National Library of Energy BETA

Sample records for beijing china sector

  1. China United Cleaning Technology Co Ltd Beijing | Open Energy...

    Open Energy Info (EERE)

    Technology Co Ltd, Beijing Place: Beijing Municipality, China Zip: 100012 Product: A Chinese PV cell equipment provider References: China United Cleaning Technology Co Ltd,...

  2. China Solar Energy Ltd Tianpu Xianxing Group aka Beijing Universal...

    Open Energy Info (EERE)

    China Solar Energy Ltd Tianpu Xianxing Group aka Beijing Universal Antecedence Jump to: navigation, search Name: China Solar Energy Ltd (Tianpu Xianxing Group, aka Beijing...

  3. China-Transportation Demand Management in Beijing: Mitigation...

    Open Energy Info (EERE)

    China-Transportation Demand Management in Beijing: Mitigation of Emissions in Urban Transport Jump to: navigation, search Name Transportation Demand Management in Beijing -...

  4. In-use vehicle emissions in China: Beijing study

    SciTech Connect (OSTI)

    Oliver, Hongyan H.; Gallagher, Kelly Sims ); Li, Mengliang; Qin, Kongjian; Zhang, Jianwei ); Liu, Huan; He, Kebin )

    2009-05-01

    China's economic boom in the last three decades has spurred increasing demand for transportation services and personal mobility. Consequently, vehicle population has grown rapidly since the early 1990s, especially in megacities such as Beijing, Guangzhou, and Tianjin. As a result, mobile sources have become more conspicuous contributors to urban air pollution in Chinese cities. Tianjin was our first focus city, and the study there took us about two years to complete. Building upon the experience and partnership generated through the Tianjin study, the research team carried out the Beijing study from fall 2007–fall 2008. Beijing was chosen to be our second focus city for several reasons: it has the largest local fleet and the highest percentage of the population owning vehicles among all Chinese cities, and it has suffered from severe air pollution, partially due to the ever-growing population of on-road vehicles.

  5. Climate Change and China's Agricultural Sector: An Overview of...

    Open Energy Info (EERE)

    Climate Change and China's Agricultural Sector: An Overview of Impacts, Adaptation and Mitigation Jump to: navigation, search Name Climate Change and China's Agricultural Sector:...

  6. CHINA CLIMATE CHANGE US The climate breakthrough in Beijing gives the world a

    E-Print Network [OSTI]

    CHINA · CLIMATE CHANGE · US The climate breakthrough in Beijing gives the world a fighting chance/AFP/Getty Images) Today's US-China joint announcement on climate change and energy is the most important advance on the climate change agenda in many years. While the full ramifications will only be known at the climate summit

  7. China's industrial sector in an international context

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Martin, Nathan; Lehman, Bryan; Sinton, Jonathan

    2000-05-01

    The industrial sector accounts for 40% of global energy use. In 1995, developing countries used an estimated 48 EJ for industrial production, over one-third of world total industrial primary energy use (Price et al., 1998). Industrial output and energy use in developing countries is dominated by China, India, and Brazil. China alone accounts for about 30 EJ (National Bureau of Statistics, 1999), or about 23% of world industrial energy use. China's industrial sector is extremely energy-intensive and accounted for almost 75% of the country's total energy use in 1997. Industrial energy use in China grew an average of 6.6% per year, from 14 EJ in 1985 to 30 EJ in 1997 (Sinton et al., 1996; National Bureau of Statistics, 1999). This growth is more than three times faster than the average growth that took place in the world during the past two decades. The industrial sector can be divided into light and heavy industry, reflecting the relative energy-intensity of the manufacturing processes. In China, about 80% of the energy used in the industrial sector is consumed by heavy industry. Of this, the largest energy-consuming industries are chemicals, ferrous metals, and building materials (Sinton et al., 1996). This paper presents the results of international comparisons of production levels and energy use in six energy-intensive subsectors: iron and steel, aluminum, cement, petroleum refining, ammonia, and ethylene. The sectoral analysis results indicate that energy requirements to produce a unit of raw material in China are often higher than industrialized countries for most of the products analyzed in this paper, reflecting a significant potential to continue to improve energy efficiency in heavy industry.

  8. World Conference on Earthquake Engineering October 12-17, 2008, Beijing, China

    E-Print Network [OSTI]

    Chao, Shih-Ho

    by using an energy balance equation where the energy needed to push the structure up to the target driftThe 14 th World Conference on Earthquake Engineering October 12-17, 2008, Beijing, China is calculated as a fraction of elastic input energy which is obtained from the selected elastic design velocity

  9. World Conference on Earthquake Engineering October 12-17, 2008, Beijing, China

    E-Print Network [OSTI]

    Chao, Shih-Ho

    by using an energy balance equation where the energy needed to push the structure up to the target driftThe 14 th World Conference on Earthquake Engineering October 12-17, 2008, Beijing, China FURTHER is calculated as a fraction of elastic input energy which is obtained from the selected elastic design spectra

  10. Limited Sectoral Trading between the EU ETS and China

    E-Print Network [OSTI]

    Limited Sectoral Trading between the EU ETS and China Claire Gavard, Niven Winchester and Sergey established research centers at MIT: the Center for Global Change Science (CGCS) and the Center for Energy://globalchange.mit.edu/ Printed on recycled paper #12;1 Limited Sectoral Trading between the EU ETS and China Claire Gavard

  11. 8/16/20128/16/2012 JD2, 20JD2, 20--31 August 2012, Beijing, China, Brazil31 August 2012, Beijing, China, Brazil 11 A.F. KholtyginA.F. Kholtygin11 , V.V.Dushin, V.V.Dushin11, N.P.Sudnik, N.P.Sudnik11, S.N. Fabrika, S.N. Fabrika22,,

    E-Print Network [OSTI]

    Crowther, Paul

    8/16/20128/16/2012 JD2, 20JD2, 20--31 August 2012, Beijing, China, Brazil31 August 2012, Beijing, China, Brazil 11 A.F. KholtyginA.F. Kholtygin11 , V.V.Dushin, V.V.Dushin11, N.P.Sudnik, N.P.Sudnik11, S, Brazil31 August 2012, Beijing, China, Brazil 22 Objects andObjects and program ofprogram

  12. Energy intensity in China's iron and steel sector

    E-Print Network [OSTI]

    Xu, Jingsi, M.C.P. Massachusetts Institute of Technology

    2011-01-01

    In this study, I examine the spatial and economic factors that influence energy intensity in China's iron and steel sector, namely industrial value added, renovation investment, coke consumption, and local coke supply. ...

  13. The domestic travel sector in China

    E-Print Network [OSTI]

    Anders, Jeff, M.B.A. Massachusetts Institute of Technology

    2007-01-01

    China is already the largest domestic tourism market in the world. Chinese citizens made as many as 800 million overnight domestic trips in 2005. While travel is not a new concept in China, the disposable income they wield, ...

  14. Sustainable Energy Future in China's Building Sector 

    E-Print Network [OSTI]

    Li, J.

    2007-01-01

    This article investigates the potentials of energy-saving and mitigation of green-house gas (GHG) emission offered by implementation of building energy efficiency policies in China. An overview of existing literature regarding long-term energy...

  15. Energy use and CO2 emissions of China’s industrial sector from a global perspective

    SciTech Connect (OSTI)

    Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick W.; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

    2013-07-10

    The industrial sector has accounted for more than 50% of China’s final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of China’s per-capita demands of basic industrial goods, industrial energy demand and CO2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095.

  16. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Natural Gas Electricity Total Transportation Fuel Consumption Petroleum as % Total ChinaChina’s energy. Primary Energy Consumption (EJ) nuclear natural gas

  17. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    11 Calibration of the Energy Consumption Data forSectoral energy consumption data are available in publishedof the sectoral energy consumption data in the statistics

  18. Energy Use in China: Sectoral Trends and Future Outlook

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

    2007-10-04

    This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77 million in2020. * Residential appliance ownership will show signs of saturation inurban households. The increase in residential energy consumption will belargely driven by urbanization, since rural homes will continue to havelow consumption levels. In urban households, the size of appliances willincrease, but its effect will be moderated by efficiency improvements,partially driven by government standards. * Commercial energy increaseswill be driven both by increases in floor space and by increases inpenetration of major end uses such as heating and cooling. Theseincreases will be moderated somewhat, however, by technology changes,such as increased use of heat pumps. * China's Medium- and Long-TermDevelopment plan drafted by the central government and published in 2004calls for a quadrupling of GDP in the period from 2000-2020 with only adoubling in energy consumption during the same period. A bottom-upanalysis with likely efficiency improvements finds that energyconsumption will likely exceed the goal by 26.12 EJ, or 28 percent.Achievements of these goals will there fore require a more aggressivepolicy of encouraging energy efficiency.

  19. Analysis of Energy-Efficiency Opportunities for the Pulp and Paper Industry in China

    E-Print Network [OSTI]

    Kong, Lingbo

    2014-01-01

    Annual Report of China Paper Industry. Beijing. China PaperCPA). 2011. Annual Report of China Paper Industry. Beijing.Association of Paper Industry (CTAPI). 2011. Almanac of

  20. WHAT TO EXPECT FROM SECTORAL TRADING: A US-CHINA EXAMPLE

    E-Print Network [OSTI]

    02139-4307, USA *Hjacoby@mit.edu In the recent United Nations Framework Convention on Climate Change the Chinese electricity sector and a US economy-wide cap-and-trade program using the MIT Emissions Prediction represents 46% of its capped emissions. In China, sectoral trading increases the price of electricity

  1. Executive Summary International Experience 2008 Beijing

    E-Print Network [OSTI]

    Subramanian, Venkat

    in Energy, Environmental and Chemical Engineering (EECE) took place in the summer of 2008 in Beijing, China in energy and environment: air pollution control for the 2008 Beijing Olympics, which forms the basis for current sustainability initiatives in China. The success of the program is due to: a) the strength

  2. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    RMB) hydro & nuclear Historical Primary Energy Consumptionhouseholds. Primary Energy Consumption (EJ) hydro nuclearfuels and hydro can be easily compared Energy Use in China

  3. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Sectoral Trends in Global Energy Use and Greenhouse Gasto Development of Long-Term Energy Demand Scenarios forto Development of Long-Term Energy Demand Scenarios for

  4. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Sectoral Trends and Future Outlook Nan Zhou, Michael A.2001, International Energy Outlook 2001 , Report No. DOE/The International Energy Outlook 2006 (IEO2006) , Washington

  5. Radiative forcing due to major aerosol emitting sectors in China and India

    E-Print Network [OSTI]

    sectors in China have near-zero net global forcings. Coal-fired power plants in both countries exert, but they extend as far as North America, Europe, and the Arctic. Citation: Streets, D. G., D. T. Shindell, Z. Lu and Faluvegi [2010] focused on the net climate forcing of emissions from coal- fired power plants, emphasizing

  6. Extraordinary dust event over Beijing, China, during April 2006: Lidar, Sun photometric, satellite observations and model validation

    E-Print Network [OSTI]

    ratio for the dust particles (84 sr) during the most intense dust period. The DREAM forecast model the Beijing area, are located in Xingjiang and the Inner Mongolia provinces [Sun et al., 2001]. Strong winds [Dillner et al., 2006]. The increasing urbanization and industrialization of the East Asia region

  7. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01

    House, Beijing. CCA (China Cement Association), 2009.China Cement Almanac 2008. Jiangsu People'sHouse, Nanjing. CCA (China Cement Association), 2010. China

  8. Using Seismic Methods to Constrain Mantle Convection Processes B.Eng (University of Petroleum East China) 1996

    E-Print Network [OSTI]

    Allen, Richard M.

    of Petroleum ­ East China) 1996 M.Eng (University of Petroleum ­ Beijing) 1999 A dissertation submitted

  9. Potential impact of (CET) carbon emissions trading on China's power sector: A perspective from different allowance allocation options

    E-Print Network [OSTI]

    Wilensky, Uri

    Potential impact of (CET) carbon emissions trading on China's power sector: A perspective from February 2010 Received in revised form 5 May 2010 Accepted 9 June 2010 Keywords: Carbon emissions trading (carbon emissions trading) is an effective tool to reduce emissions. But because CET is not fully

  10. LOCATION-DOMINANT HOUSING MARKETS: EVIDENCE FROM BEIJING

    E-Print Network [OSTI]

    Smith, Tony E.

    it is shown that the resulting bid-price relations between these cities are quite consistent with our 1 Data was collected for current mean prices in the 51 neighborhoods of central Beijing on the website, http://beijing.anjuke.com/, that reports housing price data for China. 2 These figures are base

  11. The restructure of amenities in Beijing's peripheral residential communities

    E-Print Network [OSTI]

    Ren, Meng, M.C.P. Massachusetts Institute of Technology

    2015-01-01

    China's rapid urbanization has led to many big metropolises absorbing their fringe rural lands to expand their urban boundaries. Beijing is such a metropolis and in its urban peripheral, an increasing number of communities ...

  12. Takahiro Matsuda, Takahiko Furuya, Ryutarou Ohbuchi, Lightweight binary voxel shape features for 3D data matching and retrieval, Accepted, Proc. First IEEE Int'l Conf. on Multimedia Big Data (BigMM) 2015, 20-22 April 2015, Beijing, China

    E-Print Network [OSTI]

    Ohbuchi, Ryutarou

    for personalized manufacturing by using 3D printers. Kinect and other RGBD cameras are about to realize 3D geometryTakahiro Matsuda, Takahiko Furuya, Ryutarou Ohbuchi, Lightweight binary voxel shape features for 3D, 20-22 April 2015, Beijing, China 1 Lightweight binary voxel shape features for 3D data matching

  13. Key China Energy Statistics 2012

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01

    Nations Commodity Trade Statistics Database. New York:National Bureau of Statistics of the People's Republic ofYearbook. Beijing: China Statistics Press. 2. Transformation

  14. JAPAN'S TAKUMA BUILDING BEIJING WTE PLANT TOKYO, Nov 11

    E-Print Network [OSTI]

    Columbia University

    :6013) has won a 4 billion yen ($36 million) order from a public-private partnership in China to build a trash incineration plant in Beijing. Soon to be the largest municipal waste-to-energy facility in China cities with limited space for landfills. Utilizing a mass burn technology successfully applied in Japan

  15. WHAT TO EXPECT FROM SECTORAL TRADING: A US-CHINA EXAMPLE

    E-Print Network [OSTI]

    and increases electricity generation. Keywords: Climate; sectoral agreements; emissions trading; carbon leakage an Emissions Trading Scheme, international negotiations aim to foster wider agreements, particularly

  16. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    and Reserves Circular. Beijing: MLR, cited in IEA. 2009.Cleaner Coal in China. Paris: IEA. Ghee Peh, Wei Ouyang. (London: WEC Press. IEA. (2007) World Energy Outlook 2007.

  17. Energy Audit Practices in China: National and Local Experiences and Issues

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01

    with staff of Jiangsu Energy Conservation Technical ServiceAssessment of China’s Energy-Saving and Emission-ReductionCenter for Industrial Energy Efficiency (Beijing), December

  18. The Paradox of Regulatory Development in China: The Case of the Electricity Industry

    E-Print Network [OSTI]

    Tsai, Chung-min

    2010-01-01

    zhongguo dianli chanye (China‘s Electricity Industry at themulti_page.pdf. State Electricity Regulatory Commission.The Annual Report on Electricity Regulation (2006). Beijing:

  19. What to Expect from Sectoral Trading: A U.S.–China Example

    E-Print Network [OSTI]

    Gavard, Claire

    In recent United Nations Framework Convention on Climate Change (UNFCCC) negotiations, sectoral mechanisms were proposed as a way to encourage early action and spur investment in low carbon technologies in developing ...

  20. Peak CO2? China's Emissions Trajectories to 2050

    E-Print Network [OSTI]

    Zhou, Nan

    2012-01-01

    china/en/press/reports/wind-power-report.pdf National Bureauet. al. 2007. “China Wind Power Report. ” Beijing: ChinaCIS and AIS CIS AIS Wind Power Nuclear Power NG Fired CC

  1. Analytical input-output and supply chain study of China's coke and steel sectors

    E-Print Network [OSTI]

    Li, Yu, 1976-

    2004-01-01

    I design an input-output model to investigate the energy supply chain of coal-coke-steel in China. To study the demand, supply, and energy-intensity issues for coal and coke from a macroeconomic perspective, I apply the ...

  2. Quenching China's Thirst for Renewable Power: Water Implications of China's Renewable Development

    E-Print Network [OSTI]

    Zheng, Nina

    2014-01-01

    forthcoming). “China’s Alternative Energy Development. ”Sector Renewable and alternative energy development hasbarriers to China’s alternative energy development, the

  3. Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    University Building Energy Efficiency Research Centre (Report on China Building Energy Efficiency. Beijing: Chinaand Practice on Building Energy Efficiency in China. ”

  4. HCNG Engine Testing and HCNG Vehicle Marketing in China

    Broader source: Energy.gov [DOE]

    These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 – 29, 2010, in Beijing, China.

  5. China's Energy and Carbon Emissions Outlook to 2050

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01

    et. al. 2007. “China Wind Power Report. ” Beijing: Chinachina/en/press/reports/wind-power-report.pdf National Bureauin academic journals (wind power and hydropower); and own-

  6. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01

    energy use is concentrated in China's north and east,and Energy Source, 1990 Planning Region North Northeast EastEnergy f (Mtce) Planning Region Province North Beijing Tianjin Hebei Shared Inner Mongolia Northeast Liaoning jilin Heilongjiang East

  7. Beijing Hope Solar New Energy Co Ltd formerly known as Beijing...

    Open Energy Info (EERE)

    Beijing Hope Solar New Energy Co Ltd formerly known as Beijing Hope Solar Power or Beijing Hope Ind Jump to: navigation, search Name: Beijing Hope Solar New Energy Co Ltd (formerly...

  8. China's energy-water nexus – assessment of the energy sector's compliance with the “3 Red Lines” industrial water policy

    E-Print Network [OSTI]

    Qin, Ying; Curmi, Elizabeth; Kopec, Grant M.; Allwood, Julian M.; Richards, Keith S.

    2015-04-02

    Increasing population and economic growth continue to drive China's demand for energy and water resources. The interaction of these resources is particularly important in China, where water resources are unevenly distributed, with limited...

  9. China's Pathways to Achieving 40% ~ 45% Reduction in CO{sub 2} Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential

    SciTech Connect (OSTI)

    Zheng, Nina; Fridley, David; Zhou, Nan; Levine, Mark; Price, Lynn; Ke, Jing

    2011-09-30

    Achieving China’s goal of reducing its carbon intensity (CO{sub 2} per unit of GDP) by 40% to 45% percent below 2005 levels by 2020 will require the strengthening and expansion of energy efficiency policies across the buildings, industries and transport sectors. This study uses a bottom-up, end-use model and two scenarios -- an enhanced energy efficiency (E3) scenario and an alternative maximum technically feasible energy efficiency improvement (Max Tech) scenario – to evaluate what policies and technical improvements are needed to achieve the 2020 carbon intensity reduction target. The findings from this study show that a determined approach by China can lead to the achievement of its 2020 goal. In particular, with full success in deepening its energy efficiency policies and programs but following the same general approach used during the 11th Five Year Plan, it is possible to achieve 49% reduction in CO{sub 2} emissions per unit of GDP (CO{sub 2} emissions intensity) in 2020 from 2005 levels (E3 case). Under the more optimistic but feasible assumptions of development and penetration of advanced energy efficiency technology (Max Tech case), China could achieve a 56% reduction in CO{sub 2} emissions intensity in 2020 relative to 2005 with cumulative reduction of energy use by 2700 Mtce and of CO{sub 2} emissions of 8107 Mt CO{sub 2} between 2010 and 2020. Energy savings and CO{sub 2} mitigation potential varies by sector but most of the energy savings potential is found in energy-intensive industry. At the same time, electricity savings and the associated emissions reduction are magnified by increasing renewable generation and improving coal generation efficiency, underscoring the dual importance of end-use efficiency improvements and power sector decarbonization.

  10. China Energy Group - Sustainable Growth Through Energy Efficiency

    E-Print Network [OSTI]

    2006-01-01

    end-use model of China’s energy economy for 2020. Assessedto meet its goal of reducing energy intensity by 20% in fiveCommission (BDRC) Beijing Energy Efficiency Center (BECon)

  11. Readout on Secretary Chu's China Meetings on Clean Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15, 2009 - 12:00am Addthis BEIJING, CHINA - Secretary Chu is meeting with a series of Chinese officials during this week's trip to China. We will be providing readouts on these...

  12. China’s Defense Electronics Industry: Innovation, Adaptation, and Espionage

    E-Print Network [OSTI]

    Mulvenon, James; Luce, Matthew

    2010-01-01

    2010 China’s Defense Electronics Industry: Innovation,of the Chinese defense electronics sector can be attributedAdvanced defense electronics components and systems play a

  13. China's fuel gas sector: History, current status, and future prospects Chi-Jen Yang a,c,*, Yipei Zhou b

    E-Print Network [OSTI]

    Jackson, Robert B.

    (Rockoff, 2008). Since U.S. natural gas prices were decontrolled in the 1980s, natural gas has evolved from challenges. In particular, China's controls on natural gas prices have deterred investment in exploration and natural gas imports. However, recent price decontrols of unconventional natural gas (defined in Chinas

  14. China Energy Databook -- User Guide and Documentation, Version 7.0

    E-Print Network [OSTI]

    Fridley, Ed., David

    2008-01-01

    Oil Industry Press. Hydropower Planning General Institute.consulting report. Beijing: Hydropower Planning GeneralEditorial Board of the China Hydropower Yearbook. 1995-1997.

  15. Beijing, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County,

  16. Beijing, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE.EnergyWoodenDateSAEngineeringBecosaJunda

  17. Operational energy consumption and GHG emissions in residential sector in urban China : an empirical study in Jinan

    E-Print Network [OSTI]

    Zhang, Jiyang, M.C.P. Massachusetts Institute of Technology

    2010-01-01

    Driven by rapid urbanization and increasing household incomes, residential energy consumption in urban China has been growing steadily in the past decade, posing critical energy and greenhouse gas emission challenges. ...

  18. Chinaseasun Beijing New Energy Power Co Ltd formerly Chinaseasun...

    Open Energy Info (EERE)

    Chinaseasun Beijing New Energy Power Co Ltd formerly Chinaseasun Beijing Energy and Technology Jump to: navigation, search Name: Chinaseasun (Beijing) New Energy Power Co Ltd...

  19. Status and Progress in Research, Development and Demonstration of Hydrogen-Compressed Natural Gas Vehicles in China

    Broader source: Energy.gov [DOE]

    These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 – 29, 2010, in Beijing, China.

  20. Stumbling Toward Capitalism: The State, Global Production Networks, and the Unexpected Emergence of China's Independent Auto Industry

    E-Print Network [OSTI]

    Chang, Crystal Whai-ku

    2011-01-01

    Toward Creating Unified EV Charging Station Standards. ? 102010. ?Beijing Issues EV Charging Station Standards?, 3markets/83431-china-ev-charging-standards- expected-in-

  1. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01

    Potential in China’s Coal-fired Power Sector, IEEJ. Ni, ChunProjects for Existing Coal-fired Power Plants by CapacityConversion Plan for Existing Coal-fired Power Plants Table

  2. Beijing Hualianda Environmental Protection Energy Technology...

    Open Energy Info (EERE)

    Hualianda Environmental Protection Energy Technology Development Co Ltd Jump to: navigation, search Name: Beijing Hualianda Environmental Protection Energy Technology Development...

  3. Energy Conservation in China North Industries Corporation 

    E-Print Network [OSTI]

    You, W. T.; De, C. H.; Chu, J. X.; Fu, L. R.

    1985-01-01

    IN CHINA NORTH INDUSTRIES CORPORATION Wang Tian You, Chen Hua De, Jing Xing Chu, Ling Rui Fu, China North Industries Corporation Beijing, People's Republic of China ABSTRACT This paper describes an overview of the energy conservation in China... North Industries Corporation. It shows how the corporation improves energy effi ciencies and how it changes constitution of fuel-- converting oil consumption to coal. Energy management organization, energy balance in plants and several specific...

  4. Probe into Gaseous Pollution and Assessment of Air Quality Benefit under Sector Dependent Emission Control Strategies over Megacities in Yangtze River Delta, China

    SciTech Connect (OSTI)

    Dong, Xinyi; Gao, Yang; Fu, Joshua S.; Li, Juan; Huang, Kan; Zhuang, G.; Zhou, Ying

    2013-11-01

    On February 29th 2012, China published its new National Ambient Air Quality Standard (CH-NAAQS) aiming at revising the standards and measurements for both gaseous pollutants including ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), and also particle pollutants including PM10 and PM2.5. In order to understand the air pollution status regarding this new standard, the integrated MM5/CMAQ modeling system was applied over Yangtze River Delta (YRD) within this study to examine the criteria gaseous pollutants listed in the new CH-NAAQS. Sensitivity simulations were also conducted to assess the responses of gaseous pollutants under 8 different sector-dependent emission reduction scenarios in order to evaluate the potential control strategies. 2006 was selected as the simulation year in order to review the air quality condition at the beginning of China’s 11th Five-Year-Plan (FYP, from 2006 to 2010), and also compared with air quality status in 2010 as the end of 11th FYP to probe into the effectiveness of the national emission control efforts. Base case simulation showed distinct seasonal variation for gaseous pollutants: SO2, and NO2 were found to have higher surface concentrations in winter while O3 was found to have higher concentrations in spring and summer than other seasons. According to the analyses focused on 3 megacities within YRD, Shanghai, Nanjing, and Hangzhou, we found different air quality conditions among the cities: NO2 was the primary pollutant that having the largest number of days exceeding the CH-NAAQS daily standard (80 ?g/m3) in Shanghai (59 days) and Nanjing (27 days); SO2 was the primary pollutant with maximum number of days exceeding daily air quality standard (150 ?g/m3) in Hangzhou (28 days), while O3 exceeding the daily maximum 8-hour standard (160 ?g/m3) for relatively fewer days in all the three cities (9 days in Shanghai, 14 days in Nanjing, and 11 days in Hangzhou). Simulation results from predefined potential applicable emission control scenarios suggested significant air quality improvements from emission reduction: 90% of SO2 emission removed from power plant in YRD would be able to reduce more than 85% of SO2 pollution, 85% NOx emission reduction from power plant would reduce more than 60% of NO2 pollution, in terms of reducing the number of days exceeding daily air quality standard. NOx emission reduction from transportation and industry were also found to effectively reduce NO2 pollution but less efficient than emission control from power plants. We also found that multi-pollutants emission control including both NOx and VOC would be a better strategy than independent NOx control over YRD which is China’s 12th Five-Year-Plan (from 2011 to 2015), because O3 pollution would be increased as a side effect of NOx control and counteract NO2 pollution reduction benefit.

  5. China Energy Primer

    SciTech Connect (OSTI)

    Ni, Chun Chun

    2009-11-16

    Based on extensive analysis of the 'China Energy Databook Version 7' (October 2008) this Primer for China's Energy Industry draws a broad picture of China's energy industry with the two goals of helping users read and interpret the data presented in the 'China Energy Databook' and understand the historical evolution of China's energy inustry. Primer provides comprehensive historical reviews of China's energy industry including its supply and demand, exports and imports, investments, environment, and most importantly, its complicated pricing system, a key element in the analysis of China's energy sector.

  6. Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)

    E-Print Network [OSTI]

    Zhiping, L.

    2010-01-01

    industrial motors, fans, and pumps consume approximately 30% of all electricity produced i n China. Improving the energy

  7. Marine Policy Challenges in developing China's marine protected area system

    E-Print Network [OSTI]

    Jones, Peter JS

    Marine Policy Challenges in developing China's marine protected area system Wanfei Qiu a,* , Bin Department of Marine Environment Protection, State Oceanic Administration, No. 1 Fuxingmenwai Avenue, Beijing increases in the coverage of marine protected areas (MPAs) in China, and a total of 158 MPAs have been

  8. Spin-On for the Renaissance? The Current State of China's Nuclear Industry

    E-Print Network [OSTI]

    Yuan, Jing-dong

    2010-01-01

    by Beijing to keep its nuclear weapons segment separate fromment of the country’s nuclear weapons capability. It was notprocesses. Fuel Supply As a nuclear weapons state, China has

  9. Stability and Nukes: China's Domestic Concerns over North Korea's Nuclear Program

    E-Print Network [OSTI]

    Xu, Jun

    2014-05-31

    While the bilateral friendship between China and North Korea was solidified and endured during the Korean war, Beijing's ties to Pyongyang have weakened considerably during the nuclear crisis on the Korean Peninsula, which emerged in October 2002...

  10. China's Pathways to Achieving 40percent 45percent Reduction in CO2 Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential

    E-Print Network [OSTI]

    Zheng, Nina

    2013-01-01

    Residential Sector Residential energy demand is drivenper year; total residential energy demand is 12% lower thanunder E3, residential primary energy demand will continue

  11. Even slower : the great smog of Beijing

    E-Print Network [OSTI]

    Hendranata, Erioseto

    2014-01-01

    Since the global media exposure of its air quality in 2008, Beijing has strived to improve its air quality. However, these preventive measures have not extensively altered the intensity of the smog-filled sky. This phenomena ...

  12. China`s first true IPP

    SciTech Connect (OSTI)

    Starke, K.

    1997-06-01

    No guarantees - that`s what the Chinese government has been telling potential infrastructure investors lately. One recent power plant financing may show the way to financing without guarantees from the Chinese government, export credit agencies or multilateral lenders. {open_quotes}Financing without government guarantees is less of a financing strategy but rather the reality in China,{close_quotes} says Jack Su, assistant vice president and counsel for Sithe China Holdings Ltd. Sithe China is 39 percent owned by Sithe Energies of New York, 30.5 percent by AIG Asian Infrastructure Fund and 30.5 percent by the Government of Singapore Investment Corp. Sithe`s 2 X 50 MW coal-fired cogeneration plant in Tangshan Municipality, Hebei province, was the first independent power project to proceed in the country without government, multilateral lender or credit agency guarantees. The deal, which was signed in Beijing last October, could lead project financing in China to a level where project risks can be borne internally, without recourse to either sovereign guarantors or export credit agencies. Project backers believe that it is more than just a one-off, but rather a first for truly independent power production in China.

  13. Damage Survey, Radar, and Environment Analyses on the First-Ever Documented Tornado in Beijing during the Heavy Rainfall Event of 21 July 2012

    E-Print Network [OSTI]

    Meng, Zhiyong

    wind damage occurred in Beijing, China, during a heavy rainfall event. Through a damage survey that had showed significant evidence that the wind damage was caused by a mesocyclonic tornado rated as a category surface winds at multiple places along the swath. The radar analyses examined here show that the tornado

  14. Top 3 Takeaways from the Deputy Energy Secretary's Beijing Speech...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Top 3 Takeaways from the Deputy Energy Secretary's Beijing Speech Top 3 Takeaways from the Deputy Energy Secretary's Beijing Speech April 14, 2015 - 12:27pm Addthis Deputy Energy...

  15. Cassava, a potential biofuel crop in China

    E-Print Network [OSTI]

    Jansson, C.

    2010-01-01

    Cassava, a potential biofuel crop in China Christer Janssoncassava; bioethanol; biofuel; metabolic engineering; Chinathe potentials of cassava in the biofuel sector and point to

  16. Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change

    E-Print Network [OSTI]

    Kahrl, Fredrich James

    2011-01-01

    2006. Verification of Energy Consumption in China duringheterogeneity in China's energy consumption: Sector priceChallenge of Reducing Energy Consumption of the Top- 1000

  17. International Hydrogen Fuel and Pressure Vessel Forum 2010 Beijing, China

    E-Print Network [OSTI]

    challenges in harmonizing test protocols and requirements for compressed natural gas (CNG), hydrogen, and CNG-up on technical topics and issues identified during a previous international workshop on hydrogen and CNG fuels information and data on testing and certification of storage tanks for compressed hydrogen, CNG, and HCNG

  18. Beijing China Sciences General Energy Environment GEE | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece:Bajo en Carbono,BeWindInformation Sciences

  19. China-Transportation Demand Management in Beijing: Mitigation of Emissions

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:ChangingCNE Jump to:NewCooperation

  20. North China Electric Power University Beijing | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: EnergyNongqishi ElectricElec Coop, IncElectric Power

  1. Khazanah Nasional Berhad Beijing China Sciences General Energy JV | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro JumpHuariKeewatinKenya: EnergyKhandelwal Solar

  2. China Solar Energy Ltd Tianpu Xianxing Group aka Beijing Universal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy Electricals Ltd BHEL JumpCMNACelt PowerWind PowerAntecedence |

  3. University of California, Davis China-U.S. ZEV Policy Lab

    E-Print Network [OSTI]

    California at Davis, University of

    University of California, Davis China-U.S. ZEV Policy Lab China Center For Energy and Transportation Yunshi Wang Director #12;Chinese New Energy Vehicle Development Status Data Source: 1 2 3IEA-Tianjin-Hebei work together, following California Experience · Beijing led New Energy Vehicle Development Supply

  4. Industrial sector energy conservation programs in the People`s Republic of China during the seventh five-year plan (1986--1990)

    SciTech Connect (OSTI)

    Liu Zhiping; Sinton, J.E.; Yang Fuqiang; Levine, M.D.; Ting, M.K.

    1994-09-01

    The impetus at the national level to invest in energy conservation is quite strong and has long been reflected not only in official pronouncements, but also in the investments and organizational activities of the Chinese government. In the early 1980s the central government began a program of direct investments in industrial energy conservation that continues to the present. In addition, concurrently established governmental and quasi-governmental agencies have pursued conservation through administrative and educational measures. In Section 2 of this paper the authors outline the policies and institutions that supported China`s program of energy conservation investments in the Sixth and Seventh Five-Year Plans (FYPs) (1981--1985 and 1986--1990). In Section 3 they describe examples of the types of conservation projects pursued in four industrial subsectors: ferrous metals manufacturing; non-ferrous metals mining and manufacturing; chemicals manufacturing; and building materials manufacturing. Section 4 presents a simple methodology for comparing the costs of energy conservation to those of energy supply. Further discussion points out the applicability and limitations of this methodology to State Planning Commission published statistical material on the overall results of energy conservation investments. Though problematic, such analysis indicates that energy conservation investments were probably substantially cheaper than investments in equivalent energy supply would have been. They end with a discussion of some of the difficulties encountered in carrying out the conservation investment programs.

  5. Inventory of China's Energy-Related CO2 Emissions in 2008

    E-Print Network [OSTI]

    Fridley, David

    2011-01-01

    emissions are allocated to that sector accordingly. Biogas.The majority of biogas consumed in China is from rural

  6. Inventory of China's Energy-Related CO2 Emissions in 2008

    E-Print Network [OSTI]

    Fridley, David

    2011-01-01

    China's 2008 Total CO 2 Emissions from Energy Consumption:10. China's 2008 Total CO 2 Emissions from Energy: Sectoral16 Table 11. China's 2008 CO 2 Emissions from Energy:

  7. China To Build Its Own Fusion Reactor ENERGY TECH

    E-Print Network [OSTI]

    Thermonuclear Experimental Reactor project reached agreement in Moscow Tuesday to construct the first fusion devices in thermonuclear reaction," and that "Chinese scientists started to develop a fusion operationChina To Build Its Own Fusion Reactor ENERGY TECH by Edward Lanfranco Beijing (UPI) July 1, 2005

  8. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01

    2007). Coping with Residential Electricity Demand in India'sResidential Electricity Demand in China –Can EfficiencyBoom of Electricity Demand in the residential sector in the

  9. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01

    of China’s Renewable Energy Policy Framework: China’sof China’s Renewable Energy Policy Framework: China’spromote renewable energy through governmental policies have

  10. Coal in China

    SciTech Connect (OSTI)

    Minchener, A.J. [IEA Clean Coal Centre, London (United Kingdom)

    2005-07-01

    The article gives an overview of the production and use of coal in China, for power generation and in other sectors. Coal use for power generation was 850 million tonnes in 2003 and 800 million tonnes in the non-power sector. The majority of power will continue to be produced from coal, with a trend towards new larger pulverised coal fired units and introduction of circulating fluidised bed combustors. Stricter regulations are forcing introduction of improved pollution control technologies. It seems likely that China will need international finance to supplement private and state investment to carry out a programme to develop and apply clean coal technologies. The author concludes that there is evidence of a market economy being established but there is a need to resolve inconsistencies with the planned aspects of the economy and that additional policies are needed in certain sectors to achieve sustainable development. 1 ref., 2 figs., 2 tabs.

  11. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01

    Hydroelectricity ..long term demand. 5. Hydroelectricity China’s hydroelectricSummary of China’s Hydroelectricity Reserves”, Sate Power

  12. China energy databook

    SciTech Connect (OSTI)

    Sinton, J.E.; Fridley, D.G.; Levine, M.D. [eds.

    1996-06-01

    The response to the first edition of the China Energy Databook was overwhelmingly positive, and has encouraged us to issue this revised, updated, and expanded edition. It has been a natural counterpart to the Energy Analysis Program`s continuing program of collaborative research with the Energy Research Institute. No other current reference volume dedicated to China`s energy system contains a similar variety and quality of material. We have revised some of the categories and data that appeared in the old volume. The adjustment for energy consumption in the transportation sector, for instance, has been slightly changed to include some fuel use in the commercial sector, which was previously left out. As another example, natural gas consumption statistics in the first edition greatly overstated electric utility use; we have rectified that error. Some tables have changed as statistical collection and reporting practices change in China. Figures on gross output value by sector stop with 1992, and economic output in subsequent years is covered by various measures of value-added, such as national income and gross domestic product.

  13. ENGR 345: Principles and Practices of Global Innovation (An iPodia elective course with Peking University in China and National Taiwan University in Taiwan)

    E-Print Network [OSTI]

    Wang, Hai

    University in China and National Taiwan University in Taiwan) USC/Viterbi iPodiaTM (ViP) Program Page 1 partner universities of this course are: Peking University (PKU) in Beijing, China and National Taiwan University (NTU) in Taipei, Taiwan. #12;ENGR 345: Principles and Practices of Global Innovation (An i

  14. The China-in-Global Energy Model

    E-Print Network [OSTI]

    Qi, T.

    The China-in-Global Energy Model (C-GEM) is a global Computable General Equilibrium (CGE) model that captures the interaction of production, consumption and trade among multiple global regions and sectors – including five ...

  15. Transforming space in the Old City of Beijing

    E-Print Network [OSTI]

    Lee, Hon Chung

    2007-01-01

    Under the pressure of globalization and the approaching 2008 Olympics, Beijing has undergone a rapid transformation that is dramatically eroding the old fabric. It has been argued that whether the capital city should be ...

  16. Going Green? Urban vs. Rural Residency and Pro-Environmental Attitudes in China 

    E-Print Network [OSTI]

    Chiu, Samantha

    2009-01-01

    are from pollution, the less likely they are to believe the environment is in need of protection. Therefore, since rural respondents live farther from cities like Guangzhou or Beijing where the air pollution is visible, they are unexposed... to natural resources, distance from pollution, and materialistic demands. 16 CHAPTER II METHODS Aside from personal observations in China?s major and minor cities in the summer to spring of 2008, this research design analyzes social value surveys...

  17. China energy databook

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B.; Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi

    1992-12-31

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first became involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China`s State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industrics morc energy-efficient, preparing historical reviews of cncrgy supply and demand in the People`s Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. Preparing this volume confronted us with a number of difficult issues. The most frustrating usually involved the different approaches to sectoral divisions taken in China and the US. For instance, fuel used by motor vehicles belonging to industrial enterprises is counted as industrial consumption in China; only fuel use by vehicles belonging to enterprises engaged primarily in transportation is countcd as transportation use. The estimated adjustment to count all fuel use by vehicles as transportation energy use is quite large, since a large fraction of motor vehicles belong to industrial enterprises. Similarly, Chinese industrial investment figures are skewed compared to those collected in the US because a large portion of enterprises` investment funds is directed towards providing housing and social services for workers and their families.

  18. A portfolio approach to energy governance : state management of China's coal and electric power supply industries

    E-Print Network [OSTI]

    Cunningham, Edward A., IV (Edward Albert)

    2009-01-01

    This study addresses the extent to which China's central state devolved ownership and investment levels in its energy sector to other actors during the modern reform period (1978- 2008). The project focused on China's coal ...

  19. "Auto"-mobile Beijing : a bicycle network for a renewed "bicycle kingdom"

    E-Print Network [OSTI]

    Liau, August

    2011-01-01

    This thesis intends to be a catalyst for a renewed bicycle culture in Beijing, the capital of the former "Bicycle Kingdom". Beijing, only 15 years ago had more bicycles than any other city in the world, has in recent years ...

  20. Biomass energy in China and its potential Li Jingjing

    E-Print Network [OSTI]

    energy Coal 25,128 56.9 Crude oil 8,852 20.0 Natural gas 938 2.1 Large-scale hydro power 2,587 5 Planning Commission Muxidi Beilijia #11, 100038, Beijing, P.R. China Pat DeLaquil Clean Energy. The availability of clean, low-cost fuels for heat and power in rural areas based on modern biomass technologies

  1. Not Just a TRIP! Two Cases of Business Strategy and Economic Incentives to Patent in Beijing

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    Not Just a TRIP! Two Cases of Business Strategy and Economic Incentives to Patent in Beijing Senior! Corporate Strategies and National Incentives to Patent in Beijing ABSTRACT In order to explore the utilization of IP law in Beijing, I have conducted quantitative analyses of the propensity to patent (using

  2. China energy databook

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B. ); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi )

    1992-01-01

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first became involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China's State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industrics morc energy-efficient, preparing historical reviews of cncrgy supply and demand in the People's Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. Preparing this volume confronted us with a number of difficult issues. The most frustrating usually involved the different approaches to sectoral divisions taken in China and the US. For instance, fuel used by motor vehicles belonging to industrial enterprises is counted as industrial consumption in China; only fuel use by vehicles belonging to enterprises engaged primarily in transportation is countcd as transportation use. The estimated adjustment to count all fuel use by vehicles as transportation energy use is quite large, since a large fraction of motor vehicles belong to industrial enterprises. Similarly, Chinese industrial investment figures are skewed compared to those collected in the US because a large portion of enterprises' investment funds is directed towards providing housing and social services for workers and their families.

  3. Modeling regional transportation demand in China and the impacts of a national carbon constraint

    E-Print Network [OSTI]

    Kishimoto, Paul

    2015-01-30

    Climate and energy policy in China will have important and uneven impacts on the country’s regionally heterogeneous transport system. In order to simulate these impacts, transport sector detail is added to a multi-sector, ...

  4. Household operational energy consumption in urban China : a multilevel analysis on Jinan

    E-Print Network [OSTI]

    Wang, Dong, M.C.P. Massachusetts Institute of Technology

    2012-01-01

    With decades of economic growth and socio-economic transformation, China's residential sector has seen rapid expansion in energy consumption, and is now the second largest energy consuming sector in the country. Faced with ...

  5. Compressed natural gas vehicles motoring towards a green Beijing

    SciTech Connect (OSTI)

    Yang, Ming; Kraft-Oliver, T. [International Institute for Energy Conservation (IIEC) - Asia, Bangkok (Thailand); Guo Xiao Yan [China North Vehicle Research Institute (CNVRI), Beijing (China)

    1996-12-31

    This paper first describes the state-of-the-art of compressed natural gas (CNG) technologies and evaluates the market prospects for CNG vehicles in Beijing. An analysis of the natural gas resource supply for fleet vehicles follows. The costs and benefits of establishing natural gas filling stations and promoting the development of vehicle technology are evaluated. The quantity of GHG reduction is calculated. The objective of the paper is to provide information of transfer niche of CNG vehicle and equipment production in Beijing. This paper argues that the development of CNG vehicles is a cost-effective strategy for mitigating both air pollution and GHG.

  6. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01

    China’s domestic oil supply will peak, and demand Robertpeak will come around 2020, 24 and that by this point, China’s demand Oil

  7. More Chinese Women Engaged in Physics Women graduate students in china's top research institution for physics suddenly

    E-Print Network [OSTI]

    Zexian, Cao

    1 More Chinese Women Engaged in Physics Women graduate students in china's top research institution preferably labeled with `Xiansheng', a Chinese word that once referred to teacher of both genders that worries Chinese academic circles. In the CAS Institute of Physics at Beijing, the top institution

  8. Coling 2010: Poster Volume, pages 294302, Beijing, August 2010

    E-Print Network [OSTI]

    Coling 2010: Poster Volume, pages 294­302, Beijing, August 2010 A Novel Method for Bilingual Web Page Acquisition from Search Engine Web Records Yanhui Feng, Yu Hong, Zhenxiang Yan, Jianmin Yao task is to detect web records embedded in the result pages automatically via a clustering method

  9. Buddhism east and west: Chinese Buddhism in Beijing and Houston 

    E-Print Network [OSTI]

    Wilson, Melinda

    2009-05-15

    Constitution see: http://english.people.com.cn/constitution/constitution.html. Accessed June 29, 2008. 36 Leung, ?China?s Religious Freedom Policy,? 7. 16 are atheists and must unremittingly propagate atheism.? 37 Thus, anyone with government-politico...

  10. The City Recycled: The Afterlives of Demolished Buildings in Postwar Beijing

    E-Print Network [OSTI]

    Kao, Shih-yang

    2013-01-01

    Policy Study on Construction Waste Reclamation in Beijing].succeeded in halting construction of a waste incinerator ondemolition waste was put to use in the construction of the

  11. To Appear in Middle East Economic Survey (MEES)-Op-Ed http://www.mees.com/cms/ China's Angst over Iran Sanctions

    E-Print Network [OSTI]

    O'Donnell, Tom

    Iran Sanctions Beijing's go-it-alone oil security could fail during any U.S.-Iran conflict Thomas W O "targeted" sanctions on Iran's nuclear program. This is a significant change. For many years, China has fifty percent of its imported oil now comes from the Persian Gulf, and any U.S.-Iran clash could

  12. Collaboration on Renewable Energy Standards, Testing, and Certification under the U.S. China Renewable Energy Partnership: Preprint

    SciTech Connect (OSTI)

    Wallace, W.; Kurtz, S.; Lin, W.

    2012-06-01

    During November 2009, the U.S. China Renewable Energy Partnership agreement was authorized in Beijing by Presidents Obama and Hu from the U.S. and China. One of the principle tasks under this new program is the collaboration of the U.S. and China on the topic of renewable energy standards, testing, and certification with an initial focus on solar PV and wind topics. This paper will describe and discuss the activities which have taken place under the bilateral collaboration to date.

  13. Farmland Reforestation in China

    E-Print Network [OSTI]

    Kelly, Peter Alfred

    2010-01-01

    suitability evaluation in desertification-affected northwind erosion and desertification plague much of China’swind erosion and desertification plague much of China’s

  14. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01

    2-1). In addition to attaining oil resources, China’s energyWith limited domestic oil resources, China’s major oilgrowth, limited crude oil resources and the late development

  15. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01

    International Energy Agency (IEA), China’s Worldwide QuestSecurity, (Paris: OCED/IEA, 2000), 74. Thomas Woodrow, “TheInternational Energy Agency (IEA), China’s Worldwide Quest

  16. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01

    refer to IEA (2007), World Energy Outlook 2007: China andIEA (2007), World Energy Outlook 2007: China and India

  17. Guoneng Fengshen Beijing New Energy Technology | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy ElectricalsFTL SolarGateMingyang WindFengshen Beijing New Energy

  18. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Nuclear Expansion .Challenges to China’s Nuclear Expansion China’s nuclearto China’s rapid nuclear expansion will be nuclear waste

  19. Hythane project by Hydrogen China Ltd and China Railway Construction...

    Open Energy Info (EERE)

    Hythane project by Hydrogen China Ltd and China Railway Construction Corporation Jump to: navigation, search Name: Hythane project by Hydrogen China Ltd and China Railway...

  20. World Conference on Earthquake Engineering October 12-17, 2008, Beijing, China

    E-Print Network [OSTI]

    Vigny, Christophe

    /V method alone may not be enough to assess the seismic hazard in urban area especially when Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France 2 Dept effects were clearly revealed by the 1985 Valparaiso earthquake. The significant seismic intensities

  1. ANDREW W. MELLON GRADUATE FELLOWSHIPS ZhangHuan,"1/2,"1998,Beijing,China;courtesyoftheartist

    E-Print Network [OSTI]

    Chen, Tsuhan

    on philosophical, aesthetic, political, ecological, religious, psychoanalytical, and cultural understandings House during the academic year. SOCIETY FOR THE HUMANITIES 2016-2017 FOCAL THEME SKIN #12;

  2. Evaluating ICs EEGLAB Workshop, June 16-18, 2012, Beijing, China: Julie Onton Evaluating ICA Components

    E-Print Network [OSTI]

    Liu, Thomas T.

    ­ Evaluating ICA Components #12;Applying ICA weights to EEG data Note: .wts and .sph not saved as separate files by EEGLAB, you must save them yourself: floatwrite(EEG.icaweights,'C:\\MyDirectory\\ICA.wts

  3. Original Article Proceedings of IDMME -Virtual Concept 2008 Beijing, China, October 8 10, 2008

    E-Print Network [OSTI]

    Theune, Mariët

    Multiple ANalyses Of VAriance MR Mixed Reality RW Real World SE Synthetic Environment SME Small and Medium to any deliberately constructed artificial environment as a replacement to the real and natural Virtual Concept_P56 -1- Copyright of IDMME - Virtual Concept APPLICABILITY OF SYNTHETIC ENVIRONMENTS

  4. A NEW STREAM CIPHER: DICING Beijing 100085, P.R.China

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    : In this paper, we will propose a new synchronous stream cipher named DICING, which can be taken as a clock In a synchronous stream cipher, the ciphertext is generally made by bitwise adding (XOR) the plaintext. It is known that the technique of the linear feedback shift registers (LFSR) is able to generate the larger

  5. Keynote at SIGIR 2011, July 26, 2011, Beijing, China Beyond Search: Statistical

    E-Print Network [OSTI]

    Zhai, ChengXiang

    Articles Common Themes "Vietnam" specific "Afghan" specific "Iraq" specific United nations ... ... ... Death of people ... ... ... ... ... ... ... Vietnam War Afghan War Iraq War CNN Fox BBC Before 9/11 During Iraq war Post-Iraq war US blog European blog Asian blog What's in common? What's unique? 3 #12

  6. 13th International Conference on Fracture June 1621, 2013, Beijing, China

    E-Print Network [OSTI]

    Qin, Qinghua

    , coating cutting tools, biomaterials, micromechanical, and thermal heat sink materials [1-3]. Diamond film

  7. Magnetostratigraphic record of the early evolution of the southwestern Tian Shan foreland basin (Ulugqat area), interactions with Pamir

    E-Print Network [OSTI]

    Utrecht, Universiteit

    , China University of Petroleum, Beijing 102249, China b Unconventional Natural Gas Institute, China

  8. The walled city : Beijing hybrid development plan in the 2nd ring road

    E-Print Network [OSTI]

    Liang, Shaoyi

    2014-01-01

    The circular ring roads are one of the key elements that define the spatial organization of Beijing today. However, as the city continues to expand, the ring roads located in the inner city, combined with the gridded ...

  9. From hutong to hi-rise : explaining the transformation of Old Beijing, 1990-2002

    E-Print Network [OSTI]

    Goldman, Jasper, 1978-

    2003-01-01

    This thesis attempts to explain the redevelopment of Old Beijing during the period 1990-2002. During this time, at least one third of the Old City was transformed from an urban fabric consisting principally of courtyard ...

  10. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01

    unfettered access to oil resources including the possibleChina’s search for oil resources around the world. However,a survey of China’s oil resources, while others focus

  11. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01

    crude oil and natural gas, Russia has become China’s crucialprovinces 19 . Although a Russia-China gas pipeline projectnatural gas supply • Geopolitics such as Russia vs. Central

  12. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01

    IEEJ (2007), China and India’s Energy Status and EnergyIEA. IEEJ (2007), China and India’s Energy Status and Energy2007), World Energy Outlook 2007: China and India Insight,

  13. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01

    21, 2008. Ying, Wang. “ China, Venezuela firms to co-developApril 21, “China and Venezuela sign oil agreements. ” Chinaaccessed April 21, “Venezuela and China sign oil deal. ” BBC

  14. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01

    China made an Iranian oil investment valued at $70 billion.across Iran, China’s oil investment may exceed $100 billionthese involving investment in oil and gas, really undermine

  15. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01

    China and the Middle East: Energy First,” Middle EastChina and the Middle East: Energy First,” Middle EastChina and the Middle East: Energy First,” Middle East

  16. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01

    development in East China Sea • Energy Efficiency • EnergyAfrica Middl East Source: China Energy Databook, V.7.0. ,SouthCentral East 800 Mtce Source: China Energy Databook,

  17. The J-20 Fighter Aircraft and the State of China's Defense Science, Technology, and Innovation Potential

    E-Print Network [OSTI]

    CHEUNG, Tai Ming

    2011-01-01

    For example, the Chinese aero-engine sector has yet to beginWithout reliable Chinese aero-engines, China has had toto Russia for Type 117S aero- engines during annual defense

  18. Regulatory and technical barriers to wind energy integration in northeast China

    E-Print Network [OSTI]

    Davidson, Michael (Michael Roy)

    2014-01-01

    China leads the world in installed wind capacity, which forms an integral part of its long-term goals to reduce the environmental impacts of the electricity sector. This primarily centrally-managed wind policy has concentrated ...

  19. Implications of the market and regulatory environment in China on multinational water companies

    E-Print Network [OSTI]

    Lung, Wen Zheng

    2014-01-01

    Amidst China's rapid industrialization and urbanization following market-oriented reforms in its economy, the shortcomings of the state-controlled municipal water sector was brought to the fore. The Chinese government ...

  20. Cumulative biophysical impact of small and large hydropower development, Nu River, China

    E-Print Network [OSTI]

    Tullos, Desiree

    Cumulative biophysical impact of small and large hydropower development, Nu River, China Authors hydropower facilities. This support is manifested in national and international energy and development policies designed to incentivize growth in the small hydropower sector while curtailing large dam

  1. FE-Funded Study Released on Key Factors Affecting China Shale...

    Energy Savers [EERE]

    government gives priority to the development of China's shale gas sector to help fight air pollution and reduce reliance on natural gas imports; and The U.S. government supports...

  2. ESCO Industry in China

    Office of Energy Efficiency and Renewable Energy (EERE)

    Information about the development, achievements, and functions of the China Energy Conservation project and ESCO.

  3. The Minorities of China.

    E-Print Network [OSTI]

    Dwyer, Arienne M.

    2005-01-01

    Citation: Dwyer, Arienne. (As “Areienne [sic] Dwyer”). 2005. The Minorities of China. In Carl Skutsch, ed. The Encyclopedia of the World’s Minorities. NY: Routledge: 286–294. Preprint. 286 THE MINORITIES OF CHINA Arienne M. Dwyer 1.... Introduction Though minorities constitute only 8.4% of the current population of the People’s Republic of China, they played an important role in China’s emergence as a nation-state. As they also occupy 60% of China’s landmass in strategic peripheral...

  4. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01

    Advertising Co. China Automotive Industry Corporation andQiche Gongye Nianjian (China Automotive Industry Yearbook).Board of the China Automotive Industry Yearbook. Editorial

  5. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    other Coal,oil and oil product, crude oil, other Coal,oiland oil product, crude oil, other Diesel, Gasoline Diesel,Kerosene, Avgas Pipelin e Crude oil, oil products, NG, other

  6. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    with both showing a rebound in energy use per unit of GDPmostly due to the rebound in industry energy intensity (as

  7. Limited Sectoral Trading between the EU ETS and China

    E-Print Network [OSTI]

    Gavard, Claire

    2013-08-21

    In the negotiations of the United Nations Framework Convention on Climate Change (UNFCCC), new market mechanisms are proposed to involve Non-Annex I countries in the carbon markets developed by Annex I countries, beyond ...

  8. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Energy Intensity by End-use Assumptions Urban enduse intensity Spaceenergy efficiency improvement. Table 7 End Use Saturations and Intensities Saturation, % Urban Rural Space

  9. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Urban and Rural (with biomass) As living standards rise, energy efficiencyUrban: Useful Energy Intensity (Megajoule per Household) Scenario: Ref Region: All Regions Cooking Variable: Cooking: Efficiency (energy efficiency improvement. Table 7 End Use Saturations and Intensities Saturation, % Urban

  10. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    CFL Electricity Natural gas LPG Coal Coal gas Other AirFuels. A small volume of LPG and crude oil are recorded fortransportation use. LPG is used in transport is primarily in

  11. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    by the end user while primary energy consumption includesin the world (WEC 2001). GDP Primary Energy Consumption (EJ)accounting for 10% of primary energy. In terms of fuel;

  12. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    oil, coke, other Coal,oil and oil product, crude oil, otherCoal,oil and oil product, crude oil, other Diesel, GasolinePipelin e Crude oil, oil products, NG, other Gas electricity

  13. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    12, August, pp. 1499-1507 IEA, 1997. Indicators of Energyand Human Activity , Paris, IEA/OECD. Institute of EnergyInternational Energy Agency (IEA), 2001, Energy Statistics

  14. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    by Fuel (with biomass) Primary Energy Consumption (EJ) RuralEnd-use (without biomass) Commercial Energy Use by Fuel andfor 9% of primary energy excluding biomass fuels. Figure 10

  15. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    gas boiler boiler stove district heating heat pump airsmall cogen stove district heating heat pump Central AC Roomrespectively, followed by district heating of 22%, while in

  16. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    levels, to reach the energy consumption levels envisioned.In this method, energy consumption is calculated bythe overall level of energy consumption Figure 61: Structure

  17. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    energy statistics. F rom apparent consumption figures (productionstatistics provide information on supply side. The energy data reports production of all energy sources in all regions, and consumption

  18. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Statistics in Japan , he Energy Data and Modeling Center,Wang, Q, 2005. 2005 Energy Data for Fiscal and EconomicWhat do India’s transport energy data tell us? Residential

  19. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    reliance on centralized district heating and coal boilers asgas boiler boiler stove district heating heat pump airsmall cogen stove district heating heat pump Central AC Room

  20. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Electri ci ty Heat NG Fuel Oil Heavy oil Electri city HeatElectr icity H eat Coal Heavy oil NG Electr icity H eat NGRef Region: All Regions Heavy Oil Electricity Heat Variable:

  1. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Fuel Oil Natural Gas Electricity Total Transportation FuelHeavy Oil Natural Gas Electricity Heat Total Transportation

  2. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Total Variable: Urban: Useful Energy Intensity (MegajouleUse Variable: Office: Useful Energy Intensity (Kilowatt-HourCooling Variable: Retail: Useful Energy Intensity (Kilowatt-

  3. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    share). Coal Oil Gas Hydropower Biomass Figure 5 ResidentialRenewables Oil Nuclear Gas Hydropower Figure 6 ResidentialCoal Oil Nuclear Gas Hydropower Figure 10 Commercial Primary

  4. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    energy efficiency and subsequent rise, etc(Sinton and Fridley,2003) GDP (billion 2000 RMB) hydro & nuclear

  5. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Geothermal Heat Pump Centralized AC by NG Industry Variable:Pump Figure 48 Example of Efficiency of Space Heating Technologies in Office Building IndustryPump Stove Electric Heater Small Cogen Gas Boiler Boiler District Heating Figure 41 Space Heating Technology Shift in Office Building Industry

  6. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Buses Fuel Gasoline, Diesel, NG, Hybrid Gasoline, Diesel, NGAll Regions Gasoline Diesel Gasoline Hybrid Ethanol TotalRegions Gasoline Diesel Gasoline Hybrid Ethanol Variable:

  7. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    efficient Highly efficient Electric heater gas boilerboiler stove district heating heat pump air conditioner TheElectric heater gas boiler boiler small cogen stove district

  8. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    ci ty Heat NG Fuel Oil Heavy oil Electri city Heat Coal CokeElectr icity H eat Coal Heavy oil NG Electr icity H eat NGRef Region: All Regions Heavy Oil Electricity Heat Variable:

  9. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    and Walsh, M. , 2005. “Oil consumption and CO 2 emissions inadjustment. Fuel oil. Fuel oil consumption figures includeonly 26% of total oil consumption. On an adjusted basis,

  10. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    2001, International Energy Outlook 2001 , Report No. DOE/The International Energy Outlook 2006 (IEO2006) , WashingtonEnergy Outlook .

  11. Climate Change and China's Agricultural Sector: An Overview of Impacts,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures Jump to: navigation, search Name: ClearClimate Care Jump

  12. China Energy Group - Sustainable Growth Through EnergyEfficiency

    SciTech Connect (OSTI)

    Levine, Mark; Fridley, David; Lin, Jiang; Sinton, Jonathan; Zhou,Nan; Aden, Nathaniel; Huang, Joe; Price, Lynn; McKane, Aimee T.

    2006-03-20

    China is fueling its phenomenal economic growth with huge quantities of coal. The environmental consequences reach far beyond its borders--China is second only to the United States in greenhouse gas emissions. Expanding its supply of other energy sources, like nuclear power and imported oil, raises trade and security issues. Soaring electricity demand necessitates the construction of 40-70 GW of new capacity per year, creating sustained financing challenges. While daunting, the challenge of meeting China's energy needs presents a wealth of opportunities, particularly in meeting demand through improved energy efficiency and other clean energy technologies. The China Energy Group at the Lawrence Berkeley National Laboratory (LBNL) is committed to understanding these opportunities, and to exploring their implications for policy and business. We work collaboratively with energy researchers, suppliers, regulators, and consumers in China and elsewhere to: better understand the dynamics of energy use in China. Our Research Focus Encompasses Three Major Areas: Buildings, Industry, and Cross-Cutting Activities. Buildings--working to promote energy-efficient buildings and energy-efficient equipment used in buildings. Current work includes promoting the design and use of minimum energy efficiency standards and energy labeling for appliances, and assisting in the development and implementation of building codes for energy-efficient residential and commercial/public buildings. Past work has included a China Residential Energy Consumption Survey and a study of the health impacts of rural household energy use. Industry--understanding China's industrial sector, responsible for the majority of energy consumption in China. Current work includes benchmarking China's major energy-consuming industries to world best practice, examining energy efficiency trends in China's steel and cement industries, implementing voluntary energy efficiency agreements in various industries, and developing a multi-year program for standards and for optimizing the industrial motor systems in China. Past work has included a comprehensive study of China's oil refining sector. Cross-Cutting--analysis and research focused on multisector, policy, and long-term development issues. Current cross-cutting policy and analysis research includes work on government procurement programs; energy service companies; a national energy policy assessment including the National Energy Strategy released by the government in early 2005; energy efficiency policy; an analysis of past trends in energy consumption in China as well as of future scenarios; and our China Energy Databook accompanied by chapter summaries and analysis of recent trends.

  13. Hepp and Speer Sectors within Modern Strategies of Sector Decomposition

    E-Print Network [OSTI]

    A. V. Smirnov; V. A. Smirnov

    2008-12-26

    Hepp and Speer sectors were successfully used in the sixties and seventies for proving mathematical theorems on analytically or/and dimensionally regularized and renormalized Feynman integrals at Euclidean external momenta. We describe them within recently developed strategies of introducing iterative sector decompositions. We show that Speer sectors are reproduced within one of the existing strategies.

  14. Canned Air in China

    E-Print Network [OSTI]

    Hacker, Randi

    2013-10-23

    Broadcast Transcript: Not that long ago, coal smoke made the air here in Beijing so caustic that your nasal passages were seared with each breath. Those were the good old days: Car ownership was limited to government officials and the rest...

  15. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01

    2013-9 January 2013 China’s Nuclear Industry After FukushimaMarch 2011 Fukushima nuclear accident has had a significanton the future of China’s nuclear power. First, it highlights

  16. End-Use Sector Flowchart

    Broader source: Energy.gov [DOE]

    This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors—transportation, industry, commercial and residential—identified in Figure 1. By clicking on any of the boxes with the word "Sector" in the title will reveal the more detailed structure within that sector.

  17. Modeling China's energy future Pat DeLaquil

    E-Print Network [OSTI]

    , renewables, and coal gasification-based energy supply technologies, can enable China to meet economic-use efficiency in all sectors, (2) ex- panded use of renewable energy sources (especially wind and modern biomass), and (3) coal gasification technolo- gies co-producing electricity and clean liquid and gaseous energy

  18. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01

    continue to pursue nuclear expansion as part of an energythe rapid expansion of China’s nuclear industry requires a

  19. Assessment of China's virtual air pollution transport embodied in trade by using a consumption-based emission inventory

    E-Print Network [OSTI]

    2015-01-01

    inventory for China (MEIC: http:// www.meicmodel.org)by Tsinghua University. The MEIC is a production-basedStatistics, 2010) to map MEIC emission data onto the sectors

  20. Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01

    building sector, the primary energy-saving target allocatedfor 25% of the total primary energy use in China (Zhou etsector is 100 Mtce in primary energy units (Wu Y. , 2009). A

  1. Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    building sector, the primary energy-saving target allocatedfor 25% of the total primary energy use in China (Zhou etsector is 100 Mtce in primary energy units (Wu Y. , 2009). A

  2. Offsite Source Recovery Program (OSRP) Workshop Module: Tianjin, China, July 16-July 17, 2012

    SciTech Connect (OSTI)

    Houlton, Robert J. [Los Alamos National Laboratory

    2012-07-11

    Recovering and disposal of radioactive sources that are no longer in service in their intended capacity is an area of high concern Globally. A joint effort to recover and dispose of such sources was formed between the US Department of Energy and the Chinese Ministry of Environmental Protection (MEP), in preparation for the 2008 Beijing Olympics. LANL involvement in this agreement continues today under the DOE-Global Threat Reduction Initiative (GTRI) program. LANL will be presenting overview information on their Offsite Source Recovery (OSRP) and Source Disposal programs, in a workshop for the Ministry of Environmental Protection (MEP) at Tianjin, China, on July 16 and 17, 2012.

  3. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  4. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    SciTech Connect (OSTI)

    G. Fridley, David; Zheng, Nina; T. Aden, Nathaniel

    2010-07-01

    After rapid growth in economic development and energy demand over the last three decades, China has undertaken energy efficiency improvement efforts to reduce its energy intensity under the 11th Five Year Plan (FYP). Since becoming the world's largest annual CO{sub 2} emitter in 2007, China has set reduction targets for energy and carbon intensities and committed to meeting 15% of its total 2020 energy demand with non-fossil fuel. Despite having achieved important savings in 11th FYP efficiency programs, rising per capita income and the continued economic importance of trade will drive demand for transport activity and fuel use. At the same time, an increasingly 'electrified' economy will drive rapid power demand growth. Greater analysis is therefore needed to understand the underlying drivers, possible trajectories and mitigation potential in the growing industrial, transport and power sectors. This study uses scenario analysis to understand the likely trajectory of China's energy and carbon emissions to 2030 in light of the current and planned portfolio of programs, policies and technology development and ongoing urbanization and demographic trends. It evaluates the potential impacts of alternative transportation and power sector development using two key scenarios, Continued Improvement Scenario (CIS) and Accelerated Improvement Scenario (AIS). CIS represents the most likely path of growth based on continuation of current policies and meeting announced targets and goals, including meeting planned appliance efficiency standard revisions, fuel economy standards, and industrial targets and moderate phase-out of subcritical coal-fired generation with additional non-fossil generation. AIS represents a more aggressive trajectory of accelerated improvement in energy intensity and decarbonized power and transport sectors. A range of sensitivity analysis and power technology scenarios are tested to evaluate the impact of additional actions such as carbon capture and sequestration (CCS) and integrated mine-mouth generation. The CIS and AIS results are also contextualized and compared to model scenarios in other published studies. The results of this study show that China's energy and CO{sub 2} emissions will not likely peak before 2030, although growth is expected to slow after 2020. Moreover, China will be able to meet its 2020 carbon intensity reduction target of 40 to 45% under both CIS and AIS, but only meet its 15% non-fossil fuel target by 2020 under AIS. Under both scenarios, efficiency remains a key resource and has the same, if not greater, mitigation potential as new technologies in transport and power sectors. In the transport sector, electrification will be closely linked the degree of decarbonization in the power sector and EV deployment has little or no impact on China's crude oil import demand. Rather, power generation improvements have the largest sector potential for overall emission mitigation while mine-mouth power generation and CCS have limited mitigation potential compared to fuel switching and efficiency improvements. Comparisons of this study's results with other published studies reveal that CIS and AIS are within the range of other national energy projections but alternative studies rely much more heavily on CCS for carbon reduction. The McKinsey study, in particular, has more optimistic assumptions for reductions in crude oil imports and coal demand in its abatement scenario and has much higher gasoline reduction potential for the same level of EV deployment. Despite these differences, this study's scenario analysis of both transport and power sectors illustrate the necessity for continued efficiency improvements and aggressive power sector decarbonization in flattening China's CO{sub 2} emissions.

  5. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01

    42 Figure 2-11 Crude Oil Production by Oilfield (1980-for 44.8% of China’s total oil production in 2006, a drop ofgas, a by-product of oil production, has been used primarily

  6. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01

    42 Figure 2-11 Crude Oil Production by Oilfield (1980-Stabilize the increase in crude oil production and implementSinopec CNOOC China’s crude oil production increased from

  7. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01

    Figure 5-10 Natural Gas (LNG) Price in Selected Countries (Figure 5-10 Natural Gas (LNG) Price in Selected CountriesPrices With China’s increasing dependency on the international natural gas (LNG)

  8. Shakespeare Studies in China

    E-Print Network [OSTI]

    Meng, Hui

    2012-05-31

    , the characteristic of Shakespeare studies in China is closely associated with the political and cultural situation of the time. This thesis chronicles and analyzes noteworthy scholarship of Shakespeare studies in China, especially since the 1990s, in terms...

  9. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01

    current pace of growth in oil demand as staying consistentthis point, China’s demand Oil Demand vs. Domestic Supply inand predictions of oil supply and demand affected foreign

  10. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01

    Michael T. Klare, Blood and Oil: The Dangers of America’sDowns and Jeffrey A. Bader, “Oil-Hungry China Belongs at BigChina, Africa, and Oil,” (Council on Foreign Relations,

  11. Plague From China

    E-Print Network [OSTI]

    Hacker, Randi; Boyd, David

    2011-02-09

    Broadcast Transcript: Those of you who have been paying attention to Postcards these past three years are already aware that China takes credit for many of the world's firsts, including pasta, gunpowder and golf. Well, China can add another first...

  12. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01

    7 Table 1-3 China’s Exploitable HydropowerGW of technically exploitable hydropower reserves capable ofTable 1-3). The major hydropower resources are in Southwest

  13. SCIENCE CHINA Technological Sciences

    E-Print Network [OSTI]

    Liu, Yijun

    turbines, jet engines, nuclear power plants and space crafts, have placed severe demands on highSCIENCE CHINA Technological Sciences © Science China Press and Springer-Verlag Berlin Heidelberg

  14. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01

    Efficiency • Energy related advanced equipment and high technology, such as nuclearEnergy Efficiency Target for Power Industry (2006-2010) . 22 Table 2-8 China’s Development Plan for Nuclear

  15. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01

    Industry and Gas to Power Generation, IEEJ. Ni, Chun Chun (Chun (2008), China’s Wind-Power Generation Policy and MarketInstalled Capacity and Power Generation (2006) . 60

  16. Research Outlook: China Focus

    E-Print Network [OSTI]

    with China's key national research agencies and institutions. With the signing of China Australia Free Trade and facilitate the safeguarding of bilateral trade and investment into the future. This publication provides

  17. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01

    5 ENERGY PRICES Figure 5-1 Major Coal Price Reforms (1980-117 Figure 5-2 Ex-Factory Coal Price Index (1980-Figure 6-14 Comparison of Coal Prices in China’s Domestic

  18. Chemical Sector Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclear SecurityChattan ooga EagNISACChemical Sector

  19. Searching for Dark Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcomingmagnetoresistance |Komlov,Search / Search Search EnterDark Sector

  20. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01

    natural gas consumption, consumption in the North, East, and Southern ChinaConsumption Unit: (Mtce) Heat Natural Gas Total Petroleum Electricity Coke Total Coal Source: ChinaConsumption (Shares) Coal Crude Oil Natural Gas Electricity Coal Petroleum Natural Gas Electricity Source: China

  1. Energy Sector Cybersecurity Framework Implementation Guidance

    Broader source: Energy.gov (indexed) [DOE]

    FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of Contents...

  2. &'() *+& ,-$./01.2"34/%567.!"% Nobel Laureates Beijing Forum 2007 Opened

    E-Print Network [OSTI]

    Zare, Richard N.

    suggestions to Energy Saving, Emission Control and Environmental Protection. What suggestions do you have suggest promoting clean cars, such as electric cars and hydrogen energy cars. Meanwhile the emission of this forum is "Energy and Environment". Vice Prime Minister Peiyan Zeng and Mayor of Beijing Qishan Wang gave

  3. Climate change mitigation and co-benefits of feasible transport demand policies in Beijing

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Climate change mitigation and co-benefits of feasible transport demand policies in Beijing Felix i n f o Keywords: Climate change mitigation Transport demand management External costs Urban transportation Road charging a b s t r a c t Urban car transportation is a cause of climate change but is also

  4. Coal use in the People`s Republic of China. Volume 1: Environmental impacts

    SciTech Connect (OSTI)

    Bhatti, N.; Tompkins, M.M. [Argonne National Lab., IL (United States). Decision and Information Sciences Div.; Carlson, J.L. [Argonne National Lab., IL (United States). Decision and Information Sciences Div.]|[Illinois State Univ., Normal, IL (United States); Simbeck, D.R. [Argonne National Lab., IL (United States). Decision and Information Sciences Div.]|[SFA Pacific, Inc., Mountain View, CA (United States)

    1994-11-01

    The People`s Republic of China (hereafter referred to as China) is the largest producer and consumer of coal in the world. Coal makes up 76% and 74% of China`s primary energy consumption and production, respectively. This heavy dependence on coal has come at a high price for China, accounting for a large share of its environmental problems. This report examines the dominance of coal in China`s energy balance, its impact on the environment, and the need for technical and financial assistance, specifically for two distinct aspects: the effect of coal use on the environment and the importance of coal to China`s economy. The results of the analysis are presented in two volumes. Volume 1 focuses on full fuel cycle coal emissions and the environmental effects of coal consumption. Volume 2 provides a detailed analysis by sector of China`s economy and examines the economic impact of constraints on coal use. 51 refs., 19 figs., 15 tabs.

  5. China Energy and Emissions Paths to 2030

    SciTech Connect (OSTI)

    Fridley, David; Zheng, Nina; Zhou, Nan; Ke, Jing; Hasanbeigi, Ali; Morrow, Bill; Price, Lynn

    2011-01-14

    After over two decades of staggering economic growth and soaring energy demand, China has started taking serious actions to reduce its economic energy and carbon intensity by setting short and medium-term intensity reduction targets, renewable generation targets and various supporting policies and programs. In better understanding how further policies and actions can be taken to shape China's future energy and emissions trajectory, it is important to first identify where the largest opportunities for efficiency gains and emission reduction lie from sectoral and end-use perspectives. Besides contextualizing China's progress towards reaching the highest possible efficiency levels through the adoption of the most advanced technologies from a bottom-up perspective, the actual economic costs and benefits of adopting efficiency measures are also assessed in this study. This study presents two modeling methodologies that evaluate both the technical and economic potential of raising China's efficiency levels to the technical maximum across sectors and the subsequent carbon and energy emission implications through 2030. The technical savings potential by efficiency measure and remaining gap for improvements are identified by comparing a reference scenario in which China continues the current pace of with a Max Tech scenario in which the highest technically feasible efficiencies and advanced technologies are adopted irrespective of costs. In addition, from an economic perspective, a cost analysis of selected measures in the key industries of cement and iron and steel help quantify the actual costs and benefits of achieving the highest efficiency levels through the development of cost of conserved energy curves for the sectors. The results of this study show that total annual energy savings potential of over one billion tonne of coal equivalent exists beyond the expected reference pathway under Max Tech pathway in 2030. CO2 emissions will also peak earlier under Max Tech, though the 2020s is a likely turning point for both emission trajectories. Both emission pathways must meet all announced and planned policies, targets and non-fossil generation targets, or an even wider efficiency gap will exist. The savings potential under Max Tech varies by sector, but the industrial sector appears to hold the largest energy savings and emission reduction potential. The primary source of savings is from electricity rather than fuel, and electricity savings are magnified by power sector decarbonization through increasing renewable generation and coal generation efficiency improvement. In order to achieve the maximum energy savings and emission reduction potential, efficiency improvements and technology switching must be undertaken across demand sectors as well as in the growing power sector. From an economic perspective, the cost of conserved energy analysis indicates that nearly all measures for the iron and steel and cement industry are cost-effective. All 23 efficiency measures analyzed for the cement industry are cost-effective, with combined CO2 emission reduction potential of 448 Mt CO2. All of the electricity savings measures in the iron and steel industry are cost-effective, but the cost-effective savings potential for fuel savings measures is slightly lower than total technical savings potential. The total potential savings from these measures confirm the magnitude of savings in the scenario models, and illustrate the remaining efficiency gap in the cement and iron and steel industries.

  6. Energy Sector Market Analysis

    SciTech Connect (OSTI)

    Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

    2006-10-01

    This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

  7. Prospects for the power sector in nine developing countries

    SciTech Connect (OSTI)

    Meyers, S.; Goldman, N.; Martin, N.; Friedmann, R.

    1993-04-01

    Based on information drawn primarily from official planning documents issued by national governments and/or utilities, the authors examined the outlook for the power sector in the year 2000 in nine countries: China, India, Indonesia, Thailand, the Philippines, South Korea, Taiwan, Argentina and Mexico. They found that the implicit rates of average annual growth of installed electric power capacity between 1991 and 2001 range from a low of 3.3% per year in Argentina to a high of 13.2% per year in Indonesia. In absolute terms, China and India account for the vast majority of the growth. The plans call for a shift in the generating mix towards coal in six of the countries, and continued strong reliance on coal in China and India. The use of natural gas is expected to increase substantially in a number of the countries. The historic movement away from oil continues, although some countries are maintaining dual-fuel capabilities. Plans call for considerable growth of nuclear power in South Korea and China and modest increases in India and Taiwan. The feasibility of the official plans varies among the countries. Lack of public capital is leading towards greater reliance on private sector participation in power projects in many of the countries. Environmental issues are becoming a more significant constraint than in the past, particularly in the case of large-scale hydropower projects. The financial and environmental constraints are leading to a rising interest in methods of improving the efficiency of electricity supply and end use. The scale of such activities is growing in most of the study countries.

  8. FEATURED SECTOR The New Zealand Sectors Report 2013

    E-Print Network [OSTI]

    Report consists of the Main Report covering all sectors in the economy and six additional, separate) 3 High technology manufacturing 4 Construction 5 Petroleum and minerals 6 Tourism (this report) 7 emerging high-value sectors such as information technology services and high- technology manufacturing

  9. Comparison of Triton SODAR Data to Meteorological Tower Wind Measurement Data in Hebei Province, China

    SciTech Connect (OSTI)

    Yuechun, Y.; Jixue, W.; Hongfang, W.; Guimin, L.; Bolin, Y.; Scott, G.; Elliott, D.; Kline, D.

    2012-01-01

    With the increased interest in remote sensing of wind information in recent years, it is important to determine the reliability and accuracy of new wind measurement technologies if they are to replace or supplement conventional tower-based measurements. In view of this, HydroChina Corporation and the United States National Renewable Energy Laboratory (NREL) conducted a comparative test near a wind farm in Hebei Province, China. We present the results of an analysis characterizing the measurement performance of a state-of-the-art Sound Detection and Ranging (sodar) device when compared to a traditional tower measurement program. NREL performed the initial analysis of a three-month period and sent the results to HydroChina. When another month of data became available, HydroChina and their consultant Beijing Millenium Engineering Software (MLN) repeated NREL's analysis on the complete data set, also adding sensitivity analysis for temperature, humidity, and wind speed (Section 6). This report presents the results of HydroChina's final analysis of the four-month period.

  10. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    E-Print Network [OSTI]

    G. Fridley, David

    2010-01-01

    Alternative Fuel/Vehicle for China’s Future Road Transport: Energyalternative fuel/vehicle for China’s future road transport: Life-cycle energyAlternative Fuel/Vehicle for china’s Future Road Transport: Energy

  11. Characterization of Ultrafine Particles and Other Traffic Related Pollutants Near Roadways in Beijing

    E-Print Network [OSTI]

    Xie, Xiaosen

    2012-01-01

    2007, Air Pollution in Mega Cities in China, Atmospherichigher BC pollution levels in the inner city. In terms of

  12. Investigation and Analysis of the Indoor Air Environment of a Large-scale Art Exhibition Hall in Beijing 

    E-Print Network [OSTI]

    Hao, X.; Cao, G.; Wang, Y.; Wang, J.

    2006-01-01

    Adopting the method of locale measurement and subjective appraisal, this paper presents a synthesized investigation and analysis of both the indoor thermal and humid indices and the air quality of a specific exhibition hall in Beijing. Indoor air...

  13. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect (OSTI)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

  14. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    hydraulic head to control hydroelectricity generation, andlarge scale of China’s hydroelectricity generation needs,

  15. China's Building Energy Demand: Long-Term Implications from a Detailed Assessment

    SciTech Connect (OSTI)

    Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Kyle, G. Page; Patel, Pralit L.

    2012-10-01

    We present here a detailed, service-based model of China’s building energy use, nested in the GCAM (Global Change Assessment Model) integrated assessment framework. Using the model, we explore long-term pathways of China’s building energy use and identify opportunities of reducing greenhouse gas emissions. The inclusion of a structural model of building energy demands within an integrated assessment framework represents a major methodological advance. It allows for a structural understanding of the drivers of building energy consumption while simultaneously considering the other human and natural system interactions that influence changes in the global energy system and climate. We also explore a range of different scenarios to gain insights into how China’s building sector might evolve and what the implications might be for improved building energy technology and carbon policies. The analysis suggests that China’s building energy growth will not wane anytime soon, although technology improvement will put downward pressure on this growth. Also, regardless of the scenarios represented, the growth will involve the continued, rapid electrification of the buildings sector throughout the century, and this transition will be accelerated by the implementation of carbon policy.

  16. Key China Energy Statistics 2012

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01

    billion m 3 Total China Natural Gas Consumption: 126 billionTotal China Oil Consumption: 445 Mt Natural Gas ProductionNatural Gas Consumption (2010) United States Russia Iran China

  17. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01

    on the future of China’s nuclear power. First, it highlightsas China builds more nuclear power plants. The challengesto manage, run, and inspect nuclear power plants across the

  18. Higher Education and China’s Defense Science and Technology Establishment

    E-Print Network [OSTI]

    ALDERMAN, Daniel

    2015-01-01

    7 January 2015 Higher Education and China’s Defense Sciencetalented personnel. The education of China’s defense scienceits institutes of higher education are not better preparing

  19. Quenching China's Thirst for Renewable Power: Water Implications of China's Renewable Development

    E-Print Network [OSTI]

    Zheng, Nina

    2014-01-01

    forthcoming). “China’s Alternative Energy Development. ”barriers to China’s alternative energy development, theand energy inputs to alternative energy technologies (AET)

  20. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01

    Singapore Russia Korea, South Imports Exports Source: Chinaand Russia, while leading target markets for exports areShare of exports Unit: (%) India Japan USA FSU/ Russia China

  1. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01

    Energy June 2009, British Petroleum. 5 Assessment Report ofEconomics Japan. British Petroleum (2009), StatisticalSouth-East Asian Nations British Petroleum China Compulsory

  2. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01

    the Renewable Energy Law 25 Table 2-11enacted the Renewable Energy Law in February 2005 (the Lawthe China Renewable Energy Law, which went into effect in

  3. Key China Energy Statistics 2011

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01

    Growth of China's Total Primary Energy Production (TPE)by Fuel (Mtce) Primary Energy Production (Mtce) AAGR CoalGrowth of China's Total Primary Energy Production (Mtce)

  4. Key China Energy Statistics 2012

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01

    Exports : 19 Mt China's Coal Imports (2010) Indonesia Australia Vietnam Mongolia RussiaExports: 3 Mt China's Crude Oil Imports (2010) Saudi Arabia Angola Iran Oman Russia

  5. China's Space Robotic Arms Programs

    E-Print Network [OSTI]

    POLLPETER, Kevin

    2013-01-01

    2013 China’s Space Robotic Arm Programs Kevin POLLPETERdebris observation and space robotic arm technologies. Thelikely equipped with a robotic arm, grappling the target

  6. China's Approaches to Financing Sustainable Development: Policies, Practices, and Issues

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01

    composition of China’s green energy investment portfolio.financing mechanisms for green energy development in China.Composition of China’s green energy investment portfolio •

  7. Additive Manufacturing in China: Threats, Opportunities, and Developments (Part I)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01

    application of additive manufacturing in China’s aviationAnalysis May 2013 Additive Manufacturing in China: Threats,of China’s additive manufacturing industry is presented,

  8. China power - thermal coal and clean coal technology export. Topical report

    SciTech Connect (OSTI)

    Binsheng Li

    1996-12-31

    China is the world`s fourth largest electric power producer, and is expected to surpass Japan within the next two years to become the third largest power producer. During the past 15 years, China`s total electricity generation more than tripled, increasing from about 300 TWh to about 1,000 TWh. Total installed generating capacity grew at an average of 8.2 percent per year, increasing from 66 to 214 GW. The share of China`s installed capacity in Asia increased from 21 to 31 percent. The Chinese government plans to continue China`s rapid growth rate in the power sector. Total installed capacity is planned to reach 300 GW by 2000, which will generate 1,400 TWh of electricity per year. China`s long-term power sector development is subject to great uncertainty. Under the middle scenario, total capacity is expected to reach 700 GW by 2015, with annual generation of 3,330 TWh. Under the low and high scenarios, total capacity will reach 527-1,005 GW by 2015. The high scenario representing possible demand. To achieve this ambitious scenario, dramatic policy changes in favor of power development are required; however, there is no evidence that such policy changes will occur at this stage. Even under the high scenario, China`s per capita annual electricity consumption would be only 3,000 kWh by 2015, less than half of the present per capita consumption for OECD countries. Under the low scenario, electricity shortages will seriously curb economic growth.

  9. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.; Zhou, Nan

    2009-05-18

    The time when energy-related carbon emissions come overwhelmingly from developed countries is coming to a close. China has already overtaken the United States as the world's leading emitter of greenhouse gas emissions. The economic growth that China has experienced is not expected to slow down significantly in the long term, which implies continued massive growth in energy demand. This paper draws on the extensive expertise from the China Energy Group at LBNL on forecasting energy consumption in China, but adds to it by exploring the dynamics of demand growth for electricity in the residential sector -- and the realistic potential for coping with it through efficiency. This paper forecasts ownership growth of each product using econometric modeling, in combination with historical trends in China. The products considered (refrigerators, air conditioners, fans, washing machines, lighting, standby power, space heaters, and water heating) account for 90percent of household electricity consumption in China. Using this method, we determine the trend and dynamics of demandgrowth and its dependence on macroeconomic drivers at a level of detail not accessible by models of a more aggregate nature. In addition, we present scenarios for reducing residential consumption through efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, thus allowing for a technologically realistic assessment of efficiency opportunities specifically in the Chinese context.

  10. Nonlinear nonresonant forces by radio-frequency waves in plasmas Department of Engineering Physics, Tsinghua University, Beijing 100084, China

    E-Print Network [OSTI]

    Nonlinear nonresonant forces by radio-frequency waves in plasmas Zhe Gao Department of Engineering August 2007 Nonresonant forces by applied rf waves in plasmas are analyzed. Along the background dc and polarization stress contribute to the total force. For waves with frequency much lower than the cyclotron

  11. Copyright is held by the author/owner(s). WWW 2008, April 21--25, 2008, Beijing, China

    E-Print Network [OSTI]

    Greenberg, Albert

    ) and services in the real world (RW). In particular, we show through examples how messaging, web publishing to focus on the concept of bridging services between the real world (RW) and the virtual worlds (VW). From people have registered, and SL reports 1.6 million residents have checked in during the last 60 days

  12. 2011 IEEE International Workshop on Machine Learning for Signal Processing September 18-21, 2011, Beijing, China

    E-Print Network [OSTI]

    Verleysen, Michel

    of biomedical research to understand and develop new processing techniques. EEG signal pre-processing2011 IEEE International Workshop on Machine Learning for Signal Processing September 18-21, 2011* *University Carlos III of Madrid, Signal Processing and Communications Department Avda. Universidad, 30 28911

  13. Energy Sector Cybersecurity Framework Implementation Guidance

    Broader source: Energy.gov (indexed) [DOE]

    JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector...

  14. Federal Sector Renewable Energy Project Implementation: ""What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by...

  15. Federal Sector Renewable Energy Project Implementation: ""What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by Robert...

  16. SCIENCE CHINA Technological Sciences

    E-Print Network [OSTI]

    Ahmad, Sajjad

    SCIENCE CHINA Technological Sciences © Science China Press and Springer-Verlag Berlin Heidelberg HU HongChang, TIAN FuQiang* & HU HePing Department of Hydraulic Engineering, State Key Laboratory as a key soil physical parameter and has been widely used to predict soil hydraulic and other related

  17. Evidence of Reactive Aromatics As a Major Source of Peroxy Acetyl Nitrate over China

    SciTech Connect (OSTI)

    Liu, Zhen; Wang, Yuhang; Gu, Dasa; Zhao, Chun; Huey, L. G.; Stickel, Robert; Liao, Jin; Shao, Min; Zhu, T.; Zeng, Limin; Liu, Shaw C.; Chang, Chih-Chung; Amoroso, Antonio; Costabile, Francesa

    2010-09-15

    We analyze the observations of near-surface peroxy acetyl nitrate (PAN) and its precursors in Beijing, China in August of 2007. The levels of PAN are remarkably high (up to 14 ppbv), surpassing those measured over other urban regions in recent years. Analyses employing a 1-D version of a chemical transport model (Regional chEmical and trAnsport Model, REAM) indicate that aromatic non-methane hydrocarbons (NMHCs) are the dominant (55-75%) PAN source. The major oxidation product of aromatics that produces acetyl peroxy radicals is methylglyoxal (MGLY). PAN and O3 in the observations are correlated at daytime; aromatic NMHCs appear to play an important role in O3 photochemistry. Previous NMHC measurements indicate the presence of reactive aromatics at high levels over broad polluted regions of China. Aromatics are often ignored in global and (to a lesser degree) regional 3D photochemical transport models; their emissions over China as well as photochemistry are quite uncertain.Our findings suggest that critical assessments of aromatics emissions and chemistry (such as the yields of MGLY) are necessary to understand and assess ozone photochemistry and regional pollution export in China.

  18. Developments in lithium-ion battery technology in the Peoples Republic of China.

    SciTech Connect (OSTI)

    Patil, P. G.; Energy Systems

    2008-02-28

    Argonne National Laboratory prepared this report, under the sponsorship of the Office of Vehicle Technologies (OVT) of the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy, for the Vehicles Technologies Team. The information in the report is based on the author's visit to Beijing; Tianjin; and Shanghai, China, to meet with representatives from several organizations (listed in Appendix A) developing and manufacturing lithium-ion battery technology for cell phones and electronics, electric bikes, and electric and hybrid vehicle applications. The purpose of the visit was to assess the status of lithium-ion battery technology in China and to determine if lithium-ion batteries produced in China are available for benchmarking in the United States. With benchmarking, DOE and the U.S. battery development industry would be able to understand the status of the battery technology, which would enable the industry to formulate a long-term research and development program. This report also describes the state of lithium-ion battery technology in the United States, provides information on joint ventures, and includes information on government incentives and policies in the Peoples Republic of China (PRC).

  19. A Lost Generation: The Trafficking of China’s Left-Behind Children

    E-Print Network [OSTI]

    Hellmann, Melissa

    2015-01-01

    in July 2014, promises to offer an urban hukou to 45% of theno longer obligated to offer access to education. Beijing

  20. China's Pathways to Energy Security 

    E-Print Network [OSTI]

    Beard, Steven; Caruana, Craig; Coats, Charles; Haguewood, Robert; Lee, Jong-Hwan; Morgan, Broderick; Murray, Joshua; Riedell, Michael

    2010-01-01

    43, 2009) 220,000 bpd of Kazakhstan’s total oil exports of 1.0 million bpd goes to China Kazakhstan is a major oil nation, with more oil reserves (30 bil. Barrels est) than the US and half that of Russia Kazakhstan the only Cen. Asian nation... increasingly concerned about China’s economic clout China’s economy still export driven - Attempting to create a larger domestic market China’s demand increase between 2006 - 2020 Coal: 7,400% Copper: 600% Iron Ore: 380% Wood: 330% Soy: 80% Manganese: 30...

  1. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    mines in China lowers the coal recovery rate and increasesthat China’s average coal recovery rate is 30% nationallyimproved aggregate coal recovery rates and local- scale

  2. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    31. China's Electricity Generation Output by Fuel under33. China's Electricity Generation Output by Fuel under31. China's Electricity Generation Output by Fuel under

  3. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    and Runqing Hu, 2005, “Solar thermal in China: Overview andperspectives of the Chinese solar thermal market. ” RefocusProspectives for China’s solar thermal power technology

  4. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    32 Table 13. Total Resource Requirements for Hydropower23 Figure 12. China's Hydropower Installed Capacity, 1980-and costs of China’s hydropower: Development or slowdown? ”

  5. Inventory of China's Energy-Related CO2 Emissions in 2008

    SciTech Connect (OSTI)

    Fridley, David; Zheng, Nina; Qin, Yining

    2011-03-31

    Although China became the world's largest emitter of energy-related CO{sub 2} emissions in 2007, China does not publish annual estimates of CO{sub 2} emissions and most published estimates of China's emissions have been done by other international organizations. Undertaken at the request of the Energy Information Administration (EIA) of the US Department of Energy, this study examines the feasibility of applying the EIA emissions inventory methodology to estimate China's emissions from published Chinese data. Besides serving as a proof of concept, this study also helps develop a consistent and transparent method for estimating China's CO{sub 2} emissions using an Excel model and identified China-specific data issues and areas for improvement. This study takes a core set of data from the energy balances published in the China Energy Statistical Yearbook 2009 and China Petrochemical Corporation Yearbook 2009 and applies the EIA's eight-step methodology to estimate China's 2008 CO{sub 2} emissions. First, China's primary and secondary fuel types and consumption by end use are determined with slight discrepancies identified between the two data sources and inconsistencies in product categorization with the EIA. Second, energy consumption data are adjusted to eliminate double counting in the four potential areas identified by EIA; consumption data from China's Special Administrative Regions are not included. Physical fuel units are then converted to energy equivalents using China's standard energy measure of coal equivalent (1 kilogram = 29.27 MJ) and IPCC carbon emissions coefficients are used to calculate each fuel's carbon content. Next, carbon sequestration is estimated following EIA conventions for other petroleum products and non-energy use of secondary fuels. Emissions from international bunker fuels are also subtracted under the 'reference' calculation of estimating apparent energy consumption by fuel type and the 'sectoral' calculation of summing emissions across end-use sectors. Adjustments for the China-specific conventions of reporting foreign bunkers and domestic bunkers fueling abroad are made following IPCC definitions of international bunkers and EIA reporting conventions, while the sequestration of carbon in carbon steel is included as an additional adjustment. Under the sectoral approach, fuel consumption of bunkers and other transformation losses as well as gasoline consumption are reallocated to conform to EIA sectoral reporting conventions. To the extent possible, this study relies on official energy data from primary sources. A limited number of secondary sources were consulted to provide insight into the nature of consumption of some products and to guide the analysis of carbon sequestered in steel. Beyond these, however, the study avoided trying to estimate figures where directly unavailable, such as natural gas flaring. As a result, the basic calculations should be repeatable for other years with the core set of data from National Bureau of Statistics and Sinopec (or a similarly authoritative source of oil product data). This study estimates China's total energy-related CO{sub 2} emissions in 2008 to be 6666 Mt CO{sub 2}, including 234.6 Mt of non-fuel CO{sub 2} emissions and 154 Mt of sequestered CO{sub 2}. Bunker fuel emissions in 2008 totaled 15.9 Mt CO{sub 2}, but this figure is underestimated because fuel use by Chinese ship and planes for international transportation and military bunkers are not included. Of emissions related to energy consumption, 82% is from coal consumption, 15% from petroleum and 3% from natural gas. From the sectoral approach, industry had the largest share of China's energy-related CO{sub 2} emissions with 72%, followed by residential at 11%, transport and telecommunications at 8%, and the other four (commerce, agriculture, construction and other public) sectors having a combined share of 9%. Thermal electricity and (purchased) heat (to a lesser degree) are major sources of fuel consumption behind sectoral emissions, responsible for 2533 Mt CO2 and 321 Mt CO{sub 2}, respec

  6. Energy Audit Practices in China: National and Local Experiences and Issues

    SciTech Connect (OSTI)

    Shen, Bo; Price, Lynn; Lu, Hongyou

    2010-12-21

    China has set an ambitious goal of reducing its energy use per unit of GDP by 20% between 2006 and 2010. Since the industrial sector consumes about two-thirds of China's primary energy, many of the country's efforts are focused on improving the energy efficiency of this sector. Industrial energy audits have become an important part of China's efforts to improve its energy intensity. In China, industrial energy audits have been employed to help enterprises indentify energy-efficiency improvement opportunities for achieving the energy-saving targets. These audits also serve as a mean to collect critical energy-consuming information necessary for governments at different levels to supervise enterprises energy use and evaluate their energy performance. To better understand how energy audits are carried out in China as well as their impacts on achieving China's energy-saving target, researchers at the Lawrence Berkeley National Laboratory (LBNL) conducted an in-depth study that combines a review of China's national policies and guidelines on energy auditing and a series of discussions with a variety of Chinese institutions involved in energy audits. This report consists of four parts. First, it provides a historical overview of energy auditing in China over the past decades, describing how and why energy audits have been conducted during various periods. Next, the report reviews current energy auditing practices at both the national and regional levels. It then discusses some of the key issues related to energy audits conducted in China, which underscore the need for improvement. The report concludes with policy recommendations for China that draw upon international best practices and aim to remove barriers to maximizing the potential of energy audits.

  7. Dublin Oxford Portland New York Los Angeles Mexico City San Jose Santiago Rio de Janeiro Madrid The Hague Bern 1 of 17 Kiev Casablanca Johannesburg Amman Dubai Karachi Mumbai Tokyo Beijing Bangkok Kuala Lumpur Singapore

    E-Print Network [OSTI]

    The Hague Bern 1 of 17 Kiev Casablanca Johannesburg Amman Dubai Karachi Mumbai Tokyo Beijing Bangkok Kuala

  8. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01

    Energy Demand China China Japan Cooking, MJ per household Urban Rural Water heating, MJ per household Urban Rural Space

  9. Pages 6-15 In: J. Wu, X. Han and J. Huang (eds), Lectures in Modern Ecology (II): From Basic Ecology to Environmental Issues. Science and Technology Press, Beijing.

    E-Print Network [OSTI]

    Wu, Jianguo "Jingle"

    Ecology to Environmental Issues. Science and Technology Press, Beijing. 1 #12;Pages 6-15 In: J. Wu, X. Han and Technology Press, Beijing. 2 #12;Pages 6-15 In: J. Wu, X. Han and J. Huang (eds), Lectures in Modern Ecology (II): From Basic Ecology to Environmental Issues. Science and Technology Press, Beijing. 3 #12;Pages 6

  10. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2008-01-01

    Berkeley National Laboratory, Berkeley; Energy ResearchBerkeley National Laboratory, and Beijing: Energy Research

  11. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01

    Crude Oil .of which 72.1 Gt-km was crude oil. Compared with the 118.5a transportation route for crude oil imports, China has also

  12. SCIENCE CHINA Earth Sciences

    E-Print Network [OSTI]

    Perissin, Daniele

    ), the largest hydroelectric project in the world, is one of the most significant recent construction projects in China. The three main functions of the TGP, namely, flood control, power generation and navigational

  13. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01

    assumption of four distinct motivations in pursuing international oilassumption that China has a unified strategy for international oiloil demand as staying consistent into the future, but this is perhaps an unreasonable assumption;

  14. Housing policy in China

    E-Print Network [OSTI]

    Gao, Lu, S.M. Massachusetts Institute of Technology

    2011-01-01

    In the last three decades, the People's Republic of China (PRC) has managed to replace its welfare-based urban housing system with a market-based housing provision scheme. With such significant housing policy changes, the ...

  15. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01

    s Worldwide Quest for Energy Security, (Paris: OCED/IEA,s Worldwide Quest for Energy Security, (Paris: OCED/IEA,China’s Quest for Energy Security, (Washington: RAND Project

  16. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Since 1999, China’s bioethanol production has grown to abelow, most of China’s bioethanol production use grains as aexpansion of existing bioethanol production and halted new

  17. The China-in-Global Energy Model Tianyu Qi, Niven Winchester, Da Zhang,

    E-Print Network [OSTI]

    of production, consumption and trade among multiple global regions and sectors ­ including five energyThe China-in-Global Energy Model Tianyu Qi, Niven Winchester, Da Zhang, Xiliang Zhang and Valerie J to communicate research results and improve public understanding of global environment and energy challenges

  18. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    Power generation ..Efficiency Status of Power Generation Industry in China,”Efficiency Status of Power Generation Industry in China,”

  19. Key China Energy Statistics 2011

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01

    Construction Other Oil Consumption by Sector (1980-2009) Mtto "Other". Final Oil Consumption by Sectoral SharesOil Natural Gas Note: Data based on total final consumption

  20. Environmental Impacts of China Outward Foreign Direct Investment: Case Studies in Latin America, Mongolia, Myanmar, and Zambia 

    E-Print Network [OSTI]

    Al-Aameri, Nour; Fu, Lingxiao; Garcia, Nicole; Mak, Ryan; McGill, Caitlin; Reynolds, Amanda; Vinze, Lucas

    2012-01-01

    =UTF-8 GEORGE BUSH SCHOOL OF GOVERNMENT AND PUBLIC SERVICE Environmental Impacts of China’s Outward Foreign Direct Investment Special Addendum on Myanmar’s Logging Sector and Environmental Sustainability in Mongolia By Kar Yin Ryan Mak... with the MTE’s near monopoly on its supply have enabled the teak industry to thrive amid calls for bans and boycotts.6 What also drives timber exports from Myanmar are bans imposed by its neighboring countries’ governments upon their local timber industry...

  1. China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)

    E-Print Network [OSTI]

    2004-01-01

    energy use. China’s Sustainable Energy Future Summary next31 -ii- China’s Sustainable Energy Future Executive Summarystudy, entitled China’s Sustainable Energy Future: Scenarios

  2. China's policy towards US adversaries

    E-Print Network [OSTI]

    Swartz, Peter Goodings

    2013-01-01

    If the Chinese government is trying to reassure the US that China's rise is not threatening, why does China diplomatically support adversaries of the US such as Iran, Sudan, Libya, and Syria? This thesis shows that soft ...

  3. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01

    Wang, 1995. Chapter VI, Energy Prices China Energy DatabookS £5S3£Ss£ i Chapter VI, Energy Prices China Energy Databookabsent are data on energy prices, key elements in the

  4. Key China Energy Statistics 2012

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01

    239 Mt World's Oil Consumption (2010) US China Japan IndiaKorea Canada Other Total World Oil Consumption: 4,028 MtTotal China Oil Consumption: 445 Mt Natural Gas Production

  5. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01

    by Source, 1992 I.Mtce Country Coal Liquid Gas China India*Japan USA FSUf Country Coal Liquid Gas China India* JapanElectricity t V Coal & Cokef Liquids U Natural Gas Delivered

  6. Experts in Defense: How China’s Academicians Contribute to Its Defense Science and Technology Development

    E-Print Network [OSTI]

    WILSON, Jordan

    2015-01-01

    also well-represented in China’s shipbuilding, ordnance, andDesigner Shen Wensun, Dalian Shipbuilding Industry Co. (part of the China Shipbuilding Industry Corporation); and

  7. Key China Energy Statistics 2011

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01

    Export Sources China's Coal Imports (2010) Import Sources Mt % of Total Indonesia Australia Viet Nam Mongolia Russia

  8. China's Navy Embraces Technology: Western Science, Chinese Culture?

    E-Print Network [OSTI]

    COLE, Bernard D.

    2013-01-01

    environment. CHINA’S SHIPBUILDING INDUSTRY AND THE PLAN Thisone shipbuilder. China’s shipbuilding industry is improvingAnother weakness in the shipbuilding indus- try is the

  9. China energy databook

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B. ); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi )

    1992-11-01

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first becamc involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China's State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industries more energy-efficient, preparing historical reviews of energy supply and demand in the People's Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. We are hopeful that this volume will not only help us in our work, but help build a broader community of Chinese energy policy studies within the US.

  10. Extreme Energy in China

    SciTech Connect (OSTI)

    Khanna, Nina; Fridley, David; Cai, Lixue

    2013-06-01

    Over the last decade, China has focused its policies simultaneously on moderating the rapid energy demand growth that has been driven by three decades of rapid economic growth and industrialization and on increasing its energy supply. In spite of these concerted efforts, however, China continues to face growing energy supply challenges, particularly with accelerating demand for oil and natural gas, both of which are now heavily dependent on imports. On the supply side, the recent 11th and 12th Five-Year Plans have emphasized accelerating conventional and nonconventional oil and gas exploration and development through pricing reforms, pipeline infrastructure expansions and 2015 production targets for shale gas and coal seam methane. This study will analyze China’s new and nonconventional oil and gas resources base, possible development paths and outlook, and the potential role for these nonconventional resources in meeting oil and gas demand. The nonconventional resources currently being considered by China and included in this study include: shale gas, coal seam methane (coal mine methane and coal bed methane), tight gas, in-situ coal gasification, tight oil and oil shale, and gas hydrates.

  11. Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component

    E-Print Network [OSTI]

    Zheng, Mei

    sulfate and secondary nitrate, a mixed source of coal combustion and biomass burning, industrial emission and the emissions from coal combustion and biomass burning dominated PM2.5. Such comparison among various receptor in Beijing have been identified using chemical speciation data. Second- ary formation, biomass burning

  12. Water Impacts of the Electricity Sector (Presentation)

    SciTech Connect (OSTI)

    Macknick, J.

    2012-06-01

    This presentation discusses the water impacts of the electricity sector. Nationally, the electricity sector is a major end-user of water. Water issues affect power plants throughout the nation.

  13. Expansion and Improvement of Solar Water Heating Technology in...

    Open Energy Info (EERE)

    Office Jump to: navigation, search Name: Expansion and Improvement of Solar Water Heating Technology in China Project Management Office Place: Beijing, Beijing Municipality, China...

  14. SEP Special Projects Report: Buildings Sector

    SciTech Connect (OSTI)

    2009-01-18

    The buildings section of this Sharing Success document describes SEP special projects in the buildings sector including funding.

  15. Air quality during the 2008 Beijing Olympics: secondary pollutants and regional impact

    E-Print Network [OSTI]

    2010-01-01

    air pollutant emissions of coal-fired power plants in China:advanced NO x control in coal- fired power plants and to acontrol of emissions in coal- fired power plants, CO from

  16. Sector Profiles of Significant Large CHP Markets, March 2004...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sector Profiles of Significant Large CHP Markets, March 2004 Sector Profiles of Significant Large CHP Markets, March 2004 In this 2004 report, three sectors were identified as...

  17. Making Africa's Power Sector Sustainable: An Analysis of Power...

    Open Energy Info (EERE)

    Making Africa's Power Sector Sustainable: An Analysis of Power Sector Reforms in Africa Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Making Africa's Power Sector...

  18. Workforce Training for the Electric Power Sector: Awards | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce Training for the Electric Power Sector: Awards Workforce Training for the Electric Power Sector: Awards List of Workforce Training Awards for the Electric Power Sector...

  19. Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave INFORME para la Sostenibilidad Energética y Ambiental, FUNSEAM. #12;Smart Grids: Sectores y actividades clave eléctrica y los diferentes sectores que forman la smart grid. 6 Figura 2. Evolución y previsión de

  20. Singlet Portal to the Hidden Sector

    E-Print Network [OSTI]

    Clifford Cheung; Yasunori Nomura

    2010-08-30

    Ultraviolet physics typically induces a kinetic mixing between gauge singlets which is marginal and hence non-decoupling in the infrared. In singlet extensions of the minimal supersymmetric standard model, e.g. the next-to-minimal supersymmetric standard model, this furnishes a well motivated and distinctive portal connecting the visible sector to any hidden sector which contains a singlet chiral superfield. In the presence of singlet kinetic mixing, the hidden sector automatically acquires a light mass scale in the range 0.1 - 100 GeV induced by electroweak symmetry breaking. In theories with R-parity conservation, superparticles produced at the LHC invariably cascade decay into hidden sector particles. Since the hidden sector singlet couples to the visible sector via the Higgs sector, these cascades necessarily produce a Higgs boson in an order 0.01 - 1 fraction of events. Furthermore, supersymmetric cascades typically produce highly boosted, low-mass hidden sector singlets decaying visibly, albeit with displacement, into the heaviest standard model particles which are kinematically accessible. We study experimental constraints on this broad class of theories, as well as the role of singlet kinetic mixing in direct detection of hidden sector dark matter. We also present related theories in which a hidden sector singlet interacts with the visible sector through kinetic mixing with right-handed neutrinos.

  1. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    SciTech Connect (OSTI)

    Ma, Y., E-mail: yjma@ciae.ac.cn; Cui, B.; Ma, R.; Tang, B.; Chen, L.; Huang, Q.; Jiang, W. [China Institute of Atomic Energy, Beijing 102413 (China)] [China Institute of Atomic Energy, Beijing 102413 (China)

    2014-02-15

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 ?A], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 ?A], the beam profile scanner will be installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article.

  2. Dissipative hidden sector dark matter

    E-Print Network [OSTI]

    R. Foot; S. Vagnozzi

    2014-12-15

    A simple way of explaining dark matter without modifying known Standard Model physics is to require the existence of a hidden (dark) sector, which interacts with the visible one predominantly via gravity. We consider a hidden sector containing two stable particles charged under an unbroken $U(1)^{'}$ gauge symmetry, hence featuring dissipative interactions. The massless gauge field associated with this symmetry, the dark photon, can interact via kinetic mixing with the ordinary photon. In fact, such an interaction of strength $\\epsilon \\sim 10 ^{-9}$ appears to be necessary in order to explain galactic structure. We calculate the effect of this new physics on Big Bang Nucleosynthesis and its contribution to the relativistic energy density at Hydrogen recombination. We then examine the process of dark recombination, during which neutral dark states are formed, which is important for large-scale structure formation. Galactic structure is considered next, focussing on spiral and irregular galaxies. For these galaxies we modelled the dark matter halo (at the current epoch) as a dissipative plasma of dark matter particles, where the energy lost due to dissipation is compensated by the energy produced from ordinary supernovae (the core-collapse energy is transferred to the hidden sector via kinetic mixing induced processes in the supernova core). We find that such a dynamical halo model can reproduce several observed features of disk galaxies, including the cored density profile and the Tully-Fisher relation. We also discuss how elliptical and dwarf spheroidal galaxies could fit into this picture. Finally, these analyses are combined to set bounds on the parameter space of our model, which can serve as a guideline for future experimental searches.

  3. Cross-sector Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding in Actinide SandwichCray eraSkillsCross-Sector Sign In

  4. Private Sector | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)Energy Technology JumpWilliam County,| OpenEIPrism SolarSector

  5. WINDExchange: Wind Energy Market Sectors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentat LENA|UpcomingVisit UsNews This pageMarket Sectors

  6. SCIENCE CHINA Technological Sciences

    E-Print Network [OSTI]

    Wang, Zhong L.

    University, Lanzhou 730000, China; 3 School of Material Science and Engineering, Georgia Institute on the piezoelectric semiconductor materials, such as ZnO, ZnS, CdS and GaN. With the usage of these piezoelectric.37 eV and large free-exciton binding energy of 60 meV at room temperature. Furthermore, splendid one

  7. Keeping Pace with Big Data Arizona State University Data Mining and Machine Learning Lab NSF Workshop on Big Data Analy6cs, Beijing 1

    E-Print Network [OSTI]

    Liu, Huan

    Keeping Pace with Big Data Arizona State University Data Mining and Machine Learning Lab NSF Workshop on Big Data Analy6cs, Beijing 1 Keeping Pace with Big Data - A Data Mining Perspec>ve Huan Liu Data

  8. Discovering from tradition : lessons for new shopping center designs in Beijing, drawn from the traditional Da Shi-la shopping district

    E-Print Network [OSTI]

    Wang, Qian

    1995-01-01

    Since the 1979 Open Door policy, there have been the tensions between the illusion of far reaching advancement and the reality that basic provisions are scarce. Reflected in modem shopping designs in Beijing, this phenomenon ...

  9. Characterizing Ultrafine Particle Exposures in Two Types of Indoor Environments: San Francisco Bay Area Classrooms and Beijing High-Rise Apartments

    E-Print Network [OSTI]

    Mullen, Nasim Ayoubzadeh

    2011-01-01

    Beijing comes from coal (14%) and liquid petroleum gas (9%).the city vary from coal to liquid petroleum gas to naturalliquid petroleum gas followed by electricity; however, in rural residences the primary energy source remains coal (

  10. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01

    Electricity Sector in Russia: Regional Aspects " In Economics EducationElectricity Sector in Russia: Regional Aspects " in Economics Education

  11. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum...

  12. Assessment of China's virtual air pollution transport embodied in trade by using a consumption-based emission inventory

    E-Print Network [OSTI]

    2015-01-01

    emissions in nearly all provinces. In Beijing, Jiangsu, Shanghai, Zhe- jiang and Guangdong, biomass combustion

  13. Middle Pleistocene climate and habitat change at Zhoukoudian, China, from the carbon and oxygen isotopic record from

    E-Print Network [OSTI]

    ; Paleoecology Introduction Zhoukoudian, located about 50 km to the southwest of Beijing (see Fig. 1

  14. Understanding the China energy market: trends and opportunities 2006

    SciTech Connect (OSTI)

    Barbara Drazga

    2005-05-15

    The report is broken up into 4 Sections: Section I - Overview of China Energy Market (historical background, market value, consumption, production, reserves, export and import, market segmentation, market forecast); Section II - Market Analysis (PEST analysis, Porter's five forces analysis, socio-economic trends, consumption trends); Section III - Market Segments (electricity, oil, natural gas, liquefied natural gas, liquid petroleum gas, nuclear power, coal, renewables, photovoltaics, wind power, hydroelectric power. Each market segment details current and planned projects, and lists participants in that sector); and Section IV - Breaking Into the Market (regulatory framework, methods of market entry, foreign investment, challenges, government agencies).

  15. Additive Manufacturing in China: Threats, Opportunities, and Developments (Part I)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01

    application of additive manufacturing in China’s aviationAnalysis May 2013 Additive Manufacturing in China: Threats,an overview of China’s additive manufacturing industry is

  16. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    technology in China. ” Energy 35: 4445-4450. Xinhua News,photovoltaic market in China. ” Energy Policy 39 (4): 2204-and X. Zhang, 2010, “Nuclear energy development in China: A

  17. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    a 300 MW pulverized coal-fired utility furnace in China. ”generator. China’s coal-fired power plants, however, have athe grid’s reliance on coal-fired units for load following,

  18. Table 24. Productivity and related data, business and nonfarm business sectors, 1947-2000 (Index, 1992=100)

    E-Print Network [OSTI]

    Rauch, Erik

    - Non- Busi- Non- Busi- Non- Busi- Non- Busi- Non- ness farm ness farm ness farm ness farm ness farm ness farm ness farm sector busi- sector busi- sector busi- sector busi- sector busi- sector busi- sector busi- ness ness ness ness ness ness ness sector sector sector sector sector sector sector 1947

  19. Accelerating Investments in the Geothermal Sector, Indonesia...

    Open Energy Info (EERE)

    Accelerating Investments in the Geothermal Sector, Indonesia (Presentation) Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Accelerating...

  20. Energy Sector Cybersecurity Framework Implementation Guidance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    released guidance to help the energy sector establish or align existing cybersecurity risk management programs to meet the objectives of the Cybersecurity Framework released by...

  1. DOE Issues Energy Sector Cyber Organization NOI

    Energy Savers [EERE]

    between the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the...

  2. Transitioning the Transportation Sector: Exploring the Intersection...

    Broader source: Energy.gov (indexed) [DOE]

    held the Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles workshop in Washington, D.C., on September 9, 2014....

  3. Tennessee's Manufacturing Sector Before and After the

    E-Print Network [OSTI]

    Grissino-Mayer, Henri D.

    Tennessee's Manufacturing Sector Before and After the Great Recession Prepared by Matthew N. Murray....................................................................................................................................... 1 Manufacturing in the Post Great Recession Era............................................................................... 2 Manufacturing Employment Trends

  4. Decoupling limits in multi-sector supergravities

    SciTech Connect (OSTI)

    Achúcarro, Ana; Hardeman, Sjoerd; Schalm, Koenraad; Aalst, Ted van der [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden (Netherlands); Oberreuter, Johannes M., E-mail: achucar@lorentz.leidenuniv.nl, E-mail: j.m.oberreuter@uva.nl, E-mail: kschalm@lorentz.leidenuniv.nl, E-mail: vdaalst@lorentz.leidenuniv.nl [Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Science Park 904, Amsterdam (Netherlands)

    2013-03-01

    Conventional approaches to cosmology in supergravity assume the existence of multiple sectors that only communicate gravitationally. In principle these sectors decouple in the limit M{sub pl}??. In practice such a limit is delicate: for generic supergravities, where sectors are combined by adding their Kähler functions, the separate superpotentials must contain non-vanishing vacuum expectation values supplementing the naïve global superpotential. We show that this requires non-canonical scaling in the naïve supergravity superpotential couplings to recover independent sectors of globally supersymmetric field theory in the decoupling limit M{sub pl} ? ?.

  5. An Overview of the Cooperative Effort between the United States Department of Energy and the China Atomic Energy Authority to Enhance MPC&A Inspections for Civil Nuclear Facilities in China

    SciTech Connect (OSTI)

    Ahern, Keith; Daming, Liu; Hanley, Tim; Livingston, Linwood; McAninch, Connie; McGinnis, Brent R; Ning, Shen; Qun, Yang; Roback, Jason William; Tuttle, Glenn; Xuemei, Gao; Galer, Regina; Peterson, Nancy; Jia, Jinlie

    2011-01-01

    The United States Department of Energy, National Nuclear Security Administration (DOE/NNSA) and the China Atomic Energy Authority (CAEA) are cooperating to enhance the domestic regulatory inspections capacity for special nuclear material protection, control and accounting (MPC&A) requirements for civil nuclear facilities in China. This cooperation is conducted under the auspices of the Agreement between the Department of Energy of the United States of America and the State Development and Planning Commission of the People s Republic of China on Cooperation Concerning Peaceful Uses of Nuclear Technology. This initial successful effort was conducted in three phases. Phase I focused on introducing CAEA personnel to DOE and U. S. Nuclear Regulatory Commission inspection methods for U. S. facilities. This phase was completed in January 2008 during meetings in Beijing. Phase II focused on developing physical protection and material control and accounting inspection exercises that enforced U. S. inspection methods identified during Phase 1. Hands on inspection activities were conducted in the United States over a two week period in July 2009. Simulated deficiencies were integrated into the inspection exercises. The U. S. and Chinese participants actively identified and discussed deficiencies noted during the two week training course. The material control and accounting inspection exercises were conducted at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, KY. The physical protection inspection exercises were conducted at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN. Phase III leveraged information provided under Phase I and experience gained under Phase II to develop a formal inspection guide that incorporates a systematic approach to training for Chinese MPC&A field inspectors. Additional hands on exercises that are applicable to Chinese regulations were incorporated into the Phase III training material. Phase III was completed in May 2010 at the China Institute of Atomic Energy (CIAE) in Beijing. This paper provides details of the successful cooperation between DOE/NNSA and CAEA for all phases of the cooperative effort to enhance civil domestic MPC&A inspections in China.

  6. Outsourcing CO2 within China

    E-Print Network [OSTI]

    2013-01-01

    6. Lo AY (2012) Carbon emissions trading in China. Nat Climof interprovincial emissions trading (6–9). Additionally,the central coast. The emissions trading scheme being tested

  7. Outsourcing CO2 within China.

    E-Print Network [OSTI]

    2013-01-01

    6. Lo AY (2012) Carbon emissions trading in China. Nat Climof interprovincial emissions trading (6–9). Additionally,the central coast. The emissions trading scheme being tested

  8. Key China Energy Statistics 2012

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01

    126 billion m 3 China's Liquefied Natural Gas Imports (2010)Emirates Total Liquefied Natural Gas Imports: 9.34 billion m

  9. Key China Energy Statistics 2012

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01

    of China's Total Primary Energy Production by Source (1950-2010) AAGR EJ Primary Energy Production (Mtce) Coal OilOther Renewables Total Primary Energy Production by Source

  10. Key China Energy Statistics 2011

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01

    China's Fuel Combustion CO 2 Emissions by Fuel Mt CO 2 Coal Oil Natural Gas Note: Data based on total final consumption

  11. Key China Energy Statistics 2011

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01

    Source: National Bureau of Statistics (NBS), China EnergyNations Commodity Trade Statistics Database. New York:National Bureau of Statistics of the People's Republic of

  12. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01

    the previous year. NUCLEAR TECHNOLOGY AND FUEL CYCLES China’third-generation nuclear technology and reactor design, withs own third-generation nuclear technology. Westing- house,

  13. Key China Energy Statistics 2012

    SciTech Connect (OSTI)

    Levine, Mark; Fridley, David; Lu, Hongyou; Fino-Chen, Cecilia

    2012-05-01

    The China Energy Group at Lawrence Berkeley National Laboratory (LBNL) was established in 1988. Over the years the Group has gained recognition as an authoritative source of China energy statistics through the publication of its China Energy Databook (CED). The Group has published seven editions to date of the CED (http://china.lbl.gov/research/chinaenergy-databook). This handbook summarizes key statistics from the CED and is expressly modeled on the International Energy Agency’s “Key World Energy Statistics” series of publications. The handbook contains timely, clearly-presented data on the supply, transformation, and consumption of all major energy sources.

  14. Key China Energy Statistics 2011

    SciTech Connect (OSTI)

    Levine, Mark; Fridley, David; Lu, Hongyou; Fino-Chen, Cecilia

    2012-01-15

    The China Energy Group at Lawrence Berkeley National Laboratory (LBNL) was established in 1988. Over the years the Group has gained recognition as an authoritative source of China energy statistics through the publication of its China Energy Databook (CED). In 2008 the Group published the Seventh Edition of the CED (http://china.lbl.gov/research/chinaenergy-databook). This handbook summarizes key statistics from the CED and is expressly modeled on the International Energy Agency’s “Key World Energy Statistics” series of publications. The handbook contains timely, clearly-presented data on the supply, transformation, and consumption of all major energy sources.

  15. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01

    GW) Includes only thermal power generation units over 6 M WFactors for Electric Power Generation, 1978-1994 ChinaNetworks, 1991 Thermal Power Generation and Capacity by

  16. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01

    World Total 1970 and 1975 Soviet Union data from International EnergyWorld Bank China Energy Databook Appendix 3. Bibliographie References for Selected Sources in the Data

  17. Key China Energy Statistics 2012

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01

    Heating Supply Coal Washing Coking Petroleum Refineries GasHeating Supply Coal Washing Coking Petroleum Refineries GasRefueling in China Coal Washing Coking Petroleum Refineries

  18. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01

    in this volume; India — Tata Energy Research Institute,of China 1994; India — LDC Energy Database, InternationalReview, 1994; India —LDC Energy Database, International

  19. A Surgeon in Wartime China

    E-Print Network [OSTI]

    Powell, Lyle Stephenson

    1946-01-01

    the Hooghly and then the Brahmaputra River to this area. From here they were flown over the Hump, or the Himalaya Mountains, by our American Air Corps and A.T.C. pilots. The Japanese had of course cut off the only other en trance into China, the Burma... Effort in Ckina THE X, Y, AND Z FORCES T THE TIME of my arrival in China, January, 1944, the war effort in China, Burma, and India was com- JL JL.bined into one theater, known as the C.B.I. (China, Burma, India) under the command of General Joseph W...

  20. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    s ability to mitigate carbon dioxide emissions growth. Ifgrowth path, carbon dioxide emissions from coal combustiondependence. 4.4.1. Carbon dioxide emissions Coal is China’s

  1. Accuracy and reliability of China's energy statistics

    E-Print Network [OSTI]

    Sinton, Jonathan E.

    2001-01-01

    China’s Energy Statistics Mtce Primary Consumption Coal Primary Consumption Total Energy Primary Production Primary Production Natural Gas Oil Primary Consumption

  2. China's Defense Electronics and Information Technology Industry

    E-Print Network [OSTI]

    RAGLAND, LeighAnn; MCREYNOLDS, Joe; GEARY, Debra

    2013-01-01

    2013 China’s Defense Electronics and Information Technologythe Chinese defense electronics and information technology (is moving the defense electronics and IT industry toward

  3. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Global Markets for Coal-to-Liquids Technologies. ” PresentedNeeds Curtail China’s Coal to Liquid Fuels Program. ” ChokeCoal to Liquids

  4. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Furthermore, China’s nuclear safety and inspection capacitymembers in regional nuclear safety inspection offices andcenter of the National Nuclear Safety Administration (

  5. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01

    Estimating Total Energy Consumption and Emissions of China’sof China’s total energy consumption mix. However, accuratelyof China’s total energy consumption, while others estimate

  6. Beijing Traffic Jam Daniel Barry, Jennifer Corriveau, Michael Lecomte, Johanna Zuber

    E-Print Network [OSTI]

    Nagurney, Anna

    vehicles · Peak-season travel #12;Challenges #12;Challenge 1: Limited Roads · Roads in Southwest China are limited ­ Taking back roads isn't an option ­ Lack of small state and country roads ­ Alternative routs vehicles, no matter how you expand the capacity of the roads, demand will exceed the capacity almost over

  7. Institute of Public Sector Accounting Research

    E-Print Network [OSTI]

    Edinburgh, University of

    Institute of Public Sector Accounting Research I·P·S·A·R In Government, Public Services and Charities http://www.business-school.ed.ac.uk/research/centres/public-sector-accounting-research CALL FOR PAPERS for a RESEARCH WORKSHOP and a special issue of QUALITATIVE RESEARCH IN ACCOUNTING & MANAGEMENT

  8. US/China Energy and Environmental Technology Center (EETC) international business development and technology transfer

    SciTech Connect (OSTI)

    Hsieh, S.T. [Tulane Univ., New Orleans, LA (United States). US/China Inst.; Atwood, T. [Dept. of Energy, Washington, DC (United States); Qiu Daxiong [Tsinghua Univ., Beijing (China); Zhang Guocheng [State Science and Technology Commission, Beijing (China)

    1997-12-31

    Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, and the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.

  9. China is the New Baseball

    E-Print Network [OSTI]

    Hacker, Randi; Tsutsui, William

    2007-05-23

    Broadcast Transcript: Baseball is called bang qiu here in China. And, if a recent exploration trip taken by New York Yankee bigwigs is any indication, it looks as if China might be the next major outsource for major league outfielders. Not right...

  10. Interaction in the dark sector

    E-Print Network [OSTI]

    Sergio del Campo; Ramon Herrera; Diego Pavon

    2015-07-01

    It may well happen that the two main components of the dark sector of the Universe, dark matter and dark energy, do not evolve separately but interact nongravitationally with one another. However, given our current lack of knowledge on the microscopic nature of these two components there is no clear theoretical path to determine their interaction. Yet, over the years, phenomenological interaction terms have been proposed on mathematical simplicity and heuristic arguments. In this paper, based on the likely evolution of the ratio between the energy densities of these dark components, we lay down reasonable criteria to obtain phenomenological, useful, expressions of the said term independent of any gravity theory. We illustrate this with different proposals which seem compatible with the known evolution of the Universe at the background level. Likewise, we show that two possible degeneracies with noninteracting models are only apparent as they can be readily broken at the background level. Further, we analyze some interaction terms that appear in the literature.

  11. Current Legal and Institutional Frameworks for Investing in Lower Carbon Electricity in China

    E-Print Network [OSTI]

    Lang, X.; Reiner, David; Neuhoff, Karsten

    .e. installed capacity >30 MW) Small hydro power Wind power Solar photovoltaic (PV) power Biomass power Wave & tidal power (ocean power) Geothermal power Nuclear Power * may lower carbon emissions relative to reference emissions... a doubling of total installed electricity generation (NBSC, 2006). As the second largest electricity sector in the world, total installed capacity reached 622 GW by the end of 2006 (CEC, 2007). In 2006 alone, China added over 100 GW of installed...

  12. Global Academic Partners 1TUQueensland University of TechnologyU1T

    E-Print Network [OSTI]

    Su, Xiao

    and Telecommunications Kunming Metallurgy College School of Software Engineering, Beijing University China America

  13. Z .Mutation Research 430 1999 145153 www.elsevier.comrlocatermolmut

    E-Print Network [OSTI]

    of Industrial Hygiene, Ministry of Public Health, Beijing 100088, China Received 21 April 1999; received

  14. Experimental observation of quantum oscillation of surface chemical reactivities B. Zhang, and Qi-Kun Xue

    E-Print Network [OSTI]

    Li, Weixue

    , Beijing 100084, China; §Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023

  15. Multiparameter adjoint tomography of the crust and upper mantle beneath East Asia: 1. Model

    E-Print Network [OSTI]

    Niu, Fenglin

    Resource and Prospecting, and Unconventional Natural Gas Institute, China University of Petroleum, Beijing

  16. A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.

    SciTech Connect (OSTI)

    Hasanbeigi, Ali; Price, Lynn; Aden, Nathaniel; Chunxia, Zhang; Xiuping, Li; Fangqin, Shangguan

    2011-06-15

    Production of iron and steel is an energy-intensive manufacturing process. In 2006, the iron and steel industry accounted for 13.6% and 1.4% of primary energy consumption in China and the U.S., respectively (U.S. DOE/EIA, 2010a; Zhang et al., 2010). The energy efficiency of steel production has a direct impact on overall energy consumption and related carbon dioxide (CO2) emissions. The goal of this study is to develop a methodology for making an accurate comparison of the energy intensity (energy use per unit of steel produced) of steel production. The methodology is applied to the steel industry in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and indicators in order to develop a common framework for comparing steel industry energy use. This study uses a bottom-up, physical-based method to compare the energy intensity of China and U.S. crude steel production in 2006. This year was chosen in order to maximize the availability of comparable steel-sector data. However, data published in China and the U.S. are not always consistent in terms of analytical scope, conversion factors, and information on adoption of energy-saving technologies. This study is primarily based on published annual data from the China Iron & Steel Association and National Bureau of Statistics in China and the Energy Information Agency in the U.S. This report found that the energy intensity of steel production is lower in the United States than China primarily due to structural differences in the steel industry in these two countries. In order to understand the differences in energy intensity of steel production in both countries, this report identified key determinants of sector energy use in both countries. Five determinants analyzed in this report include: share of electric arc furnaces in total steel production, sector penetration of energy-efficiency technologies, scale of production equipment, fuel shares in the iron and steel industry, and final steel product mix in both countries. The share of lower energy intensity electric arc furnace production in each country was a key determinant of total steel sector energy efficiency. Overall steel sector structure, in terms of average plant vintage and production capacity, is also an important variable though data were not available to quantify this in a scenario. The methodology developed in this report, along with the accompanying quantitative and qualitative analyses, provides a foundation for comparative international assessment of steel sector energy intensity.

  17. AN ASSESSMENT OF DATA ON OUTPUT INDUSTRIAL SUB-SECTORS

    E-Print Network [OSTI]

    of that sub-sector. This typically includes the "resource" sub-sectors (chemicals, metals, pulp and paper of industry was considered a "sector" of the overall group known as Industry. Thus we spoke of the pulp and paper sector or the petroleum refining sector within industry. Because of increasing references

  18. Teaching China GATT

    E-Print Network [OSTI]

    Bhala, Raj

    2009-01-01

    , Heenan Blaikie, LLP, Canada. Address: Green Hall, 1535 West 15 th Street, Lawrence, KS 66045-7577 USA. Telephone: +785-864-9224. Fax: +785-864-5054. E-mail: bhala[at]ku.edu. The author is grateful to his Research Assistant, Mr. Ben Sharp (J... 2009, at 3. 3 See John Reed & Bernard Simon, The Thrill is Gone, FINANCIAL TIMES, 3 February 2009, at 9; Jonathan Lynn, UPDATE 2 – China Loses WTO Appeal in Car Parts Dispute, REUTERS, 15 December 2008, available at www.reuters.com. See also...

  19. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    China Primary Energy Consumption, 1980-2007 Primary Energy Consumption (mtce) hydro & nuclear coal natural gas

  20. IMF sector behavior deduced from geomagnetic data

    SciTech Connect (OSTI)

    Matsushita, S.; Trotter, D.E.

    1980-05-01

    Interplanetary magnetic field (IMF) sector structures, such as 'toward' the sun and 'away' from the sun on each day, have been objectivly estimated from daily and monthly mean values of the horizontal component of the geomagnetic variation field at Godhavn during the period 1926--1970. The agreement between this estimation and actual satellite observations of the sector structures of the interval 1964--1970 is 88, 79, and 58% in summer, equinox, and winter, respectively. A remarkable agreement (more than 95%) is obtained for the summers of 1964, 1969, and 1970. Various types of IMF sector behavior are examined by taking this seasonal factor into consideration. Approximately 27-day recurrences of the same structure are often found, and 5- to 14-day consecutive occurrences of the same sector are frequently noted. Furthermore, the total number of occurrences for each estimated sector in each year shows an apparently good correlation with smoothed sunspot numbers and geomagnetic aa index. After a brief introduction of the production mechanism of sector effects on polar geomagnetic fields the limitations and merits of IMF sector inference from geomagnetic data are emphasized.

  1. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    Yichong. ?The Politics of Nuclear Energy in China. ? Guestauthor of The Politics of Nuclear Energy in China, nuclearYichong, ?The Politics of Nuclear Energy in China,? (guest

  2. Additive Manufacturing in China: Aviation and Aerospace Applications (Part 2)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01

    Analysis May 2013 Additive Manufacturing in China: Aviationan overview of China’s additive manufacturing industry wasmilitary achievements in additive manufacturing. 2 Initial

  3. Partnering with China to Promote Renewable Energy Deployment...

    Office of Environmental Management (EM)

    developers and customers for projects in China, and is a key step to help First Solar gain market access in China. UL International and China General Certification Center....

  4. Cultural Geography and Interregional Contacts in Prehistoric Liangshan (Southwest China)

    E-Print Network [OSTI]

    Hein, Anke Marion

    2013-01-01

    George 2005. Physical Geography of the Gaoligong Shan Areaof China's Physical Geography. China Knowledge Series.shou Sun. 1962. Economic Geography of Southwest China : (

  5. Additive Manufacturing in China: Aviation and Aerospace Applications (Part 2)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01

    Analysis May 2013 Additive Manufacturing in China: Aviationof China’s additive manufacturing industry was presented. Inroles in addi- tive manufacturing (AM) development and

  6. China's Building Energy Use: A Long-Term Perspective based on a Detailed Assessment

    SciTech Connect (OSTI)

    Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Kyle, G. Page; Patel, Pralit L.

    2012-01-13

    We present here a detailed, service-based model of China's building energy use, nested in the GCAM (Global Change Assessment Model) integrated assessment framework. Using the model, we explore long-term pathways of China's building energy use and identify opportunities of reducing greenhouse gas emissions. The inclusion of a structural model of building energy demands within an integrated assessment framework represents a major methodological advance. It allows for a structural understanding of the drivers of building energy consumption while simultaneously considering the other human and natural system interactions that influence changes in the global energy system and climate. We also explore a range of different scenarios to gain insights into how China's building sector might evolve and what the implications might be for improved building energy technology and carbon policies. The analysis suggests that China's building energy growth will not wane anytime soon, although technology improvement will put downward pressure on this growth. Also, regardless of the scenarios represented, the growth will involve the continued, rapid electrification of the buildings sector throughout the century, and this transition will be accelerated by the implementation of carbon policy.

  7. Assessment of the Potential to Achieve very Low Energy Use in Public Buildings in China with Advanced Window and Shading Systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Eleanor; Pang, Xiufeng; McNeil, Andrew; Hoffmann, Sabine; Thanachareonkit, Anothai; Li, Zhengrong; Ding, Yong

    2015-05-29

    As rapid growth in the construction industry continues to occur in China, the increased demand for a higher standard living is driving significant growth in energy use and demand across the country. Building codes and standards have been implemented to head off this trend, tightening prescriptive requirements for fenestration component measures using methods similar to the U.S. model energy code American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1. The objective of this study is to (a) provide an overview of applicable code requirements and current efforts within China to enable characterization and comparison of window and shading products,more »and (b) quantify the load reduction and energy savings potential of several key advanced window and shading systems, given the divergent views on how space conditioning requirements will be met in the future. System-level heating and cooling loads and energy use performance were evaluated for a code-compliant large office building using the EnergyPlus building energy simulation program. Commercially-available, highly-insulating, low-emittance windows were found to produce 24%–66% lower perimeter zone HVAC electricity use compared to the mandated energy-efficiency standard in force (GB 50189-2005) in cold climates like Beijing. Low-e windows with operable exterior shading produced up to 30%–80% reductions in perimeter zone HVAC electricity use in Beijing and 18%–38% reductions in Shanghai compared to the standard. The economic context of China is unique since the cost of labor and materials for the building industry is so low. Broad deployment of these commercially available technologies with the proper supporting infrastructure for design, specification, and verification in the field would enable significant reductions in energy use and greenhouse gas emissions in the near term.« less

  8. Target Allocation Methodology for China's Provinces: Energy Intensity in the 12th FIve-Year Plan

    SciTech Connect (OSTI)

    Ohshita, Stephanie; Price, Lynn

    2011-03-21

    Experience with China's 20% energy intensity improvement target during the 11th Five-Year Plan (FYP) (2006-2010) has shown the challenges of rapidly setting targets and implementing measures to meet them. For the 12th FYP (2011-2015), there is an urgent need for a more scientific methodology to allocate targets among the provinces and to track physical and economic indicators of energy and carbon saving progress. This report provides a sectoral methodology for allocating a national energy intensity target - expressed as percent change in energy per unit gross domestic product (GDP) - among China's provinces in the 12th FYP. Drawing on international experience - especially the European Union (EU) Triptych approach for allocating Kyoto carbon targets among EU member states - the methodology here makes important modifications to the EU approach to address an energy intensity rather than a CO{sub 2} emissions target, and for the wider variation in provincial energy and economic structure in China. The methodology combines top-down national target projections and bottom-up provincial and sectoral projections of energy and GDP to determine target allocation of energy intensity targets. Total primary energy consumption is separated into three end-use sectors - industrial, residential, and other energy. Sectoral indicators are used to differentiate the potential for energy saving among the provinces. This sectoral methodology is utilized to allocate provincial-level targets for a national target of 20% energy intensity improvement during the 12th FYP; the official target is determined by the National Development and Reform Commission. Energy and GDP projections used in the allocations were compared with other models, and several allocation scenarios were run to test sensitivity. The resulting allocations for the 12th FYP offer insight on past performance and offer somewhat different distributions of provincial targets compared to the 11th FYP. Recommendations for reporting and monitoring progress on the targets, and methodology improvements, are included.

  9. Residential Segregation of China’s Minority Nationalities from the Han, 2000 

    E-Print Network [OSTI]

    Deng, Xiaodan

    2012-02-14

    Although a relatively large amount of literature dealing with the demography of the People’s Republic of China has been published in recent decades, few sociologists and demographers have engaged in comparative studies of China’s ethnic minority...

  10. Quenching China's Thirst for Renewable Power: Water Implications of China's Renewable Development

    E-Print Network [OSTI]

    Zheng, Nina

    2014-01-01

    M.A. , 2009, Estimated use of water in the United States ins Thirst for Renewable Power: Water Implications of China’ss Thirst For Renewable Power: Water Implications of China’s

  11. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    SciTech Connect (OSTI)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are represented, in addition to the extensive data compiled from recent studies on bottom-up representation of efficiency measures for the sector. We also defined various mitigation scenarios including long-term production trends to project country-specific production, energy use, trading, carbon emissions, and costs of mitigation. Such analyses can provide useful information to assist policy-makers when considering and shaping future emissions mitigation strategies and policies. The technical objective is to analyze the costs of production and CO{sub 2} emission reduction in the U.S, China, and India’s iron and steel sectors under different emission reduction scenarios, using the ISEEM-IS as a cost optimization model. The scenarios included in this project correspond to various CO{sub 2} emission reduction targets for the iron and steel sector under different strategies such as simple CO{sub 2} emission caps (e.g., specific reduction goals), emission reduction via commodity trading, and emission reduction via carbon trading.

  12. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01

    1992 12. End Use Electricity Consumption by Sector, 1992 13.Sources) Per Capita Electricity Consumption, 1990 EnergyUrban Rural 2. Electricity Consumption Shares Year Urban TWh

  13. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01

    55 Industrial Sector Oil Consumption, 1990 IV-56 Industrialdominant at 40% of total oil consumption, but the share issumption climbs. Fuel oil consumption continues to increase,

  14. Cosmology of hidden sector with Higgs portal

    E-Print Network [OSTI]

    Cabi, Serkan

    2009-01-01

    In this thesis, we are investigating cosmological implications of hidden sector models which involve scalar fields that do not interact with the Standard Model gauge interactions, but couple directly to the Higgs field. ...

  15. Top partner probes of extended Higgs sectors

    E-Print Network [OSTI]

    Kearney, John

    Natural theories of the weak scale often include fermionic partners of the top quark. If the electroweak symmetry breaking sector contains scalars beyond a single Higgs doublet, then top partners can have sizable branching ...

  16. Electricity sector restructuring and competition : lessons learned

    E-Print Network [OSTI]

    Joskow, Paul L.

    2003-01-01

    We now have over a decade of experience with the privatization, restructuring, regulatory reform, and wholesale and retail competition in electricity sectors around the world. The objectives and design attributes of these ...

  17. Market Report for the Industrial Sector, 2009

    SciTech Connect (OSTI)

    Sastri, Bhima; Brueske, Sabine; de los Reyes, Pamela; Jamison, Keith; Justiniano, Mauricio; Margolis, Nancy; Monfort, Joe; Raghunathan, Anand; Sabouni, Ridah

    2009-07-01

    This report provides an overview of trends in industrial-sector energy use. It focuses on some of the largest and most energy-intensive industrial subsectors and several emerging technologies that could transform key segments of industry.

  18. China’s Nuclear Weapons Program and the Chinese Research, Development, and Acquisition System

    E-Print Network [OSTI]

    CHASE, Michael S.; LIEGGI, Stephanie; ERICKSON, Andrew S.; LAFFERTY, Brian

    2014-01-01

    January 2014 China’s Nuclear Weapons Program and the Chineseand processes within the nuclear weapons program may beare possible. Studying the nuclear weapons program is thus

  19. Quenching China's Thirst for Renewable Power: Water Implications of China's Renewable Development

    E-Print Network [OSTI]

    Zheng, Nina

    2014-01-01

    to achieve China’s planned renewable energy development areillustrate that future renewable energy development will behas increasingly looked to renewable energy for meeting its

  20. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    E-Print Network [OSTI]

    G. Fridley, David

    2010-01-01

    Electricity Council. 2010. “Smart Grid Snapshot: China Topswww.zpryme.com/reports/smart_grid_snapshot_global_and_china%Figure 48 2010 Federal Stimulus Investments in Smart Grid by

  1. China’s Defense Innovation System: Making the Wheels Spin

    E-Print Network [OSTI]

    Walsh, Kathleen A; Francis, Ed

    2011-01-01

    2011 China’s Defense Innovation System: Making the Wheelsis developing a defense innovation system (DIS) as part of aeffort to construct a national innovation system (NIS) that

  2. Innovation in China’s Defense Research, Development, and Acquisition System

    E-Print Network [OSTI]

    CHEUNG, Tai Ming

    2011-01-01

    Brief No. 20 September 2011 Innovation in China’s Defensepolicy brief examines how innovation takes place within theanalysis of technological innovation in industrial systems,

  3. Quenching China's Thirst for Renewable Power: Water Implications of China's Renewable Development

    E-Print Network [OSTI]

    Zheng, Nina

    2014-01-01

    tower plant in China. ” Renewable and Sustainable Energyby plant in Guangxi. ” Renewable and Sustainable EnergyChina’s Thirst for Renewable Power: Water Implications of

  4. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    E-Print Network [OSTI]

    G. Fridley, David

    2010-01-01

    The status quo of China's nuclear power and the uranium gapAssociation. 2010. "Nuclear Power in China." Availableincluding hydropower and nuclear power. In November 2009,

  5. China’s Shipbuilding Industry Development: A Boost for Naval Ship Production?

    E-Print Network [OSTI]

    Collins, Gabe

    2010-01-01

    policy, energy security, and the shipbuilding industry.September 2010 China’s Shipbuilding Industry Development: AC hina’s growing shipbuilding prowess is very relevant to

  6. Energy Department Announces New Private Sector Partnership to...

    Energy Savers [EERE]

    Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate...

  7. Energy Department Announces New Private Sector Partnership to...

    Energy Savers [EERE]

    New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects October 9,...

  8. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01

    across regions. Up-stream energy conglomerates and down-the electricity sector: “up-stream” energy conglomerates areother energy sectors – for example the Nord-Stream pipeline

  9. Climate Change and the Transporation Sector - Challenges and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change and the Transporation Sector - Challenges and Mitigation Options Climate Change and the Transporation Sector - Challenges and Mitigation Options 2003 DEER Conference...

  10. EIA Energy Efficiency-Residential Sector Energy Intensities,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Sector Energy Intensities RESIDENTIAL SECTOR ENERGY INTENSITIES: 1978-2005 Released Date: August 2004 Page Last Modified:June 2009 These tables provide estimates of...

  11. Combined Heat & Power Technology Overview and Federal Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat & Power Technology Overview and Federal Sector Deployment Combined Heat & Power Technology Overview and Federal Sector Deployment Presentation covers the Combined...

  12. Land Transport Sector in Bangladesh: An Analysis Toward Motivating...

    Open Energy Info (EERE)

    Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Emission Reduction Strategies Jump to: navigation, search Name Land Transport Sector in Bangladesh: An...

  13. Workforce Training for the Electric Power Sector: Map of Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce Training for the Electric Power Sector: Map of Projects Workforce Training for the Electric Power Sector: Map of Projects Map showing the number of projects awarded in...

  14. Roadmap to Secure Control Systems in the Energy Sector - January...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap to Secure Control Systems in the Energy Sector - January 2006 Roadmap to Secure Control Systems in the Energy Sector - January 2006 This document, the Roadmap to Secure...

  15. Overcoming Multifamily Sector Barriers in Austin, Texas | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overcoming Multifamily Sector Barriers in Austin, Texas Overcoming Multifamily Sector Barriers in Austin, Texas Presents techniques on overcoming the barriers of multifamily energy...

  16. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01

    Private Participation in the Electricity Sector World BankTelecommunications and Electricity Sectors." Governance 19,Power Struggle: Reforming the Electricity Industry." In The

  17. Sustainable energy in china: the closing window of opportunity

    SciTech Connect (OSTI)

    Fei Feng; Roland Priddle; Leiping Wang; Noureddine Berrah

    2007-03-15

    China's remarkable economic growth has been supported by a generally adequate and relatively low-cost supply of energy, creating the world's largest coal industry, its second-largest oil market, and an eclectic power business that is adding capacity at an unprecedented rate. If energy requirements continue to double every decade, China will not be able to meet the energy demands of the present without seriously compromising the ability of future generations to meet their own energy needs. This title uses historical data from 1980 and alternative scenarios through 2020 to assess China's future energy requirements and the resources to meet them. It calls for a high-level commitment to develop and implement an integrated, coordinated, and comprehensive energy policy. The authors recommend eight building blocks to reduce energy consumption growth well below the targeted rate of economic growth, to use national resources on an economically and environmentally sound basis, and to establish a robust energy system that can better ensure the security of a diverse supply of competitively priced energy forms. Sustainability calls for persistence of effort, greater reliance on advanced energy technologies, and better standards enforcement. Achieving these goals will require policy initiatives that restrict demand and create a 'resources-conscious society', reconcile energy needs with environmental imperatives, rationalize pricing, and tackle supply security. While the challenges are daunting, China has a unique opportunity to position itself as a world leader in the application of cutting-edge energy developments to create a sustainable energy sector effectively supporting a flourishing economy and society.

  18. Key China Energy Statistics 2012

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01

    South Korea Other Crude Oil Production by Region (1985-2010)West Chinese Crude Oil Production by Regional Shares EastHenan Other Total Crude Oil Production: 209 Mt China's Crude

  19. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01

    India i Japan Electricity Q i USA G a s China EnergyIndia Japan USA FSUf 3S4.8 Liquid Gas Electricity Heat fiIndia Japan USA FSU World f H Hydro- electricity Uranium §

  20. Key China Energy Statistics 2012

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01

    South Korea Other Crude Oil Production by Region (1985-2010)North West Chinese Crude Oil Production by Regional SharesHenan Other Total Crude Oil Production: 209 Mt China's Crude

  1. China production equipment sourcing strategy

    E-Print Network [OSTI]

    Chouinard, Natalie, 1979-

    2009-01-01

    This thesis recommends a China business and equipment strategy for the Controls Conveyor Robotics Welding (CCRW) group at General Motors. The current strategy is to use globally common equipment through predetermined global ...

  2. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01

    Fuels Corporations. 2. Coal types: Dalian price is for FuxinJingyuan Lingwu Hami Wuju Coal Type weakly caking gas coalCountries China's Coal Resources by Type of Coal, End of

  3. Key China Energy Statistics 2011

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01

    production of primary energy. International Marine Bunkersmarine bunkers and trade. Growth of China's Total Primary Energyenergy supply equals to the total of indigenous production and imports, and minus exports and international marine

  4. Key China Energy Statistics 2012

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01

    production of primary energy. International Marine Bunkersmarine bunkers and trade. Growth of China's Total Primary Energyenergy supply equals to the total of indigenous production and imports, and minus exports and international marine

  5. DOC-DOE China Mission Announcement Press Release | Department...

    Office of Environmental Management (EM)

    DOC-DOE China Mission Announcement Press Release DOC-DOE China Mission Announcement Press Release DOC-DOE China Mission Announcement Press Release DOC-DOE China Mission...

  6. China energy databook. 1992 Edition

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B.; Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi

    1992-11-01

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first becamc involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China`s State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industries more energy-efficient, preparing historical reviews of energy supply and demand in the People`s Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. We are hopeful that this volume will not only help us in our work, but help build a broader community of Chinese energy policy studies within the US.

  7. The impact of the removal of the Multi-Fiber Arrangement on textile and cotton trade of the United States and China 

    E-Print Network [OSTI]

    Xia, Yan

    2006-04-12

    an equilibrium displacement model to investigate the impact on textile and cotton sectors of different countries and country-groups of removing the MFA quota. The model specifies the basic linkages of textile and cotton markets in the United States, China...

  8. China Energy Databook -- User Guide and Documentation, Version 7.0

    SciTech Connect (OSTI)

    Fridley, Ed., David; Aden, Ed., Nathaniel; Lu, Ed., Hongyou; Zheng, Ed., Nina

    2008-10-01

    Since 2001, China's energy consumption has grown more quickly than expected by Chinese or international observers. This edition of the China Energy Databook traces the growth of the energy system through 2006. As with version six, the Databook covers a wide range of energy-related information, including resources and reserves, production, consumption, investment, equipment, prices, trade, environment, economy, and demographic data. These data provide an extensive quantitative foundation for understanding China's growing energy system. In addition to providing updated data through 2006, version seven includes revised energy and GDP data back to the 1990s. In the 2005 China Energy Statistical Yearbook, China's National Bureau of Statistics (NBS) published revised energy production, consumption, and usage data covering the years 1998 to 2003. Most of these revisions related to coal production and consumption, though natural gas data were also adjusted. In order to accommodate underestimated service sector growth, the NBS also released revised GDP data in 2005. Beyond the inclusion of historical revisions in the seventh edition, no attempt has been made to rectify known or suspected issues in the official data. The purpose of this volume is to provide a common basis for understanding China's energy system. In order to broaden understanding of China's energy system, the Databook includes information from industry yearbooks, periodicals, and government websites in addition to data published by NBS. Rather than discarding discontinued data series, information that is no longer possible to update has been placed in C section tables and figures in each chapter. As with previous versions, the data are presented in digital database and tabular formats. The compilation of updated data is the result of tireless work by Lu Hongyou and Nina Zheng.

  9. China-NAMA Programme for the Construction Sector in Asia | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:ChangingCNE Jump to:New

  10. Comfort demand leading the optimization to energy supply from the Smart Grid 

    E-Print Network [OSTI]

    Aduba,K.; Zeiler,W.; Boxem,G.

    2014-01-01

    Building Operations, Beijing, China, September 14-17, 2014 Delivered energy consumption (2010-2040) by Sector: EB in 2020 & nZBE in 2050???? Industrial Commercial buildings Residential buildings Transport Data Source- EIAProof of principle ESL-IC-14...-09-28a Proceedings of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 PAGE 211-11-2014 Change from a top-down electricity supply to bottom-up supply ESL-IC-14-09-28a Proceedings of the 14th...

  11. Energy efficiency in building sector in India through Heat

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Energy efficiency in building sector in India through Heat Pump Technology By Mr Pradeep Kumar sector in India · Residential building sector in India · HVAC growth in residential sector. · Heat Pump, Sustainable habitat, Biotechnology, Renewable energy, Water technology, Industrial research, Social

  12. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    number of themes about the structure of the energy efficiency services sector (EESS). For some companies

  13. Sectoral trends in global energy use and greenhouse gasemissions

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Sinton, Jonathan; Worrell, Ernst; Zhou, Nan; Sathaye, Jayant; Levine, Mark

    2006-07-24

    In 2000, the Intergovernmental Panel on Climate Change (IPCC) published a new set of baseline greenhouse gas (GHG) emissions scenarios in the Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000). The SRES team defined four narrative storylines (A1, A2, B1 and B2) describing the relationships between the forces driving GHG and aerosol emissions and their evolution during the 21st century. The SRES reports emissions for each of these storylines by type of GHG and by fuel type to 2100 globally and for four world regions (OECD countries as of 1990, countries undergoing economic reform, developing countries in Asia, rest of world). Specific assumptions about the quantification of scenario drivers, such as population and economic growth, technological change, resource availability, land-use changes, and local and regional environmental policies, are also provided. End-use sector-level results for buildings, industry, or transportation or information regarding adoption of particular technologies and policies are not provided in the SRES. The goal of this report is to provide more detailed information on the SRES scenarios at the end use level including historical time series data and a decomposition of energy consumption to understand the forecast implications in terms of end use efficiency to 2030. This report focuses on the A1 (A1B) and B2 marker scenarios since they represent distinctly contrasting futures. The A1 storyline describes a future of very rapid economic growth, low population growth, and the rapid introduction of new and more efficient technologies. Major underlying themes are convergence among regions, capacity building, and increased cultural and social interactions, with a substantial reduction in regional differences in per capita income. The B2 storyline describes a world with an emphasis on economic, social, and environmental sustainability, especially at the local and regional levels. It is a world with moderate population growth, intermediate levels of economic development, and less rapid and more diverse technological change (Nakicenovic et al., 2000). Data were obtained from the SRES modeling teams that provide more detail than that reported in the SRES. For the A1 marker scenario, the modeling team provided final energy demand and carbon dioxide (CO{sub 2}) emissions by fuel for industry, buildings, and transportation for nine world regions. Final energy use and CO{sub 2} emissions for three sectors (industry, transport, buildings) for the four SRES world regions were provided for the B2 marker scenario. This report describes the results of a disaggregation of the SRES projected energy use and energy-related CO{sub 2} emissions for the industrial, transport, and buildings sectors for 10 world regions (see Appendix 1) to 2030. An example of further disaggregation of the two SRES scenarios for the residential buildings sector in China is provided, illustrating how such aggregate scenarios can be interpreted at the end use level.

  14. The dynamics of the China logistics industry

    E-Print Network [OSTI]

    Cen, Xuepin

    2005-01-01

    As required by the WTO accession, China is opening its logistics industry to international logistics companies. What are these companies' strategies in the China market, and how are Chinese domestic logistics companies ...

  15. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    China. Prior to 1990, small hydro in China was defined hydrorevised over time and small hydro currently is defined asand does not include small hydro, which are often not grid-

  16. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    energy in China. ” Renewable Energy 36 (5): 1374-1378. Chen,GoC/World Bank/GEF China Renewable Energy Scale-up Programwind power systems. ” Renewable Energy 35: 218-225. Lechon

  17. U.S.-China Energy Efficiency Forum

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Second U.S.-China Energy Efficiency Forum, held May 5-6, 2011 in the U.S. at Lawrence Berkeley National Laboratory in Berkeley, California, highlighted U.S.-China cooperation on energy...

  18. Strategies for retirement community development in China

    E-Print Network [OSTI]

    Wang, Hua, M.C.P. Massachusetts Institute of Technology

    2006-01-01

    In 2000, China's 60-year-and-older population reached 130 million, or 10% of the total population. This event symbolizes that China has entered the aging society. In the Chinese tradition, strong family support enables ...

  19. Accuracy and reliability of China's energy statistics

    E-Print Network [OSTI]

    Sinton, Jonathan E.

    2001-01-01

    the primary energy production and consumption statistics areProduction Hydroelectricity Primary Consumption J.E.Sinton, China’s Energy StatisticsStatistics Mtce Primary Consumption Coal Primary Consumption Total Energy Primary Production

  20. Pollution and Environmental Concern in Rural China

    E-Print Network [OSTI]

    Brandes, Julia

    2013-12-31

    , a large proportion of China's population still lives in rural areas where national environmental laws are often not implemented, and where environmental pollution can be quite serious. Thus, it is important to understand how China's rural population...

  1. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    potential of different solar PV technologies, including both2007, p. 28. Status of Solar PV Technology China has been anResearch, 2010. Solar PV technology applications in China

  2. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    been revised over time and small hydro currently is definedChina. Prior to 1990, small hydro in China was defined hydroand does not include small hydro, which are often not grid-

  3. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    Roles and prospect of nuclear power in China’s energy supply70% load factor 48 GW of nuclear power capacity @ 90% loadnear LNG import terminals. Nuclear power IEA, World Energy

  4. China Energy and Emissions Paths to 2030

    E-Print Network [OSTI]

    Fridley, David

    2012-01-01

    Tiger: Subsidies to China’s Paper Industry from 2002-2009. ”Given the Chinese paper industry’s current production mix,Industry Ammonia Industry Paper Industry Industry Aluminum

  5. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Expansion Policy Drivers Renewable Energy Law of ChinaThe 2005 Renewable Energy Law of China marked the beginningsin the 2005 Renewable Energy Law, a goal of raising the

  6. Proceedings of the 8th Workshop on Asian Language Resources, pages 3037, Beijing, China, 21-22 August 2010. c 2010 Asian Federation for Natural Language Processing

    E-Print Network [OSTI]

    when it is asso- ciated with "soldier," while it exhibits the "container for liquid or gas" sense when-22 August 2010. c 2010 Asian Federation for Natural Language Processing Augmenting a Bilingual Lexicon, or bilingual dictionary, is a fundamental linguistic resource for multi- lingual natural language processing

  7. Proceedings of the ACL 2015 Workshop on Noisy User-generated Text, pages 5460, Beijing, China, July 31, 2015. c 2015 Association for Computational Linguistics

    E-Print Network [OSTI]

    , July 31, 2015. c 2015 Association for Computational Linguistics NRC: Infused Phrase Vectors for Named gazetteers, and with infused phrase em- beddings that have been adapted to better predict the gazetteer embeddings, and infused embeddings that have been adapted to better pre- dict gazetteer membership. Our novel

  8. Proceedings of the 8th Workshop on Asian Language Resources, pages 111119, Beijing, China, 21-22 August 2010. c 2010 Asian Federation for Natural Language Processing

    E-Print Network [OSTI]

    - tain involuntary bodily process predicates (cough, sleep); unaccusative clauses include predicates

  9. Submitted to MT-15, Fifteenth International Conference on Magnet Technology, Beijing, China, October 20-24, 1997. Coldmass for LHC Dipole Insertion Magnets*

    E-Print Network [OSTI]

    Ohta, Shigemi

    designed with 2-in-1 coldmasses. In the design presented here, all magnets would be 2-in-1 type coldmasses and the expected field quality in 2-in-1 dipole magnets. A unique feature of this coldmass design is the use design and allows the LHC main dipole cryostat, post, etc., to be used in these magnets. The pro- posed

  10. Philippines' downstream sector poised for growth

    SciTech Connect (OSTI)

    Not Available

    1992-05-11

    This paper reports that the Philippines' downstream sector is poised for sharp growth. Despite a slip in refined products demand in recent years, Philippines products demand will rebound sharply by 2000, East-West Center (EWC), Honolulu, predicts. Philippines planned refinery expansions are expected to meet that added demand, EWC Director Fereidun Fesharaki says. Like the rest of the Asia-Pacific region, product specifications are changing, but major refiners in the area expect to meet the changes without major case outlays. At the same time, Fesharaki says, push toward deregulation will further bolster the outlook for the Philippines downstream sector.

  11. More visible effects of the hidden sector

    SciTech Connect (OSTI)

    Murayama, Hitoshi; Murayama, Hitoshi; Nomura, Yasunori; Poland, David

    2007-09-06

    There is a growing appreciation that hidden sector dynamics may affect the supersymmetry breaking parameters in the visible sector (supersymmetric standard model), especially when the dynamics is strong and superconformal. We point out that there are effects that have not been previously discussed in the literature. For example, the gaugino masses are suppressed relative to the gravitino mass. We discuss their implications in the context of various mediation mechanisms. The issues discussed include anomaly mediation with singlets, the mu (B mu) problem in gauge and gaugino mediation, and distinct mass spectra for the superparticles that have not been previously considered.

  12. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    coal type mining. Production by coal type Since 1980, China maximizedthe production shares of coal types, the shares of different

  13. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production

    SciTech Connect (OSTI)

    Gregg, J; Andres, Robert Joseph; Marland, Gregg

    2008-01-01

    Release of carbon dioxide (CO2) from fossil fuel combustion and cement manufacture is the primary anthropogenic driver of climate change. Our best estimate is that China became the largest national source of CO2 emissions during 2006. Previously, the United States (US) had occupied that position. However, the annual emission rate in the US has remained relatively stable between 2001-2006 while the emission rate in China has more than doubled, apparently eclipsing that of the US in late 2006. Here we present the seasonal and spatial pattern of CO2 emissions in China, as well as the sectoral breakdown of emissions. Though our best point estimate places China in the lead position in terms of CO2 emissions, we qualify this statement in a discussion of the uncertainty in the underlying data (3-5% for the US; 15-20% for China). Finally, we comment briefly on the implications of China's new position with respect to international agreements to mitigate climate change.

  14. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    E-Print Network [OSTI]

    2015-01-01

    CO 2 emissions from China’s cement production: methodologiesfossil fuel consumption and cement production. Geophys. Res.NTNU, 2006). 27. China Cement Association. China Cement

  15. China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)

    E-Print Network [OSTI]

    2004-01-01

    will shape China’s future energy system, and consequentlybeen conducted on future energy use and pollutant emissionscould influence China’s future energy consumption and carbon

  16. TSINGHUA -MIT China Energy & Climate Project

    E-Print Network [OSTI]

    TSINGHUA - MIT China Energy & Climate Project *Reprinted from Emissions trading in China: Progress: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;Emissions trading in China: Progress to establish pilot emissions trading systems (ETS). In this paper, we provide a comprehensive overview

  17. China's High Savings Rates Rick Harbaugh

    E-Print Network [OSTI]

    Martins, Emília

    the highest in the world. That savings would grow in a country emerging from poverty is not necessarilyChina's High Savings Rates Rick Harbaugh Prepared for conference on "The Rise of China Revisited Abstract Since the early 1980s China has witnessed a rapid increase in its national savings rate to one

  18. TSINGHUA -MIT China Energy & Climate Project

    E-Print Network [OSTI]

    TSINGHUA - MIT China Energy & Climate Project An Integrated Assessment of China's Wind Energy;1 An Integrated Assessment of China's Wind Energy Potential Da Zhang* , Michael Davidson§ , Bhaskar Gunturu production cost functions for wind at the provincial level for both onshore and offshore, incorporating

  19. TSINGHUA -MIT China Energy & Climate Project

    E-Print Network [OSTI]

    TSINGHUA - MIT China Energy & Climate Project The energy and CO2 emissions impact of renewable and CO2 emissions impact of renewable energy development in China Tianyu Qi a , Xiliang Zhang a energy development in China* Tianyu Qi, Xiliang Zhang and Valerie Karplus *Reprinted from Energy Policy

  20. The Greening of the Middle Kingdom: The Story of Energy Efficiency in China

    SciTech Connect (OSTI)

    Levine, Mark D.; Zhou, Nan; Price, Lynn

    2009-05-01

    The dominant image of China's energy system is of billowing smokestacks from the combustion of coal. More heavily dependent on coal than any other major country, China uses it for about 70 percent of its energy (NBS, 2008). Furthermore, until recently, China had very few environmental controls on emissions from coal combustion; recent efforts to control sulfur dioxide (SO{sub 2}) emissions appear to be meeting with some success (Economy, 2007, 2009). Figure 1 shows the dominant use of coal in China's energy system from 1950 to 1980 (NBS, various years). However, this is just one side of China's energy story. Figure 2 illustrates the second part, and what may be the most important part of the story - China's energy system since 1980, shortly after Deng Xiaoping assumed full leadership. This figure compares the trends in energy consumption and gross domestic product (GDP) by indexing both values to 100 in 1980. The upper line shows what energy consumption in China would have been if it had grown at the same rate as GDP, since energy consumption usually increases in lockstep with GDP in an industrializing, developing country, at least until it reaches a high economic level. The lower line in Figure 2 shows China's actual energy consumption, also indexed to 1980. The striking difference between the lines shows that GDP in China grew much faster than energy demand from 1980 to 2002. As a result, by 2002 energy and energy-related carbon dioxide (CO{sub 2}) emissions were more than 40% percent of what they would have been if energy and GDP had grown in tandem. In the next chapter of China's energy history, from 2002 to 2005, the increase in energy demand outstripped a very rapidly growing economy, and because of the large size of the Chinese economy, the increase had substantial impacts. The construction of power plants increased to 100 gigawatts per year; over the three-year period newly constructed plants had a capacity of more than 30 percent of total electricity-generation capacity in the United States. At the same time, energy-related CO{sub 2} emissions in China increased dramatically. In the latest stage, another abrupt change, this time for the better in terms of energy efficiency, began late in 2005. As senior officials in the government turned their attention to the problem of growing energy demand, the government set a mandatory goal for 2010 of a 20 percent reduction in energy intensity (defined as energy use per unit of GDP) from 2005 levels. To meet this goal, China undertook significant legislative, regulatory, and organizational reforms at the national, provincial, and municipal levels to ensure that measures to reduce energy intensity would be implemented in all sectors and activities in China. At the time of this writing, it appears that China is on its way to meeting the 20 percent goal, thus reducing CO{sub 2} emissions by 1.5 billion tones, as compared with consumption at 2005 energy-intensity levels. In this paper, we describe and assess these three significant periods in China's energy story and provide a context by briefly reviewing the three decades prior to 1980.

  1. The North American Forest Sector Outlook Study

    E-Print Network [OSTI]

    to consumption patterns for wood products and bioenergy. Markets for wood products, which mainly are destined in the forest sector of North America 21 3.1 Forest inventory 21 3.2 Aggregate production, consumption, Canada, carbon sequestration, climate change, consumption, demand, econometric, EFSOS, export, fellings

  2. WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE

    E-Print Network [OSTI]

    WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE WARMING IN THE SIERRA NEVADA: Water Year explores the sensitivity of water indexing methods to climate change scenarios to better understand how water management decisions and allocations will be affected by climate change. Many water management

  3. NATURAL GAS ADVISORY COMMITTEE Name Affiliation Sector

    E-Print Network [OSTI]

    NATURAL GAS ADVISORY COMMITTEE 2011-2013 Name Affiliation Sector Dernovsek, David Bonneville Power Defenbach, Byron Intermountain Gas Distribution Dragoon, Ken NWPCC Council Friedman, Randy NW Natural Gas Distribution Gopal, Jairam Southern CA Edison Electric Utility Hamilton, Linda Shell Trading Gas & Power

  4. Retail competition in the UK electricity sector

    E-Print Network [OSTI]

    Rudnick, Hugh

    retail market #12;Schedule for UK market opening · 1990 large users (above 1 MW max demand) · about 30Retail competition in the UK electricity sector Stephen Littlechild Workshops on Retail Competition that in electricity · but agreed need to have further separation · Now require separate legal entities & licenses

  5. Economic Impact of the Texas Forest Sector

    E-Print Network [OSTI]

    and paper products. The Texas forest sector also produces many value-added forest products such as millwork, wood kitchen cabinets, prefabricated wood buildings, wood furniture, and various paper products in terms of total industry output, value-added, employment, and labor income. Total industry output

  6. ECONOMIC IMPACT OF THE CLEANTECH SECTOR

    E-Print Network [OSTI]

    Ghosh, Joydeep

    ! ECONOMIC IMPACT OF THE CLEANTECH SECTOR In the Austin-Round Rock-San Marcos MSA Prepared by: #12 Manufacturing $2.5 Billion Cleantech contributes $2.5 Billion to Austin's regional GDP. 20,000 Jobs Cleantech directly employs 20,000 people in the Austin MSA. Rapid Growth Employment in cleantech is projected to grow

  7. Testing Higgs sector of 2HDM

    E-Print Network [OSTI]

    Maria Krawczyk

    2005-12-30

    Properties of the Higgs sector of Two Higgs Doublet Model (2HDM) and existing constraints on its parameters are discussed. Potential of the Photon Linear Collider in testing various Higgs scenarios of 2HDM, including the MSSM, based on the realistic simulations is also presented.

  8. Industry Sector Case Study Building Technologies Division

    E-Print Network [OSTI]

    Fischlin, Andreas

    energy supply is based on solar thermal collectors, a photovoltaic system, as well as building technologyIndustry Sector Case Study Building Technologies Division Zug (Switzerland), September 14, 2011,000 m, the New Monte Rosa Hut showcases the latest developments in the building technology field

  9. Scenarios of Building Energy Demand for China with a Detailed Regional Representation

    SciTech Connect (OSTI)

    Yu, Sha; Eom, Jiyong; Zhou, Yuyu; Evans, Meredydd; Clarke, Leon E.

    2014-02-07

    Building energy consumption currently accounts for 28% of China’s total energy use and is expected to continue to grow induced by floorspace expansion, income growth, and population change. Fuel sources and building services are also evolving over time as well as across regions and building types. To understand sectoral and regional difference in building energy use and how socioeconomic, physical, and technological development influence the evolution of the Chinese building sector, this study developed a building energy use model for China downscaled into four climate regions under an integrated assessment framework. Three building types (rural residential, urban residential, and commercial) were modeled specifically in each climate region. Our study finds that the Cold and Hot Summer Cold Winter regions lead in total building energy use. The impact of climate change on heating energy use is more significant than that of cooling energy use in most climate regions. Both rural and urban households will experience fuel switch from fossil fuel to cleaner fuels. Commercial buildings will experience rapid growth in electrification and energy intensity. Improved understanding of Chinese buildings with climate change highlighted in this study will help policy makers develop targeted policies and prioritize building energy efficiency measures.

  10. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    SciTech Connect (OSTI)

    Zhou, Nan; Fridley, David; Zheng, Nina; Pierrot, Andre

    2010-06-07

    In recent years China's energy consumption has increased rapidly. The problem of high energy consumption intensity and low energy utilization efficiency is serious, and the contradiction between economic development and energy and environmental resources has become increasingly acute, making energy conservation and consumption reduction an important society-wide concern. At the same time, global climate change has and will continue to have profound impacts on human survival and development, and is another major challenge to all countries. In order to accelerate China's energy conservation and emission reduction work, the National Leading Group to Address Climate Change, Energy Conservation and Emission Reduction was founded with Premier Wen Jiabao as the head, and the 'Comprehensive Work Program of Energy Conservation and Emission Reduction' and 'China's National Program of Addressing Climate Change' were issued, under which China's energy conservation and emission reduction work has been fully deployed. Efforts to promote energy efficiency have been further strengthened in all levels of government, and various policies and measures have progressively been issued and implemented. In addition, based on China's experience with implementing energy-saving priority strategies over the past 20+ years, our government established a goal of a 20% decrease in energy consumption per unit GDP in the 'Eleventh Five-year Development Plan'. Furthermore, in November 2009, in order to support global greenhouse gas emission reduction activities and promote China's low carbon economic development, the government established a further 40-50% reduction in energy consumption per unit GDP by 2020 compared to the year 2005. Improving energy utilization efficiency by scientific and technological progress will undoubtedly play an important role in achieving the above stated objectives. The improvement of energy efficiency of energy consuming products has always been an important component of all countries energy strategies. As we all know, a very large amount of total energy consumption is due to energy consuming products and equipment, which account for about 50% of China's total energy consumption. However, the current average energy utilization efficiency of this sector is only about 60%, 10 percent lower than the international advanced level. Therefore, China's energy consuming products and equipment sector holds great energy-saving potential. On the other hand, the energy supplied to these products is mainly from fossil fuel combustion, a major source of greenhouse gas (GHG) emissions. Therefore, improving the energy efficiency and augmenting the market share of market-dominant energy consuming products is of significant importance to achieving China's energy saving and emission reduction target and is an effective means to deal with energy and environmental constraints and climate change issues. Main energy consuming products generally include widely-used home appliances, industrial equipment, office equipment, transportation vehicles, etc. China is one of the major manufacturers and exporters of energy end-using products such as air-conditioners, refrigerators, televisions, etc. Their overall energy efficiency is comparatively low and the products are poorly designed, leading to great energy-saving potential. For example, electricity consumption of air conditioners accounts for about 20% of China's total electricity consumption and 40% of the summer electricity peak load in large and medium cities. However, less than 5% of units sold in the domestic market in 2009 reached the standard's highly efficient level of grade 2 above. The electricity consumption of electric motors and their related drive systems accounts for about 60% of China's total electricity consumption; however, less than 2% of the domestic market share consists of energy-efficient electric motor products. Promoting the energy efficiency and market shares of main energy-consuming products has become an important determinant of achieving energy conservation and emission reduc

  11. A review of China`s energy policy

    SciTech Connect (OSTI)

    Yang, F. [Lawrence Berkeley Lab., CA (United States); Duan, N. [Environment Management Institute, Beijing (China); Zhijie, H. [Energy Research Institute, Beijing (China)

    1994-12-01

    In 1992 China`s primary energy production reached 1075 million tons of coal equivalent by far the largest in the developing world. Because coal is the primary commercial fuel, rapid growth of carbon dioxide emissions is certain. Thus the attitude of the Chinese government toward energy and environmental issues becomes increasingly important to those involved in the study and analysis of global climate change and energy issues. This report is intended to provide a basic understanding of the development of China`s energy policymaking over the past four decades. The paper first reviews institutional development and policymaking and then describes the transition to the market-oriented system. While energy has consistently received a great deal of attention from the central government, the institutional basis for setting and implementing policies has shifted often. Reforms during the past 15 years have been incremental, piecemeal, and occasionally contradictory, but overall have freed a large portion of the energy industry from the strictures of a planned economy and laid the basis for broad price liberalization. Responsibility for energy planning is now dispersed among a number of organizations, rendering coordination of energy development difficult. Economic reform has rendered obsolete most of the policy-implementation means of the planning era. Although the new tools of central control are not fully effective, the trend toward decentralized decisionmaking has been strengthened. The report ends with a summary of energy forecasts used by Chinese policymakers, highlighting current policy goals and the issues that will shape future policy.

  12. Research on Very Low-Energy Building Operations and Management...

    Energy Savers [EERE]

    (MOHURD) - Beijing, China -- China Academy of Building Research - Bejing, China -- Sustainable Energy Partnerships (SEP) - San Francisco, CA DOE Funding: 567,000 Cost...

  13. Cogeneration development and market potential in China

    SciTech Connect (OSTI)

    Yang, F.; Levine, M.D.; Naeb, J.; Xin, D.

    1996-05-01

    China`s energy production is largely dependent on coal. China currently ranks third in global CO{sub 2} emissions, and rapid economic expansion is expected to raise emission levels even further in the coming decades. Cogeneration provides a cost-effective way of both utilizing limited energy resources and minimizing the environmental impacts from use of fossil fuels. However, in the last 10 years state investments for cogeneration projects in China have dropped by a factor of 4. This has prompted this study. Along with this in-depth analysis of China`s cogeneration policies and investment allocation is the speculation that advanced US technology and capital can assist in the continued growth of the cogeneration industry. This study provides the most current information available on cogeneration development and market potential in China.

  14. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    SciTech Connect (OSTI)

    Aden, Nathaniel T.; Zheng, Nina; Fridley, David G.

    2009-07-01

    Urbanization has re-shaped China's economy, society, and energy system. Between 1990 and 2007 China added 290 million new urban residents, bringing the total urbanization rate to 45%. This population adjustment spurred energy demand for construction of new buildings and infrastructure, as well as additional residential use as rural biomass was replaced with urban commercial energy services. Primary energy demand grew at an average annual rate of 10% between 2000 and 2007. Urbanization's effect on energy demand was compounded by the boom in domestic infrastructure investment, and in the export trade following World Trade Organization (WTO) accession in 2001. Industry energy consumption was most directly affected by this acceleration. Whereas industry comprised 32% of 2007 U.S. energy use, it accounted for 75% of China's 2007 energy consumption. Five sub-sectors accounted for 78% of China's industry energy use in 2007: iron and steel, energy extraction and processing, chemicals, cement, and non-ferrous metals. Ferrous metals alone accounted for 25% of industry and 18% of total primary energy use. The rapid growth of heavy industry has led China to become by far the world's largest producer of steel, cement, aluminum, and other energy-intensive commodities. However, the energy efficiency of heavy industrial production continues to lag world best practice levels. This study uses scenario analysis to quantify the impact of urbanization and trade on industrial and residential energy consumption from 2000 to 2025. The BAU scenario assumed 67% urbanization, frozen export amounts of heavy industrial products, and achievement of world best practices by 2025. The China Lightens Up (CLU) scenario assumed 55% urbanization, zero net exports of heavy industrial products, and more aggressive efficiency improvements by 2025. The five dominant industry sub-sectors were modeled in both scenarios using a LEAP energy end-use accounting model. The results of this study show that a CLU-style development path would avoid 430 million tonnes coal-equivalent energy use by 2025. More than 60% of these energy savings would come from reduced activity and production levels. In carbon terms, this would amount to more than a billion-tonne reduction of energy-related carbon emissions compared with the BAU scenario in 2025, though the absolute level of emissions rises in both scenarios. Aside from the energy and carbon savings related to CLU scenario development, this study showed impending saturation effects in commercial construction, urban appliance ownership, and fertilizer application. The implication of these findings is that urbanization will have a direct impact on future energy use and emissions - policies to guide urban growth can play a central role in China's efforts to mitigate emissions growth.

  15. Filial Piety in China Redux

    E-Print Network [OSTI]

    Hacker, Randi

    2012-11-28

    government is behind the general message particularly because of China's growing grey population. And so it has issued an updated edition Teach Mom to use the internet, it says. Take Dad to a film. Find a new mate for a widowed parent. Wait. What? Filial...

  16. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    E-Print Network [OSTI]

    G. Fridley, David

    2010-01-01

    CIS Total and Power Sector Carbon Dioxide Emissions, 2005-Power Sector CIS and AIS Carbon Dioxide Emissions, 2005-Inter-scenario Carbon Dioxide Emissions Mitigation Potential

  17. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; Nishida, Masaru; Gao, Weijun

    2008-12-01

    China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

  18. The Lepton Sector of a Fourth Generation

    E-Print Network [OSTI]

    Gustavo Burdman; Leandro Da Rold; Ricardo D. Matheus

    2010-05-10

    In extensions of the standard model with a heavy fourth generation one important question is what makes the fourth-generation lepton sector, particularly the neutrinos, so different from the lighter three generations. We study this question in the context of models of electroweak symmetry breaking in warped extra dimensions, where the flavor hierarchy is generated by the localization of the zero-mode fermions in the extra dimension. In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost entirely Majorana particles, whereas the fourth generation neutrino is mostly a Dirac fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions of parameter space where the light neutrino masses and mixings are compatible with observation. We study the impact of these bounds, as well as the ones from lepton flavor violation, on the phenomenology of these models.

  19. Fact #561: March 9, 2009 All Sectors' Petroleum Gap

    Office of Energy Efficiency and Renewable Energy (EERE)

    Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial,...

  20. Fact #610: February 15, 2010 All Sectors' Petroleum Gap

    Office of Energy Efficiency and Renewable Energy (EERE)

    Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial,...

  1. Roadmap to Secure Control Systems in the Energy Sector 2006 ...

    Energy Savers [EERE]

    Roadmap to Secure Control Systems in the Energy Sector 2006 - Presentation to the 2008 ieRoadmap Workshop Roadmap to Secure Control Systems in the Energy Sector 2006 - Presentation...

  2. The Changing US Electric Sector Business Model 

    E-Print Network [OSTI]

    Aliff, G.

    2013-01-01

    uneconomical for electricity generation • Renewable portfolio standards (29 states and DC) put priority on solar, wind and energy efficiency regardless of associated economics • Forecasts of future electricity demand are debatable, and in some cases expected... on the Future and Conclusions Presentation overview 2 ESL-KT-13-12-57 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Copyright © 2013 Deloitte Development LLC. All rights reserved. Fundamentals of the US electric sector...

  3. Financing Energy Efficiency Retrofits in the Commercial Sector Webinar

    Broader source: Energy.gov [DOE]

    Financing Energy Efficiency Retrofits in the Commercial Sector Webinar, from the U.S. Department of Energy's Better Buildings program.

  4. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01

    Consumption iii iv Sectoral Trends in Global Energy Use andenergy consumption scenarios. In applying this approach to global

  5. Regional Power Sector Integration: Lessons from Global Case Studies...

    Open Energy Info (EERE)

    the World Bank Sector: Energy Focus Area: Conventional Energy Topics: Implementation, Market analysis, Policiesdeployment programs, Background analysis Resource Type: Lessons...

  6. Inventory of China's Energy-Related CO2 Emissions in 2008

    E-Print Network [OSTI]

    Fridley, David

    2011-01-01

    Coal gasification technology in China: Application and Development,” presentation at the China-US Clean

  7. Energy Audit Practices in China: National and Local Experiences and Issues

    E-Print Network [OSTI]

    Shen, Bo

    2011-01-01

    centers, a demand-side management guidance center, anBeijing-based Demand Side Management (DSM) Technical Centercenter, a demand-side management guidance center, an energy-

  8. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    Embassy RNE aiming at developing bioenergy in rural area of western China Propel Biofuels Propel Biofuels Woodland Park Ave North Seattle Washington Biofuels Sells biodiesel...

  9. ANALYSIS OF MEASURES FOR REDUCING TRANSPORTATION SECTOR GREENHOUSE GAS

    E-Print Network [OSTI]

    ANALYSIS OF MEASURES FOR REDUCING TRANSPORTATION SECTOR GREENHOUSE GAS EMISSIONS IN CANADA by Rose: Analysis of Measures for Reducing Transportation Sector Greenhouse Gas Emissions in Canada Project Number the problem of reducing greenhouse gas (GHG) emissions from the Canadian transportation sector. Reductions

  10. Sales Tax Distribution by NAICS Commodity Sectors and

    E-Print Network [OSTI]

    Arnold, Jonathan

    Sales Tax Distribution by NAICS Commodity Sectors and TAVT Distributions by County Analysis FIGURES #12;Sales Tax Distributions by NAICS Sectors* 2011-2012 Period 2013-2014 Period *Broken down Sales Tax Distributions by NAICS Major Commodity Sector - 50,000,000 100,000,000 150,000,000 200

  11. BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES

    E-Print Network [OSTI]

    ........................................................................... 59 End-Use: Water Heating Sector: Residential Author: Jim Lutz VIII. Heat Pump Water Heaters) ................................................................ 5 End-Use: Lighting, HVAC Sector: Commercial, Industrial, Residential Author: Kristin Heinemeier II End-Use: Interior Lighting Sector: Commercial, Industrial Author: Ellen Franconi III. Compact

  12. Impacts of urban transportation mode split on CO{sub 2} emissions in Jinan, China.

    SciTech Connect (OSTI)

    He, D.; Meng, F.; Wang, M.; He, K.

    2011-04-01

    As the world's largest developing country, China currently is undergoing rapid urbanization and motorization, which will result in far-reaching impacts on energy and the environment. According to estimates, energy use and carbon emissions in the transportation sector will comprise roughly 30% of total emissions by 2030. Since the late 1990s, transportation-related issues such as energy, consumption, and carbon emissions have become a policy focus in China. To date, most research and policies have centered on vehicle technologies that promote vehicle efficiency and reduced emissions. Limited research exists on the control of greenhouse gases through mode shifts in urban transportation - in particular, through the promotion of public transit. The purpose of this study is to establish a methodology to analyze carbon emissions from the urban transportation sector at the Chinese city level. By using Jinan, the capital of China's Shandong Province, as an example, we have developed an analytical model to simulate energy consumption and carbon emissions based on the number of trips, the transportation mode split, and the trip distance. This model has enabled us to assess the impacts of the transportation mode split on energy consumption and carbon emissions. Furthermore, this paper reviews a set of methods for data collection, estimation, and processing for situations where statistical data are scarce in China. This paper also describes the simulation of three transportation system development scenarios. The results of this study illustrate that if no policy intervention is implemented for the transportation mode split (the business-as-usual (BAU) case), then emissions from Chinese urban transportation systems will quadruple by 2030. However, a dense, mixed land-use pattern, as well as transportation policies that encourage public transportation, would result in the elimination of 1.93 million tons of carbon emissions - approximately 50% of the BAU scenario emissions.

  13. China’s Defense High-Tech Leadership: Implications for S&T Innovation

    E-Print Network [OSTI]

    Hagt, Eric

    2011-01-01

    2011 China’s Defense High-Tech Leadership: Implications foran effective defense high-tech innovation system. Thein the PLA and advises on high-tech and strategic platforms.

  14. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    E-Print Network [OSTI]

    G. Fridley, David

    2010-01-01

    61 4.3.2 Crude Oil Demand and Tradeor no impact on China’s crude oil import demand. Rather,for reductions in crude oil imports and coal demand in its

  15. Lessons for China from a comparison of logistics in the U.S. and China

    E-Print Network [OSTI]

    Xiong, Ming, S.M. Massachusetts Institute of Technology

    2010-01-01

    Logistics efficiency is low in China. In 2008, total logistics costs accounted for 18.1% of gross domestic product (GDP) in China, which was almost twice that of the United States. Increasing logistics efficiency can save ...

  16. China’s Shipbuilding Industry Development: A Boost for Naval Ship Production?

    E-Print Network [OSTI]

    Collins, Gabe

    2010-01-01

    Complexity China’s top shipyards are closing the gap withof the world’s 40 largest shipyards in terms of deadweightcomplexity of Chinese shipyards’ output is already on par

  17. Supercomputing and Energy in China: How Investment in HPC Affects Oil Security

    E-Print Network [OSTI]

    WILSON, Jordan

    2014-01-01

    relevant to China’s energy security challenge and thusTo state China’s energy security challenge briefly, an oilChina’s Quest for Energy Security (Santa Monica, CA: RAND

  18. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    and Li Junfeng. ?Renewable Energy Policy Update for China. ?and Li Junfeng, ?Renewable Energy Policy Update for China,?in China: An Update,? Renewable Energy World, 19 May 2011,

  19. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    Xu Yichong. ?The Politics of Nuclear Energy in China. ?the author of The Politics of Nuclear Energy in China,the Xu Yichong, ?The Politics of Nuclear Energy in China,? (

  20. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    in 2010. ? Global Wind Energy Council. 6 April 2011. http://China‘s Grid-Limited Wind Energy Potential. ? Carbon-Nation.grid-limited-wind-energy-potential/. ———. ?China‘s Potent

  1. Additive Manufacturing in China: Threats, Opportunities, and Developments (Part I)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01

    steam engine and the Industrial Revolution. Since then, eachpillars of the new industrial revolution, could allow China?? ” [3D Printing Opens New Industrial Revolution—Is China’s

  2. Microfinance regulation in China and India

    E-Print Network [OSTI]

    Gowrie-Smith, Lachlan Ian

    2010-01-01

    The regulatory responses of Governments in different countries to emerging microfinance sectors have varied dramatically and as a result so have the outcomes for these sectors. As two of the fastest growing developing ...

  3. IBM Research -ChinaIBM Research China Internet-of-Things for Sustainability of Mega Cities

    E-Print Network [OSTI]

    Huang, Xun

    Transportation Nature Resource City Public Services Supply Chain Energy p Security Challenges: Pollution, diseaseIBM Research - ChinaIBM Research China Internet-of-Things for Sustainability of Mega Cities Hui Su, PhD Associate Director, IBM Research ­ China © 2010 IBM Corporation #12;Connected World: Mega Cities

  4. China rationalizes its renewable energy policy

    SciTech Connect (OSTI)

    Su, Jack H.; Hui, Simone S.; Tsen, Kevin H.

    2010-04-15

    China's over-reliance on thermal power generation, especially coal-fired power stations, is well-documented. While nuclear power continues as an option to coal, China's strides in renewable energy are unprecedented. Recent amendments to the Renewable Energy Law, first promulgated in 2006, attempt to rationalize the regulatory regime governing wind, solar, hydropower and biomass projects in China, currently fraught with inadequate interconnection and tariff shock issues. (author)

  5. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    curtail-chinas-coal- gasification-for-fuel-yet-conversion-coal as a feedstock, coal gasification produces syngas whichCoal to Methanol Gasification Coal to Synthetic Methanol

  6. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    curtail-chinas-coal- gasification-for-fuel-yet-conversion-Biogas and Biomass Gasification Liquid Biofuels Bioethanolcombustion, biomass gasification and biomass co-fired coal

  7. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    compared to other renewable energy policies illustrate thatExpansion Policy Drivers Renewable Energy Law of China TheRenewable Energy Law, other technology-specific policies

  8. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Trough Concentrating Solar Power Plant and Impacts of Keyof a 1.5 MW solar power tower plant in China. ” Renewablelarger commercial solar power tower plants in Northwestern

  9. Cogeneration Development and Market Potential in China

    E-Print Network [OSTI]

    Yang, F.

    2010-01-01

    China's Power Industry," Cogeneration Technolo- gy, V o l .tion Development," Cogeneration Technol- ogy, V o l . 41, NE Y NATIONAL LABORATORY Cogeneration Development and Market

  10. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Technology. ” London: Renewable UK. Available at: http://tower plant in China. ” Renewable and Sustainable Energyby plant in Guangxi." Renewable and Sustainable Energy

  11. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    15. Scope of Nuclear Power Generation Analysis and MajorFigure 27. Alternative Power Generation Fleet Average Fossilexpanded nuclear and wind power generation. In sum, if China

  12. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    stage of the cycle. Uranium Mining and Milling China hasissues surrounding uranium mining, the land intensity for40 Table 17. Uranium Ore Mining and Milling Energy Intensity

  13. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    cycle inventory for hydroelectric generation: a BrazilianChina currently has 15 hydroelectric projects of over 1 GWonly conventional large hydroelectric generation and does

  14. Creating and Implementing a Regularized Monitoring and Enforcement System for China's Mandatory Standards and Energy Information Label for Appliances

    E-Print Network [OSTI]

    Lin, Jiang

    2008-01-01

    the passage of China’s Energy Conservation Law (ECL) in 1997In addition, China’s Energy Conservation Law (Article 18)Further, China’s Energy Conservation Law and the Energy

  15. China Energy Group - Sustainable Growth Through Energy Efficiency

    E-Print Network [OSTI]

    2006-01-01

    companies; a national energy policy assessment including thein analyzing Chinese energy policy. We released the firstto China; led the Energy Policy Team, China-U.S. Energy

  16. China Refrigerator Information Label: Specification Development and Potential Impact

    E-Print Network [OSTI]

    Fridley, David

    2008-01-01

    Urban Refrigerator Stocks, 1990-2006 5 Figure 3 China's Energy Information Label for Refrigerators.. 6 Figure 4 China's Voluntary Energy Efficiency

  17. Secretary Chu: China's Clean Energy Successes Represent a New...

    Office of Environmental Management (EM)

    Chu: China's Clean Energy Successes Represent a New "Sputnik Moment" for America Secretary Chu: China's Clean Energy Successes Represent a New "Sputnik Moment" for America November...

  18. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    Outlook for China’s Electricity Demand (2010) [?????? ???and rapidly growing electricity demand. By extension, thisare assured high electricity demand and grid companies need

  19. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    and Joanna Kentish. ?Renewable energy policy and electricityand Li Junfeng. ?Renewable Energy Policy Update for China. ?Republic of China Renewable Energy Policy [??????????? ??].

  20. China Energy Group - Sustainable Growth Through Energy Efficiency

    E-Print Network [OSTI]

    2006-01-01

    procurement programs; energy service companies; a nationalEnergy Management Program and other successful nationalProgram. China’s Cement Production National Energy Strategy

  1. China Glass Solar aka CG Solar formerly Weihai Bluestar Terra...

    Open Energy Info (EERE)

    China Glass Solar aka CG Solar formerly Weihai Bluestar Terra Photovoltaic Co Ltd Jump to: navigation, search Name: China Glass Solar (aka CG Solar, formerly Weihai Bluestar Terra...

  2. China Solar Photovoltaic Group CNPV aka Dongying Photovoltaic...

    Open Energy Info (EERE)

    Photovoltaic Group CNPV aka Dongying Photovoltaic Power Co Ltd or China Solar PV Jump to: navigation, search Name: China Solar Photovoltaic Group (CNPV, aka Dongying Photovoltaic...

  3. Is The Financial Crisis Playing Against China In Africa?

    E-Print Network [OSTI]

    NOLA NOUCK, Lucien

    2009-01-01

    University. His main area of research is China-Africa andIndia-Africa relations.Playing Against China In Africa? Introduction Since they

  4. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    China Wind Energy Development Roadmap 2050,? TechnologyChina Wind Energy Development Roadmap 2050. ? Technologyby which wind turbine technology converts wind energy into

  5. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    biores/108435/. ?China‘s power generation capacity leapsfor Renewable Energy Power Generation Prices and Expenses? [htm. ?Analysis of UK Wind Power Generation: November 2008 to

  6. Agricultural Productivity Growth in China: Farm Level versus National Measurement

    E-Print Network [OSTI]

    Carter, Colin A.; Chen, Jing; Chu, Baojin

    1999-01-01

    bias any measurement of agricultural productivity, becauseProductivity Growth in China: Farm Level versus National MeasurementProductivity Growth in China: Farm Level versus National Measurement

  7. China's Energy and Carbon Emissions Outlook to 2050

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01

    Agency (IEA). 2009. World Energy Outlook 2009. Paris: OECDThis study presents a China Energy Outlook through 2050 thatto develop a China Energy Outlook through 2050 with 2020 and

  8. Peak CO2? China's Emissions Trajectories to 2050

    E-Print Network [OSTI]

    Zhou, Nan

    2012-01-01

    Agency (IEA). 2009. World Energy Outlook 2009. Paris: OECDfocuses on a China Energy Outlook through 2050 that assessesfocuses on a China Energy Outlook through 2050 with 2020 and

  9. Shenyang Huachuang Wind Energy Corporation HCWE aka China Creative...

    Open Energy Info (EERE)

    Shenyang Huachuang Wind Energy Corporation HCWE aka China Creative Wind Energy Co Ltd Jump to: navigation, search Name: Shenyang Huachuang Wind Energy Corporation (HCWE) (aka China...

  10. Jiangxi Ganzhong Chlorine Caustic Company aka China Jiangxi Chlor...

    Open Energy Info (EERE)

    Jiangxi Ganzhong Chlorine Caustic Company aka China Jiangxi Chlor Alkali Manufacturing Jump to: navigation, search Name: Jiangxi Ganzhong Chlorine & Caustic Company (aka China...

  11. DOE Issues Energy Sector Cyber Organization NOI

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOE Federal Aviation Professional|CertifyNational Energy Sector

  12. Analysis of International Policies In The Solar Electricity Sector: Lessons for India

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2011-01-01

    market outlook for photovoltaics until 2015”. 39 Solaroutlook for photovoltaics until 2015”. Figure 7: China’s annual solarsolar promotion policies in seven countries - Germany, Spain, the United States, Japan, China, Taiwan, and India – in terms of their outlook,

  13. China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01

    Monitoring of Direct Energy Consumption in Long-Term2007. “Constraining Energy Consumption of China’s LargestProgram: Reducing Energy Consumption of the 1000 Largest

  14. Lepton sector of a fourth generation

    SciTech Connect (OSTI)

    Burdman, G. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil); Da Rold, L. [Centro Atomico Bariloche, Bariloche (Argentina); Matheus, R. D. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil)

    2010-09-01

    In extensions of the standard model with a heavy fourth generation, one important question is what makes the fourth-generation lepton sector, particularly the neutrinos, so different from the lighter three generations. We study this question in the context of models of electroweak symmetry breaking in warped extra dimensions, where the flavor hierarchy is generated by choosing the localization of the zero-mode fermions in the extra dimension. In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost entirely Majorana particles, whereas the fourth-generation neutrino is mostly a Dirac fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions of parameter space where the light neutrino masses and mixings are compatible with observation. We study the impact of these bounds, as well as the ones from lepton flavor violation, on the phenomenology of these models.

  15. Hidden sector DM models and Higgs physics

    SciTech Connect (OSTI)

    Ko, P.

    2014-06-24

    We present an extension of the standard model to dark sector with an unbroken local dark U(1){sub X} symmetry. Including various singlet portal interactions provided by the standard model Higgs, right-handed neutrinos and kinetic mixing, we show that the model can address most of phenomenological issues (inflation, neutrino mass and mixing, baryon number asymmetry, dark matter, direct/indirect dark matter searches, some scale scale puzzles of the standard collisionless cold dark matter, vacuum stability of the standard model Higgs potential, dark radiation) and be regarded as an alternative to the standard model. The Higgs signal strength is equal to one as in the standard model for unbroken U(1){sub X} case with a scalar dark matter, but it could be less than one independent of decay channels if the dark matter is a dark sector fermion or if U(1){sub X} is spontaneously broken, because of a mixing with a new neutral scalar boson in the models.

  16. Country Review of Energy-Efficiency Financial Incentives in the Residential Sector

    E-Print Network [OSTI]

    Can, Stephane de la Rue du

    2011-01-01

    eeting China’s Energy Efficiency and Environmental Goalsof Electricity Energy Efficiency Programs. ” Resource forWho Should Administer Energy-Efficiency Programs? Berkeley

  17. Building Energy Efficiency in Rural China

    SciTech Connect (OSTI)

    Evans, Meredydd; Yu, Sha; Song, Bo; Deng, Qinqin; Liu, Jing; Delgado, Alison

    2014-04-01

    Rural buildings in China now account for more than half of China’s total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to meet basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China’s success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese government recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation.

  18. TSINGHUA -MIT China Energy & Climate Project

    E-Print Network [OSTI]

    and Management Group at the MIT Sloan School of Management. She leads the MIT-Tsinghua China Energy and Climate on emerging markets and the role of policy. Dr. Karplus is an expert on China's energy system, including technology trends, energy system governance, and the sustainability impact of business decisions. She holds

  19. BiotechinChina Enter the Dragon

    E-Print Network [OSTI]

    Cai, Long

    . With money in abundance, a rapid transformation toward innovation is palpable in China's pharmaceuti- cal on healthcare reform extending care to the entire nation. The market is growing in China and commercial companies licensing therapies from abroad to address the needs of the national market have picked up

  20. Title: China Dimensions Data Collection Data Creator /

    E-Print Network [OSTI]

    holds wide range of natural science and socioeconomic research and educational activities of China Digital Data Format: Arc Info, TwinBridge Based MS Access, SPSS, ASCII, dBase IV Datum / Map Projection: N Network (CIESIN). "China Dimensions Data Collection" [electronic resource: vector]. Palisades, New York