National Library of Energy BETA

Sample records for behavior charge transport

  1. Ion Transport Dynamics in Acid Variable Charge Subsoils

    SciTech Connect (OSTI)

    Qafoku, Nik; Sumner, Malcolm E.; Toma, Mitsuru

    2005-06-06

    This is a mini-review of the research work conducted by the authors with the objective of studying ion transport in variable charge subsoils collected from different areas around the world. An attempt is made in these studies to relate the unique behavior manifested during ionic transport in these subsoils with their mineralogical, physical and chemical properties, which are markedly different from those in soils from temperate regions. The variable charge subsoils have a relatively high salt sorption capacity and anion exchange capacity (AEC) that retards anions downward movement. The AEC correlates closely with the anion retardation coefficients. Ca2+ applied with gypsum in topsoil may be transported to the subsoil and may improve the subsoil chemical properties. These results may help in developing appropriate management strategies under a range of mineralogical, physical, and chemical conditions.

  2. Anomalous Charge Transport in Disordered Organic Semiconductors

    SciTech Connect (OSTI)

    Muniandy, S. V.; Woon, K. L.; Choo, K. Y.

    2011-03-30

    Anomalous charge carrier transport in disordered organic semiconductors is studied using fractional differential equations. The connection between index of fractional derivative and dispersion exponent is examined from the perspective of fractional Fokker-Planck equation and its link to the continuous time random walk formalism. The fractional model is used to describe the bi-scaling power-laws observed in the time-of flight photo-current transient data for two different types of organic semiconductors.

  3. Intrinsic slow charge response in the perovskite solar cells: Electron and ion transport

    SciTech Connect (OSTI)

    Shi, Jiangjian; Xu, Xin; Zhang, Huiyin; Luo, Yanhong; Li, Dongmei; Meng, Qingbo

    2015-10-19

    The intrinsic charge response and hysteresis characteristic in the perovskite solar cell has been investigated by an electrically modulated transient photocurrent technology. An ultraslow charge response process in the timescale of seconds is observed, which can be well explained by the ion migration in the perovskite CH{sub 3}NH{sub 3}PbI{sub 3} film driven by multiple electric fields derived from the heterojunction depletion charge, the external modulation, and the accumulated ion charge. Furthermore, theoretical calculation of charge transport reveals that the hysteresis behavior is also significantly influenced by the interfacial charge extraction velocity and the carrier transport properties inside the cell.

  4. Cosmological Behavior of a Parity and Charge-Parity Violating...

    Office of Scientific and Technical Information (OSTI)

    Cosmological Behavior of a Parity and Charge-Parity Violating Varying Alpha Theory Citation Details In-Document Search Title: Cosmological Behavior of a Parity and Charge-Parity ...

  5. Cosmological behavior of a parity and charge-parity violating...

    Office of Scientific and Technical Information (OSTI)

    Cosmological behavior of a parity and charge-parity violating varying alpha theory Citation Details In-Document Search Title: Cosmological behavior of a parity and charge-parity ...

  6. A Simple Index for Characterizing Charge Transport in Molecular...

    Office of Scientific and Technical Information (OSTI)

    solar (fuels), photosynthesis (natural and artificial), bio-inspired, hydrogen and fuel cells, electrodes - solar, defects, charge transport, spin dynamics, membrane, materials...

  7. Influence of Topological Spin Fluctuations on Charge Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Influence of Topological Spin Fluctuations on Charge Transport Print Layered transition metal oxides are the focus of intense research efforts because they might clarify the...

  8. Graphene Produces More Efficient Charge Transport Inside an Organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graphene Produces More Efficient Charge Transport Inside an Organic Semiconductor Friday, ... devices, enabling the formation of efficient thin film and flexible devices. ...

  9. High-temperature charge and thermal transport properties of the...

    Office of Scientific and Technical Information (OSTI)

    transport properties of the n -type thermoelectric material PbSe Citation Details In-Document Search Title: High-temperature charge and thermal transport properties of the n ...

  10. Charging Up with the Electric Drive Transportation Association | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Charging Up with the Electric Drive Transportation Association Charging Up with the Electric Drive Transportation Association May 20, 2014 - 4:51pm Addthis Test Drive 1 of 5 Test Drive Deputy Assistant Secretary for Transportation Reuben Sarkar drives a Chevrolet Spark EV during the Electric Drive Transportation Association conference in Indianapolis, Indiana on May 20, 2014. The conference brings together industry leaders who are advancing electric vehicle technologies and

  11. Cosmological Behavior of a Parity and Charge-Parity Violating...

    Office of Scientific and Technical Information (OSTI)

    Violating Varying Alpha Theory Citation Details In-Document Search Title: Cosmological Behavior of a Parity and Charge-Parity Violating Varying Alpha Theory Authors: Maity, ...

  12. Visualizing the Behavior of Polar Domains and Screening Charges...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visualizing the Behavior of Polar Domains and Screening Charges Under Electric and Mechanical Fields Event Sponsor: Mathematics and Computing Science - LANS Seminar Start Date: Sep...

  13. Influence of Topological Spin Fluctuations on Charge Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NaxCoO2 (with variable x) is similar to cuprate HTSCs. The parent compounds are Mott insulators, in which a strong electrostatic repulsion blocks charge transport; they...

  14. Influence of Topological Spin Fluctuations on Charge Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Influence of Topological Spin Fluctuations on Charge Transport Influence of Topological Spin Fluctuations on Charge Transport Print Wednesday, 27 April 2005 00:00 Layered transition metal oxides are the focus of intense research efforts because they might clarify the superconducting mechanism of cuprate high-temperature superconductors (HTSCs). A case in point is NaxCoO2 with x = 0.7, which is a parent compound for a family of cobaltites that exhibits superconductivity. This class of materials

  15. Charge Transport within a Three-Dimensional DNA Nanostructure Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charge Transport within a Three-Dimensional DNA Nanostructure Framework Authors: Lu, N., Pei, H., Ge, Z., Simmons, C.R., Yan, H., and Fan, C. Title: Charge Transport within a Three-Dimensional DNA Nanostructure Framework Source: Journal of the American Chemical Society Year: 2012 Volume: 134 Pages: 13148-13151 ABSTRACT: Three-dimensional (3D) DNA nanostructures have shown great promise for various applications including molecular sensing and therapeutics. Here we report kinetic studies of

  16. Charge transport and memristive properties of graphene quantum dots embedded in poly(3-hexylthiophene) matrix

    SciTech Connect (OSTI)

    Cosmin Obreja, Alexandru; Cristea, Dana; Radoi, Antonio; Gavrila, Raluca; Comanescu, Florin; Kusko, Cristian; Mihalache, Iuliana

    2014-08-25

    We show that graphene quantum dots (GQD) embedded in a semiconducting poly(3-hexylthiophene) polymeric matrix act as charge trapping nanomaterials. In plane current-voltage (I-V) measurements of thin films realized from this nanocomposite deposited on gold interdigitated electrodes revealed that the GQD enhanced dramatically the hole transport. I-V characteristics exhibited a strong nonlinear behavior and a pinched hysteresis loop, a signature of a memristive response. The transport properties of this nanocomposite were explained in terms of a trap controlled space charge limited current mechanism.

  17. Graphene Produces More Efficient Charge Transport Inside an Organic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Semiconductor | Stanford Synchrotron Radiation Lightsource Graphene Produces More Efficient Charge Transport Inside an Organic Semiconductor Friday, January 30, 2015 Graphene, a two dimensional semi-metal made of sp2 hybridized carbon, is an outstanding material which exhibits high mechanical and chemical stability, as well as high charge carrier mobility. Graphene has recently received considerable attention because it can be directly integrated into opto-electronic devices, enabling the

  18. A General Relationship between Disorder, Aggregation, and Charge Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Conjugated Polymers | Stanford Synchrotron Radiation Lightsource A General Relationship between Disorder, Aggregation, and Charge Transport in Conjugated Polymers Monday, September 23, 2013 The potential for combining low-cost manufacturing and mechanical robustness with engineering of specific opto-electronic properties has recently spurred great interest in semiconducting polymers. Consequently, devices based on organic semiconductors have reached significant milestones such as ~10%

  19. Influence of Topological Spin Fluctuations on Charge Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Influence of Topological Spin Fluctuations on Charge Transport Print Layered transition metal oxides are the focus of intense research efforts because they might clarify the superconducting mechanism of cuprate high-temperature superconductors (HTSCs). A case in point is NaxCoO2 with x = 0.7, which is a parent compound for a family of cobaltites that exhibits superconductivity. This class of materials is also thought to be ideal for detecting the long-sought resonating valence bond (RVB) state

  20. Charge Transport Anisotropy Due to Grain Boundaries in Directionally

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crystallized Thin Films of Regio-Regular Poly(3-hexylthiophene) Charge Transport Anisotropy Due to Grain Boundaries in Directionally Crystallized Thin Films of Regio-Regular Poly(3-hexylthiophene) Semicrystalline polymers, such as polythiophenes, hold much promise as active layers in printable electronic devices such as photovoltaic cells, sensors, and thin film transistors. As organic semiconductors approach commercialization, there is a need to better understand the relationship between

  1. Influence of Topological Spin Fluctuations on Charge Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Influence of Topological Spin Fluctuations on Charge Transport Print Layered transition metal oxides are the focus of intense research efforts because they might clarify the superconducting mechanism of cuprate high-temperature superconductors (HTSCs). A case in point is NaxCoO2 with x = 0.7, which is a parent compound for a family of cobaltites that exhibits superconductivity. This class of materials is also thought to be ideal for detecting the long-sought resonating valence bond (RVB) state

  2. Influence of Topological Spin Fluctuations on Charge Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Influence of Topological Spin Fluctuations on Charge Transport Print Layered transition metal oxides are the focus of intense research efforts because they might clarify the superconducting mechanism of cuprate high-temperature superconductors (HTSCs). A case in point is NaxCoO2 with x = 0.7, which is a parent compound for a family of cobaltites that exhibits superconductivity. This class of materials is also thought to be ideal for detecting the long-sought resonating valence bond (RVB) state

  3. Influence of Topological Spin Fluctuations on Charge Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Influence of Topological Spin Fluctuations on Charge Transport Print Layered transition metal oxides are the focus of intense research efforts because they might clarify the superconducting mechanism of cuprate high-temperature superconductors (HTSCs). A case in point is NaxCoO2 with x = 0.7, which is a parent compound for a family of cobaltites that exhibits superconductivity. This class of materials is also thought to be ideal for detecting the long-sought resonating valence bond (RVB) state

  4. Influence of Topological Spin Fluctuations on Charge Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Influence of Topological Spin Fluctuations on Charge Transport Print Layered transition metal oxides are the focus of intense research efforts because they might clarify the superconducting mechanism of cuprate high-temperature superconductors (HTSCs). A case in point is NaxCoO2 with x = 0.7, which is a parent compound for a family of cobaltites that exhibits superconductivity. This class of materials is also thought to be ideal for detecting the long-sought resonating valence bond (RVB) state

  5. Ambipolar charge transport in microcrystalline silicon thin-film transistors

    SciTech Connect (OSTI)

    Knipp, Dietmar; Marinkovic, M.; Chan, Kah-Yoong; Gordijn, Aad; Stiebig, Helmut

    2011-01-15

    Hydrogenated microcrystalline silicon ({mu}c-Si:H) is a promising candidate for thin-film transistors (TFTs) in large-area electronics due to high electron and hole charge carrier mobilities. We report on ambipolar TFTs based on {mu}c-Si:H prepared by plasma-enhanced chemical vapor deposition at temperatures compatible with flexible substrates. Electrons and holes are directly injected into the {mu}c-Si:H channel via chromium drain and source contacts. The TFTs exhibit electron and hole charge carrier mobilities of 30-50 cm{sup 2}/V s and 10-15 cm{sup 2}/V s, respectively. In this work, the electrical characteristics of the ambipolar {mu}c-Si:H TFTs are described by a simple analytical model that takes the ambipolar charge transport into account. The analytical expressions are used to model the transfer curves, the potential and the net surface charge along the channel of the TFTs. The electrical model provides insights into the electronic transport of ambipolar {mu}c-Si:H TFTs.

  6. Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project

    SciTech Connect (OSTI)

    John Smart; Stephen Schey

    2012-04-01

    As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV

  7. Charge Transport and Glassy Dynamics in Ionic Liquids

    SciTech Connect (OSTI)

    Sangoro, Joshua R; Kremer, Friedrich

    2012-01-01

    Ionic liquids (ILs) exhibit unique features such as low melting points, low vapor pressures, wide liquidus temperature ranges, high thermal stability, high ionic conductivity, and wide electrochemical windows. As a result, they show promise for use in variety of applications: as reaction media, in batteries and supercapacitors, in solar and fuel cells, for electrochemical deposition of metals and semiconductors, for protein extraction and crystallization, and many others. Because of the ease with which they can be supercooled, ionic liquids offer new opportunities to investigate long-standing questions regarding the nature of the dynamic glass transition and its possible link to charge transport. Despite the significant steps achieved from experimental and theoretical studies, no generally accepted quantitative theory of dynamic glass transition to date has been capable of reproducing all the experimentally observed features. In this Account, we discuss recent studies of the interplay between charge transport and glassy dynamics in ionic liquids as investigated by a combination of several experimental techniques including broadband dielectric spectroscopy, pulsed field gradient nuclear magnetic resonance, dynamic mechanical spectroscopy, and differential scanning calorimetry. Based on EinsteinSmoluchowski relations, we use dielectric spectra of ionic liquids to determine diffusion coefficients in quantitative agreement with independent pulsed field gradient nuclear magnetic resonance measurements, but spanning a broader range of more than 10 orders of magnitude. This approach provides a novel opportunity to determine the electrical mobility and effective number density of charge carriers as well as their types of thermal activation from the measured dc conductivity separately. We also unravel the origin of the remarkable universality of charge transport in different classes of glass-forming ionic liquids.

  8. Charge transport mechanisms of graphene/semiconductor Schottky barriers: A theoretical and experimental study

    SciTech Connect (OSTI)

    Zhong, Haijian; Liu, Zhenghui; Xu, Gengzhao; Shi, Lin; Fan, Yingmin; Yang, Hui [Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Xu, Ke, E-mail: kxu2006@sinano.ac.cn; Wang, Jianfeng; Ren, Guoqiang [Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Suzhou Nanowin Science and Technology Co., Ltd., Suzhou 215123 (China)

    2014-01-07

    Graphene has been proposed as a material for semiconductor electronic and optoelectronic devices. Understanding the charge transport mechanisms of graphene/semiconductor Schottky barriers will be crucial for future applications. Here, we report a theoretical model to describe the transport mechanisms at the interface of graphene and semiconductors based on conventional semiconductor Schottky theory and a floating Fermi level of graphene. The contact barrier heights can be estimated through this model and be close to the values obtained from the experiments, which are lower than those of the metal/semiconductor contacts. A detailed analysis reveals that the barrier heights are as the function of the interface separations and dielectric constants, and are influenced by the interfacial states of semiconductors. Our calculations show how this behavior of lowering barrier heights arises from the Fermi level shift of graphene induced by the charge transfer owing to the unique linear electronic structure.

  9. Now Available: Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors- Experiences from Six SGIG Projects (December 2014)

    Broader source: Energy.gov [DOE]

    Under OE's Smart Grid Investment Grant (SGIG) program, six utilities evaluated operations and customer charging behaviors for in-home and public electric vehicle charging stations. The report is now available for downloading.

  10. SLC injector simulation and tuning for high charge transport

    SciTech Connect (OSTI)

    Yeremian, A.D.; Miller, R.H.; Clendenin, J.E.; Early, R.A.; Ross, M.C.; Turner, J.L.; Wang, J.W.

    1992-08-01

    We have simulated the SLC injector from the thermionic gun through the first accelerating section and used the resulting parameters to tune the injector for optimum performance and high charge transport. Simulations are conducted using PARMELA, a three-dimensional ray-trace code with a two-dimensional space-charge model. The magnetic field profile due to the existing magnetic optics is calculated using POISSON, while SUPERFISH is used to calculate the space harmonics of the various bunchers and the accelerator cavities. The initial beam conditions in the PARMELA code are derived from the EGUN model of the gun. The resulting injector parameters from the PARMELA simulation are used to prescribe experimental settings of the injector components. The experimental results are in agreement with the results of the integrated injector model.

  11. Electricity Demand of PHEVs Operated by Private Households and Commercial Fleets: Effects of Driving and Charging Behavior

    SciTech Connect (OSTI)

    John Smart; Matthew Shirk; Ken Kurani; Casey Quinn; Jamie Davies

    2010-11-01

    Automotive and energy researchers have made considerable efforts to predict the impact of plug-in hybrid vehicle (PHEV) charging on the electrical grid. This work has been done primarily through computer modeling and simulation. The US Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA), in partnership with the University of California at Davis’s Institute for Transportation Stuides, have been collecting data from a diverse fleet of PHEVs. The AVTA is conducted by the Idaho National Laboratory for DOE’s Vehicle Technologies Program. This work provides the opportunity to quantify the petroleum displacement potential of early PHEV models, and also observe, rather than simulate, the charging behavior of vehicle users. This paper presents actual charging behavior and the resulting electricity demand from these PHEVs operating in undirected, real-world conditions. Charging patterns are examined for both commercial-use and personal-use vehicles. Underlying reasons for charging behavior in both groups are also presented.

  12. Charge and Spin Transport in Dilute Magnetic Semiconductors

    SciTech Connect (OSTI)

    Ullrich, Carsten A.

    2009-07-23

    This proposal to the DOE outlines a three-year plan of research in theoretical and computational condensed-matter physics, with the aim of developing a microscopic theory for charge and spin dynamics in disordered materials with magnetic impurities. Important representatives of this class of materials are the dilute magnetic semiconductors (DMS), which have attracted great attention as a promising basis for spintronics devices. There is an intense experimental effort underway to study the transport properties of ferromagnetic DMS such as (Ga,Mn)As, and a number of interesting features have emerged: negative magnetoresistance, anomalous Hall effect, non-Drude dynamical conductivity, and resistivity maxima at the Curie temperature. Available theories have been able to account for some of these features, but at present we are still far away from a systematic microscopic understanding of transport in DMS. We propose to address this challenge by developing a theory of charge and spin dynamics based on a combination of the memory-function formalism and time-dependent density functional theory. This approach will be capable of dealing with two important issues: (a) the strong degree of correlated disorder in DMS, close to the localization transition (which invalidates the usual relaxation-time approximation to the Boltzmann equation), (b) the essentially unknown role of dynamical many-body effects such as spin Coulomb drag. We will calculate static and dynamical conductivities in DMS as functions of magnetic order and carrier density, which will advance our understanding of recent transport and infrared absorption measurements. Furthermore, we will study collective plasmon excitations in DMS (3D, 2D and quantum wells), whose linewidths could constitute a new experimental probe of the correlation of disorder, many-body effects and charge and spin dynamics in these materials.

  13. A charge carrier transport model for donor-acceptor blend layers

    SciTech Connect (OSTI)

    Fischer, Janine Widmer, Johannes; Koerner, Christian; Vandewal, Koen; Leo, Karl; Kleemann, Hans; Tress, Wolfgang; Riede, Moritz

    2015-01-28

    Highly efficient organic solar cells typically comprise donor-acceptor blend layers facilitating effective splitting of excitons. However, the charge carrier mobility in the blends can be substantially smaller than in neat materials, hampering the device performance. Currently, available mobility models do not describe the transport in blend layers entirely. Here, we investigate hole transport in a model blend system consisting of the small molecule donor zinc phthalocyanine (ZnPc) and the acceptor fullerene C{sub 60} in different mixing ratios. The blend layer is sandwiched between p-doped organic injection layers, which prevent minority charge carrier injection and enable exploiting diffusion currents for the characterization of exponential tail states from a thickness variation of the blend layer using numerical drift-diffusion simulations. Trap-assisted recombination must be considered to correctly model the conductivity behavior of the devices, which are influenced by local electron currents in the active layer, even though the active layer is sandwiched in between p-doped contacts. We find that the density of deep tail states is largest in the devices with 1:1 mixing ratio (E{sub t} = 0.14 eV, N{sub t} = 1.2 × 10{sup 18 }cm{sup −3}) directing towards lattice disorder as the transport limiting process. A combined field and charge carrier density dependent mobility model are developed for this blend layer.

  14. Energy Department Welcomes Department of Transportation as New Workplace Charging Challenge Partner

    Broader source: Energy.gov [DOE]

    Today, the Energy Department is welcoming the Department of Transportation (DOT) as a partner in its Workplace Charging Challenge, which aims to make workplace charging for plug-in electric vehicles available to employees across the country.

  15. Charge transport in hybrid nanorod-polymer composite photovoltaiccells

    SciTech Connect (OSTI)

    Huynh, Wendy U.; Dittmer, Janke J.; Teclemariam, Nerayo; Milliron, Delia; Alivisatos, A. Paul; Barnham, Keith W.J.

    2002-06-21

    Charge transport in composites of inorganic nanorods and aconjugated polymer is investigated using a photovoltaic device structure.We show that the current-voltage (I-V) curves in the dark can be modelledusing the Shockley equation modified to include series and shuntresistance at low current levels, and using an improved model thatincorporates both the Shockley equation and the presence of a spacecharge limited region at high currents. Under illumination, theefficiency of photocurrent generation is found to be dependent on appliedbias. Furthermore, the photocurrent-light intensity dependence was foundto be sublinear. An analysis of the shunt resistance as a function oflight intensity suggests that the photocurrent as well as the fill factoris diminished as a result of increased photoconductivity of the activelayer at high light intensity. By studying the intensity dependence ofthe open circuit voltage for nanocrystals with different diameters andthus ! band gaps, it was inferred that Fermi-level pinning occurs at theinterface between the aluminum electrode and the nanocrystal.

  16. NREL: Transportation Research - NREL's Campus EV Charging Stations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL's Campus EV Charging Stations are Now More Integrated with the Grid Researcher looks at computer in parking garage standing near electric vehicle charging station. Myungsoo ...

  17. Controllable spin-charge transport in strained graphene nanoribbon devices

    SciTech Connect (OSTI)

    Diniz, Ginetom S., E-mail: ginetom@gmail.com; Guassi, Marcos R. [Institute of Physics, University of Braslia, 70919-970, Braslia-DF (Brazil); Qu, Fanyao [Institute of Physics, University of Braslia, 70919-970, Braslia-DF (Brazil); Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2014-09-21

    We theoretically investigate the spin-charge transport in two-terminal device of graphene nanoribbons in the presence of a uniform uniaxial strain, spin-orbit coupling, exchange field, and smooth staggered potential. We show that the direction of applied strain can efficiently tune strain-strength induced oscillation of band-gap of armchair graphene nanoribbon (AGNR). It is also found that electronic conductance in both AGNR and zigzag graphene nanoribbon (ZGNR) oscillates with Rashba spin-orbit coupling akin to the Datta-Das field effect transistor. Two distinct strain response regimes of electronic conductance as function of spin-orbit couplings magnitude are found. In the regime of small strain, conductance of ZGNR presents stronger strain dependence along the longitudinal direction of strain. Whereas for high values of strain shows larger effect for the transversal direction. Furthermore, the local density of states shows that depending on the smoothness of the staggered potential, the edge states of AGNR can either emerge or be suppressed. These emerging states can be determined experimentally by either spatially scanning tunneling microscope or by scanning tunneling spectroscopy. Our findings open up new paradigms of manipulation and control of strained graphene based nanostructure for application on novel topological quantum devices.

  18. Binding Behavior of Dopamine Transporter Key to Understanding...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding Chemical Reactions in the Brain Binding Behavior of Dopamine Transporter Key to Understanding Chemical Reactions in the Brain Print Wednesday, 09 December 2015 00:00 ...

  19. ChargePoint is Helping Electrify America's Transportation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    of plug-in electric vehicles (PEVs), the Energy Department supported the ChargePoint America project in 2009 under the American Recovery and Reinvestment Act. At the...

  20. Influence of Topological Spin Fluctuations on Charge Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eV. The PrincetonALS group performed a detailed investigation of low-energy electronic structure and charge dynamics of the parent cobaltite compound Na0.7CoO2 at ALS Beamlines...

  1. ChargePoint is Helping Electrify America's Transportation | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    These savings are equivalent to taking more than 9,000 cars off the road for a year. Much of this growth is due to customers installing their own charging stations with private ...

  2. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    SciTech Connect (OSTI)

    Spädtke, Peter

    2014-02-15

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation.

  3. Binding Behavior of Dopamine Transporter Key to Understanding Chemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactions in the Brain Binding Behavior of Dopamine Transporter Key to Understanding Chemical Reactions in the Brain Binding Behavior of Dopamine Transporter Key to Understanding Chemical Reactions in the Brain Print Wednesday, 09 December 2015 00:00 Most people have heard of adrenaline, the chemical that causes the "fight or flight" reaction in humans. Most people have also heard of the chemical substances cocaine and methamphetamine, which also elicit a particular (perhaps

  4. Observation of complete space-charge-limited transport in metal-oxide-graphene heterostructure

    SciTech Connect (OSTI)

    Chen, Wei; Wang, Fei; Fang, Jingyue; Wang, Guang; Qin, Shiqiao; Zhang, Xue-Ao E-mail: xazhang@nudt.edu.cn; Wang, Chaocheng; Wang, Li E-mail: xazhang@nudt.edu.cn

    2015-01-12

    The metal-oxide-graphene heterostructures have abundant physical connotations. As one of the most important physical properties, the electric transport property of the gold-chromium oxide-graphene heterostructure has been studied. The experimental measurement shows that the conductive mechanism is dominated by the space-charge-limited transport, a kind of bulk transport of an insulator with charge traps. Combining the theoretical analysis, some key parameters such as the carrier mobility and trap energy also are obtained. The study of the characteristics of the metal-oxide-graphene heterostructures is helpful to investigate the graphene-based electronic and photoelectric devices.

  5. Driving and Charging Behavior of Nissan Leafs in The EV Project with Access to Workplace Charging

    SciTech Connect (OSTI)

    Don Scoffield; Shawn Salisbury; John Smart

    2014-11-01

    This paper documents findings from analysis of data collected from Nissan Leafs enrolled in The EV Project who parked and charged at workplaces with EV charging equipment. It will be published as a white paper on INL's website, accessible by the general public.

  6. BEV Charging Behavior Observed in The EV Project for 2013

    SciTech Connect (OSTI)

    Brion D. Bennett

    2014-01-01

    This fact sheet will be issued quarterly to report on the number of Nissan Leafs vehicle usage, charging locations, and charging completeness as part of the EV Project. It will be posted on the INL/AVTA and ECOtality websites and will be accessible by the general public. The raw data that is used to create the report is considered proprietary/OUO and NDA protected, but the information in this report is NOT proprietary nor NDA protected.

  7. Charge carrier transport and separation in pristine and nitrogen-doped graphene nanowiggle heterostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lherbier, Aurélien; Liang, Liangbo; Charlier, Jean -Christophe; Meunier, Vincent

    2015-09-03

    Electronic structure methods are combined into a multiscale framework to investigate the electronic transport properties of recently synthesized pristine and nitrogen-doped graphene nanowiggles and their heterojunctions deposited on a substrate. The real-space Kubo-Greenwood transport calculations reveal that charge carrier mobilities reach values up to 1,000 cm2 V–1 s–1 as long as the amount of substrate impurities is sufficiently low. Owing to their type-II band alignment, atomically precise heterostructures between pristine and N-doped graphene nanowiggles are predicted to be excellent candidates for charge carrier separation devices with potential in photoelectric and photocatalytic water splitting applications.

  8. Charge carrier transport mechanisms in perovskite CdTiO{sub 3} fibers

    SciTech Connect (OSTI)

    Imran, Z.; Rafiq, M. A. Hasan, M. M.

    2014-06-15

    Electrical transport properties of electrospun cadmium titanate (CdTiO{sub 3}) fibers have been investigated using ac and dc measurements. Air annealing of as spun fibers at 1000?C yielded the single phase perovskite fibers having diameter ?600 nm - 800 nm. Both the ac and dc electrical measurements were carried out at temperatures from 200 K 420 K. The complex impedance plane plots revealed a single semicircular arc which indicates the interfacial effect due to grain boundaries of fibers. The dielectric properties obey the Maxwell-Wagner theory of interfacial polarization. In dc transport study at low voltages, data show Ohmic like behavior followed by space charge limited current (SCLC) with traps at higher voltages at all temperatures (200 K 420 K). Trap density in our fibers system is N{sub t} = 6.27 10{sup 17} /cm{sup 3}. Conduction mechanism in the sample is governed by 3-D variable range hopping (VRH) from 200 K 300 K. The localized density of states were found to be N(E{sub F}) = 5.51 10{sup 21} eV{sup ?1} cm{sup ?3} at 2 V. Other VRH parameters such as hopping distance (R{sub hop}) and hopping energy (W{sub hop}) were also calculated. In the high temperature range of 320 K 420 K, conductivity follows the Arrhenius law. The activation energy found at 2 V is 0.10 eV. Temperature dependent and higher values of dielectric constant make the perovskite CdTiO{sub 3} fibers efficient material for capacitive energy storage devices.

  9. Surface-Plasmon Assisted Exciton and Charge Carrier Transport in One

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dimensional Nanostructures | MIT-Harvard Center for Excitonics Surface-Plasmon Assisted Exciton and Charge Carrier Transport in One Dimensional Nanostructures February 21, 2013 at 3pm/36-428 Andrei Piryatinski Physics of Condensed Matter and Complex Systems Group, Los Alamos National Laboratory Piryatinski-photo_000 Abstract: The ability to precisely control optical and transport properties of nanostructured materials opens up possibility of their use as functional materials in a broad range

  10. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    SciTech Connect (OSTI)

    Valerio-Lizarraga, Cristhian A.; Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard; Leon-Monzon, Ildefonso; Midttun, ystein; University of Oslo, Oslo

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup ?} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  11. Charging/discharging behavior and mechanism of silicon quantum dots embedded in amorphous silicon carbide films

    SciTech Connect (OSTI)

    Wen, Xixing; Zeng, Xiangbin Zheng, Wenjun; Liao, Wugang; Feng, Feng

    2015-01-14

    The charging/discharging behavior of Si quantum dots (QDs) embedded in amorphous silicon carbide (a-SiC{sub x}) was investigated based on the Al/insulating layer/Si QDs embedded in a-SiC{sub x}/SiO{sub 2}/p-Si (metal-insulator-quantum dots-oxide-silicon) multilayer structure by capacitance-voltage (C-V) and conductance-voltage (G-V) measurements. Transmission electron microscopy and Raman scattering spectroscopy measurements reveal the microstructure and distribution of Si QDs. The occurrence and shift of conductance peaks indicate the carrier transfer and the charging/discharging behavior of Si QDs. The multilayer structure shows a large memory window of 5.2 eV at ±8 V sweeping voltage. Analysis of the C-V and G-V results allows a quantification of the Coulomb charging energy and the trapped charge density associated with the charging/discharging behavior. It is found that the memory window is related to the size effect, and Si QDs with large size or low Coulomb charging energy can trap two or more electrons by changing the charging voltage. Meanwhile, the estimated lower potential barrier height between Si QD and a-SiC{sub x}, and the lower Coulomb charging energy of Si QDs could enhance the charging and discharging effect of Si QDs and lead to an enlarged memory window. Further studies of the charging/discharging mechanism of Si QDs embedded in a-SiC{sub x} can promote the application of Si QDs in low-power consumption semiconductor memory devices.

  12. Link between hopping models and percolation scaling laws for charge transport in mixtures of small molecules

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ha, Dong -Gwang; Kim, Jang -Joo; Baldo, Marc A.

    2016-04-29

    Mixed host compositions that combine charge transport materials with luminescent dyes offer superior control over exciton formation and charge transport in organic light emitting devices (OLEDs). Two approaches are typically used to optimize the fraction of charge transport materials in a mixed host composition: either an empirical percolative model, or a hopping transport model. We show that these two commonly-employed models are linked by an analytic expression which relates the localization length to the percolation threshold and critical exponent. The relation is confirmed both numerically and experimentally through measurements of the relative conductivity of Tris(4-carbazoyl-9-ylphenyl) amine (TCTA) :1,3-bis(3,5-dipyrid-3-yl-phenyl) benzene (BmPyPb)more » mixtures with different concentrations, where the TCTA plays a role as hole conductor and the BmPyPb as hole insulator. Furthermore, the analytic relation may allow the rational design of mixed layers of small molecules for high-performance OLEDs.« less

  13. Mesoscale Phase-Field Modeling of Charge Transport in Nanocomposite Electrodes for Lithium-ion Batteries

    SciTech Connect (OSTI)

    Hu, Shenyang Y.; Li, Yulan; Rosso, Kevin M.; Sushko, Maria L.

    2013-01-10

    A phase-field model is developed to investigate the influence of microstructure, thermodynamic and kinetic properties, and charging conditions on charged particle transport in nanocomposite electrodes. Two sets of field variables are used to describe the microstructure. One is comprised of the order parameters describing size, orientation and spatial distributions of nanoparticles, and the other is comprised of the concentrations of mobile species. A porous nanoparticle microstructure filled with electrolyte is taken as a model system to test the phase-field model. Inhomogeneous and anisotropic dielectric constants and mobilities of charged particles, and stresses associated with lattice deformation due to Li-ion insertion/extraction are considered in the model. Iteration methods are used to find the elastic and electric fields in an elastically and electrically inhomogeneous medium. The results demonstrate that the model is capable of predicting charge separation associated with the formation of a double layer at the electrochemical interface between solid and electrolyte, and the effect of microstructure, inhomogeneous and anisotropic thermodynamic and kinetic properties, charge rates, and stresses on voltage versus current density and capacity during charging and discharging.

  14. Binding Behavior of Dopamine Transporter Key to Understanding Chemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactions in the Brain Binding Behavior of Dopamine Transporter Key to Understanding Chemical Reactions in the Brain Print Most people have heard of adrenaline, the chemical that causes the "fight or flight" reaction in humans. Most people have also heard of the chemical substances cocaine and methamphetamine, which also elicit a particular (perhaps desired) human response. What most people do not know is that the same receptors in the human brain recognize the natural, or

  15. Binding Behavior of Dopamine Transporter Key to Understanding Chemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactions in the Brain Binding Behavior of Dopamine Transporter Key to Understanding Chemical Reactions in the Brain Print Most people have heard of adrenaline, the chemical that causes the "fight or flight" reaction in humans. Most people have also heard of the chemical substances cocaine and methamphetamine, which also elicit a particular (perhaps desired) human response. What most people do not know is that the same receptors in the human brain recognize the natural, or

  16. Binding Behavior of Dopamine Transporter Key to Understanding Chemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactions in the Brain Binding Behavior of Dopamine Transporter Key to Understanding Chemical Reactions in the Brain Print Most people have heard of adrenaline, the chemical that causes the "fight or flight" reaction in humans. Most people have also heard of the chemical substances cocaine and methamphetamine, which also elicit a particular (perhaps desired) human response. What most people do not know is that the same receptors in the human brain recognize the natural, or

  17. Binding Behavior of Dopamine Transporter Key to Understanding Chemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactions in the Brain Binding Behavior of Dopamine Transporter Key to Understanding Chemical Reactions in the Brain Print Most people have heard of adrenaline, the chemical that causes the "fight or flight" reaction in humans. Most people have also heard of the chemical substances cocaine and methamphetamine, which also elicit a particular (perhaps desired) human response. What most people do not know is that the same receptors in the human brain recognize the natural, or

  18. Enhanced Charge Transport in Dissolved Polysulfide Li-S Cells with

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supramolecular Redox Mediators - Joint Center for Energy Storage Research September 15, 2015, Research Highlights Enhanced Charge Transport in Dissolved Polysulfide Li-S Cells with Supramolecular Redox Mediators Schematic of nanostructured PBI 1 redox mediators in a Li-S battery, SEM image of the nanofiber morphology, reduced overpotential and 31 percent increase in S utilization at C/8, and cycling at C/4. Scientific Achievement A highly collaborative team of theorists and experimentalists

  19. Design of the low energy beam transport line between CARIBU and the EBIS charge breeder

    SciTech Connect (OSTI)

    Perry, A.; Ostroumov, P. N.; Barcikowski, A.; Dickerson, C.; Kondrashev, S. A.; Mustapha, B.; Savard, G.

    2015-01-09

    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at ATLAS. The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and improve the purity of reaccelerated radioactive ion beams. The EBIS-CB is in the final stage of off-line commissioning. Currently, we are developing a low energy beam transport (LEBT) system to transfer CARIBU beams to the EBIS-CB. As was originally planned, an RFQ cooler-buncher will precede the EBIS-CB. Recently, it was decided to include a multi-reflection time-of-flight (MR-TOF) mass-spectrometer following the RFQ. MR-TOF is a relatively new technology used to purify beams with a mass-resolving power up to 310{sup 5} as was demonstrated in experiments at CERN/ISOLDE. Very high purity singly-charged radioactive ion beams will be injected into the EBIS for charge breeding and due to its inherent properties, the EBIS-CB will maintain the purity of the charge bred beams. Possible contamination of residual gas ions will be greatly suppressed by achieving ultra-high vacuum in the EBIS trap. This paper will present and discuss the design of the LEBT and the overall integration of the EBIS-CB into ATLAS.

  20. Transport behavior of water molecules through two-dimensional nanopores

    SciTech Connect (OSTI)

    Zhu, Chongqin; Li, Hui; Meng, Sheng

    2014-11-14

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.

  1. Redox probing study of the potential dependence of charge transport through Li2O2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Knudsen, Kristian B.; Luntz, Alan C.; Jensen, Søren H.; Vegge, Tejs; Hjelm, Johan

    2015-11-20

    In the field of energy storage devices the pursuit for cheap, high energy density, reliable secondary batteries is at the top of the agenda. The Li–O2 battery is one of the possible technologies that, in theory, should be able to close the gap, which exists between the present state-of-the-art Li-ion technologies and the demand placed on batteries by technologies such as electrical vehicles. Here we present a redox probing study of the charge transfer across the main deposition product lithium peroxide, Li2O2, in the Li–O2 battery using outer-sphere redox shuttles. The change in heterogeneous electron transfer exchange rate as amore » function of the potential and the Li2O2 layer thickness (~depth-of-discharge) was determined using electrochemical impedance spectroscopy. In addition, the attenuation of the electron transfer exchange rate with film thickness is dependent on the probing potential, providing evidence that hole transport is the dominant process for charge transfer through Li2O2 and showing that the origin of the sudden death observed upon discharge is due to charge transport limitations.« less

  2. Ionic charge transport between blockages: Sodium cation conduction in freshly excised bulk brain tissue

    SciTech Connect (OSTI)

    Emin, David; Akhtari, Massoud; Ellingson, B. M.; Mathern, G. W.

    2015-08-15

    We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions’ transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm.

  3. Optothermal transport behavior in whispering gallery mode optical cavities

    SciTech Connect (OSTI)

    Soltani, Soheil; Armani, Andrea M.

    2014-08-04

    Over the past century, whispering gallery mode optical cavities have enabled numerous advances in science and engineering, such as discoveries in quantum mechanics and non-linear optics, as well as the development of optical gyroscopes and add drop filters. One reason for their widespread appeal is their ability to confine light for long periods of time, resulting in high circulating intensities. However, when sufficiently large amounts of optical power are coupled into these cavities, they begin to experience optothermal or photothermal behavior, in which the optical energy is converted into heat. Above the optothermal threshold, the resonance behavior is no longer solely defined by electromagnetics. Previous work has primarily focused on the role of the optothermal coefficient of the material in this instability. However, the physics of this optothermal behavior is significantly more complex. In the present work, we develop a predictive theory based on a generalizable analytical expression in combination with a geometry-specific COMSOL Multiphysics finite element method model. The simulation couples the optical and thermal physics components, accounting for geometry variations as well as the temporal and spatial profile of the optical field. To experimentally verify our theoretical model, the optothermal thresholds of a series of silica toroidal resonant cavities are characterized at different wavelengths (visible through near-infrared) and using different device geometries. The silica toroid offers a particularly rigorous case study for the developed optothermal model because of its complex geometrical structure which provides multiple thermal transport paths.

  4. Characterization of In-Use Medium Duty Electric Vehicle Driving and Charging Behavior: Preprint

    SciTech Connect (OSTI)

    Duran, A.; Ragatz, A.; Prohaska, R.; Kelly, K.; Walkowicz, K.

    2014-11-01

    The U.S. Department of Energy's American Recovery and Reinvestment Act (ARRA) deployment and demonstration projects are helping to commercialize technologies for all-electric vehicles (EVs). Under the ARRA program, data from Smith Electric and Navistar medium duty EVs have been collected, compiled, and analyzed in an effort to quantify the impacts of these new technologies. Over a period of three years, the National Renewable Energy Laboratory (NREL) has compiled data from over 250 Smith Newton EVs for a total of over 100,000 days of in-use operation. Similarly, data have been collected from over 100 Navistar eStar vehicles, with over 15,000 operating days having been analyzed. NREL has analyzed a combined total of over 4 million kilometers of driving and 1 million hours of charging data for commercial operating medium duty EVs. In this paper, the authors present an overview of medium duty EV operating and charging behavior based on in-use data collected from both Smith and Navistar vehicles operating in the United States. Specifically, this paper provides an introduction to the specifications and configurations of the vehicles examined; discusses the approach and methodology of data collection and analysis, and presents detailed results regarding daily driving and charging behavior. In addition, trends observed over the course of multiple years of data collection are examined, and conclusions are drawn about early deployment behavior and ongoing adjustments due to new and improving technology. Results and metrics such as average daily driving distance, route aggressiveness, charging frequency, and liter per kilometer diesel equivalent fuel consumption are documented and discussed.

  5. Local charge transport properties of hydrazine reduced monolayer graphene oxide sheets prepared under pressure condition

    SciTech Connect (OSTI)

    Ryuzaki, Sou, E-mail: ryuzaki.soh.341@m.kyushu-u.ac.jp; Meyer, Jakob A. S.; Petersen, Sren; Nrgaard, Kasper; Hassenkam, Tue; Laursen, Bo W. [Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetparken 5, 2100 Kbenhaven (Denmark)

    2014-09-01

    Charge transport properties of chemically reduced graphene oxide (RGO) sheets prepared by treatment with hydrazine were examined using conductive atomic force microscopy. The current-voltage (I-V) characteristics of monolayer RGO sheets prepared under atmospheric pressure followed an exponentially increase due to 2D variable-range hopping conduction through small graphene domains in an RGO sheet containing defect regions of residual sp{sup 3} carbon clusters bonded to oxygen groups, whereas RGO sheets prepared in a closed container under moderate pressure showed linear I-V characteristics with a conductivity of 267.2?537.5?S/m. It was found that the chemical reduction under pressure results in larger graphene domains (sp{sup 2} networks) in the RGO sheets when compared to that prepared under atmospheric pressure, indicating that the present reduction of GO sheets under the pressure is one of the effective methods to make well-reduced GO sheets.

  6. Elastic tunneling charge transport mechanisms in silicon quantum dots /SiO{sub 2} thin films and superlattices

    SciTech Connect (OSTI)

    Illera, S. Prades, J. D.; Cirera, A.

    2015-05-07

    The role of different charge transport mechanisms in Si/SiO{sub 2} structures has been studied. A theoretical model based on the Transfer Hamiltonian Formalism has been developed to explain experimental current trends in terms of three different elastic tunneling processes: (1) trap assisted tunneling; (2) transport through an intermediate quantum dot; and (3) direct tunneling between leads. In general, at low fields carrier transport is dominated by the quantum dots whereas, for moderate and high fields, transport through deep traps inherent to the SiO{sub 2} is the most relevant process. Besides, current trends in Si/SiO{sub 2} superlattice structure have been properly reproduced.

  7. Studies on low energy beam transport for high intensity high charged ions at IMP

    SciTech Connect (OSTI)

    Yang, Y. Lu, W.; Fang, X.; University of Chinese Academy of Sciences, Beijing 100039 ; Sun, L. T.; Hu, Q.; Cao, Y.; Feng, Y. C.; Zhang, X. Z.; Zhao, H. W.; Xie, D. Z.

    2014-02-15

    Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) is an advanced fully superconducting ECR ion source at IMP designed to be operational at the microwave frequency of 1824 GHz. The existing SECRAL beam transmission line is composed of a solenoid lens and a 110 analyzing magnet. Simulations of particle tracking with 3D space charge effect and realistic 3D magnetic fields through the line were performed using particle-in-cell code. The results of the beam dynamics show that such a low energy beam is very sensitive to the space charge effect and significantly suffers from the second-order aberration of the analyzing magnet resulting in large emittance. However, the second-order aberration could be reduced by adding compensating sextupole components in the beam line. On this basis, a new 110 analyzing magnet with relatively larger acceptance and smaller aberration is designed and will be used in the design of low energy beam transport line for a new superconducting ECR ion source SECRAL-II. The features of the analyzer and the corresponding beam trajectory calculation will be detailed and discussed in this paper.

  8. A new approach to calculate charge carrier transport mobility in organic molecular crystals from imaginary time path integral simulations

    SciTech Connect (OSTI)

    Song, Linze; Shi, Qiang

    2015-05-07

    We present a new non-perturbative method to calculate the charge carrier mobility using the imaginary time path integral approach, which is based on the Kubo formula for the conductivity, and a saddle point approximation to perform the analytic continuation. The new method is first tested using a benchmark calculation from the numerical exact hierarchical equations of motion method. Imaginary time path integral Monte Carlo simulations are then performed to explore the temperature dependence of charge carrier delocalization and mobility in organic molecular crystals (OMCs) within the Holstein and Holstein-Peierls models. The effects of nonlocal electron-phonon interaction on mobility in different charge transport regimes are also investigated.

  9. Dopant effects on charge transport to enhance performance of phosphorescent white organic light emitting diodes

    SciTech Connect (OSTI)

    Zhu, Liping; Chen, Jiangshan; Ma, Dongge

    2015-11-07

    We compared the performance of phosphorescent white organic light emitting diodes (WOLEDs) with red-blue-green and green-blue-red sequent emissive layers. It was found that the influence of red and green dopants on electron and hole transport in emissive layers leads to the large difference in the efficiency of fabricated WOLEDs. This improvement mechanism is well investigated by the current density-voltage characteristics of single-carrier devices based on dopant doped emissive layers and the comparison of electroluminescent and photoluminescence spectra, and attributed to the different change of charge carrier transport by the dopants. The optimized device achieves a maximum power efficiency, current efficiency, and external quantum efficiency of 37.0 lm/W, 38.7 cd/A, and 17.7%, respectively, which are only reduced to 32.8 lm/W, 38.5 cd/A, and 17.3% at 1000 cd/m{sup 2} luminance. The critical current density is as high as 210 mA/cm{sup 2}. It can be seen that the efficiency roll-off in phosphorescent WOLEDs can be well improved by effectively designing the structure of emissive layers.

  10. Charge Recombination, Transport Dynamics, and Interfacial Effects in Organic Solar Cells

    SciTech Connect (OSTI)

    Heeger, Alan; Bazan, Guillermo; Nguyen, Thuc-Quyen; Wudl, Fred

    2015-02-27

    The need for renewable sources of energy is well known. Conversion of sunlight to electricity using solar cells is one of the most important opportunities for creating renewable energy sources. The research carried out under DE-FG02-08ER46535 focused on the science and technology of “Plastic” solar cells comprised of organic (i.e. carbon based) semiconductors. The Bulk Heterojunction concept involves a phase separated blend of two organic semiconductors each with dimensions in the nano-meter length scale --- one a material that functions as a donor for electrons and the other a material that functions as an acceptor for electrons. The nano-scale inter-penetrating network concept for “Plastic” solar cells was created at UC Santa Barbara. A simple measure of the impact of this concept can be obtained from a Google search which gives 244,000 “hits” for the Bulk Heterojunction solar cell. Research funded through this program focused on four major areas: 1. Interfacial effects in organic photovoltaics, 2. Charge transfer and photogeneration of mobile charge carriers in organic photovoltaics, 3. Transport and recombination of the photogenerated charge carriers in organic photovoltaics, 4. Synthesis of novel organic semiconducting polymers and semiconducting small molecules, including conjugated polyelectrolytes. Following the discovery of ultrafast charge transfer at UC Santa Barbara in 1992, the nano-organic (Bulk Heterojunction) concept was formulated. The need for a morphology comprising two interpenetrating bicontinuous networks was clear: one network to carry the photogenerated electrons (negative charge) to the cathode and one network to carry the photo-generated holes (positive charge) to the anode. This remarkable self-assembled network morphology has now been established using Transmission electron Microscopy (TEM) either in the Phase Contrast mode or via TEM-Tomography. The steps involved in delivering power from a solar cell to an external circuit

  11. Influence of surface charge on the transport characteristics of nanowire-field effect transistors in liquid environments

    SciTech Connect (OSTI)

    Nozaki, Daijiro E-mail: research@nano.tu-dresden.de; Kunstmann, Jens; Zörgiebel, Felix; Cuniberti, Gianaurelio

    2015-05-18

    One dimensional nanowire field effect transistors (NW-FETs) are a promising platform for sensor applications. The transport characteristics of NW-FETs are strongly modified in liquid environment due to the charging of surface functional groups accompanied with protonation or deprotonation. In order to investigate the influence of surface charges and ionic concentrations on the transport characteristics of Schottky-barrier NW-FETs, we have combined the modified Poisson-Boltzmann theory with the Landauer-Büttiker transport formalism. For a typical device, the model is able to capture the reduction of the sensitivity of NW-FETs in ionic solutions due to the screening from counter ions as well as a local gating from surface functional groups. Our approach allows to model, to investigate, and to optimize realistic Schottky-barrier NW-FET devices in liquid environment.

  12. Fuel injection characteristics and combustion behavior of a direct-injection stratified-charge engine

    SciTech Connect (OSTI)

    Balles, E.N.; Ekchian, J.A.; Heywood, J.B.

    1984-01-01

    High levels of hydrocarbon emissions during light load operation keep the direct injection stratified charge engine from commercial application. Previous analytical work has identified several possible hydrocarbon emissions mechanisms which can result from poor in-cylinder fuel distribution. Poor fuel distribution can be caused by erratic fuel injection. Experiments conducted on a single cylinder disc engine show a dramatic increase in the cycle to cycle variation in injection characteristics as engine load decreases. This is accompanied by an increase in cycle to cycle variation in combustion behavior suggesting that degradation in combustion results from the degradation in the quality of the injection event. Examination of combustion and injection characteristics on a cycle by cycle basis shows that, at light load, IMEP and heat release do not correlate with the amount of fuel injected into the cylinder. There are strong indications that individual cycles undergo partial or complete misfire.

  13. Mechanisms of charge transport in anisotype n-TiO{sub 2}/p-CdTe heterojunctions

    SciTech Connect (OSTI)

    Brus, V. V.; Ilashchuk, M. I.; Kovalyuk, Z. D.; Maryanchuk, P. D.; Ulyanytsky, K. S.; Gritsyuk, B. N.

    2011-08-15

    Surface-barrier anisotype n-TiO{sub 2}/p-CdTe heterojunctions are fabricated by depositing thin titanium-dioxide films on a freshly cleaved surface of single-crystalline cadmium-telluride wafers by reactive magnetron sputtering. It is established that the electric current through the heterojunctions under investigation is formed by generation-recombination processes in the space-charge region via a deep energy level and tunneling through the potential barrier. The depth and nature of the impurity centers involved in the charge transport are determined.

  14. Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors: Experiences from Six Smart Grid Investment Grant Projects (December 2014)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report provides the results of six SGIG projects to help individual utilities determine how long existing electric distribution infrastructure will remain sufficient to accommodate demand growth from electric vehicles, and when and what type of capacity upgrades or additions may be needed. The report also examines when consumers want to recharge vehicles, and to what extent pricing and incentives can encourage consumers to charge during off-peak periods.

  15. Workplace Charging Behavior of Nissan Leafs in The EV Project at Six Work Sites

    SciTech Connect (OSTI)

    David Rohrbaugh; John Smart

    2014-11-01

    This paper documents findings from analysis of data collected from Nissan Leafs enrolled in The EV Project who parked and charged at six workplaces with EV charging equipment. It will be published as a white paper on INL's website, accessible by the general public.

  16. Spin and charge transport in double-junction Fe/MgO/GaAs/MgO/Fe heterostructures

    SciTech Connect (OSTI)

    Wolski, S. Szczepa?ski, T.; Dugaev, V. K.; Barna?, J.; Landgraf, B.; Slobodskyy, T.; Hansen, W.

    2015-01-28

    We present theoretical and experimental results on tunneling current in single Fe/MgO/GaAs and double Fe/MgO/GaAs/MgO/Fe tunnel junctions. The charge and spin currents are calculated as a function of external voltage for different sets of parameters characterizing the semiconducting GaAs layer. Transport characteristics of a single Fe/MgO/GaAs junction reveal typical diode as well as spin diode features. The results of numerical calculations are compared with current-voltage characteristics measured experimentally for double tunnel junction structures, and a satisfactory agreement of the theoretical and experimental results has been achieved.

  17. Femtosecond x-rays link melting of charge density wave correlations and light-enhanced coherent transport in YBa?Cu?O?.?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Forst, M.; Hill, J. P.; Frano, A.; Kaiser, S.; Mankowsky, R.; Hunt, C. R.; Turner, J. J.; Dakovski, G. L.; Minitti, M. P.; Robinson, J.; et al

    2014-11-17

    We use femtosecond resonant soft x-ray diffraction to measure the optically stimulated ultrafast changes of charge density wave correlations in underdoped YBa?Cu?O?.?. We find that when coherent interlayer transport is enhanced by optical excitation of the apical oxygen distortions, at least 50% of the in-plane charge density wave order is melted. These results indicate that charge ordering and superconductivity may be competing up to the charge ordering transition temperature, with the latter becoming a hidden phase that is accessible only by nonlinear phonon excitation.

  18. Femtosecond x rays link melting of charge-density wave correlations and light-enhanced coherent transport in YBa2Cu3O6.6

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Först, M.; Frano, A.; Kaiser, S.; Mankowsky, R.; Hunt, C. R.; Turner, J. J.; Dakovski, G. L.; Minitti, M. P.; Robinson, J.; Loew, T.; et al

    2014-11-17

    In this study, we use femtosecond resonant soft x-ray diffraction to measure the optically stimulated ultrafast changes of charge density wave correlations in underdoped YBa₂Cu₃O₆.₆. We find that when coherent interlayer transport is enhanced by optical excitation of the apical oxygen distortions, at least 50% of the in-plane charge density wave order is melted. These results indicate that charge ordering and superconductivity may be competing up to the charge ordering transition temperature, with the latter becoming a hidden phase that is accessible only by nonlinear phonon excitation.

  19. EV Everywhere Consumer/Charging Workshop: Target-Setting Framework and Consumer Behavior

    Broader source: Energy.gov [DOE]

    Presentation given by Vehicle Technologies Office analyst Jacob Ward at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

  20. Charged and neutral particle transport methods and applications: The CALOR code system

    SciTech Connect (OSTI)

    Gabriel, T.A.; Charlton, L.A.

    1997-04-01

    The CALOR code system, which is a complete radiation transport code system, is described with emphasis on the high-energy (> 20 MeV) nuclear collision models. Codes similar to CALOR are also briefly discussed. A current application using CALOR which deals with the development of the National Spallation Neutron Source is also given.

  1. Influence of plasma loss area on transport of charged particles through a transverse magnetic field

    SciTech Connect (OSTI)

    Das, B. K.; Chakraborty, M. [Centre of Plasma Physics-Institute for Plasma Research, Tepesia, Kamrup, Assam (India); Bandyopadhyay, M. [ITER-India, Institute for Plasma Research, Gandhinagar, Gujarat (India)

    2012-01-15

    Plasma transport in a double plasma device from the source region to the target region through a physical window comprising of electrically grounded magnet channels (filled with permanent magnet bars) for transverse magnetic field (TMF) and a pair of stainless steel (SS) plates is studied and presented in this manuscript. The study has relevance in negative ion source research and development where both TMF created by magnet channels and bias plate are used. The experiment is performed in two stages. In the first stage, a TMF is introduced between the two regions along with the SS plates, and corresponding plasma parameter data in the two regions are recorded by changing the distance between the TMF channels. In the second stage, the TMF is withdrawn from the system, and corresponding data are taken by changing the separation between the SS plates. The experimental results are then compared with a theoretical model. In the presence of TMF, where electrons are magnetized and ions are un-magnetized, it is observed that plasma transport perpendicular to the TMF is dominated by the ambipolar diffusion of ions. In the absence of TMF, plasma is un-magnetized, and plasma transport through the SS window aperture is almost independent of open area of the SS window.

  2. 'Taking Charge': Kansans Save $2.3M in Challenge to Change Their Energy Behavior

    Broader source: Energy.gov [DOE]

    How did the Climate and Energy Project (CEP), a small environmental organization that has received Recovery Act funding, achieve $2.3 million in savings annually for Kansans? Learn more about the Take Charge Challenge, a 9-month competition in which residents across 16 communities competed against each other to save the most energy and money.

  3. Thermal influence on charge carrier transport in solar cells based on GaAs PN junctions

    SciTech Connect (OSTI)

    Osses-Márquez, Juan; Calderón-Muñoz, Williams R.

    2014-10-21

    The electron and hole one-dimensional transport in a solar cell based on a Gallium Arsenide (GaAs) PN junction and its dependency with electron and lattice temperatures are studied here. Electrons and heat transport are treated on an equal footing, and a cell operating at high temperatures using concentrators is considered. The equations of a two-temperature hydrodynamic model are written in terms of asymptotic expansions for the dependent variables with the electron Reynolds number as a perturbation parameter. The dependency of the electron and hole densities through the junction with the temperature is analyzed solving the steady-state model at low Reynolds numbers. Lattice temperature distribution throughout the device is obtained considering the change of kinetic energy of electrons due to interactions with the lattice and heat absorbed from sunlight. In terms of performance, higher values of power output are obtained with low lattice temperature and hot energy carriers. This modeling contributes to improve the design of heat exchange devices and thermal management strategies in photovoltaic technologies.

  4. Charge transport properties of p-CdTe/n-CdTe/n{sup +}-Si diode-type nuclear radiation detectors based on metalorganic vapor-phase epitaxy-grown epilayers

    SciTech Connect (OSTI)

    Niraula, M.; Yasuda, K.; Wajima, Y.; Yamashita, H.; Tsukamoto, Y.; Suzuki, Y.; Matsumoto, M.; Takai, N.; Tsukamoto, Y.; Agata, Y.

    2013-10-28

    Charge transport properties of p-CdTe/n-CdTe/n{sup +}-Si diode-type nuclear radiation detectors, fabricated by growing p-and n-type CdTe epilayers on (211) n{sup +}-Si substrates using metalorganic vapor-phase epitaxy (MOVPE), were studied by analyzing current-voltage characteristics measured at various temperatures. The diode fabricated shows good rectification properties, however, both forward and reverse biased currents deviate from their ideal behavior. The forward current exhibits typical feature of multi-step tunneling at lower biases; however, becomes space charge limited type when the bias is increased. On the other hand, the reverse current exhibits thermally activated tunneling-type current. It was found that trapping centers at the p-CdTe/n-CdTe junction, which were formed due to the growth induced defects, determine the currents of this diode, and hence limit the performance of the nuclear radiation detectors developed.

  5. Neptunium Transport Behavior in the Vicinity of Underground Nuclear Tests at the Nevada Test Site

    SciTech Connect (OSTI)

    Zhao, P; Tinnacher, R M; Zavarin, M; Williams, R W; Kersting, A B

    2010-12-03

    We used short lived {sup 239}Np as a yield tracer and state of the art magnetic sector ICP-MS to measure ultra low levels of {sup 237}Np in a number of 'hot wells' at the Nevada National Security Site (NNSS), formerly known as the Nevada Test Site (NTS). The results indicate that {sup 237}Np concentrations at the Almendro, Cambric, Dalhart, Cheshire and Chancellor sites, are in the range of 3 x 10{sup -5} to 7 x 10{sup -2} pCi/L and well below the MCL for alpha emitting radionuclides (15 pCi/L) (EPA, 2009). Thus, while Np transport is believed to occur at the NNSS, activities are expected to be well below the regulatory limits for alpha-emitting radionuclides. We also compared {sup 237}Np concentration data to other radionuclides, including tritium, {sup 14}C, {sup 36}Cl, {sup 99}Tc, {sup 129}I, and plutonium, to evaluate the relative {sup 237}Np transport behavior. Based on isotope ratios relative to published unclassified Radiologic Source Terms (Bowen et al., 1999) and taking into consideration radionuclide distribution between melt glass, rubble and groundwater (IAEA, 1998), {sup 237}Np appears to be substantially less mobile than tritium and other non-sorbing radionuclides, as expected. However, this analysis also suggests that {sup 237}Np mobility is surprisingly similar to that of plutonium. The similar transport behavior of Np and Pu can be explained by one of two possibilities: (1) Np(IV) and Pu(IV) oxidation states dominate under mildly reducing NNSS groundwater conditions resulting in similar transport behavior or (2) apparent Np transport is the result of transport of its parent {sup 241}Pu and {sup 241}Am isotopes and subsequent decay to {sup 237}Np. Finally, measured {sup 237}Np concentrations were compared to recent Hydrologic Source Term (HST) models. The 237Np data collected from three wells in Frenchman Flat (RNM-1, RNM-2S, and UE-5n) are in good agreement with recent HST transport model predictions (Carle et al., 2005). The agreement provides

  6. The impact of disorder on charge transport in three dimensional quantum dot resonant tunneling structures

    SciTech Connect (OSTI)

    Puthen-Veettil, B. Patterson, R.; Knig, D.; Conibeer, G.; Green, M. A.

    2014-10-28

    Efficient iso-entropic energy filtering of electronic waves can be realized through nanostructures with three dimensional confinement, such as quantum dot resonant tunneling structures. Large-area deployment of such structures is useful for energy selective contacts but such configuration is susceptible to structural disorders. In this work, the transport properties of quantum-dot-based wide-area resonant tunneling structures, subject to realistic disorder mechanisms, are studied. Positional variations of the quantum dots are shown to reduce the resonant transmission peaks while size variations in the device are shown to reduce as well as broaden the peaks. Increased quantum dot size distribution also results in a peak shift to lower energy which is attributed to large dots dominating transmission. A decrease in barrier thickness reduces the relative peak height while the overall transmission increases dramatically due to lower series resistance. While any shift away from ideality can be intuitively expected to reduce the resonance peak, quantification allows better understanding of the tolerances required for fabricating structures based on resonant tunneling phenomena/.

  7. Carrier transport and collection in fully depleted semiconductors by a combined action of the space charge field and the field due to electrode voltages

    DOE Patents [OSTI]

    Rehak, Pavel; Gatti, Emilio

    1987-01-01

    A semiconductor charge transport device and method for making same, characterized by providing a thin semiconductor wafer having rectifying junctions on its opposing major surfaces and including a small capacitance ohmic contact, in combination with bias voltage means and associated circuit means for applying a predetermined voltage to effectively deplete the wafer in regions thereof between the rectifying junctions and the ohmic contact. A charge transport device of the invention is usable as a drift chamber, a low capacitance detector, or a charge coupled device each constructed according to the methods of the invention for making such devices. Detectors constructed according to the principles of the invention are characterized by having significantly higher particle position indicating resolution than is attainable with prior art detectors, while at the same time requiring substantially fewer readout channels to realize such high resolution.

  8. Carrier transport and collection in fully depleted semiconductors by a combined action of the space charge field and the field due to electrode voltages

    DOE Patents [OSTI]

    Rehak, P.; Gatti, E.

    1984-02-24

    A semiconductor charge transport device and method for making same, characterized by providing a thin semiconductor wafer having rectifying functions on its opposing major surfaces and including a small capacitance ohmic contact, in combination with bias voltage means and associated circuit means for applying a predetermined voltage to effectively deplete the wafer in regions thereof between the rectifying junctions and the ohmic contact. A charge transport device of the invention is usable as a drift chamber, a low capacitance detector, or a charge coupled device each constructed according to the methods of the invention for making such devices. Detectors constructed according to the principles of the invention are characterized by having significantly higher particle position indicating resolution than is attainable with prior art detectors, while at the same time requiring substantially fewer readout channels to realize such high resolution.

  9. Carrier transport and collection in fully depleted semiconductors by a combined action of the space charge field and the field due to electrode voltages

    DOE Patents [OSTI]

    Rehak, P.; Gatti, E.

    1987-08-18

    A semiconductor charge transport device and method for making same are disclosed, characterized by providing a thin semiconductor wafer having rectifying junctions on its opposing major surfaces and including a small capacitance ohmic contact, in combination with bias voltage means and associated circuit means for applying a predetermined voltage to effectively deplete the wafer in regions thereof between the rectifying junctions and the ohmic contact. A charge transport device of the invention is usable as a drift chamber, a low capacitance detector, or a charge coupled device each constructed according to the methods of the invention for making such devices. Detectors constructed according to the principles of the invention are characterized by having significantly higher particle position indicating resolution than is attainable with prior art detectors, while at the same time requiring substantially fewer readout channels to realize such high resolution. 16 figs.

  10. Understanding sensitization behavior of lead selenide photoconductive detectors by charge separation model

    SciTech Connect (OSTI)

    Zhao, Lihua E-mail: shi@ou.edu; Qiu, Jijun; Weng, Binbin; Chang, Caleb; Yuan, Zijian; Shi, Zhisheng E-mail: shi@ou.edu

    2014-02-28

    We introduce a charge separation model in this work to explain the mechanism of enhanced photoconductivity of polycrystalline lead salt photoconductors. Our results show that this model could clarify the heuristic fabrication processes of such lead salt detectors that were not well understood and often considered mysterious for nearly a century. The improved lifetime and performance of the device, e.g., responsivity, are attributed to the spatial separation of holes and electrons, hence less possibility of carrier recombination. This model shows that in addition to crystal quality the size of crystallites, the depth of outer conversion layer, and doping concentration could all affect detector performance. The simulation results agree well with experimental results and thus offer a very useful tool for further improvement of lead salt detectors. The model was developed with lead salt family of photoconductors in mind, but may well be applicable to a wider class of semiconducting films.

  11. Improvement of charged particles transport across a transverse magnetic filter field by electrostatic trapping of magnetized electrons

    SciTech Connect (OSTI)

    Das, B. K. Hazarika, P.; Chakraborty, M.; Bandyopadhyay, M.

    2014-07-15

    A study on the transport of charged particles across a magnetic filter field has been carried out in a double plasma device (DPD) and presented in this manuscript. The DPD is virtually divided into two parts viz. source and target regions by a transverse magnetic field (TMF) which is constructed by inserting strontium ferrite magnets into two stainless steel rectangular tubes. Plasma electrons are magnetized but ions are unmagnetized inside the TMF region. Negative voltages are applied to the TMF tubes in order to reduce the loss of electrons towards them. Plasma is produced in the source region by filament discharge method and allowed to flow towards the target region through this negatively biased TMF. It is observed that in the target region, plasma density can be increased and electron temperature decreased with the help of negatively biased TMF. This observation is beneficial for negative ion source development. Plasma diffusion across the negatively biased TMF follows Bohm or anomalous diffusion process when negative bias voltage is very less. At higher negative bias, diffusion coefficient starts deviating from the Bohm diffusion value, associated with enhanced plasma flow in the target region.

  12. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    SciTech Connect (OSTI)

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  13. Transport-reaction model for defect and carrier behavior within displacement cascades in gallium arsenide

    SciTech Connect (OSTI)

    Wampler, William R.; Myers, Samuel M.

    2014-02-01

    A model is presented for recombination of charge carriers at displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers and defects within a representative spherically symmetric cluster. The initial radial defect profiles within the cluster were chosen through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Charging of the defects can produce high electric fields within the cluster which may influence transport and reaction of carriers and defects, and which may enhance carrier recombination through band-to-trap tunneling. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to pulsed neutron irradiation.

  14. The role of transport processes of nonequilibrium charge carriers in radiative properties of arrays of InAs/GaAs quantum dots

    SciTech Connect (OSTI)

    Shkolnik, A. S. Savelyev, A. V.; Karachinsky, L. Ya.; Gordeev, N. Yu.; Seisyan, R. P.; Zegrya, G. G.; Pellegrini, S.; Buller, G. S.; Evtikhiev, V. P.

    2008-03-15

    The results of time-resolved photoluminescence studies of heterostructures containing monolayer arrays of InAs/GaAs quantum dots are presented. A two-component time dependence of intensity of photoluminescence from the ground state of quantum dots, with characteristic times of the slow component up to hundreds of nanoseconds and those of rapid one several nanoseconds, is studied. It is shown that the slow component is determined by the transport of nonequilibrium charge carriers between the quantum dots. At low temperatures, the time of the slow component is determined by tunneling, and at high temperatures by thermal escape of nonequilibrium charge carriers. The ratio of the contributions of tunneling and thermal escape is determined by the degree of isolation of quantum dots. A theoretical model is constructed that describes the effect of the dynamics of carrier transport on the emergence and decay of the slow component of photoluminescence.

  15. Evaluating Electric Vehicle Charging Impacts and Customer Charging...

    Office of Environmental Management (EM)

    Under OE's Smart Grid Investment Grant (SGIG) program, six utilities evaluated operations and customer charging behaviors for in-home and public electric vehicle charging stations. ...

  16. Behavior of the particle transport coefficients near the density limit in MTX

    SciTech Connect (OSTI)

    Marinak, M.M.

    1993-04-01

    The perturbed particle transport coefficients were determined for a range of plasma conditions in the Alcator C tokamak, a component of the Microwave Tokamak Experiment (MTX), from analysis of density perturbations created in gas modulation experiments. Density measurements from a 15 chord far-infrared interferometer were sufficiently detailed to allow radial profiles of the transport coefficients to be resolved. Gas modulation experiments were carried out on plasmas over a range of relatively low currents and a wide variety of line-averaged densities, including values near the Greenwald density limit. With this technique the perturbed diffusion coefficient D and the perturbed convection velocity V can be determined simultaneously. Measured profiles of D rise toward the outside of the plasma column in a manner generally similar to those determined previously for {chi}{sub e,HP} from sawtooth heat pulse propagation. Values of D are typically smaller than those of {chi}{sub e,HP} given for the same line-averaged densities by a factor of 2-5. Diffusion coefficients from a series of discharges at constant current showed little variation with density through most of the saturated ohmic confinement regime. At the Greenwald density limit threshold a dramatic increase occurred in both the perturbed convective and diffusive transport coefficients in the outer region of the plasma. The increases were most pronounced at the outermost range of the radii where coefficients were determined (r/a = 0.8), but were apparent over a region which extended well into the plasma interior. Density profiles maintained a similar shape near the density limit, congruous with the similar behavior of the transport coefficients. No dramatic deterioration was evident in the global energy confinement.

  17. Analysis of carrier transport and carrier trapping in organic diodes with polyimide-6,13-Bis(triisopropylsilylethynyl)pentacene double-layer by charge modulation spectroscopy and optical second harmonic generation measurement

    SciTech Connect (OSTI)

    Lim, Eunju E-mail: taguchi.d.aa@m.titech.ac.jp; Taguchi, Dai E-mail: taguchi.d.aa@m.titech.ac.jp Iwamoto, Mitsumasa E-mail: taguchi.d.aa@m.titech.ac.jp

    2014-08-18

    We studied the carrier transport and carrier trapping in indium tin oxide/polyimide (PI)/6,13-Bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene)/Au diodes by using charge modulation spectroscopy (CMS) and time-resolved electric field induced optical second harmonic generation (TR-EFISHG) measurements. TR-EFISHG directly probes the spatial carrier behaviors in the diodes, and CMS is useful in explaining the carrier motion with respect to energy. The results clearly indicate that the injected carriers move across TIPS-pentacene thorough the molecular energy states of TIPS-pentacene and accumulate at the PI/TIPS-pentacene interface. However, some carriers are trapped in the PI layers. These findings take into account the capacitance-voltage and current-voltage characteristics of the diodes.

  18. Prediction of failure behavior of a welded pressure vessel containing flaws during a hydrogen-charged burst test

    SciTech Connect (OSTI)

    Bhuyan, G.S.; Sperling, E.J.; Shen, G.; Yin, H.; Rana, M.D.

    1996-12-01

    An industry-government collaborative program was carried out with an aim to promoting the acceptance of fracture mechanics based fitness-for-service assessment methodology for a service-damaged pressure vessel. A collaborative round robin exercise was carried out to predict the fracture behavior of a vessel containing hydrogen damage, fabrication related lack-of-fusion defects, an artificially induced fatigue crack and a localized thinned area. The fracture assessment procedures used include the US ASME Material Property Council`s PREFIS Program based on the British Standard (BS) Published Document (PD) 6493, ASME Section XI and The Central Electricity Generating Board (CEGB) R6 approach; The welding Institute (TWI) CRACKWISE program (based on BS PD6493 Level 2 approach), a variant of the R6 approach, J-tearing instability approaches, various J-estimation schemes, LEFM approach and simplified stress analysis. Assessments were compared with the results obtained from a hydrogen charged burst test of the vessel. Predictions, based on the J-tearing approach, compared well with the actual burst test results. Actual burst pressure was about five times the operating pressure.

  19. Prediction of failure behavior of a welded pressure vessel containing flaws during a hydrogen-charged burst test

    SciTech Connect (OSTI)

    Bhuyan, G.S.; Sperling, E.J.; Shen, G.; Yin, H.; Rana, M.D.

    1999-08-01

    An industry-government collaborative program was carried out with an aim to promoting the acceptance of fracture mechanics-based fitness-for-service assessment methodology for a service-damaged pressure vessel. A collaborative round robin exercise was carried out to predict the fracture behavior of a vessel containing hydrogen damage, fabrication-related lack-of-fusion defects, an artificially induced fatigue crack, and a localized thinned area. The fracture assessment procedures used include the US ASME Material Property Council`s PREFIS Program based on the British Standard (BS) Published Document (PD) 6493, ASME Section XI and The Central Electricity Generating Board (CEGB) R6 approach, The Welding Institute (TWI) CRACKWISE program (based on BS PD6493 Level 2 approach), a variant of the R6 approach, J-tearing instability approaches, various J-estimation schemes, LEFM approach, and simplified stress analysis. Assessments were compared with the results obtained from a hydrogen-charged burst test of the vessel. Predictions, based on the J-tearing approach, compared well with the actual burst test results. Actual burst pressure was about five times the operating pressure.

  20. Redox probing study of the potential dependence of charge transport through Li2O2

    SciTech Connect (OSTI)

    Knudsen, Kristian B.; Luntz, Alan C.; Jensen, Søren H.; Vegge, Tejs; Hjelm, Johan

    2015-11-20

    In the field of energy storage devices the pursuit for cheap, high energy density, reliable secondary batteries is at the top of the agenda. The Li–O2 battery is one of the possible technologies that, in theory, should be able to close the gap, which exists between the present state-of-the-art Li-ion technologies and the demand placed on batteries by technologies such as electrical vehicles. Here we present a redox probing study of the charge transfer across the main deposition product lithium peroxide, Li2O2, in the Li–O2 battery using outer-sphere redox shuttles. The change in heterogeneous electron transfer exchange rate as a function of the potential and the Li2O2 layer thickness (~depth-of-discharge) was determined using electrochemical impedance spectroscopy. In addition, the attenuation of the electron transfer exchange rate with film thickness is dependent on the probing potential, providing evidence that hole transport is the dominant process for charge transfer through Li2O2 and showing that the origin of the sudden death observed upon discharge is due to charge transport limitations.

  1. Vapor–Liquid Equilibrium and Polarization Behavior of the GCP Water Model: Gaussian Charge-on-Spring versus Dipole Self-Consistent Field Approaches to Induced Polarization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chialvo, Ariel A.; Moucka, Filip; Vlcek, Lukas; Nezbeda, Ivo

    2015-03-24

    Here we implemented the Gaussian charge-on-spring (GCOS) version of the original self-consistent field implementation of the Gaussian Charge Polarizable water model and test its accuracy to represent the polarization behavior of the original model involving smeared charges and induced dipole moments. Moreover, for that purpose we adapted the recently developed multiple-particle-move (MPM) within the Gibbs and isochoric-isothermal ensembles Monte Carlo methods for the efficient simulation of polarizable fluids. We also assessed the accuracy of the GCOS representation by a direct comparison of the resulting vapor-liquid phase envelope, microstructure, and relevant microscopic descriptors of water polarization along the orthobaric curve againstmore » the corresponding quantities from the actual GCP water model.« less

  2. Vapor-liquid Equilibria and Polarization Behavior of the GCP Water Model: Gaussian Charge-on-spring versus Dipole Self-consistent Field approaches to induced polarization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chialvo, Ariel A; Moucka, Filip; Vlcek, Lukas; Nezbeda, Ivo

    2015-01-01

    We implemented the Gaussian charge-on-spring (GCOS) version of the original self-consistent field implementation of the Gaussian Charge Polarizable water model and test its accuracy to represent the polarization behavior of the original model involving smeared charges and induced dipole moments. For that purpose we adapted the recently developed multiple-particle-move (MPM) within the Gibbs and isochoric-isothermal ensembles Monte Carlo methods for the efficient simulation of polarizable fluids. We assessed the accuracy of the GCOS representation by a direct comparison of the resulting vapor-liquid phase envelope, microstructure, and relevant microscopic descriptors of water polarization along the orthobaric curve against the corresponding quantitiesmore » from the actual GCP water model.« less

  3. A high-fidelity multiphysics model for the new solid oxide iron-air redox battery part I: Bridging mass transport and charge transfer with redox cycle kinetics

    SciTech Connect (OSTI)

    Jin, XF; Zhao, X; Huang, K

    2015-04-15

    A high-fidelity two-dimensional axial symmetrical multi-physics model is described in this paper as an effort to simulate the cycle performance of a recently discovered solid oxide metal-air redox battery (SOMARB). The model collectively considers mass transport, charge transfer and chemical redox cycle kinetics occurring across the components of the battery, and is validated by experimental data obtained from independent research. In particular, the redox kinetics at the energy storage unit is well represented by Johnson-Mehl-Avrami-Kolmogorov (JIVIAK) and Shrinking Core models. The results explicitly show that the reduction of Fe3O4 during the charging cycle limits the overall performance. Distributions of electrode potential, overpotential, Nernst potential, and H-2/H2O-concentration across various components of the battery are also systematically investigated. (C) 2015 Elsevier B.V. All rights reserved.

  4. Charge transport in zirconium doped anatase nanowires dye-sensitized solar cells: Trade-off between lattice strain and photovoltaic parameters

    SciTech Connect (OSTI)

    Archana, P. S.; Gupta, Arunava; Yusoff, Mashitah M.; Jose, Rajan

    2014-10-13

    Zirconium (Zr) is doped up to 5 at.?% in anatase TiO{sub 2} nanowires by electrospinning and used as working electrode in dye-sensitized solar cells. Variations observed in the photovoltaic parameters were correlated by electrochemical impedance spectroscopy, open circuit voltage decay, and X-ray diffraction measurements. Results show that homovalent substitution of Zr in TiO{sub 2} increased the chemical capacitance and electron diffusion coefficient which in turn decreased charge transport resistance and charge transit time. However, lattice strain due to size mismatch between the Zr{sup 4+} and Ti{sup 4+} ions decreased open circuit voltage and fill factor thereby setting a trade-off between doping concentration and photovoltaic properties.

  5. Water transport and clustering behavior in homopolymer and graft copolymer polylactide

    SciTech Connect (OSTI)

    Du, An; Koo, Donghun; Theryo, Grayce; Hillmyer, Marc A.; Cairncross, Richard A.

    2015-02-19

    Polylactide is a bio-based and biodegradable polymer well-known for its renewable origins. Water sorption and clustering behavior in both a homopolymer polylactide and a graft copolymer of polylactide was studied using the quartz crystal microbalance/heat conduction calorimetry (QCM/HCC) technique. The graft copolymer, poly(1,5-cyclooctadiene-co-5-norbornene-2-methanol-graft-D,L-lactide), contained polylactide chains (95 wt.%) grafted onto a hydrophobic rubbery backbone (5 wt.%). Clustering is an important phenomenon in the study of water transport properties in polymers since the presence of water clusters can affect the water diffusivity. The HCC method using the thermal power signals and Van't Hoff's law were both employed to estimate the water sorption enthalpy. Sorption enthalpy of water in both polymers was determined to be approximately -40 kJ/mol for all water activity levels. Zimm-Lundberg analysis showed that water clusters start to form at a water activity of 0.4. The engaged species induced clustering (ENSIC) model was used to curve fit sorption isotherms and showed that the affinity among water molecules is higher than that between water molecules and polymer chains. All the methods used indicate that clustering of water molecules exists in both polymers.

  6. transportation

    National Nuclear Security Administration (NNSA)

    security missions undertaken by the U.S. government.

    Pantex Plant's Calvin Nelson honored as Analyst of the Year for Transportation Security http:nnsa.energy.gov...

  7. The Sorption/Desorption Behavior of Uranium in Transport Studies Using Yucca Mountain Alluvium

    SciTech Connect (OSTI)

    C. D. Scism

    2006-02-15

    Yucca Mountain, Nevada is the proposed site of a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste in the United States. In the event repository engineered barriers fail, the saturated alluvium located south of Yucca Mountain is expected to serve as a natural barrier to the migration of radionuclides to the accessible environment. The purpose of this study is to improve the characterization of uranium retardation in the saturated zone at Yucca Mountain to support refinement of an assessment model. The distribution of uranium desorption rates from alluvium obtained from Nye County bore holes EWDP-19IM1, EWDP-10SA, EWDP-22SA were studied to address inconsistencies between results from batch sorption and column transport experiments. The alluvium and groundwater were characterized to better understand the underlying mechanisms of the observed behavior. Desorption rate constants were obtained using an activity based mass balance equation and column desorption experiments were analyzed using a mathematical model utilizing multiple sorption sites with different first-order forward and reverse reaction rates. The uranium desorption rate constants decreased over time, suggesting that the alluvium has multiple types of active sorption sites with different affinities for uranium. While a significant fraction of the initially sorbed uranium desorbed from the alluvium quite rapidly, a roughly equivalent amount remained sorbed after several months of testing. The information obtained through this research suggests that uranium may experience greater effective retardation in the alluvium than simple batch sorption experiments would suggest. Electron Probe Microanalysis shows that uranium is associated with both clay minerals and iron oxides after sorption to alluvial material. These results provide further evidence that the alluvium contains multiple sorption sites for uranium.

  8. Workplace Charging Challenge Partner: University of Wisconsin...

    Energy Savers [EERE]

    Responding to increased requests for plug-in electric charging stations from parking customers, UW-Madison Transportation Services installed dual level, charging stations in Lots ...

  9. Effect of substrate and orientation on charge ordering behaviors in epitaxial Pr{sub 0.5}Ca{sub 0.35}Sr{sub 0.15}MnO{sub 3} films

    SciTech Connect (OSTI)

    Yang, H. W.; Hu, F. X.; Sun, J. R. E-mail: jrsun@iphy.ac.cn; Wang, C.; Cai, R. S.; Wang, Y. Q. E-mail: jrsun@iphy.ac.cn

    2015-05-07

    The charge ordering (CO) behaviors of Pr{sub 0.5}Ca{sub 0.35}Sr{sub 0.15}MnO{sub 3} films grown on STO(100), STO(110) and LAO(100) are systematically investigated by transport measurements and transmission electron microscopy (TEM) examinations. From the transport measurements, the CO transition temperatures of all the three films are much higher than those of the bulk materials, showing that the film strain could enhance the CO transition. From TEM observations, many superlattice spots appear in the electron diffraction patterns taken from the films, indicating the appearance of the CO modulation structures at room temperature. The modulation vectors are determined to be (1/2, 0, 0) for STO (100), (1/2, 1/2, 1/2) for STO (110), and both (0, 1/2, 0) and (1/2, 1/2, 0) for LAO (100). It is shown that both the substrate orientation and the film strain have a great effect on the CO modulation structures. The CO state is much easier to appear in the compressive strain direction which is due to the Mn-O-Mn angle tilting.

  10. Time-dependent behavior in a transport-barrier model for the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the dynamics of the L-H transition 11, internal transport barriers 12, internal heating from cold pulse propagation 13, and other problems. The reduction is designed to...

  11. Intrinsic SiO{sub x}-based unipolar resistive switching memory. II. Thermal effects on charge transport and characterization of multilevel programing

    SciTech Connect (OSTI)

    Chang, Yao-Feng Chen, Ying-Chen; Chen, Yen-Ting; Wang, Yanzhen; Xue, Fei; Zhou, Fei; Lee, Jack C.; Fowler, Burt

    2014-07-28

    Multilevel programing and charge transport characteristics of intrinsic SiO{sub x}-based resistive switching memory are investigated using TaN/SiO{sub x}/n{sup ++}Si (MIS) and TiW/SiO{sub x}/TiW (MIM) device structures. Current transport characteristics of high- and low-resistance states (HRS and LRS) are studied in both device structures during multilevel operation. Analysis of device thermal response demonstrates that the effective electron energy barrier is strongly dependent on the resistance of the programed state, with estimates of 0.1?eV in the LRS and 0.6?eV in the HRS. Linear data fitting and conductance analyses indicate Poole-Frenkel emission or hopping conductance in the low-voltage region, whereas Fowler-Nordheim (F-N) or trap-assisted tunneling (TAT) is indicated at moderate voltage. Characterizations using hopping transport lead to hopping distance estimates of ?1?nm in the LRS for both device structures. Relative permittivity values (?{sub r}) were extracted using the Poole-Frenkel formulism and estimates of local filament temperature, where ?{sub r} values were ?80 in the LRS and ?4 in the HRS, suggesting a strongly polarized medium in the LRS. The onset of F-N tunneling or TAT corresponds to an observed overshoot in the I-V response with an estimated threshold of 1.6??0.2?V, in good agreement with reported electro-luminescence results for LRS devices. Resistive switching is discussed in terms of electrochemical reactions between common SiO{sub 2} defects, and specific defect energy levels are assigned to the dominant transitions in the I-V response. The overshoot response in the LRS is consistent with TAT through either the E?' oxygen vacancy or the hydrogen bridge defect, both of which are reported to have an effective bandgap of 1.7?eV. The SET threshold at ?2.5?V is modeled as hydrogen release from the (Si-H){sub 2} defect to generate the hydrogen bridge, and the RESET transition is modeled as an electrochemical reaction that re-forms (Si

  12. TURTLE with MAD input (Trace Unlimited Rays Through Lumped Elements) -- A computer program for simulating charged particle beam transport systems and DECAY TURTLE including decay calculations

    SciTech Connect (OSTI)

    Carey, D.C.

    1999-12-09

    TURTLE is a computer program useful for determining many characteristics of a particle beam once an initial design has been achieved, Charged particle beams are usually designed by adjusting various beam line parameters to obtain desired values of certain elements of a transfer or beam matrix. Such beam line parameters may describe certain magnetic fields and their gradients, lengths and shapes of magnets, spacings between magnetic elements, or the initial beam accepted into the system. For such purposes one typically employs a matrix multiplication and fitting program such as TRANSPORT. TURTLE is designed to be used after TRANSPORT. For convenience of the user, the input formats of the two programs have been made compatible. The use of TURTLE should be restricted to beams with small phase space. The lumped element approximation, described below, precludes the inclusion of the effect of conventional local geometric aberrations (due to large phase space) or fourth and higher order. A reading of the discussion below will indicate clearly the exact uses and limitations of the approach taken in TURTLE.

  13. EV Everywhere Consumer/Charging Workshop: Target-Setting Framework...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ConsumerCharging Workshop: Target-Setting Framework and Consumer Behavior EV Everywhere ConsumerCharging Workshop: Target-Setting Framework and Consumer Behavior Presentation ...

  14. WIPP Documents - Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation

  15. Particle back-transport and permeate flux behavior in crossflow membrane filters

    SciTech Connect (OSTI)

    Chellam, S.; Wiesner, M.R.

    1997-03-01

    Particle residence time distributions in a membrane channel are interpreted to elucidate mechanisms of particle transport and colloidal fouling in membrane filtration. A comparison of particle size distributions in the membrane feed suspensions and deposited cakes provides evidence for selective particle transport and accumulation on membranes. These data support a previously hypothesized minimum in particle back-transport from the membrane as a function of particle size. The back-transport of smaller particles is apparently due to Brownian diffusion, while larger macrocolloids are controlled by an orthokinetic mechanism such as shear-induced diffusion. In all cases, cake specific resistances measured in the dead-end mode were higher than those of the corresponding feed suspensions. Also, cake specific resistances measured under a crossflow were higher than those in the dead-end mode. Further, the specific resistance of particle deposits on membranes increased with shear rate and decreased as the initial permeation rate increased, suggesting that cake morphology is an important parameter in determining permeate flux. Thus, the effects of hydrodynamics on cake resistance needs to be established before a comprehensive model for crossflow filtration can be derived. 17 refs., 7 figs., 1 tab.

  16. Carbon dioxide transport and sorption behavior in confined coal cores for carbon sequestration

    SciTech Connect (OSTI)

    Jikich, S.A.; McLendon, R.; Seshadri, K.; Irdi, G.; Smith, D.H.

    2009-02-15

    Measurements of sorption isotherms and transport properties of carbon dioxide (CO{sub 2}) in coal cores are important for designing enhanced coalbed-methane/CO{sub 2}-sequestration field projects. Many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may reduce the sorption capacities and/or transport rates significantly. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh no. 8 was kept under a constant, 3D effective stress; the sample was scanned by X-ray computer tomography (CT) before, then while, it sorbed CO{sub 2}. Increases in sample density because of sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the CT showed that gas sorption advanced at different rates in different regions of the core and that diffusion and sorption progressed slowly. The amounts of CO{sub 2} sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh no. 8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO{sub 2} source. Also, the calculated isotherms showed that less CO{sub 2} was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated volume elements differed from the initial distribution, suggesting hysteresis and a possible rearrangement of coal structure because of CO{sub 2} sorption.

  17. Carbon Dioxide Transport and Sorption Behavior in Confined Coal Cores for Carbon Sequestration

    SciTech Connect (OSTI)

    Jikich, Sinisha; McLendon, Robert; Seshadri, Kal; Irdi, Gino; Smith, Duane

    2009-01-01

    Measurements of sorption isotherms and transport properties of carbon dioxide (CO2) in coal cores are important for designing enhanced coalbed-methane/CO2-sequestration field projects. Sorption isotherms measured in the laboratory can provide the upper limit on the amount of CO2 that might be sorbed in these projects. Because sequestration sites will most likely be in unmineable coals, many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may reduce the sorption capacities and/or transport rates significantly. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh #8 was kept under a constant, 3D effective stress; the sample was scanned by X-ray computer tomography (CT) before, then while, it sorbed CO2. Increases in sample density because of sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the CT showed that gas sorption advanced at different rates in different regions of the core. and that diffusion and sorption progressed slowly. The amounts of CO2 sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh #8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO2 source. Also, the calculated isotherms showed that less CO2 was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated

  18. Now Available: Evaluating Electric Vehicle Charging Impacts and...

    Broader source: Energy.gov (indexed) [DOE]

    Under OE's Smart Grid Investment Grant (SGIG) program, six utilities evaluated operations and customer charging behaviors for in-home and public electric vehicle charging stations. ...

  19. Resolution-dependent behavior of subgrid-scale vertical transport in the Zhang-McFarlane convection parameterization

    SciTech Connect (OSTI)

    Xiao, Heng; Gustafson, William I.; Hagos, Samson M.; Wu, Chien-Ming; Wan, Hui

    2015-06-01

    To better understand the behavior of quasi-equilibrium based convective parameterizations at higher resolution, we use a diagnostic frame- work to examine the resolution-dependence of sub grid-scale vertical trans-port of moist static energy as parameterized by the Zhang-McFarlane convection parameterization (ZM). Grid-scale input to ZM is supplied by coarsening output from cloud resolving model (CRM) simulations onto sub-domains ranging in size from 8 _ 8 to 256 _ 256 km2. Then the ZM based parameterization of vertical transport of moist static energy for scales smaller than the sub-domain size (w0h0 ZM) are compared to those directly calculated from the CRM simulations (w0h0CRM) for different sub-domain sizes. The overall strength of w0h0CRM decreases by more than half as the sub-domain size decreases from 128 to 8 km across while w0h0 ZM decreases with sub-domain size only for strong convection cases and increases for weaker cases. The resolution dependence of w0h0 ZM is determined by the positive-denite change rate of grid-scale convective available potential energy (CAPE) in the convective quasi-equilibrium (QE) closure. Further analysis shows the change rate of actual grid-scale CAPE (before taking the positive definite value) and w0h0CRM behave very similarly as the sub-domain size changes because they are both tied to grid-scale advective tendencies. We can improve the resolution dependence of w0h0ZM significantly by averaging the grid-scale change rate of CAPE over an appropriately large area surrounding each sub-domain before taking its positive definite value. Even though the overall strength of w0h0CRM decreases with increasing resolution, its variability increases dramatically. w0h0ZM can capture neither the magnitude nor the pattern of this variability at relatively high resolutions (8 or 16 km grid spacing), suggesting the need for stochastic treatment of convection at these scales.

  20. Charged Amino Acids (R83, E567, D617, E625, R669, and K678) of CusA Are Required for Metal Ion Transport in the Cus Efflux System

    SciTech Connect (OSTI)

    Su, Chih-Chia; Long, Feng; Lei, Hsiang-Ting; Reddy Bolla, Jani; Do, Sylvia V.; Rajashankar, Kanagalaghatta R.; Yu, Edward W. (Cornell); (Iowa State)

    2012-10-23

    Gram-negative bacteria expel various toxic chemicals via tripartite efflux pumps belonging to the resistance-nodulation-cell division superfamily. These pumps span both the inner and outer membranes of the cell. The three components of these tripartite systems are an inner-membrane, substrate-binding transporter (or pump); a periplasmic membrane fusion protein (or adaptor); and an outer-membrane-anchored channel. These three efflux proteins interact in the periplasmic space to form the three-part complexes. We previously presented the crystal structures of both the inner-membrane transporter CusA and membrane fusion protein CusB of the CusCBA tripartite efflux system from Escherichia coli. We also described the co-crystal structure of the CusBA adaptor-transporter, revealing that the trimeric CusA efflux pump assembles with six CusB protein molecules to form the complex CusB{sub 6}-CusA{sub 3}. We here report three different conformers of the crystal structures of CusBA-Cu(I), suggesting a mechanism on how Cu(I) binding initiates a sequence of conformational transitions in the transport cycle. Genetic analysis and transport assays indicate that charged residues, in addition to the methionine pairs and clusters, are essential for extruding metal ions out of the cell.

  1. Workplace Charging Challenge Partner: Harvard University | Department...

    Energy Savers [EERE]

    Harvard University's Transportation Services Department has installed 26 EVSE charging stations in eleven locations across the campus. By actively promoting PEVs among faculty, ...

  2. Workplace Charging Challenge Partner: Michigan State University...

    Energy Savers [EERE]

    Michigan State University is committed to reducing its carbon footprint by using and promoting clean transportation. As the employee demand for charging stations became more ...

  3. Workplace Charging Challenge Partner: Stanford University | Department...

    Broader source: Energy.gov (indexed) [DOE]

    As part of its emission-reduction efforts, Stanford University Parking & Transportation Services (P&TS) has increased the number of Level 2 electric vehicle charging stations on ...

  4. Workplace Charging Challenge Partner: Appalachian State University...

    Broader source: Energy.gov (indexed) [DOE]

    The University's transportation department has installed two charging stations on campus and a plug-in electric vehicle (PEV) is available to all campus members. The university has ...

  5. Workplace Charging Challenge: Sample Workplace Charging Policy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Policy Workplace Charging Challenge: Sample Workplace Charging Policy Review the policy guidelines used by one Workplace Charging Challenge partner to keep their ...

  6. CHARGE IMBALANCE

    SciTech Connect (OSTI)

    Clarke, John

    1980-09-01

    The purpose of this article is to review the theory of charge imbalance, and to discuss its relevance to a number of experimental situations. We introduce the concepts of quasiparticle charge and charge imbalance, and discuss the generation and detection of charge imbalance by tunneling. We describe the relaxation of the injected charge imbalance by inelastic scattering processes, and show how the Boltzmann equation can be solved to obtain the steady state quasiparticle distribution and the charge relaxation rate. Details are given of experiments to measure charge imbalance and the charge relaxation rate when inelastic scattering is the predominant relaxation mechanism. Experiments on and theories of other charge relaxation mechanisms are discussed, namely relaxation via elastic scattering in the presence of energy gap anisotropy, or in the presence of a pair breaking mechanism such as magnetic impurities or an applied supercurrent or magnetic field. We describe three other situations in which charge imbalance occurs, namely the resistance of the NS interface, phase slip centers, and the flow of a supercurrent in the presence of a temperature gradient.

  7. Managing Increased Charging Demand

    Broader source: Energy.gov (indexed) [DOE]

    Would you be willing to pay a fee for charging? Workplace Charging Challenge How many charging stations does my worksite need? 3 Workplace Charging Challenge Workplace Charging ...

  8. Workplace Charging Challenge: Sample Municipal Workplace Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Municipal Workplace Charging Agreement Workplace Charging Challenge: Sample Municipal Workplace Charging Agreement Review the agreement proposed by one municipality to register PEV ...

  9. A charged particle transport analysis of the dose to a silicon-germanium thermoelectric element due to a solar flare event

    SciTech Connect (OSTI)

    Dandini, V.J.

    1991-01-01

    A version of the BRYNTRN baryon transport code written at the NASA Langley Research Center has been used to analyze the dose to a typical space reactor thermoelectric (TE) element due to a solar flare event. The code has been used in the past to calculate the dose/dose equivalent distributions to astronauts due to solar flares. It has been modified to accommodate multiple layers of spacecraft and component material. Differential and integrated doses to the TE element are presented and discussed. 5 refs.

  10. Spin-dependent transport behavior in C{sub 60} and Alq{sub 3} based spin valves with a magnetite electrode (invited)

    SciTech Connect (OSTI)

    Zhang, Xianmin Mizukami, Shigemi; Ma, Qinli; Kubota, Takahide; Miyazaki, Terunobu; Oogane, Mikihiko; Naganuma, Hiroshi; Ando, Yasuo

    2014-05-07

    The spin-dependent transport behavior in organic semiconductors (OSs) is generally observed at low temperatures, which likely results from poor spin injection efficiency at room temperature from the ferromagnetic metal electrodes to the OS layer. Possible reasons for this are the low Curie temperature and/or the small spin polarization efficiency for the ferromagnetic electrodes used in these devices. Magnetite has potential as an advanced candidate for use as the electrode in spintronic devices, because it can achieve 100% spin polarization efficiency in theory, and has a high Curie temperature (850 K). Here, we fabricated two types of organic spin valves using magnetite as a high efficiency electrode. C{sub 60} and 8-hydroxyquinoline aluminum (Alq{sub 3}) were employed as the OS layers. Magnetoresistance ratios of around 8% and over 6% were obtained in C{sub 60} and Alq{sub 3}-based spin valves at room temperature, respectively, which are two of the highest magnetoresistance ratios in organic spin valves reported thus far. The magnetoresistance effect was systemically investigated by varying the thickness of the Alq{sub 3} layer. Moreover, the temperature dependence of the magnetoresistance ratios for C{sub 60} and Alq{sub 3}-based spin valves were evaluated to gain insight into the spin-dependent transport behavior. This study provides a useful method in designing organic spin devices operated at room temperature.

  11. NREL: Transportation Research - Transportation Deployment Support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Deployment Support Photo of a car parked in front of a monument. A plug-in electric vehicle charges near the Thomas Jefferson Memorial in Washington, D.C. Photo from Julie Sutor, NREL NREL's transportation deployment team works with vehicle fleets, fuel providers, and other transportation stakeholders to help deploy alternative and renewable fuels, advanced vehicles, fuel economy improvements, and fleet-level efficiencies that reduce emissions and petroleum dependence. In

  12. Carbon Dioxide Transport and Sorption Behavior in Confined Coal Cores for Enhanced Coalbed Methane and CO2 Sequestration

    SciTech Connect (OSTI)

    Jikich, S.A.; McLendon, T.R.; Seshadri, K.S.; Irdi, G.A.; Smith, D.H.

    2007-11-01

    Measurements of sorption isotherms and transport properties of CO2 in coal cores are important for designing enhanced coalbed methane/CO2 sequestration field projects. Sorption isotherms measured in the lab can provide the upper limit on the amount of CO2 that might be sorbed in these projects. Because sequestration sites will most likely be in unmineable coals, many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may significantly reduce the sorption capacities and/or transport rates. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh #8 was kept under a constant, three-dimensional external stress; the sample was scanned by X-ray computer tomography (CT) before, then while it sorbed, CO2. Increases in sample density due to sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the computerized tomography showed that gas sorption advanced at different rates in different regions of the core, and that diffusion and sorption progressed slowly. The amounts of CO2 sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh #8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO2 source. Also, the calculated isotherms showed that less CO2 was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated volume elements differed from the initial distribution

  13. Strong focus space charge

    DOE Patents [OSTI]

    Booth, Rex

    1981-01-01

    Strong focus space charge lens wherein a combination of current-carrying coils and charged electrodes form crossed magnetic and electric fields to focus charged particle beams.

  14. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you...

  15. Workplace Charging Challenge Partner: Northwest Evaluation Association...

    Energy Savers [EERE]

    As of 2015, NWEA has installed three plug-in electric vehicle (PEV) charging stations for staff to use at no cost. NWEA is committed to all forms of alternative transportation, ...

  16. Measurement of Single Electronic Charging of Semiconductor Nano-Crystals

    SciTech Connect (OSTI)

    Kastner, Marc A.

    2014-10-09

    We have studied charge transport in nanopatterned arrays of PbS colloidal quantum dots using conventional two-probe measurements as well as with an integrated chargesensor.

  17. ETA-HTP08 Rechargeable Energy Storage System (RESS) Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ETA-HTP08 Revision 1 Effective October 1, 2004 Rechargeable Energy Storage System (RESS) Charging Prepared by Electric Transportation Applications Prepared by: ...

  18. Conductivity maximum in a charged colloidal suspension (Journal...

    Office of Scientific and Technical Information (OSTI)

    We attribute this behavior to two main competing effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. ...

  19. Workplace Charging Challenge: Promote Charging at Work

    Broader source: Energy.gov [DOE]

    Employees with access to workplace charging are six times more likely to drive a plug-in electric vehicle (PEV) than the average worker. Promoting PEV charging at workplaces is one great way that...

  20. Battery charging stations

    SciTech Connect (OSTI)

    Bergey, M.

    1997-12-01

    This paper discusses the concept of battery charging stations (BCSs), designed to service rural owners of battery power sources. Many such power sources now are transported to urban areas for recharging. A BCS provides the opportunity to locate these facilities closer to the user, is often powered by renewable sources, or hybrid systems, takes advantage of economies of scale, and has the potential to provide lower cost of service, better service, and better cost recovery than other rural electrification programs. Typical systems discussed can service 200 to 1200 people, and consist of stations powered by photovoltaics, wind/PV, wind/diesel, or diesel only. Examples of installed systems are presented, followed by cost figures, economic analysis, and typical system design and performance numbers.

  1. Workplace Charging Challenge: Sample Workplace Charging Policy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Review the policy guidelines used by one Workplace Charging Challenge partner to keep their program running safe and successfully.

  2. Plug-In Electric Vehicle Handbook for Workplace Charging Hosts

    SciTech Connect (OSTI)

    2013-08-01

    Plug-in electric vehicles (PEVs) have immense potential for increasing the country's energy, economic, and environmental security, and they will play a key role in the future of U.S. transportation. By providing PEV charging at the workplace, employers are perfectly positioned to contribute to and benefit from the electrification of transportation. This handbook answers basic questions about PEVs and charging equipment, helps employers assess whether to offer workplace charging for employees, and outlines important steps for implementation.

  3. Quick spacecraft charging primer

    SciTech Connect (OSTI)

    Larsen, Brian Arthur

    2014-03-12

    This is a presentation in PDF format which is a quick spacecraft charging primer, meant to be used for program training. It goes into detail about charging physics, RBSP examples, and how to identify charging.

  4. Workplace Charging Equipment Costs

    Broader source: Energy.gov [DOE]

    Charging stations are available from a variety of manufacturers in a range of models for all charging applications. For a single port charging station, Level 1 hardware costs range from $300-$1,500...

  5. Electric Transportation Applications All Rights Reserved ETA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Revision 2 Effective March 1, 1997 Battery Charging Prepared by Electric Transportation ... with the requirements of the vehiclebattery supplier as stated in the OwnerOperators ...

  6. Electric Vehicle Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or Twitter Attend local EV events Share your story Currently have 13 ChargePoint charging stations scattered throughout Vermont 2015 - 12 Freedom Stations & 10...

  7. Workplace Charging Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Workplace Charging Challenge, committing to install charging for plug-in electric vehicles (PEVs) at their worksites. By taking on this Challenge, they are helping...

  8. Utilities and Workplace Charging

    Broader source: Energy.gov (indexed) [DOE]

    for workplace charging Aid in forecasting similar workplace charging needs with ... of plug-in vehicle technology, costs, and benefits? 50% 40% 30% 20% 10% 0% 1 2 ...

  9. Dynamic Wireless Charging

    SciTech Connect (OSTI)

    2015-03-13

    ORNL successfully demonstrated in-motion wireless charging in the laboratory using a small GEM vehicle and a series of six charging coils.

  10. Electric Vehicle Workplace Charging

    Broader source: Energy.gov (indexed) [DOE]

    for annual capital fleet purchases 10 of 17 locations currently have charging stations Agreement with employees to provide workplace charging Ultimate goal is ...

  11. Workplace Charging Challenge

    SciTech Connect (OSTI)

    2013-09-01

    Fact sheet about the EV Everywhere Workplace Charging Challenge which is to increase the number of American employers offering workplace charging by tenfold in the next five years.

  12. Phase Behavior of Asymmetrically Charged Colloids Investigated...

    Office of Scientific and Technical Information (OSTI)

    Authors: Chen, Wei-Ren 1 ; Li, Xin 1 ; Sanchez-Diaz, Luis E 1 ; Smith, Gregory Scott 1 ; Shew, Chwen-Yang 2 ; Wu, Bin 1 + Show Author Affiliations ORNL City University ...

  13. Technology available for license: Charging of liquid energy storage media

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    through radiolysis (ANL-IN-14-036) | Argonne National Laboratory Technology available for license: Charging of liquid energy storage media through radiolysis (ANL-IN-14-036) January 23, 2015 Tweet EmailPrint This technology utilizes radiolysis to charge liquid energy storage media including nanoelectrofuels. Charged liquid can be used in flow batteries for transportation and stationary energy-storage applications. Radiolysis charging can be conducted on aqueous and non-aqueous battery

  14. How usage is charged

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    usage is charged How usage is charged MPP Charging (Computational Systems) When a job runs on a NERSC MPP system, such as Hopper, charges accrue against one of the user's repository allocations. The unit of accounting for these charges is the "MPP Hour". A parallel job is charged for exclusive use of each multi-core node allocated to the job. The MPP charge for such a job is calculated as the product of: the job's elapsed wall-clock time in hours the number of nodes allocated to the

  15. Surface charge accumulation of particles containing radionuclides in open air

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. But, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. Moreover, a charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify themore » particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. Our study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.« less

  16. Workplace Charging Challenge: Install and Manage PEV Charging | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Install and Manage PEV Charging Workplace Charging Challenge: Install and Manage PEV Charging pev_workplace_charging_hosts_150x194.jpg To determine if workplace charging is right for your organization, use the employer resources to learn more about PEVs and charging stations. The PEV Handbook for Workplace Charging Hosts is particularly helpful for employers deciding if and how to install charging stations to ensure a successful workplace charging program. PEVs and Charging

  17. 3D Charge Order Found in Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Charge Order Found in Superconductor 3D Charge Order Found in Superconductor Print Wednesday, 08 June 2016 00:00 Despite 30 years of intense study, the explanation behind the zero-resistance current displayed by high-temperature superconductors (HTSCs) is still shrouded in complexity. HTSCs tend to be heterogeneous materials with multiple phases, and disentangling their various electronic behaviors for analysis can be difficult. At the ALS, researchers used resonant soft x-ray diffraction

  18. Charge regulation circuit

    DOE Patents [OSTI]

    Ball, Don G.

    1992-01-01

    A charge regulation circuit provides regulation of an unregulated voltage supply in the range of 0.01%. The charge regulation circuit is utilized in a preferred embodiment in providing regulated voltage for controlling the operation of a laser.

  19. Workplace Charging Presentation

    Broader source: Energy.gov [DOE]

    Educate employers about plug-in electric vehicles and workplace charging using this sample presentation. The presentation covers the basics of PEVs and workplace charging as well as the benefit of...

  20. Workplace Charging Challenge: Install and Manage PEV Charging...

    Office of Environmental Management (EM)

    Charging - Evaluate whether your workplace is right for solar assisted charging stations. ... Charging Equipment and Installation Costs - Review typical price ranges and factors ...

  1. Workplace Charging Challenge: Higher Education PEV Charging Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge: Higher Education PEV Charging Webinar Workplace Charging Challenge: Higher Education PEV Charging Webinar Review the slides from our webinar which highlighted workplace ...

  2. Charge exchange system

    DOE Patents [OSTI]

    Anderson, Oscar A.

    1978-01-01

    An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.

  3. Thermite charge - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Trademark Office Marketing Summary: Linear Thermite Charge Abstract: The present invention provides for cutting operations using linear thermite charges; the charges cut one...

  4. Workplace Charging Challenge: Signage Guidance

    Broader source: Energy.gov [DOE]

    Signage for plug-in electric vehicle (PEV) charging stations is an important consideration at workplaces that offer access to charging. Appropriate charging station signage can:

  5. Workplace Charging Program and Initiatives

    Broader source: Energy.gov (indexed) [DOE]

    NYPA's Workplace Charging Pilot Program Employee charging stations installed at the Authority's White Plains office NYPA joined the US DOE's Workplace Charging Challenge ...

  6. Workplace Charging Challenge 2014 Agenda

    Broader source: Energy.gov (indexed) [DOE]

    Track A (Plaza Ballroom I): Promoting your workplace charging program A robust workplace charging program doesn't conclude once the charging stations are in the ground. Many ...

  7. behavioral-survey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evacuation Behavior Survey for No-Notice Emergency Scenarios" Presentation at the 93rd TRB Annual Meeting at the Traveler Behavior and Values Committee (ADB10) - Behavioral Process subcommittee; January 13, 2014 Joshua Auld, Vadim Sokolov, Rene Bautista, Angela Fontes Transportation Research and Analysis Computing Center Argonne National Laboratory Biography The presentation details a survey on evacuation response behavior that was conducted as a part of the RTSTEP project. The survey was

  8. Space Charge Correction on Emittance Measurement of Low Energy...

    Office of Scientific and Technical Information (OSTI)

    in the calculation of beam emittance. We present below the preliminary results of a MATLAB code built to model the transport of a charged particle beam through an accelerator...

  9. Workplace Charging Challenge Partner: SUNY Empire State College...

    Broader source: Energy.gov (indexed) [DOE]

    The College installed 2 charging stations for use by employees and the community to support clean transportation and provide a service for the growing number of plug-in electric ...

  10. Workplace Charging: Safety and Management Policy For Level 1 Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Receptacles | Department of Energy Charging: Safety and Management Policy For Level 1 Charging Receptacles Workplace Charging: Safety and Management Policy For Level 1 Charging Receptacles Organizations offering plug-in electric vehicle (PEV) charging at Level 1 charging receptacles, or wall outlets, can ensure a safe and successful workplace charging experience by considering the following safety and management policies below. More helpful tips on workplace charging administration,

  11. Novolyte Charging Up Electric Vehicle Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novolyte Charging Up Electric Vehicle Sector Novolyte Charging Up Electric Vehicle Sector August 11, 2010 - 10:15am Addthis Electric vehicles are powered by electricity that comes in the form of electrically charged molecules known as ions. Those ions need a substance to transport them throughout the system as they travel from the anode to the cathode and back again. That substance is an electrolyte. | Staff Photo Illustration Electric vehicles are powered by electricity that comes in the form

  12. Workplace Charging Challenge Partner: The Valley Health System | Department

    Office of Environmental Management (EM)

    Energy IDEXX Laboratories Workplace Charging Challenge Partner: IDEXX Laboratories Workplace Charging Challenge Partner: IDEXX Laboratories Joined the Challenge: November 2014 Headquarters: Westbrook, ME Charging Location: Westbrook, ME Domestic Employees: 4,300 IDEXX Laboratories is committed to providing a multitude of alternative transportation option to employees in the effort to reduce greenhouse gas emissions and increase sustainability efforts. The IDEXX ParXX program encourages

  13. Workplace Charging at Local Businesses | Department of Energy

    Office of Environmental Management (EM)

    Department of Energy Venetian and The Palazzo Workplace Charging Challenge Partner: The Venetian and The Palazzo Workplace Charging Challenge Partner: The Venetian and The Palazzo Joined the Challenge: April 2013 Headquarters: Las Vegas, NV Charging Location: Las Vegas, NV Domestic Employees: 8,445 As part of the hotels' Sands ECO360º Global Sustainability program, The Venetian and The Palazzo have made alternate transportation a priority to help reduce greenhouse gas emissions, conserve

  14. System Benefits Charge

    Broader source: Energy.gov [DOE]

    New Hampshire's 1996 electric-industry restructuring legislation authorized the creation of a system benefits charge (SBC) to support energy efficiency programs and energy assistance programs for...

  15. Workplace Charging Challenge

    Broader source: Energy.gov (indexed) [DOE]

    ... Interactive map available at electricvehicles.energy.gov. lynda.com's PEV charging stations are part of the company's larger commuting program designed to alleviate the impact from ...

  16. Automakers and Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge Initiative Arguably the most important infrastructure strategy to accelerate adoption of PEVs. Why are we doing Workplace Charging? * PEV Market Growth - Critical now...

  17. Workplace Charging Challenge: Promote Charging at Work | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Promote Charging at Work Workplace Charging Challenge: Promote Charging at Work Workplace Charging Challenge: Promote Charging at Work Employees with access to workplace charging are six times more likely to drive a plug-in electric vehicle (PEV) than the average worker. Promoting PEV charging at workplaces is one great way that states, cities and other organizations can encourage PEV adoption in their communities. Use the material below to engage and educate employers about the

  18. Chemical Doping Enhances Electronic Transport in Networks of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 12, 2015, Research Highlights Chemical Doping Enhances Electronic Transport in ... Here, it is shown that upon chemical oxidation, hexabenzocoronenes (HBCs) enhance charge ...

  19. Weather and the Transport of Hazardous Materials | Department...

    Office of Environmental Management (EM)

    Ad Hoc Working Group Transportation Plan Ad Hoc Working Group Guide to Federal Funding, Financing, and Technical Assistance for Plug-in Electric Vehicles and Charging Stations

  20. Transportation Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transportation-research TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Transportation Research Current Research Overview The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and

  1. Transport properties of ultrathin black phosphorus on hexagonal boron nitride

    SciTech Connect (OSTI)

    Doganov, Rostislav A.; zyilmaz, Barbaros; Koenig, Steven P.; Yeo, Yuting; Watanabe, Kenji; Taniguchi, Takashi

    2015-02-23

    Ultrathin black phosphorus, or phosphorene, is a two-dimensional material that allows both high carrier mobility and large on/off ratios. Similar to other atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is expected to be affected by the underlying substrate. The properties of black phosphorus have so far been studied on the widely utilized SiO{sub 2} substrate. Here, we characterize few-layer black phosphorus field effect transistors on hexagonal boron nitridean atomically smooth and charge trap-free substrate. We measure the temperature dependence of the field effect mobility for both holes and electrons and explain the observed behavior in terms of charged impurity limited transport. We find that in-situ vacuum annealing at 400?K removes the p-doping of few-layer black phosphorus on both boron nitride and SiO{sub 2} substrates and reduces the hysteresis at room temperature.

  2. Radiation Transport

    SciTech Connect (OSTI)

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  3. Workplace Charging Challenge: Install and Manage PEV Charging...

    Office of Environmental Management (EM)

    ...vworkplacecharginghosts150x194.jpg To determine if workplace charging is right for your organization, use the employer resources to learn more about PEVs and charging stations. ...

  4. Chamber transport

    SciTech Connect (OSTI)

    OLSON,CRAIG L.

    2000-05-17

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

  5. Trends in Workplace Charging

    Broader source: Energy.gov (indexed) [DOE]

    *Based on Energy Charges Only using an average annual electricity consumption for a U.S. residential utility customer of 11,496 kWh (EIA http:www.eia.gov). (WASHINGTON, ...

  6. Trends in Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Donofrio Ford Motor Company Trends in Workplace Charging Est EV NA NA approx 21 70-100 Miles: What Types of Chargers are Being Used? Considerations for Campus Installations *...

  7. Societal Benefits Charge

    Broader source: Energy.gov [DOE]

    During 2011 and 2012 several minor changes were made to the originally enacted SBC law. In 2011 a section was added prohibiting gas utilities from imposing an SBC charge (or several other types o...

  8. Automakers and Workplace Charging

    Broader source: Energy.gov (indexed) [DOE]

    Maryland 8 Connecticut 2 Kentucky 12 Georgia 2 New York 51 Ohio 44 Michigan 299 Indiana 8 Illinois 4 Kansas 2 Arizona 2 Texas 3 California 32 473 GM WORKPLACE CHARGING STATIONS ...

  9. Direct detection of a transport-blocking trap in a nanoscaled silicon single-electron transistor by radio-frequency reflectometry

    SciTech Connect (OSTI)

    Villis, B. J.; Sanquer, M.; Jehl, X.; Orlov, A. O.; Barraud, S.; Vinet, M.; Fay, P.; Snider, G.

    2014-06-09

    The continuous downscaling of transistors results in nanoscale devices which require fewer and fewer charged carriers for their operation. The ultimate charge controlled device, the single-electron transistor (SET), controls the transfer of individual electrons. It is also the most sensitive electrometer, and as a result the electron transport through it can be dramatically affected by nearby charges. Standard direct-current characterization techniques, however, are often unable to unambiguously detect and resolve the origin of the observed changes in SET behavior arising from changes in the charge state of a capacitively coupled trap. Using a radio-frequency (RF) reflectometry technique, we are able to unequivocally detect this process, in very close agreement with modeling of the trap's occupation probability.

  10. Electrically charged targets

    DOE Patents [OSTI]

    Goodman, Ronald K.; Hunt, Angus L.

    1984-01-01

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  11. Demand Charges | Open Energy Information

    Open Energy Info (EERE)

    Demand Charges Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleDemandCharges&oldid488967" Feedback Contact needs updating Image needs...

  12. Nissan EV Workplace Charging Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nissan EV Workplace Charging Program Workplace Charging Value Creation Value Proposition Nissan Support For Employer For Employee For Employee * Unique employee benefit * ...

  13. Vehicle Technologies Office: Workplace Charging Challenge Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Challenge Progress Update 2014 - Employers Take Charge Vehicle Technologies Office: Workplace Charging Challenge Progress Update 2014 - Employers Take Charge In ...

  14. EV Everywhere: Workplace Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Charging EV Everywhere: Workplace Charging EV Everywhere: Workplace Charging Most plug-in electric vehicle (EV) owners charge their vehicles primarily at home, but ...

  15. Workplace Charging Challenge Progress Update 2014

    Broader source: Energy.gov (indexed) [DOE]

    Locations with Charging Workplace Charging Challenge 6 Installing & Planned Charging Stations Almost Doubled in the Last 2 Years Workplace Charging Challenge 7 Partner plans ...

  16. 3D Charge Order Found in Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Charge Order Found in Superconductor Print Despite 30 years of intense study, the explanation behind the zero-resistance current displayed by high-temperature superconductors (HTSCs) is still shrouded in complexity. HTSCs tend to be heterogeneous materials with multiple phases, and disentangling their various electronic behaviors for analysis can be difficult. At the ALS, researchers used resonant soft x-ray diffraction (RSXD), a technique sensitive to both structure and electronic state at

  17. 3D Charge Order Found in Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Charge Order Found in Superconductor Print Despite 30 years of intense study, the explanation behind the zero-resistance current displayed by high-temperature superconductors (HTSCs) is still shrouded in complexity. HTSCs tend to be heterogeneous materials with multiple phases, and disentangling their various electronic behaviors for analysis can be difficult. At the ALS, researchers used resonant soft x-ray diffraction (RSXD), a technique sensitive to both structure and electronic state at

  18. 3D Charge Order Found in Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Charge Order Found in Superconductor Print Despite 30 years of intense study, the explanation behind the zero-resistance current displayed by high-temperature superconductors (HTSCs) is still shrouded in complexity. HTSCs tend to be heterogeneous materials with multiple phases, and disentangling their various electronic behaviors for analysis can be difficult. At the ALS, researchers used resonant soft x-ray diffraction (RSXD), a technique sensitive to both structure and electronic state at

  19. 3D Charge Order Found in Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Charge Order Found in Superconductor Print Despite 30 years of intense study, the explanation behind the zero-resistance current displayed by high-temperature superconductors (HTSCs) is still shrouded in complexity. HTSCs tend to be heterogeneous materials with multiple phases, and disentangling their various electronic behaviors for analysis can be difficult. At the ALS, researchers used resonant soft x-ray diffraction (RSXD), a technique sensitive to both structure and electronic state at

  20. 3D Charge Order Found in Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Charge Order Found in Superconductor Print Despite 30 years of intense study, the explanation behind the zero-resistance current displayed by high-temperature superconductors (HTSCs) is still shrouded in complexity. HTSCs tend to be heterogeneous materials with multiple phases, and disentangling their various electronic behaviors for analysis can be difficult. At the ALS, researchers used resonant soft x-ray diffraction (RSXD), a technique sensitive to both structure and electronic state at

  1. 3D Charge Order Found in Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Charge Order Found in Superconductor Print Despite 30 years of intense study, the explanation behind the zero-resistance current displayed by high-temperature superconductors (HTSCs) is still shrouded in complexity. HTSCs tend to be heterogeneous materials with multiple phases, and disentangling their various electronic behaviors for analysis can be difficult. At the ALS, researchers used resonant soft x-ray diffraction (RSXD), a technique sensitive to both structure and electronic state at

  2. ION PRODUCING MECHANISM (CHARGE CUPS)

    DOE Patents [OSTI]

    Brobeck, W.W.

    1959-04-21

    The problems of confining a charge material in a calutron and uniformly distributing heat to the charge is described. The charge is held in a cup of thermally conductive material removably disposed within the charge chamber of the ion source block. A central thermally conducting stem is incorporated within the cup for conducting heat to the central portion of the charge contained within the cup.

  3. Beam Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Transport A simplified drawing of the beam transport system from the linac to Target-1 (Lujan Center), Target-2 (Blue Room) and Target-4 is shown below. In usual operation ...

  4. Mesoscopic modeling of multi-physicochemical transport phenomena in porous media

    SciTech Connect (OSTI)

    Kang, Qinjin; Wang, Moran; Mukherjee, Partha P; Lichtner, Peter C

    2009-01-01

    We present our recent progress on mesoscopic modeling of multi-physicochemical transport phenomena in porous media based on the lattice Boltzmann method. Simulation examples include injection of CO{sub 2} saturated brine into a limestone rock, two-phase behavior and flooding phenomena in polymer electrolyte fuel cells, and electroosmosis in homogeneously charged porous media. It is shown that the lattice Boltzmann method can account for multiple, coupled physicochemical processes in these systems and can shed some light on the underlying physics occuning at the fundamental scale. Therefore, it can be a potential powerful numerical tool to analyze multi-physicochemical processes in various energy, earth, and environmental systems.

  5. WIPP Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transuranic Waste Transportation Container Documents Documents related to transuranic waste containers and packages. CBFO Tribal Program Information about WIPP shipments across tribal lands. Transportation Centralized Procurement Program - The Centralized Procurement Program provides a common method to procure standard items used in the packaging and handling of transuranic wasted destined for WIPP. Transuranic Waste Transportation Routes - A map showing transuranic waste generator sites and

  6. Collision integrals for charged-charged interaction in two-temperature non-equilibrium plasma

    SciTech Connect (OSTI)

    Ghorui, S.; Das, A. K.

    2013-09-15

    Choice of an appropriate form of shielding distance in the estimation of collision integrals under screened coulomb potential for two-temperature non-equilibrium plasma is addressed. Simple expressions for collision integrals for charged-charged interactions are derived. It is shown that while some of the formalisms used earlier completely ignore the presence of ions, the others incorporating it may result in negative collision integrals for the interactions involving particles at higher charged states. The parametric regimes of concern and impact of different formalisms on the computed transport properties are investigated with specific reference to nitrogen plasma. A revised definition of the shielding distance is proposed, which incorporates both electrons and ions, avoids the problem of negative collision integrals in all practical regimes of interest and results in calculated property values in close agreement with experimentally observed results.

  7. Charges/Reports | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy ChargePoint is Helping Electrify America's Transportation ChargePoint is Helping Electrify America's Transportation September 17, 2014 - 9:07am Addthis A plug-in electric vehicle (PEV) charging station in Rhode Island. | Photo courtesy of the University of Rhode Island. A plug-in electric vehicle (PEV) charging station in Rhode Island. | Photo courtesy of the University of Rhode Island. Shannon Brescher Shea Senior Writer/Editor, Office of Science This is part three of a four-post

  8. Charge carrier coherence and Hall effect in organic semiconductors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force actingmore » on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Lastly, our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.« less

  9. Vehicle Technologies Office: Transportation System Analytical Tools |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Modeling, Testing, Data & Results » Vehicle Technologies Office: Transportation System Analytical Tools Vehicle Technologies Office: Transportation System Analytical Tools The Vehicle Technologies Office (VTO) has supported the development of a number of software packages and online tools to model individual vehicles and the overall transportation system. Most of these tools are available for free or a nominal charge. Modeling tools that simulate entire vehicles and

  10. Gated charged-particle trap

    DOE Patents [OSTI]

    Benner, W. Henry

    1999-01-01

    The design and operation of a new type of charged-particle trap provides simultaneous measurements of mass, charge, and velocity of large electrospray ions. The trap consists of a detector tube mounted between two sets of center-bored trapping plates. Voltages applied to the trapping plates define symmetrically-opposing potential valleys which guide axially-injected ions to cycle back and forth through the charge-detection tube. A low noise charge-sensitive amplifier, connected to the tube, reproduces the image charge of individual ions as they pass through the detector tube. Ion mass is calculated from measurement of ion charge and velocity following each passage through the detector.

  11. Workplace Charging Challenge: Sample Municipal Workplace Charging Agreement

    Broader source: Energy.gov [DOE]

    Review the agreement proposed by one municipality to register PEV drivers and inform staff of charging policy.

  12. Distributed charging of electrical assets

    DOE Patents [OSTI]

    Ghosh, Soumyadip; Phan, Dung; Sharma, Mayank; Wu, Chai Wah; Xiong, Jinjun

    2016-02-16

    The present disclosure relates generally to the field of distributed charging of electrical assets. In various examples, distributed charging of electrical assets may be implemented in the form of systems, methods and/or algorithms.

  13. Charging Your Time - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health & Safety Exposition Charging Your Time About Us Hanford Cultural Resources Charging Your Time Committee Members Contact Us Electronic Registration Form Exhibitor and Vendor Information EXPO 2016 Sponsors EXPO Award Criteria How to Get to TRAC Special Events What is EXPO Why Should I Participate in EXPO Charging Your Time Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size How Do I Charge My Time Spent at EXPO? Each Hanford Prime Contractor may have

  14. Greening Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Goal 2: Greening Transportation LANL supports and encourages employees to reduce their personal greenhouse gas emissions by offering various commuting and work schedule options. Our goal is to reduce emissions related to employee travel and commuting to and from work by 13 percent. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science

  15. Sustainable Transportation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  16. Transportation Anslysis Simulation System

    Energy Science and Technology Software Center (OSTI)

    2004-08-23

    TRANSIMS version 3.1 is an integrated set of analytical and simulation models and supporting databases. The system is designed to create a virtual metropolitan region with representation of each of the region’s individuals, their activities and the transportation infrastructure they use. TRANSIMS puts into practice a new, disaggregate approach to travel demand modeling using agent-based micro-simulation technology. TRANSIMS methodology creates a virtual metropolitan region with representation of the transportation infrastructure and the population, at themore » level of households and individual travelers. Trips a planned to satisfy the population’s activity pattems at the individual traveler level. TRANSIMS then simulates the movement of travelers and vehicles across the transportation network using multiple modes, including car, transit, bike and walk, on a second-by-second basis. Metropolitan planners must plan growth of their cities according to the stringent transportation system planning requirements of the Interniodal Surface Transportation Efficiency Act of 1991, the Clean Air Act Amendments of 1990 and other similar laws and regulations. These require each state and its metropotitan regions to work together to develop short and long term transportation improvement plans. The plans must (1) estimate the future transportation needs for travelers and goods movements, (2) evaluate ways to manage and reduce congestion, (3) examine the effectiveness of building new roads and transit systems, and (4) limit the environmental impact of the various strategies. The needed consistent and accurate transportation improvement plans require an analytical capability that properly accounts for travel demand, human behavior, traffic and transit operations, major investments, and environmental effects. Other existing planning tools use aggregated information and representative behavior to predict average response and average use of transportation facilities. They do not

  17. Space-charge and emittance blowup in linacs

    SciTech Connect (OSTI)

    Jameson, R.A.

    1982-01-01

    Recent work leading to better understanding of beam emittance under space-charge conditions in linear transport and accelerating channels is reviewed. Some practical considerations are outlined for minimizing emittance growth by properly matching the input beam, including equipartitioning the energy balance, and by avoiding certain areas of tune-shift.

  18. BEAM TRANSPORT AND STORAGE WITH COLD NEUTRAL ATOMS AND MOLECULES

    SciTech Connect (OSTI)

    Walstrom, Peter L.

    2012-05-15

    A large class of cold neutral atoms and molecules is subject to magnetic field-gradient forces. In the presence of a field, hyperfine atomic states are split into several Zeeman levels. The slopes of these curves vs. field are the effective magnetic moments. By means of optical pumping in a field, Zeeman states of neutral lithium atoms and CaH molecules with effective magnetic moments of nearly {+-} one Bohr magneton can be selected. Particles in Zeeman states for which the energy increases with field are repelled by increasing fields; particles in states for which the energy decreases with field are attracted to increasing fields. For stable magnetic confinement, field-repelled states are required. Neutral-particle velocities in the present study are on the order of tens to hundreds of m/s and the magnetic fields needed for transport and injection are on the order of in the range of 0.01-1T. Many of the general concepts of charged-particle beam transport carry over into neutral particle spin-force optics, but with important differences. In general, the role of bending dipoles in charged particle optics is played by quadrupoles in neutral particle optics; the role of quadrupoles is played by sextupoles. The neutralparticle analog of charge-exchange injection into storage rings is the use of lasers to flip the state of particles from field-seeking to field-repelled. Preliminary tracking results for two neutral atom/molecule storage ring configurations are presented. It was found that orbit instabilities limit the confinment time in a racetrack-shaped ring with discrete magnetic elements with drift spaces between them; stable behavior was observed in a toroidal ring with a continuous sextupole field. An alternative concept using a linear sextupole or octupole channel with solenoids on the ends is presently being considered.

  19. Car Charging Group Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Car Charging Group, Inc. Place: Miami Beach, Florida Product: Miami Beach, USA based installer of plug-in vehicle charge equipment. References: Car Charging Group,...

  20. Workplace Charging Challenge Progress Update 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Progress Update 2014: Employers Take Charge Available at energy.goveerevehiclesev-everywhere-workplace-charging-challenge Workplace Charging Challenge 5 Cumulative...

  1. Workplace Charging Challenge Summit 2014: Agenda | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda Workplace Charging Challenge Summit 2014: Agenda Final Agenda for the 2014 Workplace Charging Challenge Summit PDF icon 2014 Workplace Charging Challenge Summit Agenda More ...

  2. Workplace Charging Challenge Partner: OSRAM SYLVANIA | Department...

    Broader source: Energy.gov (indexed) [DOE]

    ChargePoint and SYLVANIA Lighting Services Announce Reseller Agreement for Electric Vehicle Charging Stations in United States Campbell, CA and Danvers, MA - ChargePoint, the ...

  3. High resolution printing of charge

    DOE Patents [OSTI]

    Rogers, John; Park, Jang-Ung

    2015-06-16

    Provided are methods of printing a pattern of charge on a substrate surface, such as by electrohydrodynamic (e-jet) printing. The methods relate to providing a nozzle containing a printable fluid, providing a substrate having a substrate surface and generating from the nozzle an ejected printable fluid containing net charge. The ejected printable fluid containing net charge is directed to the substrate surface, wherein the net charge does not substantially degrade and the net charge retained on the substrate surface. Also provided are functional devices made by any of the disclosed methods.

  4. The impact of disorder on charge transport in three dimensional...

    Office of Scientific and Technical Information (OSTI)

    OSTI Identifier: 22308157 Resource Type: Journal Article Resource Relation: Journal Name: Journal of Applied Physics; Journal Volume: 116; Journal Issue: 16; Other Information: (c) ...

  5. Charge Transport Across Insulating Self-Assembled Mono layers...

    Office of Scientific and Technical Information (OSTI)

    Number: SC0000989 Resource Type: Journal Article Resource Relation: Journal Name: ACS Nano; Journal Volume: 8; Related Information: CBES partners with Northwestern University...

  6. Influence of Topological Spin Fluctuations on Charge Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Foundation, Princeton University, and U.S. Department of Energy, Office of Basic Energy Sciences (BES). Operation of the ALS is supported by BES. Publication about...

  7. Influence of Topological Spin Fluctuations on Charge Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    detecting the long-sought resonating valence bond (RVB) state of matter proposed by Philip Anderson of Princeton University in 1973. Researchers from Princeton University and...

  8. Charge Transport in Thin Film Ionomers | Argonne Leadership Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characters Characters Meet the characters of the game! Meet the characters of the game! Dr Raoul Fernandez's profile Helena Edison's profile Jerome Zabel's profile Nancy Sanders' profile Roc Bridges' profile Facility

    Model of a thin film Nafion ionomer (green translucent surface) in a fuel cell membrane/catalyst interface Model of a thin film Nafion ionomer (green translucent surface) in a fuel cell membrane/catalyst interface that forms interfaces with both the electrode and air (bottom

  9. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Home/Transportation Energy CRF_climatechange Permalink Gallery Understanding Hazardous Combustion Byproducts Reduces Factors Impacting Climate Change CRF, Global Climate & Energy, News, News & Events, Transportation Energy Understanding Hazardous Combustion Byproducts Reduces Factors Impacting Climate Change By Micheal Padilla Researchers at Sandia's Combustion Research Facility are developing the understanding necessary to build cleaner combustion technologies that will in turn

  10. Charged pion production in $\

    SciTech Connect (OSTI)

    Eberly, B.; et al.

    2015-11-23

    Charged pion production via charged-current νμ interactions on plastic scintillator (CH) is studied using the MINERvA detector exposed to the NuMI wideband neutrino beam at Fermilab. Events with hadronic invariant mass W < 1.4 GeV and W < 1.8 GeV are selected in separate analyses: the lower W cut isolates single pion production, which is expected to occur primarily through the Δ(1232) resonance, while results from the higher cut include the effects of higher resonances. Cross sections as functions of pion angle and kinetic energy are compared to predictions from theoretical calculations and generator-based models for neutrinos ranging in energy from 1.5–10 GeV. The data are best described by calculations which include significant contributions from pion intranuclear rescattering. As a result, these measurements constrain the primary interaction rate and the role of final state interactions in pion production, both of which need to be well understood by neutrino oscillation experiments.

  11. Charged pion production in $$\

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Eberly, B.; et al.

    2015-11-23

    Charged pion production via charged-current νμ interactions on plastic scintillator (CH) is studied using the MINERvA detector exposed to the NuMI wideband neutrino beam at Fermilab. Events with hadronic invariant mass W < 1.4 GeV and W < 1.8 GeV are selected in separate analyses: the lower W cut isolates single pion production, which is expected to occur primarily through the Δ(1232) resonance, while results from the higher cut include the effects of higher resonances. Cross sections as functions of pion angle and kinetic energy are compared to predictions from theoretical calculations and generator-based models for neutrinos ranging in energymore » from 1.5–10 GeV. The data are best described by calculations which include significant contributions from pion intranuclear rescattering. As a result, these measurements constrain the primary interaction rate and the role of final state interactions in pion production, both of which need to be well understood by neutrino oscillation experiments.« less

  12. Distinct exciton dissociation behavior of organolead trihalide perovskite and excitonic semiconductors studied in a same device

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Miao; Bi, Cheng; Yuan, Yongbo; Xiao, Zhengguo; Dong, Qingfeng; Shao, Yuchuan; Huang, Jinsong

    2015-01-15

    The nonexcitonic character for organometal trihalide perovskites is demonstrated by examining the field-dependent exciton dissociation behavior. Moreover, it is found that photogenerated excitons can be effectively dissociated into free charges inside perovskite without the assistance of charge extraction layer or external field, which is a stark contrast to the charge-separation behavior in excitonic materials in the same photovoltaic operation system.

  13. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Kintner-Meyer, Michael C. W.; Hammerstrom, Donald J.; Pratt, Richard M.

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  14. Air Transport Optimization Model | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACAir Transport Optimization Model content top Network Optimization Models (RNAS and ATOM) Posted by Admin on Mar 1, 2012 in | Comments 0 comments Many critical infrastructures can be represented by a network of interconnected nodes and links. Mathematically sound nonlinear optimization techniques can then be applied to these networks to understand their behavior under normal and disrupted situations. Network optimization models are particularly useful for evaluating transportation system

  15. Workplace Charging Challenge Progress Update 2014: Employers Take Charge

    Broader source: Energy.gov [DOE]

    The Workplace Charging Challenge Progress Update 2014 highlights the progress of the Challenge and its partners as determined through the annual partner survey.

  16. Surface charge compensation for a highly charged Ion emissionmicroscope

    SciTech Connect (OSTI)

    McDonald, J.W.; Hamza, A.V.; Newman, M.W.; Holder, J.P.; Schneider, D.H.G.; Schenkel, T.

    2003-04-01

    A surface charge compensation electron flood gun has been added to the Lawrence Livermore National Laboratory (LLNL) highly charged ion (HCI) emission microscope. HCI surface interaction results in a significant charge residue being left on the surface of insulators and semiconductors. This residual charge causes undesirable aberrations in the microscope images and a reduction of the Time-Of-Flight (TOF) mass resolution when studying the surfaces of insulators and semiconductors. The benefits and problems associated with HCI microscopy and recent results of the electron flood gun enhanced HCI microscope are discussed.

  17. Workplace Charging: Tips to Install Charging Stations at your...

    Broader source: Energy.gov (indexed) [DOE]

    by choosing progressive facilities that offer state-of-the-art technologies such as plug-in electric vehicle (PEV) charging stations (or electric vehicle supply equipment). ...

  18. Workplace Charging Challenge: Higher Education PEV Charging Webinar

    Broader source: Energy.gov [DOE]

    Review the slides from our webinar which highlighted workplace charging on higher education campuses across the country.

  19. AVTA: ChargePoint America Recovery Act Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    through the Chargepoint America project, which deployed 4,600 public and home charging stations throughout the U.S. This research was conducted by Idaho National Laboratory. ...

  20. ADA Requirements for Workplace Charging Installation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    ADA Requirements for Workplace Charging Installation More Documents & Publications Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan Workplace Charging...

  1. Workplace Charging Challenge Partner: University of California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California, Santa Barbara Workplace Charging Challenge Partner: University of California, Santa Barbara Workplace Charging Challenge Partner: University of California, Santa ...

  2. Workplace Charging Challenge Partner: Southern California Edison...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California Edison Workplace Charging Challenge Partner: Southern California Edison Workplace Charging Challenge Partner: Southern California Edison Joined the Challenge: February ...

  3. Explosive bulk charge

    SciTech Connect (OSTI)

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  4. Transportation | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation NREL's transportation infrastructure and programs are designed to significantly reduce petroleum use campus-wide. This infographic shows NREL's FY2015 fleet performance and fleet vehicle history compared to baseline FY 2005 and FY 2014. Petroleum fuel use decreased 28% from 2014 and increased 17% from baseline 2005. Alternative fuel use increased 53% from 2014 and increased 127% from baseline 2005. In baseline 2005, the fleet used 6,521 gasoline gallon equivalent (GGE) of E-85, in

  5. TRANSPORTATION OPTIONS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRANSPORTATION OPTIONS The Pittsburgh Airport Marriott provides complimentary shuttle service. The hotel asks all guests arriving at the Pittsburgh International Airport to collect luggage in the baggage claim area of the airport and then call for the shuttle at 412-788- 8800. Let the Hotel Operator know that you have collected your luggage and have a reservation at the Marriott and need transportation from the airport. The Hotel Operator will instruct the guest which door to exit, which curb to

  6. Gated charged-particle trap

    DOE Patents [OSTI]

    Benner, W.H.

    1999-03-09

    The design and operation of a new type of charged-particle trap provides simultaneous measurements of mass, charge, and velocity of large electrospray ions. The trap consists of a detector tube mounted between two sets of center-bored trapping plates. Voltages applied to the trapping plates define symmetrically-opposing potential valleys which guide axially-injected ions to cycle back and forth through the charge-detection tube. A low noise charge-sensitive amplifier, connected to the tube, reproduces the image charge of individual ions as they pass through the detector tube. Ion mass is calculated from measurement of ion charge and velocity following each passage through the detector. 5 figs.

  7. High dynamic range charge measurements

    DOE Patents [OSTI]

    De Geronimo, Gianluigi

    2012-09-04

    A charge amplifier for use in radiation sensing includes an amplifier, at least one switch, and at least one capacitor. The switch selectively couples the input of the switch to one of at least two voltages. The capacitor is electrically coupled in series between the input of the amplifier and the input of the switch. The capacitor is electrically coupled to the input of the amplifier without a switch coupled therebetween. A method of measuring charge in radiation sensing includes selectively diverting charge from an input of an amplifier to an input of at least one capacitor by selectively coupling an output of the at least one capacitor to one of at least two voltages. The input of the at least one capacitor is operatively coupled to the input of the amplifier without a switch coupled therebetween. The method also includes calculating a total charge based on a sum of the amplified charge and the diverted charge.

  8. Voltage Dependent Charge Storage Modes and Capacity in Subnanometer Pores

    SciTech Connect (OSTI)

    Qiao, Rui; Meunier, V.; Huang, Jingsong; Wu, Peng; Sumpter, Bobby G

    2012-01-01

    Using molecular dynamics simulations, we show that charge storage in subnanometer pores follows a distinct voltage-dependent behavior. Specifically, at lower voltages, charge storage is achieved by swapping co-ions in the pore with counterions in the bulk electrolyte. As voltage increases, further charge storage is due mainly to the removal of co-ions from the pore, leading to a capacitance increase. The capacitance eventually reaches a maximum when all co-ions are expelled from the pore. At even higher electrode voltages, additional charge storage is realized by counterion insertion into the pore, accompanied by a reduction of capacitance. The molecular mechanisms of these observations are elucidated and provide useful insight for optimizing energy storage based on supercapacitors.

  9. Black hole evaporation in a noncommutative charged Vaidya model

    SciTech Connect (OSTI)

    Sharif, M. Javed, W.

    2012-06-15

    We study the black hole evaporation and Hawking radiation for a noncommutative charged Vaidya black hole. For this purpose, we determine a spherically symmetric charged Vaidya model and then formulate a noncommutative Reissner-Nordstroem-like solution of this model, which leads to an exact (t - r)-dependent metric. The behavior of the temporal component of this metric and the corresponding Hawking temperature are investigated. The results are shown in the form of graphs. Further, we examine the tunneling process of charged massive particles through the quantum horizon. We find that the tunneling amplitude is modified due to noncommutativity. Also, it turns out that the black hole evaporates completely in the limits of large time and horizon radius. The effect of charge is to reduce the temperature from a maximum value to zero. We note that the final stage of black hole evaporation is a naked singularity.

  10. Charge exchange molecular ion source

    DOE Patents [OSTI]

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  11. Workplace Charging Toolkit: Example Events

    Broader source: Energy.gov [DOE]

    This section provides links to previous successful workplace charging events. These link directly to the organization’s website and contain event agendas and presentation materials.

  12. Transportation Energy Futures Analysis Snapshot

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  13. Means and method for the focusing and acceleration of parallel beams of charged particles

    DOE Patents [OSTI]

    Maschke, Alfred W.

    1983-07-05

    A novel apparatus and method for focussing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The quadrupole arrays may comprise electrodes which are shared by two or more quadrupoles. Such quadrupole arrays are particularly adapted to providing strong focussing forces for high current, high brightness, beams of charged particles, said beams further comprising a plurality of parallel beams, or beamlets, each such beamlet being focussed by one quadrupole of the array. Such arrays may be incorporated in various devices wherein beams of charged particles are accelerated or transported, such as linear accelerators, klystron tubes, beam transport lines, etc.

  14. NREL: Transportation Research - Transportation News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation News The following news stories highlight transportation research at NREL. August 25, 2016 NREL and NASA Receive Regional FLC Award for Notable Technology NASA Johnson Space Center (JSC) and the National Renewable Energy Laboratory (NREL) were selected as 2016 recipients of a Federal Laboratory Consortium (FLC) Mid-Continent Regional Award, for their notable technology development of the patented Battery Internal Short-Circuit (ISC) Device. August 25, 2016 NREL Helps the National

  15. What kind of charging infrastructure do Nissan Leaf drivers in The EV Project use?

    SciTech Connect (OSTI)

    Shawn Salisbury

    2014-09-01

    This document will describe the charging behavior of Nissan Leaf battery electric vehicles that were enrolled in the EV Project. It will include aggregated data from several thousand vehicles regarding time-of-day, power level, and location of charging and driving events. This document is a white paper that will be published on the INL AVTA website.

  16. Energy Department Partners with NESCAUM to Expand Electric Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efforts | Department of Energy Partners with NESCAUM to Expand Electric Transportation Efforts Energy Department Partners with NESCAUM to Expand Electric Transportation Efforts November 9, 2015 - 12:00pm Addthis This electric vehicle charging station at the Charles Hotel in Cambridge, Massachusetts, was one of the first charging stations in the state. Massachusetts is a member of NESCAUM and is part of the a multi-state zero emission vehicle memorandum of understanding committing these

  17. How Mixing Tetraglyme with Ionic Liquid Changes Volumetric and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Properties - Joint Center for Energy Storage Research April 1, 2016, Research Highlights How Mixing Tetraglyme with Ionic Liquid Changes Volumetric and Transport Properties Solvent models with opposite charges have completely different solvation structure in their mixtures with ionic liquid. Scientific Achievement Charge localization of the solvent molecules affects the liquid phase structure and transport properties in electrolyte solutions. Significance and Impact Classical molecular

  18. The Role of Fullerene Mixing Behavior in the Performance of Organic Rhotovoltaics: PCBM in Low-Bandgap Polymers.

    SciTech Connect (OSTI)

    Chen, Huipeng; Peet, Jeff; Hu, Sheng; Azoulay, Jason; Bazan, Guillermo; Dadmun, Mark D

    2014-01-01

    This manuscript reports the mixing behavior, interdiffusion, and depth profile of 1-[3-(methoxycarbonyl)propyl]-1-phenyl-[6,6]C 61 (PCBM):low-bandgap (LBG) polymer thin fi lms that are formed by thermally annealing initial bilayers. The extent of mixing of PCBM is higher in polymers that include the 2,1,3-benzothiadiazole (BT) unit than in polymers that incorporate the 2,1,3-benzooxadiazole (BO) unit. This difference is ascribed to the enhanced mixing behavior of PCBM with the benzothiadiazole functionality than with benzooxadiazole functionality, which is attributed to preferred intermolecular interactions. The increased polymer/fullerene mixing is found to be crucial for optimal device performance. A decrease of polymer/fullerene mixing reduces the donor/acceptor interface, which lowers the probability of exciton dissociation and charge generation. Moreover, low PCBM mixing provides limited pathways for electron transport out of a miscible region, due to long distances between adjacent PCBM in such a miscible phase. This inhibits electron transport and increases the recombination of free charge carriers, resulting in a decrease in short circuit current and device performance. These results further exemplify the importance of the thermodynamic mixing behavior of the polymer:fullerene pair in designing next-generation conjugated polymers for organic photovoltaic (OPV) applications, as this controls the fi nal morphology of the OPV active layer.

  19. Abnormal bipolar resistive switching behavior in a Pt/GaO{sub 1.3}/Pt structure

    SciTech Connect (OSTI)

    Guo, D. Y.; Wu, Z. P.; Zhang, L. J.; Yang, T.; Hu, Q. R.; Lei, M.; Tang, W. H. E-mail: pgli@zstu.edu.cn; Li, P. G. E-mail: pgli@zstu.edu.cn; Li, L. H.

    2015-07-20

    A stable and repeatable abnormal bipolar resistive switching behavior was observed in a Pt/GaO{sub 1.3}/Pt sandwich structure without an electroforming process. The low resistance state (LRS) and the high resistance state (HRS) of the device can be distinguished clearly and be switched reversibly under a train of the voltage pulses. The LRS exhibits a conduction of electron tunneling, while the HRS shows a conduction of Schottky-type. The observed phenomena are considered to be related to the migration of oxygen vacancies which changes the space charge region width of the metal/semiconductor interface and results in a different electron transport mechanism.

  20. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy admin 2015-05-14T22:34:50+00:00 Transportation Energy The national-level objective for the future is to create a carbon-neutral fleet that is powered by low-carbon US sources. Sandia delivers advanced technologies and design tools to the broad transportation sector in the following areas: Predictive Simulation of Engines Fuel sprays and their transition from the liquid to gas phase and computationally tractable models that capture the physics of combustion. Convergence of Biofuels and

  1. Stratified charge internal combustion engine

    SciTech Connect (OSTI)

    Skopil, A.O.

    1991-01-01

    This patent describes an internal combustion engine. It comprises: a main cylinder, a main piston within the main cylinder, and means for delivering a combustible charge into the main cylinder; a smaller idle cylinder, and idle piston within the idle cylinder, and means for delivering a combustible charge into the idle cylinder; an ignition passageway leading from the idle cylinder to the main cylinder; and an ignition device within the ignition passageway operable to ignite a compressed charge discharged by the idle cylinder into the ignition passageway. The passageway being positioned to discharge the ignited compressed charge from the idle cylinder into the main cylinder to ignite the compressed charge within the main cylinder.

  2. reflecting-behavioral-processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reflecting Behavioral Processes In Integrated Models Of Activity-Travel Demand And Dynamic Network Supply: A Novel Event-Based Framework Presentation at Argonne TRACC March 16, 2012 10:00 AM(CDT) TRACC Conference Room: Building 222, Room D-233 Dr. Karthik Charan Konduri School of Sustainable Energy and the Built Environment Arizona State University Abstract The developments in the microsimulation modeling of two key components of the transportation system, namely, activity-travel demand and

  3. Channeling problem for charged particles produced by confining environment

    SciTech Connect (OSTI)

    Chuluunbaatar, O.; Gusev, A. A.; Derbov, V. L.; Krassovitskiy, P. M.; Vinitsky, S. I.

    2009-05-15

    Channeling problem produced by confining environment that leads to resonance scattering of charged particles via quasistationary states imbedded in the continuum is examined. Nonmonotonic dependence of physical parameters on collision energy and/or confining environment due to resonance transmission and total reflection effects is confirmed that can increase the rate of recombination processes. The reduction of the model for two identical charged ions to a boundary problem is considered together with the asymptotic behavior of the solution in the vicinity of pair-collision point and the results of R-matrix calculations. Tentative estimations of the enhancement factor and the total reflection effect are discussed.

  4. Charge-pump voltage converter

    DOE Patents [OSTI]

    Brainard, John P.; Christenson, Todd R.

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  5. Low energy charged particles interacting with amorphous solid water layers

    SciTech Connect (OSTI)

    Horowitz, Yonatan; Asscher, Micha

    2012-04-07

    The interaction of charged particles with condensed water films has been studied extensively in recent years due to its importance in biological systems, ecology as well as interstellar processes. We have studied low energy electrons (3-25 eV) and positive argon ions (55 eV) charging effects on amorphous solid water (ASW) and ice films, 120-1080 ML thick, deposited on ruthenium single crystal under ultrahigh vacuum conditions. Charging the ASW films by both electrons and positive argon ions has been measured using a Kelvin probe for contact potential difference (CPD) detection and found to obey plate capacitor physics. The incoming electrons kinetic energy has defined the maximum measurable CPD values by retarding further impinging electrons. L-defects (shallow traps) are suggested to be populated by the penetrating electrons and stabilize them. Low energy electron transmission measurements (currents of 0.4-1.5 {mu}A) have shown that the maximal and stable CPD values were obtained only after a relatively slow change has been completed within the ASW structure. Once the film has been stabilized, the spontaneous discharge was measured over a period of several hours at 103 {+-} 2 K. Finally, UV laser photo-emission study of the charged films has suggested that the negative charges tend to reside primarily at the ASW-vacuum interface, in good agreement with the known behavior of charged water clusters.

  6. Workplace Charging Challenge Progress Update 2014: Employers Take Charge

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Progress Update 2014: Employers Take Charge U.S. Department of Energy's EV Everywhere Workplace 2 As the Workplace Charging Challenge nears its second anniversary, I am pleased to reflect on the continued rapid advancement of plug-in electric vehicles (PEVs), the exciting progress to date of our partners and ambassadors, and the phenomenal growth in the number of organizations that have joined the Challenge since its inception. What began as a commitment by 13 founding employer partners has now

  7. Recovery Act Final Project Report -- Transportation Electrification

    SciTech Connect (OSTI)

    Gogineni, Kumar

    2013-12-31

    ChargePoint America demonstrated the viability, economic and environmental benefits of an electric vehicle-charging infrastructure. Electric vehicles (EVs) and plug-in electric vehicles (PHEVs) arrived in late 2010, there was a substantial lack of infrastructure to support these vehicles. ChargePoint America deployed charging infrastructure in ten (10) metropolitan regions in coordination with vehicle deliveries targeting those same regions by our OEM partners: General Motors, Nissan, Fisker Automotive, Ford, smart USA, and BMW. The metropolitan regions include Central Texas (Austin/San Antonio), Bellevue/Redmond (WA), Southern Michigan, Los Angeles area (CA), New York Metro (NY), Central Florida (Orlando/Tampa), Sacramento (CA), San Francisco/San Jose (CA), Washington DC and Boston (MA). ChargePoint America installed more than 4,600 Level 2 (220v) SAE J1772™ UL listed networked charging ports in home, public and commercial locations to support approximately 2000 program vehicles. ChargePoint collected data to analyze how individuals, businesses and local governments used their vehicles. Understanding driver charging behavior patterns will provide the DoE with critical information as EV adoption increases in the United States.

  8. U.S. Department of Energy's EV Everywhere Workplace Charging Challenge, Mid-Program Review: Employees Plug In

    SciTech Connect (OSTI)

    2015-12-01

    This Program Review takes an unprecedented look at the state of workplace charging in the United States -- a report made possible by U.S. Department of Energy leadership and valuable support from our partners as they share their progress in developing robust workplace charging programs. Through the Workplace Charging Challenge, more than 250 participants are accelerating the development the nation's worksite PEV charging infrastructure and are supporting cleaner, more convenient transportation options within their communities. Challenge partners are currently providing access to PEV charging stations at more than 440 worksites across the country and are influencing countless other organizations to do the same.

  9. Highly Charged Ion (HCI) Modified Tunnel Junctions

    SciTech Connect (OSTI)

    Pomeroy, J. M.; Grube, H. [Atomic Physics Division, National Institute of Standards and Technology (NIST) 100 Bureau Dr., MS 8423, Gaithersburg, MD 20899-8423 (United States)

    2009-03-10

    The neutralization energy carried by highly charged ions (HCIs) provides an alternative method for localizing energy on a target's surface, producing features and modifying surfaces with fluences and kinetic energy damage that are negligible compared to singly ionized atoms. Since each HCI can deposit an enormous amount of energy into a small volume of the surface (e.g., Xe{sup 44+} delivers 51 keV of neutralization energy per HCI), each individual HCI's interaction with the target can produce a nanoscale feature. Many studies of HCI-surface features have characterized some basic principles of this unique ion-surface interaction, but the activity reported here has been focused on studying ensembles of HCI features in ultra-thin insulating films by fabricating multi-layer tunnel junction devices. The ultra-thin insulating barriers allow current to flow by tunneling, providing a very sensitive means of detecting changes in the barrier due to highly charged ion irradiation and, conversely, HCI modification provides a method of finely tuning the transparency of the tunnel junctions that spans several orders of magnitude for devices produced from a single process recipe. Systematic variation of junction bias, temperature, magnetic field and other parameters provides determination of the transport mechanism, defect densities, and magnetic properties of these nano-features and this novel approach to device fabrication.

  10. Transportation Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels DOE would invest $52 million to fund a major fleet transformation at Idaho National Laboratory, along with the installation of nine fuel management systems, purchase of additional flex fuel cars and one E85 ethanol fueling station. Transportation projects, such as the acquisition of highly efficient and alternative-fuel vehicles, are not authorized by ESPC legislation. DOE has twice proportion of medium vehicles and three times as many heavy vehicles as compared to the Federal agency

  11. Electrokinetic concentration of charged molecules

    DOE Patents [OSTI]

    Singh, Anup K.; Neyer, David W.; Schoeniger, Joseph S.; Garguilo, Michael G.

    2002-01-01

    A method for separating and concentrating charged species from uncharged or neutral species regardless of size differential. The method uses reversible electric field induced retention of charged species, that can include molecules and molecular aggregates such as dimers, polymers, multimers, colloids, micelles, and liposomes, in volumes and on surfaces of porous materials. The retained charged species are subsequently quantitatively removed from the porous material by a pressure driven flow that passes through the retention volume and is independent of direction thus, a multi-directional flow field is not required. Uncharged species pass through the system unimpeded thus effecting a complete separation of charged and uncharged species and making possible concentration factors greater than 1000-fold.

  12. Measurements of W Charge Asymmetry

    SciTech Connect (OSTI)

    Holzbauer, J. L.

    2015-10-06

    We discuss W boson and lepton charge asymmetry measurements from W decays in the electron channel, which were made using 9.7 fb$^{-1}$ of RunII data collected by the D0 detector at the Fermilab Tevatron Collider. The electron charge asymmetry is presented as a function of pseudo-rapidity out to |$\\eta$| $\\le$ 3.2, in five symmetric and asymmetric kinematic bins of electron transverse momentum and the missing transverse energy of the event. We also give the W charge asymmetry as a function of W boson rapidity. The asymmetries are compared with next-to-leading order perturbative quantum chromodynamics calculations. These charge asymmetry measurements will allow more accurate determinations of the proton parton distribution functions and are the most precise to date.

  13. Workplace Charging Management Policies: Pricing

    Broader source: Energy.gov [DOE]

    Organizations offering plug-in electric vehicle (PEV) charging at work can benefit from setting clear guidelines in the areas of administration, registration and liability, sharing, and pricing to...

  14. Research in transportation: the shape of the future

    SciTech Connect (OSTI)

    Chenea, P.F.

    1981-01-01

    The individual mobility now enjoyed due to advancements in the transportation sector is being threatened by higher fuel costs and declining petroleum resources. Transportation research approaches must address these problems. Automotive engineers must redesign existing vehicles to make them smaller, lighter, and so more fuel efficient. Alternatives to the gasoline engine, such as gas turbine and stratified charge engines, must be commercialized.

  15. Measuring momentum for charged particle tomography

    DOE Patents [OSTI]

    Morris, Christopher; Fraser, Andrew Mcleod; Schultz, Larry Joe; Borozdin, Konstantin N.; Klimenko, Alexei Vasilievich; Sossong, Michael James; Blanpied, Gary

    2010-11-23

    Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

  16. Workplace Charging Equipment and Installation Costs | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Charging equipment costs depend on the type of charging station you decide to install in your workplace. Level 1 (300-1,500) and Level 2 (400-6,500) charging stations are ...

  17. Workplace Charging Challenge Partner: American Lung Association...

    Energy Savers [EERE]

    The ALAC was the first organization to install a charging station through the Charge Ahead Colorado grant program in 2013. The ALAC offers two charging stations to employees and ...

  18. Quantum spin transport through magnetic superatom dimer (Cs{sub 8}V-Cs{sub 8}V)

    SciTech Connect (OSTI)

    Zhu Lin; Khanna, Shiv N.

    2012-10-28

    Theoretical studies of the spin transport through a magnetic superatom dimer (Cs{sub 8}V)-(Cs{sub 8}V) have been carried out within a density functional theory combined with nonequilibrium Green's-function formalism. It is shown that the electronic transport is sensitive to the binding site as well as the contact distance between the dimer and the electrode, and that the conductance at zero bias exhibits an oscillatory behavior as a function of the contact distance. The conductance in ferromagnetic state shows an unusually high spin polarization that exceeds 80% at large separations. The I-V curve shows negative differential resistance for specific contact distances, whose origin lies in the shift of frontier energy levels as well as the charged state of the superatom, under external bias.

  19. AVTA: Bidirectional Fast Charging Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report is an analysis of bi-directional fast charging, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  20. Vehicle Technologies Office: Workplace Charging Challenge Reports |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Workplace Charging Challenge Reports Vehicle Technologies Office: Workplace Charging Challenge Reports The EV Everywhere Workplace Charging Challenge aims to have 500 U.S. employers offering workplace charging by 2018. These reports describe the progress made in the Challenge. In 2015, the Workplace Charging Challenge celebrated a major milestone - it reached the halfway point to its goal of 500 Challenge partners committed to installing workplace charging by 2018. More

  1. PosiCharge | Open Energy Information

    Open Energy Info (EERE)

    Product: PosiCharge brings to market a next-generation intelligent rapid charging battery system for industrial and other electric vehicle applications. References:...

  2. American Battery Charging Inc | Open Energy Information

    Open Energy Info (EERE)

    Battery Charging Inc Jump to: navigation, search Name: American Battery Charging Inc Place: Smithfield, Rhode Island Zip: 2917 Product: Manufacturer of industrial and railroad...

  3. Vehicle Technologies Office: AVTA - Electric Vehicle Charging...

    Energy Savers [EERE]

    and manufacturers to test different types and several different models of EVSE in the laboratory, including AC Level 1, AC Level 2, DC fast charging, and wireless charging. ...

  4. Workplace Charging Toolkit: Workshop Outreach Presentation Template...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outreach Presentation Template Workplace Charging Toolkit: Workshop Outreach Presentation Template Educate workshop attendees and employers about the benefits of workplace charging ...

  5. Spacecraft surface charging within geosynchronous orbit observed...

    Office of Scientific and Technical Information (OSTI)

    Title: Spacecraft surface charging within geosynchronous orbit observed by the Van Allen Probes: SPACECRAFT CHARGING ON VAN ALLEN PROBES Authors: Sarno-Smith, Lois K. 1 ; Larsen, ...

  6. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers A Spintronic Semiconductor with Selectable Charge Carriers Print Wednesday, 28 August 2013 00:00 Accentuating the ...

  7. Bringing Your Workplace Charging Story to Life

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    charging workshops * Other community events 10 Shannon.shea@ee.doe.gov http:energy.goveerevehiclesvehicle-technologies-office-ev-everywhere- workplace-charging-challenge 11...

  8. Workplace Charging Challenge Partner: Pepco Holdings, Inc. |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Through the Workplace Charging Challenge, PHI is evaluating its employees charging needs. Meet Challenge Partners More Information PHI's Sustainability and Corporate Citizenship ...

  9. Workplace Charging Toolkit: Press Release Template

    Broader source: Energy.gov [DOE]

    Raise the profile of employers in the community who are offering workplace charging and encourage the adoption of workplace charging among other employers through this press release template.

  10. Workplace Charging Challenge: 2016 Annual Survey Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    Through the Workplace Charging Challenge, the U.S. Department of Energy (DOE) aims to provide employers with specialized resources, expertise, and support to incorporate workplace charging programs...

  11. Sample Employee Survey for Workplace Charging Planning

    Broader source: Energy.gov (indexed) [DOE]

    WORKPLACE CHARGING CHALLENGE Sample Employee Survey for Workplace Charging Planning ... Your responses to this survey will be used to determine employee interest in this benefit. ...

  12. Workplace Charging Toolkit: Workshop Invitation Template | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Invitation Template Workplace Charging Toolkit: Workshop Invitation Template Engage possible workplace charging event attendees with this template invitation. File General Workshop ...

  13. Workplace Charging Challenge Partner: Caltech | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    other parking structures on campus. Meet Challenge Partners More Information Caltech Adaptive Charging Network Dashboard Caltech Electric Charging Stations Caltech Sustainability

  14. Workplace Charging Challenge Partner: University of Maryland...

    Energy Savers [EERE]

    The PEV charging stations help UM BWMC to encourage its employees and visitors to adopt "green" lifestyle habits. Meet Challenge Partners Worplace Charging Challenge Committed ...

  15. Workplace Charging Management Policies: Administration | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    workplace charging administration is to designate a responsible individual or group for ongoing operation and maintenance issues of the charging stations and any related costs. ...

  16. Workplace Charging Challenge Partner: NRG Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NRG offers workplace charging to its employees, alongside a corporate incentive for employees to drive plug-in electric vehicles (PEVs). NRG employee charging stations are ...

  17. Workplace Charging Challenge Partner: Argonne National Laboratory...

    Energy Savers [EERE]

    Argonne provides its employees with access to electric vehicle charging stations for a nominal fee. Program participants are able to reserve charging time at plug-in stations ...

  18. Distributed Solar Photovoltaics for Electric Vehicle Charging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Controlled charging technology can be employed in the absence of solar, as well as when EV charging stations are combined with distributed solar technology. Modeling and limited ...

  19. Workplace Charging Challenge Partner: Purchase College, State...

    Energy Savers [EERE]

    Purchase College, State University of New York can accommodate six vehicles at four charging stations throughout campus. In addition to the two charging stations installed in 2012, ...

  20. Workplace Charging Challenge Partner: Dominion Resources, Inc...

    Broader source: Energy.gov (indexed) [DOE]

    Dominion's employee workplace charging pilot program furthers its commitment to alternative fuels. The pilot currently consists of two lockable Level 1 charging stations, with ...

  1. Workplace Charging Challenge Partner: Bloomberg LP | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bloomberg currently has two charging stations available and has upgraded the facility's electrical service to accommodate additional charging stations when employee demand ...

  2. Workplace Charging Station Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As your organization moves forward with workplace charging, it is important to understand the fundamental differences and similarities between the types of charging stations, ...

  3. Workplace Charging Challenge Partner: Legrand | Department of...

    Energy Savers [EERE]

    to its Fairfield, NJ, and Syracuse, NY locations. Legrand has installed six PEV charging stations to date. Multimedia Watch a video about Workplace Charging Partner Legrand. ...

  4. Workplace Charging Challenge: Ambassadors | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Energy's Website Charging Stations Next Steps - Explore the steps businesses can take to promote and manage their newly installed charging station. Employer Case Studies: ...

  5. Workplace Charging Challenge Partner: Baxter International Inc...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    At its Illinois locations, Baxter has installed four duel head Level 2 plug-in electric vehicle (PEV) charging stations, capable of charging eight vehicles simultaneously. With ...

  6. workplace Charging Challenge Partner: Advanced Micro Devices...

    Energy Savers [EERE]

    its commuter benefits to include workplace plug-in electric vehicle (PEV) charging, making AMD the first company in Austin, Texas to install multiple PEV charging stations. ...

  7. Workplace Charging Challenge Partner: Lewis & Clark Community...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lewis & Clark views plug-in electric vehicle workplace charging as a key component of reducing commuter emissions. The College has installed two charging stations at its main ...

  8. Defect-mediated transport and electronic irradiation effect in individual domains of CVD-grown monolayer MoS2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Durand, Corentin; Zhang, Xiaoguang; Fowlkes, Jason; Najmaei, Sina; Lou, Jun; Li, An -Ping

    2015-01-16

    We study the electrical transport properties of atomically thin individual crystalline grains of MoS2 with four-probe scanning tunneling microscopy. The monolayer MoS2 domains are synthesized by chemical vapor deposition on SiO2/Si substrate. Temperature dependent measurements on conductance and mobility show that transport is dominated by an electron charge trapping and thermal release process with very low carrier density and mobility. The effects of electronic irradiation are examined by exposing the film to electron beam in the scanning electron microscope in an ultrahigh vacuum environment. The irradiation process is found to significantly affect the mobility and the carrier density of themore » material, with the conductance showing a peculiar time-dependent relaxation behavior. It is suggested that the presence of defects in active MoS2 layer and dielectric layer create charge trapping sites, and a multiple trapping and thermal release process dictates the transport and mobility characteristics. The electron beam irradiation promotes the formation of defects and impact the electrical properties of MoS2. Finally, our study reveals the important roles of defects and the electron beam irradiation effects in the electronic properties of atomic layers of MoS2.« less

  9. Transportation Infrastructure

    Office of Environmental Management (EM)

    09 Archive Transportation Fact of the Week - 2009 Archive #603 Where Does Lithium Come From? December 28, 2009 #602 Freight Statistics by Mode, 2007 Commodity Flow Survey December 21, 2009 #601 World Motor Vehicle Production December 14, 2009 #600 China Produced More Vehicles than the U.S. in 2008 December 7, 2009 #599 Historical Trend for Light Vehicle Sales November 30, 2009 #598 Hybrid Vehicle Sales by Model November 23, 2009 #597 Median Age of Cars and Trucks Rising in 2008 November 16, 2009

  10. Announcing $4 Million For Wireless EV Charging | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    charging technology to provide hands-free, automated charging of parked vehicles. Static wireless charging - or wireless charging when the vehicle is parked - can ensure easy...

  11. Charge density stabilised local electron spin pair states in insulating polymers

    SciTech Connect (OSTI)

    Serra, S.; Dissado, L. A.

    2014-12-14

    A model is presented that addresses the energy stability of localized electron states in insulating polymers with respect to delocalized free electron-like states at variable charge densities. The model was derived using an effective Hamiltonian for the total energy of electrons trapped in large polarons and spin-paired bipolarons, which includes the electrostatic interaction between charges that occurs when the charge density exceeds the infinite dilution limit. The phase diagram of the various electronic states with respect to the charge density is derived using parameters determined from experimental data for polyethylene, and it is found that a phase transition from excess charge in the form of stable polarons to a stable state of bipolarons with charge = 2 and spin number S = 0 is predicted for a charge density between 0.2 C/m{sup 3} and ∼2 C/m{sup 3}. This transition is consistent with a change from low mobility charge transport to charge transport in the form of pulses with a mobility orders of magnitude higher that has been observed in several insulating polymers.

  12. Dust acoustic shock waves in two temperatures charged dusty grains

    SciTech Connect (OSTI)

    El-Shewy, E. K.; Abdelwahed, H. G.; Elmessary, M. A.

    2011-11-15

    The reductive perturbation method has been used to derive the Korteweg-de Vries-Burger equation and modified Korteweg-de Vries-Burger for dust acoustic shock waves in a homogeneous unmagnetized plasma having electrons, singly charged ions, hot and cold dust species with Boltzmann distributions for electrons and ions in the presence of the cold (hot) dust viscosity coefficients. The behavior of the shock waves in the dusty plasma has been investigated.

  13. Alternator control for battery charging

    SciTech Connect (OSTI)

    Brunstetter, Craig A.; Jaye, John R.; Tallarek, Glen E.; Adams, Joseph B.

    2015-07-14

    In accordance with an aspect of the present disclosure, an electrical system for an automotive vehicle has an electrical generating machine and a battery. A set point voltage, which sets an output voltage of the electrical generating machine, is set by an electronic control unit (ECU). The ECU selects one of a plurality of control modes for controlling the alternator based on an operating state of the vehicle as determined from vehicle operating parameters. The ECU selects a range for the set point voltage based on the selected control mode and then sets the set point voltage within the range based on feedback parameters for that control mode. In an aspect, the control modes include a trickle charge mode and battery charge current is the feedback parameter and the ECU controls the set point voltage within the range to maintain a predetermined battery charge current.

  14. Charged particle mobility refrigerant analyzer

    DOE Patents [OSTI]

    Allman, S.L.; Chunghsuan Chen; Chen, F.C.

    1993-02-02

    A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.

  15. Charge amplifier with bias compensation

    DOE Patents [OSTI]

    Johnson, Gary W.

    2002-01-01

    An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.

  16. Workplace Charging Challenge: Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partners Workplace Charging Challenge: Partners Use the interactive map and list below to learn more about employers who have joined the U.S. Department of Energy's Workplace Charging Challenge. These employers are providing workplace charging for their employees who drive plug-in electric vehicles. Partners receive assistance from DOE to help them establish and expand workplace charging while ambassador organizations work to promote and support partners' workplace charging efforts across the

  17. Electrostatic wire stabilizing a charged particle beam

    DOE Patents [OSTI]

    Prono, D.S.; Caporaso, G.J.; Briggs, R.J.

    1983-03-21

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  18. Stability of charged thin shells

    SciTech Connect (OSTI)

    Eiroa, Ernesto F.; Simeone, Claudio

    2011-05-15

    In this article we study the mechanical stability of spherically symmetric thin shells with charge, in Einstein-Maxwell and Einstein-Born-Infeld theories. We analyze linearized perturbations preserving the symmetry, for shells around vacuum and shells surrounding noncharged black holes.

  19. What Kind of Charging Infrastructure Do Chevrolet Volt Drivers in The EV Project Use and When Do They Use It?

    SciTech Connect (OSTI)

    Shawn Salisbury

    2014-09-01

    This document will present information describing the charging behavior of Chevrolet Volts that were enrolled in the EV Project. It will included aggregated data from more than 1,800 vehicles regarding locations, power levels, and time-of-day of charging events performed by those vehicles. This document will be published to the INL AVTA website.

  20. AVTA: ChargePoint America Recovery Act Charging Infrastructure Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports describe results of data collected through the Chargepoint America project, which deployed 4,600 public and home charging stations throughout the U.S. This research was conducted by Idaho National Laboratory.

  1. Workplace Charging: Safety and Management Policy For AC Level 1 Charging Receptacles

    Broader source: Energy.gov [DOE]

    Organizations offering plug-in electric vehicle (PEV) charging at AC Level 1 charging receptacles, or wall outlets, can ensure a safe and successful workplace charging experience by considering the...

  2. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Plan June 2005 M.A. Miller Brookhaven National Laboratory Earth System ... (M. Jensen and A. Vogelmann at Brookhaven National Laboratory provided this ...

  3. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2. SUMMARY OF ACRF INFRASTRUCTURE REVIEW PANEL COMMENTS...... 3 2.1 ... of Energy Review of the ACRF: Review Panel ......C.1 iii DOE...

  4. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    001 The Atmospheric Radiation Measurement Program Infrastructure Review Report (AIR): Summary of Recommendations January 2001 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DOE/SC-ARM-0001 The Atmospheric Radiation Measurement Program Infrastructure Review Report (AIR): Summary of Recommendations The Atmospheric Radiation Measurement (ARM) Program Infrastructure Review committee feels that the organization of the ARM

  5. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Mixed-Phase Cloud Microphysics for Global Climate Models First Quarter 2007 ARM Metric Report January 2007 Xiaohong Liu and Steven J. Ghan Pacific Northwest National Laboratory Richland, Washington Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research X. Liu and S.J. Ghan, DOE/SC-ARM-0701 iii Summary Mixed-phase clouds are composed of a mixture of cloud droplets and ice crystals. The partitioning of condensed water into liquid

  6. EV Everywhere: Vehicle Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere: Vehicle Charging EV Everywhere: Vehicle Charging The standard J1772 electric power receptacle (right) can receive power from Level 1 or Level 2 charging equipment. The CHAdeMO DC fast charge receptacle (left) uses a different type of connector. The standard J1772 electric power receptacle (right) can receive power from Level 1 or Level 2 charging equipment. The CHAdeMO DC fast charge receptacle (left) uses a different type of connector. To get the most out of your plug-in electric

  7. Charge symmetry at the partonic level

    SciTech Connect (OSTI)

    Londergan, J. T.; Peng, J. C.; Thomas, A. W.

    2010-07-01

    This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.

  8. Asymmetric Electron Transport at Monolayer-Bilayer Heterojunctions of Epitaxial Graphene

    SciTech Connect (OSTI)

    Li, An-Ping [ORNL] [ORNL; Clark, Kendal W [ORNL] [ORNL; Zhang, Xiaoguang [ORNL] [ORNL; Gu, Gong [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); He, Guowei [Carnegie Mellon University (CMU)] [Carnegie Mellon University (CMU); Feenstra, Randall [Carnegie Mellon University (CMU)] [Carnegie Mellon University (CMU)

    2014-01-01

    The symmetry of the graphene honeycomb lattice is a key element determining many of graphene s unique electronic properties, such as the linear energy-momentum dispersion and the suppressed backscattering 1,2. However, line defects in large-scale epitaxial graphene films, such as grain boundaries, edges, surface steps, and changes in layer thickness, often break the sublatttice symmetry and can impact transport properties of graphene profoundly 3-6. Here we report asymmetric electron transport upon polarity reversal at individual monolayer-bilayer (ML-BL) boundaries in epitaxial graphene on SiC (0001), revealed by scanning tunneling potentiometry. A greater voltage drop is observed when the current flows from BL to ML graphene than in the reverse direction, and the difference remains nearly unchanged with increasing current. This is not a typical nonlinear conductance due to electron transmission through an asymmetric potential. Rather, it indicates the opening of a dynamic energy gap at the Fermi energy due to the Coulomb interaction between the injected nonequilibrium electron density and the pseudospin polarized Friedel oscillation charge density at the boundary. This intriguing heterojunction transport behavior opens a new avenue towards novel quantum functions such as quantum switching.

  9. Transporting particulate material

    DOE Patents [OSTI]

    Aldred, Derek Leslie; Rader, Jeffrey A.; Saunders, Timothy W.

    2011-08-30

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  10. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    SciTech Connect (OSTI)

    Zhu, Xiaoyang

    2014-12-10

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering. Organic semiconductors are emerging as viable materials for low-cost electronics and optoelectronics, such as organic photovoltaics (OPV), organic field effect transistors (OFETs), and organic light emitting diodes (OLEDs). Despite extensive studies spanning many decades, a clear understanding of the nature of charge carriers in organic semiconductors is still lacking. It is generally appreciated that polaron formation and charge carrier trapping are two hallmarks associated with electrical transport in organic semiconductors; the former results from the low dielectric constants and weak intermolecular electronic overlap while the latter can be attributed to the prevalence of structural disorder. These properties have lead to the common observation of low charge carrier mobilities, e.g., in the range of 10-5 - 10-3 cm2/Vs, particularly at low carrier concentrations. However, there is also growing evidence that charge carrier mobility approaching those of inorganic semiconductors and metals can exist in some crystalline organic semiconductors, such as pentacene, tetracene and rubrene. A particularly striking example is single crystal rubrene (Figure 1), in which hole mobilities well above 10 cm2/Vs have been observed in OFETs operating at room temperature. Temperature dependent transport and spectroscopic measurements both revealed evidence of free carriers in rubrene. Outstanding questions are: what are the structural features and physical properties that make rubrene so unique? How do we establish fundamental design principles for the development of other organic semiconductors of high mobility? These questions are critically important but not comprehensive, as the nature of

  11. Transportation Systems Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling TRANSPORTATION SYSTEMS MODELING Overview of TSM Transportation systems modeling research at TRACC uses the TRANSIMS (Transportation Analysis SIMulation System) traffic micro simulation code developed by the U.S. Department of Transportation (USDOT). The TRANSIMS code represents the latest generation of traffic simulation codes developed jointly under multiyear programs by USDOT, the

  12. Free form hemispherical shaped charge

    DOE Patents [OSTI]

    Haselman, L.C. Jr.

    1996-06-04

    A hemispherical shaped charge has been modified such that one side of the hemisphere is spherical and the other is aspherical allowing a wall thickness variation in the liner. A further modification is to use an elongated hemispherical shape. The liner has a thick wall at its pole and a thin wall at the equator with a continually decreasing wall thickness from the pole to the equator. The ratio of the wall thickness from the pole to the equator varies depending on liner material and HE shape. Hemispherical shaped charges have previously been limited to spherical shapes with no variations in wall thicknesses. By redesign of the basic liner thicknesses, the jet properties of coherence, stability, and mass distribution have been significantly improved. 8 figs.

  13. Free form hemispherical shaped charge

    DOE Patents [OSTI]

    Haselman, Jr., Leonard C.

    1996-01-01

    A hemispherical shaped charge has been modified such that one side of the hemisphere is spherical and the other is aspherical allowing a wall thickness variation in the liner. A further modification is to use an elongated hemispherical shape. The liner has a thick wall at its pole and a thin wall at the equator with a continually decreasing wall thickness from the pole to the equator. The ratio of the wall thickness from the pole to the equator varies depending on liner material and HE shape. Hemispherical shaped charges have previously been limited to spherical shapes with no variations in wall thicknesses. By redesign of the basic liner thicknesses, the jet properties of coherence, stability, and mass distribution have been significantly improved.

  14. Self-regulation mechanism for charged point defects in hybrid halide perovskites

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Walsh, Aron; Scanlon, David O.; Chen, Shiyou; Gong, X. G.; Wei, Su -Huai

    2014-12-11

    Hybrid halide perovskites such as methylammonium lead iodide (CH3NH3PbI3) exhibit unusually low free-carrier concentrations despite being processed at low-temperatures from solution. We demonstrate, through quantum mechanical calculations, that an origin of this phenomenon is a prevalence of ionic over electronic disorder in stoichiometric materials. Schottky defect formation provides a mechanism to self-regulate the concentration of charge carriers through ionic compensation of charged point defects. The equilibrium charged vacancy concentration is predicted to exceed 0.4 % at room temperature. Furthermore, this behavior, which goes against established defect conventions for inorganic semiconductors, has implications for photovoltaic performance.

  15. CHARGED PARTICLE MULTIPLICITIES AT BRAHMS.

    SciTech Connect (OSTI)

    DEBBE, R., FOR THE BRAHMS COLLABORATION

    2001-07-30

    This report presents the measurement of charged particle multiplicity densities dN/d{eta} in ultrarelativistic heavy ion collisions as function of {eta} and the centrality of the collisions. This distributions were extracted from data collected by the BRAHMS collaboration during the first RHK run with gold ions at {radical}s{sub NN} = 130A {center_dot} GeV. The analysis method is described and, results are compared to some model predictions.

  16. Charging Graphene for Energy Storage

    SciTech Connect (OSTI)

    Liu, Jun

    2014-10-06

    Since 2004, graphene, including single atomic layer graphite sheet, and chemically derived graphene sheets, has captured the imagination of researchers for energy storage because of the extremely high surface area (2630 m2/g) compared to traditional activated carbon (typically below 1500 m2/g), excellent electrical conductivity, high mechanical strength, and potential for low cost manufacturing. These properties are very desirable for achieving high activity, high capacity and energy density, and fast charge and discharge. Chemically derived graphene sheets are prepared by oxidation and reduction of graphite1 and are more suitable for energy storage because they can be made in large quantities. They still contain multiply stacked graphene sheets, structural defects such as vacancies, and oxygen containing functional groups. In the literature they are also called reduced graphene oxide, or functionalized graphene sheets, but in this article they are all referred to as graphene for easy of discussion. Two important applications, batteries and electrochemical capacitors, have been widely investigated. In a battery material, the redox reaction occurs at a constant potential (voltage) and the energy is stored in the bulk. Therefore, the energy density is high (more than 100 Wh/kg), but it is difficult to rapidly charge or discharge (low power, less than 1 kW/kg)2. In an electrochemical capacitor (also called supercapacitors or ultracapacitor in the literature), the energy is stored as absorbed ionic species at the interface between the high surface area carbon and the electrolyte, and the potential is a continuous function of the state-of-charge. The charge and discharge can happen rapidly (high power, up to 10 kW/kg) but the energy density is low, less than 10 Wh/kg2. A device that can have both high energy and high power would be ideal.

  17. Method for controlled hydrogen charging of metals

    DOE Patents [OSTI]

    Cheng, Bo-Ching (Fremont, CA); Adamson, Ronald B. (Fremont, CA)

    1984-05-29

    A method for controlling hydrogen charging of hydride forming metals through a window of a superimposed layer of a non-hydriding metal overlying the portion of the hydride forming metals to be charged.

  18. CHARGE BOTTLE FOR A MASS SEPARATOR

    DOE Patents [OSTI]

    Davidson, P.H.

    1959-07-01

    Improved mass separator charge bottles are described for containing a dense charge of a chemical compound of copper, nickel, lead or other useful substance which is to be vaporized, and to the method of utilizing such improvcd charge bottles so that the chemical compound is vaporized from the under surface of the charge and thus permits the non-volatile portion thereof to fall to the bottom of the charge bottle where it does not form an obstacle to further evaporation. The charge bottle comprises a vertically disposed cylindrical portion, an inner re-entrant cylindrical portion extending axially and downwardly into the same from the upper end thereof, and evaporative source material in the form of a chemical compound compacted within the upper annular pontion of the charge bottle formed by the re-entrant cylindrical portion, whereby vapor from the chemical compound will pass outwardly from the charge bottle through an apertured closure.

  19. Methods for reduction of charging emissions

    SciTech Connect (OSTI)

    Schuecker, F.J.; Schulte, H.

    1997-12-31

    One of the most critical subjects in coking plants are charging emissions. The paper reviews the systems that have been used over the years to reduce charging emissions. The advantages and disadvantages are summarized for the following systems: Double collecting main with aspiration on both oven sides; Single collecting main with/without aspiration via standpipe, and extraction and cleaning of charging gas on charging car; Single collecting main with aspiration via standpipe and pretreatment of charging gas on the charging car as well as additional stationary exhaust and cleaning of charging gas; Single collecting main with aspiration via single standpipe; and Single collecting main with simultaneous aspiration via two standpipes and a U-tube connecting the oven chamber with the neighboring oven. The paper then briefly discusses prerequisites for reduction of charging emissions.

  20. Workplace Charging Challenge: Engage Employees | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Challenge: Engage Employees After you've installed plug-in electric vehicle (PEV) charging stations at your work site, you'll want to educate your employees on ...

  1. Workplace Charging Challenge Partner: Vermont Energy Investment...

    Energy Savers [EERE]

    The use of Electric Vehicles (EVs) is on the rise, and while the majority of EV owners are able to charge their vehicles at home, many have no access to charging stations at their ...

  2. Workplace Charging Challenge Partner: Genentech | Department...

    Energy Savers [EERE]

    Genentech began installing Level 2 PEV charging stations at their campus in 2014, adding pilot projects for solar and wind powered charging in 2015, and planning for both Level 2 ...

  3. Workplace Charging Challenge Partner: IDEXX Laboratories | Department...

    Energy Savers [EERE]

    As part of expanding this program, IDEXX installed two charging stations, each equipped with two Level 1 and two Level 2 chargers, capable of charging 8 PEVs at a time. These ...

  4. Workplace Charging Challenge Partner: Telefonix, Inc. | Department...

    Energy Savers [EERE]

    IL Domestic Employees: 94 As an ISO 1400 certified manufacturer of plug-in electric vehicle (PEV) charging stations, workplace charging is a part of the Telefonix company ethos. ...

  5. Workplace Charging Challenge Partner: SAS Institute | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Eco-Commuter parking includes 100 designated PEV spaces with access to 48 charging stations. SAS provides free charging for all employees and visitors. At the beginning of 2014, ...

  6. Workplace Charging Challenge Partner: Suffolk County Community...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The college has installed four plug-in electric vehicle (PEV) charging stations at each of the three campuses. The PEV charging stations may be used by faculty, staff, students, ...

  7. Workplace Charging Challenge Partner: Lawrence Berkeley National...

    Broader source: Energy.gov (indexed) [DOE]

    Berkeley Lab is working to document demand for charging, install Level 2 charging stations in coordination with vehicle-to-grid research, and formalize a plan for PEV readiness. ...

  8. Workplace Charging Challenge Partner: Facebook | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Currently, the campus has 1 DC Fast Charger and 25 Level 2 charging stations, with plans to install 12 more in 2013. Facebook has also made 21 Level 1 charging stations available ...

  9. Workplace Charging Challenge Partner: Power Integrations, Inc...

    Broader source: Energy.gov (indexed) [DOE]

    Power Integrations installed ten level 2 plug-in electric vehicle charging stations at its San Jos headquarters in 2012, expanding the installation to a total of 22 charging ...

  10. Workplace Charging Challenge Partner: NYSERDA | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    As part of its efforts to promote workplace charging statewide, NYSERDA has three Level 2 charging stations and two Level 1 chargers at its headquarters in Albany. Meet Challenge ...

  11. Workplace Charging Challenge Partner: North Central College ...

    Energy Savers [EERE]

    North Central College has two plug-in electric vehicle (PEV) charging stations. Both stations may be used free of charge by students, faculty, staff and campus visitors. Serious in ...

  12. Workplace Charging Challenge Partner: Google | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    other company locations in the U.S. With more than 300 charging stations already deployed across the country, the company's goal is to provide charging at 5% of its parking spaces. ...

  13. Workplace Charging Challenge Partner: Shorepower Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    July 30, 2014 Getting a charge out of work Portland already has more electric vehicle charging stations per capita than any other city and it apparently aims to hold onto its lead. ...

  14. Workplace Charging Challenge Partner: Riverside County | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    One of the steps toward this brighter future involves building plug-in electric vehicle (PEV) charging infrastructure. A grant award in 2012 resulted in seven PEV charging stations ...

  15. Workplace Charging Challenge Partner: Advocate Health Care |...

    Energy Savers [EERE]

    This is why plug-in electric vehicle (PEV) charging stations have become an important part of Advocate's much larger sustainability goals. Advocate has a total of 11 PEV charging ...

  16. Transportation Data Programs:Transportation Energy Data Book...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Data Programs:Transportation Energy Data Book,Vehicle Technologies Market Report, and VT Fact of the Week Transportation Data Programs:Transportation Energy Data ...

  17. Electrochemically controlled charging circuit for storage batteries

    DOE Patents [OSTI]

    Onstott, E.I.

    1980-06-24

    An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

  18. Color Page Charges | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific and Technical Information Color Page Charges Color Page Charges Agreeing to pay color page charges is at the discretion of each individual Program at the Ames Laboratory. If a publisher charges for color and you need to have all or some of your figures printed in color, please have your program office prepare a purchase order, provide proper justification, and theywill have your Program Director sign it. You must obtain the Program Director's signature when requesting payment of

  19. Workplace Charging Toolkit: Outreach Letter Template

    Broader source: Energy.gov [DOE]

    Reach out to employers in your community who may be interested in offering workplace charging with this template.

  20. Transportation Fuel Supply | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Transportation Equipment (125.57 KB) More Documents & Publications MECS 2006 - Transportation Equipment

    SheetsTransportation Fuel Supply content top

  1. Water Transport Exploratory Studies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop understanding of water transport in PEM Fuel Cells (non-design-specific) * Evaluate structural and surface properties of materials affecting water transport and performance ...

  2. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    National Transportation Stakeholders Forum OSRP * NNSA Contractors transporting in commerce, are required law to comply with applicable regulations required law to comply with ...

  3. Analysis of ``soft`` recovered shaped charge jet particles

    SciTech Connect (OSTI)

    Lassila, D.H.; Nikkel, D.J. Jr.; Kershaw, R.P.; Walters, W.P.

    1996-04-01

    A shaped charge with an 81 mm diameter, 42{degree} apex angle oxygen-free high-conductivity (OFHC) copper conical liner was fired into a ``soft`` recovery bunker to allow metallurgical examination of recovered jet particles and the slug. The initial weight of the copper liner was 245 g, of which 184 g was recovered. The number of jet particles recovered was 37 (approximately 63% of the particles formed by the charge). Extensive metallurgical analyses were performed on the recovered slug and jet particles. The microstructural features associated with voids, e.g., dendritic grain growth, clearly indicate that the regions in the vicinity of the centerline of the slug and jet particles were melted. In this work the authors present calculations of jet temperature as a function of constitutive behavior. In order to predict melt in the center region of the jet they find it necessary to scale flow stress with a pressure dependent shear modulus.

  4. Study of Electron Transport and Amplification in Diamond

    SciTech Connect (OSTI)

    Ben-Zvi, Ilan; Muller, Erik

    2015-01-05

    The development of the Diamond Amplified Photocathode (DAP) has produced significant results under our previous HEP funded efforts both on the fabrication of working devices and the understanding of the underlying physics governing its performance. The results presented here substantiate the use of diamond as both a secondary electron amplifier for high-brightness, high-average-current electron sources and as a photon and particle detector in harsh radiation environments. Very high average current densities (>10A/cm2) have been transported through diamond material. The transport has been measured as a function of incident photon energy and found to be in good agreement with theoretical models. Measurements of the charge transport for photon energies near the carbon K-edge (290 eV for sp3 bonded carbon) have provided insight into carrier loss due to diffusion; modeling of this aspect of charge transport is underway. The response of diamond to nanosecond x-ray pulses has been measured; in this regime the charge transport is as expected. Electron emission from hydrogenated diamond has been measured using both electron and x-ray generated carriers; a gain of 178 has been observed for electron-generated carriers. The energy spectrum of the emitted electrons has been measured, providing insight into the electron affinity and ultimately the thermal emittance. The origin of charge trapping in diamond has been investigated for both bulk and surface trapping

  5. Hydrogen Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency » Vehicles » Hydrogen & Fuel Cells Hydrogen & Fuel Cells Watch this video to find out how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. Learn more about hydrogen and fuel cell technology basics. Fuel cells produce electricity from a number of domestic fuels, including hydrogen and renewables, and can provide power for virtually any application -- from cars and buses to commercial

  6. Possible applications of the steering of charged particles by bent single crystals

    SciTech Connect (OSTI)

    Carrigan, R.A. Jr.; Gibson, W.M.; Sun, C.R.; Tsyganov, E.N.

    1981-01-01

    This article reviews some aspects of the steering of charged particles using channeling in bent crystals. Crystal angular and spatial acceptance, deflection dechanneling, and radiation damage are discussed. Examples of possible bent transport, focusing, the possibility of charm particle separated beams, and magnetic moment determination.

  7. Workplace Charging Challenge Partner: State of Oregon | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oregon Workplace Charging Challenge Partner: State of Oregon Workplace Charging Challenge Partner: State of Oregon Joined the Challenge: July 2014 Headquarters: Salem, OR Charging ...

  8. Workplace Charging Challenge Summit 2014: Session 1, Track A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Promoting your workplace charging program": A robust workplace charging program doesn't conclude once the charging stations are in the ground. Many partners are working to promote ...

  9. Orlando Plugs into Electric Vehicle Charging Stations | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Orlando Plugs into Electric Vehicle Charging Stations Orlando Plugs into Electric Vehicle Charging Stations September 8, 2010 - 2:00pm Addthis Nearly 300 electric vehicle charging ...

  10. Workplace Charging Challenge Partner: Posty Cards, Inc. | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging News Posty Cards Joins Workplace Charging Challenge to Promote EV Charging Stations Kansas City, MO - Posty Cards, a Kansas City-based business greeting card ...

  11. Working with DOE to Promote your Workplace Charging Program

    Broader source: Energy.gov (indexed) [DOE]

    plugging in, unplugging, leaving) 5 Workplace Charging Challenge Sample shot Charging stationsPEVs in front of building with partner namelogo 6 Workplace Charging Challenge ...

  12. EV Everywhere Workplace Charging Challenge: Benefits of Joining

    Broader source: Energy.gov [DOE]

    Workplace charging plays a critical role in America's plug-in electric vehicle (PEV) charging infrastructure. Installing workplace charging is a sign of corporate leadership, showing a willingness...

  13. Universality of Charged Multiplicity Distributions

    SciTech Connect (OSTI)

    Goulianos, K.; /Rockefeller U.

    1981-12-01

    The charged multiplicity distributions of the diffractive and non-diffractive components of hadronic interactions, as well as those of hadronic states produced in other reactions, are described well by a universal Gaussian function that depends only on the available mass for pionization, has a maximum at n{sub o} {approx_equal} 2M{sup 1/2}, where M is the available mass in GeV, and a peak to width ratio n{sub o}/D {approx_equal} 2.

  14. Leading the Charge: Christine Klein

    Office of Energy Efficiency and Renewable Energy (EERE)

    Change doesn’t happen on its own. It’s led by dedicated and passionate people who are committed to empowering Indian Country to energize future generations. Leading the Charge is a regular Office of Indian Energy newsletter feature spotlighting the movers and shakers in energy development on tribal lands. In this issue, we talk to Christine Klein, an adopted Haida who is leading efforts to help Alaska Native villages address their energy challenges in her role as Vice President and Chief Operating Officer of the Calista Corporation.

  15. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells

    SciTech Connect (OSTI)

    Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

    2011-01-01

    We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n{sup ++} Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

  16. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint

    SciTech Connect (OSTI)

    Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

    2011-07-01

    We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

  17. Disorder-assisted transport in topological insulators and nanocrystal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    superlattices | MIT-Harvard Center for Excitonics Disorder-assisted transport in topological insulators and nanocrystal superlattices May 14, 2015 at 3pm/36-428 Brian Skinner Argonne National Laboratory Brian_Skinner abstract: In solid state materials, disorder is usually thought of as a hindrance to electron transport. But when the disorder is produced by poorly-screened charged impurities, the long-ranged nature of the disorder potential can have unexpected consequences for the electrical

  18. Transportation Organization and Functions

    Broader source: Energy.gov [DOE]

    Office of Packaging and Transportation list of organizations and functions, with a list of acronyms.

  19. Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    Broader source: Energy.gov [DOE]

    Numerous transportation strategies are directed at reducing energy use and greenhouse gas (GHG) emissions by changing the behavior of individual drivers or travelers. These behavioral changes may have the effect of reducing travel, shifting travel to more efficient modes, or improving the efficiency of existing travel. Since the 1970s, federal, regional, state and municipal agencies have tried to reduce energy use, emissions, and congestion by influencing travel behavior. This report reviews and summarizes the literature on relationships between these strategies and transportation-related energy use and GHG emissions to examine how changes to travel behavior can reduce transportation energy use and discuss the potential for federal actions to affect travel behavior.

  20. Transverse-structure electrostatic charged particle beam lens

    DOE Patents [OSTI]

    Moran, M.J.

    1998-10-13

    Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility. 7 figs.

  1. Transverse-structure electrostatic charged particle beam lens

    DOE Patents [OSTI]

    Moran, Michael J.

    1998-01-01

    Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility.

  2. Charge transfer and mobility enhancement at CdO/SnTe heterointerfaces

    SciTech Connect (OSTI)

    Nishitani, Junichi; Yu, Kin Man; Walukiewicz, Wladek

    2014-09-29

    We report a study of the effects of charge transfer on electrical properties of CdO/SnTe heterostructures. A series of structures with variable SnTe thicknesses were deposited by RF magnetron sputtering. Because of an extreme type III band offset with the valence band edge of SnTe located at 1.5?eV above the conduction band edge of CdO, a large charge transfer is expected at the interface of the CdO/SnTe heterostructure. The electrical properties of the heterostructures are analyzed using a multilayer charge transport model. The analysis indicates a large 4-fold enhancement of the CdO electron mobility at the interface with SnTe. The mobility enhancement is attributed to reduction of the charge center scattering through neutralization of the donor-like defects responsible for the Fermi level pinning at the CdO/SnTe interface.

  3. Spectroscopy of Charge Carriers and Traps in Field-Doped Organic Semiconductors

    SciTech Connect (OSTI)

    Zhu, Xiaoyang; Frisbie, C Daniel

    2012-08-13

    This research project aims to achieve quantitative and molecular level understanding of charge carriers and traps in field-doped organic semiconductors via in situ optical absorption spectroscopy, in conjunction with time-resolved electrical measurements. During the funding period, we have made major progress in three general areas: (1) probed charge injection at the interface between a polymeric semiconductor and a polymer electrolyte dielectric and developed a thermodynamic model to quantitatively describe the transition from electrostatic to electrochemical doping; (2) developed vibrational Stark effect to probe electric field at buried organic semiconductor interfaces; (3) used displacement current measurement (DCM) to study charge transport at organic/dielectric interfaces and charge injection at metal/organic interfaces.

  4. 3D Multigroup Sn Neutron Transport Code

    Energy Science and Technology Software Center (OSTI)

    2001-02-14

    ATTILA is a 3D multigroup transport code with arbitrary order ansotropic scatter. The transport equation is solved in first order form using a tri-linear discontinuous spatial differencing on an arbitrary tetrahedral mesh. The overall solution technique is source iteration with DSA acceleration of the scattering source. Anisotropic boundary and internal sources may be entered in the form of spherical harmonics moments. Alpha and k eigenvalue problems are allowed, as well as fixed source problems. Forwardmore » and adjoint solutions are available. Reflective, vacumn, and source boundary conditions are available. ATTILA can perform charged particle transport calculations using slowing down (CSD) terms. ATTILA can also be used to peform infra-red steady-state calculations for radiative transfer purposes.« less

  5. Phase stable RF transport system

    DOE Patents [OSTI]

    Curtin, Michael T.; Natter, Eckard F.; Denney, Peter M.

    1992-01-01

    An RF transport system delivers a phase-stable RF signal to a load, such as an RF cavity of a charged particle accelerator. A circuit generates a calibration signal at an odd multiple frequency of the RF signal where the calibration signal is superimposed with the RF signal on a common cable that connects the RF signal with the load. Signal isolating diplexers are located at both the RF signal source end and load end of the common cable to enable the calibration to be inserted and extracted from the cable signals without any affect on the RF signal. Any phase shift in the calibration signal during traverse of the common cable is then functionally related to the phase shift in the RF signal. The calibration phase shift is used to control a phase shifter for the RF signal to maintain a stable RF signal at the load.

  6. NREL: Transportation Research - Sustainable Transportation Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Basics Compare Vehicle Technologies 3-D illustration of electric car diagramming energy storage, power electronics, and climate control components. The following links to the U.S. Department of Energy's Alternative Fuels Data Center (AFDC) provide an introduction to sustainable transportation. NREL research supports development of electric, hybrid, hydrogen fuel cell, biofuel, natural gas, and propane vehicle technologies. Learn more about vehicles, fuels, and transportation

  7. NREL: Transportation Research - Transportation and Hydrogen Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation and Hydrogen Newsletter The Transportation and Hydrogen Newsletter is a monthly electronic newsletter that provides information on NREL's research, development, and deployment of transportation and hydrogen technologies. Photo of a stack of newspapers July 2016 Issue Hydrogen Fuel Cells Read the latest issue of the newsletter. Subscribe: To receive new issues by email, subscribe to the newsletter. Archives: For past issues, read the newsletter archives. Printable Version

  8. NREL: Transportation Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News NREL provides a number of transportation and hydrogen news sources. Transportation News Find news stories that highlight NREL's transportation research, development, and deployment (RD&D) activities, including work on vehicles and fuels. Hydrogen and Fuel Cells News Find news stories that highlight NREL's hydrogen RD&D activities, including work on fuel cell electric vehicle technologies. Transportation and Hydrogen Newsletter Stay up to date on NREL's RD&D of transportation and

  9. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

    2003-11-01

    The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared with

  10. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C. It was found that space group of R3c yielded a better refinement than a cubic structure of Pm3m. Oxygen occupancy was nearly 3 in the region from room temperature to 700 C, above which the occupancy decreased due to oxygen loss. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. The X-Ray data and fracture mechanisms points to non-equilibrium decomposition of the LSFCO OTM membrane. The non-equilibrium conditions could probably be due to the nature of the applied stress field (stressing rates) and leads to transition in crystal structures and increased kinetics of decomposition. The formations of a Brownmillerite or Sr2Fe2O5 type structures, which are orthorhombic are attributed to the ordering of oxygen vacancies. The cubic to orthorhombic transitions leads to 2.6% increase in strains and thus residual stresses generated could influence the fracture behavior of the OTM membrane. Continued investigations on the thermodynamic properties (stability and phase-separation behavior) and total conductivity of prototype membrane materials were carried out. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previously characterization, stoichiometry and conductivity measurements for samples of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were reported. In this report

  11. Multi-Path Transportation Futures Study - Lessons for the Transportation Energy Futures Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Path Transportation Futures Study -- Lessons for the Transportation Energy Futures Study Steven Plotkin, Argonne National Laboratory LDV Workshop, July 26, 2010 What have we learned that might be useful to TEF?  Do LOTS of sensitivity analysis - in this time frame, uncertainties about fuel price, technology costs, consumer behavior are very large, and effect of changed assumptions on outcomes can be huge  Focus on marginal costs and performance -- Advanced technologies may look good

  12. Transportation energy data book: edition 16

    SciTech Connect (OSTI)

    Davis, S.C.; McFarlin, D.N.

    1996-07-01

    The Transportation Energy Data Book: Edition 16 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares U.S. transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high- occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data on environmental issues relating to transportation.

  13. EV Everywhere Workplace Charging Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in Electric Vehicles & Batteries » EV Everywhere Workplace Charging Challenge EV Everywhere Workplace Charging Challenge Join the Challenge! Join the Challenge! The Workplace Charging Challenge aims to achieve a tenfold increase in the number of U.S. employers offering workplace charging by 2018. Read more University Campuses Charge Up University Campuses Charge Up America's higher education institutions are at the forefront of workplace charging. Read more Want More Workplace Charging

  14. AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing - NYSERDA Electric Vehicle Charging Infrastructure Reports AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure Reports The Vehicle Technologies Office's ...

  15. Workplace Charging Challenge Partner: Washington Area New Automobile...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington Area New Automobile Dealers Association Workplace Charging Challenge Partner: Washington Area New Automobile Dealers Association Workplace Charging Challenge Partner: ...

  16. Charged rotating dilaton black strings

    SciTech Connect (OSTI)

    Dehghani, M.H.; Farhangkhah, N.

    2005-02-15

    In this paper we, first, present a class of charged rotating solutions in four-dimensional Einstein-Maxwell-dilaton gravity with zero and Liouville-type potentials. We find that these solutions can present a black hole/string with two regular horizons, an extreme black hole or a naked singularity provided the parameters of the solutions are chosen suitable. We also compute the conserved and thermodynamic quantities, and show that they satisfy the first law of thermodynamics. Second, we obtain the (n+1)-dimensional rotating solutions in Einstein-dilaton gravity with Liouville-type potential. We find that these solutions can present black branes, naked singularities or spacetimes with cosmological horizon if one chooses the parameters of the solutions correctly. Again, we find that the thermodynamic quantities of these solutions satisfy the first law of thermodynamics.

  17. Transport of fluorescently labeled hydroxyapatite nanoparticles in saturated granular media at environmentally relevant concentrations of surfactants

    SciTech Connect (OSTI)

    Wang, Dengjun; Su, Chuming; Liu, Chongxuan; Zhou, Dongmei

    2014-05-01

    Hydroxyapatite nanoparticle (nHAP) is being used to remediate soils and aquifers contaminated with metals and radionuclides; however, the mobility of nHAP is still poorly understood in subsurface granular environments. In this study, transport and retention kinetics of alizarin red S (ARS)-labeled nHAP were investigated in water-saturated quartz sand at low concentrations of surfactants: sodium dodecyl benzene sulfonate (SDBS, an anionic surfactant, 050 mg L1) and cetyltrimethylammonium bromide (CTAB, a cationic surfactant, 05 mg L1). Both surfactants were found to have a marked effect on the electrokinetic properties of ARS-nHAP and, consequently, on their transport and retention behaviors. Transport of nanoparticles (NPs) increased significantly with increasing SDBS concentration, largely because of enhanced colloidal stability and reduced aggregate size arising from enhanced electrostatic, osmotic, and elastic-steric repulsions between ARS-nHAP and sand grains. Conversely, transport decreased significantly in the presence of increasing CTAB concentrations due to reduced surface charge and consequential enhanced aggregation of the NPs. Osmotic and elastic-steric repulsions played only a minor role in enhancing the colloidal stability of ARS-nHAP in the presence of CTAB. Retention profiles of ARS-nHAP exhibited hyperexponential-shapes (decreasing rates of retention with increasing distance) for all conditions tested, and became more pronounced as CTAB concentration increased. The phenomenon was attributed to the aggregation and ripening of ARS-nHAP in the presence of surfactants, particularly CTAB. Overall, the present study suggests that surfactants at environmentally relevant concentrations may be an important consideration in employing nHAP for engineered in-situ remediation of certain metals and radionuclides in contaminated soils and aquifers.

  18. Non-intrusive refrigerant charge indicator

    DOE Patents [OSTI]

    Mei, Viung C.; Chen, Fang C.; Kweller, Esher

    2005-03-22

    A non-intrusive refrigerant charge level indicator includes a structure for measuring at least one temperature at an outside surface of a two-phase refrigerant line section. The measured temperature can be used to determine the refrigerant charge status of an HVAC system, and can be converted to a pressure of the refrigerant in the line section and compared to a recommended pressure range to determine whether the system is under-charged, properly charged or over-charged. A non-intrusive method for assessing the refrigerant charge level in a system containing a refrigerant fluid includes the step of measuring a temperature at least one outside surface of a two-phase region of a refrigerant containing refrigerant line, wherein the temperature measured can be converted to a refrigerant pressure within the line section.

  19. Review of Variable Generation Integration Charges

    SciTech Connect (OSTI)

    Porter, K.; Fink, S.; Buckley, M.; Rogers, J.; Hodge, B. M.

    2013-03-01

    The growth of wind and solar generation in the United States, and the expectation of continued growth of these technologies, dictates that the future power system will be operated in a somewhat different manner because of increased variability and uncertainty. A small number of balancing authorities have attempted to determine an 'integration cost' to account for these changes to their current operating practices. Some balancing authorities directly charge wind and solar generators for integration charges, whereas others add integration charges to projected costs of wind and solar in integrated resource plans or in competitive solicitations for generation. This report reviews the balancing authorities that have calculated variable generation integration charges and broadly compares and contrasts the methodologies they used to determine their specific integration charges. The report also profiles each balancing authority and how they derived wind and solar integration charges.

  20. Circular, confined distribution for charged particle beams

    DOE Patents [OSTI]

    Garnett, Robert W.; Dobelbower, M. Christian

    1995-01-01

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location.

  1. Circular, confined distribution for charged particle beams

    DOE Patents [OSTI]

    Garnett, R.W.; Dobelbower, M.C.

    1995-11-21

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location. 26 figs.

  2. An Opportunistic Wireless Charging System Design for an On-Demand Shuttle Service (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Opportunistic Wireless Charging System Design for an On-Demand Shuttle Service Andrew Meintz Kate Doubleday, Tony Markel Publication No. PR-5400-66571 2016 IEEE Transportation Electrification Conference and Expo (ITEC'16) Dearborn, Michigan June 29, 2016 2 On-Demand NREL Employee Shuttle Photo by Dennis Schroeder (NREL 32221) 3 Charging through Wireless Power Transfer (WPT) Ground-side transmitter Vehicle-side receivers 4 Typical Shuttle Route Imagery and map data by Google © 2016 5 Typical

  3. Particle accelerator employing transient space charge potentials

    DOE Patents [OSTI]

    Post, Richard F.

    1990-01-01

    The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles.

  4. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Mapping Particle Charges in Battery Electrodes Print Friday, 26 July 2013 14:18 The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how

  5. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers A Spintronic Semiconductor with Selectable Charge Carriers Print Wednesday, 28 August 2013 00:00 Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of

  6. Secure Transportation Management

    SciTech Connect (OSTI)

    Gibbs, P. W.

    2014-10-15

    Secure Transport Management Course (STMC) course provides managers with information related to procedures and equipment used to successfully transport special nuclear material. This workshop outlines these procedures and reinforces the information presented with the aid of numerous practical examples. The course focuses on understanding the regulatory framework for secure transportation of special nuclear materials, identifying the insider and outsider threat(s) to secure transportation, organization of a secure transportation unit, management and supervision of secure transportation units, equipment and facilities required, training and qualification needed.

  7. Interfacial charging phenomena of aluminum (hydr)oxides

    SciTech Connect (OSTI)

    Hiemstra, T.; Yong, H.; Van Riemsdijk, W.H.

    1999-08-31

    The interfacial charging of Al(OH){sub 3} (gibbsite and bayerite) and Al{sub 2}O{sub 3} has been studied. For Al(OH){sub 3} it can be shown that the very strong variation in charging behavior for different preparations is related to the relative presence of differently reacting crystal planes. The edge faces of the hexagonal gibbsite crystals are proton reactive over the whole pH range, in contrast to the 001 plane, which is mainly uncharged below pH = 10. On this 001 face only doubly coordinated surface groups are found, in contrast to the edges which also have singly coordinated surface groups. The results are fully in agreement with the predictions of the Multi site complexation (MUSIC) model. The proton adsorption, electrolyte ion adsorption, and shift of the IEP of gibbsite and aluminum oxide have been modeled simultaneously. For gibbsite, the ion pair formation of Na is larger than that of Cl, as is evidenced by modeling the experimentally observed upward shift on the IEP and charge reversal at high electrolyte concentrations. All these experimental results can be satisfactorily modeled with the MUSIC model, including the experimental surface potential of aluminum oxide (ISFET).

  8. Charge oscillations and interaction between potassium adatoms...

    Office of Scientific and Technical Information (OSTI)

    on graphene studied by first-principles calculations Citation Details In-Document Search Title: Charge oscillations and interaction between potassium adatoms on graphene ...

  9. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

  10. 10Charge Inc | Open Energy Information

    Open Energy Info (EERE)

    Place: Dallas, Texas Zip: 75001 Product: Developer of patented technology for faster battery charging time which also extends battery lifetime. Coordinates: 32.778155,...

  11. Workplace Charging Toolkit: Workshop Speaker Outreach Letter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Invite employers in your community that already have charging to speak on an employer experience panel. File General Speaker Outreach Letter Template File Clean Cities Branded ...

  12. Workplace Charging Toolkit: Workshop Outreach Presentation Template

    Broader source: Energy.gov [DOE]

    Educate workshop attendees and employers about the benefits of workplace charging and the Challenge by selecting slides from this sample presentation.

  13. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles...

  14. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive ... Strategies for developing spintronic semiconductors have been based on surface doping or ...

  15. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupereportoutcaci.pdf More Documents & Publications EV Everywhere...

  16. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupdreportoutcaci.pdf More Documents & Publications EV Everywhere...

  17. Workplace Charging Challenge Partner: Kankakee Community College...

    Broader source: Energy.gov (indexed) [DOE]

    equipment (EVSE) installed at its LEED Gold North Extension Center and plans to ... our new North Extension Center that's a LEED gold building with an EV charging station." ...

  18. Workplace Charging Challenge Partner: JLA Public Involvement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchasing a plug-in electric vehicle (PEV) and installing a charging station has expanded JLA Public Involvement's sustainability efforts and allowed them to achieve Gold ...

  19. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumer Acceptance and Public Policy Group C Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance and Public Policy Group C ...

  20. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone ...

  1. ETA-NTP008 Battery Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Revision 4 Effective December 1, 2004 Battery Charging Prepared by Electric ... with the requirements of the vehiclebattery supplier as stated in the OwnerOperators ...

  2. Workplace Charging Challenge Partners: EV Connect | Department...

    Office of Environmental Management (EM)

    Leveraging their own workplace solution at their offices, more than half of EV Connect's employees drive plug-in electric vehicles (PEVs). Fast Facts Joined the Workplace Charging ...

  3. Workplace Charging Challenge Employer Workshop Best Practices...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge Employer Workshop Best Practices Webinar Workplace Charging Challenge Employer Workshop Best Practices Webinar Read the text version. Learn about the experiences of four ...

  4. Workplace Charging Toolkit: Workshop Speaker Instruction Letter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Instruction Letter Template Workplace Charging Toolkit: Workshop Speaker Instruction Letter Template Inform speakers participating in the employer experience panel about their role ...

  5. Workplace Charging Challenge Partner: General Motors | Department...

    Office of Environmental Management (EM)

    ... General Electric Google Nissan San Diego Gas & Electric Siemens Tesla Verizon Behind the workplace charging goal is the EV Everywhere Challenge, which is dedicated to accelerating ...

  6. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Backsplash for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA...

  7. EV Everywhere ? Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Consumer Acceptance and Charging Infrastructure Workshop David Sandalow Under Secretary of Energy (Acting) Assistant Secretary for Policy and International Affairs U.S....

  8. Workplace Charging Toolkit: Workshop Best Practices

    Broader source: Energy.gov [DOE]

    These best practices for planning, organizing, and executing a successful and educational workplace charging event have been developed based on lessons learned from more than 20 employer workplace...

  9. Smart Charge Adaptor | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smart EV-charging infrastructure with applications world-wide across residential, workplace, and public locations. The SCA is EV and EVSE agnostic, so customers are not limited...

  10. Workplace Charging: Comparison of Sustainable Commuting Options

    Broader source: Energy.gov (indexed) [DOE]

    Workplace Charging: Comparison of Sustainable Commuting Options November 18, 2014 Austin Brown National Renewable Energy Laboratory vehicles.energy.gov Relevance of ROI ...

  11. Linear Thermite Charge - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Linear Thermite Charge (LTC) is designed to rapidly cut through concrete and steel ... Can cut both concrete and steel at one time making rebarconcrete structural elements ...

  12. Workplace Charging Challenge Partner: Organic Valley | Department...

    Energy Savers [EERE]

    Organic Valley believes that the installation of plug-in electric vehicle charging stations coupled with their use of renewable energy demonstrates their commitment to this goal. ...

  13. Workplace Charging Challenge Partner: Prairie State College ...

    Energy Savers [EERE]

    As part of Prairie State College's sustainability initiatives, the college installed two Level 2 plug-in electric vehicle (PEV) charging stations that are available for employee, ...

  14. Workplace Charging Challenge Partner: Clarkson University | Department...

    Broader source: Energy.gov (indexed) [DOE]

    The establishment of two plug-in electric vehicle charging stations on campus helps to encourage employees to also bring sustainability actions into their own personal choices. ...

  15. Workplace Charging Challenge Partner: Westar Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Since 2010, Westar has been installing the infrastructure to allow employee and customers the availability of charging stations. These installations have allowed Westar to evaluate ...

  16. Workplace Charging Challenge Partner: The Hartford | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In 2011, The Hartford installed 6 charging stations at its three main campuses in Hartford, Simsbury and Windsor, Connecticut, for a total of 12 electric vehicle supply equipment ...

  17. Workplace Charging Challenge Partner: Avista Utilities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Avista Utilities is committed to effective support for plug-in electric vehicle (PEV) adoption in its service territories. Avista first installed three charging stations with a ...

  18. ADA Requirements for Workplace Charging Installation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    This Guidance provides best practices, special design guidelines and requirements for installing plug-in electric vehicle charging stations in compliance with ADA. When designing ...

  19. Workplace Charging Challenge Partner: Boulder County | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boulder County partners with the U.S. Department of Energy to promote electric vehicle charging stations at workplaces Boulder County, CO - Boulder County has joined the Workplace ...

  20. Workplace Charging Challenge Partner: Raytheon | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Raytheon has installed fifteen dual 220-volt plug-in electric vehicle (PEV) charging stations spread across six operating locations in California, Colorado, Massachusetts, Texas ...

  1. Workplace Charging Challenge Partner: Ulster County | Department...

    Energy Savers [EERE]

    Ulster County installed plug-in electric vehicle (PEV) charging stations at nine County government facility parking lots (a total of 18 electric vehicle supply equipment EVSE), ...

  2. Workplace Charging Challenge Partner: Sears Holdings Corporation...

    Broader source: Energy.gov (indexed) [DOE]

    Sears Holdings Corporation (SHC) strives to build a team of engaged associates who embrace change and technology. Offering plug-in electric vehicle (PEV) charging stations at its ...

  3. Workplace Charging Challenge Partner: Samsung Electronics | Department...

    Energy Savers [EERE]

    By installing PEV charging stations at its facilities, Samsung enables employees to lower the carbon footprint of their daily commute while also reducing fuel costs. Meet Challenge ...

  4. Workplace Charging Challenge Partner: Hollywood Woodwork | Department...

    Energy Savers [EERE]

    Because of the innovative efforts of one employee, Hollywood Woodwork now has six charging stations available to employees and visitors. Through the Cans for Kilowatts program, the ...

  5. Workplace Charging Challenge Partner: Eli Lilly | Department...

    Energy Savers [EERE]

    In 2012, Lilly installed several workplace charging stations at its two main campuses in Indianapolis, Indiana. Employee engagement is important to the company and the demand for ...

  6. Workplace Charging Challenge Partner: Lewis & Clark College ...

    Energy Savers [EERE]

    As of 2015, they have potential to add three charging stations to cover each of their campuses. Meet Challenge Partners More Information Lewis & Clark College Sustainability ...

  7. Workplace Charging Challenge Partner: Territo Electric, Inc....

    Energy Savers [EERE]

    gasoline fleet. Territo expanded its fleet to include nine Volts, and installed sixteen charging stations for employees. Meet Challenge Partners More Information Territo Electric's

  8. Workplace Charging Challenge Partner: Black & Veatch | Department...

    Broader source: Energy.gov (indexed) [DOE]

    The company has made plug-in electric vehicle (PEV) technology available to its employees and visitors, with 45 level 2 charging stations at its Overland Park, Kansas, ...

  9. Workplace Charging Challenge Partner: Bosch Automotive Service...

    Energy Savers [EERE]

    in encouraging adoption of PEVs amongst Bosch associates. Bosch hosts 10 Level 2 charging stations across four locations, with place to expand to additional Bosch sites in 2016. ...

  10. Workplace Charging Challenge Partner: WESCO International, Inc...

    Energy Savers [EERE]

    As a leading distributor of electrical products, WESCO provides plug-in electric vehicle (PEV) charging stations to its customers and employees. WESCO is committed to supporting ...

  11. Workplace Charging Challenge Partner: Eastern Washington University...

    Energy Savers [EERE]

    Installing electric vehicle charging stations in 2016 is one of many efforts that publically demonstrates Eastern's commitment toward sustainability and emissions reduction. Meet ...

  12. Workplace Charging Toolkit: Workshop Agenda Template

    Broader source: Energy.gov [DOE]

    Develop a streamlined workshop with this half-day agenda focused on introductory-level PEV education and firsthand employer workplace charging experience.

  13. Workplace Charging Challenge Partner: TECO Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Watch a video by Workplace Charging Partner TECO Energy. View more videos on the Alternative Fuels and Advanced Vehicles Data Center. Kenneth Hernandez showing the electric ...

  14. Workplace Charging Toolkit: Workshop Outreach Templates

    Broader source: Energy.gov [DOE]

    These templates have been developed based on lessons learned from more than 20 employer workplace charging events held across the U.S. between 2013 and 2015.

  15. An optimization framework for workplace charging strategies ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    addressing different eligible levels of charging technology and employees' demographic distributions. The optimization model is to minimize the lifetime cost of...

  16. Workplace Charging Management Policies Webinar | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learn about effective workplace charging policies and procedures in the areas of administration, registration and liability, pricing and sharing. Read the text version. PDF icon ...

  17. First charge breeding results at CARIBU EBIS

    SciTech Connect (OSTI)

    Kondrashev, S. Barcikowski, A. Dickerson, C. Ostroumov, P. N. Sharamentov, S. Vondrasek, R.; Pikin, A.

    2015-01-09

    The Electron Beam Ion Source (EBIS) developed to breed CARIBU radioactive beams at ATLAS is currently in the off-line commissioning stage. The beam commissioning is being performed using a low emittance surface ionization source producing singly-charged cesium ions. The primary goal of the off-line commissioning is the demonstration of high-efficiency charge breeding in the pulsed injection mode. An overview of the final design of the CARIBU EBIS charge breeder, the off-line commissioning installation and the first results on charge breeding of stable cesium ions are presented and discussed.

  18. Spin Transport in Semiconductor heterostructures

    SciTech Connect (OSTI)

    Domnita Catalina Marinescu

    2011-02-22

    The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.

  19. Transport processes in space plasmas

    SciTech Connect (OSTI)

    Birn, J.; Elphic, R.C.; Feldman, W.C.

    1997-08-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project represents a comprehensive research effort to study plasma and field transport processes relevant for solar-terrestrial interaction, involving the solar wind and imbedded magnetic field and plasma structures, the bow shock of the Earth`s magnetosphere and associated waves, the Earth`s magnetopause with imbedded flux rope structures and their connection with the Earth, plasma flow in the Earth`s magnetotail, and ionospheric beam/wave interactions. The focus of the work was on the interaction between plasma and magnetic and electric fields in the regions where different plasma populations exist adjacent to or superposed on each other. These are the regions of particularly dynamic plasma behavior, important for plasma and energy transport and rapid energy releases. The research addressed questions about how this interaction takes place, what waves, instabilities, and particle/field interactions are involved, how the penetration of plasma and energy through characteristic boundaries takes place, and how the characteristic properties of the plasmas and fields of the different populations influence each other on different spatial and temporal scales. These topics were investigated through combining efforts in the analysis of plasma and field data obtained through space missions with theory and computer simulations of the plasma behavior.

  20. Potential-energy surfaces for charge exchange between singly charged ions and a LiF surface

    SciTech Connect (OSTI)

    Wirtz, Ludger; Burgdoerfer, Joachim; Dallos, Michal; Mueller, Thomas; Lischka, Hans

    2003-09-01

    We analyze the adiabatic potential-energy surfaces relevant for neutralization of singly charged ions in slow vertical incidence onto a lithium fluoride surface. The surface is represented by a cluster of varying size augmented by point charges of alternating sign in order to include the proper Madelung potential of the ionic crystal. Our calculation proceeds on the multiconfiguration self-consistent-field and multireference configuration-interaction levels. Size-consistency corrections based on the Davidson correction and multireference averaged quadratic coupled cluster methods are included as well. We emphasize the importance of a proper treatment of electron correlation signifying the polarization of the surrounding cluster environment in ab initio calculations of charge transfer at surfaces. From the topology of the surfaces, in particular the existence or absence of avoided crossings (or, more generally, conical intersections), qualitative predictions for the neutralization process can be made. The comparative analysis of potential curves for H{sup +}, C{sup +}, S{sup +}, and Ne{sup +} projectiles provides an explanation for the recently observed threshold behavior for potential sputtering.

  1. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-14

    The order establishes safety requirements for the proper packaging and transportation of DOE, including NNSA, offsite shipments and onsite transfers of radioactive and other hazardous materials and for modal transportation. Supersedes DOE O 460.1B.

  2. Transportation Management Workshop: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This report is a compilation of discussions presented at the Transportation Management Workshop held in Gaithersburg, Maryland. Topics include waste packaging, personnel training, robotics, transportation routing, certification, containers, and waste classification.

  3. Transportation Energy Futures Study

    Broader source: Energy.gov [DOE]

    Transportation accounts for 71% of total U.S. petroleum consumption and 33% of total greenhouse gas emissions. The Transportation Energy Futures (TEF) study examines underexplored oil-savings and...

  4. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of offsite shipments and onsite transfers of hazardous materials andor modal transport. Cancels DOE 1540.2 and DOE 5480.3

  5. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Canceled by DOE 460.1A

  6. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-02

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1.

  7. LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: COMPLEX ROLE OF SECONDARY ELECTRON EMISSIONS IN SPACE ENVIRONMENTS

    SciTech Connect (OSTI)

    Abbas, M. M.; Craven, P. D.; LeClair, A. C.; Spann, J. F.; Tankosic, D.

    2010-08-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 {mu}m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  8. Water Transport Within the STack: Water Transport Exploratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Within the STack: Water Transport Exploratory Studies Water Transport Within the STack: Water Transport Exploratory Studies Part of a 100 million fuel cell award announced by DOE ...

  9. NREL: Innovation Impact - Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Improved transportation technologies are essential for reducing U.S. petroleum dependence. Close The United States consumes roughly 19 million barrels of petroleum per day, but replacing petroleum-based liquid fuels is difficult because of their high energy density, which helps

  10. MECS 2006- Transportation Equipment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Transportation Equipment (NAICS 336) Sector with Total Energy Input, October 2012 (MECS 2006)

  11. Transportation Storage Interface

    Office of Environmental Management (EM)

    of Future Extended Storage and Transportation Transportation-Storage Interface James Rubenstone Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission National Transportation Stakeholders Forum May 2012 ♦ Knoxville, Tennessee Overview * Changing policy environment * Regulatory framework-current and future * Extended storage and transportation-technical information needs * Next Steps 2 Current Policy Environment * U.S. national policy for disposition of spent

  12. Evidence for charge Kondo effect in superconducting Tl-doped PbTe (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Evidence for charge Kondo effect in superconducting Tl-doped PbTe Citation Details In-Document Search Title: Evidence for charge Kondo effect in superconducting Tl-doped PbTe We report results of low-temperature thermodynamic and transport measurements of Pb{sub 1-x}Tl{sub x}Te single crystals for Tl concentrations up to the solubility limit of approximately x = 1.5%. For all doped samples, we observe a low-temperature resistivity upturn that scales in magnitude

  13. Transportation energy data book: Edition 15

    SciTech Connect (OSTI)

    Davis, S.C.

    1995-05-01

    The Transportation Energy Data Book: Edition 15 is a statistical compendium. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. Purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter I compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

  14. Transportation energy data book: Edition 13

    SciTech Connect (OSTI)

    Davis, S.C.; Strang, S.G.

    1993-03-01

    The Transportation Energy Data Book: Edition 13 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes -- highway, air, water, rail, pipeline -- is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

  15. Transportation energy data book: Edition 13

    SciTech Connect (OSTI)

    Davis, S.C.; Strang, S.G.

    1993-03-01

    The Transportation Energy Data Book: Edition 13 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes - highway, air, water, rail, pipeline - is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

  16. Transportation energy data book: Edition 12

    SciTech Connect (OSTI)

    Davis, S.C.; Morris, M.D.

    1992-03-01

    The Transportation Energy Data Book: Edition 12 is a statistical compendium prepared and published by Oak Ridge National Laboratory under contract with the Office of Transportation Technologies in the Department of Energy. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes--highway, air, water, rail, pipeline--is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

  17. Self-charging solar battery

    SciTech Connect (OSTI)

    Curiel, R.F.

    1986-01-07

    This self-charging solar battery consists of: a flashlight housing formed at least partially of a transparent material, an open-ended cylindrical battery housing formed at least partially of a transparent material, a rechargeable battery cell means mounted in the battery housing (with its transparent material positioned adjacent the transparent material of the flashlight housing and comprising positive and negative terminals, one at each end thereof), a solar electric panel comprising photo-voltaic cell means having positive and negative terminals, and a diode means mounted in the battery housing and comprising an anode and a cathode. The solar battery also has: a first means for connecting the positive terminal of the photo-voltaic cell means to the anode and for connecting the cathode to the positive terminal of the battery cell means, a second means for connecting the negative terminal of the battery cell means to the negative terminal of the photo-voltaic cell means, and cap means for closing each end of the battery housing.

  18. Self-charging solar battery

    SciTech Connect (OSTI)

    Curiel, R.F.

    1987-03-03

    This patent describes a flashlight employing a self-charging solar battery assembly comprising: a flashlight housing formed at least partially of a transparent material, an open-ended cylindrical battery housing formed at least partially of a transparent material, a rechargeable battery cell means mounted in the battery housing with its transparent material positioned adjacent the transparent material of the flashlight housing and comprising positive and negative terminals, one at each end thereof, a solar electric panel comprising photo-voltaic cell means having positive and negative terminals, the panel being mounted within the battery housing with the photo-voltaic cell means juxtapositioned to the transparent material of the battery housing such that solar rays may pass through the transparent material of the flashlight housing and the battery housing and excite the photo-voltaic cell means, a first means for connecting the positive terminal of the photo-voltaic cell means to the positive terminal of the battery cell means, and a second means for connecting the negative terminal of the battery cell means to the negative terminal of the photo-voltaic cell means.

  19. Means for counteracting charged particle beam divergence

    DOE Patents [OSTI]

    Hooper, Jr., Edwin B.

    1978-01-01

    To counteract charge particle beam divergence, magnetic field-generating means are positioned along the edges of a charged particle beam to be controlled, such as to deflect and redirect particles tending to diverge from a desired beam direction. By selective arrangement of the magnetic field-generating means, the entire beam may be deflected and guided into different directions.

  20. PRECISE CHARGE MEASUREMENT FOR LASER PLASMA ACCELERATORS

    SciTech Connect (OSTI)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Sokollik, Thomas; Shiraishi, Satomi; Tilborg, Jeroen van; Osterhoff, Jens; Donahue, Rich; Rodgers, David; Smith, Alan; Byrne, Warren; Leemans, Wim

    2011-07-19

    Cross-calibrations of charge diagnostics are conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). Employed diagnostics are a scintillating screen, activation based measurement, and integrating current transformer. The diagnostics agreed within {+-}8 %, showing that they can provide accurate charge measurements for LPAs provided they are used properly.

  1. NREL: Transportation Research - Transportation and Hydrogen Newsletter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This is the May 2015 issue of the Transportation and Hydrogen Newsletter. May 28, 2015 Photo of a car refueling at a hydrogen dispensing station. DOE's H2FIRST project focuses on ...

  2. NREL: Transportation Research - Transportation and Hydrogen Newsletter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage This is the November 2015 issue of the Transportation and Hydrogen ... kind in the national lab system, and one of just a few to be found in the entire country. ...

  3. Electronically shielded solid state charged particle detector

    DOE Patents [OSTI]

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig.

  4. Electronically shielded solid state charged particle detector

    DOE Patents [OSTI]

    Balmer, David K.; Haverty, Thomas W.; Nordin, Carl W.; Tyree, William H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

  5. Proximity charge sensing for semiconductor detectors

    DOE Patents [OSTI]

    Luke, Paul N; Tindall, Craig S; Amman, Mark

    2013-10-08

    A non-contact charge sensor includes a semiconductor detector having a first surface and an opposing second surface. The detector includes a high resistivity electrode layer on the first surface and a low resistivity electrode on the high resistivity electrode layer. A portion of the low resistivity first surface electrode is deleted to expose the high resistivity electrode layer in a portion of the area. A low resistivity electrode layer is disposed on the second surface of the semiconductor detector. A voltage applied between the first surface low resistivity electrode and the second surface low resistivity electrode causes a free charge to drift toward the first or second surface according to a polarity of the free charge and the voltage. A charge sensitive preamplifier coupled to a non-contact electrode disposed at a distance from the exposed high resistivity electrode layer outputs a signal in response to movement of free charge within the detector.

  6. Survey Says: Workplace Charging is Growing in Popularity and Impact |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Survey Says: Workplace Charging is Growing in Popularity and Impact Survey Says: Workplace Charging is Growing in Popularity and Impact November 18, 2014 - 3:54pm Addthis Survey Says: Workplace Charging is Growing in Popularity and Impact Survey Says: Workplace Charging is Growing in Popularity and Impact Survey Says: Workplace Charging is Growing in Popularity and Impact Survey Says: Workplace Charging is Growing in Popularity and Impact Sarah Olexsak Workplace Charging

  7. Transportation safety training

    SciTech Connect (OSTI)

    Jones, E.

    1990-01-01

    Over the past 25 years extensive federal legislation involving the handling and transport of hazardous materials/waste has been passed that has resulted in numerous overlapping regulations administered and enforced by different federal agencies. The handling and transport of hazardous materials/waste involves a significant number of workers who are subject to a varying degree of risk should an accident occur during handling or transport. Effective transportation training can help workers address these risks and mitigate them, and at the same time enable ORNL to comply with the federal regulations concerning the transport of hazardous materials/waste. This presentation will outline how the Environmental and Health Protection Division's Technical Resources and Training Section at the Oak Ridge National Laboratory, working with transportation and waste disposal personnel, have developed and implemented a comprehensive transportation safety training program to meet the needs of our workers while satisfying appropriate federal regulations. 8 refs., 3 tabs.

  8. Transportation Secure Data Center: Real-World Data for Transportation Planning and Land Use Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    The National Renewable Energy Laboratory (NREL) and the U.S. Department of Transportation (DOT) have launched the free, web-based Transportation Secure Data Center (TSDC). The TSDC (www.nrel.gov/tsdc) preserves respondent anonymity while making vital transportation data available to a broad group of users through secure, online access. The TSDC database provides free-of-charge web-based access to valuable transportation data that can be used for: Transit planning, Travel demand modeling, Homeland Security evacuation planning, Alternative fuel station planning, and Validating transportation data from other sources. The TSDC's two levels of access make composite data available with simple online registration, and allow researchers to use detailed spatial data after completing a straight forward application process.

  9. Monte Carlo simulation for the transport beamline

    SciTech Connect (OSTI)

    Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A.; Attili, A.; Marchetto, F.; Russo, G.; Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Carpinelli, M.

    2013-07-26

    In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery.

  10. Drift-Scale Radionuclide Transport

    SciTech Connect (OSTI)

    P.R. Dixon

    2004-02-17

    The purpose of this Model Report is to document two models for drift-scale radionuclide transport. This has been developed in accordance with ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]), which includes planning documents for the technical work scope, content, and management of this Model Report in Section 1.15, Work Package AUZM11, ''Drift-Scale Radionuclide Transport.'' The technical work scope for this Model Report calls for development of a process-level model and an abstraction model representing diffusive release from the invert to the rocks, partitioned between fracture and matrix, as compared to the fracture-release approach used in the Site Recommendation. The invert is the structure constructed in a drift to provide the floor of that drift. The plan for validation of the models documented in this Model Report is given in Section I-5 of Attachment I in BSC (2002 [160819]). Note that the model validation presented in Section 7 deviates from the technical work plan (BSC 2002 [160819], Section I-5) in that an independent technical review specifically for model validation has not been conducted, nor publication in a peer-reviewed journal. Model validation presented in Section 7 is based on corroboration with alternative mathematical models, which is also called out by the technical work plan (BSC 2002 [160819], Section I-5), and is sufficient based on the requirements of AP-SIII.10Q for model validation. See Section 7 for additional discussion. The phenomenon of flow and transport in the vicinity of the waste emplacement drift are evaluated in this model report under ambient thermal, chemical, and mechanical conditions. This includes the effects of water diversion around an emplacement drift and the flow and transport behavior expected in a fractured rock below the drift. The reason for a separate assessment of drift-scale transport is that the effects of waste emplacement drifts on flow

  11. Stringy stability of charged dilaton black holes with flat event horizon

    SciTech Connect (OSTI)

    Ong, Yen Chin; Chen, Pisin

    2015-01-15

    Electrically charged black holes with flat event horizon in anti-de Sitter space have received much attention due to various applications in Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence, from modeling the behavior of quark-gluon plasma to superconductor. Critical to the physics on the dual field theory is the fact that when embedded in string theory, black holes in the bulk may become vulnerable to instability caused by brane pair-production. Since dilation arises naturally in the context of string theory, we study the effect of coupling dilation to Maxwell field on the stability of flat charged AdS black holes.

  12. Optimal Decentralized Protocol for Electric Vehicle Charging

    SciTech Connect (OSTI)

    Gan, LW; Topcu, U; Low, SH

    2013-05-01

    We propose a decentralized algorithm to optimally schedule electric vehicle (EV) charging. The algorithm exploits the elasticity of electric vehicle loads to fill the valleys in electric load profiles. We first formulate the EV charging scheduling problem as an optimal control problem, whose objective is to impose a generalized notion of valley-filling, and study properties of optimal charging profiles. We then give a decentralized algorithm to iteratively solve the optimal control problem. In each iteration, EVs update their charging profiles according to the control signal broadcast by the utility company, and the utility company alters the control signal to guide their updates. The algorithm converges to optimal charging profiles (that are as "flat" as they can possibly be) irrespective of the specifications (e.g., maximum charging rate and deadline) of EVs, even if EVs do not necessarily update their charging profiles in every iteration, and use potentially outdated control signal when they update. Moreover, the algorithm only requires each EV solving its local problem, hence its implementation requires low computation capability. We also extend the algorithm to track a given load profile and to real-time implementation.

  13. Alternative Fuels Data Center: Government Champions Workplace Charging

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Endeavors Government Champions Workplace Charging Endeavors to someone by E-mail Share Alternative Fuels Data Center: Government Champions Workplace Charging Endeavors on Facebook Tweet about Alternative Fuels Data Center: Government Champions Workplace Charging Endeavors on Twitter Bookmark Alternative Fuels Data Center: Government Champions Workplace Charging Endeavors on Google Bookmark Alternative Fuels Data Center: Government Champions Workplace Charging Endeavors on Delicious Rank

  14. Researchers Demonstrate Microstructure and Charge Yield in Semiconducting Polymers (Fact Sheet), NREL Highlights, Science

    SciTech Connect (OSTI)

    Not Available

    2012-02-01

    Microstructure determines the yield of free charge in neat semiconducting polymers. Understanding the fundamental photophysics of poly(3-hyxylthiophene) films, and that of conjugated polymers in general, is essential if we are to realize their full potential as low-cost active layers for coal-competitive solar power generation. Yet, the value of one of the most basic photophysical parameters of these materials - the yield of free charges upon photoexcitation of neat films - has remained controversial because of a wide variation between previous measurements. Researchers at the National Renewable Energy Laboratory (NREL) have resolved this controversy by showing that the yield of free charges depends sensitively on the solid-state microstructure of the film. The microstructure was varied systematically through control of the polymers molecular weight and processing conditions, while the charge carrier yield was measured using time-resolved microwave conductivity - a unique technique to which only a few groups in the world have access. The researchers found that the yield of long-lived free charges depends on the co-existence of amorphous and crystalline domains in the polymer, and this behavior was attributed to charge separation at the interface between these two domains of order.

  15. Multi-cylinder axial stratified charging studied

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    Charge stratification can be obtained inside a noncylindrical combustion chamber of a fuel injected multi-cylinder engine by properly timing the injection event, directing the fuel spray into the inlet port, and imparting swirl to the inlet charge. A production 1.8-liter engine modified to operate as an axially stratified-charge engine showed 50% improvement in combustion stability, 3.5% lower fuel consumption, five research octane number lower octane requirement, and increased tolerance to dilute mixtures when compared with an unmodified engine.

  16. ION SOURCE WITH SPACE CHARGE NEUTRALIZATION

    DOE Patents [OSTI]

    Flowers, J.W.; Luce, J.S.; Stirling, W.L.

    1963-01-22

    This patent relates to a space charge neutralized ion source in which a refluxing gas-fed arc discharge is provided between a cathode and a gas-fed anode to provide ions. An electron gun directs a controlled, monoenergetic electron beam through the discharge. A space charge neutralization is effected in the ion source and accelerating gap by oscillating low energy electrons, and a space charge neutralization of the source exit beam is effected by the monoenergetic electron beam beyond the source exit end. The neutralized beam may be accelerated to any desired energy at densities well above the limitation imposed by Langmuir-Child' s law. (AEC)

  17. A high charge state multicusp ion source

    SciTech Connect (OSTI)

    Leung, K.N.; Keller, R.

    1989-06-01

    Attempts have been made to generate high charge state ion beams by employing a multicusp plasma source. Three experimental investigations have been performed at LBL and at GSI to study the charge state distributions and the emittance of the extracted beam. Results demonstrate that charge state as high as +7 can be obtained with argon or xenon plasmas. The brightness of a 11 mA xenon ion beam is found to be 26 A/({pi}-mm-mrad){sup 2}. 6 refs., 6 figs.

  18. Dramatic changes in electronic structure revealed by fractionally charged nuclei

    SciTech Connect (OSTI)

    Cohen, Aron J.; Mori-Snchez, Paula

    2014-01-28

    Discontinuous changes in the electronic structure upon infinitesimal changes to the Hamiltonian are demonstrated. These are revealed in one and two electron molecular systems by full configuration interaction (FCI) calculations when the realm of the nuclear charge is extended to be fractional. FCI electron densities in these systems show dramatic changes in real space and illustrate the transfer, hopping, and removal of electrons. This is due to the particle nature of electrons seen in stretched systems and is a manifestation of an energy derivative discontinuity at constant number of electrons. Dramatic errors of density functional theory densities are seen in real space as this physics is missing from currently used approximations. The movements of electrons in these simple systems encapsulate those in real physical processes, from chemical reactions to electron transport and pose a great challenge for the development of new electronic structure methods.

  19. Fundamental Studies of Charge Migration and Delocalization Relevant to Solar Energy Conversion

    SciTech Connect (OSTI)

    Michael J. Therien

    2012-06-01

    This program aimed to understand the molecular-level principles by which complex chemical systems carry out photochemical charge separation, transport, and storage, and how these insights could impact the design of practical solar energy conversion and storage devices. Towards these goals, this program focused on: (1) carrying out fundamental mechanistic and transient dynamical studies of proton-coupled electron-transfer (PCET) reactions; (2) characterizing and interrogating via electron paramagnetic resonance (EPR) spectroscopic methods novel conjugated materials that feature large charge delocalization lengths; and (3) exploring excitation delocalization and migration, as well as polaron transport properties of meso-scale assemblies that are capable of segregating light-harvesting antennae, nanoscale wire-like conduction elements, and distinct oxidizing and reducing environments.

  20. An Algorithm for Decomposition of the Charged Particle Scattering Cross Sections into Singular and Regular Components

    SciTech Connect (OSTI)

    Inanc, Feyzi

    2005-04-09

    Any radiography simulation effort that involves high energy photons should also address charged particle transport problem as well. The scattering cross sections with the charged particles, namely electrons and positrons, go through elastic and inelastic scattering interactions that are highly anisotropic. The conventional Boltzmann operator used in the transport computations can not represent the highly anisotropic scattering interactions. One way is to implement Fokker-Planck operators. The implementation of Fokker-Planck operators requires decomposition of scattering kernels into singular and regular components. This paper introduces an algorithm on how to decompose the elastic and inelastic scattering cross sections into singular and regular components and how to compute momentum transfer and stopping power coefficients from singular components.