soluble carbonates. The three most abundant species were thermonatrite, [Na{sub 2}CO{sub 3} {center_dot} H{sub 2}O], sodium carbonate, [Na{sub 2}CO{sub 3}], and trona, [Na{sub 3}H(CO{sub 3}){sub 2} {center_dot} 2H{sub 2}O] the same as the ESTD FBSR. (6) Insoluble solids analyzed by X-Ray Diffraction (XRD) did not detect insoluble carbonate species. However, they still may be present at levels below 2 wt%, the sensitivity of the XRD methodology. Insoluble solids XRD characterization indicated that various Fe/Ni/Cr/Mn phases are present. These crystalline phases are associated with the insoluble sludge components of Tank 48H slurry and impurities in the Erwin coal ash. The percent insoluble solids, which mainly consist of un-burnt coal and coal ash, in the products were 4 to 11 wt% for the radioactive runs. (7) The Fe{sup +2}/Fe{sub total} REDOX measurements ranged from 0.58 to 1 for the three radioactive Bench-scale tests. REDOX measurements > 0.5 showed a reducing atmosphere was maintained in the DMR indicating that pyrolysis was occurring. (8) Greater than 90% of the radioactivity was captured in the product for all three runs. (9) The collective results from the FBSR simulant tests and the BSR simulant tests indicate that the same chemistry occurs in the two reactors. (10) The collective results from the BSR simulant runs and the BSR radioactive waste runs indicates that the same chemistry occurs in the simulant as in the real waste. The FBSR technology has been proven to destroy the organics and nitrates in the Tank 48H waste and form the anticipated solid carbonate phases as expected.

Burket, P; Gene Daniel, G; Charles Nash, C; Carol Jantzen, C; Michael Williams, M

2008-09-25T23:59:59.000Z

Note: This page contains sample records for the topic "bench scale research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

NETL: Bench-Scale Development of a Hybrid Membrane-Absorption CO2 Capture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bench-Scale Development of a Hybrid Membrane-Absorption CO2 Capture Process Bench-Scale Development of a Hybrid Membrane-Absorption CO2 Capture Process Project No.: DE-FE0013118 Membrane Technology and Research (MTR) is developing and evaluating a hybrid membrane-absorption CO2 capture system. This work builds on prior DOE-funded work and combines MTR's Polaris(tm) membrane, in a low-pressure-drop, large area, plate-and-frame module, with UT Austin's piperazine (PZ) solvent and advanced, high-temperature and pressure regeneration technology. Preliminary estimates indicate that this hybrid system could lower the regeneration energy by 30 percent compared to that required with 30 weight percent monoethanolamine (MEA). MTR is evaluating two variations of the hybrid design consisting of the cross-flow Polaris membrane, which enriches flue gas to approximately 20 percent CO2, and an advanced 5 molal PZ advanced flash stripper with cold-rich bypass. The flash stripper will be optimized to take advantage of the higher CO2 concentration. In the first variation, the two systems are operated in series; in the second, the flue gas flow is split and treated by each system in parallel. The first phase of this project will include an examination of both hybrid configurations, using an integrated process model and a preliminary techno-economic assessment. In the second phase, MTR will manufacture and test a low pressure drop, large-area membrane module and UT Austin will modify their 0.1 MWe pilot plant and operate it under simulated series and parallel configurations. Based on the model and test results, the most promising configuration will be identified. In the final stage of the project, the membrane module will be integrated into the pilot plant where the fully integrated hybrid system, in its most promising cost optimized configuration, will be tested on simulated flue gas.

42

NETL: Bench-Scale Development & Testing of a Novel Adsorption Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bench-Scale Development & Testing of a Novel Adsorption Process Bench-Scale Development & Testing of a Novel Adsorption Process Project No.: DE-FE0007948 InnoSepra, LLC is demonstrating the effectiveness of an innovative adsorption-based carbon dioxide (CO2) capture technology utilizing a combination of novel microporous materials and process cycles. The process utilizes physical sorbents with much lower heats of adsorption compared to competing processes. Lab scale testing has produced greater than 99 percent CO2 purity and greater than 90 percent CO2 recovery from synthetic flue gas. Projections based on detailed engineering evaluations show that at commercial scale, the technology can reduce the power consumption for CO2 capture by more than 40 percent and the capital cost for the CO2 capture equipment by more than 60 percent, resulting in a more than a 40 percent reduction in the CO2 capture cost compared to alternate technologies such as amines and chilled ammonia.

43

Mercury Emissions Control in Coal Combustion Systems Using Potassium Iodide: Bench-Scale and Pilot-Scale Studies  

E-Print Network [OSTI]

power plant exhaust gases using conventional air pollution control devices (APCDs) is significantly Act list of sources of hazardous air pollutants. Both the reversal and the CAMR were vacated by the UMercury Emissions Control in Coal Combustion Systems Using Potassium Iodide: Bench-Scale and Pilot

Li, Ying

44

100 Area soil washing bench-scale test procedures  

SciTech Connect (OSTI)

This document describes methodologies and procedures for conducting soil washing treatability tests in accordance with the 100 Area Soil Washing Treatability Test Plan (DOE-RL 1992, Draft A). The objective of this treatability study is to evaluate the use of physical separation systems and chemical extraction methods as a means of separating chemically and radioactively contaminated soil fractions from uncontaminated soil fractions. These data will be primarily used for determining feasibility of the individual unit operations and defining the requirements for a system, or systems, for pilot-scale testing.

Freeman, H.D.; Gerber, M.A.; Mattigod, S.V.; Serne, R.J.

1993-03-01T23:59:59.000Z

45

Steam Reforming, 6-in. Bench-Scale Design and Testing Project -- Technical and Functional Requirements Description  

SciTech Connect (OSTI)

Feasibility studies and technology development work are currently being performed on several processes to treat radioactive liquids and solids currently stored at the Idaho Nuclear Technology and Engineering Center (INTEC), located within the Idaho National Engineering and Environmental Laboratory (INEEL). These studies and development work will be used to select a treatment process for treatment of the radioactive liquids and solids to meet treatment milestones of the Settlement Agreement between the Department of Energy and the State of Idaho. One process under consideration for treating the radioactive liquids and solids, specifically Sodium-Bearing Waste (SBW) and tank heel solids, is fluid bed steam reforming (FBSR). To support both feasibility and development studies a bench-scale FBSR is being designed and constructed. This report presents the technical and functional requirements, experimental objectives, process flow sheets, and equipment specifications for the bench-scale FBSR.

Losinski, Sylvester John; Marshall, Douglas William

2002-08-01T23:59:59.000Z

46

DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR BENCH-SCALE REFORMER TREATABILITY STUDIES  

SciTech Connect (OSTI)

This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Bench-Scale Reforming testing. The type, quantity, and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluidized bed steam reformer. A determination of the adequacy of the fluidized bed steam reformer process to treat Hanford tank waste is required. The initial step in determining the adequacy of the fluidized bed steam reformer process is to select archived waste samples from the 222-S Laboratory that will be used in a bench scale tests. Analyses of the selected samples will be required to confirm the samples meet the shipping requirements and for comparison to the bench scale reformer (BSR) test sample selection requirements.

BANNING DL

2011-02-11T23:59:59.000Z

47

Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture  

SciTech Connect (OSTI)

GE Global Research is developing technology to remove carbon dioxide (CO{sub 2}) from the flue gas of coal-fired power plants. A mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) and triethylene glycol (TEG) is the preferred CO{sub 2} capture solvent. GE Global Research was contracted by the Department of Energy to test a bench-scale continuous CO{sub 2} absorption/desorption system using a GAP-1m/TEG mixture as the solvent. SiVance LLC was sub-contracted to provide the GAP-1m material and conduct an Environmental, Health, and Safety (EH&S) assessment for a 550 MW coal-fired power plant. Five components of the solvent, CAS#2469-55-8 (GAP-0), CAS#106214-84-0 (GAP-1-4), TEG, and methanol and xylene (minor contaminants from the aminosilicone) are included in this assessment. One by-product, GAP-1m/SOX salt, and dodecylbenzenesulfonic acid (DDBSA) were also identified for analysis. All of the solvent components and DDBSA are listed on the EPA’s TSCA Inventory allowing companies to manufacture and use the chemicals commercially. The toxicological effects of each component were defined, and control mechanisms necessary to comply with U.S. EH&S regulations are summarized. An engineering and control system, including environmental abatement, was described for minimizing exposure and release of the chemical components. Proper handling and storage recommendations are made for each chemical to minimize risk to workers and the surrounding community.

Fresia, Megan; Vogt, Kirk

2013-12-31T23:59:59.000Z

48

Design of a bench-scale apparatus for processing carbon black derived from scrap tires  

E-Print Network [OSTI]

(incineration) or as a filler for asphalt. Incineration has been employed in an attempt to harness the high calorific value of scrap tires. However, disposal via incineration may not maximize the potential economic recovery of energy and chemical materials... into liquid fuels and forms of solid carbon such as carbon black and activated carbon. Previous work in this area utilizes pyrolysis. ' There are several commercial, pilot, and bench-scale tire 2-4, 6-8 pyrolysis systems in use today. Many of these employ...

Woodrow, Philip Travis

1996-01-01T23:59:59.000Z

49

Design of Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture  

SciTech Connect (OSTI)

The major goal of the project is to design and optimize a bench-scale process for novel silicone CO{sub 2}-capture solvents and establish scalability and potential for commercialization of post-combustion capture of CO{sub 2} from coal-fired power plants. This system should be capable of 90% capture efficiency and demonstrate that less than 35% increase in the cost of energy services can be achieved upon scale-up. Experiments were conducted to obtain data required for design of the major unit operations. The bench-scale system design has been completed, including sizing of major unit operations and the development of a detailed Process and Instrument Diagram (P&ID). The system has been designed to be able to operate over a wide range of process conditions so that the effect of various process variables on performance can be determined. To facilitate flexibility in operation, the absorption column has been designed in a modular manner, so that the height of the column can be varied. The desorber has also been designed to allow for a range of residence times, temperatures, and pressures. The system will be fabricated at Techniserv Inc.

Wood, Benjamin

2012-06-30T23:59:59.000Z

50

Electrolytic Reduction of Spent Light Water Reactor Fuel Bench-Scale Experiment Results  

SciTech Connect (OSTI)

A series of experiments were performed to demonstrate the electrolytic reduction of spent light water reactor fuel at bench-scale in a hot cell at the Idaho National Laboratory Materials and Fuels Complex. The process involves the conversion of oxide fuel to metal by electrolytic means, which would then enable subsequent separation and recovery of actinides via existing electrometallurgical technologies, i.e., electrorefining. Four electrolytic reduction runs were performed at bench scale using ~500 ml of molten LiCl – 1 wt% Li2O electrolyte at 650 ºC. In each run, ~50 g of crushed spent oxide fuel was loaded into a permeable stainless steel basket and immersed into the electrolyte as the cathode. A spiral wound platinum wire was immersed into the electrolyte as the anode. When a controlled electric current was conducted through the anode and cathode, the oxide fuel was reduced to metal in the basket and oxygen gas was evolved at the anode. Salt samples were extracted before and after each electrolytic reduction run and analyzed for fuel and fission product constituents. The fuel baskets following each run were sectioned and the fuel was sampled, revealing an extent of uranium oxide reduction in excess of 98%.

Steven D. Herrmann

2007-04-01T23:59:59.000Z

51

EFRT M12 Issue Resolution: Comparison of PEP and Bench-Scale Oxidative Leaching Results  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed and constructed and is to be operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP; and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP; vessels UFP-VSL-00001A and B in the WTP PTF). In both scenarios, 19-M sodium hydroxide solution (NaOH, caustic) is added to the waste slurry in the vessels to dissolve solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by a heating step that uses direct steam injection to accelerate the leaching process. Following the caustic leach, the vessel contents are cooled using vessel cooling jackets and/or external heat exchangers. The main difference between the two scenarios is that for leaching in UFP1, the 19-M NaOH is added to un-concentrated waste slurry (3 to 8 wt% solids), while for leaching in UFP2, the slurry is concentrated to nominally 20 wt% solids using cross-flow ultrafiltration before the addition of caustic. For wastes that have significantly high chromium content, the caustic leaching and slurry dewatering is followed by adding sodium permanganate to UFP-VSL-T02A, and the slurry is subjected to oxidative leaching at nominally ambient temperature. The purpose of the oxidative leaching is to selectively oxidize the poorly alkaline-soluble Cr(III) believed to be the insoluble form in Hanford tank sludge to the much more alkaline-soluble Cr(VI), e.g., chromate. The work described in this report provides the test results that are related to the efficiency of the oxidative leaching process to support process modeling based on tests performed with a Hanford waste simulant. The tests were completed both at the lab-bench scale and in the PEP. The purpose of this report is to summarize the results from both scales that are related to oxidative leaching chemistry to support a scale factor for the submodels to be used in the G2 model, which predicts WTP operating performance. Owing to schedule constraints, the PEP test data to be included in this report are limited to those from Integrated Tests A (T01 A/B caustic leaching) and B (T02A caustic leaching).

Rapko, Brian M.; Brown, Christopher F.; Eslinger, Paul W.; Fountain, Matthew S.; Hausmann, Tom S.; Huckaby, James L.; Hanson, Brady D.; Kurath, Dean E.; Minette, Michael J.

2009-08-14T23:59:59.000Z

52

NETL: IEP - Post-Combustion CO2 Emissions Control - Bench-Scale  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IEP – Post-Combustion CO2 Emissions Control Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High Pressure Stripping for Post-Combustion CO2 Capture Project No.: DE-FE0004360 The University of Illinois at Urbana-Champaign will evaluate the Hot Carbonate Absorption Process (Hot-CAP) process with crystallization-enabled high pressure stripping. The Hot-CAP is an absorption-based, post-combustion CO2 technology that uses a carbonate salt (K2CO3 or Na2CO3) as a solvent. The process integrates a high temperature (70-80°C) CO2 absorption column, a slurry-based high pressure (up to 40atm) CO2 stripping column, a crystallization unit to separate bicarbonate and recover the carbonate solvent, and a reclaimer to recover CaSO4 as the byproduct of the SO2 removal.

53

Bench-scale screening tests for a boiling sodium-potassium alloy solar receiver  

SciTech Connect (OSTI)

Bench-scale tests were carried out in support of the design of a second-generation 75-kW{sub t} reflux pool-boiler solar receiver. The receiver will be made from Haynes Alloy 230 and will contain the sodium-potassium alloy NaK-78. The bench-scale tests used quartz-lamp-heated boilers to screen candidate boiling-stabilization materials and methods at temperatures up to 750{degree}C. Candidates that provided stable boiling were tested for hot-restart behavior. Poor stability was obtained with single 1/4-inch diameter patches of powdered metal hot-press-sintered onto the wetted side of the heat-input area. Laser-drilled and electric-discharge-machined cavities in the heated surface also performed poorly. Small additions of xenon, and heated-surface tilt out of the vertical dramatically improved poor boiling stability; additions of helium or oxygen did not. The most stable boiling was obtained when the entire heat-input area was covered by a powdered-metal coating. The effect of heated-area size was assessed for one coating: at low incident fluxes, when even this coating performed poorly, increasing the heated-area size markedly improved boiling stability. Good hot-restart behavior was not observed with any candidate, although results were significantly better with added xenon in a boiler shortened from 3 to 2 feet. In addition to the screening tests, flash-radiography imaging of metal-vapor bubbles during boiling was attempted. Contrary to the Cole-Rohsenow correlation, these bubble-size estimates did not vary with pressure; instead they were constant, consistent with the only other alkali metal measurements, but about 1/2 their size.

Moreno, J.B.; Moss, T.A.

1993-06-01T23:59:59.000Z

54

Safety analysis of the CSTR-1 bench-scale coal liquefaction unit  

SciTech Connect (OSTI)

The objective of the program reported herein was to provide a Safety Analysis of the CSTR-1 bench scale unit located in Building 167 at the Pittsburgh Energy Technology Center. It was apparent that considerable effort was expended in the design and construction of the unit, and in the development of operating procedures, with regard to safety. Exhaust ventilation, H/sub 2/ and H/sub 2/S monitoring, overpressure protection, overtemperature protection, and interlock systems have been provided. Present settings on the pressure and temperature safety systems are too high, however, to insure prevention of vessel deformation or damage in all cases. While the occurrence of catastrophic rupture of a system pressure vessel (e.g., reactor, high pressure separators) is unlikely, the potential consequences to personnel are severe. Feasibility of providing shielding for these components should be considered. A more probable mode of vessel failure in the event of overpressure or overtemperature and failure of the safety system is yielding of the closure bolts followed by high pressure flow across the mating surfaces. As a minimum, shielding should be designed to restrict travel of resultant spray. The requirements for personal protective equipment are presently stated in rather broad and general terms in the operating procedures. Safe practices and procedures would be more assured if specific requirements were stated and included for each operational step. Recommendations were developed for all hazards triggered by the guidelines.

Hulburt, D.A.

1981-05-01T23:59:59.000Z

55

A bench scale study of a one-step dissolution process for treating contaminated fiberglass filters  

SciTech Connect (OSTI)

High efficiency mist eliminators (HEME) and high efficiency particulate air filters (HEPA) made of High fiberglass will be used at the Savannah River Site (SRS) to remove particulate matter from offgases generated during melter feed preparation and vitrification of high-level radioactive waste (HLW) at the Defense Waste Processing Facility (DWPF). These filters will be contaminated with high-level, radioactive species and also with various high-boiling organic compounds. For this reason, a process was developed at the Savannah River Technology Center (SRTC) that will dissolve the spent filters so that the residues may be recycled to the HLW tanks for eventual vitrification. This process involves boiling the filters sequentially in NaOH, HN0{sub 3} and NaOH, while contained in a stainless steal wire mesh frame assembly. The objective of this communication is to present some of the original preliminary work done by Ritter on the simple one-step dissolution process. The results from six bench-scale experiments are reported for the dissolution of an organically-fouled sample of HEME obtained from the Integrated DWPF Melter (IDMS) offgas filtration system. The preliminary effects of filter packing density, air sparging versus rotating basket agitation, fouling, and adding Triton X-405 as a dispersing agent are reported.

Policke, T.A.; Ritter, J.A.

1995-12-01T23:59:59.000Z

56

Integrated low emissions cleanup system for coal fueled turbines Phase III bench-scale testing and evaluation  

SciTech Connect (OSTI)

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of coal-fired turbine technologies such as Pressurized Fluidized Bed Combustion (PFBC), coal Gasification Combined Cycles (GCC), and Direct Coal-Fired Turbines (DCFT). A major technical development challenge remaining for coal-fired turbine systems is high-temperature gas cleaning to meet environmental emissions standards, as well as to ensure acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, has evaluated an Integrated Low Emissions Cleanup (ILEC) concept that has been configured to meet this technical challenge. This ceramic hot gas filter (HGF), ILEC concept controls particulate emissions, while simultaneously contributing to the control of sulfur and alkali vapor contaminants in high-temperature, high-pressure, fuel gases or combustion gases. This document reports on the results of Phase III of the ILEC evaluation program, the final phase of the program. In Phase III, a bench-scale ILEC facility has been tested to (1) confirm the feasibility of the ILEC concept, and (2) to resolve some major filter cake behavior issues identified in PFBC, HGF applications.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M. [and others

1995-08-01T23:59:59.000Z

57

Catalytic Two-Stage Liquefaction (CTSL{trademark}) process bench studies and PDU scale-up with sub-bituminous coal. Final report  

SciTech Connect (OSTI)

Reported are the details and results of Laboratory and Bench-Scale experiments using sub-bituminous coal conducted at Hydrocarbon Research, Inc., under DOE Contract No. DE-AC22-88PC88818 during the period October 1, 1988 to December 31, 1992. The work described is primarily concerned with testing of the baseline Catalytic Two-Stage Liquefaction (CTSL{trademark}) process with comparisons with other two stage process configurations, catalyst evaluations and unit operations such as solid separation, pretreatments, on-line hydrotreating, and an examination of new concepts. In the overall program, three coals were evaluated, bituminous Illinois No. 6, Burning Star and sub-bituminous Wyoming Black Thunder and New Mexico McKinley Mine seams. The results from a total of 16 bench-scale runs are reported and analyzed in detail. The runs (experiments) concern process variables, variable reactor volumes, catalysts (both supported, dispersed and rejuvenated), coal cleaned by agglomeration, hot slurry treatments, reactor sequence, on-line hydrotreating, dispersed catalyst with pretreatment reactors and CO{sub 2}/coal effects. The tests involving the Wyoming and New Mexico Coals are reported herein, and the tests involving the Illinois coal are described in Topical Report No. 2. On a laboratory scale, microautoclave tests evaluating coal, start-up oils, catalysts, thermal treatment, CO{sub 2} addition and sulfur compound effects were conducted and reported in Topical Report No. 3. Other microautoclave tests are described in the Bench Run sections to which they refer such as: rejuvenated catalyst, coker liquids and cleaned coals. The microautoclave tests conducted for modelling the CTSL{trademark} process are described in the CTSL{trademark} Modelling section of Topical Report No. 3 under this contract.

Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.T.; Stalzer, R.H.; Smith, T.O.

1993-03-01T23:59:59.000Z

58

Thermochemical water-splitting cycle, bench-scale investigations and process engineering. Annual report, October 1, 1978-September 30, 1979  

SciTech Connect (OSTI)

A program to investigate thermochemical water splitting has been under way at General Atomic Company (GA) since October 1972. This document is an annual progress report of Department of Energy (DOE) sponsored process development work on the GA sulfur-iodine thermochemical water splitting cycle. The work consisted of laboratory bench-scale investigations, demonstration of the process in a closed-loop cycle demonstrator, and process engineering design studies. A bench-scale system, consisting of three subunits, has been designed to study the cycle under continuous flow conditions. The designs of subunit I, which models the main solution reaction and product separation, and subunit II, which models the concentration and decomposition of sulfuric acid, were presented in an earlier annual report. The design of subunit III, which models the purification and decomposition of hydrogen iodide, is given in this report. Progress on the installation and operation of subunits I and II is described. A closed-loop cycle demonstrator was installed and operated based on a DOE request. Operation of the GA sulfur-iodine cycle was demonstrated in this system under recycle conditions. The process engineering addresses the flowsheet design of a large-scale production process consisting of four chemical sections (I through IV) and one helium heat supply section (V). The completed designs for sections I through V are presented. The thermal efficiency of the process calculated from the present flowsheet is 47%.

Caprioglio, G.; McCorkle, K.H.; Besenbruch, G.E.; Rode, J.S.

1980-03-01T23:59:59.000Z

59

EFRT M-12 Issue Resolution: Comparison of PEP and Bench-Scale Oxidative Leaching Results  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes” of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.

Rapko, Brian M.; Schonewill, Philip P.; Brown, Christopher F.; Eslinger, Paul W.; Fountain, Matthew S.; Hausmann, Tom S.; Huckaby, James L.; Hanson, Brady D.; Kurath, Dean E.; Minette, Michael J.

2010-01-01T23:59:59.000Z

60

Reactivity during bench-scale combustion of biomass fuels for carbon capture and storage applications  

Science Journals Connector (OSTI)

Abstract Reactivities of four biomass samples were investigated in four combustion atmospheres using non-isothermal thermogravimetric analysis (TGA) under two heating rates. The chosen combustion atmospheres reflect carbon capture and storage (CCS) applications and include O 2 and CO 2 -enrichment. Application of the Coats–Redfern method assessed changes in reactivity. Reactivity varied due to heating rate: the reactivity of char oxidation was lower at higher heating rates while devolatilisation reactions were less affected. In general, and particularly at the higher heating rate, increasing [ O 2 ] increased combustion reactivity. A lesser effect was observed when substituting N 2 for CO 2 as the comburent; in unenriched conditions this tended to reduce char oxidation reactivity while in O 2 -enriched conditions the reactivity marginally increased. Combustion in a typical, dry oxyfuel environment (30% O 2 , 70% CO 2 ) was more reactive than in air in TGA experiments. These biomass results should interest researchers seeking to understand phenomena occurring in larger scale CCS-relevant experiments.

S. Pickard; S.S. Daood; M. Pourkashanian; W. Nimmo

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bench scale research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Simultaneous removal of H2S and COS using Zn-based solid sorbents in the bench-scale continuous hot gas desulfurization system integrated with a coal gasifier  

Science Journals Connector (OSTI)

A bench-scale continuous hot gas desulfurization system using Zn-based solid sorbents was developed to remove H2S and COS simultaneously in a 110 Nm3.../h of real coal-gasified syngas. The bench-scale unit, which...

Young Cheol Park; Sung-Ho Jo; Ho-Jung Ryu…

2012-12-01T23:59:59.000Z

62

Thermochemical water-splitting cycle, bench-scale investigations, and process engineering. Final report, February 1977-December 31, 1981  

SciTech Connect (OSTI)

The sulfur-iodine water-splitting cycle is characterized by the following three reactions: 2H/sub 2/O + SO/sub 2/ + I/sub 2/ ..-->.. H/sub 2/SO/sub 4/ + 2HI; H/sub 2/SO/sub 4/ ..-->.. H/sub 2/O + SO/sub 2/ + 1/2 O/sub 2/; and 2HI ..-->.. H/sub 2/ + I/sub 2/. This cycle was developed at General Atomic after several critical features in the above reactions were discovered. These involved phase separations, catalytic reactions, etc. Estimates of the energy efficiency of this economically reasonable advanced state-of-the-art processing unit produced sufficiently high values (to approx.47%) to warrant cycle development effort. The DOE contract was largely directed toward the engineering development of this cycle, including a small demonstration unit (CLCD), a bench-scale unit, engineering design, and costing. The work has resulted in a design that is projected to produce H/sub 2/ at prices not yet generally competitive with fossil-fuel-produced H/sub 2/ but are projected to be favorably competitive with respect to H/sub 2/ from fossil fuels in the future.

Norman, J.H.; Besenbruch, G.E.; Brown, L.C.; O'Keefe, D.R.; Allen, C.L.

1982-05-01T23:59:59.000Z

63

Results with a bench scale downdraft biomass gasifier for agricultural and forestry residues  

Science Journals Connector (OSTI)

A small scale fixed bed downdraft gasifier system to be fed with agricultural and forestry residues has been designed and constructed. The downdraft gasifier has four consecutive reaction zones from the top to the bottom, namely drying, pyrolysis, oxidation and reduction zones. Both the biomass fuel and the gases move in the same direction. A throat has been incorporated into the design to achieve gasification with lower tar production. The experimental system consists of the downdraft gasifier and the gas cleaning unit made up by a cyclone, a scrubber and a filter box. A pilot burner is utilized for initial ignition of the biomass fuel. The product gases are combusted in the flare built up as part of the gasification system. The gasification medium is air. The air to fuel ratio is adjusted to produce a gas with acceptably high heating value and low pollutants. Within this frame, different types of biomass, namely wood chips, barks, olive pomace and hazelnut shells are to be processed. The developed downdraft gasifier appears to handle the investigated biomass sources in a technically and environmentally feasible manner. This paper summarizes selected design related issues along with the results obtained with wood chips and hazelnut shells.

Hayati Olgun; Sibel Ozdogan; Guzide Yinesor

2011-01-01T23:59:59.000Z

64

WASTE SOLIDIFICATION BUILDING BENCH SCALE HIGH ACTIVITY WASTE SIMULANT VARIABILITY STUDY FY2008  

SciTech Connect (OSTI)

The primary objective of this task was to perform a variability study of the high activity waste (HAW) acidic feed to determine the impact of feed variability on the quality of the final grout and on the mixability of the salt solution into the dry powders. The HAW acidic feeds were processed through the neutralization/pH process, targeting a final pH of 12. These fluids were then blended with the dry materials to make the final waste forms. A secondary objective was to determine if elemental substitution for cost prohibitive or toxic elements in the simulant affects the mixing response, thus providing a more economical simulant for use in full scale tests. Though not an objective, the HAW simulant used in the full scale tests was also tested and compared to the results from this task. A statistically designed test matrix was developed based on the maximum molarity inputs used to make the acidic solutions. The maximum molarity inputs were: 7.39 HNO{sub 3}, 0.11618 gallium, 0.5423 silver, and 1.1032 'other' metals based on their NO{sub 3}{sup -} contribution. Substitution of the elements aluminum for gallium and copper for silver was also considered in this test matrix, resulting in a total of 40 tests. During the NaOH addition, the neutralization/pH adjustment process was controlled to a maximum temperature of 60 C. The neutralized/pH adjusted simulants were blended with Portland cement and zircon flour at a water to cement mass ratio of 0.30. The mass ratio of zircon flour to Portland cement was 1/12. The grout was made using a Hobart N-50 mixer running at low speed for two minutes to incorporate and properly wet the dry solids with liquid and at medium speed for five minutes for mixing. The resulting fresh grout was measured for three consecutive yield stress measurements. The cured grout was measured for set, bleed, and density. Given the conditions of preparing the grout in this task, all of the grouts were visually well mixed prior to preparing the grouts for measurements. All of the cured grouts were measured for bleed and set. All of the cured grouts satisfied the bleed and set requirements, where no bleed water was observed on any of the grout samples after one day and all had set within 3 days of curing. This data indicates, for a well mixed product, bleed and set requirement are satisfied for the range of acidic feeds tested in this task. The yield stress measurements provide both an indication on the mixability of the salt solution with dry materials and an indication of how quickly the grout is starting to form structure. The inability to properly mix these two streams into a well mixed grout product will lead to a non-homogeneous mixture that will impact product quality. Product quality issues could be unmixed regions of dry material and hot spots having high concentrations of americium 241. Mixes that were more difficult to incorporate typically resulted in grouts with higher yield stresses. The mixability from these tests will provide Waste Solidification Building (WSB) an indication of which grouts will be more challenging to mix. The first yield stress measurements were statistically compared to a list of variables, specifically the batched chemicals used to make the acidic solutions. The first yield stress was also compared to the physical properties of the acidic solutions, physical and pH properties of the neutralized/pH adjusted solutions, and chemical and physical properties of the grout.

Hansen, E; Timothy Jones, T; Tommy Edwards, T; Alex Cozzi, A

2009-03-20T23:59:59.000Z

65

Bench-Scale Synthetic Optimization of 1,2-bis(2-aminophenylthio)ethane (APO-Link) Used in the Production of APO-BMI Resin  

SciTech Connect (OSTI)

The diamine reagent 1,2-bis(2-aminophenylthio)ethane is no longer commercially available but still required for the synthesis of the bismaleimide resin, APO-BMI, used in syntactic foams. In this work, we examined the hydrolysis of benzothiazole followed the by reaction with dichloroethane or dibromoethane. We also studied the deprotonation of 2-aminothiophenol followed by the reaction with dibromoethane. We optimized the latter for scale-up by scrutinizing all aspects of the reaction conditions, work-up and recrystallization. On bench-scale, our optimized procedure consistently produced a 75-80% overall yield of finely divided, high purity product (>95%).

Hilary Wheeler; Crystal Densmore

2007-07-31T23:59:59.000Z

66

Permeable Reactive Biobarriers for In Situ Cr(VI) Reduction: Bench Scale Tests Using Cellulomonas sp. Strain ES6  

SciTech Connect (OSTI)

Chromate (Cr(VI)) reduction studies were performed in bench scale flow columns using the fermentative subsurface isolate Cellulomonas sp. strain ES6. In these tests, columns packed with either quartz sand or hydrous ferric oxide (HFO)-coated quartz sand, were inoculated with strain ES6 and fed nutrients to stimulate growth before nutrient-free Cr(VI) solutions were injected. Results show that in columns containing quartz sand, a continuous inflow of 2 mg/L Cr(VI) was reduced to below detection limits in the effluent for durations of up to 5.7 residence times after nutrient injection was discontinued proving the ability of strain ES6 to reduce chromate in the absence of an external electron donor. In the HFO-containing columns, Cr(VI) reduction was significantly prolonged and effluent Cr(VI) concentrations remained below detectable levels for periods of up to 66 residence times after nutrient injection was discontinued. Fe was detected in the effluent of the HFO-containing columns throughout the period of Cr(VI) removal indicating that the insoluble Fe(III) bearing solids were being continuously reduced to form soluble Fe(II) resulting in prolonged abiotic Cr(VI) reduction. Thus, growth of Cellulomonas within the soil columns resulted in formation of permeable reactive barriers that could reduce Cr(VI) and Fe(III) for extended periods even in the absence of external electron donors. Other bioremediation systems employing Fe(II)-mediated reactions require a continuous presence of external nutrients to regenerate Fe(II). After depletion of nutrients, contaminant removal within these systems occurs by reaction with surface-associated Fe(II) that can rapidly become inaccessible due to formation of crystalline Fe-minerals or other precipitates. The ability of fermentative organisms like Cellulomonas to reduce metals without continuous nutrient supply in the subsurface offers a viable and economical alternative technology for in situ remediation of Cr(VI)-contaminated groundwater through formation of permeable reactive biobarriers (PRBB).

Sridhar Viamajala; Brent M. Peyton; Robin Gerlach; Vaideeswaran; William A. Apel; James N. Petersen

2008-12-01T23:59:59.000Z

67

From Bench to Bountiful Harvests: A Road Map for the Next Decade of Arabidopsis Research  

Science Journals Connector (OSTI)

...require increasing amounts of fuel to run vehicles, operate factories, and produce consumer...establish similar platforms for crop and ecological research (Figure 1) (Fiehn et al...Establish Similar Platforms for Crop and Ecological Research. (A) Virtual Shoot Apical...

Irene Lavagi; Mark Estelle; Wolfram Weckwerth; Jim Beynon; Ruth M. Bastow

2012-06-29T23:59:59.000Z

68

Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping for Post-Combustion CO{sub 2} Capture  

SciTech Connect (OSTI)

A novel Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping (Hot-CAP) has been developed by the University of Illinois at Urbana-Champaign and Carbon Capture Scientific, LLC in this three-year, bench-scale project. The Hot-CAP features a concentrated carbonate solution (e.g., K{sub 2}CO{sub 3}) for CO{sub 2} absorption and a bicarbonate slurry (e.g., KHCO{sub 3}) for high-pressure CO{sub 2} stripping to overcome the energy use and other disadvantages associated with the benchmark monoethanolamine (MEA) process. The project was aimed at performing laboratory- and bench-scale experiments to prove its technical feasibility and generate process engineering and scale-up data, and conducting a techno-economic analysis (TEA) to demonstrate its energy use and cost competitiveness over MEA. To meet project goals and objectives, a combination of experimental, modeling, process simulation, and economic analysis studies were applied. Carefully designed and intensive experiments were conducted to measure thermodynamic and reaction engineering data relevant to four major unit operations in the Hot-CAP (i.e., CO{sub 2} absorption, CO{sub 2} stripping, bicarbonate crystallization, and sulfate reclamation). The rate promoters that could accelerate the CO{sub 2} absorption rate into the potassium carbonate/bicarbonate (PCB) solution to a level greater than that into the 5 M MEA solution were identified, and the superior performance of CO{sub 2} absorption into PCB was demonstrated in a bench-scale packed-bed column. Kinetic data on bicarbonate crystallization were developed and applied for crystallizer design and sizing. Parametric testing of high-pressure CO{sub 2} stripping with concentrated bicarbonate-dominant slurries at high temperatures ({>=}140{degrees}C) in a bench-scale stripping column demonstrated lower heat use than with MEA. The feasibility of a modified process for combining SO{sub 2} removal with CO{sub 2} capture was preliminarily demonstrated. In addition to the experimental studies, the technical challenges pertinent to fouling of slurry-handling equipment and the design of the crystallizer and stripper were addressed through consultation with vendors and engineering analyses. A process flow diagram of the Hot-CAP was then developed and a TEA was performed to compare the energy use and cost performance of a nominal 550-MWe subcritical pulverized coal (PC)-fired power plant without CO{sub 2} capture (DOE/NETL Case 9) with the benchmark MEA-based post-combustion CO{sub 2} capture (PCC; DOE/NETL Case 10) and the Hot-CAP-based PCC. The results revealed that the net power produced in the PC + Hot-CAP is 609 MWe, greater than the PC + MEA (550 MWe). The 20-year levelized cost of electricity (LCOE) for the PC + Hot-CAP, including CO{sub 2} transportation and storage, is 120.3 mills/kWh, a 60% increase over the base PC plant without CO{sub 2} capture. The LCOE increase for the Hot-CAP is 29% lower than that for MEA. TEA results demonstrated that the Hot-CAP is energy-efficient and cost-effective compared with the benchmark MEA process.

Lu, Yongqi; DeVries, Nicholas; Ruhter, David; Manoranjan, Sahu; Ye, Qing; Ye, Xinhuai; Zhang, Shihan; Chen, Scott; Li, Zhiwei; O'Brien, Kevin

2014-03-31T23:59:59.000Z

69

Bench-Scale Test for Separation of Sr2 and Nd3 from HLLW Using TiBOGA  

E-Print Network [OSTI]

Research and Development Program (Aqueous Separations: Thermodynamics and Kinetics) of Office of Nuclear

Tian, Guoxin

2014-01-01T23:59:59.000Z

70

DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE  

SciTech Connect (OSTI)

Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtained from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a result of the WAO reaction. (4) Off-gas composition was measured in the resulting gas phase from the reaction. Benzene and hydrogen were formed during the reaction, but they were reasonably low in the off-gas at 0.096 and 0.0063 vol% respectively. Considering the consistency in replicating similar test results with simulated waste and Tank 48H waste under similar test conditions, the results confirm the validity of the simulant for other WAO test conditions.

Adu-Wusu, K; Paul Burket, P

2009-03-31T23:59:59.000Z

71

Characterization of mercury, arsenic, and selenium in the product streams of a bench-scale, inert-gas, oil shale retort  

SciTech Connect (OSTI)

The purpose of this study was to determine the effects of heating rates and maximum temperatures on the redistribution of mercury, arsenic, and selenium into the shale oil, retort water, and offgas of a 6-kg bench-scale retort. A Green River shale (western) from Colorado and a New Albany shale (eastern) from Kentucky were heated at 1-2{degree}C/min to a maximum temperature of 500{degree}C. The eastern and western shales were also heated at 2{degree}C/min to 750{degree}C and at 10{degree}C/min to 750{degree}C. Real-time monitoring of the offgas stream for mercury was accomplished with Zeeman atomic absorption spectroscopy or a microwave-induced helium plasma spectroscopy. Microwave-induced helium plasma spectroscopy was also used to monitor for arsenic in the offgas during retorting; little or no arsenic was observed in the offgas. Mass balance calculations for arsenic and selenium accounted for essentially 100% of those elements in the spent shale, shale oil, and retort water. The mass balance calculations suggest little offgas component for arsenic and selenium. This agrees with the results of the MPD monitoring of the offgas. These results indicate the potential pathway for mercury to enter the environment is from the offgas. Arsenic and selenium preferential redistribution into the shale oil may present problems during the upgrading process.

Olsen, K.B.; Evans, J.C.; Fruchter, J.S.; Girvin, D.C.; Nelson, C.L. (Pacific Northwest Lab., Richland, WA (USA))

1990-02-01T23:59:59.000Z

72

Bench-scale demonstration of biological production of ethanol from coal synthesis gas. Quarterly report, April 1, 1993--June 30, 1993  

SciTech Connect (OSTI)

Three bacteria, Clostridium ljungdahlii and isolates ERI-8 and 0-52, have been utilized in CSTR studies in order to directly compare the performance of the bacteria in continuous culture in converting synthesis gas components to ethanol. C. ljungdahlii is able to produce higher concentrations of ethanol than the other bacteria, largely because medium development with this bacterium has been ongoing for 2--3 years. However, both of the ERI isolates are quite promising for ethanol production and, therefore, will be studied further in the CSTR. A comparison of the energy costs for various ethanol recovery techniques has been made for use in the bench scale system. The techniques considered include direct distillation, extraction with various solvents followed by distillation, air stripping followed by distillation, pervaporation followed by distillation, reverse osmosis and temperature swing extraction. Extraction with a solvent possessing a relatively high distribution coefficient for ethanol and a high separation factor (relative ability to extract ethanol in favor of water), followed by distillation, is the most desirable technology.

Not Available

1993-09-01T23:59:59.000Z

73

Bench-Scale Development of a Hybrid Membrane-Absorption CO{sub 2} Capture Process: Preliminary Cost Assessment  

SciTech Connect (OSTI)

This report describes a study of capture costs for a hybrid membrane-absorption capture system based on Membrane Technology and Research, Inc. (MTR)’s low-pressure membrane contactors and the University of Texas at Austin’s 5 m piperazine (PZ) Advanced Flash Stripper (AFS; 5 m PZ AFS) based CO2 capture system. The report is submitted for NETL review, and may be superseded by a final topical report on this topic that will be submitted to satisfy the Task 2 report requirement of the current project (DE-FE0013118).

Freeman, Brice; Kniep, Jay; Pingjiao, Hao; Baker, Richard; Rochelle, Gary; Chen, Eric; Frailie, Peter; Ding, Junyuan; Zhang, Yue

2014-03-31T23:59:59.000Z

74

Scale-space research at Utrecht University  

Science Journals Connector (OSTI)

This paper describes the contributions to scale-space research by Utrecht University over the period 1989–1995. Starting with work on the fundamental basis of scale-space from causality and first principles, t...

Bart M. ter Haar Romeny

1996-01-01T23:59:59.000Z

75

Bench-scale demonstration of hot-gas desulfurization technology. Quarterly report, October 1 - December 31, 1994  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Morgantown Energy Technology Center (METC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal gas) streams of integrated gasification combined-cycle (IGCC) power systems. The programs focus on hot-gas particulate removal and desulfurization technologies that match or nearly match the temperatures and pressures of the gasifier, cleanup system, and power generator. The work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents which can reduce the sulfur in coal gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn{sub 2}TiO{sub 4} or ZnTiO{sub 3}), formed by a solid-state reaction of zinc (ZnO) and titanium dioxide (TiO{sub 2}), is currently one of the leading sorbents. This report summarizes the highlights and accomplishments of the October slipstream test run of the Zinc Titanate Fluid Bed Desulfurization/Direct Sulfur Recovery Process (ZTFBD/DSRP) Mobile Laboratory at the Department of Energy`s Morgantown Energy Technology Center. Although the run had to be shortened due to mechanical problems with METC`s gasifier, there was sufficient on-stream time to demonstrate highly successful operation of both the zinc titanate fluid bed desulfurization and the DSRP with actual coal gas.

NONE

1994-12-31T23:59:59.000Z

76

Removal of uranium from uranium-contaminated soils -- Phase 1: Bench-scale testing. Uranium in Soils Integrated Demonstration  

SciTech Connect (OSTI)

To address the management of uranium-contaminated soils at Fernald and other DOE sites, the DOE Office of Technology Development formed the Uranium in Soils Integrated Demonstration (USID) program. The USID has five major tasks. These include the development and demonstration of technologies that are able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from the soil, (3) treat the soil and dispose of any waste, (4) establish performance assessments, and (5) meet necessary state and federal regulations. This report deals with soil decontamination or removal of uranium from contaminated soils. The report was compiled by the USID task group that addresses soil decontamination; includes data from projects under the management of four DOE facilities [Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), and the Savannah River Plant (SRP)]; and consists of four separate reports written by staff at these facilities. The fundamental goal of the soil decontamination task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics or generating waste forms that are difficult to manage and/or dispose of. Emphasis in research was placed more strongly on chemical extraction techniques than physical extraction techniques.

Francis, C. W.

1993-09-01T23:59:59.000Z

77

In-situ subaqueous capping of mercury-contaminated sediments in a fresh-water aquatic system, Part I—Bench-scale microcosm study to assess methylmercury production  

SciTech Connect (OSTI)

Bench-scale microcosm experiments were designed to provide a better understanding of the potential for Hg methylation in sediments from an aquatic environment. Experiments were conducted to examine the function of sulfate concentration, lactate concentration, the presence/absence of an aqueous inorganic Hg spike, and the presence/absence of inoculums of Desulfovibrio desulfuricans, a strain of sulfate-reducing bacteria (SRB) commonly found in the natural sediments of aquatic environments. Incubations were analyzed for both the rate and extent of (methylmercury) MeHg production. Methylation rates were estimated by analyzing MeHg and Hg after 2, 7, 14, 28, and 42 days. The production of metabolic byproducts, including dissolved gases as a proxy for metabolic utilization of carbon substrate, was also monitored. In all treatments amended with lactate, sulfate, Hg, and SRB, MeHg was produced (37 ng/g-sediment dry weight) after only 48 h of incubation and reached a maximum sediment concentration of 127 ng/g-sediment dry weight after the 42 day incubation period. Aqueous phase production of MeHg was observed to be 10 ng/L after 2 day, reaching a maximum observed concentration of 32.8 ng/L after 14 days, and declining to 10.8 ng/L at the end of the incubation period (42 day). The results of this study further demonstrates that, in the presence of an organic carbon substrate, sulfate, and the appropriate consortia of microorganisms, sedimentary Hg will be transformed into MeHg through bacterial metabolism. Further, this study provided the basis for evaluation of an in-situ subaqueous capping strategy that may limit (or potentially enhance) MeHg production. -- Highlights: • Hg methylation by SRB is limited by the depletion of sulfate and carbon. • Hg methylation is sensitive to competition by methanogens for carbon substrate. • In high lactate environment, all lactate was utilized in the microcosms within seven days. • In the absence of adequate metabolic fuel, MeHg levels decreased on the time scale of days to weeks. • Capping materials should sequester MeHg produced and not contribute to the production of MeHg.

Randall, Paul M., E-mail: randall.paul@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH 45268 (United States); Fimmen, Ryan [Geosyntec Consultants, 150 E. Wilson Bridge Road, Suite 232, Worthington, OH 43085 (United States)] [Geosyntec Consultants, 150 E. Wilson Bridge Road, Suite 232, Worthington, OH 43085 (United States); Lal, Vivek; Darlington, Ramona [Battelle, 505 King Ave., Columbus, OH 43201 (United States)] [Battelle, 505 King Ave., Columbus, OH 43201 (United States)

2013-08-15T23:59:59.000Z

78

Bench-scale Development of an Advanced Solid sorbent-based CO2 Capture Process for Coal-fired Power Plalnts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

scale Development of an scale Development of an Advanced Solid Sorbent-based CO 2 Capture Process for Coal-fired Power Plants Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions, & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current

79

Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture. Manufacturing Plan for Aminosilicone-based CO{sub 2} Absorption Material  

SciTech Connect (OSTI)

A commercially cost effective manufacturing plan was developed for GAP-1m, the aminosilicone-based part of the CO{sub 2} capture solvent described in DE-FE0007502, and the small-scale synthesis of GAP-1m was confirmed. The plan utilizes a current intermediate at SiVance LLC to supply the 2013-2015 needs for GE Global Research. Material from this process was supplied to GE Global Research for evaluation and creation of specifications. GE Global Research has since ordered larger quantities (60 liters) for the larger scale evaluations that start in first quarter, 2013. For GE’s much larger future commercial needs, an improved, more economical pathway to make the product was developed after significant laboratory and literature research. Suppliers were identified for all raw materials.

Vogt, Kirkland

2013-02-01T23:59:59.000Z

80

Geothermal-reservoir engineering research at Stanford University. Second annual report, October 1, 1981-September 30, 1982  

SciTech Connect (OSTI)

Progress in the following tasks is discussed: heat extraction from hydrothermal reservoirs, noncondensable gas reservoir engineering, well test analysis and bench-scale experiments, DOE-ENEL Cooperative Research, Stanford-IIE Cooperative Research, and workshop and seminars. (MHR)

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.

1982-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "bench scale research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Automation on the laboratory bench  

Science Journals Connector (OSTI)

Automation on the laboratory bench ... In designing an automation kit the authors attempted to give chemistry a system which is versatile and easy to apply in taking over the boring and difficult task of controlling parameters manually. ...

M. Legrand; A. Foucard

1978-01-01T23:59:59.000Z

82

Research-scale melter test report  

SciTech Connect (OSTI)

The Melter Performance Assessment (MPA) activity in the Pacific Northwest Laboratory`s (PNL) Hanford Waste Vitrification Plant (HWVP) Technology Development (PHTD) effort is intended to determine the impact of noble metals on the operational life of the reference HWVP melter. As a part of this activity, a parametric melter test was completed using a Research-Scale Melter (RSM). The RSM is a small, approximately 1/100-scale melter, 6-in.-diameter, that allows rapid changing of process conditions and subsequent re-establishment of a steady-state condition. The test matrix contained nine different segments that varied the melter operating parameters (glass and plenum temperatures) and feed properties (oxide concentration, redox potential, and noble metal concentrations) so that the effects of these parameters on noble metal agglomeration on the melter floor could be evaluated. The RSM operated for 48 days and consumed 1,300 L of feed, equating to 153 tank turnovers. The run produced 531 kg of glass. During the latter portion of the run, the resistance between the electrodes decreased. Upon destructive examination of the melter, a layer of noble metals was found on the bottom. This was surprising because the glass residence time in the RSM is only 10% of the HWVP plant melter. The noble metals layer impacted the melter significantly. Approximately 1/3 of one paddle electrode was melted or corroded off. The cause is assumed to be localized heating from short circuiting of the electrode to the noble metal layer. The metal layer also removed approximately 1/2 in. of the refractory on the bottom of the melter. The mechanism for this damage is not presently known.

Cooper, M.F.; Elliott, M.L.; Eyler, L.L.; Freeman, C.J.; Higginson, J.J.; Mahoney, L.A.; Powell, M.R.

1994-05-01T23:59:59.000Z

83

Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High Pressure Stripping for Post-Combustion CO2 Capture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of a Hot Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High Pressure Stripping for Post-Combustion CO 2 Capture Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same

84

Experimental Investigation of Natural Coke Steam Gasification in a Bench-Scale Fluidized Bed: Influences of Temperature and Oxygen Flow Rate  

Science Journals Connector (OSTI)

However, natural coke was restricted in application and research due to its hot burst, difficult ignition, and abradability. ... disordering as a cause is now a real possibility on the basis of correlated optical and x-ray diffraction data from samples analyzed from within a thermal aureole of a Tertiary dyke emplaced in Permian coal-bearing strata. ... The thermal characteristics of natural coke steam gasification in a fluidized bed were three-dimensionally (3D) simulated based on the computational fluid dynamics (CFD) method using Fluent code. ...

Wen-guo Xiang; Chang-sui Zhao; Ke-liang Pang

2009-01-05T23:59:59.000Z

85

SITEWIDE CATEGORICAL EXCLUSION FOR SMALJ,SCALE RESEARCH AND DEVELOPMEN...  

Broader source: Energy.gov (indexed) [DOE]

The U.S. Department of Energy (DOE) Pacific Northwest Site Office (PNSO) proposes to conduct small-scale research and development projects, conventional laboratory operations,...

86

Continuous bench-scale slurry catalyst testing: Direct coal liquification of Rawhide sub-bituminous coal. Technical report, July 1995--December 1995  

SciTech Connect (OSTI)

In 1994 extensive tests were conducted in the Exxon Research and Engineering Recycle Coal Liquefaction Unit (RCLU) in Baton Rouge, Louisiana. The work conducted in 1994 explored a variety of dispersed iron molybdenum promoted catalyst systems for direct coal liquefaction of Rawhide subbituminus coal. The goal was to identify the preferred iron system. We learned that among the catalysts tested, all were effective; however, none showed a large process advantage over the others. In 1995, we tested dispersed molybdenum catalysts systems for direct coal liquefaction on a second subbituminous coal, Black Thunder. Catalyst properties are shown in Table 1. We also checked a molybdenum promoted iron case, as well as the impact of process variables, such as sulfur type, hydrogen treat rate, and catalyst addition rate, as shown in Table 2. In 1995, we ran 18 material balances over a 7 week period, covering 7 conditions. This report covers the 1995 operations and results.

Coless, L.A.; Poole, M.C.; Wen, M.Y.

1996-05-24T23:59:59.000Z

87

Bench-scale testing of on-line control of column flotation using a novel analyzer. Revised final report, [October 1992--October 1993]: Volume 1  

SciTech Connect (OSTI)

The main advantage of the project is that it allowed PTI to gain knowledge and experience about the proper approach, methods and hardware required to properly optimize and control column flotation performance. Many operational problems were incurred during the project, some of that PTI was able to solve during the project and other that must be overcome as the technology is further developed and commercialized. The key operating problems experienced with the KEN-FLOTE{sup TM} Column that must be further researched and overcome include: (1)The low concentrate solids content which limited the throughput capacity of the column, due to high froth washing requirements. The low concentrate solids content also lead to difficulty obtaining accurate On-Line Monitor measurements, due to the poor measurement sensitivity obtained with low solids content samples (particularly less than 5.0 wt %). (2) The higher-than-anticipated reagent dosages that undoubtedly contributed to the low solids content listed above, and also caused foaming problems within PTI`s On-Line Monitor. A defoaming reagent addition (Nalco 7810) was required to provide consistent sample size and reproducible On-Line Monitor counts for the concentrate samples collected within the circuit. PTI and UK`s CAER staff will continue to research alternative column design, particularly alternative air bubble generation and air distribution systems, to try to maximize column concentrate solids content while reducing reagent dosage requirements. In addition to the KEN-FLOTE{sup TM} Column operation there were also a number of hardware problems with PTI`s On-Line Quality Monitor that must be remedied for future commercial installations.

Not Available

1993-10-27T23:59:59.000Z

88

Continuous bench-scale slurry catalyst testing: Direct coal liquefaction of rawhide sub-bituminous coal. Final topical report, June 1994--December 1994  

SciTech Connect (OSTI)

Supported catalysts, either in fixed bed or ebullating bed reactors, are subject to deactivation with time, especially if the feed contains deactivating species, such as metals and coke precursors. Dispersed catalyst systems avoid significant catalyst deactivation because there are no catalyst pores to plug, hence no pore mouth plugging, and hopefully, no relevant decline of catalyst surface area or pore volume. The tests carried out in 1994, at the Exxon Research and Development Laboratories (ERDL) for DOE covered a slate of 5 dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal, which is similar to the Black Thunder coal tested earlier at Wilsonville. The catalysts included three iron and two molybdenum types. The Bailey iron oxide and the two molybdenum catalysts have previously been tested in DOE-sponsored research. These known catalysts will be used to help provide a base line and tie-in to previous work. The two new catalysts, Bayferrox PK 5210 and Mach-1`s Nanocat are very finely divided iron oxides. The iron oxide addition rate was varied from 1.0 to 0.25 wt % (dry coal basis) but the molybdenum addition rate remained constant at 100 wppm throughout the experiments. The effect of changing recycle rate, sulfur and iron oxide addition rates, first stage reactor temperature, mass velocity and catalyst type were tested in the 1994 operations of ERDL`s recycle coal liquefaction unit (RCLU). DOE will use these results to update economics and plan future work. The test program will resume in mid 1995, with another 2-3 months of pilot plant testing.

Coless, L.A.; Poole, M.C.; Wen, M.Y.

1995-11-21T23:59:59.000Z

89

RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM  

SciTech Connect (OSTI)

The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

2012-02-02T23:59:59.000Z

90

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DR Cook, January 2011, DOE/SC-ARM/TR-052 iii Contents 1.0 General Overview ................................................................................................................................. 1 2.0 Contacts ................................................................................................................................................. 1 2.1 Mentor .......................................................................................................................................... 1 2.2 Instrument Developer ................................................................................................................... 2 3.0 Deployment Locations and History ...................................................................................................... 2

91

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

84 84 UC-400 Annual Report 1999 Computing and Information Sciences R. A. Bair, Deputy Director and the Staff of the Computing and Information Sciences Directorate June 2000 Prepared for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

92

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hongbin Chen, Si-Chee Tsay, Wei-Chyung Wang, Chris Kumemerow, Graeme Stephens, Wesley Berg, Surabi. Menon, Yangang Liu, Mark Miller, Beat Schmid, Connor Flynn, Zhien Wang,...

93

CONTROLLED ATMOSPHERE BENCH-SCALE CALORIMETRY REVISITED  

E-Print Network [OSTI]

effective heat of combustion, thé mass loss rate, thé time to ignition12 . The standard Cône Calorimeter has

Paris-Sud XI, Université de

94

THOR Bench-Scale Steam Reforming Demonstration  

SciTech Connect (OSTI)

The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

Marshall, D.W.; Soelberg, N.R.; Shaber, K.M.

2003-05-21T23:59:59.000Z

95

THOR Bench-Scale Steam Reforming Demonstration  

SciTech Connect (OSTI)

The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

D. W. Marshall; N. R. Soelberg; K. M. Shaber

2003-05-01T23:59:59.000Z

96

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

... 7 3. Results of a Decade-long Control Simulation Using Geodesic Grid Coupled Climate Model at a Resolution 250 km, Including a...

97

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 The QCRad Value Added Product: Surface Radiation Measurement Quality Control Testing, Including Climatology Configurable Limits C.N. Long and Y. Shi September 2006 Work supported...

98

Bench-Scale Cross Flow Filtration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

boundary condition data will be important for the success of future integrated Earth system models (e.g., for the coupling of atmospheric system components with vegetation and...

99

NREL: Wind Research - Utility-Scale Wind Turbine Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wind turbine research addresses performance and reliability issues that large wind turbines experience throughout their lifespan and reduces system costs through innovative...

100

DISCUSSION: ECONOMIES OF SCALE AND SCOPE IN AGRICULTURAL BIOTECHNOLOGY RESEARCH  

E-Print Network [OSTI]

DISCUSSION: ECONOMIES OF SCALE AND SCOPE IN AGRICULTURAL BIOTECHNOLOGY RESEARCH JEREMY D. FOLTZ Evolution in science such as recent develop- ments in agricultural biotechnology creates new challenges and the private sectors. The present exponential growth in agricul- tural biotechnology research in both the pub

Foltz, Jeremy D.

Note: This page contains sample records for the topic "bench scale research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Removal of Waterborne Particles by Electrofiltration: Pilot-Scale Testing  

E-Print Network [OSTI]

researchers conducted bench-scale experiments to verify the effectiveness of electrofiltration, few studies plant. Presedimentation basin water was used as the influent with a turbidity ranging from 12 to 37 NTU to be more effective for removal of smaller particles (

Li, Ying

102

Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters Final Report to the Subsurface Biogeochemical Research Program  

SciTech Connect (OSTI)

. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Our study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3-part research plan involving (1) development of computer codes and techniques to estimate mass-transfer parameters from time-lapse electrical data; (2) bench-scale experiments on synthetic materials and materials from cores from the Hanford 300 Area; and (3) field demonstration experiments at the DOE’s Hanford 300 Area.

Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Timothy; Binley, Andrew; Lane, John

2014-03-10T23:59:59.000Z

103

DIRECT LIQUEFACTION PROOF-OF-CONCEPT PROGRAM - BENCH RUN PB-10 (HTI 227-109)  

SciTech Connect (OSTI)

This report presents the results of the bench-scale test, PB-10, performed at HTI's facilities under DOE contract (HTI Run No. 227-109). This bench test continues the work that was started in PDU testing 260-007. Previous bench test (PB-09, HTI 227-106) was performed on different seams of Chinese coal (Shenhua Ningtiaota Coal No.2 and No.3). Since another coal, Shangwan coal was selected for the liquefaction plant, PB-10 was made as approved by DOE/COR. The objective of this test was to evaluate the liquefaction performance of Shangwan coal utilizing various backend processing and recycle schemes. Additionally, this test was to collect available process data to allow for the best scale-up process design possible from this particular unit.

Unknown

1999-12-30T23:59:59.000Z

104

MICROMACHINED FOURIER TRANSFORM SPECTROMETER ON SILICON OPTICAL BENCH PLATFORM  

E-Print Network [OSTI]

MICROMACHINED FOURIER TRANSFORM SPECTROMETER ON SILICON OPTICAL BENCH PLATFORM Kyoungsik Yu1 a miniaturized Fourier transform spectrometer implemented on a silicon optical bench platform. The optical is becoming increasingly important in a number of applications such as environmental monitoring, chemical

Park, Namkyoo

105

Improving Efficiency of Tube Drawing Bench  

Broader source: Energy.gov [DOE]

Greenville Tube Company, a manufacturer of high-precision, small-diameter stainless steel tubing, conducted an in-house system performance optimization project to improve the efficiency of its No. 6 tube drawing bench. This four-page case study summarizes their experience.

106

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

SciTech Connect (OSTI)

IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

Gerber, Richard A.; Wasserman, Harvey J.

2012-03-02T23:59:59.000Z

107

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network [OSTI]

a strong program of research in theoretical nuclear physics,Research     12.1 Overview   The Nuclear Physics programan extensive program of experimental research in nuclear

Gerber, Richard A.

2012-01-01T23:59:59.000Z

108

Direct liquefaction proof-of-concept program. Finaltopical report, Bench Run 4 (227-95)  

SciTech Connect (OSTI)

This report presents the results of bench-scale work, Bench Run PB-04, conducted under the DOE Proof of Concept-Bench Option Program in direct coal liquefaction at Hydrocarbon Technologies, Inc. in Lawrenceville, New Jersey. The Bench Run PB-04 was the fifth of the nine runs planned in the POC Bench Option Contract between the U.S. DOE and Hydrocarbon Technologies, Inc. Bench Run PB-04 had multiple goals. These included the evaluation of the effects of dispersed slurry catalyst system on the performance of direct liquefaction of a subbituminous Wyoming Black Thunder mine coal under extinction recycle (454{degrees}C+ recycle) condition; another goal was to investigate the effects of the combined processing of automobile shredder residue (auto-fluff) with coal and other organic waste materials. PB-04 employed a two-stage, back-mixed, slurry reactor system with an interstage V/L separator and an in-line fixed-bed hydrotreater. The HTI`s newly modified P/Fe catalyst was very effective for direct liquefaction and coprocessing of Black Thunder mine subbituminous coal with Hondo resid and auto-fluff; during `coal-only` liquefaction mode, over 93% maf coal conversion was obtained with about 90% residuum conversion and as high as 67% light distillate (C{sub 4}-975 F) yield, while during `coprocessing` mode of operation, distillate yields varied between 58 and 69%; the residuum conversions varied between 74 and 89% maf. Overall, it is concluded, based upon the yield data available from PB-04, that auto-effective as MSW plastics in improving coal hydroconversion process performance. Auto-fluff did not increase light distillate yields nor decrease light gas make and chemical hydrogen consumption in coal liquefaction, as was observed to occur with MSW plastics.

Comolli, A.G.; Pradhan, V.R.; Lee, T.L.K. [and others

1997-03-01T23:59:59.000Z

109

Direct liquefaction proof-of-concept program: Final topical report, Bench Run 03 (227-93)  

SciTech Connect (OSTI)

This report presents the results of bench-scale work, Bench Run PB-03, conducted under the DOE Proof of Concept--Bench Option Program in direct coal liquefaction at Hydrocarbon Technologies, Inc. in Lawrenceville, New Jersey. The Bench Run PB-03 was the third of the nine runs planned in the POC Bench Option Contract between the US DOE and Hydrocarbon Technologies, Inc. The Bench Run PB-03 had multiple goals. These included the evaluation of the effects of dispersed slurry catalyst loadings and types on the performance of two-stage direct coal liquefaction, the effect of HTI`s new iron catalyst, modified with phosphorus, and the evaluation of the effect of recycle solvent hydrotreatment on the overall process performance. PB-03 employed a close-coupled (no interstage separator) configuration of hydroconversion reactors. Other features of PB-03 included the use of an in-line fixed bed hydrotreater for the net product. No significant effects on process performance was found by changing the loadings of iron and molybdenum in the ranges of 1,000--5,000 ppm for iron and 50--100 ppm for molybdenum. However, the modification of HTI`s iron-based gel catalyst with 100 ppm of phosphorous improved the process performance significantly. A newly tested Mo-Carbon dispersed catalyst was not found to be any better than Molyvan-A, which was used during all but one condition of PB-03. Hydrotreatment of part of the recycle solvent was found to have a positive influence on the overall performance.

Comolli, A.G.; Pradhan, V.R.; Lee, T.L.K.; Karolkiewicz, W.F.; Popper, G.

1996-12-01T23:59:59.000Z

110

RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE (WTP-SW) BY FLUIDIZED BED STEAM REFORMING (FBSR) USING THE BENCH SCALE REFORMER PLATFORM  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750°C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford’s WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing. The granular products (both simulant and radioactive) were tested and a subset of the granular material (both simulant and radioactive) were stabilized in a geopolymer matrix. Extensive testing and characterization of the granular and monolith material were made including the following: ? ASTM C1285 (Product Consistency Test) testing of granular and monolith; ? ASTM C1308 accelerated leach testing of the radioactive monolith; ? ASTM C192 compression testing of monoliths; and ? EPA Method 1311 Toxicity Characteristic Leaching Procedure (TCLP) testing. The significant findings of the testing completed on simulant and radioactive WTP-SW are given below: ? Data indicates {sup 99}Tc, Re, Cs, and I

Crawford, C.; Burket, P.; Cozzi, A.; Daniel, G.; Jantzen, C.; Missimer, D.

2014-08-21T23:59:59.000Z

111

Categorical Exclusion Determination Form Program or Field Office: Advanced Research Projects Agency -  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Department of Energy Categorical Exclusion Determination Form Program or Field Office: Advanced Research Projects Agency - Energy Project Title: (0207-1609) Planar Energy - Solid-State All Inorganic Rechargeable Lithium Batteries Location: Florida Proposed Action or Project Description: American Recover), and Reinvestment Act: ~ Funding will support laboratory, bench scale, and pilot scale research and development on lithium battery manufacturing processes for use in electrical energy storage for transportation. Categorical Exclusion(s) Applied: x ~ 83.6 Sitinglconstruct1onJoperationldecommlssloning of facilities for bench-scale research, conventional laboratory operations, smalJ..scale research and development and pilot projects *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of to CFRIO 21 £::lli:klkrc

112

Direct liquefaction proof-of-concept program: POC bench option run 01 (227-90). Final report  

SciTech Connect (OSTI)

This report presents the results of bench-scale work, Bench Run PB-01, conducted under the DOE Proof of Concept-Bench Option Program in direct coal liquefaction at Hydrocarbon Technologies, Inc. in Lawrenceville, New Jersey. The Bench Run PB-01 was the first of nine runs planned under the POC Bench Option Contract between the US DOE and Hydrocarbon Technologies, Inc. The primary goal of this bench run was to evaluate the most successful of the process improvements concepts, evolving out of the earlier CMSL Project, for conventional direct liquefaction as well as coprocessing of a sub-bituminous Black Thunder mine coal with waste organics such as waste plastics and heavy resid. The interstage separation of light ends and gases was indeed found to reduce the overall light gas-make from the liquefaction process. The organic waste feeds such as mixed plastics and vacuum resid, employed during Bench Run PB-01, in combined processing with coal, resulted in making the overall process more hydrogen efficient by virtue of reducing the light gas make and also decreasing the hydrogen consumption from the process, while at the same time improving the yields and quality of the distillate products. A definite synergy was found during the combined processing of coal with mixtures of vacuum resid and mixed waste plastics. The application of an all dispersed catalyst conversion reactor resulted in higher feed throughput at equivalent process performance, but also necessitated the use of an in-line hydrotreater for improving the quality of IBP-400{degrees}C distillate products. The combination of HTI`s iron gel catalyst and Molyvan-A was found very effective in achieving high levels of process performance; although, in recycled form, these catalysts were not as effective as the freshly added precursors.

Comolli, A.G.; Pradhan, V.R.; Lee, T.L.K.; Karolkiewicz, W.F.; Popper, G.

1996-05-01T23:59:59.000Z

113

Measuring a Utility-Scale Turbine Wake Using the TTUKa Mobile Research Radars  

Science Journals Connector (OSTI)

Observations of the wake generated by a single utility-scale turbine and collected by the Texas Tech University Ka-band mobile research radars on 27 October 2011 are introduced. Remotely sensed turbine wake observations using lidar technology have ...

Brian D. Hirth; John L. Schroeder; W. Scott Gunter; Jerry G. Guynes

2012-06-01T23:59:59.000Z

114

RESEARCH PAPER Scale-up and control of droplet production in coupled microfluidic  

E-Print Network [OSTI]

RESEARCH PAPER Scale-up and control of droplet production in coupled microfluidic flow Springer-Verlag 2012 Abstract A single microfluidic chip consisting of six microfluidic flow-focusing devices operating in parallel was developed to investigate the feasibility of scaling microfluidic droplet

Rothstein, Jonathan

115

41 Current projects Climate Variability Research Research within this Division focuses on large-scale  

E-Print Network [OSTI]

Research Division participates in the informal network for Earth System Models of Intermediate Complexity

Haak, Hein

116

Building Energy Software Tools Directory: e-Bench  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

e-Bench e-Bench e-Bench logo. Desktop computer tool for comprehensively measuring the energy, utility and environmental efficiency of a facility or process and comparing it to established benchmarks. e-Bench enables organisations, industry sectors and even countries to improve energy, utility and environmental performance. It is a management tool that will create financial savings through reduced energy use and improved load management, and improve indoor environmental quality (IEQ) (and consequent staff productivity). It also enables organisations to achieve financial savings through picking up on errors in their supplier invoices and through additional process and production efficiencies as well as to more adequately meet the requirements of Triple Bottom Line

117

Comparison of On-Road Portable and Bench Emission Measurements  

Broader source: Energy.gov [DOE]

Chassis dynamometer testing using a conventional emissions bench and on-road testing with a portable emissions system were performed to compare exhaust emissions from selected vehicles by both techniques.

118

Categorical Exclusion Determination Form Program or Field Office: Advanced Research Projects Agency -  

Broader source: Energy.gov (indexed) [DOE]

16) Penn State Univ. - 16) Penn State Univ. - Development of Rhodobacter as a Versatile Microbial Platform for Fuels Production Location: Pennsylvania Proposed Action or Project Description: American Recovcf)' and Reinvestment Act: 181 Funding will support laboratory and bench scale research and development on a rhodobacter fuel production platform for use in the production of energy dense, liquid transportation fuels from biological-based non-photosynthetic systems. Categorical Exclusion(s) Applied: x w 83.6 SiUng/constructionloperationldecommission!ng of facilities for bench-scale research, convenUooallaboratory operations. small-scale research and development and pilot projects O+~For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFRIO 21 ('tick Here

119

Categorical Exclusion Determination Form Program or Field Office: Advanced Research Projects Agency -  

Broader source: Energy.gov (indexed) [DOE]

3) Regents of the Univ. of California - 3) Regents of the Univ. of California - Electro-Autotrophic Synthesis of Higher Alcohols Location: California Proposed Action or Project Description: American Recovery and Reinvestment Act: 181 Funding will support laboratory and bench scale research and development on electro-autotrophic synthesis for use in the production of energy dense, liquid transpcrtatlon fuels from biological-based non-photosynthetic systems. Categorical Exclusion(s) Applied: x - 83.6 SitingJoonstructlonfoperationldecommissioning of facilities for bench-scale research, conventionallaboralory operations, small-scale research and development and pilot projects *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of to CFRlO 21 Click I !ere

120

Microsoft Word - Outdoor Small- and Pilot-Scale Research and Development 3768X_final  

Broader source: Energy.gov (indexed) [DOE]

Outdoor, Small- and Pilot-Scale Research and Development (3768X) Outdoor, Small- and Pilot-Scale Research and Development (3768X) Program or Field Office: Office of Science - ORNL Location(s) (City/County/State): Oak Ridge, Tennessee Proposed Action Description: The U.S. Department of Energy Oak Ridge National Laboratory (ORNL) Site Office (DOE-OSO) proposes to conduct outdoor, small- and pilot-scale research and development activities and associated transfer, lease, disposition or acquisition of interests in personal or real property involving advanced materials, biological and ecological systems, energy science, and national security including but not limited to collecting samples and analyzing ecosystem and atmospheric field data; developing, evaluating and testing equipment, materials and components; and

Note: This page contains sample records for the topic "bench scale research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Microsoft Word - Indoor Small- and Pilot-Scale Research and Development 3767X_final  

Broader source: Energy.gov (indexed) [DOE]

Indoor, Small- and Pilot-Scale Research and Development (3767X) Indoor, Small- and Pilot-Scale Research and Development (3767X) Program or Field Office: Office of Science - ORNL Location(s) (City/County/State): Oak Ridge, Tennessee Proposed Action Description: The U.S. Department of Energy Oak Ridge National Laboratory (ORNL) Site Office (DOE-OSO) proposes to conduct indoor, small- and pilot-scale research and development activities, laboratory operations, and associated transfer, lease, disposition or acquisition of interests in personal or real property involving advanced computing, advanced materials, biological and ecological systems, energy science, manufacturing, nanotechnology, national security, neutron sciences, chemical sciences, and nuclear physics including but not limited to developing, evaluating and testing: materials and their properties; systems; equipment; instrumentation; renewable energy systems; and

122

ATTACHMENT CATEGORICAL EXCLUSION FOR SMALL-SCALE RESEARCH AND DEVELOPMENT PROJECTS USING NANOSCALE  

Broader source: Energy.gov (indexed) [DOE]

CATEGORICAL EXCLUSION FOR SMALL-SCALE RESEARCH AND DEVELOPMENT PROJECTS USING NANOSCALE MATERIALS, PACIFIC NORTHWEST NATIONAL LABORATORY, RICHLAND,WASH[NGTON Proposed Adion: The U.S. Department of Energy (DOE) Pacific Northwest Site Office (PNSO) proposes to conduct indoor small-scale research and development projects and small-scale pilot projects using nanoscale materials. Nanoscale materials are engineered materials consisting of, or containing structures of between 1 and 100 nanometers (nm) that make use of properties unique to nanoscale forms of materials. Location of Action: The proposed action would occur on the Pacific Northwest National Laboratory (PNNL) Site and in the vicinity ofPNNL facilities in the State of Washington. Description of the Proposed Action:

123

300 Area Integrated Field-Scale Subsurface Research Challenge (IFRC) Field Site Management Plan  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) has established the 300 Area Integrated Field-Scale Subsurface Research Challenge (300 Area IFRC) on the Hanford Site in southeastern Washington State for the U.S. Department of Energy’s (DOE) Office of Biological and Environmental Research (BER) within the Office of Science. The project is funded by the Environmental Remediation Sciences Division (ERSD). The purpose of the project is to conduct research at the 300 IFRC to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The management approach for the 300 Area IFRC requires that a Field Site Management Plan be developed. This is an update of the plan to reflect the installation of the well network and other changes.

Freshley, Mark D.

2008-12-31T23:59:59.000Z

124

NETL: Onsite Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sorbent and Catalyst Preparation Facilities Sorbent and Catalyst Preparation Facilities NETL researchers are seeking technical solutions to pressing problems related to fossil fuel extraction, processing, and utilization. To this end, laboratory-scale facilities are used to prepare, test, and analyze sorbents and catalysts used in fixed-, moving-, and fluid-bed reactors — three types of reactors often used in advanced fossil-fueled power plants. Equipment in these facilities is also available for standard American Society for Testing and Materials (ASTM) attrition tests, crush measurements, and particle size analysis to confirm the suitability of the sorbents and catalysts for their intended applications. NETL researchers use these facilities in conjunction with facilities for sorbent/catalyst bench-scale testing and for in-situ (in-place) reaction studies. In 2000, NETL received an R&D 100 Award for its RSV-1 Regenerable Desulfurization Sorbent. The process for preparation of this sorbent has been patented, licensed, and published.

125

IRAN: laboratory test bench for hypertelescope pupil-plane recombination  

E-Print Network [OSTI]

IRAN: laboratory test bench for hypertelescope pupil-plane recombination F. Allouchea,b, F. Vakilib-Antipolis, CNRS UMR 6525 Parc Valrose, 06108 Nice Cedex 2, France ABSTRACT In 2004, our group proposed IRAN-apertures illuminated by laser sources are recombined using the IRAN scheme. The validation of the IRAN recombination

Liske, Jochen

126

On the Potential Use of Small Scale Fire Tests for Screening Steiner Tunnel Results for Spray Foam Insulation.  

E-Print Network [OSTI]

??The goal of this study is to assess the potential of using bench-scale fire testing to screen materials for the Steiner tunnel fire test. It… (more)

Didomizio, Matthew

2013-01-01T23:59:59.000Z

127

Liquid Metal Thermal Electric Converter bench test module  

SciTech Connect (OSTI)

This report describes the design, fabrication, and test of a Liquid Metal Thermal Electric Converter Bench Test Module. The work presented in this document was conducted as a part of Heat Engine Task of the US Department of Energy's (DOE) Solar Thermal Technology Program. The objective of this task is the development and evaluation of heat engine technologies applicable to distributed receiver systems, in particular, dish electric systems.

Lukens, L.L.; Andraka, C.E.; Moreno, J.B.

1988-04-01T23:59:59.000Z

128

Small-scale Facilities for Gas Clean Up and Carbon Capture Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Henry W. Pennline Henry W. Pennline Chemical Engineer National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6013 henry.pennline@netl.doe.gov Diane (DeeDee) Newlon Technology Transfer Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4086 r.diane.newlon@netl.doe.gov Small-Scale FacilitieS For GaS clean Up and carbon captUre reSearch Capabilities The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is conducting research on the cleanup of gas produced either by the combustion or gasification of fossil fuels. This effort directly supports the goal of various DOE technology programs (i.e., Carbon Sequestration, Gasification, etc.) to ensure the continued utilization of coal in an environmentally and economically

129

Close-coupled Catalytic Two-Stage Liquefaction (CTSL{trademark}) process bench studies. Final report, [October 1, 1988--July 31, 1993  

SciTech Connect (OSTI)

This is the final report of a four year and ten month contract starting on October 1, 1988 to July 31, 1993 with the US Department of Energy to study and improve Close-Coupled Catalytic Two-Stage Direct Liquefaction of coal by producing high yields of distillate with improved quality at lower capital and production costs in comparison to existing technologies. Laboratory, Bench and PDU scale studies on sub-bituminous and bituminous coals are summarized and referenced in this volume. Details are presented in the three topical reports of this contract; CTSL Process Bench Studies and PDU Scale-Up with Sub-Bituminous Coal-DE-88818-TOP-1, CTSL Process Bench Studies with Bituminous Coal-DE-88818-TOP-2, and CTSL Process Laboratory Scale Studies, Modelling and Technical Assessment-DE-88818-TOP-3. Results are summarized on experiments and studies covering several process configurations, cleaned coals, solid separation methods, additives and catalysts both dispersed and supported. Laboratory microautoclave scale experiments, economic analysis and modelling studies are also included along with the PDU-Scale-Up of the CTSL processing of sub-bituminous Black Thunder Mine Wyoming coal. During this DOE/HRI effort, high distillate yields were maintained at higher throughput rates while quality was markedly improved using on-line hydrotreating and cleaned coals. Solid separations options of filtration and delayed coking were evaluated on a Bench-Scale with filtration successfully scaled to a PDU demonstration. Directions for future direct coal liquefaction related work are outlined herein based on the results from this and previous programs.

Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.; Popper, G.A.; Stalzer, R.H.; Smith, T.O.

1993-06-01T23:59:59.000Z

130

E-Print Network 3.0 - air force bench Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lands (CEMML) Collection: Environmental Management and Restoration Technologies 64 LCA TECHNICAL REPORT TR-030827-01 Summary: Workloads - NpBench - August 2003 Laboratory...

131

Bench-Top Engine System for Fast Screening of Alternative Fuels and Fuel Additives  

Broader source: Energy.gov [DOE]

A bench-top engine testing system was used to fast screen the efficiency of fuel additives or fuel blends on NOx reduction

132

Categorical Exclusion Determination Form Program or Field Office: Advanced Research Projects Agency -  

Broader source: Energy.gov (indexed) [DOE]

Location: Location: New York Proposed Action or Project Description: American Recovery and Reinvestment Act: 181 Funding will support laboratory and bench scale research and development on aero-thermodynamic Inertial separation for use in carbon capture processes.' Categorical Exclusion(s) Applied: x - 83.6 Siting/constructiOnloperationtdecommissioning of facilities for benctrscale research, conventionallaboralory operations, small-scala research and development and pilot projects *-For the complete DOE National Euyironmental Policy Act regulations regarding categorical exclusions, see Subpart D of to CFRIO 21 [lkk Here lois action vr'Ould not: threaten a violation of applicable statutory, regulatory, or pennit requirements for environment, safety, and health, including OOE andlor Executive Orders;

133

Status of health and environmental research relative to coal gasification 1976 to the present  

SciTech Connect (OSTI)

Health and environmental research relative to coal gasification conducted by Argonne National Laboratory, the Inhalation Toxicology Research Institute, and Oak Ridge National Laboratory under DOE sponsorship is summarized. The studies have focused on the chemical and toxicological characterization of materials from a range of process streams in five bench-scale, pilot-plant and industrial gasifiers. They also address ecological effects, industrial hygiene, environmental control technology performance, and risk assessment. Following an overview of coal gasification technology and related environmental concerns, integrated summaries of the studies and results in each area are presented and conclusions are drawn. Needed health and environmental research relative to coal gasification is identified.

Wilzbach, K.E.; Reilly, C.A. Jr. (comps.)

1982-10-01T23:59:59.000Z

134

Evolution of the N = 28 shell closure: a test bench for nuclear forces  

E-Print Network [OSTI]

Evolution of the N = 28 shell closure: a test bench for nuclear forces O. Sorlin1 and M.-G. Porquet;The N = 28 shell closure: a test bench for nuclear forces 2 reach a value of 4.8 MeV. This effect has and 90). More generally, questions related to the evolution of nuclear forces towards the drip

Boyer, Edmond

135

Research of Dynamic Axle Load Truck Scale Sampling Data Selection Method  

Science Journals Connector (OSTI)

In order to improve the weighing accuracy of the dynamic axle load truck scale, this article carries the static ... the dynamic truck scale and analyzes the test data. From the list, mapping, analysis and ... ,we...

Jun Liu; Li-hong Li

2012-01-01T23:59:59.000Z

136

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network [OSTI]

provide more guidance and support. Large  Scale  Computing  and  Storage  Requirements  for  Fusion  Energy  provide much-needed additional resources there remains a need to employ codes Large  Scale  Computing  and  Storage  Requirements  for  Fusion  Energy  provide large gains with little application porting effort. Large  Scale  Computing  and  Storage  Requirements  for  Fusion  Energy  

Gerber, Richard

2012-01-01T23:59:59.000Z

137

NREL: Biomass Research - Daniel J. Schell  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Daniel J. Schell Daniel J. Schell Photo of Daniel Schell Daniel Schell is a senior biochemical engineer and supervisor of the Bioprocess Integration R&D section of the National Bioenergy Center at NREL. Mr. Schell has more than 25 years of research experience in bio-based conversion of lignocellulosic biomass and has expertise in integrated operations at the bench and pilot scales. He also manages numerous projects for industrial clients investigating various aspects of lignocellulosic biomass conversion and currently leads a multi-disciplinary team of engineers, microbiologists, and chemists. Research Interests Integrated biomass processing High solids biomass conversion Fermentation development Separation processes Technoeconomic analysis Measurement uncertainty Pilot plant operation and process scale up

138

GEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 3, PAGES 377-380, FEBRUARY 1, 2000 Anomalous scaling of mesoscale tropospheric humidity  

E-Print Network [OSTI]

GEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 3, PAGES 377-380, FEBRUARY 1, 2000 Anomalous scaling will take up to 20 s to respond. In this paper we report the first sci- entific results using the full 20-Hz on the idea of chaotic isentropic lateral mixing [e.g., Emanuel and Pierrehumbert, 1996]. Our present study

Cho, John Y. N.

139

Preliminary Investigations on a Test Bench for Integrated Micro-CHP Energy Systems  

Science Journals Connector (OSTI)

Abstract Micro-CHP (Combined Heat and Power) energy systems are potentially suitable for residential and tertiary utilities, typically characterized by low-grade heat demand and limited electric-to-thermal energy demand ratio values. Different innovative and under development CHP technologies are currently investigated in small scale units, but a standard has not been identified till now. Moreover, depending on the load request, the produced electricity can be used, stored in electric accumulator or in the external net, or integrated with other external sources. Contextually, the available heat can be used, accumulated inside the system or dissipated. The actual convenience of small size CHP systems depends on the demand profiles and the operation management logic. A test facility is being developed, at the University of Bologna, for the experimental characterization of the cogenerative performance of small scale hybrid power systems, composed of micro-CHP systems of different technologies (such as Organic Rankine Cycles and Proton Exchange Membrane Fuel Cells), a battery and a heat recovery subsystem. The test set-up is also integrated with an external load simulator, in order to generate variable load profiles. This report describes the main characteristics of the implemented test bench, the selection procedure of the adopted micro-CHP unit and expected performance.

Michele Bianchi; Lisa Branchini; Andrea De Pascale; Francesco Melino; Antonio Peretto

2014-01-01T23:59:59.000Z

140

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

E-Print Network [OSTI]

Scale Nanostructure Electronic Structure Calculations mp261d) Some electronic structure calculations, including someNanostructure Electronic Structure Calculations Lin-Wang

Gerber, Richard

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bench scale research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 99, NO. D7, PAGES 14,353-14,360, JULY 20, 1994 Microsecond-scale electric field pulses in cloud lightning  

E-Print Network [OSTI]

the microsecond-scale structure of the cloud-flash field. Recently, the University of Florida lightning research-scale electric field pulses in cloud lightning discharges Y. Villanueva, V. A. Rakov, and M. A. Uman Department with a 500-ns sampling interval, microsecond-scale pulses in different stages of cloud flashes in Florida

Florida, University of

142

Bench-Top Engine System for Fast Screening of Alternative Fuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

System for Fast Screening of Alternative Fuels and Fuel Additives A bench-top engine testing system was used to fast screen the efficiency of fuel additives or fuel blends on NOx...

143

Large Scale Computing and Storage Requirements for Biological and Environmental Research  

E-Print Network [OSTI]

Office (BER), DOE Office of Science National Energy ResearchDepartment of Energy, Office of Science, Advanced ScientificDirectors of the Office of Science, Office of Biological &

DOE Office of Science, Biological and Environmental Research Program Office BER,

2010-01-01T23:59:59.000Z

144

Discovering Pictorial Brand Associations from Large-Scale Online Image Data Disney Research Pittsburgh  

E-Print Network [OSTI]

Discovering Pictorial Brand Associations from Large-Scale Online Image Data Gunhee Kim Disney concepts associated with brands, and (ii) localizing the re- gions of brand in images. For experiments we collect about five millions of images of 48 brands crawled from five popu- lar online photo sharing sites

Xing, Eric P.

145

DOE - Office of Legacy Management -- Brown University - Metcalf Research  

Office of Legacy Management (LM)

Brown University - Metcalf Research Brown University - Metcalf Research Lab - RI 01 FUSRAP Considered Sites Site: Brown University (Metcalf Research Lab.) (RI.01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Providence , Rhode Island RI.01-1 Evaluation Year: 1987 RI.01-1 Site Operations: Research/Development on the preparation of pure halides of heavy metals, Bench Scale Process, and Sample & Analysis. RI.01-1 Site Disposition: Eliminated - Potential for residual radioactive contamination from small quantities of radioactive material is considered remote RI.01-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Thorium RI.01-1 Radiological Survey(s): None Indicated

146

DOE/SNL-TTU scaled wind farm technology facility : research opportunities for study of turbine-turbine interaction.  

SciTech Connect (OSTI)

The proposed DOE/Sandia Scaled Wind Farm Technology Facility (SWiFT) hosted by Texas Tech University at Reese Technology Center in Lubbock, TX, will provide a facility for experimental study of turbine-turbine interaction and complex wind farm aerodynamics. This document surveys the current status of wind turbine wake and turbine-turbine interaction research, identifying knowledge and data gaps that the proposed test site can potentially fill. A number of turbine layouts is proposed, allowing for up to ten turbines at the site.

Barone, Matthew Franklin; White, Jonathan

2011-09-01T23:59:59.000Z

147

Base program on energy related research. Quaterly report, February 1, 1997--April 30, 1997  

SciTech Connect (OSTI)

Progress in four major research areas is summarized in this report. In the area of oil and gas, subtasks reported on are miscible-immiscible gas injection processes, development of a portable data acquisition system and coalbed methane simulator, tank bottom waste processing using the TaBoRR Process, and bench-scale testing and verification of pyrolysis concept for remediation of tank bottoms. Advanced systems applications research includes design, assembly, and testing of a bench-scale fuel preparation and delivery system for pressurized application using coal fines. Five subtasks are reported on for the environmental technologies research area: (1) conditioning and hydration reactions associated with clean coal technology ash disposal/utilization, (2) remediation of contaminated soils, (3) the Syn-Ag Process: coal combustion ash management option, (4) the Maxi-Acid Process: in-situ amelioration of acid mine drainage, and (5) PEAC value-added project. Under applied energy science, heavy oil/plastics co-processing activities and fossil fuel and hydrocarbon conversion using hydrogen-rich plasmas are described. Information supplied for each subtask includes an account status report, which includes budget and schedule data, and a brief project summary consisting of research objectives, accomplishments, and activities scheduled for the next quarter. 2 tabs.

NONE

1998-12-31T23:59:59.000Z

148

Assembly and bench testing of a spiral fiber tracker for the J-PARC TREK/E36 experiment  

E-Print Network [OSTI]

This study presents the recent progress made in developing a spiral fiber tracker (SFT) for use in the experiment TREK/E36 planned at the Japan Proton Accelerator Research Complex. This kaon decay experiment uses a stopped positive kaon beam to search for physics beyond the Standard Model through precision measurements of lepton universality and through searches for a heavy sterile neutrino and a dark photon. Detecting and tracking positrons and positive muons from kaon decays are of importance in achieving high-precision measurements; therefore, we designed and are developing the new tracking detector using a scintillating fiber. The SFT was completely assembled, and in a bench test, no dead channel was determined.

Makoto Tabata; Sébastien Bianchin; Michael D. Hasinoff; Robert S. Henderson; Keito Horie; Youichi Igarashi; Jun Imazato; Hiroshi Ito; Alexander Ivashkin; Hideyuki Kawai; Yury Kudenko; Oleg Mineev; Suguru Shimizu; Akihisa Toyoda; Hirohito Yamazaki

2014-11-29T23:59:59.000Z

149

Assembly and bench testing of a spiral fiber tracker for the J-PARC TREK/E36 experiment  

E-Print Network [OSTI]

This study presents the recent progress made in developing a spiral fiber tracker (SFT) for use in the experiment TREK/E36 planned at the Japan Proton Accelerator Research Complex. This kaon decay experiment uses a stopped positive kaon beam to search for physics beyond the Standard Model through precision measurements of lepton universality and through searches for a heavy sterile neutrino and a dark photon. Detecting and tracking positrons and positive muons from kaon decays are of importance in achieving high-precision measurements; therefore, we designed and are developing the new tracking detector using a scintillating fiber. The SFT was completely assembled, and in a bench test, no dead channel was determined.

Tabata, Makoto; Hasinoff, Michael D; Henderson, Robert S; Horie, Keito; Igarashi, Youichi; Imazato, Jun; Ito, Hiroshi; Ivashkin, Alexander; Kawai, Hideyuki; Kudenko, Yury; Mineev, Oleg; Shimizu, Suguru; Toyoda, Akihisa; Yamazaki, Hirohito

2014-01-01T23:59:59.000Z

150

Multi-Scale Action Effectiveness Research in the Lower Columbia River and Estuary, 2012  

SciTech Connect (OSTI)

The study reported herein was conducted for the U.S. Army Corps of Engineers, Portland District (USACE) by researchers at the Pacific Northwest National Laboratory (PNNL), Oregon Department of Fish and Wildlife (ODFW), National Marine Fisheries Service (NMFS), University of Washington (UW), and U.S. Fish and Wildlife Service (USFWS). The goal of the study was to evaluate the ecological benefits of restoration actions for juvenile salmon in the lower Columbia River and estuary (LCRE; rkm 0–234).

Johnson, Gary E.; Sather, Nichole K.; Storch, Adam; Johnson, Jeff; Skalski, J. R.; Teel, D. J.; Brewer, Taylor; Bryson, Amanda J.; Dawley, Earl M.; Kuligowski, D. R.; Whitesel, T.; Mallette, Christine

2013-11-30T23:59:59.000Z

151

Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture  

SciTech Connect (OSTI)

This report presents system and economic analysis for a carbon capture unit which uses an amino-silicone solvent for CO{sub 2} capture and sequestration (CCS) in a pulverized coal (PC) boiler. The amino-silicone solvent is based on GAP-1 with Tri-Ethylene Glycol (TEG) as a co-solvent. The report also shows results for a CCS unit based on a conventional approach using mono-ethanol amine (MEA). Models were developed for both processes and used to calculate mass and energy balances. Capital costs and energy penalty were calculated for both systems, as well as the increase in cost of electricity. The amino-silicone solvent based system demonstrates significant advantages compared to the MEA system.

Vipperla, Ravikumar; Yee, Michael; Steele, Ray

2012-11-01T23:59:59.000Z

152

SUPPLEMENTAL INFORMATION Treatability of Complex Effluents in High-Throughput and Bench Scale Microbial  

E-Print Network [OSTI]

. The efficiency was calculated using only recovered hydrogen and combined hydrogen and methane, using the heat of combustion to calculate the energy contained in the gas. Figure S13. Open circuit gas production and COD

153

Bench scale testing - Phase I, Task 4. Topical progress report, September 1994--January 1995  

SciTech Connect (OSTI)

The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. With sufficient decontamination, some of the material from DOE facilities could be released as scrap into the commercial sector for recycle, thereby reducing the volume of radioactive waste requiring disposal. Although recycling may initially prove to be more costly than current disposal practices, rapidly increasing disposal costs are expected to make recycling more and more cost effective. Additionally, recycling is now perceived as the ethical choice in a world where the consequences of replacing resources and throwing away reusable materials are impacting the well-being of the environment.

NONE

1995-07-01T23:59:59.000Z

154

TYPE OF OPERATION R Research & Development T& Facility Type  

Office of Legacy Management (LM)

--____ --____ R Research & Development T& Facility Type 0 Production scale testing a Pilat scale Y-. Bench Scale Process i Theoretical Studies Sample & Analysis 0 Productian 0 Disposal/Storage a Research Organization a Government 0 Other Sponsored i F[fa' tty ------__------__ I Prime 5 Subcontractor 0 Purchase Order a Other information (i.e., cost + fixed fee, unit p CgNTRACTING PERIOD: L.&G , PX& & cx LFkoL ~~~~~~~~~----------_ __ _______ OWNERSH; P: AEC/MED AEC/MED GOVT GOVT CONTRACTOR Cot+ "ACTOR OWNED LEASED ----- -----_ w!ET) C_EtlSLE ~~s!_NE!?~~ z L ACZD -------- - LANDS a BUILDINGS 0 EQUIPMENT u ORE OR RAW MATL FINAL PRODUCT f i ; : ' 0 WASTE .% RESIDLIE q 0 G G &EC/NED INVOLVEtiE?4T AT SITE .--------_------___~~~~~~~-- ,I

155

Research on Optimal Operation Method of Large Scale Urban Water Distribution System  

Science Journals Connector (OSTI)

Abstract In consideration of using fewer decision variables in building least cost pumping operation optimal, the two-phase optimal method is used as the frame. By abstracting pump stations into high level reservoirs, the water distribution system hydraulic model can be modified into a modality, which can be used in first optimal phase of two-phase optimal method. And by building on feasible pump combination database, a new optimal method in the second optimal phase will be proposed. And the proposed new method in the second optimal phase will be embedded into the first optimal phase, so that the problem of results discordant in different phases of two-phase optimal method will be solved. By introducing new concept and improving present optimal method, a more practical optimal operation method of water distribution system (WDS) will be established. By applying to a large scale water distribution system, the practicability of proposed method has been evaluated.

X. Jin; W. Wu

2014-01-01T23:59:59.000Z

156

Research project on CO2 geological storage and groundwaterresources: Large-scale hydrological evaluation and modeling of impact ongroundwater systems  

SciTech Connect (OSTI)

If carbon dioxide capture and storage (CCS) technologies areimplemented on a large scale, the amounts of CO2 injected and sequesteredunderground could be extremely large. The stored CO2 then replaces largevolumes of native brine, which can cause considerable pressureperturbation and brine migration in the deep saline formations. Ifhydraulically communicating, either directly via updipping formations orthrough interlayer pathways such as faults or imperfect seals, theseperturbations may impact shallow groundwater or even surface waterresources used for domestic or commercial water supply. Possibleenvironmental concerns include changes in pressure and water table,changes in discharge and recharge zones, as well as changes in waterquality. In compartmentalized formations, issues related to large-scalepressure buildup and brine displacement may also cause storage capacityproblems, because significant pressure buildup can be produced. Toaddress these issues, a three-year research project was initiated inOctober 2006, the first part of which is summarized in this annualreport.

Birkholzer, Jens; Zhou, Quanlin; Rutqvist, Jonny; Jordan,Preston; Zhang,K.; Tsang, Chin-Fu

2007-10-24T23:59:59.000Z

157

Research Highlights Biocatalysis and Biosynthesis (BB)  

E-Print Network [OSTI]

& S. cerevisiae Downstream Processing · Recovery and purification of proteins & small molecules GMP: Fermentation/Cell Growth · Cultivation of bacteria, yeast & algae · Process development & optimization · Pilot-scale-flow centrifuges ·microfluidizer, high-pressure homogenizer, & French press ·bench- to pilot-scale ultra

Minnesota, University of

158

CROSSING THE BRIDGE: TAKING AUDIO DSP FROM THE TEXTBOOK TO THE DSP DESIGN ENGINEER'S BENCH  

E-Print Network [OSTI]

CROSSING THE BRIDGE: TAKING AUDIO DSP FROM THE TEXTBOOK TO THE DSP DESIGN ENGINEER'S BENCH Robert C it is quite suitable to use audio engineering examples to demonstrate DSP concepts and to motivate student. Maher Department of Electrical and Computer Engineering, Montana State University, Bozeman MT 59717 rob

Maher, Robert C.

159

Categorical Exclusion Determination Form Program or Field Office: Advanced Research Projects Ag  

Broader source: Energy.gov (indexed) [DOE]

Project T Project T itle: (02 06- 1565) Columbia - Biofue ls from C02 using Amm onia-Oxid izing Bacte ria in a Reve rse Microbi a l Fue l Cell L ocati on: New Y ork Pr oposed Action or Proj ect Description: American Recovery and Reinvestment Act: D Funding will support in-lab R&D activities involving liquid biofuel production from biological-based non-photosynthetic systems. Proposed work consists of (1) initial testing and genetic modification of ammonia-oxidizing and iron-oxidizing bacteria used to produce liquid biofuel and (2) development and optimization of a reverse microbial fuel cel l. All proposed work will take place on the Columbia University campus in New York, NY. Categorical Exciusi on(s) Applied: x - 83.6 Siting/construction/operation/decommissioning of facilities for bench-scale research, conventional laboratory operations, small-scale research and developme

160

Reducing Data Center Loads for a Large-scale, Low Energy Office Building: NREL's Research Support Facility (Book), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Center Loads for a Large- Data Center Loads for a Large- scale, Low-energy Office Building: NREL's Research Support Facility The NREL Approach * December 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 2 National Renewable Energy Laboratory Reducing Data Center Loads for a Large-Scale, Low-Energy Office Building: NREL's Research Support Facility Michael Sheppy, Chad Lobato, Otto Van Geet, Shanti Pless, Kevin Donovan, Chuck Powers National Renewable Energy Laboratory Golden, Colorado December 2011

Note: This page contains sample records for the topic "bench scale research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations  

SciTech Connect (OSTI)

This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptual drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer drilling tests, as well as single impact tests, have been designed and executed. Both Berea sandstone and Mancos shale samples are used. In single impact tests, three impacts are sequentially loaded at the same rock location to investigate rock response to repetitive loadings. The crater depth and width are measured as well as the displacement and force in the rod and the force in the rock. Various pressure differences across the rock-indentor interface (i.e. bore pressure minus pore pressure) are used to investigate the pressure effect on rock penetration. For hammer drilling tests, an industrial fluid hammer is used to drill under both underbalanced and overbalanced conditions. Besides calibrating the modeling tool, the data and cuttings collected from the tests indicate several other important applications. For example, different rock penetrations during single impact tests may reveal why a fluid hammer behaves differently with diverse rock types and under various pressure conditions at the hole bottom. On the other hand, the shape of the cuttings from fluid hammer tests, comparing to those from traditional rotary drilling methods, may help to identify the dominant failure mechanism that percussion drilling relies on. If so, encouraging such a failure mechanism may improve hammer performance. The project is summarized in this report. Instead of compiling the information contained in the previous quarterly or other technical reports, this report focuses on the descriptions of tasks, findings, and conclusions, as well as the efforts on promoting percussion drilling technologies to industries including site visits, presentations, and publications. As a part of the final deliveries, the 3D numerical model for rock mechanics is also attached.

Michael S. Bruno

2005-12-31T23:59:59.000Z

162

Data Acquisition System for Electric Vehicle's Driving Motor Test Bench Based on VC++  

Science Journals Connector (OSTI)

In order to solve such problems as great labor intensity, high cost, low efficiency and accuracy during the performance experiment for driving motor system of electric vehicles, and realize data acquisition automatically and synchronously, a data acquisition system for driving motor test bench based on visual instruments is designed. This data acquisition system can be used to obtain the driving motor's parameters of currents and voltages at the same time. This system's hardware is based on electric vehicle's motor test bench in Beijing Institute of Technology, and combined with PXI2010 data acquisition card from ADLINK Company. Visual c++ software is adopted as development tool. In this paper, the design and realization of the hardware and software are presented. Experiment results show that this system improves the efficiency and quality of testing task with high utility. And experiment data can be obtained accurately.

Song Qiang; Lv Chenguang

2012-01-01T23:59:59.000Z

163

From Bench to Bountiful Harvests: A Road Map for the Next Decade of Arabidopsis Research  

Science Journals Connector (OSTI)

...modules of the AIP included the MASCP-Gator ( http://www.masc-proteomics.org/mascp/index.php/Gator )---a Web interface integrating world-wide...Joshi, H.J. , et al. (2011). MASCP Gator: An aggregation portal for the visualization...

Irene Lavagi; Mark Estelle; Wolfram Weckwerth; Jim Beynon; Ruth M. Bastow

2012-06-29T23:59:59.000Z

164

From Bench to Bountiful Harvests: A Road Map for the Next Decade of Arabidopsis Research  

Science Journals Connector (OSTI)

...requirements for food and fuel supplies. Fundamental...increasing amounts of fuel to run vehicles...for food, feed, fuel, and shelter and...small size, rapid generation time, small genome...available in full in the annual MASC report (Multinational...constituents. This type of holistic approach...

Irene Lavagi; Mark Estelle; Wolfram Weckwerth; Jim Beynon; Ruth M. Bastow

2012-06-29T23:59:59.000Z

165

From Bench to Bountiful Harvests: A Road Map for the Next Decade of Arabidopsis Research  

Science Journals Connector (OSTI)

...technological challenges remain. It...present many challenges for plant science...including the sustainable production of food and energy. By fulfilling...meeting these challenges. An in-depth...through the integration of climatological...

Irene Lavagi; Mark Estelle; Wolfram Weckwerth; Jim Beynon; Ruth M. Bastow

2012-06-29T23:59:59.000Z

166

Direct liquefaction proof-of-concept program: Bench Run 05 (227-97). Final report  

SciTech Connect (OSTI)

This report presents the results Bench Run PB-05, conducted under the DOE Proof of Concept - Bench Option Program in direct coal liquefaction at Hydrocarbon Technologies, Inc. in Lawrenceville, New Jersey. Bench Run PB-05 was the fifth of the nine runs planned in the POC Bench Option Contract between the U.S. DOE and included the evaluation of the effect of using dispersed slurry catalyst in direct liquefaction of a high volatile bituminous Illinois No. 6 coal and in combined coprocessing of coal with organic wastes, such as heavy petroleum resid, MSW plastics, and auto-shredder residue. PB-05 employed a two-stage, back-mixed, slurry reactor system with an interstage V/L separator and an in-line fixed-bed hydrotreater. Coprocessing of waste plastics with Illinois No. 6 coal did not result in the improvement observed earlier with a subbituminous coal. In particular, decreases in light gas yield and hydrogen consumption were not observed with Illinois No. 6 coal as they were with Black Thunder Mine coal. The higher thermal severity during PB-05 is a possible reason for this discrepancy, plastics being more sensitive to temperatures (cracking) than either coal or heavy resid. The ASR material was poorer than MSW plastics in terms of increasing conversions and yields. HTI`s new dispersed catalyst formulation, containing phosphorus-promoted iron gel, was highly effective for the direct liquefaction of Illinois No. 6 coal under the reaction conditions employed; over 95% coal conversion was obtained, along with over 85% residuum conversion and over 73% distillate yields.

Comolli, A.G.; Pradhan, V.R.; Lee, T.L.K.; Karolkiewicz, W.F.; Popper, G.

1997-04-01T23:59:59.000Z

167

Robot calibration without scaling  

E-Print Network [OSTI]

methods. Scaling is a common way of improving the condition number for a matrix. Researchers in other fields have developed specific methods of scaling matrices to improve the condition number. However, robotics researchers have not specifically addressed...

Ives, Thomas W.

2012-06-07T23:59:59.000Z

168

PROCEEDINGS of the HUMAN FACTORS AND ERGONOMICS SOCIETY 42nd ANNUAL MEETING--IYYB SCALED WORLDS AS RESEARCH TOOLS: A  

E-Print Network [OSTI]

PROCEEDINGS of the HUMAN FACTORS AND ERGONOMICS SOCIETY 42nd ANNUAL MEETING--IYYB 1157 SCALED and Ergonomics Society (pp. 163-167). Santa Monica, CA: HFES. ACKNOWLEDGEMENTS The work at George Mason

Gray, Wayne

169

Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field-Scale Subsurface Research Challenge Site at Rifle, Colorado, Quality Assurance Project Plan  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors and associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project.

Fix, N. J.

2008-01-07T23:59:59.000Z

170

Spray-Formed Tooling with Micro-Scale Features  

SciTech Connect (OSTI)

Molds, dies, and related tooling are used to shape many of the plastic and metal components we use every day at home and work. Traditional mold-making practices are labor and capital equipment intensive, involving multiple machining, benching and heat treatment operations. Spray forming is an alternative method to manufacture molds and dies. The general concept is to atomize and deposit droplets of a tooling alloy onto a pattern to form a thick deposit while imaging the pattern’s shape, surface texture and details. Unlike conventional machining, this approach can be used to fabricate tooling with micro-scale surface features. This paper describes a research effort to spray form molds and dies that are used to image micro-scale surface textures into polymers. The goal of the study is to replicate textures that give rise to superhydrophobic behavior by mimicking the surface structure of highly water repellent biological materials such as the lotus leaf. Spray conditions leading to high transfer fidelity of features into the surface of molded polymers will be described. Improvements in water repellency of these materials was quantified by measuring the static contact angle of water droplets on flat and textured surfaces.

Kevin McHugh

2010-06-01T23:59:59.000Z

171

Abstract--This paper presents the work program of DESIMAX, a collaborative research project looking at wide-scale  

E-Print Network [OSTI]

looking at wide-scale implementation of demand side management (DSM) within electricity networks. To fully reduce energy demand. Demand side management (DSM) is a general term denoting various techniques, load management, energy consumption, power demand, power system management, power system economics I

Aickelin, Uwe

172

Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility; Preprint  

SciTech Connect (OSTI)

This paper documents the design and operational plug and process load energy efficiency measures needed to allow a large scale office building to reach ultra high efficiency building goals. The appendices of this document contain a wealth of documentation pertaining to plug and process load design in the RSF, including a list of equipment was selected for use.

Lobato, C.; Pless, S.; Sheppy, M.; Torcellini, P.

2011-02-01T23:59:59.000Z

173

I HEHORANDIJH I TO{ FILE DATE SUti.lECTa I O&R(S)  

Office of Legacy Management (LM)

OF OPERATION --- - ---- Research & Development 0 Facility Type Production scale testing Pi lot Scale Bench Scale Process Theoretical Studies *i Sample & &balysis a Hanuf...

174

TO: FILE  

Office of Legacy Management (LM)

if yes, date contacted IYPLOE-OPERxION 9 Research & Development q Production scale testing I? Pilot Scale Bench Scale Process 0 Theoretical Studies 0 Sample & Analysis q...

175

Multi-Scale Action Effectiveness Research in the Lower Columbia River and Estuary, 2011 - FINAL ANNUAL REPORT  

SciTech Connect (OSTI)

The study reported here was conducted by researchers at Pacific Northwest National Laboratory (PNNL), the Oregon Department of Fish and Wildlife (ODFW), the University of Washington (UW), and the National Marine Fisheries Service (NMFS) for the U.S. Army Corps of Engineers, Portland District (USACE). This research project was initiated in 2007 by the Bonneville Power Administration to investigate critical uncertainties regarding juvenile salmon ecology in shallow tidal freshwater habitats of the lower Columbia River. However, as part of the Washington Memorandum of Agreement, the project was transferred to the USACE in 2010. In transferring from BPA to the USACE, the focus of the tidal freshwater research project shifted from fundamental ecology toward the effectiveness of restoration in the Lower Columbia River and estuary (LCRE). The research is conducted within the Action Agencies Columbia Estuary Ecosystem Restoration Program (CEERP). Data reported herein spans the time period May 2010 to September 2011.

Sather, Nichole K.; Storch, Adam; Johnson, Gary E.; Teel, D. J.; Skalski, J. R.; Bryson, Amanda J.; Kaufmann, Ronald M.; Woodruff, Dana L.; Blaine, Jennifer; Kuligowski, D. R.; Kropp, Roy K.; Dawley, Earl M.

2012-05-31T23:59:59.000Z

176

Post-genomic science: cross-disciplinary and large-scale collaborative research and its organizational and technological challenges for the scientific research process  

Science Journals Connector (OSTI)

...organizations will have to consider the reform of academic funding and reward...Proc. HealthGrid, Studies in Health Technology and Informatics 112...behalf of the Subcommittee of the Health and Environmental Research Advisory...gender and divisions of infant care. Soc. Probl. 43, 219-234...

2006-01-01T23:59:59.000Z

177

Timpf, S. 1997. Cartographic objects in a multi-scale data structure. In Geographic Information Research: Bridging the Atlantic, edited by M. Craglia and H. Couclelis. London: Taylor&Francis.  

E-Print Network [OSTI]

Research: Bridging the Atlantic, edited by M. Craglia and H. Couclelis. London: Taylor. In Geographic Information Research: Bridging the Atlantic, edited by M. Craglia and H. Couclelis. London: Taylor. Cartographic objects in a multi-scale data structure. In Geographic Information Research: Bridging the Atlantic

Timpf, Sabine

178

DOE-Supported Technology Passes Scale-Up Test Converting CO DOE-Sponsored Research Improves Gas Turbine Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

into Valuable Materials into Valuable Materials Publications News Release Release Date: June 17, 2013 DOE-Sponsored Research Improves Gas Turbine Performance DOE Lab Receives Award for Work on Drilling Technology An innovative airfoil manufacturing technology that promises to improve the performance of state-of-the-art gas turbines has been commercialized through research sponsored by the U.S. Department of Energy. Photo courtesy of Mikro Systems, Inc. Washington, D.C. - An innovative airfoil manufacturing technology that promises to improve the performance of state-of-the-art gas turbines has been commercialized through research sponsored by the U.S. Department of Energy (DOE). The technology - which is expected to contribute to cleaner, more reliable and affordable domestic energy production as well as creating new

179

Upscaling of U(VI) Desorption and Transport Using Decimeter-Scale Tanks  

SciTech Connect (OSTI)

Experimental work was used to validate modeling studies and develop multicontinuum models of U(VI) transport in a contaminated aquifer. At the bench scale, it has been shown that U(VI) desorption is rate-limited and that rates are dependent on the bicarbonate concentration. Two decimeter-scale experiments were conducted in order to help establish rigorous upscaling approaches that could be tested at the tracer test and plume scales.

Rodriguez, Derrick [Colorado School of Mines

2014-12-22T23:59:59.000Z

180

Waste acid detoxification and reclamation: Summary of bench-scale tests for FY 1986 and FY 1987  

SciTech Connect (OSTI)

Processes to reduce the volume, quantity, and toxicity of metal-bearing waste acid are being demonstrated at Pacific Northwest Laboratory. Two precipitation processes and a distillation process are being developed to minimize waste from fuel fabrication operations, which comprise a series of metal-finishing operations. Waste process acids such as HF-HNO/sub 3/, etch solutions containing Zr as a major metal impurity, and HNO/sub 3/ strip solution containing Cu as a major metal impurity are detoxified and reclaimed by concurrently precipitating heavy metals and regenerating acid for recycle. Acid from a third waste acid stream generated from chemical milling operations will be reclaimed using distillation. This stream comprises HNO/sub 3/ and H/sub 2/SO/sub 4/ containing U as the major metal impurity. Distillation allows NO/sub 3//sup -/ to be displaced by SO/sub 4//sup -2/ in metal salts; free HNO/sub 3/ is then vaporized from the U-bearing sulfate stream. Uranium can be recovered from the sulfate stream in a downstream precipitation step. 10 refs., 15 figs., 13 tabs.

Stewart, T.L.

1987-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "bench scale research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A Comprehensive Bench-and Pilot-Scale Investigation of Trace Or-ganic Compound Rejection by Forward Osmosis  

E-Print Network [OSTI]

sea- water desalination, multi-barrier protection of drinking water, reduction in reverse osmosis seawater on the way to a seawater reverse osmosis pro- cess. The rejection of wastewater constituents by Forward Osmosis SUPPORTING INFORMATION Nathan T. Hancock1 , Pei Xu1 , Dean M. Heil1 , Christopher Bellona2

182

INNOVATIVE EXPERIMENTAL SETUP FOR THE PARALLEL OPERATION OF MULTIPLE BENCH SCALE BIOTRICKLING FILTERS FOR WASTE AIR TREATMENT  

E-Print Network [OSTI]

pollutants into the atmosphere. Amongst the various air pollution control techniques available, biological provides a new and inexpensive tool for comparative studies in biotrickling filtration for air pollution: biofilters and biotrickling filters. In biofilters, humidified polluted air is passed through a packed bed

183

POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning. First quarterly technical progress report, September 27, 1995--December 31, 1995  

SciTech Connect (OSTI)

The Pittsburgh Energy Technology Center (PETC) developed a triboelectrostatic separation (TES) process which is capable of removing mineral matter from coal without using water. A distinct advantage of this dry coal cleaning process is that it does not entail costly steps of dewatering which is a common problem associated with conventional fine coal cleaning processes. It is the objective of this project to conduct a series of proof-of-concept (POC) scale tests at a throughput of 200--250 kg/hr and obtain scale- up information. Prior to the POC testing, bench-scale test work will be conducted with the objective of increasing the separation efficiency and throughput, for which changes in the basic designs for the charger and the separator may be necessary. The bench- and POC- scale test work will be carried out to evaluate various operating parameters and establish a reliable scale-up procedure. The scale-up data will be used to analyze the economic merits of the TES process. During the past quarter, a number of project tasks have been initiated. All documents required for project startup (i.e., work plans, management plans, etc.) have been submitted to DOE for approval. A bench-scale TES unit and an apparatus for studying tribocharging mechanisms have been designed and are currently being fabricated. One of the three coal samples to be used for bench-scale testing has been acquired.

Yoon, R.H.; Luttrell, G.H.; Adel, G.T.

1995-12-31T23:59:59.000Z

184

A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants  

SciTech Connect (OSTI)

Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was a multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica/silicate are two common potential cycle-limiting minerals for using impaired waters. For produced waters, barium sulfate and calcium sulfate are two additional potential cycle-limiting minerals. For reclaimed municipal wastewater effluents, calcium phosphate scaling can be an issue, especially in the co-presence of high silica. Computational assessment, using a vast amount of Nalco's field data from coal fired power plants, showed that the limited use and reuse of impaired waters is due to the formation of deposit caused by the presence of iron, high hardness, high silica and high alkalinity in the water. Appropriate and cost-effective inhibitors were identified and developed - LL99B0 for calcite and gypsum inhibition and TX-15060 for silica inhibition. Nalco's existing dispersants HSP-1 and HSP-2 has excellent efficacy for dispersing Fe and Mn. ED and EDI were bench-scale tested by the CRADA partner Argonne National Laboratory for hardness, alkalinity and silica removal from synthetic make-up water and then cycled cooling water. Both systems showed low power consumption and 98-99% salt removal, however, the EDI system required 25-30% less power for silica removal. For Phase 2, the EDI system's performance was optimized and the length of time between clean-in-place (CIP) increased by varying the wafer composition and membrane configuration. The enhanced EDI system could remove 88% of the hardness and 99% of the alkalinity with a processing flux of 19.2 gal/hr/m{sup 2} and a power consumption of 0.54 kWh/100 gal water. Bench tests to screen alternative silica/silicate scale inhibitor chemistries have begun. The silica/silicate control approaches using chemical inhibitors include inhibition of silicic acid polymerization and dispersion of silica/silicate crystals. Tests were conducted with an initial silica concentration of 290-300 mg/L as SiO{sub 2} at pH 7 and room temperature. A proprietary new chemistry was found to be promising, compared with a current commercial product commonly used for silica/silicate control. Additional pilot cooling tower testing confirmed

Jasbir Gill

2010-08-30T23:59:59.000Z

185

Scale-Up of CdTe Photovoltaic Device Processes for Commercial Application: Cooperative Research and Development Final Report, CRADA Number CRD-06-196  

SciTech Connect (OSTI)

Through this Cooperative Research and Development Agreement, NREL and PrimeStar Solar will work together to scale up the NREL CdTe photovoltaic process from the laboratory to produce photovoltaic devices in a size that is commercially viable. The work in this phase will focus on the transference of NREL CdTe device fabrication techniques to PrimeStar Solar. NREL and PrimeStar Solar will engage in a series of technical exchange meetings and laboratory training sessions to transfer the knowledge of CdTe PV film growth from NREL to PrimeStar Solar. PrimeStar Solar will grow thin films on PrimeStar Solar equipment and interleave them with NREL-grown films in an effort to develop a commercial scale process on PrimeStar Solar equipment. Select NREL film growth equipment will be upgraded either by PrimeStar Solar or at PrimeStar Solar's expense to increase equipment reliability and throughput.

Albin, D.

2013-02-01T23:59:59.000Z

186

CX-006067: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Office The DOE's Richland Operations Office and Office of River Protection propose to conduct indoor bench-scale research, conventional laboratory operations, and small-scale...

187

Predictability of estimated maximal aerobic capacities for manual material handlers using submaximal box lifting and bench stepping tests  

E-Print Network [OSTI]

and not supporting an Oxylog unit that weighs 2.6 kg (5.8 lb). The mean S.D. manual material handling V 02 max of 2.94 ?0.3 8 L02 /min was not significantly greater (p = 0.0798) than the bench stepping while supporting the Oxylog unit V 02 m. (2.94 ?0.44 L02/min...

Cortner, James D.

2012-06-07T23:59:59.000Z

188

Research and Development with Full Scale Research  

E-Print Network [OSTI]

located on the site of ECN (Petten, Netherlands). Measured data from these facilities together with weather data and computer models of the buildings are used to evaluate performance of innovative energy concepts and components in these systems...

Sijpheer, N.; Bakker, E.J.; Opstelten, I.

2010-01-01T23:59:59.000Z

189

NREL: Wind Research - Research and Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Printable Version Wind Research Home Research & Development Utility-Scale Wind Turbines Offshore Wind Turbines Small Wind Turbines Grid Integration Market Acceleration...

190

Overview of Solar Energy Research: 1990 to Present  

E-Print Network [OSTI]

ESL-TR-04/07-01 OVERVIEW OF SOLAR ENERGY RESEARCH: 1990 TO PRESENT Briefing Prepared for Dr. May Akrawi British Consulate Jeff S. Haberl, Ph.D., P.E., W. Dan Turner, Ph.D., P.E. Energy Systems Laboratory Texas A... Introduction: Energy Systems Laboratory ................................................................................................... 2 2 U.S.D.O.E. Thin Film Solar Test Bench (Riverside...

Haberl, J. S.; Turner, W. D.

2004-01-01T23:59:59.000Z

191

PILOT-SCALE EVALUATION OF THE IMPACT OF SELECTIVE CATALYTIC REDUCTION FOR NOx ON MERCURY SPECIATION  

SciTech Connect (OSTI)

Full-scale tests in Europe and bench-scale tests in the United States have indicated that the catalyst, normally vanadium/titanium metal oxide, used in the selective catalytic reduction (SCR) of NO{sub x}, may promote the formation of Hg{sup 2+} and/or particulate-bound mercury (Hg{sub p}). To investigate the impact of SCR on mercury speciation, pilot-scale screening tests were conducted at the Energy & Environmental Research Center. The primary research goal was to determine whether the catalyst or the injection of ammonia in a representative SCR system promotes the conversion of Hg{sup 0} to Hg{sup 2+} and/or Hg{sub p} and, if so, which coal types and parameters (e.g., rank and chemical composition) affect the degree of conversion. Four different coals, three eastern bituminous coals and a Powder River Basin (PRB) subbituminous coal, were tested. Three tests were conducted for each coal: (1) baseline, (2) NH{sub 3} injection, and (3) SCR of NO{sub x}. Speciated mercury, ammonia slip, SO{sub 3}, and chloride measurements were made to determine the effect the SCR reactor had on mercury speciation. It appears that the impact of SCR of NO{sub x} on mercury speciation is coal-dependent. Although there were several confounding factors such as temperature and ammonia concentrations in the flue gas, two of the eastern bituminous coals showed substantial increases in Hg{sub p} at the inlet to the ESP after passing through an SCR reactor. The PRB coal showed little if any change due to the presence of the SCR. Apparently, the effects of the SCR reactor are related to the chloride, sulfur and, possibly, the calcium content of the coal. It is clear that additional work needs to be done at the full-scale level.

Dennis L. Laudal; John H. Pavlish; Kevin C. Galbreath; Jeffrey S. Thompson; Gregory F. Weber; Everett Sondreal

2000-12-01T23:59:59.000Z

192

CX-003172: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Date: 06022010 Location(s): North Carolina Office(s): Advanced Research Projects Agency - Energy Funding will support laboratory and bench scale research and development on...

193

Research and development of CWM technology toward clean coal use  

SciTech Connect (OSTI)

In this chapter, three subjects were presented from among our technical efforts to develop clean coal applications to improve environmental quality. The three subjects are briefly summarized as follows: development of technology aimed at producing and utilizing exclusively low ash CWM; development of technology to produce CWM from various pond coals; development of technology to upgrade LRC and utilize CWM for both a boiler fuel and a gasification feedstock. We are fully convinced that the first and second of the above technologies have reached the level of practical use through demonstration tests. As to the third, we have almost finished a 10 kg/h coal slurry bench-scale test and have a plan to construct an upgrading pilot plant of 350 kg/h which will be completed in the fall 1994. We will hopefully establish upgrading technology through pilot-scale demonstration testing in 1995. With this technology, not just utilization of LRCs will be expanded, but also highly efficient use of coal will be accelerated. Thus, C0{sub 2} emission will also be strongly reduced. In ending, we would like to stress our efforts on research and development of environmentally friendly technologies as well as COM and CWM technologies based on bituminous and steaming coals.

Shibata, Kazuhiro

1993-12-31T23:59:59.000Z

194

Direct liquefaction Proof-of-Concept Program, Hydrocarbon Technologies, Inc., Lawrenceville, New Jersey. Final topical report, Bench Run 02 (227-91)  

SciTech Connect (OSTI)

This report presents the results of Bench Run PB-02, conducted under the DOE Proof of Concept - Bench Option Program in direct coal liquefaction at Hydrocarbon Technologies, Inc. in Lawrenceville, New Jersey. Bench Run PB-02 was the second of the nine runs planned in the POC Bench Option Contract between the U.S. DOE and Hydrocarbon Technologies, Inc. The primary goal of this bench run was to evaluate the hybrid catalyst system, consisting of a dispersed slurry catalyst in one of the hydroconversion reactors and conventional supported extrudate catalyst in the other hydroconversion reactor, in a high-low two-stage temperature sequence, similar to the one operated at Wilsonville. This hybrid mode of operation with the high-low temperature sequence was studied during direct liquefaction of coal and in coprocessing of coal with Hondo resid and/or waste plastics under high space velocity operating conditions. Another important objective of Bench Run PB-02 was to investigate the novel {open_quotes}interstage internal recycle{close_quotes} of the second stage reactor slurry back to the first stage reactor. Other features of PB-02 included the use of an interstage separator and an in-line fixed bed hydrotreater. In general, it was found during Bench Run PB-02 that the {open_quote}hybrid type{close_quote} catalyst system was not effective for obtaining high levels of process performance as the {open_quote}all dispersed{close_quote} catalyst system, tested earlier, especially at high coal space velocities. The interstage internal recycle of second stage reactor slurry to the first stage reactor feed line was found to improve cracking of liquefaction products. The addition of small amounts of mixed plastics was found to improve the hydrogen utilization in both coal conversion and heavy oil hydrocracking reactions, i.e., plastics resulted in improving the overall distillate yield while at the same time reducing the light gas make and chemical hydrogen consumption.

Comolli, A.G.; Pradhan, V.R.; Lee, T.L.K.; Karolkiewicz, W.F.; Popper, G.

1996-09-01T23:59:59.000Z

195

Research guidance studies. First quarterly progress report, 1996  

SciTech Connect (OSTI)

The overall objective of this project is to provide research guidance and quantification of research progress in the areas of direct and indirect coal liquefaction, coal/waste coprocessing, refining of coal-derived liquid fuels, and natural gas conversion. Specifically, the work is divided into two subtasks that relate to whether the technology application is direct or indirect. In subtask (a), Direct Coal Liquefaction technology is the subject of the analyses, and in subtask (b), Indirect Liquefaction, technologies will be evaluated in accordance with the priorities of the COR. Mitretek Systems has been developing detailed computer simulation models of direct and indirect coal and natural gas conversion systems for several years. These models are constantly being updated and improved as more data and better cost information becomes available.. These models also include detailed refinery models based on bench-scale upgrading -data of coal derived liquid fuels to specification transportation fuels. In addition to the simulation models of actual conversion system configurations, Mitretek is able to simulate innovative process configurations for coal and gas conversion to fuels, power, and chemicals. To supplement these system models and to provide a context to investigate expected energy use scenarios when alternate coal and natural gas based fuels will be needed, Mitretek`s staff has also developed world and country by country energy supply and demand models. This work will be accomplished by using the existing models where appropriate and by extending and modifying the system models where necessary.

Gray, D.; Tomlinson, G. [Mitretek Systems, McLean, VA (United States)

1996-10-01T23:59:59.000Z

196

Science Support @ Becker supporting science from the bench to the clinic  

E-Print Network [OSTI]

genomics research and education using Galaxy (two collaborative projects): · Genomics research - supporting use as a genomics research data analysis tool · Genomics education - experimenting with use as a clinical genomics teaching tool #12;GALAXY OVERVIEW · Free web-based tool (http://usegalaxy.org/) · Enables

Napp, Nils

197

Idaho National Laboratory Experimental Research In High Temperature Electrolysis For Hydrogen And Syngas Production  

SciTech Connect (OSTI)

The Idaho National Laboratory (Idaho Falls, Idaho, USA), in collaboration with Ceramatec, Inc. (Salt Lake City, Utah, USA), is actively researching the application of solid oxide fuel cell technology as electrolyzers for large scale hydrogen and syngas production. This technology relies upon electricity and high temperature heat to chemically reduce a steam or steam / CO2 feedstock. Single button cell tests, multi-cell stack, as well as multi-stack testing has been conducted. Stack testing used 10 x 10 cm cells (8 x 8 cm active area) supplied by Ceramatec and ranged from 10 cell short stacks to 240 cell modules. Tests were conducted either in a bench-scale test apparatus or in a newly developed 5 kW Integrated Laboratory Scale (ILS) test facility. Gas composition, operating voltage, and operating temperature were varied during testing. The tests were heavily instrumented, and outlet gas compositions were monitored with a gas chromatograph. The ILS facility is currently being expanded to ~15 kW testing capacity (H2 production rate based upon lower heating value).

Carl M. Stoots; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

2008-09-01T23:59:59.000Z

198

PROCEEDINGS OF THE RIKEN BNL RESEARCH CENTER WORKSHOP ON LARGE SCALE COMPUTATIONS IN NUCLEAR PHYSICS USING THE QCDOC, SEPTEMBER 26 - 28, 2002.  

SciTech Connect (OSTI)

The massively parallel computer QCDOC (QCD On a Chip) of the RIKEN BNL Research Center (RI3RC) will provide ten-teraflop peak performance for lattice gauge calculations. Lattice groups from both Columbia University and RBRC, along with assistance from IBM, jointly handled the design of the QCDOC. RIKEN has provided $5 million in funding to complete the machine in 2003. Some fraction of this computer (perhaps as much as 10%) might be made available for large-scale computations in areas of theoretical nuclear physics other than lattice gauge theory. The purpose of this workshop was to investigate the feasibility and possibility of using a supercomputer such as the QCDOC for lattice, general nuclear theory, and other calculations. The lattice applications to nuclear physics that can be investigated with the QCDOC are varied: for example, the light hadron spectrum, finite temperature QCD, and kaon ({Delta}I = 1/2 and CP violation), and nucleon (the structure of the proton) matrix elements, to name a few. There are also other topics in theoretical nuclear physics that are currently limited by computer resources. Among these are ab initio calculations of nuclear structure for light nuclei (e.g. up to {approx}A = 8 nuclei), nuclear shell model calculations, nuclear hydrodynamics, heavy ion cascade and other transport calculations for RHIC, and nuclear astrophysics topics such as exploding supernovae. The physics topics were quite varied, ranging from simulations of stellar collapse by Douglas Swesty to detailed shell model calculations by David Dean, Takaharu Otsuka, and Noritaka Shimizu. Going outside traditional nuclear physics, James Davenport discussed molecular dynamics simulations and Shailesh Chandrasekharan presented a class of algorithms for simulating a wide variety of femionic problems. Four speakers addressed various aspects of theory and computational modeling for relativistic heavy ion reactions at RHIC. Scott Pratt and Steffen Bass gave general overviews of how qualitatively different types of physical processes evolve temporally in heavy ion reactions. Denes Molnar concentrated on the application of hydrodynamics, and Alex Krasnitz on a classical Yang-Mills field theory for the initial phase. We were pleasantly surprised by the excellence of the talks and the substantial interest from all parties. The diversity of the audience forced the speakers to give their talks at an understandable level, which was highly appreciated. One particular bonus of the discussions could be the application of highly developed three-dimensional astrophysics hydrodynamics codes to heavy ion reactions.

AOKI,Y.; BALTZ,A.; CREUTZ,M.; GYULASSY,M.; OHTA,S.

2002-09-26T23:59:59.000Z

199

Structurally assisted blackness in butterfly scales  

Science Journals Connector (OSTI)

...research-article Structurally assisted blackness in butterfly scales...photonic structure| Structurally assisted blackness in butterfly scales...ultrastructure Structurally assisted blackness in butterfly scales...Controlled absorption of incident solar radiation is the principal...

2004-01-01T23:59:59.000Z

200

Recent Mid-Scale Research on Using Oil Herding Surfactants to Thicken Oil Slicks in Pack Ice for In-Situ Burning  

Science Journals Connector (OSTI)

A series of burn tests at the scale of 50 m2 with herders and crude oil in a pit containing broken sea ice is planned for ... be presented and the plans for the November burn tests will be discussed.

I. Buist; S. Potter; L. Zabilansky; A. Guarino…

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bench scale research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Spatial distribution of non-native invasive plants following large-scale wind damage at LaRue Pine Hills - Otter Pond Research Natural Area, Union County, Illinois.  

E-Print Network [OSTI]

??The objective of this study was to determine if a large-scale wind disturbance facilitated the invasion of forest interiors by non-native invasive plant species. The… (more)

Romano, Anthony John

2012-01-01T23:59:59.000Z

202

1 MWt bench model solar receiver test program J. Gintz, D. Bartlett and R. Zentner  

E-Print Network [OSTI]

a scale model of a Brayton cycle solar electric plant receiver. The program span from initiation of design and transients; and demonstrations of solar load following. Design thermal efficiency predictions were achieved in high temperature, gas cooled, solar central receiver concepts under direction of the Electric Power

Boyer, Edmond

203

CX-003116: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

support laboratory and bench scale research and development on electro-autotrophic synthesis for use in the production of energy dense, liquid transportation fuels from...

204

CX-008860: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Protection-Richland Operations Office Pacific Northwest National Laboratory proposes to conduct 1) bench-scale research projects, 2) conventional laboratory operations, 3)...

205

Anaerobic Digestion Optimization for Enhanced Renewable Biomethane Production.  

E-Print Network [OSTI]

??The scope of this research project was to operate suspended growth, continuous stirred tank reactor (CSTR) anaerobic digesters at the bench-scale level to evaluate improved… (more)

Stover, Ted Ross

2011-01-01T23:59:59.000Z

206

Monthly research and development topical report, March--April 1993  

SciTech Connect (OSTI)

This report covers progress made by Gilbert/Commonwealth at the Pittsburgh Energy Technology Center of the U. S. Department of Energy in the provision of research and development support services under Task Orders 30.00 and 32.00 to contract No. DE-AC22-89PC88400 as well as Subtask 3.04, safety activities provided under that contract, and Subtask 7.01, Coal Conversion/Bench Scale Design. The report period runs from March 1 to April 30, 1993.The objective of the R&D Support Services and Ancillary Services Tasks is to provide technical support for the in-house R&D effort at PETC. This comprises the necessary management, supervision, qualified personnel, facilities, training, technical expertise and services to support the operation of the individual test units, of the analytical chemistry laboratories and of ancillary equipment and utilities assigned to G/C responsibilities. This work is organized into twelve subtasks, seven concerned with operation of test units, and five concerned with general support services.

Not Available

1993-07-01T23:59:59.000Z

207

Monthly research and development topical report, March--April 1993  

SciTech Connect (OSTI)

This report covers progress made by Gilbert/Commonwealth at the Pittsburgh Energy Technology Center of the U. S. Department of Energy in the provision of research and development support services under Task Orders 30.00 and 32.00 to contract No. DE-AC22-89PC88400 as well as Subtask 3.04, safety activities provided under that contract, and Subtask 7.01, Coal Conversion/Bench Scale Design. The report period runs from March 1 to April 30, 1993.The objective of the R D Support Services and Ancillary Services Tasks is to provide technical support for the in-house R D effort at PETC. This comprises the necessary management, supervision, qualified personnel, facilities, training, technical expertise and services to support the operation of the individual test units, of the analytical chemistry laboratories and of ancillary equipment and utilities assigned to G/C responsibilities. This work is organized into twelve subtasks, seven concerned with operation of test units, and five concerned with general support services.

Not Available

1993-01-01T23:59:59.000Z

208

Multifunctional Gold Nanocarriers for Cancer Theranostics: From Bench to Bedside and Back Again?  

Science Journals Connector (OSTI)

After a quarter of century of rapid technological advances, research has revealed the complexity of cancer, a disease intimately related to the dynamic transformation of the genome. However, the full understan...

João Conde; Furong Tian; Pedro V. Baptista; Jesús M. de la Fuente

2014-01-01T23:59:59.000Z

209

Pilot-scale treatability test plan for the 100-HR-3 operable unit  

SciTech Connect (OSTI)

This document presents the treatability test plan for pilot-scale pump-and-treat testing at the 100-HR-3 Operable Unit. The test will be conducted in fulfillment of interim Milestone M-15-06E to begin pilot-scale pump-and-treat operations by August 1994. The scope of the test was determined based on the results of lab/bench-scale tests (WHC 1993a) conducted in fulfillment of Milestone M-15-06B. These milestones were established per agreement between the U.S. Department of Energy (DOE), the Washington State Department of Ecology and the U.S. Environmental Protection Agency (EPA), and documented on Hanford Federal of Ecology Facility Agreement and Consent Order Change Control Form M-15-93-02. This test plan discusses a pilot-scale pump-and-treat test for the chromium plume associated with the D Reactor portion of the 100-HR-3 Operable Unit. Data will be collected during the pilot test to assess the effectiveness, operating parameters, and resource needs of the ion exchange (IX) pump-and-treat system. The test will provide information to assess the ability to remove contaminants by extracting groundwater from wells and treating extracted groundwater using IX. Bench-scale tests were conducted previously in which chromium VI was identified as the primary contaminant of concern in the 100-D reactor plume. The DOWEX 21K{trademark} resin was recommended for pilot-scale testing of an IX pump-and-treat system. The bench-scale test demonstrated that the system could remove chromium VI from groundwater to concentrations less than 50 ppb. The test also identified process parameters to monitor during pilot-scale testing. Water will be re-injected into the plume using wells outside the zone of influence and upgradient of the extraction well.

Not Available

1994-08-01T23:59:59.000Z

210

A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators  

E-Print Network [OSTI]

. Material: Four turbine- based ventilators and nine conventional servo-valve compressed-gas ventilators were1 A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators Arnaud W. Thille,1 MD; Aissam Lyazidi,1 Biomed Eng MS; Jean-Christophe M

Paris-Sud XI, Université de

211

Technician's Perspective on an Ever-Changing Research Environment: Catalytic Conversion of Biomass to Fuels  

SciTech Connect (OSTI)

The biomass thermochemical conversion platform at the National Renewable Energy Laboratory (NREL) develops and demonstrates processes for the conversion of biomass to fuels and chemicals including gasification, pyrolysis, syngas clean-up, and catalytic synthesis of alcohol and hydrocarbon fuels. In this talk, I will discuss the challenges of being a technician in this type of research environment, including handling and working with catalytic materials and hazardous chemicals, building systems without being given all of the necessary specifications, pushing the limits of the systems through ever-changing experiments, and achieving two-way communication with engineers and supervisors. I will do this by way of two examples from recent research. First, I will describe a unique operate-to-failure experiment in the gasification of chicken litter that resulted in the formation of a solid plug in the gasifier, requiring several technicians to chisel the material out. Second, I will compare and contrast bench scale and pilot scale catalyst research, including instances where both are conducted simultaneously from common upstream equipment. By way of example, I hope to illustrate the importance of researchers 1) understanding the technicians' perspective on tasks, 2) openly communicating among all team members, and 3) knowing when to voice opinions. I believe the examples in this talk will highlight the crucial role of a technical staff: skills attained by years of experience to build and operate research and production systems. The talk will also showcase the responsibilities of NREL technicians and highlight some interesting behind-the-scenes work that makes data generation from NREL's thermochemical process development unit possible.

Thibodeaux, J.; Hensley, J.

2013-01-01T23:59:59.000Z

212

Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters  

SciTech Connect (OSTI)

Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3-part research plan involving (1) development of computer codes and techniques to estimate mass-transfer parameters from time-lapse electrical data; (2) bench-scale experiments on synthetic materials and materials from cores from the Hanford 300 Area; and (3) field demonstration experiments at the DOE’s Hanford 300 Area. In a synergistic add-on to our workplan, we analyzed data from field experiments performed at the DOE Naturita Site under a separate DOE SBR grant, on which PI Day-Lewis served as co-PI. Techniques developed for application to Hanford datasets also were applied to data from Naturita. 1. Introduction The Department of Energy (DOE) faces enormous scientific and engineering challenges associated with the remediation of legacy contamination at former nuclear weapons production facilities. Selection, design and optimization of appropriate site remedies (e.g., pump-and-treat, biostimulation, or monitored natural attenuation) requires reliable predictive models of radionuclide fate and transport; however, our current modeling capabilities are limited by an incomplete understanding of multi-scale mass transfer—its rates, scales, and the heterogeneity of controlling parameters. At many DOE sites, long “tailing” behavior, concentration rebound, and slower-than-expected cleanup are observed; these observations are all consistent with multi-scale mass transfer [Haggerty and Gorelick, 1995; Haggerty et al., 2000; 2004], which renders pump-and-treat remediation and biotransformation inefficient and slow [Haggerty and Gorelick, 1994; Harvey et al., 1994; Wilson, 1997]. Despite the importance of mass transfer, there are significant uncertainties associated with controlling parameters, and the prevalence of mass transfer remains a point of debate [e.g., Hill et al., 2006; Molz et al., 2006] for lack of experimental methods to verify and measure it in situ or independently of tracer breakthrough. There is a critical need for new field-experimental techniques to measure mass transfer in-situ and estimate multi-scale and spatially variable mass-transfer parame

Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Tim; Binley, Andrew; Lane, John

2014-01-16T23:59:59.000Z

213

Report to California Energy Commission on route to scale-up of polymer based PV: Funding suggestions for research and technology  

E-Print Network [OSTI]

, 1 Shields Ave, University of California, Davis, Davis, CA 95616 Abstract Solar power is the most capacity has resulted in growth for the solar industry of over 30% per year for the last decadeReport to California Energy Commission on route to scale-up of polymer based PV: Funding

Islam, M. Saif

214

Fabrication and Scale-up of Polybenzimidazole (PBI) Membrane Based System for Precombustion-Based Capture of Carbon Dioxide  

SciTech Connect (OSTI)

The primary objectives of this project are to (1) demonstrate the performance and fabrication of a technically and economically viable pre-combustion-based CO{sub 2} capture system based on the high temperature stability and permeance of PBI membranes, (2) optimize a plan for integration of PBI capture system into an IGCC plant and (3) develop a commercialization plan that addresses technical issues and business issues to outline a clear path for technology transfer of the PBI membrane technology. This report describes research conducted from April 1, 2007 to March 30, 2012 and focused on achieving the above objectives. PBI-based hollow fibers have been fabricated at kilometer lengths and bundled as modules at a bench-scale level for the separation of CO{sub 2} from H{sub 2} at high temperatures and pressures. Long term stability of these fibers has been demonstrated with a relatively high H{sub 2}/CO{sub 2} selectivity (35 to 50) and H{sub 2} permeance (80 GPU) at temperatures exceeding 225°C. Membrane performance simulations and systems analysis of an IGCC system incorporating a PBI hollow fiber membrane modules have demonstrated that the cost of electricity for CO{sub 2} capture (<10%) using such a high temperature separator. When the cost of transporting, storing, and monitoring the CO{sub 2} is accounted for, the increase in the COE is only 14.4%.

Gopala Krishnan; Indira Jayaweera; Angel Sanjrujo; Kevin O'Brien; Richard Callahan; Kathryn Berchtold; Daryl-Lynn Roberts; Will Johnson

2012-03-31T23:59:59.000Z

215

DECONTAMINATION SYSTEMS AND INFORMATION RESEARCH PROGRAM  

SciTech Connect (OSTI)

During the five plus years this Cooperative Agreement existed, more than 45 different projects were funded. Most projects were funded for a one year period but there were some, deemed of such quality and importance, funded for multiple years. Approximately 22 external agencies, businesses, and other entities have cooperated with or been funded through the WVU Cooperative Agreement over the five plus years. These external entities received 33% of the funding by this Agreement. The scope of this Agreement encompassed all forms of hazardous waste remediation including radioactive, organic, and inorganic contaminants. All matrices were of interest; generally soil, water, and contaminated structures. Economic, health, and regulatory aspects of technologies were also within the scope of the agreement. The highest priority was given to small businesses funded by the Federal Energy Technology Center (FETC) and Department of Energy (DOE) involved in research and development of innovative remediation processes. These projects were to assist in the removal of barriers to development and commercialization of these new technologies. Studies of existing, underdeveloped technologies, were preferred to fundamental research into remediation technologies. Sound development of completely new technologies was preferred to minor improvements in existing methods. Solid technological improvements in existing technologies or significant cost reduction through innovative redesign were the preferred projects. Development, evaluation, and bench scale testing projects were preferred for the WVU research component. In the effort to fill gaps in current remediation technologies, the worth of the WVU Cooperative Agreement was proven. Two great technologies came out of the program. The Prefabricated Vertical Drain Technology for enhancing soil flushing was developed over the 6-year period and is presently being demonstrated on a 0.10 acre Trichloroethylene contaminated site in Ohio. The SpinTek Centrifugal Membrane System was a unique separation process introduced through the Agreement that is now being used at the Los Alamos National Laboratory. Based on the cost to the USDOE for both technologies and considering their usefulness in cleaning up contaminated sites, no other technologies developed through USDOE provide or have the propensity to provide as great a return on investment and impact on environmental remediation. These technologies alone make the $10.3 million USDOE investment in the WVU Cooperative Agreement a tremendous investment.

Echol E. Cook, Ph.D., PE.

1998-11-01T23:59:59.000Z

216

Final Report: Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters  

SciTech Connect (OSTI)

Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3-part research plan involving (1) development of computer codes and techniques to estimate mass-transfer parameters from time-lapse electrical data; (2) bench-scale experiments on synthetic materials and materials from cores from the Hanford 300 Area; and (3) field demonstration experiments at the DOE’s Hanford 300 Area. In a synergistic add-on to our workplan, we analyzed data from field experiments performed at the DOE Naturita Site under a separate DOE SBR grant, on which PI Day-Lewis served as co-PI. Techniques developed for application to Hanford datasets also were applied to data from Naturita.

Haggerty, Roy; Day-Lewis, Fred; Singha, Kamini; Johnson, Timothy; Binley, Andrew; Lane, John

2014-03-20T23:59:59.000Z

217

Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up Research and Engineering for Light-Weight Vehicles Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up...

218

Field-scale evaluation of biological uranium reduction and reoxidation in the near-source zone at the NABIR Field Research Center in Oak Ridge, TN  

SciTech Connect (OSTI)

The primary objective of the project is to advance the understanding and predictive capability of coupled hydrological, geochemical, and microbiological processes that control the in situ transport and bioremediation radionuclides and co-contaminants at multiple scales. Specific objectives include: (1) Investigate the feasibility of in situ bioremediation of uranium in a highly contaminated region within the subsurface of Area 3 of the DoE ERSP FRC (2) Using a variety of tracer strategies, develop and model a system that establishes hydraulic control of the target region for biostimulation (3) Perform long term in situ biostimulation studies that create a microbial communities capable of reducing residual nitrate to N2 and mobile U(VI) to sparingly soluble U(IV) (4) Use a variety of solid and solution phase interrogation techniques to quantify the extent of in situ reduction and immobilization of U(VI). (5) Investigate a variety of geochemical factors that influence the stability and possible reoxidation of reduced uranium.

Craig S. Criddle; Peter Kitanidis; Scott Fendorf; Weimin Wu; Philip M. Jardine; Jizhong Zhou; Baohua Gu

2006-06-01T23:59:59.000Z

219

Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High Pressure Stripping for Post-Combustion CO{sub 2} Capture  

SciTech Connect (OSTI)

This report summarizes the methodology and preliminary results of a techno-economic analysis on a hot carbonate absorption process (Hot-CAP) with crystallization-enabled high pressure stripping for post-combustion CO{sub 2} capture (PCC). This analysis was based on the Hot-CAP that is fully integrated with a sub-critical steam cycle, pulverized coal-fired power plant adopted in Case 10 of the DOE/NETL’s Cost and Performance Baseline for Fossil Energy Plants. The techno-economic analysis addressed several important aspects of the Hot-CAP for PCC application, including process design and simulation, equipment sizing, technical risk and mitigation strategy, performance evaluation, and cost analysis. Results show that the net power produced in the subcritical power plant equipped with Hot-CAP is 611 MWe, greater than that with Econoamine (550 MWe). The total capital cost for the Hot-CAP, including CO{sub 2} compression, is $399 million, less than that for the Econoamine PCC ($493 million). O&M costs for the power plant with Hot-CAP is $175 million annually, less than that with Econoamine ($178 million). The 20-year levelized cost of electricity (LCOE) for the power plant with Hot-CAP, including CO2 transportation and storage, is 119.4 mills/kWh, a 59% increase over that for the plant without CO2 capture. The LCOE increase caused by CO{sub 2} capture for the Hot-CAP is 31% lower than that for its Econoamine counterpart.

Lu, Yongqi

2014-02-01T23:59:59.000Z

220

TASK TECHNICAL AND QUALITY ASSURANCE PLAN FOR OUT-OF-TANK DESTRUCTION OF TETRAPHENYLBORATE VIA WET AIR OXIDATION TECHNOLOGY: PHASE I - BENCH SCALE TESTS  

SciTech Connect (OSTI)

Tank 48H return to service is critical to the processing of high level waste (HLW) at Savannah River Site (SRS). Liquid Waste Disposition (LWD) management has the goal of returning Tank 48H to routine service by January 2010 or as soon as practical. Tank 48H currently holds legacy material containing organic tetraphenylborate (TPB) compounds from the operation of the In-Tank Precipitation process. This material is not compatible with the waste treatment facilities at SRS and must be removed or undergo treatment to destroy the organic compounds before the tank can be returned to Tank Farm service. Tank 48H currently contains {approx}240,000 gallons of alkaline slurry with about 2 wt % potassium and cesium tetraphenylborate (KTPB and CsTPB). The main radioactive component in Tank 48H is {sup 137}Cs. The waste also contains {approx}0.15 wt % Monosodium Titanate (MST) which has adsorbed {sup 90}Sr, U, and Pu isotopes. A System Engineering Evaluation of technologies/ideas for the treatment of TPB identified Wet Air Oxidation (WAO) as a leading alternative technology to the baseline aggregation approach. Over 75 technologies/ideas were evaluated overall. Forty-one technologies/ideas passed the initial screening evaluation. The 41 technologies/ideas were then combined to 16 complete solutions for the disposition of TPB and evaluated in detail. Wet Air Oxidation (WAO) is an aqueous phase process in which soluble or suspended waste components are oxidized using molecular oxygen contained in air. The process operates at elevated temperatures and pressures ranging from 150 to 320 C and 7 to 210 atmospheres, respectively. The products of the reaction are CO{sub 2}, H{sub 2}O, and low molecular weight oxygenated organics (e.g. acetate, oxalate). The basic flow scheme for a typical WAO system is as follows. The waste solution or slurry is pumped through a high-pressure feed pump. An air stream containing sufficient oxygen to meet the oxygen requirements of the waste stream is injected into the pressurized waste stream, and the air/liquid mixture is preheated to the required reactor inlet temperature. The reactor provides sufficient retention time to allow the oxidation to approach the desired level of organic decomposition. Typical reaction time is about 30-120 minutes. Heat exchangers are routinely employed to recover energy contained in the reactor effluent to preheat the waste feed/air entering the reactor. Auxiliary energy, usually steam, is necessary for startup and can provide trim heat if required. Since the oxidation reactions are exothermic, sufficient energy may be released in the reactor to allow the WAO system to operate without any additional heat input. After cooling, the oxidized reactor effluent passes through a pressure control valve where the pressure is reduced. A separator downstream of the pressure control valve allows the depressurized and cooled vapor to separate from the liquid. Typical industrial WAO applications have a feed flow rate of 1 to 220 gallons per minute (gpm) per train, with a chemical oxygen demand (COD) from 10,000 to 150,000 mg/L (higher CODs with dilution). Note that catalysts, such as homogeneous copper and iron, their heterogeneous counterparts, or precious metals can be used to enhance the effectiveness (i.e., to lower temperature, pressure, and residence time as well as increase oxidation efficiencies) of the WAO reaction if deemed necessary.

Adu-Wusu, K

2006-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "bench scale research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Increasing desalination by mitigating anolyte ph imbalance using catholyte effluent addition in a multi-anode, bench scale microbial desalination cell.  

E-Print Network [OSTI]

??A microbial desalination cell (MDC) uses exoelectrogenic bacteria to oxidize organic matter while desalinating water. Protons produced from the oxidation of organics at the anode… (more)

Davis, Robert

2013-01-01T23:59:59.000Z

222

Running Large Scale Jobs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Running Large Scale Jobs Running Large Scale Jobs Users face various challenges with running and scaling large scale jobs on peta-scale production systems. For example, certain...

223

HEHORANDUU SUBJECT:  

Office of Legacy Management (LM)

if yes, dets contacted IKLE-PEEnILm q Research & Development 0 Production scale testing 0 Pilot Scale q Bench Scale Process 0 Theoretical Studies 0 Sample & Analysis 0...

224

"Thermodynamics", Temporal Correlations and Scaling Laws  

Science Journals Connector (OSTI)

......research-article Articles Thermodynamics, Temporal Correlations and Scaling Laws Hirokazu Fujisaka * Department...equilibrium statistical-thermodynamics, and the temporal correlation...static and dynamic scaling laws of relevant functions characteristic......

Hirokazu Fujisaka

1989-06-01T23:59:59.000Z

225

OSTI, US Dept of Energy, Office of Scientific and Technical Information |  

Office of Scientific and Technical Information (OSTI)

Bench-to-Bench Coordination Using OSTI Resources Bench-to-Bench Coordination Using OSTI Resources by David Wojick on Wed, 13 May, 2009 Coordination means increasing awareness of related and potentially useful research, especially across the basic and applied divide. Secretary Chu emphasizes the importance of bridging the basic and applied divide. DOE uses several large scale methods to foster coordination, such as workshops attended by hundreds of researchers. A complementary approach is described here, which we call "Bench-to-Bench Coordination". This approach uses analysis of OSTI resources to identify closely related research across the divide. The results can be used in a variety of ways to put individual (or "bench") researchers in touch with one another for coordination purposes.

226

Research projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Yuan » Research projects Yuan » Research projects Research projects Research Interests Scientific computing, domain decomposition methods Linear solvers for sparse matrices Computational plasma physics Grid generation techniques GPU computing Current Research PDSLin: A hybrid linear solver for large-scale highly-indefinite linear systems The Parallel Domain decomposition Schur complement based Linear solver (PDSLin), which implements a hybrid (direct and iterative) linear solver based on a non-overlapping domain decomposition technique called chur complement method, and it has two levels of parallelism: a) to solve independent subdomains in parallel and b) to apply multiple processors per subdomain. In such a framework, load imbalance and excessive communication lead to the performance bottlenecks, and several techniques are developed

227

Sandia National Laboratories: Characterizing Scaled Wind Farm...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inflow On April 1, 2014, in Energy, News, News & Events, Partnership, Renewable Energy, Wind Energy The Scaled Wind Farm Technology (SWiFT) research facility will provide...

228

Advanced Powertrain Research Facility | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

emissions benches Particulate measurement system Fast flame ionization detection Fast NOx measurement system Fourier Transform Infrared spectrometer High power...

229

Program Management for Large Scale Engineering Programs  

E-Print Network [OSTI]

The goal of this whitepaper is to summarize the LAI research that applies to program management. The context of most of the research discussed in this whitepaper are large-scale engineering programs, particularly in the ...

Oehmen, Josef

230

Pilot-scale treatability testing -- Recycle, reuse, and disposal of materials from decontamination and decommissioning activities: Soda blasting demonstration  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is in the process of defining the nature and magnitude of decontamination and decommissioning (D and D) obligations at its sites. With disposal costs rising and available storage facilities decreasing, DOE is exploring and implementing new waste minimizing D and D techniques. Technology demonstrations are being conducted by LMES at a DOE gaseous diffusion processing plant, the K-25 Site, in Oak Ridge, Tennessee. The gaseous diffusion process employed at Oak Ridge separated uranium-235 from uranium ore for use in atomic weapons and commercial reactors. These activities contaminated concrete and other surfaces within the plant with uranium, technetium, and other constituents. The objective of current K-25 D and D research is to make available cost-effective and energy-efficient techniques to advance remediation and waste management methods at the K-25 Site and other DOE sites. To support this objective, O`Brien and Gere tested a decontamination system on K-25 Site concrete and steel surfaces contaminated with radioactive and hazardous waste. A scouring system has been developed that removes fixed hazardous and radioactive surface contamination and minimizes residual waste. This system utilizes an abrasive sodium bicarbonate medium that is projected at contaminated surfaces. It mechanically removes surface contamination while leaving the surface intact. Blasting residuals are captured and dissolved in water and treated using physical/chemical processes. Pilot-scale testing of this soda blasting system and bench and pilot-scale treatment of the generated residuals were conducted from December 1993 to September 1994.

NONE

1995-08-01T23:59:59.000Z

231

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dust in the Wind... and the Clouds... and the Atmosphere Dust in the Wind... and the Clouds... and the Atmosphere Submitter: Sassen, K., University of Alaska, Fairbanks Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Sassen, K., P.J. DeMott, J.M. Propsero, and M.R. Poellot, Saharan Dust Storms and Indirect Aerosol Effects on Clouds: CRYSTAL-FACE Results, Geophys. Res. Ltt., 30(12), 1633, doi:10/1029/2003GL017371, 2003. PDL linear depolarization ratio (color scale on top) and relative returned power (in gray scale) of height versus time displays obtained on July 29, 2002, during the CRYSTAL-FACE experiment. Depicted are strong depolarizing upper tropospheric clouds (~10km), aerosols (δ ~.10 to .15) extending up to ~5.5km, and at lower right (scale adjusted to account for signal

232

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scale Shows True Weight of Aerosol Effects on Clouds Scale Shows True Weight of Aerosol Effects on Clouds Download a printable PDF Submitter: McComiskey, A. C., National Oceanic and Atmospheric Administration Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: McComiskey A and G Feingold. 2012. "The scale problem in quantifying aerosol indirect effects." Atmospheric Chemistry and Physics, 12, doi:10.5194/acp-12-1031-2012. Differing values: Values derived from aircraft and surface observations, which represent disaggregated data, differ from those derived from satellite-based data, which represent data aggregated at a range of levels. Currently, many climate change models treat the two types of data the same. Aerosols-tiny airborne particles from sources like pollution or desert

233

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Evolution and Distribution of Water Vapor and Microphysical Properties The Evolution and Distribution of Water Vapor and Microphysical Properties in Cirrus Clouds Download a printable PDF Submitter: Comstock, J. M., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Modeling, Cloud Properties Journal Reference: Comstock JM, R Lin, DO Starr, and P Yang. 2008. "Understanding ice supersaturation, particle growth, and number concentration in cirrus clouds." Journal of Geophysical Research - Atmospheres, 113, D23211, doi:10.1029/2008JD010332. Vertical velocity (Vm) derived from millimeter cloud radar (MMCR) Doppler velocity measurements in cirrus clouds observed over the ACRF SGP site. Cloud model simulations of cirrus clouds using large-scale forcing (left panel) and cloud-scale forcing (right panel).

234

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Structure of Cirrus Properties and Its Coupling with the State of the Structure of Cirrus Properties and Its Coupling with the State of the Large-Scale Atmosphere Download a printable PDF Submitter: Ivanova, K., Pennsylvania State University Ackerman, T. P., University of Washington Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Ivanova K and TP Ackerman. 2009. "Tracking nucleation-growth-sublimation in cirrus clouds using ARM millimeter wavelength radar observations." Journal of Geophysical Research - Atmospheres, , D06113, 10.1029/2008JD010271. Figure 1. Values of the drift and diffusion coefficients of the Fokker-Planck equation derived from the MMCR radar reflectivity observations. The diffusion coefficient characterizes the small scale, fast

235

Gordon Research Conferences  

Science Journals Connector (OSTI)

...Jor-dan, "Studies of weakly bound...Theoretical studies of combustion re-lated reactions...Spectroscopic studies of ex-cimer...Burstein, "Experimental bench test to...to fixation of internal prostheses...

Alexander M. Cruickshank

1980-03-14T23:59:59.000Z

236

Effects of aluminosilicate minerals in clay soil fractions on pore water hydroxide ion concentrations in soil/cement matrices  

E-Print Network [OSTI]

and, consequently, metal attenuation characteristics of soiUcement/waste matrices is necessary to accurately translate bench-scale test results to full-scale applications. Research on soil stabilization indicates that pozzolanic reactions can occur...

Cook, Evan Russell

1998-01-01T23:59:59.000Z

237

Research | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SREL scientists pursue a wide variety of ecological research, from molecular to landscape-scale processes, field and laboratory focused, basic and applied. Such an integrated...

238

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

All Mixed Up-Probing Large and Small Scale Turbulence Structures in All Mixed Up-Probing Large and Small Scale Turbulence Structures in Continental Stratocumulus Clouds Download a printable PDF Submitter: Fang, M., University of Miami Albrecht, B. A., University of Miami Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Fang M, BA Albrecht, VP Ghate, and P Kollias. 2013. "Turbulence in continental stratocumulus, Part I: External forcings and turbulence structures." Boundary-Layer Meteorology, 149(454), doi:10.1007/s10546-013-9873-3. Coherent structures of the vertical velocity (left panels) and the energy dissipation rate (right panels) in updraft region during the day (a, b), night (c, d), and for entire 16 hours (e, f) of continental stratocumulus. Continental stratocumulus clouds are frequently observed in the cold side

239

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seasonal Case Studies Reveal Significant Variance in Large-Scale Forcing Seasonal Case Studies Reveal Significant Variance in Large-Scale Forcing Data Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Xie, S, R.T Cederwall, M. Zhang, and J.J. Yio, Comparison of SCM and CSRM forcing data derived from the ECMWF model and from objective analysis at the ARM SGP site, J. Geophys. Res., 108(D16), 4499, doi:10.1029/2003JD003541, 2003. Observed (left) and ECMWF-derived (right) forcing fields of time-height distributions of the derived (top) vertical velocity, (middle) total advective tendency and temperature, and (bottom) total advective tendency of moisture during the selected strong precipitation period during summer

240

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tropical Clouds: from Jekyll to Hyde Tropical Clouds: from Jekyll to Hyde Submitter: Hagos, S. M., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Hagos SM and R Leung. 2012. "Large-scale environmental variables and transition to deep convection in cloud resolving model simulations: A vector representation." Journal of Advances in Modeling Earth Systems, 4(M11001), 2012MS000155, doi:10.1029/2012MS000155. The relationship between the mean 400hPa heating (Khr-1437 ) at time = 0 and the projection onto the favorable large-scale moisture profile at time = -1 hr. From Jekyll to Hyde, this anvil cloud is an example of tropical clouds that evolve from fair-weather to stormy. Scientists at PNNL used observational

Note: This page contains sample records for the topic "bench scale research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vertical Air Motion Measurements in Large-Scale Precipitation Vertical Air Motion Measurements in Large-Scale Precipitation Download a printable PDF Submitter: Giangrande, S., Brookhaven National Laboratory Luke, E., Brookhaven National Laboratory Kollias, P., McGill University Area of Research: Vertical Velocity Working Group(s): Cloud Properties Journal Reference: Giangrande SE, EP Luke, and P Kollias. 2010. "Automated retrievals of precipitation parameters using non-Rayleigh scattering at 95-GHz." Journal of Atmospheric and Oceanic Technology, 27(9), 10.1175/2010JTECHA1343.1. Time-height mapping of the retrieved vertical air motion for the 1 May 2007 event at SGP. Simultaneous measurements of vertical air motion and raindrop size distribution parameters in precipitation are challenging. The ARM W-band radars (95-GHz), despite being used primarily for cloud sensing, offer

242

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sub-Grid Scale Cloud Variability Affects Vertical Structure of Clouds and Sub-Grid Scale Cloud Variability Affects Vertical Structure of Clouds and Radiative Heating Submitter: McFarlane, S. A., U.S. Department of Energy Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: McFarlane, S. A., J. H. Mather, and T. P. Ackerman (2007), Analysis of tropical radiative heating profiles: A comparison of models and observations, J. Geophys. Res., 112, D14218, doi:10.1029/2006JD008290. Comparison of the distributions of cloud condensate for the ACRF TWP site at Manus using a) retrievals from the ACRF remote sensors, b) the CAM, c) all MMF columns, and d) MMF columns that do not contain precipitation. Note that the ARM observations do not include precipitation. Each panel consists

243

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Moistening by Clouds Sustains Madden-Julian Oscillation Atmospheric Moistening by Clouds Sustains Madden-Julian Oscillation Download a printable PDF Submitter: Hagos, S. M., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: N/A Outgoing longwave radiation (OLR Wm-2) signals in the tropics averaged between 10°S and 10°N from (a) a regional simulation with moisture constrained by observations and (b) NOAA-CPC satellite observations. The lines mark the eastward MJO propagation speed of 4 m/s. The constrained model is able to reproduce the key OLR features in the observations. Originating over the Indian Ocean, the Madden-Julian Oscillation (MJO) is an equatorial planetary-scale envelope of complex multi-scale cloud systems

244

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Critical Role of Cloud Drop Effective Radius >14 Micron Radius in Rain Critical Role of Cloud Drop Effective Radius >14 Micron Radius in Rain Initiation Download a printable PDF Submitter: Rosenfeld, D., The Hebrew University of Jerusalem Wang, H., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Rosenfeld D, H Wang, and PJ Rasch. 2012. "The roles of cloud drop effective radius and LWP in determining rain properties in marine stratocumulus." Journal of Geophysical Research - Atmospheres, 39, doi:10.1029/2012GL052028. The dependence of rain rate on cloud drop effective radius (re) near cloud top. The color scale is for the median value of column maximum rain rate in each joint bin of CWP-re (cloud liquid water path and cloud-top re).

245

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploring Parameterization for Turbulent Entrainment-Mixing Processes in Exploring Parameterization for Turbulent Entrainment-Mixing Processes in Clouds Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Lu, C., Brookhaven National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Lu C, S Niu, S Krueger, and T Wagner. 2013. "Exploring parameterization for turbulent entrainment-mixing processes in clouds." Journal of Geophysical Research - Atmospheres, 118(1), doi:10.1029/2012JD018464. Relationships between the three microphysical measures of homogeneous mixing degree (ψ1, ψ2, ψ3) and the two transition scale numbers (NLa, NL0), respectively. The results shown here are from the EMPM simulations.

246

Relating Pore-Scale Uranium Aquatic Speciation to Intermediate-Scale Aquifer Heterogeneity  

SciTech Connect (OSTI)

The speciation and transport of uranium (VI) through porous media is highly dependent on solution conditions, the presence of complexing ligands, and the nature of the porous media. The dependency on many variables makes prediction of U transport in bench-scale experiments and in the field difficult. In particular, the identification of colloidal U phases poses a technical challenge. Transport of U in the presence and absence of natural organic matter (Suwannee River humic acid, SRHA) through silica sand and hematite coated silica sand was tested at pH 4 and 5 using static columns, where flow is controlled by gravity and residence time between advective pore volume exchanges can be strictly controlled. The column effluents were characterized by traditional techniques including ICPMS quantification of total [U] and [Fe], TOC analysis of [DOC], and pH analysis, and also by non-traditional techniques: flow field flow fractionation with online ICPMS detection (FlFFF-ICPMS) and specific UV absorbance (SUVA) characterization of effluent fractions. Key results include that the transport of U through the columns was enhanced by pre-equilibration with SRHA, and previously deposited U was remobilized by the addition of SRHA. The advanced techniques yielded important insights on the mechanisms of transport: FlFFF-ICPMS identified a U?SRHA complex as the mobile U species and directly quantified relative amounts of the complex, while specific UV absorbance (SUVA) measurements indicated a composition-based fractionation onto the porous media.

Ranville, James

2013-04-01T23:59:59.000Z

247

Manufacturing Innovation and Scale-up | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Innovation and Scale-up Manufacturing Innovation and Scale-up The SunShot Initiative funds cutting-edge research and development that will help the solar...

248

NETL: Onsite Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Device Scale Modeling Device Scale Modeling Device Scale Modeling (DSM) at NETL is helping to overcome technical barriers associated with developing next-generation fossil energy technologies and processes. This research facility uses state-of-the-art, high-speed computing resources to verify computational fluid dynamics (CFD) models used to study coal gasifiers, gas turbine combustors, solid oxide fuel cell (SOFC) systems, and liquefied natural gas plumes, as well as mercury capture technologies. DSM research is helping to move advanced visualization and high-performance computing models from researchers' computer screens to actual laboratory experiments and pilot testing. The DSM group develops models that can be integrated into a wide range of simulation technology, including Advanced Process Engineering Co-Simulator (APECS) and Multiphase Flow with Interphase eXchanges (MFIX). These simulators are enabling researchers to model and understand the behavior of individual components within advanced power generation systems.

249

OSTI, US Dept of Energy, Office of Scientific and Technical Information |  

Office of Scientific and Technical Information (OSTI)

DOE Research and Development (R&D) Project DOE Research and Development (R&D) Project Summaries Topic Bench-to-Bench Coordination Using OSTI Resources by David Wojick 13 May, 2009 in Products and Content Coordination means increasing awareness of related and potentially useful research, especially across the basic and applied divide. Secretary Chu emphasizes the importance of bridging the basic and applied divide. DOE uses several large scale methods to foster coordination, such as workshops attended by hundreds of researchers. A complementary approach is described here, which we call "Bench-to-Bench Coordination". This approach uses analysis of OSTI resources to identify closely related research across the divide. The results can be used in a variety of ways to put individual (or "bench") researchers in touch with one another for coordination purposes. This process can operate on an ongoing basis, in contrast to episodic workshops.

250

EFRT M-12 Issue Resolution: Comparison of Filter Performance at PEP and CUF Scale  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed and constructed and is to be operated as part of a plan to respond to issue M12, Undemonstrated Leaching Processes. The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed-preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP; vessels UFP-VSL-00001A and B in the WTP PTF). In both scenarios, 19-M sodium hydroxide solution (NaOH, caustic) is added to the waste slurry in the vessels to leach solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by a heating step that uses direct injection of steam to accelerate the leach process. Following the caustic leach, the vessel contents are cooled using vessel cooling jackets and/or external heat exchangers. The main difference between the two scenarios is that for leaching in UFP1, the 19-M NaOH is added to un-concentrated waste slurry (3 to 8 wt% solids), while for leaching in UFP2, the slurry is concentrated to nominally 20 wt% solids using cross-flow ultrafiltration before the addition of caustic. The work described in this report presents filter flux results obtained at two different scales based on tests performed with a Hanford tank waste simulant. The tests were made at the lab-bench scale on a cold (i.e., designated for non-radioactive simulant test materials) Cells Unit Filter [CUF]) and in the Pretreatment Engineering Platform (PEP), which is a 1/4.5-scale mock-up of key PTF process equipment. One set of tests was conducted with the simulant feed (low solids), and one test was conducted at a relatively high solids concentration. The results of these tests are compared to support a scale factor for use in the WTP.

Daniel, Richard C.; Billing, Justin M.; Bontha, Jagannadha R.; Brown, Christopher F.; Eslinger, Paul W.; Hanson, Brady D.; Huckaby, James L.; Karri, Naveen K.; Kimura, Marcia L.; Kurath, Dean E.; Minette, Michael J.

2009-08-13T23:59:59.000Z

251

Silica Scaling Removal Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Silica Scaling Removal Process Silica Scaling Removal Process Scientists at Los Alamos National Laboratory have developed a novel technology to remove both dissolved and colloidal...

252

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterizing Mixed-Phase Clouds from the Ground: a Status Report Characterizing Mixed-Phase Clouds from the Ground: a Status Report Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Shupe, MD, JS Daniel, G De Boer, EW Eloranta, P Kollias, E Luke, CN Long, DD Turner, and J Verlinde. 2008. "A focus on mixed-phase clouds: The status of ground-based observational methods." Bulletin of the American Meteorological Society, accepted for publication in October 2008 issue. Figure 1. Retrieved cloud properties for 9 October 2004 at Barrow: (a) Multisensor cloud phase classification, (b) radar Doppler spectra cloud phase classification, (c) ice water content, (d) ice particle effective radius, (e) adiabatic liquid water content scaled to the microwave

253

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Out with the Old, in with the New: McICA to Replace Traditional Cloud Out with the Old, in with the New: McICA to Replace Traditional Cloud Overlap Assumptions Submitter: Pincus, R., NOAA - CIRES Climate Diagnostics Center Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Modeling Journal Reference: Pincus, R., R. Hemler, and S.A. Klein, 2006: Using Stochastically Generated Subcolumns to Represent Cloud Structure in a Large-Scale Model. Mon. Wea. Rev., 134, 3644-3656. As shown by the difference between the two panels, the standard way (AM2, top panel) of mixing solar reflection and transmission differs systematically from the Independent Column Approximation approach. Because cloud-radiation interactions depend critically on the vertical amount of clouds, different assumptions about how this alignment occurs

254

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

When It Rains, It Doesn't Always Pour When It Rains, It Doesn't Always Pour Download a printable PDF Submitter: Penide, G., Laboratoire d\\\'Optique Atmospherique Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Penide G, V Kumar, A Protat, and P May. 2013. "Statistics of drop size distribution parameters and rain rates for stratiform and convective precipitation during the North Australian wet season." Monthly Weather Review, 141(9), 10.1175 /mwr-d-12-00262.1. Measurements from the Atmospheric Radiation Measurement facility at Darwin, Australia, helped scientists determine how drop size distribution and rain rates are affected by larger-scale weather patterns. Rainfall comes in a variety of forms: mist, drizzle, showers, downpours. The type and frequency of rainfall usually depends on the season and

255

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparing Global Atmospheric Model Simulations of Tropical Convection Comparing Global Atmospheric Model Simulations of Tropical Convection Download a printable PDF Submitter: Lin, Y., Geophysical Fluid Dynamics Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: N/A Mean profiles of (first column) total precipitation normalized Q1, (second column) convective precipitation normalized convective heating, (third column) stratiform heating, and (fourth column) convective mass flux for the (top) wet, (middle) dry, and (bottom) break period from models and available observational estimates. Dashed lines are fine resolution model results. Note the different x axis scale for the third and fourth columns. An intercomparison of global atmospheric model simulations of tropical

256

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Multifractal Analysis of Radiation in Clouds: 5000km to 50cm Multifractal Analysis of Radiation in Clouds: 5000km to 50cm Submitter: Lovejoy, S., McGill University Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Lovejoy, S., D. Schertzer, J. D. Stanway, 2001: "Direct Evidence of planetary scale atmospheric cascade dynamics," Phys. Rev. Lett. 86(22): 5200-5203. Left: Power spectrum of the 5 different aircraft measured liquid water data sets from the FIRE experiment (averaged over 10 equally logarithmically spaced points on the k-axis and vertically offset). The absolute slopes with Β = 1.45 is indicated (straight line on top of graph) for reference. The number of sets used to compute the average from top to bottom: 4, 3, 1, 2, 5. A constant aircraft speed of 100m/s has been assumed. Right: Ensemble

257

Nano scale devices for plasmonic nanolithography and rapid sensing of bacteria  

E-Print Network [OSTI]

This dissertation contains two different research topics. One is a ‘Nano Scale Device for Plasmonic Nanolithography – Optical Antenna’ and the other is a ‘Nano Scale Device for Rapid Sensing of Bacteria – SEPTIC’. Since these two different research...

Seo, Sungkyu

2009-05-15T23:59:59.000Z

258

Gordon Research Conferences  

Science Journals Connector (OSTI)

...extra charge AINSWORTH TYPE 10 (compact size) Substitution-Weighing Analytical Balance...non-inductive load-works in any position-small size ideal for bench top controller-clip hanger...capable ot bridging two-adjacent s joint sizes. (accommodates 34/45 to 29/42...

W. George Parks

1963-03-15T23:59:59.000Z

259

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of these effects is becoming increasingly important since regional-scale numerical weather prediction and climate models are now commonly run at the deep-convective scale,...

260

CX-001381: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

381: Categorical Exclusion Determination 381: Categorical Exclusion Determination CX-001381: Categorical Exclusion Determination Indoor Bench-Scale Research Projects and Conventional Laboratory Operations CX(s) Applied: B3.6 Date: 04/05/2010 Location(s): Illinois Office(s): Science, Argonne Site Office All proposed actions will be indoor bench-scale research projects and conventional laboratory operations conducted in existing buildings at Argonne. Specifically, bench-scale chemical, biological, and physical studies, experiments and related activities including the assembly/disassembly of experimental instrumentation and research equipment are within the scope of the proposed actions. However, construction work including the installation of utilities and minor modifications in existing laboratory spaces needed to prepare for bench-scale research must be

Note: This page contains sample records for the topic "bench scale research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

CX-008817: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Indoor Bench Scale Research Projects and Conventional Laboratory Operations CX(s) Applied: B3.6 Date: 06/08/2012 Location(s): Illinois Offices(s): New Brunswick Laboratory

262

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

SCCCapture Division FY14-15 1012013 - 9302015 Steve Mascaro Research Triangle Park, Durham, NC Bench-Scale Development of a Non-Aqueous Solvent (NAS) CO2 Capture Process for...

263

Lab optimizes burning of hazardous wastes  

Science Journals Connector (OSTI)

A new thermal destruction laboratory has gone into operation at Midwest Research Institute, Kansas City, Mo. The bench-scale facility, which can accommodate gram quantities of hazardous wastes in liquid, slurry, or solid forms, is used to determine ...

WARD WORTHY

1981-08-31T23:59:59.000Z

264

CX-011846: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Bench-Scale Research Projects & Conventional Laboratory Operations CX(s) Applied: B3.6 Date: 01/26/2014 Location(s): New Jersey Offices(s): Princeton Site Office

265

PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS  

SciTech Connect (OSTI)

North Dakota lignite-fired power plants have shown a limited ability to control mercury emissions in currently installed electrostatic precipitators (ESPs), dry scrubbers, and wet scrubbers (1). This low level of control can be attributed to the high proportions of Hg{sup 0} present in the flue gas. Speciation of Hg in flue gases analyzed as part of the U.S. Environmental Protection Agency (EPA) information collection request (ICR) for Hg data showed that Hg{sup 0} ranged from 56% to 96% and oxidized mercury ranged from 4% to 44%. The Hg emitted from power plants firing North Dakota lignites ranged from 45% to 91% of the total Hg, with the emitted Hg being greater than 85% elemental. The higher levels of oxidized mercury were only found in a fluidized-bed combustion system. Typically, the form of Hg in the pulverized and cyclone-fired units was dominated by Hg{sup 0} at greater than 85%, and the average amount of Hg{sup 0} emitted from North Dakota power plants was 6.7 lb/TBtu (1, 2). The overall objective of this Energy & Environmental Research Center (EERC) project is to develop and evaluate advanced and innovative concepts for controlling Hg emissions from North Dakota lignite-fired power plants by 50%-90% at costs of one-half to three-fourths of current estimated costs. The specific objectives are focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in wet and dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in ESPs and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The scientific approach to solving the problems associated with controlling Hg emissions from lignite-fired power plants involves conducting testing of the following processes and technologies that have shown promise on a bench, pilot, or field scale: (1) activated carbon injection (ACI) upstream of an ESP combined with sorbent enhancement, (2) Hg oxidation and control using wet and dry scrubbers, (3) enhanced oxidation at a full-scale power plant using tire-derived fuel (TDF) and oxidizing catalysts, and (4) testing of Hg control technologies in the Advanced Hybrid{trademark} filter insert.

Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Mike J. Holmes; Jason D. Laumb; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang; Jill M. Zola

2004-02-01T23:59:59.000Z

266

BNL | Research Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brookhaven's Research Facilities Brookhaven's Research Facilities Tools of Discovery Brookhaven National Lab excels at the design, construction, and operation of large-scale, cutting-edge research facilities-some available nowhere else in the world. Each year, thousands of scientists from laboratories, universities, and industries around the world use these facilities to delve into the basic mysteries of physics, chemistry, biology, materials science, energy, and the environment-and develop innovative applications that arise, sometimes at the intersections of these disciplines. construction Brookhaven Lab is noted for the design, construction and operation of large-scale, cutting-edge research facilities that support thousands of scientists worldwide. RHIC tunnel Relativistic Heavy Ion Collider

267

OSTI, US Dept of Energy, Office of Scientific and Technical Information |  

Office of Scientific and Technical Information (OSTI)

Science Conference Proceedings Topic Science Conference Proceedings Topic Bench-to-Bench Coordination Using OSTI Resources by David Wojick 13 May, 2009 in Products and Content Coordination means increasing awareness of related and potentially useful research, especially across the basic and applied divide. Secretary Chu emphasizes the importance of bridging the basic and applied divide. DOE uses several large scale methods to foster coordination, such as workshops attended by hundreds of researchers. A complementary approach is described here, which we call "Bench-to-Bench Coordination". This approach uses analysis of OSTI resources to identify closely related research across the divide. The results can be used in a variety of ways to put individual (or "bench") researchers in touch with one another for coordination purposes. This process can operate on an ongoing basis, in contrast to episodic workshops.

268

Coherence and discontinuity in the scaling of specie's distribution patterns  

Science Journals Connector (OSTI)

7 January 2004 research-article Coherence and discontinuity in the scaling of specie's...points Adobe PDF - rspb20032531s01.pdf Coherence and discontinuity in the scaling of species...2003 Published online 24 November 2003 Coherence and discontinuity in the scaling of species...

2004-01-01T23:59:59.000Z

269

Ethics, Logs and Videotape: Ethics in Large Scale User Trials  

E-Print Network [OSTI]

Ethics, Logs and Videotape: Ethics in Large Scale User Trials and User Generated Content Abstract ethical responsibilities we have towards participants. This workshop brings together researchers to discuss the ethical issues of running large-scale user trials, and to provide guidance for future research

Paris-Sud XI, Université de

270

Cancer Research Beckman Institute  

E-Print Network [OSTI]

Cancer Research Beckman Institute FOR ADVANCED SCIENCE AND TECHNOLOGY #12;T The medical and scientific worlds have known for many years that in order to truly understand and treat cancer, the fight has and cancerous tumors have to first be visualized at the smallest scales possible, and then treated in the most

Illinois at Urbana-Champaign, University of

271

Coke and Coal Research  

Science Journals Connector (OSTI)

... A. Mott at the University of Sheffield, are concerned with problems affecting the hard coke industry, which enjoys facilities for large-scale experimentation through its member firms such as ... of the body organizing this work visited the Kingston and Fulham Laboratories of the British Coal Utilisation Research Association on September 9. Mr. J. G. Bennett, director of ...

1943-09-18T23:59:59.000Z

272

NETL: Onsite Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fundamental Combustion Laboratory Fundamental Combustion Laboratory To help meet a national strategic commitment to clean power generation, NETL is developing a technology base for tomorrow's highly efficient, near-zero-emissions power plants. At NETL, combustion science research is helping to provide the basis for a new generation of advanced fossil fuel conversion technologies that are needed to meet future demands for efficient, clean, and cost-effective energy production. Combustion science researchers are able to study fundamental combustion processes and properties at a laboratory scale, using advanced laser-based systems. Researchers also use a natural gas combustion apparatus that has been adapted to study a variety of fuel types and power systems. Taking this fundamental research the next step, researchers find that, when applied to reciprocating engines, laser-induced spark ignition can achieve leaner air/fuel running conditions by significantly lowering combustion temperatures, which reduces the amount of pollutants produced such as NOx.

273

NETL: Onsite Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fluidization Research: Multiphase Flow/Gas-Solid Transport Laboratory Fluidization Research: Multiphase Flow/Gas-Solid Transport Laboratory NETL's research, development, and demonstration initiatives are leading to improved operations of coal-based power systems, and future power supplies that are environmentally clean and economically affordable. One method NETL researchers are using is advanced computational and experimental research, which is helping to develop novel technologies, including transport gasifiers, circulating fluidized-bed combustors, and hot gas desulfurization. Enhanced computational capabilities are leading to major improvements in power plant efficiency, and therefore to reduced emissions. Transport gasifier and MFIX showing particle trajectories and oxygen concentration. MFIX simulations complement testing and development at the DOE demonstration Power System Development Facility (PSDF) in Wilsonville, Alabama (shown above). Coal and recycled materials feed into the lower mixing zone of the plant's circulating fluidized-bed. The validated simulation model is currently being used to design a commercial-scale unit.

274

Silica Scaling Removal Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Silica Scaling Removal Process Silica Scaling Removal Process Silica Scaling Removal Process Scientists at Los Alamos National Laboratory have developed a novel technology to remove both dissolved and colloidal silica using small gel particles. Available for thumbnail of Feynman Center (505) 665-9090 Email Silica Scaling Removal Process Applications: Cooling tower systems Water treatment systems Water evaporation systems Potential mining applications (produced water) Industry applications for which silica scaling must be prevented Benefits: Reduces scaling in cooling towers by up to 50% Increases the number of cycles of concentration substantially Reduces the amount of antiscaling chemical additives needed Decreases the amount of makeup water and subsequent discharged water (blowdown) Enables considerable cost savings derived from reductions in

275

Thermodynamics and scale relativity  

E-Print Network [OSTI]

It is shown how the fractal paths of scale relativity (following Nottale) can be introduced into a thermodynamical context (following Asadov-Kechkin).

Robert Carroll

2011-10-13T23:59:59.000Z

276

EMSL - micro-scales  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

micro-scales en Physical Properties of Ambient and Laboratory-Generated Secondary Organic Aerosol. http:www.emsl.pnl.govemslwebpublicationsphysical-properties-ambient-and-labo...

277

Final report for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils  

SciTech Connect (OSTI)

IT Corporation (IT) was contracted by Martin Marietta Energy Systems, Inc. (Energy Systems) to perform a pilot-scale demonstration of the effectiveness of thermal desorption as a remedial technology for removing mercury from the Lower East Fork Poplar Creek (LEFPC) floodplain soil. Previous laboratory studies by Energy Systems suggested that this technology could reduce mercury to very low levels. This pilot-scale demonstration study was initiated to verify on an engineering scale the performance of thermal desorption. This report includes the details of the demonstration study, including descriptions of experimental equipment and procedures, test conditions, sampling and analysis, quality assurance (QA), detailed test results, and an engineering assessment of a conceptual full-scale treatment facility. The specific project tasks addressed in this report were performed between October 1993 and June 1994. These tasks include soil receipt, preparation, and characterization; prepilot (bench-scale) desorption tests; front-end materials handling tests; pilot tests; back-end materials handling tests; residuals treatment; and engineering scale-up assessment.

NONE

1994-09-01T23:59:59.000Z

278

Research Gallery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Gallery Research Gallery Inside the Museum Exhibitions Norris Bradbury Museum Lobby Defense Gallery Research Gallery History Gallery TechLab Virtual Exhibits invisible utility element Research Gallery Science serving society The Laboratory conducts leading-edge research in many areas of science and technology to help solve national problems related to energy, the environment, infrastructure, and health. Basic research conducted here enhances national defense and economic security. Exhibits you'll find in this gallery: Understanding Radiation LANSCE: Los Alamos Neutron Science Center Space Science Research Viewspace Environmental Monitoring and Research Nanotechnology: The Science of the Small Algae to Biofuels: Squeezing Power from Pond Scum Living with Wildfire: A Shared Community Experience

279

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

researchers published research in 2007 that addressed assumptions in the ability of diesel exhaust organic aerosols to mix with organic aerosols from tree evaporate. This new...

280

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Madden-Julian Oscillation Heating: to Tilt or Not to Tilt For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research...

Note: This page contains sample records for the topic "bench scale research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Research Library  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LANL Research Library: delivering essential knowledge services for national security sciences since 1947 About the Research Library The Basics Mission We deliver agile, responsive...

282

Research | JCESR  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research banner researcher908 Today's electrical energy storage approaches suffer from limited energy and power capacities, lower-than-desired rates of charge and discharge,...

283

Electromagnetic Composites at the Compton Scale  

E-Print Network [OSTI]

A new class of electromagnetic composite particles is proposed. The composites are very small (the Compton scale), potentially long-lived, would have unique interactions with atomic and nuclear systems, and, if they exist, could explain a number of otherwise anomalous and conflicting observations in diverse research areas.

Frederick J. Mayer; John R. Reitz

2011-09-10T23:59:59.000Z

284

Research Opportunities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Opportunities collaborationassetsimagesicon-collaboration.jpg Research Opportunities Partnering with respected universities, LANL Centers provide exceptional educational...

285

Improvements to laboratory-scale maize wet-milling procedures  

Science Journals Connector (OSTI)

The wet milling of maize is difficult to study in the laboratory because some of the required separation steps are challenging to implement at bench-scale. This work was conducted to develop an improved 100-g wet-milling procedure that better models the industrial process. Several separation steps were modified from previously reported methods. Among the changes, germ was recovered by a flotation/skimming technique that is normally used on larger-scale procedures. Starch was recovered by tabling, but the flow profile at the end of the table was changed to reduce gluten settling and the partitioning and pumping of slurry fractions was changed to allow the tabling process to begin immediately after fiber recovery. Gluten was dewatering directly on the table overflow, and starch was recovered from the table before drying. These modifications eliminated some problems associated with other procedures, e.g. the scraping of tabled starch to reduce protein contamination, the loss of germ due to size reduction, and the separate recovery of coarse and fine fiber fractions. Compared with routine tabling methods, the modified method used in this work produced starch with less protein (0.42 versus 0.55% for the maize variety tested); however, the improvement was achieved at the expense of a slightly lower starch yield (64.4 versus 65.4%). Standard deviations for the product yields were 0.28% for starch, 0.27% for gluten, 0.24% for fiber, 0.13% for germ, and 0.07% for total solubles. The procedure will be beneficial for some maize wet-milling experiments.

Michael K. Dowd

2003-01-01T23:59:59.000Z

286

Research Highlights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Highlights Highlights Form Submit a New Research Highlight Sort Highlights Submitter Title Research Area Working Group Submission Date DOE Progress Reports Notable Research Findings for 2001-2006 Biological and Environmental Research Abstracts Database Research Highlights Summaries Research Highlights Members of ARM's science team are major contributors to radiation and cloud research. ARM investigators publish about 150 refereed journal articles per year, and ARM data are used in many studies published by other scientific organizations. These documented research efforts represent tangible evidence of ARM's contribution to advances in almost all areas of atmospheric radiation and cloud research. Below is a selection of summaries highlighting recently-published ARM research. The entire collection of ARM

287

SunShot Initiative: Scaling Up Nascent Photovoltaics AT Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scaling Up Nascent Photovoltaics Scaling Up Nascent Photovoltaics AT Home to someone by E-mail Share SunShot Initiative: Scaling Up Nascent Photovoltaics AT Home on Facebook Tweet about SunShot Initiative: Scaling Up Nascent Photovoltaics AT Home on Twitter Bookmark SunShot Initiative: Scaling Up Nascent Photovoltaics AT Home on Google Bookmark SunShot Initiative: Scaling Up Nascent Photovoltaics AT Home on Delicious Rank SunShot Initiative: Scaling Up Nascent Photovoltaics AT Home on Digg Find More places to share SunShot Initiative: Scaling Up Nascent Photovoltaics AT Home on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Diversity in Science and Technology Advances National Clean Energy in Solar Grid Engineering for Accelerated Renewable Energy Deployment

288

Enhancements in SCALE 6.1  

SciTech Connect (OSTI)

The Standardized Computer Analysis for Licensing Evaluation (SCALE) code system developed at Oak Ridge National Laboratory provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. For more than 30 years, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides a 'plug-and-play' framework with nearly 80 computational modules, including three deterministic and three Monte Carlo radiation transport solvers that are selected based on the desired solution. SCALE's graphical user interfaces assist with accurate system modeling and convenient access to desired results. SCALE 6.1, scheduled for release in the fall of 2010, provides improved reliability and introduces a number of enhanced features, some of which are briefly described here. SCALE 6.1 provides state-of-the-art capabilities for criticality safety, reactor physics, and radiation shielding in a robust yet user-friendly package. The new features and improved reliability of this latest release of SCALE are intended to improve safety and efficiency throughout the nuclear community.

Rearden, Bradley T [ORNL] [ORNL

2010-01-01T23:59:59.000Z

289

NREL: Biomass Research - Research Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Staff Research Staff NREL's biomass research staff includes: Management team Technology and research areas Research support areas. Search the NREL staff directory to contact any of the research staff listed below. Management Team The biomass management team is composed of: Thomas Foust, National Bioenergy Center Director Robert Baldwin, Principal Scientist, Thermochemical Conversion Phil Pienkos, Applied Science Principal Group Manager Kim Magrini, Catalysis and Thermochemical Sciences and Engineering R&D Principal Group Manager Jim McMillan, Biochemical Process R&D Principal Group Manager Rich Bain, Principal Engineer, Thermochemical Sciences Mark Davis, Thermochemical Platform Lead Richard Elander, Biochemical Platform Lead Dan Blake, Emeritus Back to Top Technology and Research Areas

290

Sandia National Laboratories: Research: Research Foundations: Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Science Engineering Science The Engineering Science Research Foundation is leading engineering transitions in advanced, highly critical systems by integrating theory development, experimental discovery and diagnostics, modeling, and computational approaches to refine our understanding of complex behavior in engineered systems. Why our work matters Revolutionizing the fundamental understanding of complex engineered systems can lead to enhancements that will bolster our national security stance for decades to come. Our unique value Leading-edge work on physical phenomena at the continuum and near-continuum scale Engineering expertise in national security systems that is second to none Foundational knowledge across multiple disciplines, including solid mechanics, fluid mechanics of reacting and nonreacting systems, structural

291

Surrogate modeling for large-scale black-box systems  

E-Print Network [OSTI]

This research introduces a systematic method to reduce the complexity of large-scale blackbox systems for which the governing equations are unavailable. For such systems, surrogate models are critical for many applications, ...

Liem, Rhea Patricia

2007-01-01T23:59:59.000Z

292

Scale Models & Wind Turbines  

Broader source: Energy.gov (indexed) [DOE]

Scale Models and Wind Turbines Grades: 5-8, 9-12 Topics: Wind Energy Owner: Kidwind Project This educational material is brought to you by the U.S. Department of Energy's Office of...

293

Solar Firms Scale Back  

Science Journals Connector (OSTI)

Solar Firms Scale Back ... First Solar, an Arizona-based thin-film photovoltaics firm, said last week that it will restructure its operations to reduce capacity and shift production to more efficient facilities. ...

MELODY BOMGARDNER

2012-04-23T23:59:59.000Z

294

University Research  

Office of Science (SC) Website

university-research The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total...

295

Research Highlights  

Broader source: Energy.gov [DOE]

DOE partners with leading researchers from industry, academia, and national laboratories to accelerate advances in solid-state lighting (SSL). These researchers have made dramatic progress in just a few years, achieving several world records as well as national recognition.

296

Belowground Carbon Cycling Processes at the Molecular Scale  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

919 919 Belowground Carbon Cycling Processes at the Molecular Scale An EMSL Science Theme Advisory Panel Workshop Workshop Date: February 19-21, 2013 Prepared for the U.S. Department of Energy's Office of Biological and Environmental Research under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 Belowground Carbon Cycling Processes at the Molecular Scale iii Executive Summary As part of the Belowground Carbon Cycling Processes at the Molecular Scale workshop, an Environmental Molecular

297

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Thermodynamics Affect Radiative Impact of Deep Convective Cloud Systems Submitter: Jensen, M., Brookhaven National Laboratory Area of Research: Atmospheric...

298

Microbiological Research ] (  

E-Print Network [OSTI]

) or to expand on previous research addressing the fate of nitrogen from agrochemicals (Bichat et al., 1999

Sims, Gerald K.

299

Spatial and Temporal Dynamics of Salt Marsh Vegetation across Scales  

E-Print Network [OSTI]

in Denmark responding to environmental variations at large, medium, and fine scales along both spatial and temporal spectrums. At the broad scale, this research addressed the importance of wind-induced rise of the sea surface in such biogeographic changes. A...

Kim, Daehyun

2010-10-12T23:59:59.000Z

300

A Multi-scale Approach to Nonuniform September, 1991  

E-Print Network [OSTI]

A Multi-scale Approach to Nonuniform Diffusion TR91-040 September, 1991 Ross T. Whitaker Stephen M The University of North Carolina Chapel Hill, NC 27599-3175 The research was supported by NIH grant number POl CA Institution. #12;Abstract A Multi-scale Approach to Nonuniform Diffusion Ross T. Whitaker and Stephen M. Pizer

North Carolina at Chapel Hill, University of

Note: This page contains sample records for the topic "bench scale research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Defects and Faults in Quantum Cellular Automata at Nano Scale  

E-Print Network [OSTI]

Defects and Faults in Quantum Cellular Automata at Nano Scale Mehdi Baradaran Tahoori, Mariam considerable research on quantum dot cellular automata (QCA) as a new computing scheme in the nano, quantum dot cellular automata (QCA) not only gives a solution at nano scale, but also it offers a new

302

Neuroimaging Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Neuroimaging Research Neuroimaging Research (NIAAA Intramural & NIH) Neuroimaging research at Brookhaven is a prime example of transdisciplinary research where the expertise of chemists, physicists, and biological and medical scientists blend to apply new imaging tools to problems in human health. Brookhaven has a network of complementary brain-imaging tools: PET Positron Emission Tomography (PET) Micro MRI MicroMRI Awake Animal Imaging Awake Animal Imaging Using these imaging tools, human neuroscience research has focused on understanding how the brain effects, and is affected by: obesity and eating disorders ADHD depression Behavioral Pharmacology and Neuroimaging, and Neuropsychoimaging enrich investigations of the relationships between brain chemistry and behavior. Top of Page

303

Scaling Relationships Based on Scaled Tank Mixing and Transfer Test Results  

SciTech Connect (OSTI)

This report documents the statistical analyses performed (by Pacific Northwest National Laboratory for Washington River Protection Solutions) on data from 26 tests conducted using two scaled tanks (43 and 120 inches) in the Small Scale Mixing Demonstration platform. The 26 tests varied several test parameters, including mixer-jet nozzle velocity, base simulant, supernatant viscosity, and capture velocity. For each test, samples were taken pre-transfer and during five batch transfers. The samples were analyzed for the concentrations (lbs/gal slurry) of four primary components in the base simulants (gibbsite, stainless steel, sand, and ZrO2). The statistical analyses including modeling the component concentrations as functions of test parameters using stepwise regression with two different model forms. The resulting models were used in an equivalent performance approach to calculate values of scaling exponents (for a simple geometric scaling relationship) as functions of the parameters in the component concentration models. The resulting models and scaling exponents are displayed in tables and graphically. The sensitivities of component concentrations and scaling exponents to the test parameters are presented graphically. These results will serve as inputs to subsequent work by other researchers to develop scaling relationships that are applicable to full-scale tanks.

Piepel, Gregory F.; Holmes, Aimee E.; Heredia-Langner, Alejandro; Lee, Kearn P.; Kelly, Steven E.

2014-01-01T23:59:59.000Z

304

Scaling Relationships Based on Scaled Tank Mixing and Transfer Test Results  

SciTech Connect (OSTI)

This report documents the statistical analyses performed (by Pacific Northwest National Laboratory for Washington River Protection Solutions) on data from 26 tests conducted using two scaled tanks (43 and 120 inches) in the Small Scale Mixing Demonstration platform. The 26 tests varied several test parameters, including mixer-jet nozzle velocity, base simulant, supernatant viscosity, and capture velocity. For each test, samples were taken pre-transfer and during five batch transfers. The samples were analyzed for the concentrations (lbs/gal slurry) of four primary components in the base simulants (gibbsite, stainless steel, sand, and ZrO2). The statistical analyses including modeling the component concentrations as functions of test parameters using stepwise regression with two different model forms. The resulting models were used in an equivalent performance approach to calculate values of scaling exponents (for a simple geometric scaling relationship) as functions of the parameters in the component concentration models. The resulting models and scaling exponents are displayed in tables and graphically. The sensitivities of component concentrations and scaling exponents to the test parameters are presented graphically. These results will serve as inputs to subsequent work by other researchers to develop scaling relationships that are applicable to full-scale tanks.

Piepel, Gregory F.; Holmes, Aimee E.; Heredia-Langner, Alejandro

2013-09-18T23:59:59.000Z

305

Fish Scales and Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fish Scales and Science Fish Scales and Science Name: Amanda Location: N/A Country: N/A Date: N/A Question: In special education class.Science project time.Topic choosen is HOW DO SCALES HELP FISH? Any suggestions or information would be of help. Replies: Wait a minute. Why do you think the scales help the fish? How do you know they do? Have you talked to a fish lately? Maybe they are useless, or even a problem. Maybe the fish wishes it didn't have scales! I say this only to emphasize two things: First of all, when you think scientifically, the MOST IMPORTANT thing is to be very careful not to assume you know something when you really don't. What I mean by that is: don't think you know the answer before you are dead positive absolutely for-sure 100% certain that you do. Why? Why make a big fuss over being so very careful? Well, I hate to tell you this (but you probably already know it), it's just SO EASY for human beings to fool themselves, to think they know the answers when they really don't know AT ALL what they are talking about. If you have a brother or sister, you know EXACTLY what I mean, I expect.

306

PNNL: Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

full sized image Individual homes and entire neighborhoods could be powered with a new, small-scale solid oxide fuel cell system developed by PNNL that achieves up to 57 percent...

307

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is to use ARM IOP data to refine a cloudiness parameterization, as proposed by Xu and Randall (1996a). The cloudiness parameterization uses the large-scale average condensate...

308

Accelerated Least Squares Multidimensional Scaling  

E-Print Network [OSTI]

x(make_x(36,2)) xACCELERATED SCALING R EFERENCES I.ACCELERATED LEAST SQUARES MULTIDIMENSIONAL SCALING JAN DEare simpler to write. ACCELERATED SCALING It is shown in De

Leeuw, Jan de

2006-01-01T23:59:59.000Z

309

Accelerated Least Squares Multidimensional Scaling  

E-Print Network [OSTI]

x(make_x(36,2)) xACCELERATED SCALING R EFERENCES I.ACCELERATED LEAST SQUARES MULTIDIMENSIONAL SCALING JAN DEare simpler to write. ACCELERATED SCALING It is shown in De

Jan de Leeuw

2011-01-01T23:59:59.000Z

310

SEDIMENT DECONTAMINATION TREATMENT TRAIN: COMMERCIAL-SCALE DEMONSTRATION FOR THE PORT OF NEW YORK/NEW JERSEY  

SciTech Connect (OSTI)

Decontamination and beneficial use of dredged material is a component of a comprehensive Dredged Material Management Plan for the Port of New York and New Jersey. The authors describe here a regional contaminated sediment decontamination program that is being implemented to meet the needs of the Port. The components of the train include: (1) dredging and preliminary physical processing (materials handling), (2) decontamination treatment, (3) beneficial use, and (4) public outreach. Several types of treatment technologies suitable for use with varying levels of sediment contamination have been selected based on the results of bench- and pilot-scale tests. This work is being conducted under the auspices of the Water Resources Development Act (WRDA). The use of sediment washing is suitable for sediments with low to moderate contamination levels, typical of industrialized waterways. BioGenesis Enterprises and Roy F. Weston, Inc. performed the first phase of an incremental decontamination demonstration with the goal of decontaminating 700 cubic yards (cy) (pilot-scale) for engineering design and cost economics information for commercial scale operations. This pilot test was completed in March, 1999. The next phase will scale-up to operation of a commercial facility capable of treating 40 cy/hr. It is anticipated that this will be completed by January 2000 (250,000 cy/yr). Manufactured topsoil is one beneficial use product from this process. Tests of two high-temperature treatment technologies are also in progress. They are well suited to produce almost complete destruction of organic compounds in moderate to highly contaminated dredged materials and for production of high-value beneficial reuse products. The Institute of Gas Technology is demonstrating a natural gas-fired thermochemical manufacturing process with an initial treatment capacity of 30,000 cy/yr into operation by the fall of 1999. Design and construction of a 100,000 cy/yr facility will be based on the operational results obtained from the demonstration facility. The decontaminated dredged material will be converted to a construction-grade cement. Prior bench- and pilot-scale tests showed that this treatment removes 99.99% of the organic contaminants and immobilizes the metals. The Westinghouse Science and Technology Center has demonstrated use of a high-temperature plasma to achieve 99.99% removal efficiencies for organic contaminants while immobilizing metals in a glass matrix. It was shown that a glass product such as tiles or fibers can be produced and that it can be used for manufacturing high quality glass tiles on a commercial scale.

JONES,K.W.; STERN,E.A.; DONATO,K.R.; CLESCERI,N.L.

1999-07-01T23:59:59.000Z

311

Enabling Large-Scale Linear Systems of Equations on Hybrid HPC Infrastructures  

Science Journals Connector (OSTI)

Scientific research is becoming increasingly dependent on the large-scale analysis of data using High Performance Computing (HPC) infrastructures. Scientific computing aims at constructing mathematical models ......

H. Astsatryan; V. Sahakyan; Yu. Shoukouryan; M. Daydé; A. Hurault

2012-01-01T23:59:59.000Z

312

Optimization and control of a large-scale solar chimney power plant.  

E-Print Network [OSTI]

??ENGLISH ABSTRACT: The dissertation builds on previous research (Pretorius, 2004) and investigates the optimization and control of a large-scale solar chimney power plant. Performance results… (more)

Pretorius, Johannes Petrus

2007-01-01T23:59:59.000Z

313

Solazyme Pilot-Scale Biorefinery  

Broader source: Energy.gov (indexed) [DOE]

SzIBR will demonstrate integrated scale-up of Solazyme's novel heterotrophic algal oil biomanufacturing process, validate the projected commercial-scale economics of...

314

Angular Scaling In Jets  

SciTech Connect (OSTI)

We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.

Jankowiak, Martin; Larkoski, Andrew J.; /SLAC

2012-02-17T23:59:59.000Z

315

Development and Implementation of a Scaled Saltstone Facility at Savannah River National Laboratory - 13346  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) has supported the Saltstone Production Facility (SPF) since its conception. However, bench scaled tests have not always provided process or performance data related to the mixing, transfer, and other operations utilized in the SPF. A need was identified to better understand the SPF processes and to have the capabilities at SRNL to simulate the SPF unit operations to support an active low-level radioactive waste (LLW) processing facility. At the SPF, the dry premix is weighed, mixed and transferred to the Readco '10-inch' continuous mixer where it is mixed with the LLW salt solution from the Salt Feed Tank (SFT) to produce fresh Saltstone slurry. The slurry is discharged from the mixer into a hopper. The hopper feeds the grout pump that transfers the slurry through at least 457.2 meters of piping and discharges it into the Saltstone Disposal Units (SDU) for permanent disposal. In conjunction with testing individual SPF processes over several years, SRNL has designed and fabricated a scaled Saltstone Facility. Scaling of the system is primarily based on the volume capacity of the mixer and maintaining the same shear rate and total shear at the wall of the transfer line. At present, SRNL is utilizing the modular capabilities of the scaled Saltstone Facility to investigate the erosion issues related to the augers and paddles inside the SPF mixer. Full implementation of the scaled Saltstone Facility is still ongoing, but it is proving to be a valuable resource for testing alternate Saltstone formulations, cleaning sequences, the effect of pumping Saltstone to farther SDU's, optimization of the SPF mixer, and other operational variables before they are implemented in the SPF. (authors)

Reigel, Marissa M.; Fowley, Mark D.; Hansen, Erich K.; Hera, Kevin R.; Marzolf, Athneal D.; Cozzi, Alex D. [Savannah River National Laboratory, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

316

NREL: Biomass Research - James D. McMillan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and technology. His primary research and development focus is on lignocellulosic biomass conversion process technology development, integration and scale up. He has more than...

317

ORNL researchers develop 'Autotune' software to make it quicker...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

efficiency, if widely implemented, could significantly impact energy and environmental sustainability at local to national scales. ORNL buildings researchers Sanyal and...

318

Post-Doc Researchers Needed | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Iowa State University, is anticipating a number of Postdoctoral Research Associate vacancies within 2014. Vacancies are anticipated in the following areas: Large scale density...

319

Laboratory Directed Research and Development Program FY 2010  

E-Print Network [OSTI]

of the fundamental rules governing electronic energy leveland electronic conduction are controlled on the nanometer length scale. The proposed research will provide fundamental

Hansen, Todd

2011-01-01T23:59:59.000Z

320

Extreme Scale Computing, Co-design  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Extreme Scale Computing, Co-design Extreme Scale Computing, Co-design Informing system design, ensuring productive and efficient code Project Description To address the increasingly complex problems of the modern world, scientists at Los Alamos are pushing the scale of computing to the extreme, forming partnerships with other national laboratories and industry to develop supercomputers that can achieve "exaflop" speeds-that is, a quintillion (a million trillion) calculations per second. To put such speed in perspective, it is equivalent to 50 million laptops all working together at the same time. Researchers are also developing the interacting components of a computational system as a whole. This approach, known as computational co-design, may facilitate revolutionary designs in the next generation of supercomputers.

Note: This page contains sample records for the topic "bench scale research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Wind Turbine Design Cost and Scaling Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Turbine Design Cost Wind Turbine Design Cost and Scaling Model L. Fingersh, M. Hand, and A. Laxson Technical Report NREL/TP-500-40566 December 2006 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Wind Turbine Design Cost and Scaling Model L. Fingersh, M. Hand, and A. Laxson Prepared under Task No. WER6.0703 Technical Report NREL/TP-500-40566 December 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

322

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cotton-Ball Clouds Contained Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life...

323

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a Modified Scheme for Shallow Convection with CuP Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working...

324

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the First Aerosol Indirect Effect in Shallow Cumuli Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working...

325

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical Diffusivity and Viscosity of Secondary Organic Aerosols Download a printable PDF Submitter: Zelenyuk-Imre, A., Pacific Northwest National Laboratory Area of Research:...

326

Research Help  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanotechnology Nuclear Science & Technology Plutonium Science Physics Renewable Energy Space Sciences Research Help Looking for Library resources? How to Find can assist you in...

327

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Y Qian, and JE Penner. 2012. "Constraining cloud lifetime effects of aerosols using A-Train satellite observations." Geophysical Research Letters, 39, L15709, doi: 10.1029...

328

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Growing More Effective Ways to Measure Climate Change Download a printable PDF Submitter: Maseyk, K. S., Universite Pierre et Marie Curie, Paris 6 Area of Research: Surface...

329

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Curve Captures Cloud System Variability Submitter: Lamb, P. J., University of Oklahoma Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud...

330

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Key Contributor to Low-Level Cloud Reflectivity Submitter: Penner, J. E., University of Michigan Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference:...

331

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Kelly, JT, CC Chuang, and AS Wexler. 2007. "Influence of dust composition on cloud droplet...

332

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tests of Single-Column Models with ARM Data Submitter: Randall, D. A., Colorado State University Area of Research: General Circulation and Single Column ModelsParameterizations...

333

Research Proposals  

Broader source: Energy.gov [DOE]

The EERE Postdoctoral Research Awards are intended to be an avenue for significant energy efficiency and renewable energy innovation. To enable the participant's creativity as they conduct their...

334

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

algorithms from the research domain to operational applications. But while the standardization of algorithms is an important concern of the radar community, an awareness of the...

335

Research Topics  

Broader source: Energy.gov [DOE]

The Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Awards are intended to be an avenue for significant energy efficiency and renewable energy innovation. The EERE Postdoctoral...

336

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Weather Prediction and Climate Simulation: a Meeting of the Models Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single...

337

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM Climate Research Facility at the Southern Great Plains site to evaluate three major Numerical-Weather-Prediction reanalyses (ERA-Interim, NCEPNCAR Reanalysis I, and NCEPDOE...

338

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MBL Cloud Properties Derived from the Azores-AMF Observations Submitter: Dong, X., University of North Dakota Area of Research: Cloud Processes Working Group(s):...

339

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimating Glaciation Temperature of Deep Convective Clouds with Remote Sensing Data Download a printable PDF Submitter: Li, Z., University of Maryland Area of Research: Cloud...

340

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference:...

Note: This page contains sample records for the topic "bench scale research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Schween, J. H., Inst. of Geophysics and Meteorology Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference:...

342

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Xie, S., Lawrence Livermore National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Modeling Journal Reference: Xie S,...

343

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud-Aerosol-Precipitation Interactions...

344

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Maryland Sawyer, V. R., University of Maryland Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud-Aerosol-Precipitation Interactions...

345

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effects of Sea Spray on the Thermodynamics of the Hurricane Boundary Layer Download a printable PDF Submitter: Khain, A., The Hebrew University of Jerusalem Area of Research:...

346

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Xie, S., Lawrence Livermore National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: Xie...

347

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Insight on the Atmosphere's Tiniest Particles Download a printable PDF Submitter: Smith, J., NCAR McMurry, P. ., University of Minnesota Area of Research: Aerosol Properties...

348

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical Properties of the 1997 TWP Smoke Event Submitter: Spinhirne, J., University of Arizona Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal...

349

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical Depth Measurements by Shadowband Radiometers and Their Uncertainties Download a printable PDF Submitter: Alexandrov, M. D., Columbia University Area of Research: Radiation...

350

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

For Estimates of Cloud Optical Thickness, Simple Equation Is Good Enough Submitter: Barnard, J. C., Pacific Northwest National Laboratory Area of Research: Cloud Distributions...

351

Research | NREL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy grid integration. Learn More National Bioenergy Center National Center for Photovoltaics National Wind Technology Center Publications Data & Resources Research Highlights...

352

xi-scaling  

SciTech Connect (OSTI)

A class of purely kinematical corrections to xi-scaling is exposed. These corrections are inevitably present in any realistic hadron model with spin and gauge invariance and lead to phenomenologically important M/sub hadron//sup 2//Q/sup 2/ corrections to Nachtmann moments.

Gunion, J.F.

1980-04-01T23:59:59.000Z

353

Sensor system scaling issues  

SciTech Connect (OSTI)

A model for IR sensor performance is used to compare estimates of sensor cost effectiveness. Although data from aircraft sensors indicate a weaker scaling, their agreement is adequate to support the assessment of the benefits of operating up to the maximum altitude of most current UAVs.

Canavan, G.H.

1996-07-01T23:59:59.000Z

354

NREL: Continuum Magazine - The Utility-Scale Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utility-Scale Future Utility-Scale Future Issue 1 Print Version Share this resource Continuum Magazine Dan Says New Facility to Transform U.S. Energy Infrastructure New Facility to Transform U.S. Energy Infrastructure The nation's electricity infrastructure needs an overhaul. NREL's newest research facility will lead the way. Wind Innovation Enables Utility-Scale Wind Innovation Enables Utility-Scale NREL research will enable wind energy to make major contributions to meeting the nation's electrical demand. Leading Solar Expertise-A Launch Pad to the Future Leading Solar Expertise- A Launch Pad to the Future NREL is speeding solar devices from the lab to utility-scale operation. Paint it Black: One-Step Etch Cuts Solar Cell Costs Paint It Black: One-Step Etch Cuts Solar Cell Costs NREL's technique provides the solar cell manufacturing industry with a

355

Density dependence of reactor performance with thermal confinement scalings  

SciTech Connect (OSTI)

Energy confinement scalings for the thermal component of the plasma published thus far have a different dependence on plasma density and input power than do scalings for the total plasma energy. With such thermal scalings, reactor performance (measured by Q, the ratio of the fusion power to the sum of the ohmic and auxiliary input powers) worsens with increasing density. This dependence is the opposite of that found using scalings based on the total plasma energy, indicating that reactor operation concepts may need to be altered if this density dependence is confirmed in future research.

Stotler, D.P.

1992-03-01T23:59:59.000Z

356

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network [OSTI]

proceedings of High Performance Computing – 2011 (HPC-2011)In recent years, high performance computing has becomeNERSC is the primary high-performance computing facility for

Gerber, Richard A.

2012-01-01T23:59:59.000Z

357

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network [OSTI]

in the process of thermonuclear incineration of theircore-collapse and thermonuclear events to test predictionsprocesses. In contrast to thermonuclear supernova modeling,

Gerber, Richard A.

2012-01-01T23:59:59.000Z

358

Small-scale drilling operations for research purposes  

Science Journals Connector (OSTI)

...Transmission: Throttle: Fuel: Fuel consumption: Drill rods: Core barrels...comment on starting the engine and an apparent deficiency...cease, otherwise the engine will receive damage...Two-stroke and four-stroke fuel 8 0 0 Depreciation...

Noah Farmer; John Michael Jones; Duncan George Murchison

359

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network [OSTI]

Low-Energy Nuclear Physics National Joseph Carlson / HPC Initiative: Building a Universal Joseph Carlson Jonathan Engel Nuclear Energy Density Functional Structure and Reactions

Gerber, Richard A.

2012-01-01T23:59:59.000Z

360

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network [OSTI]

neutrino matrix. Neutrinoless double beta decay experiments,process called neutrinoless double beta decay in nuclei,

Gerber, Richard A.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bench scale research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Origin of Tokamak Density Limit Scalings  

Science Journals Connector (OSTI)

The onset criterion for radiation driven islands [P.?H. Rebut and M. Hugon, Plasma Physics and Controlled Nuclear Fusion Research 1984: Proc. 10th Int. Conf. London, 1984, (IAEA, Vienna, 1985), Vol. 2] in combination with a simple cylindrical model of tokamak current channel behavior is consistent with the empirical scaling of the tokamak density limit [M. Greenwald, Nucl. Fusion 28, 2199 (1988)]. Many other unexplained phenomena at the density limit are consistent with this novel physics mechanism.

D. A. Gates and L. Delgado-Aparicio

2012-04-20T23:59:59.000Z

362

NREL: Wind Research - Research Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Staff Research Staff Here you will find contact information for NREL's research and support staff at the National Wind Technology Center. To learn more about us and our expertise, view our organizational charts and read the staff's biographies. Below is a listing of the research and support staff at the National Wind Technology Center. View organizational charts. Lab Program Manager, Wind and Water Power Program Brian Smith Program Integration, Wind and Water Power Program Elise DeGeorge Albert LiVecchi Dana Scholbrock Teresa Thadison Director, National Wind Technology Center Fort Felker, Center Director Laura Davis Kim Domenico Deputy Center Director, National Wind Technology Center Jim Green, Acting Research Fellow Bob Thresher Chief Engineer Paul Veers Wind Technology Research and Development

363

Desalination Research  

Science Journals Connector (OSTI)

... for the United States for discussions with the Office of Saline Water. The Committee on Desalination Research had considered a research programme in conjunction with industry, and the Atomic Energy ... the Atomic Energy Authority had undertaken work on the use of nuclear energy for a desalination plant. The Committee and the Authority had watched closely work in the United States ...

1965-03-27T23:59:59.000Z

364

Basic Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 II Basic Research The Basic Energy Sciences (BES) office within the DOE Office of Science supports the DOE Hydrogen Program by providing basic, fundamental research in those technically challenging areas facing the Program, complementing the applied research and demonstration projects conducted by the Offices of Energy Efficiency and Renewable Energy; Fossil Energy; and Nuclear Engineering, Science and Technology. In May 2005 Secretary of Energy Samuel W. Bodman announced the selection of over $64 million in BES research and development projects aimed at making hydrogen fuel cell vehicles and refueling stations available, practical and affordable for American consumers by 2020. A total of 70 hydrogen research projects were selected to focus on fundamental science and enable

365

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lord of the Wings: Elevated Particles a Rising Star Lord of the Wings: Elevated Particles a Rising Star Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kassianov E, C Flynn, J Redemann, B Schmid, PB Russell, and A Sinyuk. 2012. "Initial assessment of the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR)-based aerosol retrieval: Sensitivity study." Atmosphere, 3, doi:10.3390/atmos3040495. The 4STAR instrument. The 4STAR instrument (inset) is installed through the upper hull of the PNNL G-1 research aircraft, for in-flight sun-tracking and sky light-scanning. Researchers at Pacific Northwest National Laboratory, in collaboration with colleagues at NASA Ames Research Center, developed a next-generation

366

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved Daytime Precipitable Water Vapor from Vaisala Radiosonde Humidity Improved Daytime Precipitable Water Vapor from Vaisala Radiosonde Humidity Sensors Download a printable PDF Submitter: Cady-Pereira, K. E., Atmospheric and Environmental Research, Inc. Mlawer, E. J., Atmospheric & Environmental Research, Inc. Turner, D. D., National Oceanic and Atmospheric Administration Shephard, M. W., Atmospheric and Environmental Research, Inc. Clough, S. A., Atmospheric and Environmental Research, Inc. Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Radiative Processes Journal Reference: Cady-Pereira, K, M Shephard, E Mlawer, D Turner, S Clough, and T Wagner. 2008. "Improved daytime column-integrated precipitable water vapor from Vaisala radiosonde humidity sensors." Journal of Atmospheric and Oceanic Technology doi: 10.1175/2007JTECHA1027.1.

367

HEALTH AND MEDICAL RESEARCH STRATEGIC REVIEW  

E-Print Network [OSTI]

with the Health System, Including Allied Health And Primary Health Care 17 Theme Three: Scale, Scope engagement with the health system including Allied Health and Primary Health Care 28 Scale, scopeHEALTH AND MEDICAL RESEARCH STRATEGIC REVIEW ISSUES PAPER 29 OCTOBER 2012 #12;#12;CONTENTS The Vice

Viglas, Anastasios

368

Monetary Awards Scale  

Broader source: Energy.gov (indexed) [DOE]

MONETARY AWARDS SCALE FOR INTANGIBLE BENEFITS FROM MONETARY AWARDS SCALE FOR INTANGIBLE BENEFITS FROM SUGGESTIONS, INVENTIONS, SPECIAL ACTS OR SERVICES VALUE OF BENEFIT EXTENT OF APPLICATION Limited Affects functions, mission, or personnel of one office (e.g., field site office or one office within a HQ Departmental element). Affects a small area of science or technology. Extended Affects functions, mission, or personnel of a several field site offices or HQ office within a Departmental element (e.g., more than one). Affects an important area of science or technology. Broad Affects functions, mission, or personnel of an entire Departmental element or Departmental element with multiple site offices. Affects a broad area of science or technology. General Affects functions, mission, or personnel

369

DSM SCALES BACK  

Science Journals Connector (OSTI)

DSM SCALES BACK ... DSM PHARMACEUTICAL PRODucts is restructuring its pharma chemicals and biologies units, discontinuing operations at its pharmaceutical chemicals plant in South Haven, Mich., in the first half of 2007, and mothballing its biologics facility in Montreal in the beginning of this year. ... They are taking place as part of a DSM review process called Vision 2010 that, among other things, aims to better position the company's contract manufacturing business. ...

RICK MULLIN

2006-01-02T23:59:59.000Z

370

Argonne CNM: 2007 Research Highlights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Highlights 7 Highlights CNM Research Featured in Journal (November 2007) Heavier hydrogen on the atomic scale reduces friction (November 2007) High-performance, flexible nanotechnology hydrogen sensors (Nanowerk Spotlight, October 11, 2007) CNM Research Highlighted in Scientific Journal (September 2007) Researchers improve ability to write and store information on electronic devices (September 2007) Palladium Nanoparticle Electrodeposition on Nanotubes Results in New Flexible Hydrogen Sensors (August 2007) Nano-boric acid makes motor oil more slippery (August 2007) Nanotechnology helps scientists make bendy sensors for hydrogen vehicles (July 2007) Tightly Packed Molecules Lend Unexpected Strength to Nanothin Sheet of Material (July 2007) Getting the 'Hole' Picture Up Close (photonics.com, June 2007)

371

Research departments Materials Research Department  

E-Print Network [OSTI]

research reactor and X- radiation from the synchrotron facilities in Hamburg and Grenoble. In this con-parameter experiments in RERAF. Systems Analysis Department The objective of the research is to de- velop and apply are systems reliability, organisation, toxi- cology, informatics, simulation methods, work studies, economics

372

Multiphase Flow Modeling Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Science Chris Guenther, Director Computational Science Division RUA Spring Meeting, Morgantown, WV March 2013 2 NETL's Multiphase Flow Science Team * The Multiphase Flow Science Team develops physics-based simulation models to conduct applied scientific research. - Development of new theory - Extensive on-site and collaborative V&V efforts and testing - Engages in technology transfer - Applies the models to industrial scale problems. 3 Why is Multiphase Flow Science Needed? * Industry is increasingly relying on multiphase technologies to produce clean and affordable energy with carbon capture. * Unfortunately, the presence of a solid phase reduces the operating capacity of a typical energy device from its original design on average by 40% [1].

373

Research Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Areas Print Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

374

Advanced Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

05/2007 05/2007 NitrogeN evolutioN aNd CorrosioN MeChaNisMs With oxyCoMbustioN of Coal Description Under a grant from the University Coal Research (UCR) program, Brigham Young University (BYU) is leading a three-year research effort to investigate the physical processes that several common types of coal undergo during oxy-fuel combustion. Specifically, research addresses the mixture of gases emitted from burning, particularly such pollutants as nitrogen oxides (NO X ) and carbon dioxide (CO 2 ), and the potential for corrosion at the various stages of combustion. The UCR program is administered by the Advanced Research Program at the National Energy Technology Laboratory (NETL), under the U.S. Department of Energy's Office of

375

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM Program Achieves Milestone in Global Cloud Properties Research ARM Program Achieves Milestone in Global Cloud Properties Research Submitter: Revercomb, H. E., University of Wisconsin, Madison Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Knuteson, R.O., Best, F.A., Dedecker, R.G., Feltz, W.F., Revercomb, H.E., and Tobin, D.C., 2004: "10 Years of AERI Data from the DOE ARM Southern Great Plains Site," In Proceedings from the Fourteenth ARM Science Team Meeting, U.S. Department of Energy,Washington, D.C. Figure 1 Figure 2 From the unassuming farmlands of north-central Oklahoma comes a milestone for the global climate research community. March 2004 marked the 10-year anniversary for an instrument that now holds the prestigious distinction of providing the longest set of continuous atmospheric interferometer data

376

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Madden-Julian Oscillation Heating: to Tilt or Not to Tilt Download a printable PDF Submitter: Schumacher, C., Texas A&M University Area of Research: Cloud Processes Working...

377

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Observing Warm Clouds in 3D Using ARM Scanning Cloud Radars and a Novel Ensemble Method Download a printable PDF Submitter: Fielding, M. D., University of Reading Area of Research:...

378

CFN | Research Highlights Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center for Functional Nanomaterials Research Highlights Archives Center for Functional Nanomaterials Research Highlights Archives Measurement of Spin Torque Non-adiabaticity in Magnetic Vortices Tuesday, December 10, 2013 Thermopower of Highly Conducting Au-C Bonded Single-molecule Circuits Tuesday, October 22, 2013 Resolution Limits of Electron-beam Lithography Pushed Towards the Atomic Scale Tuesday, October 22, 2013 Polymer Solar Cells Employing Förster Resonance Energy Transfer Monday, August 19, 2013 Mesoscale Linear Assembly of Nanostructures Monday, July 8, 2013 Sub 15-nm Patterns for Magnetic Recording Using Block Copolymers Monday, July 8, 2013 Engineering Catalytic Contacts with Binary Nanocrystal Superlattices Sunday, April 7, 2013 Chemical Modification of Self-Assembled Block Copolymers for Area-Selective Formation of Metal Oxide Nanostructures

379

NREL: Wind Research - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications The NREL wind research program develops publications about its R&D activities in wind energy technologies. Below you'll find links to recently published publications, links to the NREL Avian Literature and Publications Databases, and information about the Technical Library at the National Wind Technology Center (NWTC). The NWTC's quarterly newsletter, @NWTC, contains articles on current wind energy research projects and highlights the latest reports, papers, articles, and events published or sponsored by NREL. Subscribe to @NWTC. Selected Publications Featured Publication Large-scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers Here are some selected NWTC publications: 2011 Cost of Wind Energy Review Built-Environment Wind Turbine Roadmap

380

Canadian university research reactors  

SciTech Connect (OSTI)

In Canada there are seven university research reactors: one medium-power (2-MW) swimming pool reactor at McMaster University and six low-power (20-kW) SLOWPOKE reactors at Dalhousie University, Ecole Polytechnique, the Royal Military College, the University of Toronto, the University of Saskatchewan, and the University of Alberta. This paper describes primarily the McMaster Nuclear Reactor (MNR), which operates on a wider scale than the SLOWPOKE reactors. The MNR has over a hundred user groups and is a very broad-based tool. The main applications are in the following areas: (1) neutron activation analysis (NAA); (2) isotope production; (3) neutron beam research; (4) nuclear engineering; (5) neutron radiography; and (6) nuclear physics.

Ernst, P.C.; Collins, M.F.

1989-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "bench scale research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

CATALYST ENHANCED MICRO SCALE BATCHCATALYST ENHANCED MICRO SCALE BATCH ASSEMBLYASSEMBLY  

E-Print Network [OSTI]

CATALYST ENHANCED MICRO SCALE BATCHCATALYST ENHANCED MICRO SCALE BATCH ASSEMBLYASSEMBLY RajashreeCollection/Analysis Capabilities · Parts (800x800x50µmParts (800x800x50µm33 ) and catalysts (2x2x.5mm) and catalysts (2x2x.5mm33 non-participating millimeter scale parts that act as `catalysts'. We present experimental results

382

The San Jose Scale.  

E-Print Network [OSTI]

control much easier now than we will ever be able to do in the future. It is spreading and every succeeding year makes the problem more and more difficult of control. 1 Let us briefly consider what the insect-is, its habits and life history ; also...? ture, described it and gave it the appropriate name of ? Pernicious Scale.? Its introduction into California was for some years a mystery until it was found that trees imported from China were infested with the pest. In 1901-,02 Prof. C. L. Marlatt...

Conradi, Albert F.

1906-01-01T23:59:59.000Z

383

Implications of researcher assumptions about perceived relative advantage and compatibility  

Science Journals Connector (OSTI)

Although scale reuse is an important and efficient research practice, it may not always be the most appropriate practice. Mechanistically reusing scales developed for a particular context may lead to a variety of undesirable effects. One of the risks ... Keywords: adoption, compatibility, innovation diffusion theory, relative advantage, scale reuse

Craig Van Slyke; Richard D. Johnson; Ross Hightower; Wafa Elgarah

2008-04-01T23:59:59.000Z

384

Research Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Areas Areas Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

385

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM Measurements Help to Evaluate Radiation Codes Used in Global Modeling ARM Measurements Help to Evaluate Radiation Codes Used in Global Modeling Download a printable PDF Submitter: Oreopoulos, L., NASA Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Oreopoulos L, E Mlawer, J Delamere, T Shippert, J Cole, B Fomin, M Iacono, Z Jin, J Li, J Manners, P Raisanen, F Rose, Y Zhang, MJ Wilson, and WB Rossow. 2012. "The Continual Intercomparison of Radiation Codes: results from Phase I." Journal of Geophysical Research - Atmospheres, 117, doi:10.1029/2011JD016821. The total error of each participating radiation code for all LW (left) and SW (right) cases in the CIRC intercomparison. The identity of each participating code can be found in the paper; codes built due to ARM

386

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modified Climate Model Better Replicates Global Rainfall Modified Climate Model Better Replicates Global Rainfall Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Song X, GJ Zhang, and JF Li. 2012. "Evaluation of microphysics parameterization for convective clouds in the NCAR Community Atmosphere Model CAM5." Journal of Climate, 25(24), doi:10.1175/JCLI-D-11-00563.1. Rainfall in the tropics. By improving an existing, sophisticated, global climate model, scientists can now simulate cloud and rainfall more accurately. Supported by the U.S. Department of Energy's Atmospheric System Research program, a research team from the Scripps Institution of Oceanography and

387

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improving Water Vapor Continuum Absorption and Its Impact on a GCM Improving Water Vapor Continuum Absorption and Its Impact on a GCM Simulation Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Turner DD, A Merrelli, D Vimont, and EJ Mlawer. 2012. "Impact of modifying the longwave water vapor continuum absorption model on community Earth system model simulations." Journal of Geophysical Research, 117, D04106, doi:10.1029/2011JD016440. The mean difference profiles (experiment minus control) for clear-sky longwave radiative heating (QRLC); shortwave clear-sky radiative heating (QRSC); the longwave cloud radiative forcing (QRLCF); the precipitation

388

For Researchers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Export Control Export Control Berkeley Lab policy is to comply with all applicable state and federal laws, including those relating to Export Control. Berkeley Lab's Export Control Program is designed to support Berkeley Lab's and the University of California's international activities by ensuring compliance with U.S. export laws and regulations in the context of our fundamental research mission. Much of the Lab's compliance with U.S. export laws and regulations is based on our remaining within the "fundamental research" exception, i.e. performing basic or applied research for which the resulting information is ordinarily published and shared broadly within the scientific community. Do not sign non-disclosure or confidentiality agreements. Contact Parul Jain at 495-2306 or the Tech Transfer Department if you need or are

389

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chinese Researchers Report Reliable Method for Monitoring Soil Moisture Chinese Researchers Report Reliable Method for Monitoring Soil Moisture Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Surface Properties Working Group(s): Cloud Life Cycle Journal Reference: Sun L, R Sun, XW Li, SL Liang, and RH Zhang. 2012. "Monitoring surface soil moisture status based on remotely sensed surface temperature and vegetation index information." Agricultural and Forest Meteorology, 166, doi:10.1016/j.agrformet.2012.07.015. Shown here is the SGP Central Facility, where the most comprehensive instrument suite is hosted. Moisture trapped in soil provides water necessary for vegetation and crops, but how much of that moisture makes its way into the atmosphere and influences regional meteorology? The poor understanding of the role of soil

390

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM Program Research Improves Longwave Radiative Transfer Models ARM Program Research Improves Longwave Radiative Transfer Models Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Radiative Processes Journal Reference: The QME AERI LBLRTM: A closure experiment for downwelling high spectral resolution infrared radiance. D.D. Turner, D.C. Tobin, S.A. Clough, P.D. Brown, R.G. Ellingson, E.J. Mlawer, R.O. Knuteson, H.E. Revercomb, T.R. Shippert, and W.L. Smith. 2004. Journal of Atmospheric Science, 61, 2657-2675. Top panels: Examples of downwelling infrared radiance observed by the AERI for two different clear sky cases with different amounts of water vapor. Bottom panels: Differences between the AERI observations and calculations

391

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Putting the Pieces Together Putting the Pieces Together Download a printable PDF Submitter: Fan, J., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Fan J, S Ghan, M Ovchinnikov, X Liu, P Rasch, and A Korolev. 2011. "Representation of arctic mixed-phase clouds and the Wegener-Bergeron-Findeisen process in climate models: Perspectives from a cloud-resolving study." Journal of Geophysical Research - Atmospheres, 116, D00T07, doi:10.1029/2010JD015375. PNNL's Arctic mixed-phase cloud research was augmented with field observations from the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Northern Alaska. Photo courtesy of A. Korolev, Environment Canada. Vertical cross sections of (a) the vertical velocity (the contour lines)

392

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parameterizing the Ice Fall Speed in Climate Models: Results from TC4 and Parameterizing the Ice Fall Speed in Climate Models: Results from TC4 and ISDAC Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Mishra, S., NOAA - Coop. Inst. for Mesoscale Meteorological Studies Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Mitchell DL, S Mishra, and RP Lawson. 2011. "Representing the ice fall speed in climate models: Results from Tropical Composition, Cloud and Climate Coupling (TC4) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC)." Journal of Geophysical Research - Atmospheres, 116, D00T03, doi:10.1029/2010JD015433. Relationship between De and Vm for all tropical cirrus cloud types (solid

393

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Raman Lidar Observations of Aerosol Humidification Near Clouds Raman Lidar Observations of Aerosol Humidification Near Clouds Submitter: Ferrare, R. A., NASA - Langley Research Center Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Ferrare, R., et al., Evaluation of Daytime Measurements of Aerosols and Water Vapor Made by an Operational Raman Lidar over the Southern Great Plains, J. Geophys. Res., 111, D05S08, doi:10.1029/2005JD005836, 2006. Relative humidity profiles derived from the Raman lidar during the ALIVE 2005 field experiment. Aerosol extinction profiles derived from the Raman lidar during the ALIVE 2005 field experiment. Aerosol humidification factor f(RH) from Raman lidar measured profiles of aerosol extinction and relative humidity. Upgrades to the Raman lidar at the ARM Climate Research Facility (ACRF)

394

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spectral Invariant Behavior of Zenith Radiance Around Cloud Edges Observed Spectral Invariant Behavior of Zenith Radiance Around Cloud Edges Observed by ARM SWS Download a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Knyazikhin, Y., Boston University Chiu, J., University of Reading Wiscombe, W. J., Brookhaven National Laboratory Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Marshak A, Y Knyazikhin, JC Chiu, and WJ Wiscombe. 2009. "Spectral invariant behavior of zenith radiance around cloud edges observed by ARM SWS." Geophysical Research Letters, 36, L16802, doi:10.1029/2009GL039366. (top) Time-wavelength color contour plot of ARM shortwave spectrometer (SWS) spectra measured from 21:35:24 to 21:40:24 UTC on 18 May 2007 at the ARM Climate Research Facility (ACRF) Southern Great Plains (SGP) site in

395

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of a New Mixed-Phase Cloud Microphysics Parameterization with Evaluation of a New Mixed-Phase Cloud Microphysics Parameterization with SCAM, CAPT Forecasts and M-PACE Observations Download a printable PDF Submitter: Liu, X., University of Wyoming Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Liu, X, S Xie, and SJ Ghan. 2007. "Evaluation of a new mixed-Phase cloud microphysics parameterization with the NCAR single column climate model (SCAM) and ARM M-PACE observations." Geophysical Research Letters 34, L23712, doi:10.1029/2007GL031446. Xie, S, J Boyle, SA Klein, X Liu and S Ghan. 2008. "Simulations of arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE." Journal of Geophysical Research, in press.

396

Research Focus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Focus Focus Work at FEERC is centered on three interrelated areas of research: fuels, engines, and emis- sions. FEERC scientists study the impacts of fuel properties on advanced combustion processes as well as on emissions and emission control strategies and devices. The range of fuels studied includes gaseous (natural gas) and liquid fuels from conventional and unconventional fossil- based sources, as well as non-petroleum fuels from synthetic and renewable sources. The FEERC conducts research on innovative internal combustion engine technologies and control systems for improved efficiency. Combining novel diagnostic and experimental methods with modeling, the Center's scientists also develop improved understanding of the functions and key mechanisms of emission control devices

397

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Classifying Cloud Phase Classifying Cloud Phase Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Shupe, MD. 2007. "A ground-based multisensory cloud phase classifier." Geophysical Research Letters 34, L22809, doi:10.1029/2007GL031008. Observations of (a) lidar backscatter, (b) lidar depolarization ratio, (c) radar reflectivity, (d) radar mean Doppler velocity, (e) radar Doppler spectrum width, (f) microwave radiometer-derived liquid water path, and (g) the resulting multisensor cloud-phase classification mask. Cloud phase identification is a necessary prerequisite to performing cloud property retrievals from remote sensor measurements. Most retrieval

398

Advanced Palladium Membrane Scale-up for Hydrogen Separation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Palladium Membrane Scale-up Palladium Membrane Scale-up for Hydrogen Separation Background Among the options being considered to establish greater U.S. independence from foreign energy sources is to increase the use of the nation's domestic coal reserves. The Department of Energy (DOE) is committed to supporting research and development of technologies for the reliable, efficient and environmentally friendly conversion of coal to hydrogen for utilization in advanced gasification-based electric power generation

399

RESEARCH STATEMENT  

E-Print Network [OSTI]

My research is in the area of commutative algebra, the branch of abstract algebra that concerns commutative rings and modules over these rings, with the underlying motivation to better understand systems of polynomial equations in several variables (henceforth referred to as ideals), or equivalently, to understand the geometry of the

Bahman Engheta

400

Fuel Research  

Science Journals Connector (OSTI)

... FUEL research was discussed by Sir Harry McGowan, who succeeds Sir William Larke as president of the Institute of Fuel, in ... has a ragged front, and new knowledge is continually changing relative national positions. Sir Harry McGowan referred to the domestic use of raw coal, which is still preferred to ...

1934-11-24T23:59:59.000Z

Note: This page contains sample records for the topic "bench scale research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Progress in Grid Scale Flow Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grid Scale Flow Batteries IMRE GYUK, PROGRAM MANAGER ENERGY STORAGE RESEARCH, DOE FlowBat 03- 07- 12 Without technological breakthroughs in efficient, large scale Energy Storage, it will be difficult to rely on intermittent renewables for much more than 20-30% of our Electricity. Secretary Chu, Feb. 2010 The need for regulation services can dramatically increase as the amount of variable renewable resources is increased. Local storage is among the best means to ensure we can reliably integrate renewable energy resources into the grid. Chairman Wellinghoff, FERC, March 2010 Transmission and storage capacity are key issues for energy resource planning. If you like wind power, you have to love transmission and storage. Terry Boston , CEO, PJM, June 2010

402

NREL: Photovoltaics Research - Research Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Staff Research Staff Our silicon group members have backgrounds in physics, chemistry, mathematics, materials science, and electrical engineering. Russell Bauer Howard Branz Sachit Grover Vincenzo LaSalvia Benjamin Lee William Nemeth Matt Page Lorenzo Roybal Pauls Stradins, (Acting Group Manager) Charles Teplin Qi Wang David Young Hao-Chih Yuan Photo of 21 people standing in front of a building with a silver, cylinder-shaped structure on one side. Photo of Pauls Stradins Pauls Stradins Senior Scientist II Group Manager Primary Research Interests High-efficiency silicon photovoltaics: advanced passivation techniques and industrially-relevant processes Interfacing Si cell with other materials for high-efficiency tandem Nanostructured semiconductor materials for photovoltaics: Si quantum

403

Sandia National Laboratories: Research: Research Foundations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioscience Bioscience researcher The Bioscience Research Foundation integrates and analyzes research data from the biological sciences to create reliable analytical and predictive...

404

Research Affiliate Program | Photosynthetic Antenna Research...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Affiliate Program Research Affiliate Program Research Affiliates are collaborators who are not current PARC principal investigators andor who are from academic or...

405

Research Teams - Combustion Energy Frontier Research Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Teams Research Teams Associates Greg Smith, Senior Research Chemist, SRI International Jeffrey A. Sutton, Assistant Professor, Ohio State Univeristy Combustion Energy...

406

Sandia National Labs: PCNSC: Research: Research Briefs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Briefs The annually published Physical, Chemical, and Nano Sciences Center Research Briefs highlights recent accomplishments supporting our missions. Our research focuses...

407

Clean Energy Manufacturing Resources - Technology Full-Scale Production |  

Broader source: Energy.gov (indexed) [DOE]

Full-Scale Production Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Find resources to help you design a production and manufacturing process for a new clean energy technology or product. For full-scale production, other areas to consider include workforce development; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Design Production and Manufacturing Process Advanced Research Projects Agency: Tech-to-Market Resources - general tech-to-market (T2M) resources. DOE Advanced Manufacturing Office: Manufacturing Demonstration Facility - a collaborative manufacturing community that works to provide real data to

408

CX-010526: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

526: Categorical Exclusion Determination 526: Categorical Exclusion Determination CX-010526: Categorical Exclusion Determination Bench-Scale Research Projects and Conventional Laboratory Operations CX(s) Applied: B3.6 Date: 06/03/2013 Location(s): Illinois Offices(s): Ames Site Office All proposed actions will be bench-scale research projects and conventional laboratory operations conducted in established buildings at Ames Laboratory and Iowa State University as well as offsite collaborations with other State and Federal entities. Specifically, bench-scale chemical, biological, physical and theoretical studies, experiments, and related activities including the assembly/disassembly of experimental instrumentation and research equipment are within the scope of the proposed actions. CX-010526.pdf More Documents & Publications

409

Pike Research | Open Energy Information  

Open Energy Info (EERE)

Research Research Jump to: navigation, search Name Pike Research Place Boulder, Colorado Product Market research Website http://www.pikeresearch.com/ Coordinates 40.0149856°, -105.2705456° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0149856,"lon":-105.2705456,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Entrainment Rate in Shallow Cumuli: Probabilistic Distribution and Entrainment Rate in Shallow Cumuli: Probabilistic Distribution and Dependence on Dry Air Sources Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Lu, C., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Lu C, Y Liu, S Niu, and AM Vogelmann. 2012. "Lateral entrainment rate in shallow cumuli: Dependence on dry air sources and probability density functions." Geophysical Research Letters, 39, L20812, doi:10.1029/2012GL053646. Probability density functions (PDFs) of entrainment rate (λ) for different dry air sources in eight cumulus flights. The rate at which cloud engulfs dry air (entrainment rate) has proven to be one of the strongest controls on the climate sensitivity of climate models;

411

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Downward Longwave Irradiance Uncertainty Under Arctic Atmospheres: Downward Longwave Irradiance Uncertainty Under Arctic Atmospheres: Measurements and Modeling Submitter: Marty, C., Swiss Federal Institute of Snow and Avalanche Research Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Marty, C., R. Philipona, J. Delamere, E.G. Dutton, J. Michalsky, K. Stamnes, R. Storvold, T. Stoffel, S.A. Clough, and E.J. Mlawr, Downward longwave irradiance uncertainty under arctic atmospheres: Measurements and modeling, J. Geophys. Res., 108(D12), 4358, doi:10.1029/2002JD002937, 2003. IPASRC-II instruments deployed at ARM's Barrow Station. Members of 11 international institutions converged at the Atmospheric Radiation Measurement (ARM) Program's North Slope of Alaska (NSA) site in Barrow, Alaska, to conduct the Second International Pyrgeometer and

412

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Short and the Long of Storms: Tracing a Deep Convective System's Life The Short and the Long of Storms: Tracing a Deep Convective System's Life in the Midlatitude Download a printable PDF Submitter: Feng, Z., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Feng Z, X Dong, B Xi, S McFarlane, A Kennedy, B Lin, and P Minnis. 2012. "Life cycle of midlatitude deep convective systems in a Lagrangian framework." Journal of Geophysical Research - Atmospheres, 117(D23), D23201, doi:10.1029/2012JD018362. The life cycle of a convective system tracked by the automated tracking algorithm in the study domain. Time increases from the top left to the bottom right, and each image represents an hour. The colors represent regions given by the hybrid classification.

413

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM Measurements Validate New Satellite Multilayer Cloud Remote Sensing ARM Measurements Validate New Satellite Multilayer Cloud Remote Sensing Method Submitter: Minnis, P., NASA - Langley Research Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Huang, J., P. Minnis, B. Lin, Y. Yi, T.-F. Fan, S. Sun-Mack, and J. K. Ayers, 2006: Determination of ice water path in ice-over-water cloud systems using combined MODIS and AMSR-E measurements. Geophys. Res. Lett., 33, L21801, 10.1029/2006GL027038. Minnis, P., J. Huang, B. Lin, Y. Yi, R. F. Arduini, T.-F. Fan, J. K. Ayers, and G. G. Mace, 2007: Ice cloud properties in ice-over-water cloud systems using TRMM VIRS and TMI data. J. Geophys. Res., 112, D06206, doi:10.1029/2006JD007626. Figure 1. Comparison of the VISST and MCRS retrievals with simultaneous

414

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Precipitation Forecast Improved with a New Convective Triggering Mechanism Precipitation Forecast Improved with a New Convective Triggering Mechanism Download a printable PDF Submitter: Xie, S., Lawrence Livermore National Laboratory Zhang, M., Stony Brook University Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Xie, S, and M Zhang. 2000. "Impact of the convective triggering function on single-column model simulations." Journal of Geophysical Research 105: 14983-14996. Six-hour accumulated precipitation valid at 12 UTC 18 July 2005. (a) Radar Observation, (b) DCAPE, (c) GSM without the DCAPE trigger, and (d) GSM with the DCAPE trigger. Considerable improvement of precipitation forecast is obtained by the GSM with the new trigger compared to the radar observation.

415

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Strong Impacts of Vertical Velocity on Cloud Microphysics and Implications Strong Impacts of Vertical Velocity on Cloud Microphysics and Implications for Aerosol Indirect Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Lu, C., Brookhaven National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Lu C, Y Liu, S Niu, and AM Vogelmann. 2012. "Observed impacts of vertical velocity on cloud microphysics and implications for aerosol indirect effects." Geophysical Research Letters, 39, L21808, doi:10.1029/2012GL053599. Joint probability density functions (PDF) of relative dispersion (ε) versus vertical velocity (w) along horizontal aircraft legs for each cumulus flight (date given in legend). The red lines denote weighted least

416

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hemispherical Simulations Show Impact of Aerosols on Cloud Reflectivity Hemispherical Simulations Show Impact of Aerosols on Cloud Reflectivity Submitter: Rotstayn, L., Commonwealth Scientific and Industrial Research Organization Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Rotstayn, L., and Y. Liu, Sensitivity of the First Indirect Aerosol Effect to an Increase in Cloud Droplet Spectral Dispersion with Droplet Number Concentration, Journal of Climate: Vol. 16, No. 21, pp.3476-3481, May 2003. Figure 1. Measurements of the relation between the relative dispersion of the cloud droplet spectrum and the cloud droplet number concentration (N). The lower, middle, and upper curves show the parameterizations used in the LOWER, MIDDLE, and UPPER simulations, respectively. A recent study by DOE Atmospheric Radiation Measurement (ARM) Program

417

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Giants in the Sky Giants in the Sky For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight A few large particles in a crowd of tiny ones have often been ignored when calculating the amount of sunlight bounced back into space in clean-sky conditions. Scientists at Pacific Northwest National Laboratory found that these "giant" particles have a larger-than-expected impact on the amount of sunlight reflected away from Earth, by as much as 45 percent. They also showed that particles larger than one micron (0.000039 inch) occur much more frequently than expected, up to 85 percent of the time. "Many routine measurements are unable to sample large particles, thus they may overlook the residence of many 'Gullivers in the country of Lilliput,' said Dr. Evgueni

418

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM Science Applications of AERI Measurements: 1997 Progress ARM Science Applications of AERI Measurements: 1997 Progress Submitter: Smith, W. L., NASA - Langley Research Center Area of Research: Radiation Processes Working Group(s): Cloud Modeling Journal Reference: N/A Figure 1. Figs. 1a and 1b contain rms differences from 72 radiosondes for AERI retrievals (blue), GOES retrievals (black), and AERI+GOES retrievals (red) for temperature and mixing ratio respectively during the 1997 Water Vapor IOP. A measure of meteorological the variability of the temperature and water vapor is indicated by the green line. Figs. 1c and 1d show the TPW for the same cases from GOES, AERI+GOES, radiosonde, and the ARM SGP CART microwave radiometer and relative percent differences in TPW amounts. Figure 2. Four consecutive radiosonde, GOES, and AERI+GOES comparisons from

419

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Weather and Atmospheric Overview During Study of Natural and Urban Weather and Atmospheric Overview During Study of Natural and Urban Emissions (CARES) Download a printable PDF Submitter: Fast, J. ., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Fast JD, WI Gustafson, LK Berg, WJ Shaw, M Pekour, M Shrivastava, JC Barnard, RA Ferrare, CA Hostetler, JA Hair, M Erickson, BT Jobson, B Flowers, MK Dubey, S Springston, RB Pierce, L Dolislager, J Pederson, and RA Zaveri. 2012. "Transport and mixing patterns over central California during the Carbonaceous Aerosol and Radiative Effects Study (CARES)." Atmospheric Chemistry and Physics, 12, 1759-1783. Aircraft sampling flight patterns are shown over central California in this aerial overlay. Researchers collected and analyzed measurements from

420

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Micropulse Lidar-Derived Aerosol Optical Depth Climatology at ARM Sites Micropulse Lidar-Derived Aerosol Optical Depth Climatology at ARM Sites Worldwide Download a printable PDF Submitter: Kafle, D. N., University of California, Riverside Coulter, R. L., Argonne National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Kafle DN and RL Coulter. 2013. "Micropulse lidar-derived aerosol optical depth climatology at ARM sites worldwide." Journal of Geophysical Research - Atmospheres, 118(13), 10.1002/jgrd.50536. Vertical profiles of multi-year annually averaged AOD (z) at different ARM sites: SGP, NSA, TWP, GRW, and FKB. Inset plots are the profiles of corresponding relative standard deviation, Srel (z). The corresponding 1-sigma measurement errors are given in horizontal bars.

Note: This page contains sample records for the topic "bench scale research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ice Heating Up Cold Clouds Ice Heating Up Cold Clouds Download a printable PDF Submitter: Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Ovchinnikov M, A Korolev, and J Fan. 2011. "Effects of ice number concentration on dynamics of a shallow mixed-phase stratiform cloud." Journal of Geophysical Research - Atmospheres, 116, D00T06, doi:10.1029/2011JD015888. The mighty cloud ice crystal appears deceptively delicate but has the power to tip the balance between ice and water in Arctic clouds. This image of an ice crystal was obtained from a Cloud Particle Imager during ISDAC. The imager was mounted on aircraft flying through clouds at a speed of 100 m/s.

422

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Method for Three-Dimensional Imaging of Cirrus Clouds New Method for Three-Dimensional Imaging of Cirrus Clouds Submitter: Liou, K., University of California, Los Angeles Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Liou, K.N, S.C. Ou, Y. Takano, J. Roskovensky, G.G. Mace, K. Sassen, and M. Poellot, 2002: "Remote sensing of three-dimensional inhomogeneous cirrus clouds using satellite and mm-wave cloud radar data," Geophysical Research Letters 29(9): 1360. Figure 1 ARM Data Enables the Development and Verification of a New Method for Three-Dimensional Imaging of Cirrus Clouds to Improve Climate Predictions Cirrus clouds cover about 30% of the Earth's surface. Because ice crystals both reflect sunlight and absorb thermal energy emitted from the earth

423

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Apparent Bluing of Aerosols Near Clouds The Apparent Bluing of Aerosols Near Clouds Download a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Marshak, A, G Wen, JA Coakley, LA Remer, NG Loeb, and RF Cahalan. 2008. "A simple model of the cloud adjacency effect and the apparent bluing of aerosols near clouds." Journal of Geophysical Research 113, D14S17, doi: 10.1029/2007JD009196. (upper panel) A schematic two-layer model of a broken cloud field and Rayleigh scatterers. (lower panel) An example of the Poisson distribution of broken cloud fields with cloud fraction Ac = 0.3 for a 10 by 10 km area. For a cloud vertical thickness of 1 km, the left lower panel has cloud

424

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improving the Treatment of Radiation in Climate Models Improving the Treatment of Radiation in Climate Models Download a printable PDF Submitter: Delamere, J. S., Tech-X Corporation Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle, Cloud Life Cycle Journal Reference: Delamere JS, SA Clough, VH Payne, EJ Mlawer, DD Turner, and RR Gamache. 2010. "A far-infrared radiative closure study in the Arctic: Application to water vapor." Journal of Geophysical Research - Atmospheres, 115, D17106, 10.1029/2009JD012968. The mean AERI-ER radiances for a select set of cloud-free cases at NSA in 2007 are presented in the top panel. The bottom panel presents mean spectral differences between the measurements and model calculations. The red line demonstrates the differences when using the pre-RHUBC version of

425

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Global Dimming and Brightening: an Update Beyond 2000 Global Dimming and Brightening: an Update Beyond 2000 Download a printable PDF Submitter: Long, C. N., Pacific Northwest National Laboratory Wild, M., Institute for Atmospheric and Climate Science - ETH Zurich Truessel, B., Institute for Atmospheric and Climate Science - ETH Zurich Ohmura, A., Swiss Federal Institute of Technology Koenig-Langlo, G., Alfred Wegener Institute Dutton, E. G., NOAA/OAR/ESRL Tsvetkov, A. V., World Radiation Data Centre Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Wild M, B Trüssel, A Ohmura, CN Long, G König-Langlo, EG Dutton, and A Tsvetkov. 2009. "Global dimming and brightening: An update beyond 2000." Journal of Geophysical Research - Atmospheres, 114, D00D13, 10.1029/2008JD011382.

426

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Field Experiments to Improve the Treatment of Radiation in the Mid-to-Upper Field Experiments to Improve the Treatment of Radiation in the Mid-to-Upper Troposphere Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Turner DD and EJ Mlawer. 2010. "The Radiative Heating in Underexplored Bands Campaigns (RHUBC)." Bulletin of the American Meteorological Society, 91, doi:10.1175/2010BAMS2904.1. (a) Atmospheric transmittance at 1 cm-1 resolution in the far-infrared for three atmospheres that are representative of the ARM SGP site, NSA site, and RHUBC-II site in the Chajnantor plateau (CJC). (b) The transmittance

427

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud Susceptibility Measures Potential Cloud Sensitivity to First Aerosol Cloud Susceptibility Measures Potential Cloud Sensitivity to First Aerosol Indirect Effect Download a printable PDF Submitter: Oreopoulos, L., NASA Platnick, S., NASA - Goddard Space Flight Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Platnick, S, and L Oreopoulos. 2008. "Radiative susceptibility of cloudy atmospheres to droplet number perturbations: 1. Theoretical analysis and examples from MODIS." Journal of Geophysical Research doi:10.1029/2007JD009654, in press. Oreopoulos, L., and S. Platnick. 2008. Radiative susceptibility of cloudy atmospheres to droplet number perturbations: 2. Global analysis from MODIS, J. Geophys. Res., doi:10.1029/2007JD009655, in press. Theoretical calculations with a shortwave broadband radiative transfer

428

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Probabilistic Approach Useful for Evaluating Cloud System Models Probabilistic Approach Useful for Evaluating Cloud System Models Submitter: Jakob, C., Monash University Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Jakob, C., R. Pincus, C. Hannay, and K.M. Xu (2004). Use of cloud radar observations for model evaluation: A probabilistic approach, J. Geophys. Res., 109, D03202, doi:10.1029/2003JD003473. In evaluating climate models, time and space represent key challenges when extrapolating observations into simulations. Researchers supported by DOE's Atmospheric Radiation Measurement (ARM) Program have explored an alternative method based on "point series data" to arrive at model cloud predictions. Point series data are obtained over time through measurements

429

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Mixing State of Carbonaceous Aerosol Particles in Northern and Southern The Mixing State of Carbonaceous Aerosol Particles in Northern and Southern California Measured During CARES and CalNex Download a printable PDF Submitter: Zaveri, R., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Cahill JF, K Suski, JH Seinfeld, RA Zaveri, and KA Prather. 2012. "The mixing state of carbonaceous aerosol particles in Northern and Southern California measured during CARES and CalNex 2010." Atmospheric Chemistry and Physics, 12, doi:10.5194/acp-12-10989-2012. The CARES campaign took place in Sacramento in order to sample the city's urban plume. Photo courtesy of Jason Tomlinson. Researchers, including DOE scientists working at Pacific Northwest National

430

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud Observations at Niamey During the AMF Deployment Cloud Observations at Niamey During the AMF Deployment Submitter: Kollias, P., McGill University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Kollias, P. and M. A. Miller, 2007: Cloud and Precipitation Observations at Niamey During the 2006 ARM Mobile Facility Deployment. Submitted to Geophysical Research Letters. Daily observed cloud fraction in Niamey during the AMF deployment. The cloud fraction is derived using measurements from the 94-GHz radar, the MPL, and the ceilometer. The vertical resolution is 260 m, and a 5-day temporal filter is applied to the daily cloud fraction profiles. (a) Monthly-averaged cloud and precipitation fraction. The monthly mean and standard deviation of cirrus cloud top (white line), middle cloud tops

431

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud-Radiation Effects on Sea Ice Loss Cloud-Radiation Effects on Sea Ice Loss Download a printable PDF Submitter: Stephens, G. L., Colorado State University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Kay, JE, T L'Ecuyer, A Gettelman, G Stephens, and C O'Dell. "The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum." To appear in Geophysical Research Letters. Clouds and downwelling radiation 2007-2006 differences (June 15-Sept 15). a. Total cloud fraction differences based on radar and lidar data. b. Downwelling SW radiative flux difference. c. Downwelling LW radiative flux difference. The Western Arctic Ocean is outlined in brown. ARM ground-based radiation observations at Barrow, Alaska.

432

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimating Fractional Sky Cover from Spectral Measurements Estimating Fractional Sky Cover from Spectral Measurements Download a printable PDF Submitter: Long, C. N., Pacific Northwest National Laboratory Min, Q., State University of New York, Albany Wang, T., State University of New York, Albany Duan, M., Institute of Atmospheric Physics/Chinese Academy of Science Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Min Q, T Wang, CN Long, and M Duan. 2008. "Estimating fractional sky cover from spectral measurements." Journal of Geophysical Research - Atmospheres, 113, D20208, doi:10.1029/2008JD010278. Retrieved and observed cloud fractions and corresponding TSI cloud imagers on 8 July 2005 at Pt. Reyes. Scatterplot of retrieved cloud fraction from spectral ratio method and SW

433

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development and Recent Evaluation of the MT_CKD Model of Continuum Development and Recent Evaluation of the MT_CKD Model of Continuum Absorption Download a printable PDF Submitter: Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Mlawer EJ, VH Payne, J Moncet, JS Delamere, MJ Alvarado, and DD Tobin. 2012. "Development and recent evaluation of the MT_CKD model of continuum absorption." Philosophical Transactions of The Royal Society A, 370, doi: 10.1098/rsta.2011.0295. For seven AERI cases with 4-6 cm PWV: (a) average AERI radiances (black) and corresponding calculations using radiation code with previous version of MT_CKD continuum model (red); (b) residuals between AERI and calculations with older model; (c) residuals after the CO2 continuum in

434

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Field Campaign Resource Allocation Using Statistical Decision Analysis Field Campaign Resource Allocation Using Statistical Decision Analysis Download a printable PDF Submitter: Hanlon, C., Pennsylvania State University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Hanlon CJ, JB Stefik, AA Small, J Verlinde, and GS Young. 2013. "Statistical decision analysis for flight decision support: The SPartICus campaign." Journal of Geophysical Research - Atmospheres, , . ACCEPTED. In many atmospheric science field campaigns, investigators are budgeted some number of flight hours to collect data under specific, imperfectly forecastable atmospheric conditions. In such field campaigns, investigators must assess atmospheric conditions each day and make a resource-allocation decision: are conditions good enough to use some of our scarce flight hours

435

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clouds Brighten Up the Sky Near Them Clouds Brighten Up the Sky Near Them Download a printable PDF Submitter: Varnai, T., University of Maryland, Baltimore County/JCEST Marshak, A., NASA - Goddard Space Flight Center Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Varnai T and A Marshak. 2009. "MODIS observations of enhanced clear sky reflectance near clouds." Geophysical Research Letters, 36, L06807, doi:10.1029/2008GL037089. Figure 1. Illustration of clouds enhancing the brightness of sky in nearby clear areas. In cloud-free areas light is scattered mainly by air molecules, but aerosols also contribute. Figure 2. Top: Average increase in MODIS clear-sky reflectivity (R) near clouds. The difference between areas near illuminated and shadowy cloud

436

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud-Resolving Model (CRM) Simulations: Robust Results for Use in Climate Cloud-Resolving Model (CRM) Simulations: Robust Results for Use in Climate Model Development Download a printable PDF Submitter: Fridlind, A. M., NASA - Goddard Institute for Space Studies Smith-Mrowiec, A. A., Columbia University/NASA Goddard Institute for Space Studies Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Mrowiec AA, C Rio, AM Fridlind, AS Ackerman, AD Del Genio, OM Pauluis, AC Varble, and J Fan. 2012. "Analysis of cloud-resolving simulations of a tropical mesoscale convective system observed during TWP-ICE: Vertical fluxes and draft properties in convective and stratiform regions." Journal of Geophysical Research, 117, D19201, doi:10.1029/2012JD017759.

437

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Downwelling Infrared Radiance Climatology for the ARM Southern Great A Downwelling Infrared Radiance Climatology for the ARM Southern Great Plains Site Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Gero, J., University of Wisconsin Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Turner DD and PJ Gero. 2011. "Downwelling infrared radiance temperature climatology for the Atmospheric Radiation Measurement Southern Great Plains site." Journal of Geophysical Research - Atmospheres, 116, D08212, doi:10.1029/2010JD015135. The distribution of downwelling 10-micron infrared radiance observed at the SGP site by the AERI from June 1996 to May 2010, separated into all-sky (all samples) and the three distinct sky classifications.

438

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

"Invisible" Giants in the Sky "Invisible" Giants in the Sky Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kassianov E, M Pekour, and J Barnard. 2012. "Aerosols in central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing." Geophysical Research Letters, 39, L20806, doi:10.1029/2012GL053469. Daily averaged values of (a, b) the direct aerosol radiative forcing (DARF) and (c, d) aerosol radiative forcing efficiency at the top-of-atmosphere calculated for the "original" aerosol optical properties (blue) and their PM1.0 (red) and PM2.5 (green) counterparts at the CARES (left) T0 and (right) T1 sites.

439

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A New Method for Satellite/Surface Comparisons A New Method for Satellite/Surface Comparisons Download a printable PDF Submitter: Long, C. N., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Properties, Radiative Processes Journal Reference: Zhang Y, CN Long, WB Rossow, and EG Dutton. 2010. "Exploiting diurnal variations to evaluate the ISCCP-FD flux calculations and radiative-flux-analysis-processed surface observations from BSRN, ARM, and SURFRAD." Journal of Geophysical Research - Atmospheres, 115, D00K11, 10.1029/2009JD012812. Figure 1: Scatter plot for the column aerosol optical depth (AOD) at 550 nm, measured at the surface (PSO) and used as input for the ISCCP-FD calculations (FD) at 10 ARM/SURFRAD/BSRN stations. The robust linear regression line is also shown.

440

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Surprisingly Large Contribution of Small Marine Clouds to Cloud The Surprisingly Large Contribution of Small Marine Clouds to Cloud Fraction and Reflectance Download a printable PDF Submitter: Oreopoulos, L., NASA Feingold, G., NOAA - Earth System Research Laboratory Koren, I., Weizmann Institute of Science Remer, L., NASA - GSFC, Laboratory for Atmospheres Area of Research: Clouds with Low Optical [Water] Depths (CLOWD) Working Group(s): Cloud Properties Journal Reference: Koren, I, L Oreopoulos, G Feingold, LA Remer, and O Altaratz. 2008. "How small is a small cloud?" Atmospheric Chemistry and Physics Journal, in press Cloud mask for a sparse cumulus cloud field as inferred by using the same threshold at four different spatial resolutions. The upper-left panel is for the original Landsat resolution and the lower-right panel is for a

Note: This page contains sample records for the topic "bench scale research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Burning on the Prairies Burning on the Prairies Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Fischer ML, MS Torn, DP Billesbach, G Doyle, B Northup, and SC Biraud. 2012. "Carbon, water, and heat flux responses to experimental burning and drought in a tallgrass prairie." Agricultural and Forest Meteorology, 166, doi:10.1016/j.agrformet.2012.07.011. Pasture burning during the beginning of the experiment at the USDA Grazing Lands Research Laboratory in March 2005. What does it mean for the carbon cycle? The deep drought in the United States that fueled wildfires and damaged crops in 2012 has now continued well into 2013. However, long before the droughts and fires wreaked havoc, a team of

442

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wildfires Lead to More Warming Than Climate Models Predict, a New Mexico Wildfires Lead to More Warming Than Climate Models Predict, a New Mexico Fire Study Reports Download a printable PDF Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: China S, C Mazzoleni, K Gorkowski, AC Aiken, and MK Dubey. 2013. "Morphology and mixing state of individual freshly emitted wildfire carbonaceous particles." Nature Communications, 4, 2122, doi:10.1038/ncomms3122. La Conchas fire, New Mexico Analyzing fresh, carbon-rich aerosols in smoke from the largest wildfire in New Mexico (2011), scientists report large impacts of wildfires on climate. A research study, published last week in Nature Communications, has revealed that smoke from wildfires, or biomass-burning events, contains

443

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clouds Get in the Way: How Climate Models Calculate the Effects of Clouds Clouds Get in the Way: How Climate Models Calculate the Effects of Clouds on Earth's Warming Download a printable PDF Submitter: Qian, Y., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Qian Y, CN Long, H Wang, JM Comstock, SA McFarlane, and S Xie. 2012. "Evaluation of cloud fraction and its radiative effect simulated by IPCC AR4 global models against ARM surface observations." Atmospheric Chemistry and Physics, 12(4), doi:10.5194/acp-12-1785-2012. Clouds get in the way of the dawn light, perfectly framing the Raman lidar instrument at the ARM Climate Research Facility Southern Great Plains site. This ground-based laser is a remote sensing instrument used for measuring

444

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Remote Sensing of Cirrus Cloud Vertical Size Profile Using MODIS Data Remote Sensing of Cirrus Cloud Vertical Size Profile Using MODIS Data Download a printable PDF Submitter: Ou, S., University of California, Los Angeles Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Wang X, KN Liou, SS Ou, GG Mace, and M Deng. 2009. "Remote sensing of cirrus cloud vertical size profile using MODIS data." Journal of Geophysical Research - Atmospheres, 114, D09205, doi:10.1029/2008JD011327. (a) MODIS true color composite images for March 6, 2001 at 1736UTC, (b) retrieved Τc; (c) retrieved Dt for selected domain; (d) retrieved Db for selected domain; (e) scatter plot for retrieved Τc versus MODIS Τc for selected domain; (f) scatter plot for retrieved De versus MODIS De for

445

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Millimeter Wave Scattering from Ice Crystals and Their Aggregates Millimeter Wave Scattering from Ice Crystals and Their Aggregates Download a printable PDF Submitter: Botta, G., Pennsylvania State University Verlinde, J., Pennsylvania State University Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Botta G, K Aydin, J Verlinde, A Avramov, A Ackerman, A Fridlind, M Wolde, and G McFarquhar. 2011. "Millimeter wave scattering from ice crystals and their aggregates: Comparing cloud model simulations with X- and Ka-band radar measurements." Journal of Geophysical Research - Atmospheres, 116, D00T04, doi:10.1029/2011JD015909. Observational data sets are needed to drive and evaluate results from cloud-resolving model (CRM) simulations in order to improve parameterizations of the physical processes. Radar is one of the few

446

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Remote Sensing of Mineral Dust Using AERI Remote Sensing of Mineral Dust Using AERI Download a printable PDF Submitter: Hansell, R. A., University of California, Los Angeles Area of Research: Radiation Processes Working Group(s): Aerosol Journal Reference: Hansell R, KN Liou, SC Ou, SC Tsay, Q Ji, and JS Reid. 2008. "Remote sensing of mineral dust aerosol using AERI during the UAE2: A modeling and sensitivity study." Journal of Geophysical Research - Atmospheres, 113, D18202, doi:10.1029/2008JD010246. BT sensitivity to dust optical depth at 962 cm-1 with markers denoting locations of AERI subbands 1-17 from left to right. (a) Volz compact hexagon model spectra for four optical depths with best fit AERI spectrum. (b) Same as (a) but for a kaolinite/50% calcium carbonate mixturedust model.

447

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quantifying the Impact of Dust on Ice Generation in Supercooled Stratiform Quantifying the Impact of Dust on Ice Generation in Supercooled Stratiform Clouds Download a printable PDF Submitter: Wang, Z., University of Wyoming Zhang, D., University of Wyoming Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Zhang D, Z Wang, A Heymsfield, J Fan, D Liu, and M Zhao. 2012. "Quantifying the impact of dust on heterogeneous ice generation in midlevel supercooled stratiform clouds." Journal of Geophysical Research - Atmospheres, 39, L18805, doi:10.1029/2012GL052831. An example of dusty MSSC: (a) CALIOP TAB profiles at 532nm; (b) CALIOP depolarization profiles at 532nm; (c) CloudSat CPR radar reflectivity profiles; (d) Identified dust layers and MSSC; (e) Global distribution of

448

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wide Angle Imaging Lidar: Active Optical Sensor Technology for Ground-Based Wide Angle Imaging Lidar: Active Optical Sensor Technology for Ground-Based Probing of Dense Clouds Download a printable PDF Submitter: Davis, A. B., Jet Propulsion Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Davis, AB. 2008. "Multiple-scattering lidar from both sides of the clouds: Addressing internal structure." Journal of Geophysical Research 113, D14S10, doi:10.1029/2007JD009666. Figure 1. Lidar observations of a dense cloud. Left: standard (single-scattering/on-beam) lidar. Right: multiple-scattering/off-beam lidar. Note the extreme narrowness of the FOV in the standard case, as is required to restrict as much as possible the signal to a single backscatter. Also note the weak penetration, O(1) MFP, of the two-way

449

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Testing and Comparing the Modified Anomalous Diffraction Approximation Testing and Comparing the Modified Anomalous Diffraction Approximation Submitter: Mitchell, D. L., Desert Research Institute Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Mitchell, D.L., A.J. Baran, W.P. Arnott, C. Schmitt, 2006: Testing and comparing the anomalous diffraction approximation. J. Atmos. Sci., 63, 2948-2962. Comparison of MADA and T-matrix with measured Qext. Regions without data were contaminated by water vapor or CO2 absorption. MADA and T-matrix calculations are based on the measured PSD of hexagonal columns having an effective diameter of 14 microns. Comparison of the PSD weighted Qabs predicted by FDTD and MADA for a tunneling efficiency corresponding to aggregates. Cirrus clouds play a large role in the Earth's radiation budget and the way

450

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vertical Variation of Cloud Droplet Size Using Ship and Space-borne R/S Vertical Variation of Cloud Droplet Size Using Ship and Space-borne R/S Data Download a printable PDF Submitter: Li, Z., University of Maryland Chen, R., University of Maryland Wood, R., University of Washington Chang, F., Science Systems and Applications, Inc. Ferraro, R., NOAA/NESDIS, WWBG Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Chen, R, R Wood, Z Li, R Ferraro, and F Chang. 2008. "Studying the vertical variation of cloud droplet effective radius using ship and space-borne remote sensing data." Journal of Geophysical Research 113, doi:10.1029/2007JD009596. Figure 1. Coincident images of C-band radar reflectivity and MODIS cloud profile at UTC 15:55, Oct. 18, 2001. a) RHB C-band radar reflectivity

451

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Continuous Clear-Sky Longwave from Surface Measurements Continuous Clear-Sky Longwave from Surface Measurements Download a printable PDF Submitter: Long, C. N., Pacific Northwest National Laboratory Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Long, CN, and DD Turner. 2008. "A method for continuous estimation of clear-sky downwelling longwave radiative flux developed using ARM surface measurements." Journal of Geophysical Research 113, D18206, doi:10.1029/2008JD009936. Comparison of clear-sky RT model calculations (black) and our estimates (gray) with detected LW effective clear-sky measurements from the ACRF SGP site from 1 March through 31 May 2003, showing that our LW estimates do as well as detailed model calculations in comparison with actual LW

452

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Progress in Understanding Water Vapor's Role in Models Progress in Understanding Water Vapor's Role in Models Submitter: Ackerman, T. P., University of Washington Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: N/A Time-height cross sections of water vapor mixing ratio, which is observed directly by the ARM Raman lidar at 10-min and approximately 100 m resolution, and relative humidity for 29 November through 2 December 2002. The bottom panel shows the comparison of the precipitable water vapor observed by the Raman lidar and the collocated microwave radiometer. The time-height cross sections, as well as the integrated field, show the large variability in water vapor that exists over the ARM Southern Great Plains site. After years of sustained research efforts into the accuracy of atmospheric

453

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM M-PACE Data Used to Evaluate and Improve Arctic Mixed-Phase Clouds ARM M-PACE Data Used to Evaluate and Improve Arctic Mixed-Phase Clouds Simulated in Climate Models Download a printable PDF Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Xie, S, J Boyle, SA Klein, X Liu, and S Ghan. 2008. "Simulations of Arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE." Journal of Geophysical Research 113, D04211, doi:10.1029/2007JD009225. Time-height cross sections of active remote sensing cloud layer (ARSCL) cloud frequency (a) and modeled cloud fraction (b) CAM3, (c) AM2, and (d) CAM3LIU at Barrow during M-PACE. The unit is %. Liquid fraction as a function of cloud height. (a) UND citation data, (b)

454

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How Aerosols Affect Cloud Properties in Arctic Mixed-Phase Stratocumulus How Aerosols Affect Cloud Properties in Arctic Mixed-Phase Stratocumulus Download a printable PDF Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Jackson RC, GM McFarquhar, AV Korolev, ME Earle, PS Liu, RP Lawson, S Brooks, M Wolde, A Laskin, and M Freer. 2012. "The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE." Journal of Geophysical Research - Atmospheres, 117, D15207, doi:10.1029/2012JD017668. Cloud mean ice crystal concentration Nice(D ≥ 50 micrometers) versus mean aerosol concentration (NPCASP) above cloud for all 41 vertical profiles

455

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCN and Vertical Velocity Influences CCN and Vertical Velocity Influences Submitter: Hudson, J. G., Desert Research Institute Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Hudson JG and S Noble. 2013. "CCN and vertical velocity influences on droplet concentrations and supersaturations in clean and polluted stratus clouds." Journal of the Atmospheric Sciences, , . ACCEPTED. Figure 1. Effective cloud supersaturation (Seff) against CCN concentration at 1% S (N1%) for horizontal cloud penetrations, 50 for MASE and 34 for POST. Seff is the S for which nearby below cloud CCN spectra, NCCN(S), equals mean droplet concentration (Nc). Figure 2. One second droplet concentration, Nc, and vertical velocity

456

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM Science Applications of AERI Measurements ARM Science Applications of AERI Measurements Submitter: Smith, W. L., NASA - Langley Research Center Area of Research: Radiation Processes Working Group(s): Cloud Modeling Journal Reference: DeSlover, D. H. 1996. Analysis of Visible and Infrared Cirrus Cloud Optical Properties Using High Spectral Resolution Remote Sensing, M.S. Thesis, University of Wisconsin - Madison. Ho, S.-P. 1997. Atmospheric Profiles From Simultaneous Observations of Upwelling and Downwelling Spectral Radiance, Ph.D. Thesis, University of Wisconsin - Madison. Knuteson, R. O., F. A. Best, H. B. Howell, P. Minnett, H. E. Revercomb, W. L. Smith. 1997. "High Spectral Resolution Infrared Observations at the Ocean-Atmosphere Interface in the Tropical Western Pacific using a Marine

457

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Desert Dust Determines Aerial Spread of Thunderstorm Clouds Desert Dust Determines Aerial Spread of Thunderstorm Clouds Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Zeng X, W Tao, SW Powell, RA Houze, P Ciesielski, N Guy, H Pierce, and T Matsui. 2013. "A comparison of the water budgets between clouds from AMMA and TWP-ICE." Journal of the Atmospheric Sciences, 70(2), doi:10.1175/JAS-D-12-050.1. The sun, seen through a dusty atmosphere, sets at Niamey, the capital of Niger, which is located in the African Sahara. Anvil clouds that accompany thunderstorms. Contrasts often provide unique perspectives, and scientists seize any such opportunity-when it arises. In a new research paper, published in the Journal of Atmospheric Sciences,

458

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosols Help Heat Up the Yangtze River Delta in China Aerosols Help Heat Up the Yangtze River Delta in China Download a printable PDF Submitter: Flynn, C. J., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Liu J, Z Li, Y Zheng, C Flynn, and M Cribb. 2012. "Seasonal variations of aerosol optical properties, vertical distribution and associated radiative effects in the Yangtze Delta region of China." Journal of Geophysical Research, 117, D00K38, doi:10.1029/2011JD016490. A team of scientists found that aerosols significantly alter the vertical profile of solar heating in the central Yangtze River Delta region in eastern China. Aerosols were identified from as far away as Mongolia and Siberia. These findings have considerable implications for atmospheric

459

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Invisible Giants in the Sky Invisible Giants in the Sky Download a printable PDF Submitter: Ovink, J., Pacific Northwest National Laboratory Kassianov, E., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Kassianov E, M Pekour, and J Barnard. 2012. "Aerosols in central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing." Geophysical Research Letters, 39, L20806, doi:10.1029/2012GL053469. Photo courtesy of the U.S. National Park Service Daily averaged values of (a, b) the direct aerosol radiative forcing (DARF) and (c, d) aerosol radiative forcing efficiency at the top-of-atmosphere calculated for the "original" aerosol optical properties (blue) and

460

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Climatology of Aerosol Optical Depth in North-Central Oklahoma: Climatology of Aerosol Optical Depth in North-Central Oklahoma: 1992-2008 Download a printable PDF Submitter: Michalsky, J. J., DOC/NOAA/OAR/ESRL Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Michalsky J, F Denn, C Flynn, G Hodges, P Kiedron, A Koontz, J Schlemmer, and SE Schwartz. 2010. "Climatology of aerosol optical depth in north-central Oklahoma: 1992-2008." Journal of Geophysical Research - Atmospheres, 115, D07203, doi: 10.1029/2009JD012197. Box plots of each complete year\'s daily averaged aerosol optical depth (AOD) at 500 nm. The dark horizontal line in each box plot is the median daily averaged AOD for the year; the top and bottom of the rectangular box spans the middle 50% of the data. The mean values for the year are plotted

Note: This page contains sample records for the topic "bench scale research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Variations of Meridional Aerosol Distribution and Solar Dimming Variations of Meridional Aerosol Distribution and Solar Dimming Download a printable PDF Submitter: Long, C. N., Pacific Northwest National Laboratory Kishcha, P., Tel-Aviv University Starobinets, B., Tel-Aviv University Kalashnikova, O., Jet Propulsion Laboratory Alpert, P., Tel-Aviv University Area of Research: Radiation Processes Working Group(s): Aerosol, Radiative Processes Journal Reference: Kishcha P, B Starobinets, O Kalashnikova, CN Long, and P Alpert. 2009. "Variations of meridional aerosol distribution and solar dimming." Journal of Geophysical Research - Atmospheres, 114, D00D14, 10.1029/2008JD010975. The distribution of four-year aerosol differences (δAOT/δFAOT) between the last four years (March 2004 - February 2008) and the first four years

462

Errvironmentaf Research  

Office of Legacy Management (LM)

online at www.sciencedirect.com online at www.sciencedirect.com Environmental Research 10 1 (2006) 3 4 4 1 Errvironmentaf Research Do scientists and fishermen collect the same size fish? Possible implications for exposure assessment Joanna urger^^^^', Michael ~ o c h f e l d ~ ~ ~ , Sean Christian W. ~ e i t n e r ~ . ~ , Stephen ~ e w e t t ~ , Daniel SnigarofP, Ronald snigarofff, Tim Starnrng, Shawn ~ a r ~ e f , Max ~ o b e r ~ * , Heloise chenelotd, Robert patrickh, Conrad D. volzi, James ~ e s t o d 'Division of Life Sciences, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA b~onsortium for Risk Evaluation with Stakeholder Participation (CRESP), and Environmental and Occupational Healrh Sciences Institute (EOHSI), Piscataway, NJ, USA CEnvironmental and Community Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA

463

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Minimalist Approach to Modeling Complex Arctic Clouds Minimalist Approach to Modeling Complex Arctic Clouds Download a printable PDF Submitter: Shaw, R. A., Michigan Technological University - Physics Department Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle Journal Reference: Yang F, M Ovchinnikov, and RV Shaw. 2013. "Minimalist model of ice microphysics in mixed-phase stratiform clouds." Geophysical Research Letters, 40(14), doi:10.1002/grl.50700. Nordic winter landscape. Mixed-phase stratiform clouds are common features in the Arctic environment. They contain a mix of ice and "supercooled" water that, despite the freezing temperatures, remains in liquid form. Scientists aren't sure why these clouds exist in the Arctic for long periods of time, even while steadily losing ice particles through precipitation.

464

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding Ice Formation in Arctic Mixed-Phase Boundary-Layer Clouds Understanding Ice Formation in Arctic Mixed-Phase Boundary-Layer Clouds During ISDAC Download a printable PDF Submitter: Ackerman, A., NASA - Goddard Institute for Space Studies Fridlind, A. M., NASA - Goddard Institute for Space Studies Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Avramov A, AS Ackerman, AM Fridlind, B van Diedenhoven, G Botta, K Aydin, J Verlinde, KV Alexei, W Strapp, GM McFarquhar, R Jackson, SD Brooks, A Glen, and M Wolde. 2011. "Towards ice formation closure in Arctic mixed-phase boundary layer clouds during ISDAC." Journal of Geophysical Research - Atmospheres, 116, D00T08, doi:10.1029/2011JD015910. Ice number size distributions as simulated (dendrites in red, aggregates in

465

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TOA Radiation Budget of Convective Core/Stratiform Rain/Anvil Clouds from TOA Radiation Budget of Convective Core/Stratiform Rain/Anvil Clouds from Deep Convection Download a printable PDF Submitter: Feng, Z., Pacific Northwest National Laboratory Dong, X., University of North Dakota Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Feng Z, XQ Dong, BK Xi, C Schumacher, P Minnis, and M Khaiyer. 2011. "Top-of-atmosphere radiation budget of convective core/stratiform rain and anvil clouds from deep convective systems." Journal of Geophysical Research - Atmospheres, 116, D23202, doi:10.1029/2011JD016451. An example of the hybrid classification process. (a) GOES IR temperature, (b) NEXRAD radar reflectivity at 2.5 km MSL, (c) cloud patch segmentation from GOES IR temperature (the color patches are identified as deep

466

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shortwave Absorption in Tropical Clouds Shortwave Absorption in Tropical Clouds Download a printable PDF Submitter: McFarlane, S. A., U.S. Department of Energy Mather, J. H., Pacific Northwest National Laboratory Ackerman, T. P., University of Washington Liu, Z., University of Washington Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: McFarlane, SA, JH Mather, TP Ackerman, and Z Liu. 2008. "Effect of clouds on the vertical distribution of SW absorption in the Tropics." Journal of Geophysical Research, in press. Daily average all-sky and clear-sky calculated SW column absorption at Manus and Nauru. On average, there is little difference in absorption between the all-sky and clear-sky conditions because of the compensating

467

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Broadband Albedo Observations in the Southern Great Plains Broadband Albedo Observations in the Southern Great Plains Submitter: Lamb, P. J., University of Oklahoma Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Journal of Applied Meteorology and Climatology, Vol. 45, 2006, pp. 210-235. Figure 1 Figure 2 Because surface reflection of solar radiation plays a fundamental role in the surface energy budget, knowledge of its spatial and temporal variability is important for understanding the weather and climate of a specific region. Research instrumentation at the U.S. Southern Great Plains site-one of three locales around the world managed by the U.S. Department of Energy's Atmospheric Radiation Measurement Program-continuously collects these types of data to help scientist investigate differences in

468

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Aerosol Forcing: Calculation from Observables and Sensitivities to Direct Aerosol Forcing: Calculation from Observables and Sensitivities to Inputs Download a printable PDF Submitter: McComiskey, A. C., National Oceanic and Atmospheric Administration Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: McComiskey, A, SE Schwartz, B Schmid, H Guan, ER Lewis, P Ricchiazzi, and JA Ogren. 2008. "Direct aerosol forcing: Calculation from observables and sensitivities to inputs." Journal of Geophysical Research 113, D09202, doi:10.1029/2007JD009170. Figure 1. The sensitivity of calculated aerosol direct radiative forcing to input parameters has been examined to determine the consequences of uncertainties in these input parameters on calculated radiative forcing and to identify areas where measurements might be most profitably improved. Input

469

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measured Radiative Cooling from Reflective Roofs in India Measured Radiative Cooling from Reflective Roofs in India Download a printable PDF Submitter: Fischer, M. L., Lawrence Berkeley National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle, Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Salamanca F, S Tonse, S Menon, V Garg, KP Singh, M Naja, and ML Fischer. 2012. "Top-of-atmosphere radiative cooling with white roofs: Experimental verification and model-based evaluation." Environmental Research Letters, 7(4), 044007, doi:10.1088/1748-9326/7/4/044007. True color image of light (PW1, PW2) and unpainted tar (PD1), and concrete (PD2) roofs at the Pantnagar, India site taken on October 21, 2011. We note that the concrete roof is considerably more reflective than the tar roof

470

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluate the Diurnal Cycle in the Multiscale Modeling Framework Using Evaluate the Diurnal Cycle in the Multiscale Modeling Framework Using Satellite and ARM Data Download a printable PDF Submitter: Zhang, Y., Lawrence Livermore National Laboratory Klein, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Zhang, Y, SA Klein, C Liu, B Tian, RT Marchand, JM Haynes, RB McCoy, Y Zhang, and TP Ackerman. 2008. "On the diurnal cycle of deep convection, high-level cloud, and upper troposphere water vapor in the Multiscale Modeling Framework." Journal of Geophysical Research 113, D16105, doi:10.1029/2008JD009905. Figure 1: Diurnal anomalies for tropical (left) ocean and (right) land: (top) the precipitation index (PI), high-level cloud (CLD) and upper

471

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Climate Warming Due to Soot and Smoke? Maybe Not. Climate Warming Due to Soot and Smoke? Maybe Not. Submitter: Penner, J. E., University of Michigan Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Penner, J.E., S.Y. Zhang, and C.C. Chuang, Soot and smoke aerosol may not warm climate, J. Geophys. Res., 108(D21), 4657, doi:10.1029/2003JD003409, 2003. New research results from the Department of Energy's Atmospheric Radiation Measurement (ARM) Program suggest that fossil fuel soot emissions and biomass smoke may actually have a negligible warming effect and, in some cases, may even result in a net cooling effect. Black carbon is the absorbing component of smoke aerosols that result from the incomplete combustion of various fuels, the most significant sources being fossil fuel

472

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Surface Summertime Radiative Forcing by Shallow Cumuli at the ARM SGP Surface Summertime Radiative Forcing by Shallow Cumuli at the ARM SGP Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Berg LK, EI Kassianov, CN Long, and DL Mills. 2011. "Surface summertime radiative forcing by shallow cumuli at the ARM SGP." Journal of Geophysical Research - Atmospheres, 116, D01202, 10.1029/2010JD014593. Histogram of hourly average shortwave CRF (black) and longwave CRF (red) for all periods with shallow cumuli. (a) Hourly average shortwave CRF (circles), binned shortwave CRF (squares); (b) total number of hourly averages for each sky cover bin; and (c) the change in shortwave TED as a function of sky cover for all hours with

473

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cumuli Impact on Solar Radiation at Surface: Spectral Changes Cumuli Impact on Solar Radiation at Surface: Spectral Changes Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle, Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Kassianov E, J Barnard, LK Berg, CN Long, and C Flynn. 2011. "Shortwave spectral radiative forcing of cumulus clouds from surface observations." Geophysical Research Letters, 38, L07801, doi:10.1029/2010GL046282. Figure 1. Normalized total cloud radiative forcing and its direct and diffuse components as a function of wavelength. Typically, under cloudy conditions, radiative transfer parameterizations in climate models have been evaluated by calculating the total cloud impact on

474

Research Highlights | ORNL Neutron Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atomic-Scale Behavior of "Cobalt Blue" Atomic-Scale Behavior of "Cobalt Blue" Neutron Analysis Reveals Unique Atomic-Scale Behavior of "Cobalt Blue" Research Contact: Gregory MacDougall ORNL News Release, September 2011, Media Contact: Bill Cabage Cobalt aluminate Just as cobalt blue's lustrous hue attracts artists and decorators, the antiferromagnetic properties of the responsible compound-cobalt aluminate-are attracting neutron scientists at DOE's Oak Ridge National Laboratory. Studies of magnetic interactions deep within the material's atomic structure may provide clues toward the development of energy-efficient technologies. (Light sconce image courtesy of B. Jefferson Bolender. Click image for high res version.) Neutron scattering studies of "cobalt blue," a compound prized by artists

475

SPACE BASED INTERCEPTOR SCALING  

SciTech Connect (OSTI)

Space Based Interceptor (SBI) have ranges that are adequate to address rogue ICBMs. They are not overly sensitive to 30-60 s delay times. Current technologies would support boost phase intercept with about 150 interceptors. Higher acceleration and velocity could reduce than number by about a factor of 3 at the cost of heavier and more expensive Kinetic Kill Vehicles (KKVs). 6g SBI would reduce optimal constellation costs by about 35%; 8g SBI would reduce them another 20%. Interceptor ranges fall rapidly with theater missile range. Constellations increase significantly for ranges under 3,000 km, even with advanced interceptor technology. For distributed launches, these estimates recover earlier strategic scalings, which demonstrate the improved absentee ratio for larger or multiple launch areas. Constellations increase with the number of missiles and the number of interceptors launched at each. The economic estimates above suggest that two SBI per missile with a modest midcourse underlay is appropriate. The SBI KKV technology would appear to be common for space- and surface-based boost phase systems, and could have synergisms with improved midcourse intercept and discrimination systems. While advanced technology could be helpful in reducing costs, particularly for short range theater missiles, current technology appears adequate for pressing rogue ICBM, accidental, and unauthorized launches.

G. CANAVAN

2001-02-01T23:59:59.000Z

476

Global Health Research | 2 Global Health Research  

E-Print Network [OSTI]

Global Health Research | 2 Global Health Research Supporting researchers in low- and middle-income countries to carry out health- related research within their own countries. Gl bal Health #12;3 | Global Health Research #12;Global Health Research | 4 We are a global charitable foundation dedicated

Rambaut, Andrew

477

Recovery Act: Oxy-Combustion Techology Development for Industrial-Scale Boiler Applications  

SciTech Connect (OSTI)

Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: • Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs. • Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale tests at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF). • Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools. • Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems. • Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost. • Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project completion date was April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a matrix of fuels, oxyprocess variables and boiler design parameters. Significant improvement of CFD modeling tools and validation against 15 MWth experimental data has been completed. Oxy-boiler demonstration and large reference designs have been developed, supported with the information and knowledge gained from the 15 MWth testing. The results from the 15 MWth testing in the BSF and complimentary bench-scale testing are addressed in this volume (Volume II) of the final report. The results of the modeling efforts (Volume III) and the oxy boiler design efforts (Volume IV) are reported in separate volumes.

Levasseur, Armand

2014-04-30T23:59:59.000Z

478

 

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X - B3.6 Siting/construction/operation/decommissioning of facilities for bench-scale research, conventional laboratory operations, small-scale research and development and pilot projects X - B3.6 Siting/construction/operation/decommissioning of facilities for bench-scale research, conventional laboratory operations, small-scale research and development and pilot projects The transformative concept of this research program is to use cyanobacteria as biocatalysts using solar energy and CO2 to produce fatty acids that the cyanobacteria secrete, without major increases in cyanobacterial biomass. Fatty acids are then used for fuel production. Therefore, a major part of the absorbed solar energy and fixed CO2 will be used for fuel production rather than for biomass production, and energy losses are kept to a minimum. This research program will yield a path toward very efficient solar energy conversion to fuel, and at scale will have a

479

Scaled Solar | Open Energy Information  

Open Energy Info (EERE)

Place: San Francisco, California Sector: Solar Product: Scaled Solar manufacturers and markets utility-grade, concentrated photovoltaic solar energy systems to commercial...

480

Advanced Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ductility EnhancEmEnt of molybDEnum Ductility EnhancEmEnt of molybDEnum PhasE by nano-sizED oxiDE DisPErsions Description Using computational modeling techniques, this research aims to develop predictive capabilities to facilitate the design and optimization of molybdenum (Mo), chromium (Cr), and other high-temperature structural materials to enable these materials to withstand the harsh environments of advanced power generation systems, such as gasification-based systems. These types of materials are essential to the development of highly efficient, clean energy technologies such as low-emission power systems that use coal or other fossil fuels.

Note: This page contains sample records for the topic "bench scale research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Advanced Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Super HigH-TemperaTure alloyS and Super HigH-TemperaTure alloyS and CompoSiTeS From nb-W-Cr SySTemS Description The U.S. Department of Energy's Office of Fossil Energy (DOE-FE) has awarded a three-year grant to the University of Texas at El Paso (UTEP) and Argonne National Laboratory (ANL) to jointly explore the high-temperature properties of alloys composed of niobium (Nb), tungsten (W), and chromium (Cr). The grant is administered by the Advanced Research (AR) program of the National

482

Green Solar In 2009 researchers at Berkeley helped shift research into new solar cell materials by  

E-Print Network [OSTI]

Green Solar In 2009 researchers at Berkeley helped shift research into new solar cell materials also be considered. This project would examine the proposed solar cell materials and designs and create­2077). Given the proposed scales of PV adoption, the health and environmental impacts of PV technology should

Iglesia, Enrique

483

An investigation of the relationship between identity and intimacy measured using the Erwin Identity Scale and the Miller Social Intimacy Scale  

E-Print Network [OSTI]

. The instruments used in this study were the Erwin Identity Scale (EIS) and the Miller Social Intimacy Scale (MSIS). By November 1986, instruments were completed by 94 college seniors. The research questions tested were as follows: (1) Is there a positive... types of relationships score higher on the EIS than those who describe the least intimate types of relationships? (4) Can the MSIS scores of college seniors be predicted from their freshmen EIS scores? The characteristics of the scales were examined...

Clark, Janet Karlease Kelly

1987-01-01T23:59:59.000Z

484