National Library of Energy BETA

Sample records for beijing china sector

  1. North China Electric Power University Beijing | Open Energy Informatio...

    Open Energy Info (EERE)

    Electric Power University Beijing Jump to: navigation, search Name: North China Electric Power University (Beijing) Place: Beijing, Beijing Municipality, China Zip: 102206 Product:...

  2. Beijing LN Green Power Company | Open Energy Information

    Open Energy Info (EERE)

    Beijing LN Green Power Company Jump to: navigation, search Name: Beijing LN Green Power Company Place: Beijing, Beijing Municipality, China Zip: 100000 Sector: Vehicles Product:...

  3. Khazanah Nasional Berhad Beijing China Sciences General Energy...

    Open Energy Info (EERE)

    Khazanah Nasional Berhad Beijing China Sciences General Energy JV Jump to: navigation, search Name: Khazanah Nasional Berhad & Beijing China Sciences General Energy JV Place: China...

  4. China United Cleaning Technology Co Ltd Beijing | Open Energy...

    Open Energy Info (EERE)

    Technology Co Ltd, Beijing Place: Beijing Municipality, China Zip: 100012 Product: A Chinese PV cell equipment provider References: China United Cleaning Technology Co Ltd,...

  5. Beijing China Sciences General Energy Environment GEE | Open...

    Open Energy Info (EERE)

    Sciences General Energy Environment GEE Jump to: navigation, search Name: Beijing China Sciences General Energy&Environment (GEE) Place: Beijing Municipality, China Zip: 100080...

  6. Beijing Sijimicoe Solar Energy | Open Energy Information

    Open Energy Info (EERE)

    Sijimicoe Solar Energy Jump to: navigation, search Name: Beijing Sijimicoe Solar Energy Place: Beijing, China Zip: 102200 Sector: Solar Product: Beijing-based solar water heating...

  7. China Solar Energy Ltd Tianpu Xianxing Group aka Beijing Universal...

    Open Energy Info (EERE)

    Xianxing Group aka Beijing Universal Antecedence Jump to: navigation, search Name: China Solar Energy Ltd (Tianpu Xianxing Group, aka Beijing Universal Antecedence) Place:...

  8. Beijing EEDT Technology Trade Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    EEDT Technology Trade Co Ltd Jump to: navigation, search Name: Beijing EEDT Technology & Trade Co Ltd Place: Beijing, China Sector: Carbon Product: Beijing EEDT Technology & Trade...

  9. Beijing Sky Solar Investment Management Co | Open Energy Information

    Open Energy Info (EERE)

    Sky Solar Investment Management Co Jump to: navigation, search Name: Beijing Sky Solar Investment & Management Co. Place: Beijing, China Sector: Solar Product: Beijing based...

  10. Beijing Solar Energy Research Institute BSERI | Open Energy Informatio...

    Open Energy Info (EERE)

    Energy Research Institute BSERI Jump to: navigation, search Name: Beijing Solar Energy Research Institute (BSERI) Place: Beijing, Beijing Municipality, China Zip: 100083 Sector:...

  11. Beijing Sunda Solar Energy Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sunda Solar Energy Technology Co Ltd Jump to: navigation, search Name: Beijing Sunda Solar Energy Technology Co Ltd Place: Beijing, Beijing Municipality, China Zip: 100083 Sector:...

  12. China Export Partners | Open Energy Information

    Open Energy Info (EERE)

    Export Partners Jump to: navigation, search Name: China Export Partners Place: Beijing, Beijing Municipality, China Zip: 100027 Sector: Solar Product: A Beijing-based sourcing and...

  13. Beijing, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd All Solar PV BROAD Beijing Changjiang River International Holding Beijing EEDT Technology Trade Co Ltd Beijing Sijimicoe Solar Energy Beijing Sky Solar Investment...

  14. Taggart China | Open Energy Information

    Open Energy Info (EERE)

    Taggart China Jump to: navigation, search Name: Taggart China Place: Beijing, Beijing Municipality, China Zip: 100022 Sector: Solar, Wind energy Product: US based Taggart Global...

  15. Beijing Sevenstar Electronics Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sevenstar Electronics Co Ltd Jump to: navigation, search Name: Beijing Sevenstar Electronics Co., Ltd Place: Beijing Municipality, China Zip: 100016 Sector: Solar Product:...

  16. Beijing Eastwest Electronics Technology Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Place: Beijing, Beijing Municipality, China Zip: 100029 Sector: Solar, Wind energy Product: Dedicated to the design, installation, development and maintaince of solar PV and...

  17. Beijing Shenzhou Daxu Bio Energy Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Shenzhou Daxu Bio Energy Technology Co Ltd Jump to: navigation, search Name: Beijing Shenzhou Daxu Bio-Energy Technology Co Ltd Place: Beijing Municipality, China Sector: Biomass...

  18. Beijing Junda Energy Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Junda Energy Investment Co Ltd Jump to: navigation, search Name: Beijing Junda Energy Investment Co Ltd Place: Beijing Municipality, China Sector: Wind energy Product: A wind...

  19. Beijing Jinfeng Aerospace S T Developments Company | Open Energy...

    Open Energy Info (EERE)

    Company Place: Beijing, Beijing Municipality, China Zip: 100000 Sector: Hydro, Hydrogen Product: Producer of hydrogen storing metals and one of 13 manufacturers which have a...

  20. Beijing Wende Xingye Wind Power Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Wende Xingye Wind Power Technology Co Ltd Jump to: navigation, search Name: Beijing Wende Xingye Wind Power Technology Co Ltd Place: Beijing, China Sector: Wind energy Product:...

  1. Beijing Corona Science Technology Co Ltd BCST | Open Energy Informatio...

    Open Energy Info (EERE)

    Corona Science Technology Co Ltd BCST Jump to: navigation, search Name: Beijing Corona Science & Technology Co Ltd (BCST) Place: Beijing Municipality, China Zip: 100083 Sector:...

  2. Beijing Tianyin Thermal Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tianyin Thermal Development Co Ltd Jump to: navigation, search Name: Beijing Tianyin Thermal Development Co Ltd Place: Beijing, China Zip: 100000 Sector: Geothermal energy Product:...

  3. China Building Design Consultants | Open Energy Information

    Open Energy Info (EERE)

    Building Design Consultants Jump to: navigation, search Name: China Building Design Consultants Place: Beijing Municipality, China Sector: Solar Product: Beijing-based architecture...

  4. China Hydroelectric Corp | Open Energy Information

    Open Energy Info (EERE)

    Corp Jump to: navigation, search Name: China Hydroelectric Corp Place: Beijing, Beijing Municipality, China Zip: 100010 Sector: Hydro Product: Engaged in the acquisition of small...

  5. China Wind Energy Association | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Association Jump to: navigation, search Name: China Wind Energy Association Place: Beijing, Beijing Municipality, China Zip: 100013 Sector: Wind energy Product: A...

  6. China Longyuan Power Group Corporation Limited | Open Energy...

    Open Energy Info (EERE)

    Power Group Corporation Limited Jump to: navigation, search Name: China Longyuan Power Group Corporation Limited Place: Beijing, Beijing Municipality, China Zip: 100034 Sector:...

  7. Zhonghao New Energy Investment Beijing Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Beijing Municipality, China Sector: Solar Product: An investment firm specialising in solar energy projects. It intends to develop a 100MW PV plant in northwestern China....

  8. China Power Inc | Open Energy Information

    Open Energy Info (EERE)

    China Power Inc Place: Beijing Municipality, China Zip: 100020 Sector: Renewable Energy Product: China Power Inc., a subsidiary of China Holdings Inc., is a project developer for...

  9. Beijing Zhongguancun International Incubator Inc | Open Energy...

    Open Energy Info (EERE)

    Incubator Inc Place: China Sector: Biomass Product: Biomass & Waste ( Private family-controlled ) References: Beijing Zhongguancun International Incubator Inc1 This...

  10. In-use vehicle emissions in China: Beijing study

    SciTech Connect (OSTI)

    Oliver, Hongyan H.; Gallagher, Kelly Sims ); Li, Mengliang; Qin, Kongjian; Zhang, Jianwei ); Liu, Huan; He, Kebin )

    2009-05-01

    China's economic boom in the last three decades has spurred increasing demand for transportation services and personal mobility. Consequently, vehicle population has grown rapidly since the early 1990s, especially in megacities such as Beijing, Guangzhou, and Tianjin. As a result, mobile sources have become more conspicuous contributors to urban air pollution in Chinese cities. Tianjin was our first focus city, and the study there took us about two years to complete. Building upon the experience and partnership generated through the Tianjin study, the research team carried out the Beijing study from fall 2007–fall 2008. Beijing was chosen to be our second focus city for several reasons: it has the largest local fleet and the highest percentage of the population owning vehicles among all Chinese cities, and it has suffered from severe air pollution, partially due to the ever-growing population of on-road vehicles.

  11. China Renewable Energy College | Open Energy Information

    Open Energy Info (EERE)

    Name: China Renewable Energy College Place: Beijing Municipality, China Zip: 102206 Sector: Renewable Energy Product: China's first academic renewable energy College. References:...

  12. Beijing, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Now Green Capital Consulting Company GCCC Heres Hope Solar Innovation Center for Energy and Transportation ICET Mainsail Energy Ventures Inc Mingyang PetroChina Company...

  13. Beijing Ideal land Technology Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Ideal land Technology Development Co Ltd Jump to: navigation, search Name: Beijing Ideal-land Technology Development Co Ltd Place: China Sector: Biofuels Product: Biofuels (...

  14. Beijing Tianrun New Energy Investment | Open Energy Information

    Open Energy Info (EERE)

    Tianrun New Energy Investment Jump to: navigation, search Name: Beijing Tianrun New Energy Investment Place: China Sector: Wind energy Product: Subsidiary of Goldwind. References:...

  15. Beijing Solar Fengli Technology Ltd | Open Energy Information

    Open Energy Info (EERE)

    Solar Fengli Technology Ltd Place: Beijing Municipality, China Zip: 100083 Sector: Efficiency, Solar, Wind energy Product: A company engaged in manufacturing Solar PV power,...

  16. Beijing Sunpu Solar PV Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Zip: 100083 Sector: Solar Product: Manufacturers of PV-powered street lights, inverters and other solar PV systems. References: Beijing Sunpu Solar PV Technology Co Ltd1...

  17. Promotion of Rural Renewable Energy in Western China | Open Energy...

    Open Energy Info (EERE)

    Energy in Western China Place: Beijing Municipality, China Zip: 100026 Sector: Bioenergy Product: A programme launched by China Association of Rural Energy Industry (CAREI)...

  18. China Ordnance Equipment Group Corporation COEGC | Open Energy...

    Open Energy Info (EERE)

    China Ordnance Equipment Group Corporation COEGC Jump to: navigation, search Name: China Ordnance Equipment Group Corporation (COEGC) Place: Beijing Municipality, China Sector:...

  19. Secretary of Energy Samuel Bodman Announces New Department of Energy Office in Beijing, China

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC -- Secretary of Energy Samuel Bodman today announced the establishment of a Department of Energy (DOE) office in Beijing, China. The new office will support DOE’s cooperative efforts...

  20. Energy Foundation Beijing Office | Open Energy Information

    Open Energy Info (EERE)

    Beijing Office Jump to: navigation, search Name: Energy Foundation Beijing Office Place: Beijing, Beijing Municipality, China Zip: 100004 Product: Makes grants to non-governmental...

  1. Beijing Capital International Airport | Open Energy Information

    Open Energy Info (EERE)

    International Airport Jump to: navigation, search Name: Beijing Capital International Airport Place: Beijing, Beijing Municipality, China Zip: 100621 Product: Beijing Capital...

  2. China Datang Corporation Renewable Power Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Corporation Renewable Power Co Ltd Jump to: navigation, search Name: China Datang Corporation Renewable Power Co Ltd Place: Beijing Municipality, China Sector: Renewable Energy...

  3. China Huadian New Energy Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    New Energy Development Co Ltd Jump to: navigation, search Name: China Huadian New Energy Development Co Ltd Place: Beijing Municipality, China Zip: 100044 Sector: Renewable Energy...

  4. China-Transportation Demand Management in Beijing: Mitigation...

    Open Energy Info (EERE)

    demand management (TDM) in Beijing in order to manage the steadily increasing traffic density. The project provides capacity building for decision-makers and transport planners in...

  5. Beijing Four Seasons Solar Power Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Beijing Four Seasons Solar Power Technology Co Ltd Jump to: navigation, search Name: Beijing Four Seasons Solar Power Technology Co Ltd Place: Beijing, Beijing Municipality, China...

  6. Beijing Soltech Corp | Open Energy Information

    Open Energy Info (EERE)

    Place: Beijing, Beijing Municipality, China Zip: 100176 Product: Chinese thin-film PV cell manufacturer References: Beijing Soltech Corp1 This article is a stub. You can help...

  7. Sinopec Beijing Capital Sci Tech Group JV | Open Energy Information

    Open Energy Info (EERE)

    Sinopec Beijing Capital Sci Tech Group JV Jump to: navigation, search Name: Sinopec & Beijing Capital Sci Tech Group JV Place: Beijing Municipality, China Product: China-based...

  8. Climate Change and China's Agricultural Sector: An Overview of...

    Open Energy Info (EERE)

    An Overview of Impacts, Adaptation and Mitigation Jump to: navigation, search Name Climate Change and China's Agricultural Sector: An Overview of Impacts, Adaptation and...

  9. Beijing Goldwind Kechuang Wind Turbine Manufacturer | Open Energy...

    Open Energy Info (EERE)

    Goldwind Kechuang Wind Turbine Manufacturer Jump to: navigation, search Name: Beijing Goldwind Kechuang Wind Turbine Manufacturer Place: Beijing, Beijing Municipality, China Zip:...

  10. Beijing Instrument Industry Group BIIC | Open Energy Information

    Open Energy Info (EERE)

    Place: Beijing, Beijing Municipality, China Zip: 100022 Product: Beijing-based instrumentation and electrical equipment maker. The firm is entering polysilicon production....

  11. Beijing Zhonglian Solar Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Technology Co Ltd Place: Beijing, Beijing Municipality, China Zip: 102211 Product: A Chinese partially integrated PV manufacturer. References: Beijing Zhonglian Solar Technology...

  12. HydroChina Corporation | Open Energy Information

    Open Energy Info (EERE)

    China Zip: 100011 Sector: Hydro, Wind energy Product: Beijing-based firm focused on hydro and wind power development. References: HydroChina Corporation1 This article is a...

  13. Beijing Taishi Xinguang Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Technology Co Ltd Place: Beijing, Beijing Municipality, China Product: A China-based LED technology firm. Coordinates: 39.90601, 116.387909 Show Map Loading map......

  14. Beijing Fuyuan Century Fuel Cell Power Co Ltd FCFCP | Open Energy...

    Open Energy Info (EERE)

    Fuyuan Century Fuel Cell Power Co Ltd FCFCP Jump to: navigation, search Name: Beijing Fuyuan Century Fuel Cell Power Co Ltd (FCFCP) Place: Beijing, Beijing Municipality, China Zip:...

  15. Beijing F Y Hyenergy Power System Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Y Hyenergy Power System Co Ltd Jump to: navigation, search Name: Beijing F.Y. Hyenergy Power System Co Ltd Place: Beijing, Beijing Municipality, China Zip: 100176 Product:...

  16. China-NAMA Programme for the Construction Sector in Asia | Open...

    Open Energy Info (EERE)

    NAMA Programme for the Construction Sector in Asia Jump to: navigation, search Name China-NAMA Programme for the Construction Sector in Asia AgencyCompany Organization United...

  17. Beijing Beiyi Innovation Vacuum Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Beiyi Innovation Vacuum Technology Co Ltd Jump to: navigation, search Name: Beijing Beiyi Innovation Vacuum Technology Co Ltd Place: Daxing District, Beijing Municipality, China...

  18. Beijing Huaming Lighting Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huaming Lighting Co Ltd Place: Beijing Municipality, China Zip: 100085 Product: Energy saving lamps manufacturer. References: Beijing Huaming Lighting Co Ltd1 This article is...

  19. Beijing Feichi Green Power Corporation | Open Energy Information

    Open Energy Info (EERE)

    Beijing Municipality, China Zip: 100094 Product: A company engages in producing PEM fuel cells, especially for buses. References: Beijing Feichi Green Power Corporation1...

  20. Beijing Zhongkexin Electronics Equipment Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Zhongkexin Electronics Equipment Co Ltd Jump to: navigation, search Name: Beijing Zhongkexin Electronics Equipment Co Ltd Place: Beijing Municipality, China Zip: 101111 Product: A...

  1. Beijing Full Three Dimension Power Engineering Co Ltd FTD | Open...

    Open Energy Info (EERE)

    Power Engineering Co Ltd (FTD) Place: Beijing, Beijing Municipality, China Zip: 100080 Product: A steam turbine design and refurbishment service provider. Focus on technical...

  2. Beijing Zhongmei Chengxin Technology Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zhongmei Chengxin Technology Ltd Jump to: navigation, search Name: Beijing Zhongmei Chengxin Technology Ltd Place: Beijing Municipality, China Product: Holds patent for...

  3. Beijing Transform United New Energy Investment Co Ltd | Open...

    Open Energy Info (EERE)

    United New Energy Investment Co Ltd Jump to: navigation, search Name: Beijing Transform United New Energy Investment Co.,Ltd. Place: Beijing, China Zip: 100005 Product: The clean...

  4. Beijing Zhongneng United Renewable Energy Investment Co Ltd ...

    Open Energy Info (EERE)

    Zhongneng United Renewable Energy Investment Co Ltd Jump to: navigation, search Name: Beijing Zhongneng United Renewable Energy Investment Co Ltd Place: Beijing Municipality, China...

  5. Chinaseasun Beijing New Energy Power Co Ltd formerly Chinaseasun...

    Open Energy Info (EERE)

    and Technology) Place: Beijing, Beijing Municipality, China Zip: 102200 Product: Chinese LED and PV based lighting product and system provider Coordinates: 39.90601, 116.387909...

  6. Beijing Jingyi Century Automatic Equipment Co Ltd | Open Energy...

    Open Energy Info (EERE)

    beijing Jingyi Century Automatic Equipment Co Ltd Place: Beijing Municipality, China Zip: 100079 Product: A Chinese equipment manufacturer provides monosilicon ingot puller and...

  7. China South Industries Group Corp CSG | Open Energy Information

    Open Energy Info (EERE)

    Industries Group Corp CSG Jump to: navigation, search Name: China South Industries Group Corp (CSG) Place: Beijing, Beijing Municipality, China Zip: 100821 Product: Beijing-based...

  8. Energy use and CO2 emissions of China’s industrial sector from a global perspective

    SciTech Connect (OSTI)

    Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick W.; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

    2013-07-10

    The industrial sector has accounted for more than 50% of China’s final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of China’s per-capita demands of basic industrial goods, industrial energy demand and CO2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095.

  9. Beijing Suns Eco Techinal Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Suns Eco Techinal Co Ltd Jump to: navigation, search Name: Beijing Suns-Eco Techinal Co Ltd Place: Beijing, China Zip: 100053 Product: Beijing Suns-Eco Techinal Co., Ltd. is a...

  10. Tang Energy China | Open Energy Information

    Open Energy Info (EERE)

    Energy China Jump to: navigation, search Name: Tang Energy China Place: Beijing, Beijing Municipality, China Product: Main operational centre for Tang Energy. Coordinates:...

  11. Environmental impact assessment of solid waste management in Beijing City, China

    SciTech Connect (OSTI)

    Zhao Yan; Christensen, Thomas H.; Lu Wenjing; Wu Huayong; Wang Hongtao

    2011-04-15

    The environmental impacts of municipal solid waste management in Beijing City were evaluated using a life-cycle-based model, EASEWASTE, to take into account waste generation, collection, transportation, treatment/disposal technologies, and savings obtained by energy and material recovery. The current system, mainly involving the use of landfills, has manifested significant adverse environmental impacts caused by methane emissions from landfills and many other emissions from transfer stations. A short-term future scenario, where some of the landfills (which soon will reach their capacity because of rising amount of waste in Beijing City) are substituted by incinerators with energy recovery, would not result in significant environmental improvement. This is primarily because of the low calorific value of mixed waste, and it is likely that the incinerators would require significant amounts of auxiliary fuels to support combustion of wet waste. As for the long-term future scenario, efficient source separation of food waste could result in significant environmental improvements, primarily because of increase in calorific value of remaining waste incinerated with energy recovery. Sensitivity analysis emphasized the importance of efficient source separation of food waste, as well as the electricity recovery in incinerators, in order to obtain an environmentally friendly waste management system in Beijing City.

  12. China Enfi Enginnering Corporation | Open Energy Information

    Open Energy Info (EERE)

    Enfi Enginnering Corporation Jump to: navigation, search Name: China Enfi Enginnering Corporation Place: Beijing Municipality, China Product: Beijing-based engineering company....

  13. China s Green Beat | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: China's Green Beat Place: Beijing, Beijing Municipality, China Zip: 100088 Product: The body create films and podcasts, with a view to promoting...

  14. Beijing Changjiang River International Holding | Open Energy...

    Open Energy Info (EERE)

    100761 Sector: Services Product: Beijing Changjiang River International Holding is a Chinese emissions broker and services company. Coordinates: 39.90601, 116.387909 Show Map...

  15. Beijing Tianruichi Battery TRC | Open Energy Information

    Open Energy Info (EERE)

    Tianruichi Battery TRC Jump to: navigation, search Name: Beijing Tianruichi Battery (TRC) Place: China Product: China-based maker of Li-Poly, Li-Iron and Li-Ion batteries....

  16. Energy Use in China: Sectoral Trends and Future Outlook

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

    2007-10-04

    This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77 million in2020. * Residential appliance ownership will show signs of saturation inurban households. The increase in residential energy consumption will belargely driven by urbanization, since rural homes will continue to havelow consumption levels. In urban households, the size of appliances willincrease, but its effect will be moderated by efficiency improvements,partially driven by government standards. * Commercial energy increaseswill be driven both by increases in floor space and by increases inpenetration of major end uses such as heating and cooling. Theseincreases will be moderated somewhat, however, by technology changes,such as increased use of heat pumps. * China's Medium- and Long-TermDevelopment plan drafted by the central government and published in 2004calls for a quadrupling of GDP in the period from 2000-2020 with only adoubling in energy consumption during the same period. A bottom-upanalysis with likely efficiency improvements finds that energyconsumption will likely exceed the goal by 26.12 EJ, or 28 percent.Achievements of these goals will there fore require a more aggressivepolicy of encouraging energy efficiency.

  17. China Electronic Engineering Design Institute CEEDI | Open Energy...

    Open Energy Info (EERE)

    Engineering Design Institute CEEDI Jump to: navigation, search Name: China Electronic Engineering Design Institute (CEEDI) Place: Beijing, Beijing Municipality, China Zip: 100840...

  18. China National BlueStar Group Corporation | Open Energy Information

    Open Energy Info (EERE)

    BlueStar Group Corporation Jump to: navigation, search Name: China National BlueStar Group Corporation Place: Beijing, Beijing Municipality, China Zip: 100029 Product: State-owned...

  19. China New Energy Chamber of Commerce CNECC | Open Energy Information

    Open Energy Info (EERE)

    Chamber of Commerce CNECC Jump to: navigation, search Name: China New Energy Chamber of Commerce (CNECC) Place: Beijing, Beijing Municipality, China Zip: 100052 Product: A Chinese...

  20. China National CDM Board | Open Energy Information

    Open Energy Info (EERE)

    Board Jump to: navigation, search Name: China National CDM Board Place: Beijing Municipality, China Product: Regulator for CDM development in China. References: China National CDM...

  1. China Renewable Energy Scale up Program CRESP GOC WB GEF | Open...

    Open Energy Info (EERE)

    up Program CRESP GOC WB GEF Jump to: navigation, search Name: China Renewable Energy Scale-up Program (CRESP) GOCWBGEF Place: Beijing, Beijing Municipality, China Zip: 100038...

  2. Europe China Clean Energy Centre | Open Energy Information

    Open Energy Info (EERE)

    Europe China Clean Energy Centre Jump to: navigation, search Name: Europe-China Clean Energy Centre Place: Beijing Municipality, China Product: Beijing-based China-EU clean energy...

  3. Beijing ChangLi Union Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Municipality, China Product: China-based technology company that research in zinc-air batteries (fuel cells). References: Beijing ChangLi Union Energy Company1 This article is a...

  4. National Energy Commission (China) | Open Energy Information

    Open Energy Info (EERE)

    Commission (China) Jump to: navigation, search Name: National Energy Commission (China) Place: Beijing References: National Energy Commission (China)1 This article is a stub. You...

  5. The importance of China's household sector for black carbon emissions - article no. L12708

    SciTech Connect (OSTI)

    Streets, D.G.; Aunan, K.

    2005-06-30

    The combustion of coal and biofuels in Chinese households is a large source of black carbon (BC), representing about 10-15% of total global emissions during the past two decades, depending on the year. How the Chinese household sector develops during the next 50 years will have an important bearing on future aerosol concentrations, because the range of possible outcomes (about 550 Gg yr{sup -1}) is greater than total BC emissions in either the United States or Europe (each about 400-500 Gg yr{sup -1}). In some Intergovernmental Panel on Climate Change scenarios biofuels persist in rural China for at least the next 50 years, whereas in other scenarios a transition to cleaner fuels and technologies effectively mitigates BC emissions. This paper discusses measures and policies that would help this transition and also raises the possibility of including BC emission reductions as a post-Kyoto option for China and other developing countries.

  6. Secretary Chu will Travel to China to Highlight Clean Energy Partnerships |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy will Travel to China to Highlight Clean Energy Partnerships Secretary Chu will Travel to China to Highlight Clean Energy Partnerships April 28, 2010 - 12:00am Addthis WASHINGTON - U.S. Energy Secretary Steven Chu will travel to China from May 24th to 28th to highlight the benefit of U.S.-China partnerships and cooperation in the clean energy sector. He will visit with government officials, academia and members of the private sector in both Beijing and Shanghai to learn

  7. China National Machinery Industry Complete Engineering Corporation...

    Open Energy Info (EERE)

    Industry Complete Engineering Corporation CMCEC Jump to: navigation, search Name: China National Machinery Industry Complete Engineering Corporation (CMCEC) Place: Beijing,...

  8. China Association of Resource Comprehensive Utilisation CARCU...

    Open Energy Info (EERE)

    of Resource Comprehensive Utilisation CARCU Jump to: navigation, search Name: China Association of Resource Comprehensive Utilisation (CARCU) Place: Beijing Municipality,...

  9. China Nuclear Engineering Construction Corporation CNEC | Open...

    Open Energy Info (EERE)

    Nuclear Engineering Construction Corporation CNEC Jump to: navigation, search Name: China Nuclear Engineering & Construction Corporation (CNEC) Place: Beijing, China Zip: 100840...

  10. China United Coalbed Methane Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Coalbed Methane Co Ltd Jump to: navigation, search Name: China United Coalbed Methane Co Ltd Place: Beijing Municipality, China Zip: 100011 Product: Coal bed methane developer in...

  11. China Lithium Energy Electric Vehicle Investment Group CLEEVIG...

    Open Energy Info (EERE)

    Lithium Energy Electric Vehicle Investment Group CLEEVIG Jump to: navigation, search Name: China Lithium Energy Electric Vehicle Investment Group (CLEEVIG) Place: Beijing, China...

  12. China Electronics Technology Group Corporation CETC | Open Energy...

    Open Energy Info (EERE)

    Technology Group Corporation CETC Jump to: navigation, search Name: China Electronics Technology Group Corporation (CETC) Place: Beijing Municipality, China Zip: 100846 Product:...

  13. Total China Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Investment Co Ltd Jump to: navigation, search Name: Total (China) Investment Co. Ltd. Place: Beijing, China Zip: 100004 Product: Total has been present in China for about 30...

  14. GreenGen Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Place: Beijing, Beijing Municipality, China Zip: 100098 Sector: Hydro, Hydrogen Product: Beijing based joint venture headed up by China Huaneng Group which focusses...

  15. China City Investment Group | Open Energy Information

    Open Energy Info (EERE)

    China City Investment Group Jump to: navigation, search Name: China City Investment Group Place: Nanjing, Jiangsu Province, China Sector: Renewable Energy Product: China-based...

  16. GC China Turbine Corp | Open Energy Information

    Open Energy Info (EERE)

    GC China Turbine Corp Jump to: navigation, search Name: GC China Turbine Corp Place: Wuhan, Hubei Province, China Sector: Wind energy Product: China-base wind turbine manufacturer....

  17. Chengdu China Photoelectric Apollo | Open Energy Information

    Open Energy Info (EERE)

    Chengdu China Photoelectric Apollo Jump to: navigation, search Name: Chengdu China Photoelectric Apollo Place: Chengdu, Sichuan Province, China Sector: Solar Product: China-based...

  18. HCNG Engine Testing and HCNG Vehicle Marketing in China

    Broader source: Energy.gov [DOE]

    These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 – 29, 2010, in Beijing, China.

  19. China Brazil Center on Climate Change and Energy Technology Innovation...

    Open Energy Info (EERE)

    Center on Climate Change and Energy Technology Innovation Jump to: navigation, search Name: China-Brazil Center on Climate Change and Energy Technology Innovation Place: Beijing...

  20. Arreon Carbon Ltd | Open Energy Information

    Open Energy Info (EERE)

    Arreon Carbon Ltd Jump to: navigation, search Name: Arreon Carbon Ltd Place: Beijing, Beijing Municipality, China Zip: 100022 Sector: Carbon Product: Beijing-based firm that...

  1. Beijing Jike Energy New Technology Development Co Ltd | Open...

    Open Energy Info (EERE)

    China Zip: 100080 Sector: Geothermal energy, Wind energy Product: Focuses on photovoltaics (PV), windPV hybrid power systems and Geothermal heap pump systems. References:...

  2. Beijing Drainage Group | Open Energy Information

    Open Energy Info (EERE)

    state-owned wastewater utility. It is developing a PV project at the wastewater treatment facility in Beijing. References: Beijing Drainage Group1 This article is a stub....

  3. Evaluation of the Contribution of the Building Sector to PM2.5 Emissions in China

    SciTech Connect (OSTI)

    Khanna, Nina; Zhou, Nan; Ke, Jing; Fridley, David

    2014-11-01

    In this study, we quantify the current and potential contribution of China’s building sector to direct primary and indirect PM2.5 emissions and co-benefits of key pollution reduction strategies of energy efficiency, fuel switching and pollution control technologies on PM2.5 emissions reduction. We use a bottom-up end-use accounting model to model residential and commercial buildings’ coal demand for heating and electricity demand in China’s Northern and Transition climate zones from 2010 to 2030. The model is then used to characterize the current coal-based heating (e.g., district heating, combined heat and power generation, small-scale coal-fired boilers) and power generation technologies to estimate direct and indirect PM2.5 emissions. Model scenarios are developed to evaluate and compare the potential co-benefits of efficiency improvements, fuel switching and pollution control technologies in reducing building-related direct and indirect PM2.5 emissions. An alternative pathway of development in which district heating is introduced to China’s Transition zone to meet growing demand for heat is also modeled to evaluate and quantify the potential impact on PM2.5 emissions.

  4. Beijing Jikedian Renewable Energy Development Centre JKD | Open...

    Open Energy Info (EERE)

    Jikedian Renewable Energy Development Centre JKD Jump to: navigation, search Name: Beijing Jikedian Renewable Energy Development Centre (JKD) Place: Beijing, Beijing Municipality,...

  5. Beijing Sanyuan Green Lighting Technology Development Co Ltd...

    Open Energy Info (EERE)

    Sanyuan Green Lighting Technology Development Co Ltd Jump to: navigation, search Name: Beijing Sanyuan Green Lighting Technology Development Co., Ltd Place: Beijing, Beijing...

  6. Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd ...

    Open Energy Info (EERE)

    Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd Jump to: navigation, search Name: Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd Place: Beijing...

  7. Beijing EWT CASC DIRECTWIND Marketing Sales Co Ltd BECD | Open...

    Open Energy Info (EERE)

    EWT CASC DIRECTWIND Marketing Sales Co Ltd BECD Jump to: navigation, search Name: Beijing EWT - CASC DIRECTWIND Marketing & Sales Co Ltd (BECD) Place: Beijing, Beijing...

  8. China National Nuclear Corp CNNC | Open Energy Information

    Open Energy Info (EERE)

    Nuclear Corp CNNC Jump to: navigation, search Name: China National Nuclear Corp (CNNC) Place: Beijing, China Zip: 100822 Product: The goal of CNNC is to achieve self-reliance in...

  9. Readout on Secretary Chu's China Meetings on Clean Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15, 2009 - 12:00am Addthis BEIJING, CHINA - Secretary Chu is meeting with a series of Chinese officials during this week's trip to China. We will be providing readouts on these...

  10. Beijing Hope Solar New Energy Co Ltd formerly known as Beijing...

    Open Energy Info (EERE)

    Hope Solar New Energy Co Ltd formerly known as Beijing Hope Solar Power or Beijing Hope Ind Jump to: navigation, search Name: Beijing Hope Solar New Energy Co Ltd (formerly known...

  11. China's Pathways to Achieving 40% ~ 45% Reduction in CO{sub 2} Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential

    SciTech Connect (OSTI)

    Zheng, Nina; Fridley, David; Zhou, Nan; Levine, Mark; Price, Lynn; Ke, Jing

    2011-09-30

    Achieving China’s goal of reducing its carbon intensity (CO{sub 2} per unit of GDP) by 40% to 45% percent below 2005 levels by 2020 will require the strengthening and expansion of energy efficiency policies across the buildings, industries and transport sectors. This study uses a bottom-up, end-use model and two scenarios -- an enhanced energy efficiency (E3) scenario and an alternative maximum technically feasible energy efficiency improvement (Max Tech) scenario – to evaluate what policies and technical improvements are needed to achieve the 2020 carbon intensity reduction target. The findings from this study show that a determined approach by China can lead to the achievement of its 2020 goal. In particular, with full success in deepening its energy efficiency policies and programs but following the same general approach used during the 11th Five Year Plan, it is possible to achieve 49% reduction in CO{sub 2} emissions per unit of GDP (CO{sub 2} emissions intensity) in 2020 from 2005 levels (E3 case). Under the more optimistic but feasible assumptions of development and penetration of advanced energy efficiency technology (Max Tech case), China could achieve a 56% reduction in CO{sub 2} emissions intensity in 2020 relative to 2005 with cumulative reduction of energy use by 2700 Mtce and of CO{sub 2} emissions of 8107 Mt CO{sub 2} between 2010 and 2020. Energy savings and CO{sub 2} mitigation potential varies by sector but most of the energy savings potential is found in energy-intensive industry. At the same time, electricity savings and the associated emissions reduction are magnified by increasing renewable generation and improving coal generation efficiency, underscoring the dual importance of end-use efficiency improvements and power sector decarbonization.

  12. Vestas State Grid JV | Open Energy Information

    Open Energy Info (EERE)

    State Grid JV Jump to: navigation, search Name: Vestas & State Grid JV Place: Beijing, Beijing Municipality, China Sector: Wind energy Product: China-based JV to coordinate the...

  13. China Solar Tower Development | Open Energy Information

    Open Energy Info (EERE)

    Tower Development Jump to: navigation, search Name: China Solar Tower Development Place: China Sector: Solar Product: Joint venture for development of solar towers in China,...

  14. Fujian China Power | Open Energy Information

    Open Energy Info (EERE)

    Power Jump to: navigation, search Name: Fujian China Power Place: Fujian Province, China Sector: Hydro Product: A hydro power project developer. References: Fujian China Power1...

  15. China

    National Nuclear Security Administration (NNSA)

    9%2A en NNSA Transfers Responsibility for Radiation Detection System to China Customs http:nnsa.energy.govmediaroompressreleasesnnsa%E2%80%99s-second-line-defense

  16. Beijing Hualianda Environmental Protection Energy Technology...

    Open Energy Info (EERE)

    Hualianda Environmental Protection Energy Technology Development Co Ltd Jump to: navigation, search Name: Beijing Hualianda Environmental Protection Energy Technology Development...

  17. Status and Progress in Research, Development and Demonstration of Hydrogen-Compressed Natural Gas Vehicles in China

    Broader source: Energy.gov [DOE]

    These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 – 29, 2010, in Beijing, China.

  18. U.S.-China Clean Energy Announcements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -China Clean Energy Announcements U.S.-China Clean Energy Announcements November 17, 2009 - 12:00am Addthis Beijing, China - Today, President Barack Obama and President Hu Jintao announced a far-reaching package of measures to strengthen cooperation between the United States and China on clean energy. Please see the attached fact sheets for additional details on each of the U.S-China clean energy announcements. 1. U.S.-China Clean Energy Research Center. The two Presidents announced the

  19. China Guangdong Nuclear Solar Energy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Solar Energy Co Ltd Jump to: navigation, search Name: China Guangdong Nuclear Solar Energy Co Ltd Place: China Sector: Solar Product: China Guangdong Nuclear's division on solar...

  20. Vestas Wind Technology China Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Vestas Wind Technology China Co Ltd Jump to: navigation, search Name: Vestas Wind Technology (China) Co Ltd Place: Tianjin Municipality, China Zip: 300462 Sector: Wind energy...

  1. Solar Power China Corporation Ltd | Open Energy Information

    Open Energy Info (EERE)

    Corporation Ltd Jump to: navigation, search Name: Solar Power China Corporation Ltd Place: China Sector: Solar Product: China-focused PV project developer, acting as a joint...

  2. China Lucky Film Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Lucky Film Co Ltd Jump to: navigation, search Name: China Lucky Film Co Ltd Place: Baoding, Hebei Province, China Zip: 71054 Sector: Solar Product: China's photosensitive materials...

  3. China Shaanxi Yulin Huayang New Energy | Open Energy Information

    Open Energy Info (EERE)

    Shaanxi Yulin Huayang New Energy Jump to: navigation, search Name: China Shaanxi Yulin Huayang New Energy Place: Yulin, Shaanxi Province, China Sector: Solar Product: China-based...

  4. Beijing Haohua Rivers International Water Engineering Consulting...

    Open Energy Info (EERE)

    Haohua Rivers International Water Engineering Consulting Co Ltd Jump to: navigation, search Name: Beijing Haohua Rivers International Water Engineering Consulting Co.Ltd. Place:...

  5. Honiton Energy Beijing Ltd | Open Energy Information

    Open Energy Info (EERE)

    energy Product: BritishChinese company developing large scale wind farms in Inner Mongolia. References: Honiton Energy (Beijing) Ltd1 This article is a stub. You can help...

  6. Beijing Palco Fuel Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Energy Product: Korean renewable energy developer, LBL Corporation, and Chinese hi-tech incubator, Beijing Ideal-land, have set up a bioethanol JV under the name Beijing...

  7. U.S. and China Increase Biofuels Cooperation Ahead of the Third U.S. -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    China Strategic Economic Dialogue | Department of Energy Increase Biofuels Cooperation Ahead of the Third U.S. - China Strategic Economic Dialogue U.S. and China Increase Biofuels Cooperation Ahead of the Third U.S. - China Strategic Economic Dialogue December 12, 2007 - 4:44pm Addthis Marks Third U.S. -China Agreement to Advance Energy Security Reached This Year BEIJING, CHINA - The U.S. Departments of Energy (DOE) and Agriculture (USDA) and China's National Development and Reform

  8. National Bio Energy Co Ltd formerly Guoneng Biomass Power Ltd...

    Open Energy Info (EERE)

    Ltd.) Place: Beijing, Beijing Municipality, China Zip: 100005 Sector: Biomass Product: Invest in, build and run biomass power plants. Coordinates: 39.90601, 116.387909 Show Map...

  9. Intan Carbon Corporation | Open Energy Information

    Open Energy Info (EERE)

    Intan Carbon Corporation Jump to: navigation, search Name: Intan Carbon Corporation Place: Beijing, Beijing Municipality, China Zip: 100031 Sector: Efficiency Product:...

  10. Golden State Renewable Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Corporation Jump to: navigation, search Name: Golden State Renewable Energy Corporation Place: Beijing, Beijing Municipality, China Zip: 100101 Sector: Biomass,...

  11. Quanzhou Liupu Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Quanzhou Liupu Hydropower Co Ltd Jump to: navigation, search Name: Quanzhou Liupu Hydropower Co. Ltd Place: Beijing, Beijing Municipality, China Sector: Hydro Product:...

  12. Shenhua Guohua Energy Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Shenhua Guohua Energy Investment Co Ltd Jump to: navigation, search Name: Shenhua Guohua Energy Investment Co Ltd Place: Beijing, Beijing Municipality, China Zip: 100036 Sector:...

  13. Century Concord Wind Power Investment Ltd | Open Energy Information

    Open Energy Info (EERE)

    Concord Wind Power Investment Ltd Jump to: navigation, search Name: Century Concord Wind Power Investment Ltd Place: Beijing, Beijing Municipality, China Sector: Wind energy...

  14. Sino Power Star Co Ltd SPSCAP | Open Energy Information

    Open Energy Info (EERE)

    Power Star Co Ltd SPSCAP Jump to: navigation, search Name: Sino Power Star Co Ltd (SPSCAP) Place: Beijing, Beijing Municipality, China Zip: 102628 Sector: Vehicles Product:...

  15. The CECIC Wind Power Xinjiang Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    CECIC Wind Power Xinjiang Co Ltd Jump to: navigation, search Name: The CECIC Wind Power (Xinjiang) Co Ltd Place: Beijing, Beijing Municipality, China Zip: 100037 Sector: Wind...

  16. Sinohydro Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Sinohydro Renewable Energy Jump to: navigation, search Name: Sinohydro Renewable Energy Place: Beijing Municipality, China Sector: Renewable Energy Product: Beijing-based renewable...

  17. Han Wind Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Corporation Jump to: navigation, search Name: Han Wind Energy Corporation Place: Beijing, Beijing Municipality, China Zip: 100027 Sector: Wind energy Product: Han Wind...

  18. China Technology Development Corporation | Open Energy Information

    Open Energy Info (EERE)

    Corporation Jump to: navigation, search Name: China Technology Development Corporation Place: Tortola, China Zip: 310012 Sector: Renewable Energy, Solar Product: Chinese company...

  19. China-NETL Cooperation | Open Energy Information

    Open Energy Info (EERE)

    NETL Cooperation Jump to: navigation, search Name NETL-China Cooperation AgencyCompany Organization National Energy Technology Laboratory Partner China Sector Energy Topics...

  20. Joint Trade Mission to China | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joint Trade Mission to China Joint Trade Mission to China Trade Mission Begins Trade Mission Begins The joint trade mission began in Beijing, and will also make stops in Shanghai and Guangzhou. Read more Green Buildings Green Buildings How American Businesses are leading the way in green building technology in Shanghai and around the world. Read more Top 3 Things Top 3 Things Deputy Secretary Sherwood-Randall spoke at Microsoft's Beijing Campus. These were the top 3 things from her speech. Read

  1. DOE Assistant Secretaries in China to Discuss Energy Cooperation |

    Energy Savers [EERE]

    Department of Energy Assistant Secretaries in China to Discuss Energy Cooperation DOE Assistant Secretaries in China to Discuss Energy Cooperation September 14, 2006 - 1:10pm Addthis BEIJING, CHINA - U.S. Department of Energy (DOE) Assistant Secretary for Policy and International Affairs Karen A. Harbert and Assistant Secretary for Fossil Energy Jeffrey Jarrett are in China this week to discuss energy cooperation between the United States and China. In Hangzhou, Assistant Secretary Harbert

  2. US-China Energy Efficiency Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    China Energy Efficiency Forum US-China Energy Efficiency Forum US-China Energy Efficiency Forum On May 26th, 2010, the first ever U.S.-China Energy Efficiency Forum was held in Beijing, China The Forum brought together more than 150 U.S. and Chinese officials from government, industry, academia and advocacy groups to share experiences and best practices in promoting energy efficiency in buildings, communities, industry and consumer products. As a public-private partnership, the Forum convened

  3. Probe into Gaseous Pollution and Assessment of Air Quality Benefit under Sector Dependent Emission Control Strategies over Megacities in Yangtze River Delta, China

    SciTech Connect (OSTI)

    Dong, Xinyi; Gao, Yang; Fu, Joshua S.; Li, Juan; Huang, Kan; Zhuang, G.; Zhou, Ying

    2013-11-01

    On February 29th 2012, China published its new National Ambient Air Quality Standard (CH-NAAQS) aiming at revising the standards and measurements for both gaseous pollutants including ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), and also particle pollutants including PM10 and PM2.5. In order to understand the air pollution status regarding this new standard, the integrated MM5/CMAQ modeling system was applied over Yangtze River Delta (YRD) within this study to examine the criteria gaseous pollutants listed in the new CH-NAAQS. Sensitivity simulations were also conducted to assess the responses of gaseous pollutants under 8 different sector-dependent emission reduction scenarios in order to evaluate the potential control strategies. 2006 was selected as the simulation year in order to review the air quality condition at the beginning of China’s 11th Five-Year-Plan (FYP, from 2006 to 2010), and also compared with air quality status in 2010 as the end of 11th FYP to probe into the effectiveness of the national emission control efforts. Base case simulation showed distinct seasonal variation for gaseous pollutants: SO2, and NO2 were found to have higher surface concentrations in winter while O3 was found to have higher concentrations in spring and summer than other seasons. According to the analyses focused on 3 megacities within YRD, Shanghai, Nanjing, and Hangzhou, we found different air quality conditions among the cities: NO2 was the primary pollutant that having the largest number of days exceeding the CH-NAAQS daily standard (80 ?g/m3) in Shanghai (59 days) and Nanjing (27 days); SO2 was the primary pollutant with maximum number of days exceeding daily air quality standard (150 ?g/m3) in Hangzhou (28 days), while O3 exceeding the daily maximum 8-hour standard (160 ?g/m3) for relatively fewer days in all the three cities (9 days in Shanghai, 14 days in Nanjing, and 11 days in Hangzhou). Simulation results from predefined potential applicable emission control scenarios suggested significant air quality improvements from emission reduction: 90% of SO2 emission removed from power plant in YRD would be able to reduce more than 85% of SO2 pollution, 85% NOx emission reduction from power plant would reduce more than 60% of NO2 pollution, in terms of reducing the number of days exceeding daily air quality standard. NOx emission reduction from transportation and industry were also found to effectively reduce NO2 pollution but less efficient than emission control from power plants. We also found that multi-pollutants emission control including both NOx and VOC would be a better strategy than independent NOx control over YRD which is China’s 12th Five-Year-Plan (from 2011 to 2015), because O3 pollution would be increased as a side effect of NOx control and counteract NO2 pollution reduction benefit.

  4. Guodian United Power Technology Co Ltd formerly Guodian Union...

    Open Energy Info (EERE)

    Beijing Municipality, China Zip: 100044 Sector: Wind energy Product: China-based wind turbine maker and daughter company of state-owned power generator China Guodian. References:...

  5. Gansu China Power Jiuquan Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Power Jiuquan Wind Power Co Ltd Jump to: navigation, search Name: Gansu China Power Jiuquan Wind Power Co Ltd Place: Gansu Province, China Sector: Wind energy Product:...

  6. PetroSun Biofuels China | Open Energy Information

    Open Energy Info (EERE)

    PetroSun Biofuels China Jump to: navigation, search Name: PetroSun Biofuels China Place: China Sector: Biofuels Product: PetroSun Biofuels China is a wholly owned subsidiary of...

  7. China Lao Gaixian Wind L P | Open Energy Information

    Open Energy Info (EERE)

    Lao Gaixian Wind L P Jump to: navigation, search Name: China Lao Gaixian Wind L.P. Place: China Sector: Wind energy Product: China-based wind farm developer. References: China Lao...

  8. China Energy Primer

    SciTech Connect (OSTI)

    Ni, Chun Chun

    2009-11-16

    Based on extensive analysis of the 'China Energy Databook Version 7' (October 2008) this Primer for China's Energy Industry draws a broad picture of China's energy industry with the two goals of helping users read and interpret the data presented in the 'China Energy Databook' and understand the historical evolution of China's energy inustry. Primer provides comprehensive historical reviews of China's energy industry including its supply and demand, exports and imports, investments, environment, and most importantly, its complicated pricing system, a key element in the analysis of China's energy sector.

  9. NREL Signs Agreement With China's National Utility - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Signs Agreement With China's National Utility Scope of MOU Covers Coordination on Research Projects September 11, 2015 Representatives of the Energy Department's National Renewable Energy Laboratory (NREL) and China's State Grid Energy Research Institute today signed a first-ever memorandum of understanding between the two organizations. The State Grid Energy Research Institute (SGERI), located in Beijing, is a subsidiary of China's national utility, State Grid Corporation of China (SGCC).

  10. US-China Clean Energy Fora | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US-China Clean Energy Fora US-China Clean Energy Fora US-China Clean Energy Fora On May 26-27, 2010, U.S. Department of Energy Assistant Secretary David Sandalow co-hosted the inaugural U.S.-China Energy Efficiency Forum, the U.S.-China Renewable Energy Forum and the U.S.-China Advanced Biofuels Forum in Beijing with China's National Energy Administration Director General Zhang Guobao and National Development and Reform Commission Vice Chairman Zhang Xiaoqiang. These three fora were established

  11. Top 3 Takeaways from the Deputy Energy Secretary's Beijing Speech |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Takeaways from the Deputy Energy Secretary's Beijing Speech Top 3 Takeaways from the Deputy Energy Secretary's Beijing Speech April 14, 2015 - 12:27pm Addthis Deputy Energy Secretary Sherwood-Randall tours Microsoft's Beijing Campus with Commerce Secretary Penny Pritzker before delivering remarks. | Energy Department Photo. Deputy Energy Secretary Sherwood-Randall tours Microsoft's Beijing Campus with Commerce Secretary Penny Pritzker before delivering remarks. | Energy

  12. China-Climate Change Research Center | Open Energy Information

    Open Energy Info (EERE)

    China-Climate Change Research Center Jump to: navigation, search Name China-Climate Change Research Center AgencyCompany Organization ClimateWorks, Energy Foundation Sector...

  13. China Longyuan Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Co Ltd Jump to: navigation, search Name: China Longyuan Wind Power Co Ltd Place: China Sector: Wind energy Product: Wind farm development subsidiary of Longyuan...

  14. China Institute of Geo Environment Monitoring | Open Energy Informatio...

    Open Energy Info (EERE)

    Institute of Geo Environment Monitoring Jump to: navigation, search Name: China Institute of Geo-Environment Monitoring Place: China Sector: Geothermal energy Product: Chinese...

  15. China Energy Conservation Solar Energy Technologies CECS | Open...

    Open Energy Info (EERE)

    Conservation Solar Energy Technologies CECS Jump to: navigation, search Name: China Energy Conservation Solar Energy Technologies (CECS) Place: China Sector: Solar Product:...

  16. China Titans Energy Technology Group Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Titans Energy Technology Group Co Ltd Jump to: navigation, search Name: China Titans Energy Technology Group Co Ltd Place: Zhuhai, Guangdong Province, China Sector: Solar,...

  17. China Power International Shanghai Green CLP JV | Open Energy...

    Open Energy Info (EERE)

    Shanghai Green CLP JV Jump to: navigation, search Name: China Power International, Shanghai Green & CLP JV Place: Shanghai, Shanghai Municipality, China Sector: Wind energy...

  18. China Technology Solar Power Holdings Ltd | Open Energy Information

    Open Energy Info (EERE)

    Solar Power Holdings Ltd Jump to: navigation, search Name: China Technology Solar Power Holdings Ltd Place: Hong Kong Sector: Solar Product: China-based solar project developer,...

  19. China-GTZ Energy Programs | Open Energy Information

    Open Energy Info (EERE)

    Energy Programs Jump to: navigation, search Logo: China-GTZ Energy Programs Name China-GTZ Energy Programs AgencyCompany Organization GTZ Sector Energy Focus Area Energy...

  20. China SC Exact Equipment Co LTD | Open Energy Information

    Open Energy Info (EERE)

    SC Exact Equipment Co LTD Jump to: navigation, search Name: China SC Exact Equipment Co., LTD Place: Shenzhen, Guangdong Province, China Zip: 518125 Sector: Solar Product:...

  1. China Three Gorges Project Corporation CTGPC | Open Energy Information

    Open Energy Info (EERE)

    Three Gorges Project Corporation CTGPC Jump to: navigation, search Name: China Three Gorges Project Corporation (CTGPC) Place: Yichang, Hubei Province, China Zip: 443002 Sector:...

  2. China Wind Systems formerly Green Power Malex | Open Energy Informatio...

    Open Energy Info (EERE)

    formerly Green Power Malex Jump to: navigation, search Name: China Wind Systems (formerly Green PowerMalex) Place: Wuxi, Jiangsu Province, China Sector: Wind energy Product:...

  3. China Power International New Energy Holding Ltd | Open Energy...

    Open Energy Info (EERE)

    New Energy Holding Ltd Jump to: navigation, search Name: China Power International New Energy Holding Ltd Place: Shanghai Municipality, China Zip: 200052 Sector: Biomass, Hydro,...

  4. US-China Renewable Energy Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US-China Renewable Energy Forum US-China Renewable Energy Forum US-China Renewable Energy Forum The first-ever U.S.-China Renewable Energy Forum was held on May 26-27, 2010 in Beijing, concurrent with the U.S.-China Strategic and Economic Dialogue and with parallel forums on energy efficiency and biofuels. The Forum was jointly hosted by David Sandalow, U.S. Department of Energy Assistant Secretary for Policy and International Affairs, and Zhang Guobao, Administrator of China's National Energy

  5. U.S.-China Clean Energy Fora | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    China Clean Energy Fora U.S.-China Clean Energy Fora May 26, 2010 - 3:02pm Addthis On May 26-27, 2010, U.S. Department of Energy Assistant Secretary David Sandalow co-hosted the U.S.-China Energy Efficiency Forum, the U.S.-China Renewable Energy Forum and the U.S.-China Advanced Biofuels Forum in Beijing with China's National Energy Administration Director General Zhang Guobao and National Development and Reform Commission Vice Chairman Zhang Xiaoqiang. These three fora were established under

  6. Pan China Puyang Biomass CHP Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Puyang Biomass CHP Co Ltd Jump to: navigation, search Name: Pan-China(Puyang) Biomass CHP Co., Ltd. Place: Puyang, Henan Province, China Zip: 455000 Sector: Biomass Product:...

  7. Sinocome Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Sinocome Group Place: Beijing Municipality, China Sector: Solar Product: A Chinese high tech group with business in solar PV sector...

  8. Readout on Secretary Chu's China Meetings on Clean Energy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy on Secretary Chu's China Meetings on Clean Energy Readout on Secretary Chu's China Meetings on Clean Energy July 15, 2009 - 12:00am Addthis BEIJING, CHINA - Secretary Chu is meeting with a series of Chinese officials during this week's trip to China. We will be providing readouts on these meetings whenever possible. The first update appears below from Dan Leistikow, Director of Public Affairs, U.S. Department of Energy. Secretary Chu, joined by Assistant Secretary for Policy and

  9. Beijing Yuanshen Energy Saving Technology Company Ltd | Open...

    Open Energy Info (EERE)

    Beijing-based organisation providing energy audits and designing energy-saving innovation programmes. Coordinates: 39.90601, 116.387909 Show Map Loading map......

  10. Beijing Anhua United Energy Technology Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Product: The company is mainly engaged in the development, manufacture and sale of lithium-iron, lithium ion rechargeable batteries. References: Beijing Anhua United Energy...

  11. Beijing Energy Saving Technical Service Centre | Open Energy...

    Open Energy Info (EERE)

    established in 1982 to advice individuals and companies about adopting energy saving methods. References: Beijing Energy Saving Technical Service Centre1 This article is a...

  12. Beijing Shenwu Thermal Energy Technology Co Ltd BSTET | Open...

    Open Energy Info (EERE)

    highly efficient, energy saving and low pollution combustion technology, such as WDH serial gas atomization burners. References: Beijing Shenwu Thermal Energy Technology Co Ltd...

  13. Beijing Jingneng Energy Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    x.php?titleBeijingJingnengEnergyTechnologyCoLtd&oldid775548" Feedback Contact needs updating Image needs updating Reference needed Missing content Broken link Other...

  14. Shengshi Xinyuan Beijing Technology Development Co Ltd | Open...

    Open Energy Info (EERE)

    hengshiXinyuanBeijingTechnologyDevelopmentCoLtd&oldid785126" Feedback Contact needs updating Image needs updating Reference needed Missing content Broken link Other...

  15. Guoneng Fengshen Beijing New Energy Technology | Open Energy...

    Open Energy Info (EERE)

    ?titleGuonengFengshenBeijingNewEnergyTechnology&oldid780902" Feedback Contact needs updating Image needs updating Reference needed Missing content Broken link Other...

  16. Shengguo Tongyuan Beijing Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd" Retrieved from "http:en.openei.orgwindex.php?titleShengguoTongyuanBeijingTechnologyCoLtd&oldid785110" Feedback Contact needs updating Image needs updating...

  17. U.S. and China Announce Cooperation on FutureGen and Sign Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protocol at U.S.-China Strategic Economic Dialogue | Department of Energy Announce Cooperation on FutureGen and Sign Energy Efficiency Protocol at U.S.-China Strategic Economic Dialogue U.S. and China Announce Cooperation on FutureGen and Sign Energy Efficiency Protocol at U.S.-China Strategic Economic Dialogue December 15, 2006 - 9:46am Addthis BEIJING, CHINA - The United States and China today announced that China will join the Government Steering Committee of the FutureGen project making

  18. Sector 9

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sector 9 About Science and Research Beamlines Operations and Schedule Safety Search APS ... Search Argonne Home > Advanced Photon Source > Contacts Advisory Committee Beamlines...

  19. China Innovation Investment Limited | Open Energy Information

    Open Energy Info (EERE)

    Innovation Investment Limited Jump to: navigation, search Name: China Innovation Investment Limited Place: Hong Kong Sector: Solar Product: Hong Kong-listed alternative energy...

  20. China Technology Development Group Corporation | Open Energy...

    Open Energy Info (EERE)

    Development Group Corporation Jump to: navigation, search Name: China Technology Development Group Corporation Place: Hong Kong, Hong Kong Sector: Solar Product: Chinese...

  1. HydroChina ZhongNan Engineering Corp | Open Energy Information

    Open Energy Info (EERE)

    ZhongNan Engineering Corp Jump to: navigation, search Name: HydroChina ZhongNan Engineering Corp Place: Hunan Province, China Sector: Hydro, Wind energy Product: Hunan...

  2. China Tong Liao Baolong New Energy Ltd CTB | Open Energy Information

    Open Energy Info (EERE)

    Tong Liao Baolong New Energy Ltd CTB Jump to: navigation, search Name: China Tong Liao Baolong New Energy Ltd (CTB) Place: Tongliao, Inner Mongolia Autonomous Region, China Sector:...

  3. Industrial sector energy conservation programs in the People`s Republic of China during the seventh five-year plan (1986--1990)

    SciTech Connect (OSTI)

    Liu Zhiping; Sinton, J.E.; Yang Fuqiang; Levine, M.D.; Ting, M.K.

    1994-09-01

    The impetus at the national level to invest in energy conservation is quite strong and has long been reflected not only in official pronouncements, but also in the investments and organizational activities of the Chinese government. In the early 1980s the central government began a program of direct investments in industrial energy conservation that continues to the present. In addition, concurrently established governmental and quasi-governmental agencies have pursued conservation through administrative and educational measures. In Section 2 of this paper the authors outline the policies and institutions that supported China`s program of energy conservation investments in the Sixth and Seventh Five-Year Plans (FYPs) (1981--1985 and 1986--1990). In Section 3 they describe examples of the types of conservation projects pursued in four industrial subsectors: ferrous metals manufacturing; non-ferrous metals mining and manufacturing; chemicals manufacturing; and building materials manufacturing. Section 4 presents a simple methodology for comparing the costs of energy conservation to those of energy supply. Further discussion points out the applicability and limitations of this methodology to State Planning Commission published statistical material on the overall results of energy conservation investments. Though problematic, such analysis indicates that energy conservation investments were probably substantially cheaper than investments in equivalent energy supply would have been. They end with a discussion of some of the difficulties encountered in carrying out the conservation investment programs.

  4. Nottingham Beijing Technology Ltd | Open Energy Information

    Open Energy Info (EERE)

    Municipality, China Zip: 100013 Product: String representation "Nottingham Tech ... ame brightness." is too long. Coordinates: 39.90601, 116.387909 Show Map Loading map......

  5. China WindPower Jilin Power Share JV | Open Energy Information

    Open Energy Info (EERE)

    WindPower Jilin Power Share JV Jump to: navigation, search Name: China WindPower & Jilin Power Share JV Place: Jilin Province, China Sector: Wind energy Product: China-based...

  6. Advanced Technology and Materials Co Ltd AT M | Open Energy Informatio...

    Open Energy Info (EERE)

    and Materials Co Ltd AT M Jump to: navigation, search Name: Advanced Technology and Materials Co Ltd (AT&M) Place: Beijing, Beijing Municipality, China Zip: 100081 Sector: Solar...

  7. China Solar Clean Energy Solutions Inc formerly Deli Solar USA...

    Open Energy Info (EERE)

    Inc formerly Deli Solar USA Inc Jump to: navigation, search Name: China Solar & Clean Energy Solutions Inc ( formerly Deli Solar (USA) Inc) Place: Connecticut Zip: 6039 Sector:...

  8. China-DLR Resource Assessments | Open Energy Information

    Open Energy Info (EERE)

    DLR Resource Assessments Jump to: navigation, search Name China-DLR Resource Assessments AgencyCompany Organization German Aerospace Center (DLR) Sector Energy Focus Area...

  9. China-Energy Intensity Reduction Strategy | Open Energy Information

    Open Energy Info (EERE)

    Intensity Reduction Strategy Jump to: navigation, search Name China-ESMAP Low Carbon Growth Country Studies Program AgencyCompany Organization Energy Sector Management Assistance...

  10. China Solar Energy Holdings Ltd | Open Energy Information

    Open Energy Info (EERE)

    Holdings Ltd Jump to: navigation, search Name: China Solar Energy Holdings Ltd Place: Wan Chai, Hong Kong Sector: Solar Product: Supplies turnkey manufacturing lines for the...

  11. Guodian Technology Environment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Place: Beijing Municipality, China Sector: Solar, Wind energy Product: A environmental protection technology and engineering company, diversifying into wind and...

  12. Easy Carbon Consultancy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Carbon Consultancy Co Ltd Jump to: navigation, search Name: Easy Carbon Consultancy Co Ltd Place: Chaoyang District, Beijing Municipality, China Zip: 100022 Sector: Carbon Product:...

  13. Asia Wind Group Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Group Ltd Jump to: navigation, search Name: Asia Wind Group Ltd Place: Beijing Municipality, China Zip: 100085 Sector: Wind energy Product: Investment company focused on the...

  14. Jing Jin Electric JJE | Open Energy Information

    Open Energy Info (EERE)

    Beijing Municipality, China Sector: Vehicles Product: Develops and manufactures high-performance electric motors and electric drive components for hybrid electric vehicles (HEV),...

  15. Tsinghua Solar New Energy Rizhao Techonology Incubation Centre...

    Open Energy Info (EERE)

    Incubation Centre Place: Rizhao, Shandong Province, China Zip: 276800 Sector: Solar, Wind energy Product: The incubator set up by Beijing Tsinghua Solar with focus on solar,...

  16. CECIC Wind Power Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Investment Co Ltd Jump to: navigation, search Name: CECIC Wind Power Investment Co Ltd Place: Beijing Municipality, China Zip: 100037 Sector: Wind energy Product: A subsidiary of...

  17. Nanjing Dalu Industry Investment Group | Open Energy Information

    Open Energy Info (EERE)

    Dalu Industry Investment Group Jump to: navigation, search Name: Nanjing Dalu Industry Investment Group Place: Beijing Municipality, China Zip: 100055 Sector: Solar Product:...

  18. JYT Corporation | Open Energy Information

    Open Energy Info (EERE)

    JYT Corporation Place: Beijing Municipality, China Zip: 101113 Sector: Solar Product: Chinese manufacturer of solar and semiconductor equipment; supplier of mono and multi ingot...

  19. Mingyang | Open Energy Information

    Open Energy Info (EERE)

    search Name: Mingyang Place: Beijing, China Sector: Wind energy Product: Wind Turbines Coordinates: 39.904667, 116.408198 Show Map Loading map... "minzoom":false,"mapp...

  20. Prudent Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    China Zip: 100084 Sector: Renewable Energy Product: Beijing-based developer of energy storage units designed for use with renewable energy generators such as turbines...

  1. Zhangbei Guotou Wind Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Zhangbei Guotou Wind Power Plant Jump to: navigation, search Name: Zhangbei Guotou Wind Power Plant Place: Beijing Municipality, China Zip: 100037 Sector: Wind energy Product: A...

  2. Sany Electric | Open Energy Information

    Open Energy Info (EERE)

    Municipality, China Zip: 102206 Sector: Wind energy Product: Beijing-based wind turbine components manufacturer. Coordinates: 39.90601, 116.387909 Show Map Loading...

  3. Guodian Longyuan Power Technology Engineering Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Longyuan Power Technology Engineering Co Ltd Jump to: navigation, search Name: Guodian Longyuan Power Technology Engineering Co Ltd Place: Beijing Municipality, China Sector:...

  4. Guofu Bioenergy Science Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Guofu Bioenergy Science Technology Co Ltd Jump to: navigation, search Name: Guofu Bioenergy Science & Technology Co Ltd Place: Beijing Municipality, China Zip: 100101 Sector:...

  5. Accord Global Environment Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Accord Global Environment Technology Co Ltd Place: Beijing, China Zip: 100022 Sector: Services Product: Accord Global Environmental Technology Co Ltd (AGET) is an independent...

  6. Deputy Secretary Sherwood-Randall Meets Key Government Officials in Beijing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Meets Key Government Officials in Beijing Deputy Secretary Sherwood-Randall Meets Key Government Officials in Beijing April 15, 2015 - 2:01pm Addthis Deputy Secretary Sherwood-Randall and Secretary Pritzker pose with the trade mission delegation in Beijing. Deputy Secretary Sherwood-Randall and Secretary Pritzker pose with the trade mission delegation in Beijing. Maisah Khan Maisah Khan Special Advisor, Office of International Affairs How can I participate? Follow

  7. Coal in China

    SciTech Connect (OSTI)

    Minchener, A.J.

    2005-07-01

    The article gives an overview of the production and use of coal in China, for power generation and in other sectors. Coal use for power generation was 850 million tonnes in 2003 and 800 million tonnes in the non-power sector. The majority of power will continue to be produced from coal, with a trend towards new larger pulverised coal fired units and introduction of circulating fluidised bed combustors. Stricter regulations are forcing introduction of improved pollution control technologies. It seems likely that China will need international finance to supplement private and state investment to carry out a programme to develop and apply clean coal technologies. The author concludes that there is evidence of a market economy being established but there is a need to resolve inconsistencies with the planned aspects of the economy and that additional policies are needed in certain sectors to achieve sustainable development. 1 ref., 2 figs., 2 tabs.

  8. Compressed natural gas vehicles motoring towards a green Beijing

    SciTech Connect (OSTI)

    Yang, Ming; Kraft-Oliver, T.; Guo Xiao Yan

    1996-12-31

    This paper first describes the state-of-the-art of compressed natural gas (CNG) technologies and evaluates the market prospects for CNG vehicles in Beijing. An analysis of the natural gas resource supply for fleet vehicles follows. The costs and benefits of establishing natural gas filling stations and promoting the development of vehicle technology are evaluated. The quantity of GHG reduction is calculated. The objective of the paper is to provide information of transfer niche of CNG vehicle and equipment production in Beijing. This paper argues that the development of CNG vehicles is a cost-effective strategy for mitigating both air pollution and GHG.

  9. China energy databook

    SciTech Connect (OSTI)

    Sinton, J.E.; Fridley, D.G.; Levine, M.D.

    1996-06-01

    The response to the first edition of the China Energy Databook was overwhelmingly positive, and has encouraged us to issue this revised, updated, and expanded edition. It has been a natural counterpart to the Energy Analysis Program`s continuing program of collaborative research with the Energy Research Institute. No other current reference volume dedicated to China`s energy system contains a similar variety and quality of material. We have revised some of the categories and data that appeared in the old volume. The adjustment for energy consumption in the transportation sector, for instance, has been slightly changed to include some fuel use in the commercial sector, which was previously left out. As another example, natural gas consumption statistics in the first edition greatly overstated electric utility use; we have rectified that error. Some tables have changed as statistical collection and reporting practices change in China. Figures on gross output value by sector stop with 1992, and economic output in subsequent years is covered by various measures of value-added, such as national income and gross domestic product.

  10. China energy databook

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B.; Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi

    1992-12-31

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first became involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China`s State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industrics morc energy-efficient, preparing historical reviews of cncrgy supply and demand in the People`s Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. Preparing this volume confronted us with a number of difficult issues. The most frustrating usually involved the different approaches to sectoral divisions taken in China and the US. For instance, fuel used by motor vehicles belonging to industrial enterprises is counted as industrial consumption in China; only fuel use by vehicles belonging to enterprises engaged primarily in transportation is countcd as transportation use. The estimated adjustment to count all fuel use by vehicles as transportation energy use is quite large, since a large fraction of motor vehicles belong to industrial enterprises. Similarly, Chinese industrial investment figures are skewed compared to those collected in the US because a large portion of enterprises` investment funds is directed towards providing housing and social services for workers and their families.

  11. China Solar Power CSP aka General Solar Power Yantai Co Ltd ...

    Open Energy Info (EERE)

    Power CSP aka General Solar Power Yantai Co Ltd Jump to: navigation, search Name: China Solar Power (CSP) (aka General Solar Power Yantai Co Ltd) Place: China Sector: Solar...

  12. U.S. China Carbon Capture and Storage Development Project at...

    Office of Scientific and Technical Information (OSTI)

    and planning for CCS projects and to describe and quantify the geologic, environmental, and economic challenges to successful development of large-scale CCS in China's coal sector. ...

  13. China-IEA Network of Expertise in Energy Technology | Open Energy...

    Open Energy Info (EERE)

    IEA Network of Expertise in Energy Technology Jump to: navigation, search Name China-IEA Cooperation AgencyCompany Organization International Energy Agency Sector Energy Focus...

  14. Chu Announces Joint U.S.-China Building Efficiency MOU | Department of

    Energy Savers [EERE]

    Energy Announces Joint U.S.-China Building Efficiency MOU Chu Announces Joint U.S.-China Building Efficiency MOU July 16, 2009 - 12:00am Addthis BEIJING, CHINA - After touring the "America House," a U.S. designed demonstration of cutting edge "zero energy" building technology, U.S. Energy Secretary Steven Chu today announced a new agreement between the U.S. Department of Energy (DOE) and the Chinese Ministry of Urban-Rural Development (MOHURD) to foster collaboration and

  15. China energy databook

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B. ); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi )

    1992-01-01

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first became involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China's State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industrics morc energy-efficient, preparing historical reviews of cncrgy supply and demand in the People's Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. Preparing this volume confronted us with a number of difficult issues. The most frustrating usually involved the different approaches to sectoral divisions taken in China and the US. For instance, fuel used by motor vehicles belonging to industrial enterprises is counted as industrial consumption in China; only fuel use by vehicles belonging to enterprises engaged primarily in transportation is countcd as transportation use. The estimated adjustment to count all fuel use by vehicles as transportation energy use is quite large, since a large fraction of motor vehicles belong to industrial enterprises. Similarly, Chinese industrial investment figures are skewed compared to those collected in the US because a large portion of enterprises' investment funds is directed towards providing housing and social services for workers and their families.

  16. Office of China Renewable Energy Development Project REDP | Open...

    Open Energy Info (EERE)

    China Zip: 100044 Sector: Wind energy Product: The project aims to use state-of-the-art and cost-effective wind and PV technologies to supply electricity in an...

  17. Collaboration on Renewable Energy Standards, Testing, and Certification under the U.S. China Renewable Energy Partnership: Preprint

    SciTech Connect (OSTI)

    Wallace, W.; Kurtz, S.; Lin, W.

    2012-06-01

    During November 2009, the U.S. China Renewable Energy Partnership agreement was authorized in Beijing by Presidents Obama and Hu from the U.S. and China. One of the principle tasks under this new program is the collaboration of the U.S. and China on the topic of renewable energy standards, testing, and certification with an initial focus on solar PV and wind topics. This paper will describe and discuss the activities which have taken place under the bilateral collaboration to date.

  18. Commercial Sector Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  19. Top 3 Takeaways from the Deputy Energy Secretary's Beijing Speech...

    Broader source: Energy.gov (indexed) [DOE]

    in the clean energy space can help create jobs, drive economic growth and address climate change -- both in China and in the United States. The Deputy Secretary made three...

  20. China Energy Outlook

    U.S. Energy Information Administration (EIA) Indexed Site

    ... in Beijing; a Member of the World Economic Forum's Global Agenda Council on Energy Security, an Editorial Board member of the Journal of World Energy Law and Business, a ...

  1. Chemical Sector Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACChemical Sector Analysis content top Chemical Supply Chain Analysis Posted by Admin on Mar 1, 2012 in | Comments 0 comments Chemical Supply Chain Analysis NISAC has developed a range of capabilities for analyzing the consequences of disruptions to the chemical manufacturing industry. Each capability provides a different but complementary perspective on the questions of interest-questions like Given an event, will the entire chemical sector be impacted or just parts? Which chemicals, plants,

  2. Hythane project by Hydrogen China Ltd and China Railway Construction...

    Open Energy Info (EERE)

    project by Hydrogen China Ltd and China Railway Construction Corporation Jump to: navigation, search Name: Hythane project by Hydrogen China Ltd and China Railway Construction...

  3. ECOtality China | Open Energy Information

    Open Energy Info (EERE)

    ECOtality China Jump to: navigation, search Name: ECOtality China Place: China Product: China-based manufacturer of electric vehicle charging systems. References: ECOtality...

  4. China's transportation energy consumption and CO2 emissions from a global perspective

    SciTech Connect (OSTI)

    Yin, Xiang; Chen, Wenying; Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Patel, Pralit L.; Yu, Sha; Kyle, G. Page

    2015-07-01

    ABSTRACT Rapidly growing energy demand from China's transportation sector in the last two decades have raised concerns over national energy security, local air pollution, and carbon dioxide (CO2) emissions, and there is broad consensus that China's transportation sector will continue to grow in the coming decades. This paper explores the future development of China's transportation sector in terms of service demands, final energy consumption, and CO2 emissions, and their interactions with global climate policy. This study develops a detailed China transportation energy model that is nested in an integrated assessment model—Global Change Assessment Model (GCAM)—to evaluate the long-term energy consumption and CO2 emissions of China's transportation sector from a global perspective. The analysis suggests that, without major policy intervention, future transportation energy consumption and CO2 emissions will continue to rapidly increase and the transportation sector will remain heavily reliant on fossil fuels. Although carbon price policies may significantly reduce the sector's energy consumption and CO2 emissions, the associated changes in service demands and modal split will be modest, particularly in the passenger transport sector. The analysis also suggests that it is more difficult to decarbonize the transportation sector than other sectors of the economy, primarily owing to its heavy reliance on petroleum products.

  5. All Solar PV | Open Energy Information

    Open Energy Info (EERE)

    Solar PV Jump to: navigation, search Logo: All Solar PV Name: All Solar PV Address: 1407-4-105 Century East,Daliushu Road Place: Beijing, China Sector: Solar Product: Solar Energy...

  6. Hope Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Name: Hope Solar Address: No.6-8 Hope Road Taihu Town Tongzhou Dist Place: Beijing, China Sector: Solar Product: Solar cells and power systems...

  7. Buildings Sector Working Group

    Gasoline and Diesel Fuel Update (EIA)

    July 22, 2013 AEO2014 Model Development For discussion purposes only Not for citation Overview Builldings Working Group Forrestal 2E-069 / July 22, 2013 2 * Residential projects - RECS update - Lighting model - Equipment, shell subsidies - ENERGY STAR benchmarking - Housing stock formation and decay * Commercial projects - Major end-use capacity factors - Hurdle rates - ENERGY STAR buildings * Both sectors - Consumer behavior workshop - Comparisons to STEO - AER  MER - Usual annual updates -

  8. FE-Funded Study Released on Key Factors Affecting China Shale...

    Energy Savers [EERE]

    The Chinese government gives priority to the development of China's shale gas sector to help fight air pollution and reduce reliance on natural gas imports; and The U.S. government ...

  9. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  10. Searching for Dark Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dark Sector Physics with MiniBooNE Georgia Karagiorgi, Columbia University On behalf of the MiniBooNE Collaboration 3 rd International Conference on New Frontiers in Physics August 6, 2014 MiniBooNE: Past & current highlights MiniBooNE, an accelerator-based neutrino experiment at Fermilab, has run for 10 years with neutrino and antineutrino beams, collecting data for ~2x10 21 POT, amounting to 100k's of neutrino interactions. It has been able to address the two-neutrino oscillation

  11. Offsite Source Recovery Program (OSRP) Workshop Module: Tianjin, China, July 16-July 17, 2012

    SciTech Connect (OSTI)

    Houlton, Robert J.

    2012-07-11

    Recovering and disposal of radioactive sources that are no longer in service in their intended capacity is an area of high concern Globally. A joint effort to recover and dispose of such sources was formed between the US Department of Energy and the Chinese Ministry of Environmental Protection (MEP), in preparation for the 2008 Beijing Olympics. LANL involvement in this agreement continues today under the DOE-Global Threat Reduction Initiative (GTRI) program. LANL will be presenting overview information on their Offsite Source Recovery (OSRP) and Source Disposal programs, in a workshop for the Ministry of Environmental Protection (MEP) at Tianjin, China, on July 16 and 17, 2012.

  12. ESCO Industry in China

    Broader source: Energy.gov [DOE]

    Information about the development, achievements, and functions of the China Energy Conservation project and ESCO.

  13. Energy Sector Cybersecurity Framework Implementation Guidance

    Broader source: Energy.gov (indexed) [DOE]

    FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of Contents...

  14. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies ...

  15. Energy Sector Market Analysis

    SciTech Connect (OSTI)

    Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

    2006-10-01

    This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

  16. Palcan China | Open Energy Information

    Open Energy Info (EERE)

    Palcan China Place: Shanghai, Shanghai Municipality, China Zip: 200000 Product: Joint venture to produce PEMFC stacks in China at low cost. Coordinates: 31.247709, 121.472618...

  17. Cross-sector Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  18. Sector Collaborative on Energy Efficiency

    SciTech Connect (OSTI)

    none,

    2008-06-01

    Helps stakeholders identify and act on cost-effective opportunities for expanding energy efficiency resources in the hospitality, retail, commercial real estate, grocery, and municipal sectors.

  19. Process Intensification - Chemical Sector Focus

    Energy Savers [EERE]

    Process Intensification - Chemical Sector Focus 1 Technology Assessment 2 Contents 3 1. Introduction ..................................................................................................................................................................... 1 4 2. Technology Assessment and Potential ................................................................................................................. 5 5 2.1 Chemical Industry Focus

  20. China Energy Group - Sustainable Growth Through EnergyEfficiency

    SciTech Connect (OSTI)

    Levine, Mark; Fridley, David; Lin, Jiang; Sinton, Jonathan; Zhou,Nan; Aden, Nathaniel; Huang, Joe; Price, Lynn; McKane, Aimee T.

    2006-03-20

    China is fueling its phenomenal economic growth with huge quantities of coal. The environmental consequences reach far beyond its borders--China is second only to the United States in greenhouse gas emissions. Expanding its supply of other energy sources, like nuclear power and imported oil, raises trade and security issues. Soaring electricity demand necessitates the construction of 40-70 GW of new capacity per year, creating sustained financing challenges. While daunting, the challenge of meeting China's energy needs presents a wealth of opportunities, particularly in meeting demand through improved energy efficiency and other clean energy technologies. The China Energy Group at the Lawrence Berkeley National Laboratory (LBNL) is committed to understanding these opportunities, and to exploring their implications for policy and business. We work collaboratively with energy researchers, suppliers, regulators, and consumers in China and elsewhere to: better understand the dynamics of energy use in China. Our Research Focus Encompasses Three Major Areas: Buildings, Industry, and Cross-Cutting Activities. Buildings--working to promote energy-efficient buildings and energy-efficient equipment used in buildings. Current work includes promoting the design and use of minimum energy efficiency standards and energy labeling for appliances, and assisting in the development and implementation of building codes for energy-efficient residential and commercial/public buildings. Past work has included a China Residential Energy Consumption Survey and a study of the health impacts of rural household energy use. Industry--understanding China's industrial sector, responsible for the majority of energy consumption in China. Current work includes benchmarking China's major energy-consuming industries to world best practice, examining energy efficiency trends in China's steel and cement industries, implementing voluntary energy efficiency agreements in various industries, and developing a multi-year program for standards and for optimizing the industrial motor systems in China. Past work has included a comprehensive study of China's oil refining sector. Cross-Cutting--analysis and research focused on multisector, policy, and long-term development issues. Current cross-cutting policy and analysis research includes work on government procurement programs; energy service companies; a national energy policy assessment including the National Energy Strategy released by the government in early 2005; energy efficiency policy; an analysis of past trends in energy consumption in China as well as of future scenarios; and our China Energy Databook accompanied by chapter summaries and analysis of recent trends.

  1. A Case Study of Urbanization Impact on Summer Precipitation in the Greater Beijing Metropolitan Area. Urban Heat Island Versus Aerosol Effects

    SciTech Connect (OSTI)

    Zhong, Shi; Qian, Yun; Zhao, Chun; Leung, Lai-Yung R.; Yang, Xiuqun

    2015-10-23

    Convection-resolving ensemble simulations using the WRF-Chem model coupled with a single-layer Urban Canopy Model (UCM) are conducted to investigate the individual and combined impacts of land use and anthropogenic pollutant emissions from urbanization on a heavy rainfall event in the Greater Beijing Metropolitan Area (GBMA) in China. The simulation with the urbanization effect included generally captures the spatial pattern and temporal variation of the rainfall event. An improvement of precipitation is found in the experiment including aerosol effect on both clouds and radiation. The expanded urban land cover and increased aerosols have an opposite effect on precipitation processes, with the latter playing a more dominant role, leading to suppressed convection and rainfall over the upstream (northwest) area, and enhanced convection and more precipitation in the downstream (southeast) region of the GBMA. In addition, the influence of aerosol indirect effect is found to overwhelm that of direct effect on precipitation in this rainfall event. Increased aerosols induce more cloud droplets with smaller size, which favors evaporative cooling and reduce updrafts and suppress convection over the upstream (northwest) region in the early stage of the rainfall event. As the rainfall system propagates southeastward, more latent heat is released due to the freezing of larger number of smaller cloud drops that are lofted above the freezing level, which is responsible for the increased updraft strength and convective invigoration over the downstream (southeast) area.

  2. Natcore China | Open Energy Information

    Open Energy Info (EERE)

    Natcore China Place: China Product: China-based JV formed to develop and manufacture PV cell coating equipment and materials. References: Natcore China1 This article is a stub....

  3. Prospects for the power sector in nine developing countries

    SciTech Connect (OSTI)

    Meyers, S.; Goldman, N.; Martin, N.; Friedmann, R.

    1993-04-01

    Based on information drawn primarily from official planning documents issued by national governments and/or utilities, the authors examined the outlook for the power sector in the year 2000 in nine countries: China, India, Indonesia, Thailand, the Philippines, South Korea, Taiwan, Argentina and Mexico. They found that the implicit rates of average annual growth of installed electric power capacity between 1991 and 2001 range from a low of 3.3% per year in Argentina to a high of 13.2% per year in Indonesia. In absolute terms, China and India account for the vast majority of the growth. The plans call for a shift in the generating mix towards coal in six of the countries, and continued strong reliance on coal in China and India. The use of natural gas is expected to increase substantially in a number of the countries. The historic movement away from oil continues, although some countries are maintaining dual-fuel capabilities. Plans call for considerable growth of nuclear power in South Korea and China and modest increases in India and Taiwan. The feasibility of the official plans varies among the countries. Lack of public capital is leading towards greater reliance on private sector participation in power projects in many of the countries. Environmental issues are becoming a more significant constraint than in the past, particularly in the case of large-scale hydropower projects. The financial and environmental constraints are leading to a rising interest in methods of improving the efficiency of electricity supply and end use. The scale of such activities is growing in most of the study countries.

  4. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    SciTech Connect (OSTI)

    G. Fridley, David; Zheng, Nina; T. Aden, Nathaniel

    2010-07-01

    After rapid growth in economic development and energy demand over the last three decades, China has undertaken energy efficiency improvement efforts to reduce its energy intensity under the 11th Five Year Plan (FYP). Since becoming the world's largest annual CO{sub 2} emitter in 2007, China has set reduction targets for energy and carbon intensities and committed to meeting 15% of its total 2020 energy demand with non-fossil fuel. Despite having achieved important savings in 11th FYP efficiency programs, rising per capita income and the continued economic importance of trade will drive demand for transport activity and fuel use. At the same time, an increasingly 'electrified' economy will drive rapid power demand growth. Greater analysis is therefore needed to understand the underlying drivers, possible trajectories and mitigation potential in the growing industrial, transport and power sectors. This study uses scenario analysis to understand the likely trajectory of China's energy and carbon emissions to 2030 in light of the current and planned portfolio of programs, policies and technology development and ongoing urbanization and demographic trends. It evaluates the potential impacts of alternative transportation and power sector development using two key scenarios, Continued Improvement Scenario (CIS) and Accelerated Improvement Scenario (AIS). CIS represents the most likely path of growth based on continuation of current policies and meeting announced targets and goals, including meeting planned appliance efficiency standard revisions, fuel economy standards, and industrial targets and moderate phase-out of subcritical coal-fired generation with additional non-fossil generation. AIS represents a more aggressive trajectory of accelerated improvement in energy intensity and decarbonized power and transport sectors. A range of sensitivity analysis and power technology scenarios are tested to evaluate the impact of additional actions such as carbon capture and sequestration (CCS) and integrated mine-mouth generation. The CIS and AIS results are also contextualized and compared to model scenarios in other published studies. The results of this study show that China's energy and CO{sub 2} emissions will not likely peak before 2030, although growth is expected to slow after 2020. Moreover, China will be able to meet its 2020 carbon intensity reduction target of 40 to 45% under both CIS and AIS, but only meet its 15% non-fossil fuel target by 2020 under AIS. Under both scenarios, efficiency remains a key resource and has the same, if not greater, mitigation potential as new technologies in transport and power sectors. In the transport sector, electrification will be closely linked the degree of decarbonization in the power sector and EV deployment has little or no impact on China's crude oil import demand. Rather, power generation improvements have the largest sector potential for overall emission mitigation while mine-mouth power generation and CCS have limited mitigation potential compared to fuel switching and efficiency improvements. Comparisons of this study's results with other published studies reveal that CIS and AIS are within the range of other national energy projections but alternative studies rely much more heavily on CCS for carbon reduction. The McKinsey study, in particular, has more optimistic assumptions for reductions in crude oil imports and coal demand in its abatement scenario and has much higher gasoline reduction potential for the same level of EV deployment. Despite these differences, this study's scenario analysis of both transport and power sectors illustrate the necessity for continued efficiency improvements and aggressive power sector decarbonization in flattening China's CO{sub 2} emissions.

  5. Comparison of Triton SODAR Data to Meteorological Tower Wind Measurement Data in Hebei Province, China

    SciTech Connect (OSTI)

    Yuechun, Y.; Jixue, W.; Hongfang, W.; Guimin, L.; Bolin, Y.; Scott, G.; Elliott, D.; Kline, D.

    2012-01-01

    With the increased interest in remote sensing of wind information in recent years, it is important to determine the reliability and accuracy of new wind measurement technologies if they are to replace or supplement conventional tower-based measurements. In view of this, HydroChina Corporation and the United States National Renewable Energy Laboratory (NREL) conducted a comparative test near a wind farm in Hebei Province, China. We present the results of an analysis characterizing the measurement performance of a state-of-the-art Sound Detection and Ranging (sodar) device when compared to a traditional tower measurement program. NREL performed the initial analysis of a three-month period and sent the results to HydroChina. When another month of data became available, HydroChina and their consultant Beijing Millenium Engineering Software (MLN) repeated NREL's analysis on the complete data set, also adding sensitivity analysis for temperature, humidity, and wind speed (Section 6). This report presents the results of HydroChina's final analysis of the four-month period.

  6. China Photoelectricity Group | Open Energy Information

    Open Energy Info (EERE)

    Photoelectricity Group Jump to: navigation, search Name: China Photoelectricity Group Place: China Product: A PV cell maker in China. References: China Photoelectricity Group1...

  7. Nature Elements Capital | Open Energy Information

    Open Energy Info (EERE)

    Capital Jump to: navigation, search Name: Nature Elements Capital Place: Beijing, Beijing Municipality, China Zip: 100125 Product: Beijing-based private equity firm investing in...

  8. WINDExchange: Wind Energy Market Sectors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Wind Energy Market Sectors U.S. power plants generate electricity for homes, factories, and businesses from a variety of resources, including coal, hydro, natural gas, nuclear, petroleum, and (non-hydro) renewable resources such as wind and solar energy. This power generation mix varies significantly across the country depending on

  9. China Energy and Emissions Paths to 2030

    SciTech Connect (OSTI)

    Fridley, David; Zheng, Nina; Zhou, Nan; Ke, Jing; Hasanbeigi, Ali; Morrow, Bill; Price, Lynn

    2011-01-14

    After over two decades of staggering economic growth and soaring energy demand, China has started taking serious actions to reduce its economic energy and carbon intensity by setting short and medium-term intensity reduction targets, renewable generation targets and various supporting policies and programs. In better understanding how further policies and actions can be taken to shape China's future energy and emissions trajectory, it is important to first identify where the largest opportunities for efficiency gains and emission reduction lie from sectoral and end-use perspectives. Besides contextualizing China's progress towards reaching the highest possible efficiency levels through the adoption of the most advanced technologies from a bottom-up perspective, the actual economic costs and benefits of adopting efficiency measures are also assessed in this study. This study presents two modeling methodologies that evaluate both the technical and economic potential of raising China's efficiency levels to the technical maximum across sectors and the subsequent carbon and energy emission implications through 2030. The technical savings potential by efficiency measure and remaining gap for improvements are identified by comparing a reference scenario in which China continues the current pace of with a Max Tech scenario in which the highest technically feasible efficiencies and advanced technologies are adopted irrespective of costs. In addition, from an economic perspective, a cost analysis of selected measures in the key industries of cement and iron and steel help quantify the actual costs and benefits of achieving the highest efficiency levels through the development of cost of conserved energy curves for the sectors. The results of this study show that total annual energy savings potential of over one billion tonne of coal equivalent exists beyond the expected reference pathway under Max Tech pathway in 2030. CO2 emissions will also peak earlier under Max Tech, though the 2020s is a likely turning point for both emission trajectories. Both emission pathways must meet all announced and planned policies, targets and non-fossil generation targets, or an even wider efficiency gap will exist. The savings potential under Max Tech varies by sector, but the industrial sector appears to hold the largest energy savings and emission reduction potential. The primary source of savings is from electricity rather than fuel, and electricity savings are magnified by power sector decarbonization through increasing renewable generation and coal generation efficiency improvement. In order to achieve the maximum energy savings and emission reduction potential, efficiency improvements and technology switching must be undertaken across demand sectors as well as in the growing power sector. From an economic perspective, the cost of conserved energy analysis indicates that nearly all measures for the iron and steel and cement industry are cost-effective. All 23 efficiency measures analyzed for the cement industry are cost-effective, with combined CO2 emission reduction potential of 448 Mt CO2. All of the electricity savings measures in the iron and steel industry are cost-effective, but the cost-effective savings potential for fuel savings measures is slightly lower than total technical savings potential. The total potential savings from these measures confirm the magnitude of savings in the scenario models, and illustrate the remaining efficiency gap in the cement and iron and steel industries.

  10. Federal Sector Renewable Energy Project Implementation: ""What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by Robert...

  11. Technologies for Climate Change Mitigation: Transport Sector...

    Open Energy Info (EERE)

    Technologies for Climate Change Mitigation: Transport Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technologies for Climate Change Mitigation: Transport Sector...

  12. Transitioning the Transportation Sector: Exploring the Intersection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Transitioning the Transportation Sector: Exploring the Intersection of ...

  13. Property:DeploymentSector | Open Energy Information

    Open Energy Info (EERE)

    search Property Name DeploymentSector Property Type String Description Depolyment Sector as used in cleanenergysolutions.org Allows the following values: Commercial...

  14. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect (OSTI)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

  15. AMF Deployment, Shouxian, China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    China Shouxian Deployment AMF Home Shouxian Home Data Plots and Baseline Instruments Experiment Planning Proposal Science Plan, (PDF, 1,257K) Outreach Fact Sheets English Version...

  16. Developments in lithium-ion battery technology in the Peoples Republic of China.

    SciTech Connect (OSTI)

    Patil, P. G.; Energy Systems

    2008-02-28

    Argonne National Laboratory prepared this report, under the sponsorship of the Office of Vehicle Technologies (OVT) of the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy, for the Vehicles Technologies Team. The information in the report is based on the author's visit to Beijing; Tianjin; and Shanghai, China, to meet with representatives from several organizations (listed in Appendix A) developing and manufacturing lithium-ion battery technology for cell phones and electronics, electric bikes, and electric and hybrid vehicle applications. The purpose of the visit was to assess the status of lithium-ion battery technology in China and to determine if lithium-ion batteries produced in China are available for benchmarking in the United States. With benchmarking, DOE and the U.S. battery development industry would be able to understand the status of the battery technology, which would enable the industry to formulate a long-term research and development program. This report also describes the state of lithium-ion battery technology in the United States, provides information on joint ventures, and includes information on government incentives and policies in the Peoples Republic of China (PRC).

  17. China power - thermal coal and clean coal technology export. Topical report

    SciTech Connect (OSTI)

    Binsheng Li

    1996-12-31

    China is the world`s fourth largest electric power producer, and is expected to surpass Japan within the next two years to become the third largest power producer. During the past 15 years, China`s total electricity generation more than tripled, increasing from about 300 TWh to about 1,000 TWh. Total installed generating capacity grew at an average of 8.2 percent per year, increasing from 66 to 214 GW. The share of China`s installed capacity in Asia increased from 21 to 31 percent. The Chinese government plans to continue China`s rapid growth rate in the power sector. Total installed capacity is planned to reach 300 GW by 2000, which will generate 1,400 TWh of electricity per year. China`s long-term power sector development is subject to great uncertainty. Under the middle scenario, total capacity is expected to reach 700 GW by 2015, with annual generation of 3,330 TWh. Under the low and high scenarios, total capacity will reach 527-1,005 GW by 2015. The high scenario representing possible demand. To achieve this ambitious scenario, dramatic policy changes in favor of power development are required; however, there is no evidence that such policy changes will occur at this stage. Even under the high scenario, China`s per capita annual electricity consumption would be only 3,000 kWh by 2015, less than half of the present per capita consumption for OECD countries. Under the low scenario, electricity shortages will seriously curb economic growth.

  18. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.; Zhou, Nan

    2009-05-18

    The time when energy-related carbon emissions come overwhelmingly from developed countries is coming to a close. China has already overtaken the United States as the world's leading emitter of greenhouse gas emissions. The economic growth that China has experienced is not expected to slow down significantly in the long term, which implies continued massive growth in energy demand. This paper draws on the extensive expertise from the China Energy Group at LBNL on forecasting energy consumption in China, but adds to it by exploring the dynamics of demand growth for electricity in the residential sector -- and the realistic potential for coping with it through efficiency. This paper forecasts ownership growth of each product using econometric modeling, in combination with historical trends in China. The products considered (refrigerators, air conditioners, fans, washing machines, lighting, standby power, space heaters, and water heating) account for 90percent of household electricity consumption in China. Using this method, we determine the trend and dynamics of demandgrowth and its dependence on macroeconomic drivers at a level of detail not accessible by models of a more aggregate nature. In addition, we present scenarios for reducing residential consumption through efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, thus allowing for a technologically realistic assessment of efficiency opportunities specifically in the Chinese context.

  19. Secretaries Chu and Locke to Travel to China Next Week | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Locke to Travel to China Next Week Secretaries Chu and Locke to Travel to China Next Week July 6, 2009 - 12:00am Addthis WASHINGTON -- Energy Secretary Steven Chu and Commerce Secretary Gary Locke will travel to China from July 14 to 17. The two secretaries will highlight the tremendous potential for mutually beneficial relationships in the clean energy sector. "Clean energy will drive the economy of the future, both in the United States and around the world," Chu said.

  20. Water Impacts of the Electricity Sector (Presentation)

    SciTech Connect (OSTI)

    Macknick, J.

    2012-06-01

    This presentation discusses the water impacts of the electricity sector. Nationally, the electricity sector is a major end-user of water. Water issues affect power plants throughout the nation.

  1. Working with the Real Estate Sector

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Workforce Peer Exchange Call: Working with the Real Estate Sector, Call Slides and Discussion Summary, March 1, 2012. This call discussed effective strategies for working with the real estate sector.

  2. Timing Carbon Ltd | Open Energy Information

    Open Energy Info (EERE)

    Timing Carbon Ltd Jump to: navigation, search Name: Timing Carbon Ltd Place: Beijing, Beijing Municipality, China Zip: 100022 Product: UK registered, China based CDM and voluntary...

  3. Camco Ventures formerly ClearWorld Energy Ventures | Open Energy...

    Open Energy Info (EERE)

    Beijing, Beijing Municipality, China Zip: 100027 Product: China-based venture investment arm of Camco focusing in the clean technology market. Coordinates: 39.90601, 116.387909...

  4. Secretary of Energy Samuel Bodman Announces New Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bodman Announces New Department of Energy Office in Beijing, China Secretary of Energy Samuel Bodman Announces New Department of Energy Office in Beijing, China June 30, 2005 -...

  5. Multi-Sector General Permit (MSGP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MSGP Multi-Sector General Permit (MSGP) The Multi-Sector General Permit authorizes the discharge of stormwater associated with industrial activity. What's New Documents submitted to EPRR in last 30 Days TBD What is the Multi-Sector General Permit? Storm water discharges from EPA specified industrial activities are regulated under the National Pollutant Discharge Elimination System (NPDES) Multi-Sector General Permit (MSGP). LANL regulated industrial activities include: Metal fabrication Power

  6. SEP Special Projects Report: Buildings Sector

    SciTech Connect (OSTI)

    2009-01-18

    The buildings section of this Sharing Success document describes SEP special projects in the buildings sector including funding.

  7. Advanced Vehicle Electrification & Transportation Sector Electrification |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt071_vss_cesiel_2011_o.pdf More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid

  8. Manufacturing Energy and Carbon Footprint - Sector: Computer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computers, Electronics and Electrical Equipment (NAICS 334, 335) Process Energy ... Carbon Footprint Sector: Computers, Electronics and Electrical Equipment (NAICS 334, ...

  9. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  10. Accelerating Investments in the Geothermal Sector, Indonesia...

    Open Energy Info (EERE)

    Accelerating Investments in the Geothermal Sector, Indonesia (Presentation) Author Paul Brophy Conference World Geothermal Energy Summit; Jakarta, Indonesia; 20120706...

  11. Inventory of China's Energy-Related CO2 Emissions in 2008

    SciTech Connect (OSTI)

    Fridley, David; Zheng, Nina; Qin, Yining

    2011-03-31

    Although China became the world's largest emitter of energy-related CO{sub 2} emissions in 2007, China does not publish annual estimates of CO{sub 2} emissions and most published estimates of China's emissions have been done by other international organizations. Undertaken at the request of the Energy Information Administration (EIA) of the US Department of Energy, this study examines the feasibility of applying the EIA emissions inventory methodology to estimate China's emissions from published Chinese data. Besides serving as a proof of concept, this study also helps develop a consistent and transparent method for estimating China's CO{sub 2} emissions using an Excel model and identified China-specific data issues and areas for improvement. This study takes a core set of data from the energy balances published in the China Energy Statistical Yearbook 2009 and China Petrochemical Corporation Yearbook 2009 and applies the EIA's eight-step methodology to estimate China's 2008 CO{sub 2} emissions. First, China's primary and secondary fuel types and consumption by end use are determined with slight discrepancies identified between the two data sources and inconsistencies in product categorization with the EIA. Second, energy consumption data are adjusted to eliminate double counting in the four potential areas identified by EIA; consumption data from China's Special Administrative Regions are not included. Physical fuel units are then converted to energy equivalents using China's standard energy measure of coal equivalent (1 kilogram = 29.27 MJ) and IPCC carbon emissions coefficients are used to calculate each fuel's carbon content. Next, carbon sequestration is estimated following EIA conventions for other petroleum products and non-energy use of secondary fuels. Emissions from international bunker fuels are also subtracted under the 'reference' calculation of estimating apparent energy consumption by fuel type and the 'sectoral' calculation of summing emissions across end-use sectors. Adjustments for the China-specific conventions of reporting foreign bunkers and domestic bunkers fueling abroad are made following IPCC definitions of international bunkers and EIA reporting conventions, while the sequestration of carbon in carbon steel is included as an additional adjustment. Under the sectoral approach, fuel consumption of bunkers and other transformation losses as well as gasoline consumption are reallocated to conform to EIA sectoral reporting conventions. To the extent possible, this study relies on official energy data from primary sources. A limited number of secondary sources were consulted to provide insight into the nature of consumption of some products and to guide the analysis of carbon sequestered in steel. Beyond these, however, the study avoided trying to estimate figures where directly unavailable, such as natural gas flaring. As a result, the basic calculations should be repeatable for other years with the core set of data from National Bureau of Statistics and Sinopec (or a similarly authoritative source of oil product data). This study estimates China's total energy-related CO{sub 2} emissions in 2008 to be 6666 Mt CO{sub 2}, including 234.6 Mt of non-fuel CO{sub 2} emissions and 154 Mt of sequestered CO{sub 2}. Bunker fuel emissions in 2008 totaled 15.9 Mt CO{sub 2}, but this figure is underestimated because fuel use by Chinese ship and planes for international transportation and military bunkers are not included. Of emissions related to energy consumption, 82% is from coal consumption, 15% from petroleum and 3% from natural gas. From the sectoral approach, industry had the largest share of China's energy-related CO{sub 2} emissions with 72%, followed by residential at 11%, transport and telecommunications at 8%, and the other four (commerce, agriculture, construction and other public) sectors having a combined share of 9%. Thermal electricity and (purchased) heat (to a lesser degree) are major sources of fuel consumption behind sectoral emissions, responsible for 2533 Mt CO2 and 321 Mt CO{sub 2}, respec

  12. Guangdong, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Companies in Guangdong, China BSL-Solar Big China Solar Energy Group China Guangdong Nuclear Power Company Guangdong Baolihua New Energy Corporation Zhuhai Oil Energy Science and...

  13. Guangzhou, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Province in China. Registered Energy Companies in Guangzhou, China China Guangdong Nuclear Power Company Guangdong Baolihua New Energy Corporation References http:...

  14. Category:China | Open Energy Information

    Open Energy Info (EERE)

    Corporation China's National Climate Change Programme China-2050 Wind Technology Roadmap J Jiangsu, China Jiangsu-California MOU N National Development and Reform Commission...

  15. REpower North China Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Ltd Jump to: navigation, search Name: REpower North (China) Ltd Place: Baotou, Inner Mongolia Autonomous Region, China Zip: 14033 Product: Joint venture to manufacture 2MW...

  16. China Gengsheng Minerals Inc | Open Energy Information

    Open Energy Info (EERE)

    Gengsheng Minerals Inc Jump to: navigation, search Name: China Gengsheng Minerals Inc Place: Henan Province, China Product: China-based material technology company. References:...

  17. GE Global Research in Shanghai, China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shanghai, China Shanghai, China GE's commercial and industrial history meets challenges posed by China's rapid growth to produce work reflecting the advancing world. Click to email...

  18. China Power Equipment Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: China Power Equipment Inc Place: Xian, China Zip: 70075 Product: China-based manufacturer of energy saving transformers and transformer cores....

  19. Energy Audit Practices in China: National and Local Experiences and Issues

    SciTech Connect (OSTI)

    Shen, Bo; Price, Lynn; Lu, Hongyou

    2010-12-21

    China has set an ambitious goal of reducing its energy use per unit of GDP by 20% between 2006 and 2010. Since the industrial sector consumes about two-thirds of China's primary energy, many of the country's efforts are focused on improving the energy efficiency of this sector. Industrial energy audits have become an important part of China's efforts to improve its energy intensity. In China, industrial energy audits have been employed to help enterprises indentify energy-efficiency improvement opportunities for achieving the energy-saving targets. These audits also serve as a mean to collect critical energy-consuming information necessary for governments at different levels to supervise enterprises energy use and evaluate their energy performance. To better understand how energy audits are carried out in China as well as their impacts on achieving China's energy-saving target, researchers at the Lawrence Berkeley National Laboratory (LBNL) conducted an in-depth study that combines a review of China's national policies and guidelines on energy auditing and a series of discussions with a variety of Chinese institutions involved in energy audits. This report consists of four parts. First, it provides a historical overview of energy auditing in China over the past decades, describing how and why energy audits have been conducted during various periods. Next, the report reviews current energy auditing practices at both the national and regional levels. It then discusses some of the key issues related to energy audits conducted in China, which underscore the need for improvement. The report concludes with policy recommendations for China that draw upon international best practices and aim to remove barriers to maximizing the potential of energy audits.

  20. Energy Efficiency and the Finance Sector | Open Energy Information

    Open Energy Info (EERE)

    and the Finance Sector Jump to: navigation, search Name Energy Efficiency and the Finance Sector AgencyCompany Organization United Nations Environment Programme Sector Energy...

  1. Nepal-Sectoral Climate Impacts Economic Assessment | Open Energy...

    Open Energy Info (EERE)

    Nepal-Sectoral Climate Impacts Economic Assessment (Redirected from Nepal Sectoral Climate impacts Economic Assessment) Jump to: navigation, search Name Nepal Sectoral Climate...

  2. Electric energy sector in Argentina

    SciTech Connect (OSTI)

    Bastos, C.M.

    1994-06-01

    This article describes how the organization of the electric energy sector in Argentina has changed dramatically from a sector in which state-owned companies worked under a central planning to one in which private companies make their own decisions. The way that the electrical system used to work can be shown by these statements: demand growth estimated by central planning team; projects to be developed and the timetable determined by the same team; unit operations ruled by central dispatch, and under state-owned companies responsibility; integration with neighbor countries focused on physical projects, such as Salto Grande with Uruguay and Yacyreta with Paraguay. Today the electrical system works under these rules: the system has been vertically separated and the companies cannot be integrated; electric energy is considered as an ordinary wealth and the value that consumers give it is taken into account, (the distribution companies pay consumers a penalty for the energy that they cannot supply, the penalty is worth the economic damage consumers suffer due to its lack); producers have to compete for demand. They can sell in two ways: sell under private agreements or sell to the system. Both ways of selling compete with each other because the system buys giving priority to lower costs and, as a consequence, some of the producers do not sell at all.

  3. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction ...

  4. Sector Profiles of Significant Large CHP Markets, March 2004 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Sector Profiles of Significant Large CHP Markets, March 2004 Sector Profiles of Significant Large CHP Markets, March 2004 In this 2004 report, three sectors were identified as promising combined heat and power (CHP) sectors: chemicals, food, and pharmaceuticals. Sector profiles are based on a literature search, review of recent CHP activity in those sectors, and telephone interviews with customer representatives in each sector. PDF icon sector_profiles.pdf More Documents &

  5. Vehicle Technologies Office: Transitioning the Transportation Sector -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles | Department of Energy Transitioning the Transportation Sector - Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles Vehicle Technologies Office: Transitioning the Transportation Sector - Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles This report, titled "Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles" is based

  6. Energy Analysis by Sector | Department of Energy

    Office of Environmental Management (EM)

    Information Resources » Energy Analysis by Sector Energy Analysis by Sector Manufacturers often rely on energy-intensive technologies and processes. AMO conducts a range of analyses to explore energy use and trends by sector. Manufacturing Energy and Carbon Footprints Static Manufacturing Energy Sankey Diagrams Dynamic Manufacturing Energy Sankey Tool Energy & Environmental Profiles Bandwidth Studies Large Energy User Manufacturing Facilities by State MANUFACTURING ENERGY and carbon

  7. Chapter 2: Energy Sectors and Systems

    Office of Environmental Management (EM)

    2: Energy Sectors and Systems September 2015 Quadrennial Technology Review 2 Energy Sectors and Systems Issues and RDD&D Opportunities Energy systems are becoming increasingly interconnected and complex. Integrated energy systems present both opportunities for performance improvement as well as risks to operability and security. The size and scope of these opportunities and risks are just beginning to be understood. This chapter addresses both the key issues of energy sectors and their

  8. DOE Issues Energy Sector Cyber Organization NOI

    Office of Environmental Management (EM)

    Issues National Energy Sector Cyber Organization Notice of Intent February 11, 2010 The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) announced on Jan. 7 that it intends to issue a Funding Opportunity Announcement (FOA) for a National Energy Sector Cyber Organization, envisioned as a partnership between the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the security

  9. Category:Public Sectors | Open Energy Information

    Open Energy Info (EERE)

    no pages or media. Retrieved from "http:en.openei.orgwindex.php?titleCategory:PublicSectors&oldid272249" Feedback Contact needs updating Image needs updating...

  10. Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    Department released guidance to help the energy sector establish or align existing cybersecurity risk management programs to meet the objectives of the Cybersecurity Framework...

  11. Energy Sector Cybersecurity Framework Implementation Guidance...

    Energy Savers [EERE]

    - Draft for Public Comment & Comment Submission Form (September 2014) Energy Sector Cybersecurity Framework Implementation Guidance - Draft for Public Comment & Comment Submission...

  12. Draft Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    in the Federal Register, inviting the public to comment on DOE's Energy Sector Cybersecurity Framework Implementation Guidance. Comments must be received on or before October...

  13. Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    invites public comment on a draft of the Energy Sector Cybersecurity Framework Implementation Guidance. Comments must be received on or before October 14, 2014. The draft document...

  14. Property:Sector | Open Energy Information

    Open Energy Info (EERE)

    is a property of type Page. Subproperties This property has the following 1 subproperty: G Green Economy Toolbox Pages using the property "Sector" Showing 25 pages using this...

  15. Model Documentation Report: Commercial Sector Demand Module...

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  16. DOE Issues Energy Sector Cyber Organization NOI

    Energy Savers [EERE]

    between the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the...

  17. China energy databook

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B. ); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi )

    1992-11-01

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first becamc involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China's State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industries more energy-efficient, preparing historical reviews of energy supply and demand in the People's Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. We are hopeful that this volume will not only help us in our work, but help build a broader community of Chinese energy policy studies within the US.

  18. Energy Intensity Indicators: Indicators for Major Sectors

    Broader source: Energy.gov [DOE]

    This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors—transportation, industry, commercial, and residential, as well as the electric power sector. These sectors are shown in Figure 1.

  19. National Electric Sector Cybersecurity Organization Resource (NESCOR)

    SciTech Connect (OSTI)

    None, None

    2014-06-30

    The goal of the National Electric Sector Cybersecurity Organization Resource (NESCOR) project was to address cyber security issues for the electric sector, particularly in the near and mid-term. The following table identifies the strategies from the DOE Roadmap to Achieve Energy Delivery Systems Cybersecurity published in September 2011 that are applicable to the NESCOR project.

  20. Energy Sector Cybersecurity Framework Implementation Guidance

    Office of Environmental Management (EM)

    JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector Cybersecurity Framework Implementation Guidance │ Table of Contents TABLE OF CONTENTS 1. Introduction .............................................................................................................................................. 1 2. Preparing for Framework Implementation

  1. Bilateral Agreements with China | Department of Energy

    Energy Savers [EERE]

    Bilateral Agreements with China Bilateral Agreements with China Members of China's Shenhua Group visit FE's National Energy Technology Laboratory. Photo courtesy of NETL. Members of China's Shenhua Group visit FE's National Energy Technology Laboratory. Photo courtesy of NETL. Fossil Energy Protocol between the United States and China The U.S.-China Fossil Energy Protocol is intended to promote scientific and technological cooperation between the United States and China in the field of fossil

  2. 2015 Energy Sector-Specific Plan

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE), as the Sector-Specific Agency for the Energy Sector, has worked closely with government and industry partners to develop the 2015 Energy Sector-Specific Plan (SSP). DOE conducted much of this work in collaboration with the Energy Sector Coordinating Councils (SCCs) and the Energy Government Coordinating Council (GCC). The Energy SCCs represent the interests of the Electricity and Oil and Natural Gas Subsectors; the Energy GCC represents government at various levels—Federal, State, local, territorial, and tribal—as well as international partners. The 2015 Energy SSP is closely aligned with the National Infrastructure Protection Plan 2013: Partnering for Critical Infrastructure Security and Resilience (NIPP 2013) and the joint national priorities, which were developed in collaboration by representatives from all critical infrastructure sectors, including Energy.

  3. An Overview of the Cooperative Effort between the United States Department of Energy and the China Atomic Energy Authority to Enhance MPC&A Inspections for Civil Nuclear Facilities in China

    SciTech Connect (OSTI)

    Ahern, Keith; Daming, Liu; Hanley, Tim; Livingston, Linwood; McAninch, Connie; McGinnis, Brent R; Ning, Shen; Qun, Yang; Roback, Jason William; Tuttle, Glenn; Xuemei, Gao; Galer, Regina; Peterson, Nancy; Jia, Jinlie

    2011-01-01

    The United States Department of Energy, National Nuclear Security Administration (DOE/NNSA) and the China Atomic Energy Authority (CAEA) are cooperating to enhance the domestic regulatory inspections capacity for special nuclear material protection, control and accounting (MPC&A) requirements for civil nuclear facilities in China. This cooperation is conducted under the auspices of the Agreement between the Department of Energy of the United States of America and the State Development and Planning Commission of the People s Republic of China on Cooperation Concerning Peaceful Uses of Nuclear Technology. This initial successful effort was conducted in three phases. Phase I focused on introducing CAEA personnel to DOE and U. S. Nuclear Regulatory Commission inspection methods for U. S. facilities. This phase was completed in January 2008 during meetings in Beijing. Phase II focused on developing physical protection and material control and accounting inspection exercises that enforced U. S. inspection methods identified during Phase 1. Hands on inspection activities were conducted in the United States over a two week period in July 2009. Simulated deficiencies were integrated into the inspection exercises. The U. S. and Chinese participants actively identified and discussed deficiencies noted during the two week training course. The material control and accounting inspection exercises were conducted at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, KY. The physical protection inspection exercises were conducted at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN. Phase III leveraged information provided under Phase I and experience gained under Phase II to develop a formal inspection guide that incorporates a systematic approach to training for Chinese MPC&A field inspectors. Additional hands on exercises that are applicable to Chinese regulations were incorporated into the Phase III training material. Phase III was completed in May 2010 at the China Institute of Atomic Energy (CIAE) in Beijing. This paper provides details of the successful cooperation between DOE/NNSA and CAEA for all phases of the cooperative effort to enhance civil domestic MPC&A inspections in China.

  4. Understanding the China energy market: trends and opportunities 2006

    SciTech Connect (OSTI)

    Barbara Drazga

    2005-05-15

    The report is broken up into 4 Sections: Section I - Overview of China Energy Market (historical background, market value, consumption, production, reserves, export and import, market segmentation, market forecast); Section II - Market Analysis (PEST analysis, Porter's five forces analysis, socio-economic trends, consumption trends); Section III - Market Segments (electricity, oil, natural gas, liquefied natural gas, liquid petroleum gas, nuclear power, coal, renewables, photovoltaics, wind power, hydroelectric power. Each market segment details current and planned projects, and lists participants in that sector); and Section IV - Breaking Into the Market (regulatory framework, methods of market entry, foreign investment, challenges, government agencies).

  5. US/China Energy and Environmental Technology Center (EETC) international business development and technology transfer

    SciTech Connect (OSTI)

    Hsieh, S.T.; Qiu Daxiong; Zhang Guocheng

    1997-12-31

    Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, and the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.

  6. Municipal solid waste source-separated collection in China: A comparative analysis

    SciTech Connect (OSTI)

    Tai Jun; Zhang Weiqian; Che Yue; Feng Di

    2011-08-15

    A pilot program focusing on municipal solid waste (MSW) source-separated collection was launched in eight major cities throughout China in 2000. Detailed investigations were carried out and a comprehensive system was constructed to evaluate the effects of the eight-year implementation in those cities. This paper provides an overview of different methods of collection, transportation, and treatment of MSW in the eight cities; as well as making a comparative analysis of MSW source-separated collection in China. Information about the quantity and composition of MSW shows that the characteristics of MSW are similar, which are low calorific value, high moisture content and high proportion of organisms. Differences which exist among the eight cities in municipal solid waste management (MSWM) are presented in this paper. Only Beijing and Shanghai demonstrated a relatively effective result in the implementation of MSW source-separated collection. While the six remaining cities result in poor performance. Considering the current status of MSWM, source-separated collection should be a key priority. Thus, a wider range of cities should participate in this program instead of merely the eight pilot cities. It is evident that an integrated MSWM system is urgently needed. Kitchen waste and recyclables are encouraged to be separated at the source. Stakeholders involved play an important role in MSWM, thus their responsibilities should be clearly identified. Improvement in legislation, coordination mechanisms and public education are problematic issues that need to be addressed.

  7. Manufacturing Energy and Carbon Footprint - Sector: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2.4 2.6 < 0.1 Manufacturing Energy and Carbon Footprint Sector: Transportation ... Steam Distribution Losses 1 3 23 1 3 7 6 23 16 0 3 0 275 44 132 0 1 2 Conventional Boilers ...

  8. US Energy Sector Vulnerabilities to Climate Change

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    .......................... 1 Figure 2. Climate change implications for the energy sector ..................................................................................................................... 4 Figure 3. Rate of warming in the United States by region, 1901-2011 .................................................................................................... 8 Figure 4. Wildfire disrupting electricity transmission

  9. US Energy Sector Vulnerabilities to Climate Change

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    .......................... 1 Figure 2. Climate change implications for the energy sector ..................................................................................................................... 4 Figure 3. Rate of warming in the United States by region, 1901-2011 .................................................................................................... 8 Figure 4. Wildfire disrupting electricity transmission

  10. Market Report for the Industrial Sector, 2009

    SciTech Connect (OSTI)

    Sastri, Bhima; Brueske, Sabine; de los Reyes, Pamela; Jamison, Keith; Justiniano, Mauricio; Margolis, Nancy; Monfort, Joe; Raghunathan, Anand; Sabouni, Ridah

    2009-07-01

    This report provides an overview of trends in industrial-sector energy use. It focuses on some of the largest and most energy-intensive industrial subsectors and several emerging technologies that could transform key segments of industry.

  11. Innovate in China, Innovate for China | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    overall technological strength of Shanghai and even China. The GE-SJTU Collaborative Research Laboratory, the National Engineering Practice Education Center at Tongji University,...

  12. Energy Sector Cybersecurity Framework Implementation Guidance | Department

    Energy Savers [EERE]

    of Energy Cybersecurity Framework Implementation Guidance Energy Sector Cybersecurity Framework Implementation Guidance On January 8, 2015, the Energy Department released guidance to help the energy sector establish or align existing cybersecurity risk management programs to meet the objectives of the Cybersecurity Framework released by the National Institutes of Standards and Technology (NIST) in February 2014. The voluntary Cybersecurity Framework consists of standards, guidelines, and

  13. Restructuring our Transportation Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Restructuring our Transportation Sector Restructuring our Transportation Sector 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon pln001_rogers_2010_o.pdf More Documents & Publications Navistar-Driving efficiency with integrated technology Vehicle Technologies Office FY 2016 Budget At-A-Glance Overview of the DOE High Efficiency Engine Technologies R&D

  14. NREL: Energy Analysis: Electric Sector Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Sector Integration Integrating higher levels of renewable resources into the U.S. electricity system could pose challenges to the operability of the nation's grid. NREL's electric sector integration analysis work investigates the potential impacts of expanding renewable technology deployment on grid operations and infrastructure expansion including: Feasibility of higher levels of renewable electricity generation. Options for increasing electric system flexibility to accommodate higher

  15. Modeling distributed generation in the buildings sectors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling distributed generation in the buildings sectors August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Modeling distributed generation in the buildings sectors i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any

  16. Dams and Energy Sectors Interdependency Study

    Office of Environmental Management (EM)

    Type text] Dams and Energy Sectors Interdependency Study September 2011 September 2011 Page 2 Abstract The U.S. Department of Energy (DOE) and the U.S. Department of Homeland Security (DHS) collaborated to examine the interdependencies between two critical infrastructure sectors - Dams and Energy. 1 The study highlights the importance of hydroelectric power generation, with a particular emphasis on the variability of weather patterns and competing demands for water which determine the water

  17. ZBB China JV | Open Energy Information

    Open Energy Info (EERE)

    JV Jump to: navigation, search Name: ZBB China JV Place: China Product: JV company formed in 2005 to sell ZBB(tm)s zincbromine batteries in China, Macau and Hong Kong,...

  18. New Report Highlights Growth of America's Clean Energy Job Sector |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector August 23, 2012 - 12:20pm Addthis New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean

  19. Environmental protection in China

    SciTech Connect (OSTI)

    Russell, M. Univ. of Knoxville, TN )

    1990-01-01

    Environmental conditions in China are dramatically worse than those in the USA, but the Chinese are acting with commendable vigor in attempting to contain and ultimately reverse the damage. The Chinese have air, water and soil contamination, along with garbage and trash problems. They are also experiencing deforestation, desertification, soil erosion, destruction of wildlife habitat and wetlands, and the depletion of ground water. Attempts are being made to reduce the pollutants being produced, but economic factors weigh heavily against cleaning up current pollution.

  20. EIA Energy Efficiency-Residential Sector Energy Intensities,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Sector Energy Intensities RESIDENTIAL SECTOR ENERGY INTENSITIES: 1978-2005 Released Date: August 2004 Page Last Modified:June 2009 These tables provide estimates of...

  1. Template:Energy Generation Facilities by Sector | Open Energy...

    Open Energy Info (EERE)

    Energy Generation Facilities by Sector Jump to: navigation, search This is the Energy Generation Facilities by Sector template. It will display energy generation facilities for the...

  2. Morocco-Low Carbon Development Planning in the Power Sector ...

    Open Energy Info (EERE)

    Low Carbon Development Planning in the Power Sector Jump to: navigation, search Logo: Morocco-Low Carbon Development Planning in the Power Sector Name Morocco-Low Carbon...

  3. Nigeria-Low Carbon Development Planning in the Power Sector ...

    Open Energy Info (EERE)

    Low Carbon Development Planning in the Power Sector Jump to: navigation, search Logo: Nigeria-Low Carbon Development Planning in the Power Sector Name Nigeria-Low Carbon...

  4. Energy Critical Infrastructure and Key Resources Sector-Specific...

    Broader source: Energy.gov (indexed) [DOE]

    The Energy Sector has developed a vision statement and six sector security goals that will be used as the framework for developing and implementing effective protective measures....

  5. List of Companies in Geothermal Sector | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Sector Jump to: navigation, search Companies in the Geothermal energy sector: Add a Company Download CSV (rows 1-212) Map of Geothermal energy companies Loading map......

  6. Manufacturing Energy and Carbon Footprint - Sector: Iron and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS ...

  7. South Africa-Danish Government Sector Programmes | Open Energy...

    Open Energy Info (EERE)

    Sector Programmes Jump to: navigation, search Name South Africa-Danish Government Sector Programmes AgencyCompany Organization Danish Government Partner Danish Ministry for...

  8. Session 6 - Environmentally Concerned Public Sector Panel Discussion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Session 6 - Environmentally Concerned Public Sector Panel Discussion "The Light-Duty Diesel In America?" Session 6 - Environmentally Concerned Public Sector Panel Discussion "The ...

  9. Climate Change and the Transporation Sector - Challenges and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change and the Transporation Sector - Challenges and Mitigation Options Climate Change and the Transporation Sector - Challenges and Mitigation Options 2003 DEER Conference ...

  10. LED Site Lighting in the Commercial Building Sector: Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification LED Site Lighting in the Commercial Building Sector: ...

  11. National and Sectoral GHG Mitigation Potential: A Comparison...

    Open Energy Info (EERE)

    and Sectoral GHG Mitigation Potential: A Comparison Across Models Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National and Sectoral GHG Mitigation Potential: A...

  12. List of Companies in Hydrogen Sector | Open Energy Information

    Open Energy Info (EERE)

    Companies in Hydrogen Sector Jump to: navigation, search Companies in the Hydrogen sector: Add a Company Download CSV (rows 1-196) Map of Hydrogen companies Loading map......

  13. Climate Change: Risks and Opportunities for the Finance Sector...

    Open Energy Info (EERE)

    Finance Sector Online Course Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change: Risks and Opportunities for the Finance Sector Online Course Agency...

  14. OECD-Private Sector Engagement in Adaptation to Climate Change...

    Open Energy Info (EERE)

    Private Sector Engagement in Adaptation to Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: OECD-Private Sector Engagement in Adaptation to Climate Change...

  15. Roadmap to Secure Control Systems in the Energy Sector - January...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap to Secure Control Systems in the Energy Sector - January 2006 Roadmap to Secure Control Systems in the Energy Sector - January 2006 This document, the Roadmap to Secure...

  16. Overcoming Multifamily Sector Barriers in Austin, Texas | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overcoming Multifamily Sector Barriers in Austin, Texas Overcoming Multifamily Sector Barriers in Austin, Texas Presents techniques on overcoming the barriers of multifamily energy...

  17. Renewable Energy Cross Sectoral Assessments Terms of Reference...

    Open Energy Info (EERE)

    Renewable Energy Cross Sectoral Assessments Terms of Reference Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Cross Sectoral Assessments Terms of...

  18. Energy Department Announces New Private Sector Partnership to...

    Energy Savers [EERE]

    New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects October 9,...

  19. Nepal-Sectoral Climate Impacts Economic Assessment | Open Energy...

    Open Energy Info (EERE)

    Nepal-Sectoral Climate Impacts Economic Assessment Jump to: navigation, search Name Nepal Sectoral Climate impacts Economic Assessment AgencyCompany Organization Climate and...

  20. Energy-Sector Stakeholders Attend the Department of Energy's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's...

  1. Energy-Sector Stakeholders Attend the Department of Energy's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Sector Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's...

  2. Extreme Energy in China

    SciTech Connect (OSTI)

    Khanna, Nina; Fridley, David; Cai, Lixue

    2013-06-01

    Over the last decade, China has focused its policies simultaneously on moderating the rapid energy demand growth that has been driven by three decades of rapid economic growth and industrialization and on increasing its energy supply. In spite of these concerted efforts, however, China continues to face growing energy supply challenges, particularly with accelerating demand for oil and natural gas, both of which are now heavily dependent on imports. On the supply side, the recent 11th and 12th Five-Year Plans have emphasized accelerating conventional and nonconventional oil and gas exploration and development through pricing reforms, pipeline infrastructure expansions and 2015 production targets for shale gas and coal seam methane. This study will analyze China’s new and nonconventional oil and gas resources base, possible development paths and outlook, and the potential role for these nonconventional resources in meeting oil and gas demand. The nonconventional resources currently being considered by China and included in this study include: shale gas, coal seam methane (coal mine methane and coal bed methane), tight gas, in-situ coal gasification, tight oil and oil shale, and gas hydrates.

  3. Key China Energy Statistics 2011

    SciTech Connect (OSTI)

    Levine, Mark; Fridley, David; Lu, Hongyou; Fino-Chen, Cecilia

    2012-01-15

    The China Energy Group at Lawrence Berkeley National Laboratory (LBNL) was established in 1988. Over the years the Group has gained recognition as an authoritative source of China energy statistics through the publication of its China Energy Databook (CED). In 2008 the Group published the Seventh Edition of the CED (http://china.lbl.gov/research/chinaenergy-databook). This handbook summarizes key statistics from the CED and is expressly modeled on the International Energy Agency’s “Key World Energy Statistics” series of publications. The handbook contains timely, clearly-presented data on the supply, transformation, and consumption of all major energy sources.

  4. Key China Energy Statistics 2012

    SciTech Connect (OSTI)

    Levine, Mark; Fridley, David; Lu, Hongyou; Fino-Chen, Cecilia

    2012-05-01

    The China Energy Group at Lawrence Berkeley National Laboratory (LBNL) was established in 1988. Over the years the Group has gained recognition as an authoritative source of China energy statistics through the publication of its China Energy Databook (CED). The Group has published seven editions to date of the CED (http://china.lbl.gov/research/chinaenergy-databook). This handbook summarizes key statistics from the CED and is expressly modeled on the International Energy Agency’s “Key World Energy Statistics” series of publications. The handbook contains timely, clearly-presented data on the supply, transformation, and consumption of all major energy sources.

  5. China Dialogue | Open Energy Information

    Open Energy Info (EERE)

    Dialogue Jump to: navigation, search Name: China Dialogue Place: United Kingdom Product: A non-profit organization aiming to broaden discussion on climate and energy issues,...

  6. Assessment of the Potential to Achieve very Low Energy Use in Public Buildings in China with Advanced Window and Shading Systems

    SciTech Connect (OSTI)

    Lee, Eleanor; Pang, Xiufeng; McNeil, Andrew; Hoffmann, Sabine; Thanachareonkit, Anothai; Li, Zhengrong; Ding, Yong

    2015-05-29

    As rapid growth in the construction industry continues to occur in China, the increased demand for a higher standard living is driving significant growth in energy use and demand across the country. Building codes and standards have been implemented to head off this trend, tightening prescriptive requirements for fenestration component measures using methods similar to the U.S. model energy code American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1. The objective of this study is to (a) provide an overview of applicable code requirements and current efforts within China to enable characterization and comparison of window and shading products, and (b) quantify the load reduction and energy savings potential of several key advanced window and shading systems, given the divergent views on how space conditioning requirements will be met in the future. System-level heating and cooling loads and energy use performance were evaluated for a code-compliant large office building using the EnergyPlus building energy simulation program. Commercially-available, highly-insulating, low-emittance windows were found to produce 24%–66% lower perimeter zone HVAC electricity use compared to the mandated energy-efficiency standard in force (GB 50189-2005) in cold climates like Beijing. Low-e windows with operable exterior shading produced up to 30%–80% reductions in perimeter zone HVAC electricity use in Beijing and 18%–38% reductions in Shanghai compared to the standard. The economic context of China is unique since the cost of labor and materials for the building industry is so low. Broad deployment of these commercially available technologies with the proper supporting infrastructure for design, specification, and verification in the field would enable significant reductions in energy use and greenhouse gas emissions in the near term.

  7. Assessment of the Potential to Achieve very Low Energy Use in Public Buildings in China with Advanced Window and Shading Systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Eleanor; Pang, Xiufeng; McNeil, Andrew; Hoffmann, Sabine; Thanachareonkit, Anothai; Li, Zhengrong; Ding, Yong

    2015-05-29

    As rapid growth in the construction industry continues to occur in China, the increased demand for a higher standard living is driving significant growth in energy use and demand across the country. Building codes and standards have been implemented to head off this trend, tightening prescriptive requirements for fenestration component measures using methods similar to the U.S. model energy code American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1. The objective of this study is to (a) provide an overview of applicable code requirements and current efforts within China to enable characterization and comparison of window and shading products,more » and (b) quantify the load reduction and energy savings potential of several key advanced window and shading systems, given the divergent views on how space conditioning requirements will be met in the future. System-level heating and cooling loads and energy use performance were evaluated for a code-compliant large office building using the EnergyPlus building energy simulation program. Commercially-available, highly-insulating, low-emittance windows were found to produce 24%–66% lower perimeter zone HVAC electricity use compared to the mandated energy-efficiency standard in force (GB 50189-2005) in cold climates like Beijing. Low-e windows with operable exterior shading produced up to 30%–80% reductions in perimeter zone HVAC electricity use in Beijing and 18%–38% reductions in Shanghai compared to the standard. The economic context of China is unique since the cost of labor and materials for the building industry is so low. Broad deployment of these commercially available technologies with the proper supporting infrastructure for design, specification, and verification in the field would enable significant reductions in energy use and greenhouse gas emissions in the near term.« less

  8. LBNL China Energy Group | Open Energy Information

    Open Energy Info (EERE)

    organizations, as well as with multilateral organizations working in China such as the IEA, World Bank, UN Development Program."1 "LBNL's China Energy Group can contribute to...

  9. ARM - News : AMF Deployment, Shouxian, China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ChinaNews : AMF Deployment, Shouxian, China Shouxian Deployment AMF Home Shouxian Home Data Plots and Baseline Instruments Experiment Planning Proposal Science Plan, (PDF, 1,257K)...

  10. China Zhaodong Jianye Fuel | Open Energy Information

    Open Energy Info (EERE)

    Zhaodong Jianye Fuel Jump to: navigation, search Name: China Zhaodong Jianye Fuel Place: Zhaodong, Heilongjiang Province, China Product: Zhao Dong Ye Fuel engages in the...

  11. Hebei, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hebei, China: Energy Resources Jump to: navigation, search Name Hebei, China Equivalent URI DBpedia GeoNames ID 1808773 Coordinates 39, 116 Show Map Loading map......

  12. China Shoto Plc | Open Energy Information

    Open Energy Info (EERE)

    Shoto Plc Jump to: navigation, search Name: China Shoto Plc Place: Taizhou, Jiangsu Province, China Zip: 225526 Product: Taizhou-based manufacturer of rechargeable lead acid...

  13. China 2050 Pathways Calculator | Open Energy Information

    Open Energy Info (EERE)

    2050 Pathways Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: China 2050 Pathways Calculator AgencyCompany Organization: China's Energy Research Institute...

  14. China Carbon Finance | Open Energy Information

    Open Energy Info (EERE)

    Finance Jump to: navigation, search Name: China Carbon Finance Place: Auburn, Washington State Zip: 98002 Product: Project developer focused on CDM projects in China References:...

  15. China Guodian Corporation | Open Energy Information

    Open Energy Info (EERE)

    Guodian Corporation Jump to: navigation, search Name: China Guodian Corporation Place: China Coordinates: 35.86166, 104.195397 Show Map Loading map... "minzoom":false,"mapping...

  16. White Paper on Energy Efficiency Status of Energy-Using Products in China (2011)

    SciTech Connect (OSTI)

    Zhou, Nan; Romankiewicz, John; Fridley, David

    2012-06-01

    This White Paper focuses on the areas and products involved in the above tasks, based on the White Paper - Energy Efficiency Status of Energy-Using Products in China (2010), here referred to as “White Paper 2010”, which analyzed the energy efficiency status of 21 typical energy-using products in five sectors: household appliances, office equipment, commercial equipment, industrial equipment, and lighting equipment. Table 1 illustrates the detailed product coverage for this year’s paper, noting the addition of three household appliance items (automatic electric rice cooker, AC electric fan, and household induction cooktop) and one industrial sector item (three-phase distribution transformer).

  17. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    SciTech Connect (OSTI)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are represented, in addition to the extensive data compiled from recent studies on bottom-up representation of efficiency measures for the sector. We also defined various mitigation scenarios including long-term production trends to project country-specific production, energy use, trading, carbon emissions, and costs of mitigation. Such analyses can provide useful information to assist policy-makers when considering and shaping future emissions mitigation strategies and policies. The technical objective is to analyze the costs of production and CO{sub 2} emission reduction in the U.S, China, and India’s iron and steel sectors under different emission reduction scenarios, using the ISEEM-IS as a cost optimization model. The scenarios included in this project correspond to various CO{sub 2} emission reduction targets for the iron and steel sector under different strategies such as simple CO{sub 2} emission caps (e.g., specific reduction goals), emission reduction via commodity trading, and emission reduction via carbon trading.

  18. Live Webinar on Better Buildings Challenge: Public-Sector Update

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Better Buildings Challenge: Public-Sector Update."

  19. Retrocommissioning and the Public Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrocommissioning and the Public Sector Retrocommissioning and the Public Sector This presentation contains information on Retrocommissioning and the Public Sector. PDF icon Presentation Microsoft Office document icon Transcript More Documents & Publications retrocommissioning_public_sector.doc Transforming Commercial Building Operations - 2013 BTO Peer Review Energy Audit and Retro-Commissioning Policies for Public and Commercial Buildings

  20. A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.

    SciTech Connect (OSTI)

    Hasanbeigi, Ali; Price, Lynn; Aden, Nathaniel; Chunxia, Zhang; Xiuping, Li; Fangqin, Shangguan

    2011-06-15

    Production of iron and steel is an energy-intensive manufacturing process. In 2006, the iron and steel industry accounted for 13.6% and 1.4% of primary energy consumption in China and the U.S., respectively (U.S. DOE/EIA, 2010a; Zhang et al., 2010). The energy efficiency of steel production has a direct impact on overall energy consumption and related carbon dioxide (CO2) emissions. The goal of this study is to develop a methodology for making an accurate comparison of the energy intensity (energy use per unit of steel produced) of steel production. The methodology is applied to the steel industry in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and indicators in order to develop a common framework for comparing steel industry energy use. This study uses a bottom-up, physical-based method to compare the energy intensity of China and U.S. crude steel production in 2006. This year was chosen in order to maximize the availability of comparable steel-sector data. However, data published in China and the U.S. are not always consistent in terms of analytical scope, conversion factors, and information on adoption of energy-saving technologies. This study is primarily based on published annual data from the China Iron & Steel Association and National Bureau of Statistics in China and the Energy Information Agency in the U.S. This report found that the energy intensity of steel production is lower in the United States than China primarily due to structural differences in the steel industry in these two countries. In order to understand the differences in energy intensity of steel production in both countries, this report identified key determinants of sector energy use in both countries. Five determinants analyzed in this report include: share of electric arc furnaces in total steel production, sector penetration of energy-efficiency technologies, scale of production equipment, fuel shares in the iron and steel industry, and final steel product mix in both countries. The share of lower energy intensity electric arc furnace production in each country was a key determinant of total steel sector energy efficiency. Overall steel sector structure, in terms of average plant vintage and production capacity, is also an important variable though data were not available to quantify this in a scenario. The methodology developed in this report, along with the accompanying quantitative and qualitative analyses, provides a foundation for comparative international assessment of steel sector energy intensity.

  1. CDM Center of Excellence Ltd | Open Energy Information

    Open Energy Info (EERE)

    CDM Center of Excellence Ltd Place: Beijing, Beijing Municipality, China Zip: 100125 Product: A Chinese consultant for Project Design Documents (PDDs) of CDM projects....

  2. Golden State Holding Group Corporation | Open Energy Information

    Open Energy Info (EERE)

    Holding Group Corporation Jump to: navigation, search Name: Golden State Holding Group Corporation Place: Beijing Municipality, China Product: Beijing-based developer and...

  3. Chinalight Solar Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Chinalight Solar Co Ltd Jump to: navigation, search Name: Chinalight Solar Co Ltd Place: Beijing, Beijing Municipality, China Product: A Chinese company who manufactures PV cells...

  4. State Nuclear Power Technology Corporation SNPTC | Open Energy...

    Open Energy Info (EERE)

    Technology Corporation SNPTC Jump to: navigation, search Name: State Nuclear Power Technology Corporation (SNPTC) Place: Beijing, Beijing Municipality, China Zip: 100032 Product:...

  5. Times Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Corporation Place: Beijing, Beijing Municipality, China Product: Startup focusing on LED lighting products. Coordinates: 39.90601, 116.387909 Show Map Loading map......

  6. KOE Environmental Consultancy Inc | Open Energy Information

    Open Energy Info (EERE)

    KOE Environmental Consultancy Inc Jump to: navigation, search Name: KOE Environmental Consultancy Inc Place: Beijing, Beijing Municipality, China Zip: 100044 Product: KOE is...

  7. Peony Capital | Open Energy Information

    Open Energy Info (EERE)

    Peony Capital Jump to: navigation, search Name: Peony Capital Place: Dongcheng District Beijing, Beijing Municipality, China Zip: 100027 Product: Manages a fund dedicated to...

  8. ClearWorld Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Energy Ltd Place: Beijing, Beijing Municipality, China Zip: 100027 Product: Develops its own clean energy projects and also co-operate with other developers to complement their...

  9. Chinese Wind Energy Equipment Association CWEEA | Open Energy...

    Open Energy Info (EERE)

    Wind Energy Equipment Association CWEEA Jump to: navigation, search Name: Chinese Wind Energy Equipment Association (CWEEA) Place: Beijing, Beijing Municipality, China Zip: 100825...

  10. Energy Management Company Association EMCA | Open Energy Information

    Open Energy Info (EERE)

    Company Association EMCA Jump to: navigation, search Name: Energy Management Company Association (EMCA) Place: Beijing, Beijing Municipality, China Zip: 100053 Product: ESCOEMC...

  11. Philippines' downstream sector poised for growth

    SciTech Connect (OSTI)

    Not Available

    1992-05-11

    This paper reports that the Philippines' downstream sector is poised for sharp growth. Despite a slip in refined products demand in recent years, Philippines products demand will rebound sharply by 2000, East-West Center (EWC), Honolulu, predicts. Philippines planned refinery expansions are expected to meet that added demand, EWC Director Fereidun Fesharaki says. Like the rest of the Asia-Pacific region, product specifications are changing, but major refiners in the area expect to meet the changes without major case outlays. At the same time, Fesharaki says, push toward deregulation will further bolster the outlook for the Philippines downstream sector.

  12. US-China clean energy report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US-China clean energy report US-China clean energy report US-China clean energy report PDF icon US-China clean energy report More Documents & Publications FACT SHEET: U.S.-China Clean Energy Cooperation Announcements US-China Clean Energy Cooperation Before the U.S.-China Economic and Security Review Commission

  13. End-Use Sector Flowcharts, Energy Intensity Indicators

    Broader source: Energy.gov (indexed) [DOE]

    Economy Transportation Sector Commercial Sector Residential Sector Electric Power Sector Industrial Sector Manufacturing NAICS 311-339 Food, Beverages, & Tobacco NAICS 311/312 Textile Mills and Products NAICS 313/314 Apparel & Leather Products NAICS 315/316 Wood Products NAICS 321 Paper NAICS 322 Printing & Related Support NAICS 323 Petroleum & Coal Products NAICS 324 Chemicals NAICS 325 Plastics & Rubber Products NAICS 326 Nonmetallic Mineral Products NAICS 327 Primary

  14. Private Sector Outreach and Partnerships | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Private Sector Outreach and Partnerships Private Sector Outreach and Partnerships ISER's partnerships with the private sector are a strength which has enabled the division to respond to the needs of the sector and the nation. The division's domestic capabilities have been greatly enhanced by the relationships that have been created over years of collaborations with companies from all parts the sector, including electricity, oil, and natural gas. Specific mission areas, such as risk and system

  15. Sectoral trends in global energy use and greenhouse gasemissions

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Sinton, Jonathan; Worrell, Ernst; Zhou, Nan; Sathaye, Jayant; Levine, Mark

    2006-07-24

    In 2000, the Intergovernmental Panel on Climate Change (IPCC) published a new set of baseline greenhouse gas (GHG) emissions scenarios in the Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000). The SRES team defined four narrative storylines (A1, A2, B1 and B2) describing the relationships between the forces driving GHG and aerosol emissions and their evolution during the 21st century. The SRES reports emissions for each of these storylines by type of GHG and by fuel type to 2100 globally and for four world regions (OECD countries as of 1990, countries undergoing economic reform, developing countries in Asia, rest of world). Specific assumptions about the quantification of scenario drivers, such as population and economic growth, technological change, resource availability, land-use changes, and local and regional environmental policies, are also provided. End-use sector-level results for buildings, industry, or transportation or information regarding adoption of particular technologies and policies are not provided in the SRES. The goal of this report is to provide more detailed information on the SRES scenarios at the end use level including historical time series data and a decomposition of energy consumption to understand the forecast implications in terms of end use efficiency to 2030. This report focuses on the A1 (A1B) and B2 marker scenarios since they represent distinctly contrasting futures. The A1 storyline describes a future of very rapid economic growth, low population growth, and the rapid introduction of new and more efficient technologies. Major underlying themes are convergence among regions, capacity building, and increased cultural and social interactions, with a substantial reduction in regional differences in per capita income. The B2 storyline describes a world with an emphasis on economic, social, and environmental sustainability, especially at the local and regional levels. It is a world with moderate population growth, intermediate levels of economic development, and less rapid and more diverse technological change (Nakicenovic et al., 2000). Data were obtained from the SRES modeling teams that provide more detail than that reported in the SRES. For the A1 marker scenario, the modeling team provided final energy demand and carbon dioxide (CO{sub 2}) emissions by fuel for industry, buildings, and transportation for nine world regions. Final energy use and CO{sub 2} emissions for three sectors (industry, transport, buildings) for the four SRES world regions were provided for the B2 marker scenario. This report describes the results of a disaggregation of the SRES projected energy use and energy-related CO{sub 2} emissions for the industrial, transport, and buildings sectors for 10 world regions (see Appendix 1) to 2030. An example of further disaggregation of the two SRES scenarios for the residential buildings sector in China is provided, illustrating how such aggregate scenarios can be interpreted at the end use level.

  16. China's Building Energy Use: A Long-Term Perspective based on a Detailed Assessment

    SciTech Connect (OSTI)

    Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Kyle, G. Page; Patel, Pralit L.

    2012-01-13

    We present here a detailed, service-based model of China's building energy use, nested in the GCAM (Global Change Assessment Model) integrated assessment framework. Using the model, we explore long-term pathways of China's building energy use and identify opportunities of reducing greenhouse gas emissions. The inclusion of a structural model of building energy demands within an integrated assessment framework represents a major methodological advance. It allows for a structural understanding of the drivers of building energy consumption while simultaneously considering the other human and natural system interactions that influence changes in the global energy system and climate. We also explore a range of different scenarios to gain insights into how China's building sector might evolve and what the implications might be for improved building energy technology and carbon policies. The analysis suggests that China's building energy growth will not wane anytime soon, although technology improvement will put downward pressure on this growth. Also, regardless of the scenarios represented, the growth will involve the continued, rapid electrification of the buildings sector throughout the century, and this transition will be accelerated by the implementation of carbon policy.

  17. A Glance at China’s Household Consumption

    SciTech Connect (OSTI)

    Shui, Bin

    2009-10-22

    Known for its scale, China is the most populous country with the world’s third largest economy. In the context of rising living standards, a relatively lower share of household consumption in its GDP, a strong domestic market and globalization, China is witnessing an unavoidable increase in household consumption, related energy consumption and carbon emissions. Chinese policy decision makers and researchers are well aware of these challenges and keen to promote green lifestyles. China has developed a series of energy policies and programs, and launched a wide?range social marketing activities to promote energy conservation.

  18. Target Allocation Methodology for China's Provinces: Energy Intensity in the 12th FIve-Year Plan

    SciTech Connect (OSTI)

    Ohshita, Stephanie; Price, Lynn

    2011-03-21

    Experience with China's 20% energy intensity improvement target during the 11th Five-Year Plan (FYP) (2006-2010) has shown the challenges of rapidly setting targets and implementing measures to meet them. For the 12th FYP (2011-2015), there is an urgent need for a more scientific methodology to allocate targets among the provinces and to track physical and economic indicators of energy and carbon saving progress. This report provides a sectoral methodology for allocating a national energy intensity target - expressed as percent change in energy per unit gross domestic product (GDP) - among China's provinces in the 12th FYP. Drawing on international experience - especially the European Union (EU) Triptych approach for allocating Kyoto carbon targets among EU member states - the methodology here makes important modifications to the EU approach to address an energy intensity rather than a CO{sub 2} emissions target, and for the wider variation in provincial energy and economic structure in China. The methodology combines top-down national target projections and bottom-up provincial and sectoral projections of energy and GDP to determine target allocation of energy intensity targets. Total primary energy consumption is separated into three end-use sectors - industrial, residential, and other energy. Sectoral indicators are used to differentiate the potential for energy saving among the provinces. This sectoral methodology is utilized to allocate provincial-level targets for a national target of 20% energy intensity improvement during the 12th FYP; the official target is determined by the National Development and Reform Commission. Energy and GDP projections used in the allocations were compared with other models, and several allocation scenarios were run to test sensitivity. The resulting allocations for the 12th FYP offer insight on past performance and offer somewhat different distributions of provincial targets compared to the 11th FYP. Recommendations for reporting and monitoring progress on the targets, and methodology improvements, are included.

  19. China-Climate Change Research Center | Open Energy Information

    Open Energy Info (EERE)

    China-Climate Change Research Center (Redirected from ClimateWorks-China Climate Change Research Center) Jump to: navigation, search Name China-Climate Change Research Center...

  20. China's National Climate Change Programme | Open Energy Information

    Open Energy Info (EERE)

    China's National Climate Change Programme Jump to: navigation, search Tool Summary LAUNCH TOOL Name: China's National Climate Change Programme AgencyCompany Organization: China...

  1. China Xining New Energy Development | Open Energy Information

    Open Energy Info (EERE)

    New Energy Development Jump to: navigation, search Name: China Xining New Energy Development Place: Ningxia Autonomous Region, China Product: China-based company that manufactures...

  2. Great China New Energy Technology Services Co Ltd GCNETS | Open...

    Open Energy Info (EERE)

    New Energy Technology Services Co Ltd GCNETS Jump to: navigation, search Name: Great China New Energy Technology Services Co Ltd (GCNETS) Place: China Product: China-based...

  3. Chengda Engineering Corporation of China | Open Energy Information

    Open Energy Info (EERE)

    Chengda Engineering Corporation of China Jump to: navigation, search Name: Chengda Engineering Corporation of China Place: Chengdu, Sichuan Province, China Zip: 610041 Product: A...

  4. MOU-CHINA.pdf | Department of Energy

    Energy Savers [EERE]

    MOU-CHINA.pdf MOU-CHINA.pdf PDF icon MOU-CHINA.pdf More Documents & Publications Memorandum of Understanding between the Department of Energy of the United States of America and the National Development and Reform Commission of the People's Republic of China Concerning Industrial Energy Efficiency Cooperation Memorandum of Understanding Between the Department of Agriculture and the Department of Energy and the National Development and Reform Commission of the People's Republic of China on

  5. 15th US-China Oil and Gas Industry Forum Opens in Chongqing, China |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 15th US-China Oil and Gas Industry Forum Opens in Chongqing, China 15th US-China Oil and Gas Industry Forum Opens in Chongqing, China September 17, 2015 - 9:17am Addthis 15th US-China Oil and Gas Industry Forum Opens in Chongqing, China This morning, Assistant Secretary for Fossil Energy Chris Smith, along with Zhang Yuqing, Deputy Administrator of China's National Energy Administration (NEA), opened the 15th US-China Oil and Gas Industry Forum (OGIF) in Chongqing,

  6. End-Use Sector Flowchart | Department of Energy

    Office of Environmental Management (EM)

    End-Use Sector Flowchart End-Use Sector Flowchart This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors-transportation, industry, commercial and residential-identified in Figure 1. By clicking on any of the boxes with the word "Sector" in the title will reveal the more detailed structure within that sector. PDF icon End-Use Sector Flowchart More Documents & Publications Barriers to Industrial Energy

  7. China Energy Databook. Revision 4

    SciTech Connect (OSTI)

    Sinton, J. E.; Fridley, D. G.; Levine, M. D.; Yang, F.; Zhenping, J.; Xing, Z.; Kejun, J.; Xiaofeng, L.

    1996-09-01

    The Energy Analysis Program at LBL first became involved in Chinese energy issues through a joint China-US symposium on markets and energy demand held in Nanjing Nov. 1988. EAP began to collaborate on projects with the Energy Research Institute of China`s State Planning Commission. It was decided to compile, assess, and organize Chinese energy data. Primary interest was to use the data to help understand the historical evolution and likely future of the Chinese energy system; thus the primary criterion was to relate the data to the structure of energy supply and demand in the past and to indicate probable developments (eg, as indicated by patterns of investment). Caveats are included in forewords to both the 1992 and 1996 editions. A chapter on energy prices is included in the 1996 edition. 1993 energy consumption data are not included since there was a major disruption in energy statistical collection in China that year.

  8. DOC-DOE Joint China Mission Statement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joint China Mission Statement DOC-DOE Joint China Mission Statement DOC-DOE Joint China Mission Statement PDF icon DOC-DOE Joint China Mission Statement More Documents &...

  9. China energy databook. 1992 Edition

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B.; Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi

    1992-11-01

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first becamc involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China`s State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industries more energy-efficient, preparing historical reviews of energy supply and demand in the People`s Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. We are hopeful that this volume will not only help us in our work, but help build a broader community of Chinese energy policy studies within the US.

  10. NEMS Buildings Sector Working Group Meeting

    Gasoline and Diesel Fuel Update (EIA)

    NEMS Buildings Sector Working Group Meeting Erin Boedecker Owen Comstock Behjat Hojjati Kevin Jarzomski David Peterson Steve Wade October 4, 2012 | Washington, D.C. AEO2013 Preliminary Results WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Overview Buildings Working Group Forrestal 2E-069 | October 4, 2012 2 * Recap of project list

  11. Center for Renewable Energy Development of Energy Research Institute...

    Open Energy Info (EERE)

    Research Institute China Jump to: navigation, search Name: Center for Renewable Energy Development of Energy Research Institute (China) Place: Beijing Municipality, China...

  12. List of Companies in Wind Sector | Open Energy Information

    Open Energy Info (EERE)

    Wind Sector Jump to: navigation, search WindTurbine-icon.png Companies in the Wind energy sector: Add a Company Download CSV (rows 1-1693) Map of Wind energy companies Loading...

  13. Energy Intensity Changes by Sector, 1985-2011 - Alternative Measures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Changes by Sector, 1985-2011 - Alternative Measures by Type of Energy Energy Intensity Changes by Sector, 1985-2011 - Alternative Measures by Type of Energy Further insight with ...

  14. List of Companies in Biofuels Sector | Open Energy Information

    Open Energy Info (EERE)

    List of Companies in Biofuels Sector Jump to: navigation, search BiomassImage.JPG Companies in the Biofuels sector: Add a Company Download CSV (rows 1-256) Map of Biofuels...

  15. Sector 3 : High Resolution X-ray Scattering | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & workshops IXN Group Useful Links Current APS status ESAF System GUP System X-Ray Science Division My APS Portal Sector 3 : High Resolution X-ray Scattering Sector 3 is...

  16. China Energy Databook -- User Guide and Documentation, Version 7.0

    SciTech Connect (OSTI)

    Fridley, Ed., David; Aden, Ed., Nathaniel; Lu, Ed., Hongyou; Zheng, Ed., Nina

    2008-10-01

    Since 2001, China's energy consumption has grown more quickly than expected by Chinese or international observers. This edition of the China Energy Databook traces the growth of the energy system through 2006. As with version six, the Databook covers a wide range of energy-related information, including resources and reserves, production, consumption, investment, equipment, prices, trade, environment, economy, and demographic data. These data provide an extensive quantitative foundation for understanding China's growing energy system. In addition to providing updated data through 2006, version seven includes revised energy and GDP data back to the 1990s. In the 2005 China Energy Statistical Yearbook, China's National Bureau of Statistics (NBS) published revised energy production, consumption, and usage data covering the years 1998 to 2003. Most of these revisions related to coal production and consumption, though natural gas data were also adjusted. In order to accommodate underestimated service sector growth, the NBS also released revised GDP data in 2005. Beyond the inclusion of historical revisions in the seventh edition, no attempt has been made to rectify known or suspected issues in the official data. The purpose of this volume is to provide a common basis for understanding China's energy system. In order to broaden understanding of China's energy system, the Databook includes information from industry yearbooks, periodicals, and government websites in addition to data published by NBS. Rather than discarding discontinued data series, information that is no longer possible to update has been placed in C section tables and figures in each chapter. As with previous versions, the data are presented in digital database and tabular formats. The compilation of updated data is the result of tireless work by Lu Hongyou and Nina Zheng.

  17. China 2015 Business Development Mission Marketing Flyer | Department of

    Energy Savers [EERE]

    Energy China 2015 Business Development Mission Marketing Flyer China 2015 Business Development Mission Marketing Flyer China 2015 Business Development Mission Marketing Flyer PDF icon China 2015 Business Development Mission Marketing Flyer More Documents & Publications DOC-DOE China Mission Announcement Press Release DOC-DOE Joint China Mission Statement DOE-LPO_Email-Update_001_Through_11

  18. US-China Clean Energy Cooperation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US-China Clean Energy Cooperation US-China Clean Energy Cooperation US-China Clean Energy Cooperation PDF icon US-China Clean Energy Cooperation More Documents & Publications FACT SHEET: U.S.-China Clean Energy Cooperation Announcements US-China clean energy report THE WHITE HOUSE

  19. DOE Encourages Utility Sector Nominations to the Federal Communication...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commission's Communications, Security, Reliability, and Interoperability Council DOE Encourages Utility Sector Nominations to the Federal Communications Commission's...

  20. Energy Impact Illinois: Overcoming Barriers in the Multifamily Sector

    Broader source: Energy.gov [DOE]

    Presents how Energy Impact Illinois overcame barriers in the multifamily sector through financing partnerships and expert advice.

  1. Carbon Market Opportunities for the Forestry Sector of Africa...

    Open Energy Info (EERE)

    of the United Nations, Winrock International Sector: Land Focus Area: Renewable Energy, Forestry Topics: Implementation, Policiesdeployment programs Resource Type:...

  2. Fact #619: April 19, 2010 Transportation Sector Revenue by Industry |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 9: April 19, 2010 Transportation Sector Revenue by Industry Fact #619: April 19, 2010 Transportation Sector Revenue by Industry According the latest Economic Census (2002), the trucking industry is the largest contributor of revenue in the transportation sector, contributing more than one-quarter of the sectors revenue. The air industry contributes just under one-quarter, as does other transportation and support activities, which include sightseeing, couriers and

  3. U.S. Energy Information Administration (EIA) - Sector

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    RenewableAlternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication...

  4. Low Carbon Society Toward 2050: Indonesia Energy Sector | Open...

    Open Energy Info (EERE)

    for Global Environmental Strategies, Mizuho Information & Research Institute - Japan, Kyoto University, Institut Teknologi Bandung (ITB) - Indonesia Sector: Energy Focus...

  5. Energy Critical Infrastructure and Key Resources Sector-Specific

    Office of Environmental Management (EM)

    Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) May 2007 Department of Energy Energy Sector Government Coordinating Council Letter of Support i ii Energy Sector-Specific Plan (Redacted) Energy Sector Coordinating Councils Letter of Concurrence The National Infrastructure Protection Plan (NIPP) provides the unifying structure for the integration of federal critical infrastructures and key resources (CI/KR)

  6. Chapter 2 - Energy Sectors and Systems | Department of Energy

    Office of Environmental Management (EM)

    2 - Energy Sectors and Systems Chapter 2 - Energy Sectors and Systems Chapter 2 - Energy Sectors and Systems Within and between the electricity, fuels, transportation, buildings, and manufacturing sectors, increasing interconnectedness and complexity are creating opportunities and challenges that can be approached from a systems perspective. Some of the most transformational opportunities exist at the systems level. They are enabled by the ability to understand, predict, and control very large

  7. Energy Outlook for the Transport Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outlook for the Transport Sector Energy Outlook for the Transport Sector Energy Outlook for the Transport Sector PDF icon deer10_karsner.pdf More Documents & Publications The Outlook for Energy: A View to 2030 The Drive for Energy Diversity and Sustainability: The Impact on Transportation Fuels and Propulsion System Portfolios Algae Biofuels Technology

  8. Oak Ridge Reservation’s emergency sectors change

    Broader source: Energy.gov [DOE]

    TEMA has issued revised emergency sectors for the DOE Oak Ridge Reservation. These sectors, labeled A-Y, determine which areas should take action if an event occurs at one of DOE’s sites locally. The new sector boundaries have improved correlation with roads, waterways, and recognizable landmarks.

  9. Energy Sector Cybersecurity Framework Implementation Guidance - Draft for

    Office of Environmental Management (EM)

    Public Comment & Comment Submission Form (September 2014) | Department of Energy Sector Cybersecurity Framework Implementation Guidance - Draft for Public Comment & Comment Submission Form (September 2014) Energy Sector Cybersecurity Framework Implementation Guidance - Draft for Public Comment & Comment Submission Form (September 2014) On September 12, 2014, the Department issued a Federal Register Notice announcing the availability of the Energy Sector Cybersecurity Framework

  10. U.S.-China Energy Efficiency Forum

    Broader source: Energy.gov [DOE]

    The Second U.S.-China Energy Efficiency Forum, held May 5-6, 2011 in the U.S. at Lawrence Berkeley National Laboratory in Berkeley, California, highlighted U.S.-China cooperation on energy...

  11. Shenyang, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Shenyang, China: Energy Resources Jump to: navigation, search Name Shenyang, China Equivalent URI DBpedia GeoNames ID 2034937 Coordinates 41.79222, 123.43278 Show Map Loading...

  12. Baoding, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Baoding, China: Energy Resources Jump to: navigation, search Name Baoding, China Equivalent URI DBpedia GeoNames ID 1816971 Coordinates 38.851111, 115.490278 Show Map Loading...

  13. Tianjin, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tianjin, China: Energy Resources Jump to: navigation, search Name Tianjin, China Equivalent URI DBpedia GeoNames ID 1792947 Coordinates 39.14222, 117.17667 Show Map Loading...

  14. Wind Power in China | Open Energy Information

    Open Energy Info (EERE)

    Wind Power in China Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Contents 1 Summary 2 Estimate Potential 3 Current Projects 4 China...

  15. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production

    SciTech Connect (OSTI)

    Gregg, J; Andres, Robert Joseph; Marland, Gregg

    2008-01-01

    Release of carbon dioxide (CO2) from fossil fuel combustion and cement manufacture is the primary anthropogenic driver of climate change. Our best estimate is that China became the largest national source of CO2 emissions during 2006. Previously, the United States (US) had occupied that position. However, the annual emission rate in the US has remained relatively stable between 2001-2006 while the emission rate in China has more than doubled, apparently eclipsing that of the US in late 2006. Here we present the seasonal and spatial pattern of CO2 emissions in China, as well as the sectoral breakdown of emissions. Though our best point estimate places China in the lead position in terms of CO2 emissions, we qualify this statement in a discussion of the uncertainty in the underlying data (3-5% for the US; 15-20% for China). Finally, we comment briefly on the implications of China's new position with respect to international agreements to mitigate climate change.

  16. Roadmap to Secure Control Systems in the Energy Sector

    Energy Savers [EERE]

    Roadmap to Secure Control Systems in the Energy Sector -  - Foreword T his document, the Roadmap to Secure Control Systems in the Energy Sector, outlines a coherent plan for improing cyber security in the energy sector. It is the result of an unprecedented collaboration between the energy sector and goernment to identify concrete steps to secure control systems used in the electricity, oil, and natural gas sectors oer the next ten years. The Roadmap proides a strategic

  17. Scenarios of Building Energy Demand for China with a Detailed Regional Representation

    SciTech Connect (OSTI)

    Yu, Sha; Eom, Jiyong; Zhou, Yuyu; Evans, Meredydd; Clarke, Leon E.

    2014-02-07

    Building energy consumption currently accounts for 28% of China’s total energy use and is expected to continue to grow induced by floorspace expansion, income growth, and population change. Fuel sources and building services are also evolving over time as well as across regions and building types. To understand sectoral and regional difference in building energy use and how socioeconomic, physical, and technological development influence the evolution of the Chinese building sector, this study developed a building energy use model for China downscaled into four climate regions under an integrated assessment framework. Three building types (rural residential, urban residential, and commercial) were modeled specifically in each climate region. Our study finds that the Cold and Hot Summer Cold Winter regions lead in total building energy use. The impact of climate change on heating energy use is more significant than that of cooling energy use in most climate regions. Both rural and urban households will experience fuel switch from fossil fuel to cleaner fuels. Commercial buildings will experience rapid growth in electrification and energy intensity. Improved understanding of Chinese buildings with climate change highlighted in this study will help policy makers develop targeted policies and prioritize building energy efficiency measures.

  18. The Greening of the Middle Kingdom: The Story of Energy Efficiency in China

    SciTech Connect (OSTI)

    Levine, Mark D.; Zhou, Nan; Price, Lynn

    2009-05-01

    The dominant image of China's energy system is of billowing smokestacks from the combustion of coal. More heavily dependent on coal than any other major country, China uses it for about 70 percent of its energy (NBS, 2008). Furthermore, until recently, China had very few environmental controls on emissions from coal combustion; recent efforts to control sulfur dioxide (SO{sub 2}) emissions appear to be meeting with some success (Economy, 2007, 2009). Figure 1 shows the dominant use of coal in China's energy system from 1950 to 1980 (NBS, various years). However, this is just one side of China's energy story. Figure 2 illustrates the second part, and what may be the most important part of the story - China's energy system since 1980, shortly after Deng Xiaoping assumed full leadership. This figure compares the trends in energy consumption and gross domestic product (GDP) by indexing both values to 100 in 1980. The upper line shows what energy consumption in China would have been if it had grown at the same rate as GDP, since energy consumption usually increases in lockstep with GDP in an industrializing, developing country, at least until it reaches a high economic level. The lower line in Figure 2 shows China's actual energy consumption, also indexed to 1980. The striking difference between the lines shows that GDP in China grew much faster than energy demand from 1980 to 2002. As a result, by 2002 energy and energy-related carbon dioxide (CO{sub 2}) emissions were more than 40% percent of what they would have been if energy and GDP had grown in tandem. In the next chapter of China's energy history, from 2002 to 2005, the increase in energy demand outstripped a very rapidly growing economy, and because of the large size of the Chinese economy, the increase had substantial impacts. The construction of power plants increased to 100 gigawatts per year; over the three-year period newly constructed plants had a capacity of more than 30 percent of total electricity-generation capacity in the United States. At the same time, energy-related CO{sub 2} emissions in China increased dramatically. In the latest stage, another abrupt change, this time for the better in terms of energy efficiency, began late in 2005. As senior officials in the government turned their attention to the problem of growing energy demand, the government set a mandatory goal for 2010 of a 20 percent reduction in energy intensity (defined as energy use per unit of GDP) from 2005 levels. To meet this goal, China undertook significant legislative, regulatory, and organizational reforms at the national, provincial, and municipal levels to ensure that measures to reduce energy intensity would be implemented in all sectors and activities in China. At the time of this writing, it appears that China is on its way to meeting the 20 percent goal, thus reducing CO{sub 2} emissions by 1.5 billion tones, as compared with consumption at 2005 energy-intensity levels. In this paper, we describe and assess these three significant periods in China's energy story and provide a context by briefly reviewing the three decades prior to 1980.

  19. Hidden sector DM models and Higgs physics

    SciTech Connect (OSTI)

    Ko, P.

    2014-06-24

    We present an extension of the standard model to dark sector with an unbroken local dark U(1){sub X} symmetry. Including various singlet portal interactions provided by the standard model Higgs, right-handed neutrinos and kinetic mixing, we show that the model can address most of phenomenological issues (inflation, neutrino mass and mixing, baryon number asymmetry, dark matter, direct/indirect dark matter searches, some scale scale puzzles of the standard collisionless cold dark matter, vacuum stability of the standard model Higgs potential, dark radiation) and be regarded as an alternative to the standard model. The Higgs signal strength is equal to one as in the standard model for unbroken U(1){sub X} case with a scalar dark matter, but it could be less than one independent of decay channels if the dark matter is a dark sector fermion or if U(1){sub X} is spontaneously broken, because of a mixing with a new neutral scalar boson in the models.

  20. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    SciTech Connect (OSTI)

    Zhou, Nan; Fridley, David; Zheng, Nina; Pierrot, Andre

    2010-06-07

    In recent years China's energy consumption has increased rapidly. The problem of high energy consumption intensity and low energy utilization efficiency is serious, and the contradiction between economic development and energy and environmental resources has become increasingly acute, making energy conservation and consumption reduction an important society-wide concern. At the same time, global climate change has and will continue to have profound impacts on human survival and development, and is another major challenge to all countries. In order to accelerate China's energy conservation and emission reduction work, the National Leading Group to Address Climate Change, Energy Conservation and Emission Reduction was founded with Premier Wen Jiabao as the head, and the 'Comprehensive Work Program of Energy Conservation and Emission Reduction' and 'China's National Program of Addressing Climate Change' were issued, under which China's energy conservation and emission reduction work has been fully deployed. Efforts to promote energy efficiency have been further strengthened in all levels of government, and various policies and measures have progressively been issued and implemented. In addition, based on China's experience with implementing energy-saving priority strategies over the past 20+ years, our government established a goal of a 20% decrease in energy consumption per unit GDP in the 'Eleventh Five-year Development Plan'. Furthermore, in November 2009, in order to support global greenhouse gas emission reduction activities and promote China's low carbon economic development, the government established a further 40-50% reduction in energy consumption per unit GDP by 2020 compared to the year 2005. Improving energy utilization efficiency by scientific and technological progress will undoubtedly play an important role in achieving the above stated objectives. The improvement of energy efficiency of energy consuming products has always been an important component of all countries energy strategies. As we all know, a very large amount of total energy consumption is due to energy consuming products and equipment, which account for about 50% of China's total energy consumption. However, the current average energy utilization efficiency of this sector is only about 60%, 10 percent lower than the international advanced level. Therefore, China's energy consuming products and equipment sector holds great energy-saving potential. On the other hand, the energy supplied to these products is mainly from fossil fuel combustion, a major source of greenhouse gas (GHG) emissions. Therefore, improving the energy efficiency and augmenting the market share of market-dominant energy consuming products is of significant importance to achieving China's energy saving and emission reduction target and is an effective means to deal with energy and environmental constraints and climate change issues. Main energy consuming products generally include widely-used home appliances, industrial equipment, office equipment, transportation vehicles, etc. China is one of the major manufacturers and exporters of energy end-using products such as air-conditioners, refrigerators, televisions, etc. Their overall energy efficiency is comparatively low and the products are poorly designed, leading to great energy-saving potential. For example, electricity consumption of air conditioners accounts for about 20% of China's total electricity consumption and 40% of the summer electricity peak load in large and medium cities. However, less than 5% of units sold in the domestic market in 2009 reached the standard's highly efficient level of grade 2 above. The electricity consumption of electric motors and their related drive systems accounts for about 60% of China's total electricity consumption; however, less than 2% of the domestic market share consists of energy-efficient electric motor products. Promoting the energy efficiency and market shares of main energy-consuming products has become an important determinant of achieving energy conservation and emission reduc

  1. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    SciTech Connect (OSTI)

    Aden, Nathaniel T.; Zheng, Nina; Fridley, David G.

    2009-07-01

    Urbanization has re-shaped China's economy, society, and energy system. Between 1990 and 2007 China added 290 million new urban residents, bringing the total urbanization rate to 45%. This population adjustment spurred energy demand for construction of new buildings and infrastructure, as well as additional residential use as rural biomass was replaced with urban commercial energy services. Primary energy demand grew at an average annual rate of 10% between 2000 and 2007. Urbanization's effect on energy demand was compounded by the boom in domestic infrastructure investment, and in the export trade following World Trade Organization (WTO) accession in 2001. Industry energy consumption was most directly affected by this acceleration. Whereas industry comprised 32% of 2007 U.S. energy use, it accounted for 75% of China's 2007 energy consumption. Five sub-sectors accounted for 78% of China's industry energy use in 2007: iron and steel, energy extraction and processing, chemicals, cement, and non-ferrous metals. Ferrous metals alone accounted for 25% of industry and 18% of total primary energy use. The rapid growth of heavy industry has led China to become by far the world's largest producer of steel, cement, aluminum, and other energy-intensive commodities. However, the energy efficiency of heavy industrial production continues to lag world best practice levels. This study uses scenario analysis to quantify the impact of urbanization and trade on industrial and residential energy consumption from 2000 to 2025. The BAU scenario assumed 67% urbanization, frozen export amounts of heavy industrial products, and achievement of world best practices by 2025. The China Lightens Up (CLU) scenario assumed 55% urbanization, zero net exports of heavy industrial products, and more aggressive efficiency improvements by 2025. The five dominant industry sub-sectors were modeled in both scenarios using a LEAP energy end-use accounting model. The results of this study show that a CLU-style development path would avoid 430 million tonnes coal-equivalent energy use by 2025. More than 60% of these energy savings would come from reduced activity and production levels. In carbon terms, this would amount to more than a billion-tonne reduction of energy-related carbon emissions compared with the BAU scenario in 2025, though the absolute level of emissions rises in both scenarios. Aside from the energy and carbon savings related to CLU scenario development, this study showed impending saturation effects in commercial construction, urban appliance ownership, and fertilizer application. The implication of these findings is that urbanization will have a direct impact on future energy use and emissions - policies to guide urban growth can play a central role in China's efforts to mitigate emissions growth.

  2. Cogeneration development and market potential in China

    SciTech Connect (OSTI)

    Yang, F.; Levine, M.D.; Naeb, J.; Xin, D.

    1996-05-01

    China`s energy production is largely dependent on coal. China currently ranks third in global CO{sub 2} emissions, and rapid economic expansion is expected to raise emission levels even further in the coming decades. Cogeneration provides a cost-effective way of both utilizing limited energy resources and minimizing the environmental impacts from use of fossil fuels. However, in the last 10 years state investments for cogeneration projects in China have dropped by a factor of 4. This has prompted this study. Along with this in-depth analysis of China`s cogeneration policies and investment allocation is the speculation that advanced US technology and capital can assist in the continued growth of the cogeneration industry. This study provides the most current information available on cogeneration development and market potential in China.

  3. Projected Changes in Mean and Interannual Variability of Surface Water over Continental China

    SciTech Connect (OSTI)

    Leng, Guoyong; Tang, Qiuhong; Huang, Maoyi; Hong, Yang; Leung, Lai-Yung R.

    2015-05-01

    Five General Circulation Model (GCM) climate projections under the RCP8.5 emission scenario were used to drive the Variable Infiltration Capacity (VIC) hydrologic model to investigate the impacts of climate change on hydrologic cycle over continental China in the 21st century. The bias-corrected climatic variables were generated for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5) by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). Results showed much larger fractional changes of annual mean Evaportranspiration (ET) per unit warming than the corresponding fractional changes of Precipitation (P) per unit warming across the country especially for South China, which led to notable decrease of surface water variability (P-E). Specifically, negative trends for annual mean runoff up to -0.33%/decade and soil moisture trends varying between -0.02 to -0.13%/decade were found for most river basins across China. Coincidentally, interannual variability for both runoff and soil moisture exhibited significant positive trends for almost all river basins across China, implying an increase in extremes relative to the mean conditions. Noticeably, the largest positive trends for runoff variability and soil moisture variability, which were up to 38 0.41%/decade and 0.90%/decade, both occurred in Southwest China. In addition to the regional contrast, intra-seasonal variation was also large for the runoff mean and runoff variability changes, but small for the soil moisture mean and variability changes. Our results suggest that future climate change could further exacerbate existing water-related risks (e.g. floods and droughts) across China as indicated by the marked decrease of surface water amounts combined with steady increase of interannual variability throughout the 21st century. This study highlights the regional contrast and intra-seasonal variations for the projected hydrologic changes and could provide muti-scale guidance for assessing effective adaptation strategies for the country on a river basin, regional, or as whole.

  4. Interacting vacuum energy in the dark sector

    SciTech Connect (OSTI)

    Chimento, L. P.; Carneiro, S.

    2015-03-26

    We analyse three cosmological scenarios with interaction in the dark sector, which are particular cases of a general expression for the energy flux from vacuum to matter. In the first case the interaction leads to a transition from an unstable de Sitter phase to a radiation dominated universe, avoiding in this way the initial singularity. In the second case the interaction gives rise to a slow-roll power-law inflation. Finally, the third scenario is a concordance model for the late-time universe, with the vacuum term decaying into cold dark matter. We identify the physics behind these forms of interaction and show that they can be described as particular types of the modified Chaplygin gas.

  5. Solar Photovoltaic Financing: Residential Sector Deployment

    SciTech Connect (OSTI)

    Coughlin, J.; Cory, K.

    2009-03-01

    This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

  6. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect (OSTI)

    Coughlin, Katie

    2014-12-01

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  7. Gas conversion opportunities in LILCO's commercial sector

    SciTech Connect (OSTI)

    Pierce, B.

    1993-03-01

    This report presents the results of a preliminary investigation into opportunities for gas conservation in Long Island Lighting Company's commercial sector. It focusses on gas-fired heating equipment. Various sources of data are examined in order to characterize the commercial buildings and equipment in the service territory. Several key pieces of information necessary to predict savings potential are identified. These include the efficiencies and size distribution of existing equipment. Twenty-one specific conservation measures are identified and their applicability is discussed in terms of equipment size. Recommendations include improving the characterization of existing buildings and equipment, and developing a greater understanding of the savings and costs of conservation measures, and their interactions, especially in the middle size range of buildings and equipment.

  8. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; Nishida, Masaru; Gao, Weijun

    2008-12-01

    China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

  9. Workforce Training for the Electric Power Sector: Awards | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Awards Workforce Training for the Electric Power Sector: Awards List of Workforce Training Awards for the Electric Power Sector under the American Recovery and Reinvestment Act organized by state, including, city, recipients, type of project, description, location, Department of Energy funding, and total project cost. Updated November 10, 2011. PDF icon Workforce Development Awards 2011 11 10.pdf More Documents & Publications Workforce Training for the Electric Power Sector

  10. Workforce Training for the Electric Power Sector: Map of Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Map of Projects Workforce Training for the Electric Power Sector: Map of Projects Map showing the number of projects awarded in each State through the Workforce Training for the Electric Power Sector grants under the American Recovery and Reinvestment Act. PDF icon Workforce Training for the Electric Power Sector: Map of Projects More Documents & Publications Smart Grid Investment Grants: Map of Projects Developing and Enhancing Workforce Training Programs: Number of

  11. Dams and Energy Sectors Interdependency Study, September 2011 | Department

    Energy Savers [EERE]

    of Energy Dams and Energy Sectors Interdependency Study, September 2011 Dams and Energy Sectors Interdependency Study, September 2011 The U.S. Department of Energy (DOE) and the U.S. Department of Homeland Security (DHS) collaborated to examine the interdependencies between two critical infrastructure sectors - Dams and Energy. The study highlights the importance of hydroelectric power generation, with a particular emphasis on the variability of weather patterns and competing demands for

  12. Static Sankey Diagram Full Sector Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Full Sector Manufacturing Static Sankey Diagram Full Sector Manufacturing The U.S. Manufacturing Sector Static Sankey diagram shows how total primary energy is used by U.S. manufacturing plants. Click on the Onsite Generation, Process Energy or Nonprocess Energy thumbnails below the diagram to see further detail on energy flows in manufacturing. Also, see the Dynamic Manufacturing Energy Sankey Tool to pan, zoom, and customize the manufacturing Sankey data and compare energy consumption across

  13. Transitioning the Transportation Sector: Exploring the Intersection of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Fuel Cell and Natural Gas Vehicles | Department of Energy Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Sandia National Laboratories, the American Gas Association, and Toyota, in support of the U.S. Department of Energy (DOE), held the Transitioning the Transportation Sector: Exploring the Intersection

  14. Commercial Sector Financing Needs and Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Sector Financing Needs and Opportunities Commercial Sector Financing Needs and Opportunities Large commercial buildings use a great deal of energy and often offer attractive payback periods for energy efficiency investments. The clearest incentives in the large commercial building sector are usually for investment in buildings where the owner pays the energy bills or the tenant has a lease term that is longer than the payback period on the project. If the owner of the facility is

  15. Partnership for Energy Sector Climate Resilience | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership for Energy Sector Climate Resilience Partnership for Energy Sector Climate Resilience The Partnership for Energy Sector Climate Resilience is an initiative to enhance U.S. energy security by improving the resilience of energy infrastructure to extreme weather and climate change impacts. The goal is to accelerate investment in technologies, practices, and policies that will enable a resilient 21st century energy system. Under this Partnership, owners and operators of energy assets

  16. Designing Effective State Programs for the Industrial Sector - New SEE

    Office of Environmental Management (EM)

    Action Publication | Department of Energy Designing Effective State Programs for the Industrial Sector - New SEE Action Publication Designing Effective State Programs for the Industrial Sector - New SEE Action Publication March 24, 2014 - 12:56pm Addthis Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy efficiency programs delivered by a

  17. US-China_Fact_Sheet_Coal.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal.pdf US-China_Fact_Sheet_Coal.pdf PDF icon US-China_Fact_Sheet_Coal.pdf More Documents & Publications FACT SHEET: U.S.-China Clean Energy Cooperation Announcements US-China Clean Energy Cooperation Progress Report on U.S.-China Energy Cooperation

  18. Oak Ridge Reservation Emergency Sectors Changing | Y-12 National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pertaining to their safety will be issued by sector," said Jim Bassham, Director of TEMA. "Periodic updates to emergency plans, like these changes, are part of TEMA's normal...

  19. Assess institutional frameworks for LEDS for land-use sector...

    Open Energy Info (EERE)

    Energy in Low Income Countries (SREP) Nepal-Sectoral Climate Impacts Economic Assessment Nepal-UNEP Green Economy Advisory Services Nicaragua-Joint Programme on Resource...

  20. Land Transport Sector in Bangladesh: An Analysis Toward Motivating...

    Open Energy Info (EERE)

    Toward Motivating GHG Emission Reduction Strategies Jump to: navigation, search Name Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Emission Reduction...

  1. Public Finance Mechanisms to Catalyze Sustainable Energy Sector...

    Open Energy Info (EERE)

    all aspects of the sector including technology innovation, project development, (SME) business and industry support, consumer awareness and end-user finance. Regardless of...

  2. Changes in Energy Intensity in the Manufacturing Sector 1985...

    U.S. Energy Information Administration (EIA) Indexed Site

    (34) Machinery (35) El. Equip.(36) Instruments (38) Misc. (39) Appendices Survey Design Quality of Data Sector Description Nonobservation Errors Glossary Intensity Sites...

  3. DOE has published the revised 2010 Energy Sector Specific Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy announces the publication of the Energy Sector-Specific Plan: An Annex to the National Infrastructure Protection Plan 2010.

  4. Private Sector Outreach and Partnerships | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The division's domestic capabilities have been greatly enhanced by the relationships that ... The relationships ISER maintains with energy sector owners and operators and public ...

  5. User:GregZiebold/Sector test | Open Energy Information

    Open Energy Info (EERE)

    search Query all sector types for Companies: Bioenergy Biofuels Biomass Buildings Carbon Efficiency Geothermal energy Hydro Hydrogen Marine and Hydrokinetic Ocean Renewable Energy...

  6. DOE Encourages Utility Sector Nominations to Commerce Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commerce Department's Spectrum Advisory Committee DOE Encourages Utility Sector Nominations to Commerce Department's Spectrum Advisory Committee December 14, 2010 - 5:40pm Addthis...

  7. Low Carbon Growth Plans: A Sectoral Approach to Climate Protection...

    Open Energy Info (EERE)

    to Climate Protection Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low Carbon Growth Plans: A Sectoral Approach to Climate Protection AgencyCompany Organization:...

  8. Accounting for Co-benefits in Asia's Transportation Sector: Methods...

    Open Energy Info (EERE)

    Methods and Applications Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Accounting for Co-benefits in Asia's Transportation Sector: Methods and Applications...

  9. Energy Efficiency Financing for Public Sector Projects | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Info Sector Name State Administrator California Energy Commission Website http:www.energy.ca.govefficiencyfinancingindex.html State California Program Type Loan Program...

  10. Cameroon-Forest Sector Development in a Difficult Political Economy...

    Open Energy Info (EERE)

    Bank Sector Land Focus Area Forestry Topics Implementation, Market analysis Resource Type Lessons learnedbest practices Website http:lnweb90.worldbank.orgo Country Cameroon UN...

  11. Commercial Sector Demand Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  12. Climate Change Mitigation in the Energy and Forestry Sectors...

    Open Energy Info (EERE)

    of Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change Mitigation in the Energy and Forestry Sectors of Developing Countries...

  13. Indonesia-NAMA Programme for the Construction Sector in Asia...

    Open Energy Info (EERE)

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market...

  14. Thailand-NAMA Programme for the Construction Sector in Asia ...

    Open Energy Info (EERE)

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market...

  15. Philippines-NAMA Programme for the Construction Sector in Asia...

    Open Energy Info (EERE)

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market...

  16. Vietnam-NAMA Programme for the Construction Sector in Asia |...

    Open Energy Info (EERE)

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market...

  17. Malaysia-NAMA Programme for the Construction Sector in Asia ...

    Open Energy Info (EERE)

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market...

  18. The Greenhouse Gas Protocol Initiative: Sector Specific Tools...

    Open Energy Info (EERE)

    World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Industry, Greenhouse Gas Phase: Determine Baseline, Evaluate...

  19. Impacts of urban transportation mode split on CO{sub 2} emissions in Jinan, China.

    SciTech Connect (OSTI)

    He, D.; Meng, F.; Wang, M.; He, K.

    2011-04-01

    As the world's largest developing country, China currently is undergoing rapid urbanization and motorization, which will result in far-reaching impacts on energy and the environment. According to estimates, energy use and carbon emissions in the transportation sector will comprise roughly 30% of total emissions by 2030. Since the late 1990s, transportation-related issues such as energy, consumption, and carbon emissions have become a policy focus in China. To date, most research and policies have centered on vehicle technologies that promote vehicle efficiency and reduced emissions. Limited research exists on the control of greenhouse gases through mode shifts in urban transportation - in particular, through the promotion of public transit. The purpose of this study is to establish a methodology to analyze carbon emissions from the urban transportation sector at the Chinese city level. By using Jinan, the capital of China's Shandong Province, as an example, we have developed an analytical model to simulate energy consumption and carbon emissions based on the number of trips, the transportation mode split, and the trip distance. This model has enabled us to assess the impacts of the transportation mode split on energy consumption and carbon emissions. Furthermore, this paper reviews a set of methods for data collection, estimation, and processing for situations where statistical data are scarce in China. This paper also describes the simulation of three transportation system development scenarios. The results of this study illustrate that if no policy intervention is implemented for the transportation mode split (the business-as-usual (BAU) case), then emissions from Chinese urban transportation systems will quadruple by 2030. However, a dense, mixed land-use pattern, as well as transportation policies that encourage public transportation, would result in the elimination of 1.93 million tons of carbon emissions - approximately 50% of the BAU scenario emissions.

  20. LBNL China Energy Group | Open Energy Information

    Open Energy Info (EERE)

    Organization Lawrence Berkeley National Laboratory Sector Energy Focus Area Energy Efficiency Topics Implementation, GHG inventory, Market analysis, Policiesdeployment programs,...

  1. Category:Wind power in China | Open Energy Information

    Open Energy Info (EERE)

    Wind power in China Jump to: navigation, search Category: Wind Power in China Pages in category "Wind power in China" The following 2 pages are in this category, out of 2 total. C...

  2. China Baolv Energy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Baolv Energy Co Ltd Jump to: navigation, search Name: China Baolv Energy Co Ltd Place: China Product: China Baolv Energy, a subsidiary of Hong Kong Health Check and Laboratory...

  3. China-Low Carbon Development Zones | Open Energy Information

    Open Energy Info (EERE)

    China-Low Carbon Development Zones (Redirected from E3G-China-Low Carbon Development Zones) Jump to: navigation, search Name China-Low Carbon Development Zones AgencyCompany...

  4. Evergreen China Energy Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Technology Co Ltd Jump to: navigation, search Name: Evergreen China Energy Technology Co Ltd Place: China Product: China-based joint venture that develops K-Fuel refined coal...

  5. Big China Solar Energy Group | Open Energy Information

    Open Energy Info (EERE)

    China Solar Energy Group Jump to: navigation, search Logo: Big China Solar Energy Group Name: Big China Solar Energy Group Address: 8-306, Dingtaifenghua Community,Qianhai Road,...

  6. Antineutrino Oscillations in the Atmospheric Sector

    SciTech Connect (OSTI)

    Himmel, Alexander I.; /Caltech

    2011-05-01

    This thesis presents measurements of the oscillations of muon antineutrinos in the atmospheric sector, where world knowledge of antineutrino oscillations lags well behind the knowledge of neutrinos, as well as a search for {nu}{sub {mu}} {yields} {bar {nu}}{sub {mu}} transitions. Differences between neutrino and antineutrino oscillations could be a sign of physics beyond the Standard Model, including non-standard matter interactions or the violation of CPT symmetry. These measurements leverage the sign-selecting capabilities of the magnetized steel-scintillator MINOS detectors to analyze antineutrinos from the NuMI beam, both when it is in neutrino-mode and when it is in antineutrino-mode. Antineutrino oscillations are observed at |{Delta}{bar m}{sub atm}{sup 2}| = (3.36{sub -0.40}{sup +0.46}(stat) {+-} 0.06(syst)) x 10{sup -3} eV{sup 2} and sin{sup 2}(2{bar {theta}}{sub 23}) = 0.860{sub -0.12}{sup +0.11}(stat) {+-} 0.01(syst). The oscillation parameters measured for antineutrinos and those measured by MINOS for neutrinos differ by a large enough margin that the chance of obtaining two values as discrepant as those observed is only 2%, assuming the two measurements arise from the same underlying mechanism, with the same parameter values. No evidence is seen for neutrino-to-antineutrino transitions.

  7. China rationalizes its renewable energy policy

    SciTech Connect (OSTI)

    Su, Jack H.; Hui, Simone S.; Tsen, Kevin H.

    2010-04-15

    China's over-reliance on thermal power generation, especially coal-fired power stations, is well-documented. While nuclear power continues as an option to coal, China's strides in renewable energy are unprecedented. Recent amendments to the Renewable Energy Law, first promulgated in 2006, attempt to rationalize the regulatory regime governing wind, solar, hydropower and biomass projects in China, currently fraught with inadequate interconnection and tariff shock issues. (author)

  8. U.S.-China Clean Energy Cooperation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    China Clean Energy Cooperation A Progress rePort by the U.s. DePArtment of energy January 2011 Science is not a zero-sum game. In my experience as a scientist, collaborations with other research groups greatly accelerated our progress. Similarly, cooperation between the United States and China can greatly accelerate progress on clean energy technologies, benefiting both countries. As the world's largest producers and consumers of energy, the United States and China share many common challenges

  9. Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS

    Office of Environmental Management (EM)

    3311, 3312), October 2012 (MECS 2006) | Department of Energy - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) PDF icon steel_footprint_2012.pdf More Documents & Publications MECS 2006 - Iron and Steel Iron and Steel (2010 MECS) MECS 2006 - Cement

  10. List of Companies in Vehicles Sector | Open Energy Information

    Open Energy Info (EERE)

    Forge KPIT Cummins JV Bluebird Automotive Boston Power Brammo, Inc. CalCars California Fuel Cell Partnership CaFCP Century Asset Management China Titans Energy Technology Group Co...

  11. China | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    China | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  12. The properties of cross-correlation and spectra of the low-mass...

    Office of Scientific and Technical Information (OSTI)

    Affiliations Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China) Particle Astrophysics Center, Institute...

  13. China BAK Battery Inc | Open Energy Information

    Open Energy Info (EERE)

    China Zip: 518119 Product: Guangdong- based manufacturer of standard and customized Lithium Ion rechargeable batteries. Coordinates: 22.546789, 114.112556 Show Map Loading...

  14. China-NREL Cooperation | Open Energy Information

    Open Energy Info (EERE)

    Eastern Asia References NREL's Bilateral Partnerships 1 Abstract NREL supports biofuels, wind, rural electrification, photovoltaics (PV), and buildings projects in China....

  15. China Integrated Energy | Open Energy Information

    Open Energy Info (EERE)

    integrated energy company in China engaged in three business segments: the production and sale of biodiesel, the wholesale distribution of finished oil and heavy oil...

  16. China Shandong Penglai Electric Power Equipment Manufacturing...

    Open Energy Info (EERE)

    Penglai Electric Power Equipment Manufacturing Jump to: navigation, search Name: China Shandong Penglai Electric Power Equipment Manufacturing Place: Penglai, Shandong Province,...

  17. China Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home China Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References...

  18. China Low Carbon Platform | Open Energy Information

    Open Energy Info (EERE)

    Low Carbon Platform Jump to: navigation, search Name China Low Carbon Platform AgencyCompany Organization Institute of Development Studies, Climate Change and Development Centre,...

  19. Wuxi, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wuxi, China: Energy Resources Jump to: navigation, search Name Wuxi Equivalent URI DBpedia Coordinates 29.228890030194, 117.0703125 Show Map Loading map......

  20. Liaoning, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Liaoning, China: Energy Resources (Redirected from Liaoning Province) Jump to: navigation, search Equivalent URI DBpedia GeoNames ID 2036115 Coordinates 41, 123 Show Map...

  1. Liaoning, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Liaoning, China: Energy Resources Jump to: navigation, search Equivalent URI DBpedia GeoNames ID 2036115 Coordinates 41, 123 Show Map Loading map... "minzoom":false,"mappingse...

  2. Jiangxi Ganzhong Chlorine Caustic Company aka China Jiangxi Chlor...

    Open Energy Info (EERE)

    Ganzhong Chlorine Caustic Company aka China Jiangxi Chlor Alkali Manufacturing Jump to: navigation, search Name: Jiangxi Ganzhong Chlorine & Caustic Company (aka China Jiangxi...

  3. China Solar Photovoltaic Group CNPV aka Dongying Photovoltaic...

    Open Energy Info (EERE)

    Group CNPV aka Dongying Photovoltaic Power Co Ltd or China Solar PV Jump to: navigation, search Name: China Solar Photovoltaic Group (CNPV, aka Dongying Photovoltaic Power Co Ltd...

  4. China Guangdong Nuclear Power Company | Open Energy Information

    Open Energy Info (EERE)

    Power Company Jump to: navigation, search Name: China Guangdong Nuclear Power Company Place: Guangzhou, China Coordinates: 23.129075, 113.264423 Show Map Loading map......

  5. China Guangdong Nuclear Power Holding Co Ltd CGNPC | Open Energy...

    Open Energy Info (EERE)

    Nuclear Power Holding Co Ltd CGNPC Jump to: navigation, search Name: China Guangdong Nuclear Power Holding Co Ltd (CGNPC) Place: Shenzhen, Guangdong Province, China Zip: 518031...

  6. Corporate Clean Energy Investment Trends in Brazil, China, India...

    Open Energy Info (EERE)

    Corporate Clean Energy Investment Trends in Brazil, China, India and South Africa Jump to: navigation, search Name Corporate Clean Energy Investment Trends in Brazil, China, India...

  7. China Clean Energy Resource Ltd | Open Energy Information

    Open Energy Info (EERE)

    Energy Product: China Clean Energy Resources, Ltd., a manufacturer and distributor of biodiesel fuel and specialty chemicals made from renewable resources References: China...

  8. DOC-DOE China Mission Announcement Press Release | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Press Release More Documents & Publications DOC-DOE Joint China Mission Statement China 2015 Business Development Mission Marketing Flyer DOE-LPOEmail-Update001Through11

  9. China National Renewable Energy Centre (CNREC) | Open Energy...

    Open Energy Info (EERE)

    Centre (CNREC) Jump to: navigation, search Logo: China National Renewable Energy Centre (CNREC) Name China National Renewable Energy Centre (CNREC) AgencyCompany Organization...

  10. PetroChina Company Limited | Open Energy Information

    Open Energy Info (EERE)

    China's largest oil and gas company. PetroChina is involved in exploration, development, production and marketing of crude oil and natural gas; refining, transportation, storage...

  11. India's Energy [In]Security and Growing Competition from China...

    Office of Scientific and Technical Information (OSTI)

    India's Energy InSecurity and Growing Competition from China Citation Details In-Document Search Title: India's Energy InSecurity and Growing Competition from China Authors: ...

  12. China-Partnership for Climate Action | Open Energy Information

    Open Energy Info (EERE)

    Partnership for Climate Action (Redirected from Partnership for Climate Action - China) Jump to: navigation, search Name Partnership for Climate Action - China AgencyCompany...

  13. China Resources Wind Power Development Co Ltd Hua Run | Open...

    Open Energy Info (EERE)

    Resources Wind Power Development Co Ltd Hua Run Jump to: navigation, search Name: China Resources Wind Power Development Co Ltd (Hua Run) Place: Shantou, Guangdong Province, China...

  14. China Stream Fund Solar Energy JV | Open Energy Information

    Open Energy Info (EERE)

    Solar Energy JV Jump to: navigation, search Name: China Stream Fund Solar Energy JV Place: Changzhou, Jiangsu Province, China Zip: 213000 Product: JV between Stream High-Technology...

  15. China Xinjiang Sunoasis Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sunoasis Co Ltd Jump to: navigation, search Name: China Xinjiang Sunoasis Co Ltd Place: Urumuqi, Xinjiang Autonomous Region, China Zip: 830011 Product: PV module and other...

  16. China New Energy Ltd CNE | Open Energy Information

    Open Energy Info (EERE)

    CNE Jump to: navigation, search Name: China New Energy Ltd (CNE) Place: Guangzhou, Guangdong Province, China Zip: 510640 Product: A provider of production equipment and...

  17. China and India Industrial Efficiency NREL Partnership | Open...

    Open Energy Info (EERE)

    Industrial Efficiency NREL Partnership Jump to: navigation, search Logo: China-NREL Industrial Efficiency Partnership Name China-NREL Industrial Efficiency Partnership Agency...

  18. China-NREL Rural Electrification Projects | Open Energy Information

    Open Energy Info (EERE)

    Rural Electrification Projects Jump to: navigation, search Logo: China Rural Electrification Name China Rural Electrification AgencyCompany Organization National Renewable Energy...

  19. China Hyper Battery Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Battery Co Ltd Jump to: navigation, search Name: China Hyper Battery Co Ltd Place: Shenzhen, China Zip: 518048 Product: Manufacturer and exporter of batteries and battery packs....

  20. US-China Partnership for Climate Action | Open Energy Information

    Open Energy Info (EERE)

    US-China Partnership for Climate Action Jump to: navigation, search Name US-China Partnership for Climate Action AgencyCompany Organization Institute for Sustainable Communities...