Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bed steam reformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR)  

Broader source: Energy.gov (indexed) [DOE]

Maturation Plan (TMP) Fluidized Bed Steam Reforming Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Fluidized Bed Steam Reformer System. Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) More Documents & Publications Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) SRS Tank 48H Waste Treatment Project Technology Readiness Assessment

2

FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION  

SciTech Connect (OSTI)

Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

Jantzen, C

2006-12-22T23:59:59.000Z

3

Durability Testing of Fluidized Bed Steam Reforming Products  

SciTech Connect (OSTI)

Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of radioactive wastes but especially aqueous high sodium wastes at the Hanford site, at the Idaho National Laboratory (INL), and at the Savannah River Site (SRS). The FBSR technology converts organic compounds to CO{sub 2} and H{sub 2}O, converts nitrate/nitrite species to N{sub 2}, and produces a solid residue through reactions with superheated steam, the fluidizing media. If clay is added during processing a ''mineralized'' granular waste form can be produced. The mineral components of the waste form are primarily Na-Al-Si (NAS) feldspathoid minerals with cage-like and ring structures and iron bearing spinel minerals. The cage and ring structured minerals atomically bond radionuclides like Tc{sup 99} and Cs{sup 137} and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals appear to stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Durability testing of the FBSR products was performed using ASTM C1285 (Product Consistency Test) and the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP). The FBSR mineral products (bed and fines) evaluated in this study were found to be two orders of magnitude more durable than the Hanford Low Activity Waste (LAW) glass requirement of 2 g/m{sup 2} release of Na{sup +}. The PCT responses for the FBSR samples tested were consistent with results from previous FBSR Hanford LAW product testing. Differences in the response can be explained by the minerals formed and their effects on PCT leachate chemistry.

JANTZEN, CAROL M.; PAREIZS, JOHN M.; LORIER, TROY H.; MARRA, JAMES C.

2005-07-01T23:59:59.000Z

4

DURABILITY TESTING OF FLUIDIZED BED STEAM REFORMER (FBSR) WASTE FORMS  

SciTech Connect (OSTI)

Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium aqueous radioactive wastes. The addition of clay and a catalyst as co-reactants converts high sodium aqueous low activity wastes (LAW) such as those existing at the Hanford and Idaho DOE sites to a granular ''mineralized'' waste form that may be made into a monolith form if necessary. Simulant Hanford and Idaho high sodium wastes were processed in a pilot scale FBSR at Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium-bearing waste (SBW). The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The durability of the FBSR waste form products was tested in order to compare the measured durability to previous FBSR waste form testing on Hanford Envelope C waste forms that were made by THOR Treatment Technologies (TTT) and to compare the FBSR durability to vitreous LAW waste forms, specifically the Hanford low activity waste (LAW) glass known as the Low-activity Reference Material (LRM). The durability of the FBSR waste form is comparable to that of the LRM glass for the test responses studied.

Jantzen, C

2006-01-06T23:59:59.000Z

5

Mathematical modeling and heat transfer experiments for an annular bed methane-steam reformer  

SciTech Connect (OSTI)

A new type of catalytic reactor has been proposed for conducting endothermic chemical reactions. The reactor catalyst bed is in the form of a tubular reactor with an annular cross-section. Heat is supplied to the catalyst bed by countercurrent flowing gases on opposite sides of the annulus walls. This study consisted of the development of a mathematical model to describe the performance of an annular bed reactor employing the methane-steam reforming reaction for the production of hydrogen. The model is two-dimensional, and predicts both axial and radial temperature and concentration profiles throughout the reactor. The model was used to perform parameter sensitivity studies, reactor size optimization, and reactor scaleup.

Summers, W.A.

1986-01-01T23:59:59.000Z

6

Methane-steam reforming  

SciTech Connect (OSTI)

A discussion covers steam reforming developments to the 1950's; the kinetics of methane-steam reforming, of the water-gas shift during methane-steam reforming, and of the carbon formation during methane-steam reforming, as approached by Akers and Camp.

Van Hook, J.P.

1980-01-01T23:59:59.000Z

7

Experimental and modeling study of catalytic steam reforming of methane mixture with propylene in a packed bed reactor  

Science Journals Connector (OSTI)

Abstract Producer gas from biomass gasification contains mainly hydrogen, carbon dioxide, carbon monoxide, methane and some other low molecular hydrocarbons like propylene. This paper reports mathematical simulation and experimental study of steam reforming of methane mixture with propylene in a packed bed reactor filled with nickel based catalysts. Due to the high heat input through the reformer tube wall and the endothermic reforming reactions, a two-dimensional pseudo-heterogeneous model that takes into account the diffusion reaction phenomena in gas phase as well as inside the catalyst particles has been used to represent temperature distribution and species concentration within the reactor. Steam reforming of propylene is faster and more selective than methane and it is shown that addition of propylene to the methane steam mixture reduces the conversion of methane. The obtained results play a key role in optimization and design of a commercial reactor.

Parham Sadooghi; Reinhard Rauch

2014-01-01T23:59:59.000Z

8

Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes  

SciTech Connect (OSTI)

Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.

Jantzen, C. M.; Crawford, C. L.; Burket, P. R.; Bannochie, C. J.; Daniel, W. G.; Nash, C. A.; Cozzi, A. D.; Herman, C. C.

2012-10-22T23:59:59.000Z

9

Fluidized Bed Steam Reforming of INEEL SBW Using THORsm Mineralizing Technology  

SciTech Connect (OSTI)

Sodium bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Office’s (NE-ID) and State of Idaho’s top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). Many studies have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. DOE desired further experimental data, with regard to steam reforming technology, to make informed decisions concerning selection of treatment technology for SBW. Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was performed in a 15-cm-diameter reactor vessel September 27 through October 1, 2004. The pilot scale equipment is owned by the DOE, and located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Personnel from Science Applications International Corporation, owners of the STAR Center, operated the pilot plant. The pilot scale test was terminated as planned after achieving a total of 100 hrs of cumulative/continuous processing operation. About 230 kg of SBW surrogate were processed that resulted in about 88 kg of solid product, a mass reduction of about 62%. The process achieved about a 90% turnover of the starting bed. Samples of mineralized solid product materials were analyzed for chemical/physical properties. Results of product performance testing conducted by SRNL will be reported separately by SRNL.

Arlin L. Olson; Nicholas R. Soelberg; Douglas W. Marshall; Gary L. Anderson

2004-12-01T23:59:59.000Z

10

Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP)  

Broader source: Energy.gov (indexed) [DOE]

LWO-SPT-2007-00249 LWO-SPT-2007-00249 Rev. 1 Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) For Tank 48H Treatment Project (TTP) November, 2007 Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) LWO-SPT-2007-00249 Rev. 1 DISCLAIMER This report was prepared by Washington Savannah River Company (WSRC) for the United States Department of Energy under Contract No. DEA-AC09-96SR18500 and is an account of work performed under that contract. Neither the United States Department of Energy, nor WSRC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, or product or process

11

Stabilization of Savannah River National Laboartory (SRNL) Aqueous Waste by Fluidized Bed Steam Reforming (FBSR)  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) is a multidisciplinary laboratory operated by Westinghouse Savannah River Company (WSRC) in Aiken, South Carolina. Research and development programs have been conducted at SRNL for {approx}50 years generating non-radioactive (hazardous and non-hazardous) and radioactive aqueous wastes. Typically the aqueous effluents from the R&D activities are disposed of from each laboratory module via the High Activity Drains (HAD) or the Low Activity Drains (LAD) depending on whether they are radioactive or not. The aqueous effluents are collected in holding tanks, analyzed and shipped to either H-Area (HAD waste) or the F/H Area Effluent Treatment Facility (ETF) (LAD waste) for volume reduction. Because collection, analysis, and transport of LAD and HAD waste is cumbersome and since future treatment of this waste may be curtailed as the F/H-Area evaporators and waste tanks are decommissioned, SRNL laboratory operations requested several proof of principle demonstrations of alternate technologies that would define an alternative disposal path for the aqueous wastes. Proof of principle for the disposal of SRNL HAD waste using a technology known as Fluidized Bed Steam Reforming (FBSR) is the focus of the current study. The FBSR technology can be performed either as a batch process, e.g. in each laboratory module in small furnaces with an 8'' by 8'' footprint, or in a semi-continuous Bench Scale Reformer (BSR). The proof of principle experiments described in this study cover the use of the FBSR technology at any scale (pilot or full scale). The proof of principle experiments described in this study used a non-radioactive HAD simulant.

Jantzen, C

2004-11-01T23:59:59.000Z

12

Performance of the Fluidized Bed Steam Reforming Product Under Hydraulically Unsaturated Conditions  

SciTech Connect (OSTI)

Currently, several candidates for secondary waste immobilization at the Hanford site in the State of Washington, USA are being considered. To demonstrate the durability of the product in the unsaturated Integrated Disposal Facility (IDF) at the site, a series of tests have been performed one of the candidate materials using the Pressurized Unsaturated Flow (PUF) system. The material that was tested was the Fluidized Bed Steam Reformer (FBSR) granular product and the granular product encapsulated in a geopolymer matrix. The FBSR product is composed primarily of an insoluble sodium aluminosilicate matrix with the dominant phases being feldspathoid minerals mostly nepheline, sodalite, and nosean. The PUF test method allows for the accelerated weathering of materials, including radioactive waste forms, under hydraulically unsaturated conditions, thus mimicking the open-flow and transport properties that most likely will be present at the IDF. The experiments show a trend of decreasing tracer release as a function of time for several of the elements released from the material including Na, Si, Al, and Cs. However, some of the elements, notably I and Re, show a steady release throughout the yearlong test. This result suggests that the release of these minerals from the sodalite cage occurs at a different rate compared with the dissolution of the predominant nepheline phase.

Neeway, James J.; Qafoku, Nikolla; Williams, Benjamin D.; Rod, Kenton A.; Bowden, Mark E.; Brown, Christopher F.; Pierce, Eric M.

2014-05-01T23:59:59.000Z

13

Steam reforming analyzed  

SciTech Connect (OSTI)

This paper reports that maximum steam reformer operation without excessive coking reactions requires careful control of thermodynamic and kinetic conditions. Regardless of the syngas-based feedstock composition, carbon formation problems can be avoided while increasing reformer CO or H{sub 2} production. Steam reforming technology is best understood via: Primary steam reformer developments, Kinetics of methane steam reforming, Simulation of an industrial steam/CO{sub 2} reformer, Example conditions (steam/CO{sub 2} reforming), Thermodynamic approach (minimum to steam ratio). Hydrogen and carbon monoxide are two of the most important building blocks in the chemical industry. Hydrogen is mainly used in ammonia and methanol synthesis and petroleum refining. Carbon monoxide is used to produce pains, plastics, foams, pesticides and insecticides, to name a few. Production of H{sub 2} and CO is usually carried out by the following processes: Steam reforming (primary and secondary) of hydrocarbons, Partial oxidation of hydrocarbons, Coal gasification. Coal gasification and partial oxidation do not use catalysts and depend on partial combustion of the feedstock to internally supply reaction heat. Secondary (autothermal) reforming is a type of steam reforming that also uses the heat of partial combustion but afterwards uses a catalyst of promote the production of hydrogen and CO.

Wagner, E.S. (KTI Corp., San Dimas, CA (US)); Froment, G.F. (Ghent Rijksuniversiteit (Belgium))

1992-07-01T23:59:59.000Z

14

Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification  

Broader source: Energy.gov (indexed) [DOE]

Hanford Low Activity Waste (LAW) Fluidized Bed Steam Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification C.M. Jantzen and E.M. Pierce November 18, 2010 2 Participating Organizations 3 Incentive and Objectives FBSR sodium-aluminosilicate (NAS) waste form has been identified as a promising supplemental treatment technology for Hanford LAW Objectives: Reduce the risk associated with implementing the FBSR NAS waste form as a supplemental treatment technology for Hanford LAW Conduct test with actual tank wastes Use the best science to fill key data gaps Linking previous and new results together 4 Outline FBSR NAS waste form processing scales FBSR NAS waste form data/key assumptions FBSR NAS key data gaps FBSR NAS testing program 5 FBSR NAS Waste Form Processing

15

Modeling of Sorption-Enhanced Steam Reforming in a Dual Fluidized Bubbling Bed Reactor  

Science Journals Connector (OSTI)

The kinetics of the steam methane reforming and water-gas shift reactions are based on literature values, whereas experimentally derived carbonation kinetics are used for the carbonation of a dolomite. ... An equilibrium H2 concentration of ?98% on a dry basis was reached at 600 °C and 1 atm, with Arctic dolomite (Franzefoss A/S) as the CO2-acceptor. ... loss?by?ignition ...

Kim Johnsen; John R. Grace; Said S. E. H. Elnashaie; Leiv Kolbeinsen; Dag Eriksen

2006-05-11T23:59:59.000Z

16

Single Pass Flow-Through (SPFT) Test Results of Fluidized Bed Steam Reforming (FBSR) Waste Forms used for LAW Immobilization  

SciTech Connect (OSTI)

Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One such immobilization technology being considered is the Fluidized Bed Steam Reforming (FBSR) granular product. The FBSR granular product is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals. Production of the FBSR mineral product has been demonstrated both at the industrial and laboratory scale. Single-Pass Flow-Through (SPFT) tests at various flow rates have been conducted with the granular products fabricated using these two methods. Results show that the materials exhibit a relatively low forward dissolution rate on the order of 10-3 g/(m2d) with the material made in the laboratory giving slightly higher values.

Neeway, James J.; Qafoku, Nikolla; Williams, Benjamin D.; Valenta, Michelle M.; Cordova, Elsa A.; Strandquist, Sara C.; Dage, DeNomy C.; Brown, Christopher F.

2012-03-20T23:59:59.000Z

17

Hydrocarbon steam reforming using series steam superheaters  

SciTech Connect (OSTI)

In a process for steam reforming of a hydrocarbon gas feedstream wherein: the hydrocarbon gas feedstream is partially reformed at elevated temperatures in indirect heat exchange with hot combustion gases in a direct fired primary reforming furnace provided with a convection section for recovery of excess heat from said combustion gases; and the partially reformed feedstream is then further reformed in the presence of an oxygen-containing gas and steam in a secondary reformer to form a secondary reformer gaseous effluent; the improvement which comprises recovering waste heat from said secondary reformer effluent gas and from said primary reforming combustion products by heating a high pressure saturated steam in a first steam superheating zone by indirect heat exchange with at least a portion of said secondary reformer effluent gas to form a first superheated steam stream; and further heating said first superheated steam in a second steam superheating zone by indirect heat exchange with at least a portion of said primary reformer hot combustion gases for form a second superheated steam stream.

Osman, R. M.

1985-10-08T23:59:59.000Z

18

Methane-steam reforming  

SciTech Connect (OSTI)

The literature relating to the kinetics of methane-steam reforming involving integral and differential reactor data, porous nickel catalysts and nickel foil, and data over large ranges of temperature (500 to 1700/sup 0/F), pressure (0.01 to 50 atm), and intrinsic catalyst activities (200,000-fold) was reviewed. A simple reversible first-order kinetic expression for the steam-methane reaction appears to be applicable throughout the operable region of steam-to-carbon ratios. Internal pore diffusion limitation on the conversion rate, due to catalyst size and/or intrinsic catalyst activity and total operating pressure was underlined. S-shaped Arrhenium plots (changing activation energy) are obtained when steam reforming is conducted over a temperature range sufficient to produce intrinsic kinetics (low temperature, inactive catalyst, or small catalyst size), pore diffusional limitations, and reaction on the outside surface. Homogeneous gas-phase kinetics appear to contribute only at relatively high temperature (1400/sup 0/F). In steam reforming, the water-gas shift reaction departs from its equilibrium position, especially at low methane conversion level. A general correlation of approach to water-gas shift equilibration as a function of conversion level only was indicated. (DP) 18 figures, 6 tables.

Van Hook, J.P.

1980-01-01T23:59:59.000Z

19

Catalytic steam reforming of hydrocarbons  

SciTech Connect (OSTI)

The hot effluent from the catalytic steam reforming of a major portion of a fluid hydrocarbon feed stream in the reformer tubes of a primary reformer, or said effluent after secondary reforming thereof, is mixed with the hot effluent from the catalytic steam reforming of the remaining portion of the feed discharged from the reformer tubes of a primary reformer-exchanger. The combined gas steam is passed on the shell side of the reformer-exchanger countercurrently to the passage of feed in the reformer tubes thereof, thus supplying the heat for the reforming of the portion of the feed passed through the reformer tubes of the reformerexchanger. At least about 2/3 of the hydrocarbon feed stream is passed to the reformer tubes of said primary reformer, heated by radiant heat transfer and/or by contact with combustion gases, at a steam/hydrocarbon mole ratio of about 2-4/1. The remainder of said feed stream is passed to the reformer tubes of said reformer -exchanger at a steam/hydrocarbon mole ratio of about 3-6/1. The reformer shell of the reformer-exchanger is internally insulated by a refractory lining or by use of a double shell with passage of water or a portion of the feed material between the inner and outer shells. There is no significant difference between the pressure inside and outside of the reformer tubes of said primary reformer-exchanger.

Fuderer, A.

1982-06-29T23:59:59.000Z

20

Steam reforming of n-hexane on pellet and monolithic catalyst beds. A comparative study on improvements due to heat transfer  

SciTech Connect (OSTI)

Monolithic catalysts with higher available active surface areas and better thermal conductivity than conventional pellets beds, making possible the steam reforming of fuels heavier than naphtha, were examined. Performance comparisons were made between conventional pellet beds and honeycomb monolith catalysts using n-hexane as the fuel. Metal-supported monoliths were examined. These offer higher structural stability and higher thermal conductivity than ceramic supports. Data from two metal monoliths of different nickel catalyst loadings were compared to pellets under the same operating conditions. Improved heat transfer and better conversion efficiencies were obtained with the monolith having higher catalyst loading. Surface-gas interaction was observed throughout the length of the monoliths.

Not Available

1981-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed steam reformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

FLUIDIZED BED STEAM REFORMING MINERALIZATION FOR HIGH ORGANIC AND NITRATE WASTE STREAMS FOR THE GLOBAL NUCLEAR ENERGY PARTNERSHIP  

SciTech Connect (OSTI)

Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NO{sub x} in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {ge} 1000 C. Pollucite mineralization creates secondary aqueous waste streams and NO{sub x}. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O.

Jantzen, C; Michael Williams, M

2008-01-11T23:59:59.000Z

22

RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT  

SciTech Connect (OSTI)

The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

2012-01-12T23:59:59.000Z

23

RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES  

SciTech Connect (OSTI)

The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the Savannah River National Laboratory (SRNL) to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125/129 and Tc-99 to chemically resemble WTP-SW. Ninety six grams of radioactive product were made for testing. The second campaign commenced using SRS LAW chemically trimmed to look like Hanford's LAW. Six hundred grams of radioactive product were made for extensive testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

2011-02-24T23:59:59.000Z

24

MINERALIZATION OF RADIOACTIVE WASTES BY FLUIDIZED BED STEAM REFORMING (FBSR): COMPARISONS TO VITREOUS WASTE FORMS, AND PERTINENT DURABILITY TESTING  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) was requested to generate a document for the Washington State Department of Ecology and the U.S. Environmental Protection Agency that would cover the following topics: (1) A description of the mineral structures produced by Fluidized Bed Steam Reforming (FBSR) of Hanford type Low Activity Waste (LAW including LAWR which is LAW melter recycle waste) waste, especially the cage structured minerals and how they are formed. (2) How the cage structured minerals contain some contaminants, while others become part of the mineral structure (Note that all contaminants become part of the mineral structure and this will be described in the subsequent sections of this report). (3) Possible contaminant release mechanisms from the mineral structures. (4) Appropriate analyses to evaluate these release mechanisms. (5) Why the appropriate analyses are comparable to the existing Hanford glass dataset. In order to discuss the mineral structures and how they bond contaminants a brief description of the structures of both mineral (ceramic) and vitreous waste forms will be given to show their similarities. By demonstrating the similarities of mineral and vitreous waste forms on atomic level, the contaminant release mechanisms of the crystalline (mineral) and amorphous (glass) waste forms can be compared. This will then logically lead to the discussion of why many of the analyses used to evaluate vitreous waste forms and glass-ceramics (also known as glass composite materials) are appropriate for determining the release mechanisms of LAW/LAWR mineral waste forms and how the durability data on LAW/LAWR mineral waste forms relate to the durability data for LAW/LAWR glasses. The text will discuss the LAW mineral waste form made by FBSR. The nanoscale mechanism by which the minerals form will be also be described in the text. The appropriate analyses to evaluate contaminant release mechanisms will be discussed, as will the FBSR test results to date and how they compare to testing performed on LAW glasses. Other details about vitreous waste form durability and impacts of REDuction/OXidation (REDOX) on durability are given in Appendix A. Details about the FBSR process, various pilot scale demonstrations, and applications are given in Appendix B. Details describing all the different leach tests that need to be used jointly to determine the leaching mechanisms of a waste form are given in Appendix C. Cautions regarding the way in which the waste form surface area is measured and in the choice of leachant buffers (if used) are given in Appendix D.

Jantzen, C

2008-12-26T23:59:59.000Z

25

RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM  

SciTech Connect (OSTI)

The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

2012-02-02T23:59:59.000Z

26

Recover heat from steam reforming  

SciTech Connect (OSTI)

Steam reforming is one of the most important chemical processes--it is used in the manufacture of ammonia, hydrogen, methanol, and many chemicals made from hydrogen and carbon monoxide. Furthermore, many current trends will increase its importance. For example, methanol for addition to gasoline is likely to be produced by steam reforming. Because steam reforming occurs at high temperatures--typically 750 C--900 C--it generates a large amount of waste heat. Clearly, heat recovery is crucial to process economics. A typical 50,000 Nm[sup 3]/h hydrogen plant using natural gas feed has a radiant heat duty of about 50 MW. At a radiant efficiency of 50% and fuel cost of $3/GJ, this means that the reformer fires $9 million worth of fuel per year. Obviously, this amount of fuel justifies a close loot at ways to reduce costs. This article first provides a brief overview of steam reforming. It then outlines the available heat-recovery options and explains how to select the best method.

Fleshman, J.D. (Foster Wheeler USA Corp., Livingston, NJ (United States))

1993-10-01T23:59:59.000Z

27

Steam reformer study proposed by Battelle  

Science Journals Connector (OSTI)

Steam reformer study proposed by Battelle ... At a meeting held at Battelle's Columbus, Ohio, laboratories, D. B. Roach told representatives of 24 firms involved in various aspects of steam reforming that, though production of hydrogen through steam reforming has been a highly successful process, "increased plant size and more severe operating conditions have given rise to serious problems." ...

1969-01-13T23:59:59.000Z

28

Conversion of hydrocarbons for fuel-cell applications. Part I. Autothermal reforming of sulfur-free and sulfur-containing hydrocarbon liquids. Part II. Steam reforming of n-hexane on pellet and monolithic catalyst beds. Final report  

SciTech Connect (OSTI)

Experimental autothermal reforming (ATR) results obtained in the previous phase of this work with sulfur-free pure hydrocarbon liquids are summarized. Catalyst types and configuration used were the same as in earlier tests with No. 2 fuel oil to facilitate comparisons. Fuel oil has been found to form carbon in ATR at conditions much milder than those predicted by equilibrium. Reactive differences between paraffins and aromatics in ATR, and thus the formation of different carbon precursors, have been shown to be responsible for the observed carbon formation characteristics (fuel-specific). From tests with both light and heavy paraffins and aromatics, it is concluded that high boiling point hydrocarbons and polynuclear aromatics enhance the propensity for carbon formation in ATR. Effects of olefin (propylene) addition on the ATR performance of benzene are described. In ATR tests with mixtures of paraffins and aromatics (n-tetradecane and benzene) synergistic effects on conversion characteristics were identified. Comparisons of the No. 2 fuel oil data with the experimental results from this work with pure (and mixed) sulfur-free hydrocarbons indicate that the sulfur content of the fuel may be the limiting factor for efficient ATR operation. Steam reforming of hydrocarbons in conventional reformers is heat transfer limited. Steam reforming tasks performed have included performance comparisons between conventional pellet beds and honeycomb monolith catalysts. Metal-supported monoliths offer higher structural stability than ceramic supports, and have a higher thermal conductivity. Data from two metal monoliths of different catalyst (nickel) loading were compared to pellets under the same operating conditions.

Flytzani-Stephanopoulos, M.; Voecks, G.E.

1981-10-01T23:59:59.000Z

29

Steam reforming process  

SciTech Connect (OSTI)

Methane-containing gases are produced by the catalytic-stream reforming of hydrocarbon feedstocks using a catalyst which includes a group VIII metal such as nickel and alumina, and which in its calcined but unreduced precursor form has a pore size distribution defined as follows: (I) at least 55% of the pore volume of pores having a pore radius between 12 and 120 angstrom units is in the range of 12-30 angstrom units, and (II) the ratio of the pore volume contained in pores of 10-50 a to the pore volume contained in pores 50-300 a is at least 5:1.

Banks, R.G.; Williams, A.

1981-07-28T23:59:59.000Z

30

Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105 And AN-103) By Fluidized Bed Steam Reformation  

SciTech Connect (OSTI)

One of the immobilization technologies under consideration as a Supplemental Treatment for Hanford’s Low Activity Waste (LAW) is Fluidized Bed Steam Reforming (FBSR). The FBSR technology forms a mineral waste form at moderate processing temperatures thus retaining and atomically bonding the halides, sulfates, and technetium in the mineral phases (nepheline, sodalite, nosean, carnegieite). Additions of kaolin clay are used instead of glass formers and the minerals formed by the FBSR technology offers (1) atomic bonding of the radionuclides and constituents of concern (COC) comparable to glass, (2) short and long term durability comparable to glass, (3) disposal volumes comparable to glass, and (4) higher Na2O and SO{sub 4} waste loadings than glass. The higher FBSR Na{sub 2}O and SO{sub 4} waste loadings contribute to the low disposal volumes but also provide for more rapid processing of the LAW. Recent FBSR processing and testing of Hanford radioactive LAW (Tank SX-105 and AN-103) waste is reported and compared to previous radioactive and non-radioactive LAW processing and testing.

Jantzen, Carol; Herman, Connie; Crawford, Charles; Bannochie, Christopher; Burket, Paul; Daniel, Gene; Cozzi, Alex; Nash, Charles; Miller, Donald; Missimer, David

2014-01-10T23:59:59.000Z

31

Steam reforming utilizing high activity catalyst  

SciTech Connect (OSTI)

High activity, sulfur tolerant steam reforming catalysts are described comprising rhodium or nickel supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina. The catalysts have improved activity over conventionally used catalysts in the presence of sulfur containing hydrocarbon fuel (such as No. 2 fuel oil) in a steam reforming environment. The material has particular utility in autothermal, tubular, cyclic and adiabatic steam reforming processes.

Setzer, H. J.

1985-03-05T23:59:59.000Z

32

Numerical study of hydrogen production by the sorption-enhanced steam methane reforming process with online CO2 capture as operated in fluidized bed reactors  

Science Journals Connector (OSTI)

A three-dimensional (3D) Eulerian two-fluid model with an in-house code was developed to simulate the gas-particle two-phase flow in the fluidized bed reactors. The CO2 capture with Ca-based sorbents in the steam

Yuefa Wang; Zhongxi Chao; Hugo A. Jakobsen

2011-08-01T23:59:59.000Z

33

Steam reforming utilizing iron oxide catalyst  

SciTech Connect (OSTI)

High activity steam reforming iron oxide catalysts are described. Such catalysts can be unsupported utilizing at least 90% by weight iron oxide and various modifiers (Ai/sub 2/O/sub 3/, K/sub 2/O, CaO, SiO/sub 2/) or unmodified and supported on such things as alumina, CaO impregnated alumina, and lanthanum stabilized alumina. When used in steam reformers such as autothermal and tubular steam reformers, these catalysts demonstrate much improved resistance to carbon plugging.

Setzer, H. T.; Bett, J. A. S.

1985-06-11T23:59:59.000Z

34

Methane Steam Reforming Kinetics on a Ni/Mg/K/Al2O3 Catalyst  

Science Journals Connector (OSTI)

The kinetics of methane steam reforming were studied on a Ni/Mg/K/...2O3...catalyst that was developed for conditioning of biomass-derived syngas. Reactions were conducted in a packed-bed reactor while the concen...

Allison M. Robinson; Megan E. Gin; Matthew M. Yung

2013-12-01T23:59:59.000Z

35

Use of Pd membranes in catalytic reactors for steam methane reforming for pure hydrogen production  

Science Journals Connector (OSTI)

This review analyzes publications on experimental studies and mathematical modeling in the field of development of a catalytic reformer (mainly, steam methane conversion) with a fixed catalytic bed. The specif...

A. B. Shigarov; V. D. Meshcheryakov…

2011-10-01T23:59:59.000Z

36

A Multistage Steam Reformer Utilizing Solar Heat  

Science Journals Connector (OSTI)

Today a large amount of the required hydrogen or synthesis gas (mixture of hydrogen and carbonmonoxide) is won by steam reforming of low hydrocarbons, especially methane. Hereby the mixture of hydrocarbons and...

W. Jäger; U. Leuchs; W. Siebert

1987-01-01T23:59:59.000Z

37

Fuel cell integrated with steam reformer  

SciTech Connect (OSTI)

A H.sub.2 -air fuel cell integrated with a steam reformer is disclosed wherein a superheated water/methanol mixture is fed to a catalytic reformer to provide a continuous supply of hydrogen to the fuel cell, the gases exhausted from the anode of the fuel cell providing the thermal energy, via combustion, for superheating the water/methanol mixture.

Beshty, Bahjat S. (Lower Makefield, PA); Whelan, James A. (Bricktown, NJ)

1987-01-01T23:59:59.000Z

38

Integrated process and apparatus for the primary and secondary catalytic steam reforming of hydrocarbons  

SciTech Connect (OSTI)

An apparatus is described for the essentially autothermal, integrated primary and secondary reforming of hydrocarbons comprising: (a) an internally insulated outer reactor shell adapted for the positioning of primary and secondary reforming zones therein; (b) means defining a primary reforming zone within the outer reactor shell and having catalyst-containing reformer tubes positioned therein, the primary reforming zone not requiring an external fuel fired source of heat for the endothermic primary reforming reaction occurring therein; (c) means for introducing a fluid hydrocarbon feed stream and steam to the outer reactor shell for passage through the reformer tubes in the primary reforming zone; (d) means defining a secondary reforming zone within the outer reactor shell comprising a secondary reforming catalyst bed, a catalyst-free reaction space defining a feed end adjacent to the catalyst bed and a discharge end at the opposite side of the secondary reforming catalyst bed to the feed end; and (e) conduit means positioned entirely within the outer reactor shell and extending through the secondary reforming catalyst bed for passing partly reformed product effluent from the primary reforming zone to the catalyst-free reaction space in the secondary reforming zone.

Fuderer, A.

1987-03-17T23:59:59.000Z

39

Hydrogen Production by Catalytic Steam Reforming of Bio-oil, Naphtha  

Science Journals Connector (OSTI)

Hydrogen production by catalytic steam reforming of the bio-oil, naphtha, and CH4 was investigated over a novel metal-doped catalyst of (Ca24Al28O64)4+4O?/Mg (C12A7-Mg). The catalytic steam reforming was investigated from 250 to 850°C in the fixed-bed continuous flow reactor. For the reforming of bio-oil, the yield of hydrogen of 80% was obtained at 750°C, and the maximum carbon conversion is nearly close to 95% under the optimum steam reforming condition. For the reforming of naphtha and CH4, the hydrogen yield and carbon conversion are lower than that of bio-oil at the same temperature. The characteristics of catalyst were also investigated by XPS. The catalyst deactivation was mainly caused by the deposition of carbon in the catalytic steam reforming process.

Yue Pan; Zhao-xiang Wang; Tao Kan; Xi-feng Zhu; Quan-xin Li

2006-01-01T23:59:59.000Z

40

Simulation of Steam Reformers for Methane  

Science Journals Connector (OSTI)

Abstract A model is developed for industrial steam reformers for both top fired and side fired furnaces. The catalyst tube model is a one-dimensional heterogeneous model with intra-particle diffusional resistances. The two point boundary value differential equations of the catalyst pellets are solved using a modified novel orthogonal collocation technique to obtain the effectiveness factor variation along the length of the reactor. The side fired furnace equations are algebraic equations, the top fired furnace equations are two-point boundary value differential equations which are solved using the orthogonal collocation technique. A recently developed more general rate expression is used. The model performance is checked against industrial steam reformers. The model is used to investigate the effect of various parameters on the behaviour of the catalyst tubes and the furnace. The effectiveness factor variation along the length of the catalyst tube is also analysed. Keywords: Steam Reforming, Reactor modeling, Digital Simulation, effectiveness factor

M.A. Soliman; S.S.E.H. El-Nashaie; A.S. Al-Ubaid; A. Adris

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed steam reformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Steam reforming utilizing sulfur tolerant catalyst  

SciTech Connect (OSTI)

This patent describes a steam reforming process for converting hydrocarbon material to hydrogen gas in the presence of sulfur which consists of: adding steam to the hydrocarbon material and passing the steam and hydrocarbon material over catalyst material at elevated temperatures. The improvement comprises utilizing as a catalyst material high activity, sulfur tolerant catalyst of platinum supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina. It also describes a steam process for converting hydrocarbon material to hydrogen gas in the presence of sulfur which consists of steam to the hydrocarbon material over catalyst material at elevated temperatures. The improvement comprises utilizing as a catalyst material high activity, sulfur tolerant catalysts consisting essentially of iridium supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina. In addition a steam reforming process is described for converting hydrocarbon material to hydrogen gas in the presence of sulfur comprising adding steam to the hydrocarbon material and passing the steam and hydrocarbon material over catalyst material at elevated temperatures. The improvement comprises utilizing as a catalyst material high activity sulfur tolerant catalysts consisting essentially of palladium supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina.

Setzer, H.J.; Karavolis, S.; Bett, J.A.S.

1987-09-15T23:59:59.000Z

42

Supported metal catalysts for alcohol/sugar alcohol steam reforming  

SciTech Connect (OSTI)

Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

Davidson, Stephen; Zhang, He; Sun, Junming; Wang, Yong

2014-08-21T23:59:59.000Z

43

Carbon deposition in steam reforming and methanation  

SciTech Connect (OSTI)

The purpose of this review is to survey recent studies of carbon deposition on metals used as catalysts in steam reforming and methanation, emphasizing research where significant progress has been made. Where possible, an attempt is made to treat the fundamental nature of carbon formation and deactivation by carbon and the relationships between these two phenomena. Steam reforming and methanation are emphasized in this review because (1) deactivation of catalysts by carbon deposits is a serious concern in both processes, (2) much of the previous research with carbon formation on metals involved one or the other of these two reactions, and (3) there are interesting differences and similarities between these two reactions; for example, methanation is typically carried out at moderate reaction temperatures (200-450/sup 0/C) while steam reforming is typically carried out at significantly higher reaction temperatures (600-900/sup 0/C). Yet the two reactions are very closely related, since methane steam reforming is the reverse of methanation of CO. Moreover, there is evidence that some of the carbons formed in these two different processes are similar in their morphology.

Bartholomew, C.H.

1982-01-01T23:59:59.000Z

44

DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR THE BENCH STEAM REFORMER TEST  

SciTech Connect (OSTI)

This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Fluid Bed Steam Reformer testing. The type, quantity and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluid bed steam reformer (FBSR). A determination of the adequacy of the FBSR process to treat Hanford tank waste is required. The initial step in determining the adequacy of the FBSR process is to select archived waste samples from the 222-S Laboratory that will be used to test the FBSR process. Analyses of the selected samples will be required to confirm the samples meet the testing criteria.

BANNING DL

2010-08-03T23:59:59.000Z

45

RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE (WTP-SW) BY FLUIDIZED BED STEAM REFORMING (FBSR) USING THE BENCH SCALE REFORMER PLATFORM  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750°C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford’s WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing. The granular products (both simulant and radioactive) were tested and a subset of the granular material (both simulant and radioactive) were stabilized in a geopolymer matrix. Extensive testing and characterization of the granular and monolith material were made including the following: ? ASTM C1285 (Product Consistency Test) testing of granular and monolith; ? ASTM C1308 accelerated leach testing of the radioactive monolith; ? ASTM C192 compression testing of monoliths; and ? EPA Method 1311 Toxicity Characteristic Leaching Procedure (TCLP) testing. The significant findings of the testing completed on simulant and radioactive WTP-SW are given below: ? Data indicates {sup 99}Tc, Re, Cs, and I

Crawford, C.; Burket, P.; Cozzi, A.; Daniel, G.; Jantzen, C.; Missimer, D.

2014-08-21T23:59:59.000Z

46

Simulation of steam reformers for methane  

Science Journals Connector (OSTI)

A model is developed for industrial steam reformers for both top fired and side fired furnaces. The catalyst tube model is a one-dimensional heterogeneous model with intra-particle diffusional resistances. The two point boundary value differential equations of the catalyst pellets are solved using a modified novel orthogonal collocation technique to obtain the effectiveness factor variation along the length of the reactor. The side fired furnace equations are algebraic equations, the top fired furnace equations are two-point boundary value differential equations which are solved using the orthogonal collocation technique. A recently developed more general rate expression is used. The model performance is checked against industrial steam reformers. The model is used to investigate the effect of various parameters on the behaviour of the catalyst tubes and the furnace. The effectiveness factor variation along the length of the catalyst tube is also analysed.

M.A. Soliman; S.S.E.H. El-Nashaie; A.S. Al-Ubaid; A. Adris

1988-01-01T23:59:59.000Z

47

Alternative technologies to steam-methane reforming  

SciTech Connect (OSTI)

Steam-methane reforming (SMR) has been the conventional route for hydrogen and carbon monoxide production from natural gas feedstocks. However, several alternative technologies are currently finding favor for an increasing number of applications. The competing technologies include: steam-methane reforming combined with oxygen secondary reforming (SMR/O2R); autothermal reforming (ATR); thermal partial oxidation (POX). Each of these alternative technologies uses oxygen as a feedstock. Accordingly, if low-cost oxygen is available, they can be an attractive alternate to SMR with natural gas feedstocks. These technologies are composed technically and economically. The following conclusions can be drawn: (1) the SMR/O2R, ATR and POX technologies can be attractive if low-cost oxygen is available; (2) for competing technologies, the H{sub 2}/CO product ratio is typically the most important process parameter; (3) for low methane slip, the SMR/O2R, ATR and POX technologies are favored; (4) for full CO{sub 2} recycle, POX is usually better than ATR; (5) relative to POX, the ATR is a nonlicensed technology that avoids third-party involvement; (6) economics of each technology are dependent on the conditions and requirements for each project and must be evaluated on a case-by-case basis.

Tindall, B.M.; Crews, M.A. [Howe-Baker Engineers, Inc., Tyler, TX (United States)

1995-11-01T23:59:59.000Z

48

Low severity hydrocarbon steam reforming process  

SciTech Connect (OSTI)

A process is described for producing ammonia which comprises: (a) primary catalytically reforming at super atmospheric pressure in a direct-fired primary reforming zone, a hydrocarbon feedstock with steam to produce a gas containing carbon oxides, hydrogen and methane; (b) secondary catalytically reforming the gas from step (a) by introducing air and bringing the mixture towards equilibrium thereby producing a secondary reformer effluent gas containing nitrogen, carbon oxides, hydrogen and a decreased quantity of methane; (c) converting carbon monoxide catalytically with steam to carbon dioxide and hydrogen; (d) removing carbon oxides to give an ammonia synthesis gas comprising nitrogen and hydrogen and compressing the gas to ammonia synthesis pressure; (e) reacting the synthesis gas in an ammonia synthesis zone to produce ammonia and recovering ammonia from the reacted gas to produce an ammonia-depleted gas stream; (f) recycling at least a portion of the ammonia-depleted gas stream to the ammonia synthesis zone; and (g) treating a sidestream of the ammonia-depleted gas to separate a stream enriched in hydrogen and an inerts-enriched gas stream, and returning the enriched hydrogen stream to the ammonia synthesis zone.

Osman, R.M.; Byington, R.G.

1986-06-03T23:59:59.000Z

49

Solar Steam Reforming of Methane (SSRM) Program Proposals  

Science Journals Connector (OSTI)

Within the intended development work to supply solar HT process heat to industrial processes, especially chemical processes, the steam reforming process is considered suitable in particular.

A. Kalt

1987-01-01T23:59:59.000Z

50

Methane Steam Reforming Thermally Coupled with Fuel Combustion: Application of Chemical Looping Concept as a Novel Technology  

Science Journals Connector (OSTI)

Methane Steam Reforming Thermally Coupled with Fuel Combustion: Application of Chemical Looping Concept as a Novel Technology ... One of these new methods is chemical looping combustion (CLC). ... Experimental Study of Chemical-Looping Reforming in a Fixed-Bed Reactor: Performance Investigation of Different Oxygen Carriers on Al2O3 and TiO2 Support ...

Mohammad Reza Rahimpour; Marziyeh Hesami; Majid Saidi; Abdolhossein Jahanmiri; Mahdi Farniaei; Mohsen Abbasi

2013-03-14T23:59:59.000Z

51

Catalyst for steam reforming of hydrocarbons  

SciTech Connect (OSTI)

A catalyst's resistance to deactivation by polymer formation is vital to the successful gasification of heavy feedstocks such as kerosene and gas oil. The improved polymer-resistance performance of this steam-reforming catalyst is directly relate to the distribution of the pore sizes in its calcined (but unreduced) precursor form and to a certain pore-size ratio: 1) At least 55% of the pore volume of pores having a radius of between 12 and 120 A(2000A) is in the range of 12-30 A(2000A) and 2) the ratio of the pore volume contained in pores of 10-50 A(2000A) to the volume contained in pores of 50-300 A(2000A) is at least 5:1. The catalyst-preparation method involves coprecipitation with a minimum of heat treatment (at temperatures not greater than 140/sup 0/F or 60/sup 0/C).

Banks, R.G.S.; Williams, A.

1980-08-05T23:59:59.000Z

52

Performance tests for steam methane reformers  

SciTech Connect (OSTI)

Most of the synthesis gas plants in operation in the United States for production of hydrogen, carbon monoxide, methanol, and ammonia use steam methane reforming (SMR). Economic projections indicate that the SMR plant may continue to be the most favorable process choice through the 1980s or until partial oxidation or coal gasification processes are technically proven. The complexity of an efficiently designed SMR plant for production of these chemicals requires a thorough understanding of many unit operations to correctly evaluate the performance of an operating plant. Air Products and Chemicals, Inc. (APCI) owns and operates various types of SMR plants for production of hydrogen and carbon monoxide gases for pipe line sales, liquid hydrogen for merchant sale, methanol and ammonia. Over the past few years, APCI has developed guidelines and procedures for plant performance tests done at its major SMR plants. This article documents the plant test procedure used in conducting onsite SMR plant performance tests.

Wang, S.I.; DiMartino, S.P.; Patel, N.M.; Smith, D.D.

1982-08-01T23:59:59.000Z

53

Process for steam reforming of hydrocarbons  

SciTech Connect (OSTI)

A process is provided for the steam reforming of normally liquid hydrocarbons to produce carbon monoxide and hydrogen, which does not promote the deposition of carbonacious materials upon catalytic surfaces. The catalyst consists of nickel promoted with the oxides of iron and manganese within a specific manganese to iron ratio, said metal and metal oxides being supported upon a refractory support. The support is preferably aluminum oxide in its alpha phase having a surface area of more than 0.5 m2/gm but no more than 10 m2/gm. The metallic constituents are impregnated onto said refractory low surface area support as salts and are calcined at sufficiently high temperature to convert the salts to the oxide but at a sufficiently low temperature that they do not chemically react with the support.

Broughton, D.R.; Russ, K.J.

1980-11-11T23:59:59.000Z

54

Fuel cell integrated with steam reformer  

SciTech Connect (OSTI)

A process is described of providing a continuous supply of hydrogen fuel to a fuel cell system. The system comprises a heat exchanger, a burner, a catalytic reactor containing a catalyst bed for catalyzing the production of hydrogen from a gaseous mixture of water and methanol and a fuel cell comprised of a fuel electrode, an oxygen electrode and an electrolyte disposed therebetween. The process comprises: passing a gaseous mixture consisting essentially of water and methanol to the heat exchanger to heat the mixture to a superheated state, the temperature and composition of the superheated mixture being sufficient to supply at least about 90% of the heat required for reforming the methanol contained in the mixture by condensation.

Beshty, B.S.; Whelan, J.A.

1987-06-02T23:59:59.000Z

55

Experimental Research on Low-Temperature Methane Steam Reforming Technology in a Chemically Recuperated Gas Turbine  

Science Journals Connector (OSTI)

Under the operating parameters of a chemically recuperated gas turbine (CRGT), the low-temperature methane steam reforming test bench is designed and built; systematic experimental studies about fuel steam reforming are conducted. Four different reforming ...

Qian Liu; Hongtao Zheng

2014-09-24T23:59:59.000Z

56

A Compact and Efficient Steam Methane Reformer for Hydrogen Production.  

E-Print Network [OSTI]

??A small-scale steam-methane reforming system for localized, distributed production of hydrogen offers improved performance and lower cost by integrating the following technologies developed at the… (more)

Quon, Willard

2012-01-01T23:59:59.000Z

57

Experiences of niobium-containing alloys for steam reformers  

SciTech Connect (OSTI)

Destructive testing of niobium alloys was made in steam reformer as well as the study of the effects of the chemical compositions on the creep rupture and tensile properties.

Shibasaki, T.; Takemura, K.; Kawai, T.; Mohri, T.

1987-01-01T23:59:59.000Z

58

Highly Active Steam Reforming Catalyst for Hydrogen and Syngas Production  

Science Journals Connector (OSTI)

Toyo Engineering Corporation developed a steam reforming catalyst, which is four times as active as conventional catalysts, for hydrogen and syngas production from light natural gas. The catalyst has...3 plant. B...

Toru Numaguchi

2001-11-01T23:59:59.000Z

59

The nuclear heated steam reformer — Design and semitechnical operating experiences  

Science Journals Connector (OSTI)

Good operating experiences of the EVA I- and EVA II-plant have been described. Therin the comparison of the different catalyst concepts has been given. Further the behaviour of the bundle of EVA II plant by isolation of individual reformer tubes as well as the performance of the bundle under transient conditions have been explained. Different design concepts for a nuclear heated steam reformer based on the concentric tubes and baffles have been given. Main points of studies are constructional details, thermohydraulic of the bundle and stress analysis. It can be shown that the present standard of knowledge allows the application of the steam reformer for coal refinement with nuclear heat.

J. Singh; H.F. Niessen; R. Harth; H. Fedders; H. Reutler; W. Panknin; W.D. Müller; H.G. Harms

1984-01-01T23:59:59.000Z

60

Enviro-Friendly Hydrogen Generation From Steel Mill-Scale via Metal-Steam Reforming  

E-Print Network [OSTI]

Enviro-Friendly Hydrogen Generation From Steel Mill-Scale via Metal-Steam Reforming Abdul of certain metals with steam, called metal- steam reforming (MSR). This technique does not gen- erate any: hydrogen generation; metal-steam reform- ing; mill-scale; nanoscale iron; electron microscopy Hydrogen

Azad, Abdul-Majeed

Note: This page contains sample records for the topic "bed steam reformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Steam reformers heated by helium from high temperature reactors  

Science Journals Connector (OSTI)

The manifold possibilities of the application of helium-heated steam reformers combined with high temperature nuclear reactors are elucidated in this article. It is shown that the thermodynamic interpretation of the processes does not cause difficulties because of the good heat transfer in helium at high pressure and that helium peak temperatures of 950°C are sufficient for carrying out the process. The mechanical design of the reformer tube does not lead to problems because the helium and process pressures are so chosen as to be approximately equal. The problems of hydrogen and tritium permeation as well as the contamination of the reformer tube with solid fission products seem to be solvable using the knowledge available at present. Furthermore, the various possibilities for the design arrangements of helium-heated reformer tube furnaces are shown. The status of development attained to date is outlined and in conclusion there is a survey regarding the next steps to be taken in steam reformer technology.

K. Kugeler; M. Kugeler; H.F. Niessen; K.H. Hammelmann

1975-01-01T23:59:59.000Z

62

Produce synthesis gas by steam reforming natural gas  

SciTech Connect (OSTI)

For production of synthesis gas from natural gas the steam reforming process is still the most economical. It generates synthesis gas for ammonia and methanol production as well as hydrogen, oxo gas and town gas. After desulfurization, the natural gas is mixed with steam and fed to the reforming furnace where decomposition of hydrocarbons takes place in the presence of a nickel-containing catalyst. Synthesis gas that must be free of CO and CO/sub 2/ is further treated in a CO shift conversion, a CO/sub 2/ scrubbing unit and a methanation unit. The discussion covers the following topics - reforming furnace; the outlet manifold system; secondary reformer; reformed gas cooling. Many design details of equipment used are given.

Marsch, H.D.; Herbort, H.J.

1982-06-01T23:59:59.000Z

63

Steam-Methane Reformer Kinetic Computer Model with Heat Transfer and Geometry Options  

SciTech Connect (OSTI)

A kinetic computer model of a steam/methane reformer has been developed as a design and analytical tool for a fuel cell system's fuel conditioner. This model has reaction, geometry, flow arrangement, and heat transfer options. Model predictions have been compared to previous experimental data, and close agreement was obtained. Initially, the Leva-type, packed-bed, heat transfer correlations were used. However, calculations based upon the reacting, reformer gases indicate a considerably higher heat transfer coefficient for this reforme design. Data analysis from similar designs in the literature also shows this phenomenon. This is thought to be reaction-induced effect, brought about by the changing of gas composition, the increased gas velocity, the lower catalyst temperature during reaction, and the higher thermal and reaction gradients involved in compact fuel cell reformer designs. Future experimental work is planned to verify the model's predictions further.

Murray, A.P.; Snyder, T.S.

1985-04-01T23:59:59.000Z

64

Steam reforming of carbo-metallic oils  

SciTech Connect (OSTI)

A process is disclosed for economically converting carbo-metallic oils to liquid fuel products by bringing a converter feed containing 650/sup 0/ F. + material characterized by a carbon residue on pyrolysis of at least about 1 and by containing at least about 4 ppm of nickel equivalents of heavy metals, including nickel, into contact with a particulate cracking catalyst in a progressive flow type reactor having an elongated conversion zone. The suspension of catalyst and feed in the reactor has a vapor residence time in the range of about 0.5 to about 10 seconds, a temperature of about 900/sup 0/ F. to about 1400/sup 0/ F. and a pressure of about 10 to about 50 pounds per square inch absolute for causing a conversion per pass in the range of about 50 to about 90 percent while depositing nickel on the catalyst and coke on the catalyst in amounts in the range of about 0.3 to about 3 percent by weight. The coke-laden catalyst is separated from the resulting stream of hydrocarbons and regenerated by combustion of the coke with oxygen, the regenerated catalyst being characterized by deposited nickel in at least a partially oxidized state and a level of carbon on catalyst of about 0.25 percent by weight or less. The regenerated catalyst is contacted with a reducing gas under reducing conditions sufficient to reduce at least a portion of the oxidized nickel deposits to a reduced state and the regenerated catalyst with reduced nickel deposits is recycled to the conversion zone for contact with fresh feed. Water is also introduced into the reactor conversion zone and the amount of water and the amount of reduced nickel on the recycled catalyst are sufficient to provide a steam reforming reaction so that hydrogen deficient components of the feed are converted to products having higher hydrogen to carbon ratios and the amount of feed converted to coke is reduced. The amount of deposited nickel on catalyst is preferably in the range from about 2,000 to about 20,000 ppm.

Myers, G.D.; Hettinger, W.P. Jr.; Kovach, S.M.; Zandona, O.J.

1984-02-21T23:59:59.000Z

65

A Comparative Study between Co and Rh for Steam Reforming of...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

between Co and Rh for Steam Reforming of Ethanol. A Comparative Study between Co and Rh for Steam Reforming of Ethanol. Abstract: Rh and Co-based catalyst performance was compared...

66

Catalytic roles of Co0 and Co2+ during steam reforming of ethanol...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

roles of Co0 and Co2+ during steam reforming of ethanol on CoMgO catalysts . Catalytic roles of Co0 and Co2+ during steam reforming of ethanol on CoMgO catalysts . Abstract:...

67

FLUIDIZABLE CATALYSTS FOR PRODUCING HYDROGEN BY STEAM REFORMING BIOMASS PYROLYSIS LIQUIDS  

E-Print Network [OSTI]

FLUIDIZABLE CATALYSTS FOR PRODUCING HYDROGEN BY STEAM REFORMING BIOMASS PYROLYSIS LIQUIDS Kimberly established that biomass pyrolysis oil could be steam-reformed to generate hydrogen using non pyrolysis oil could be almost stoichiometrically converted to hydrogen. However, process performance

68

Modelling, simulation and sensitivity analysis of steam-methane reformers  

Science Journals Connector (OSTI)

A mathematical model to calculate temperature, conversion and pressure profiles for static operations in steam-methane reformers was simulated. A rigorous kinetic model describing steam-methane reactions was compared to a first order one and an empirical heat distribution model was fitted to describe heat absorbed along the reactor length. A control interface was simulated to allow sensitivity analysis with different control schemes. The kinetic models were tested with data from industrial steam-gas reformers. Simulation results agreed with actual plant data for conversion, temperature and pressure. Nevertheless, the first order kinetic model gave unrealistic sensitivity results to pressure and steam-to-carbon ratio variations. The rigorous model could confidently be used for design analysis, control, and economic evaluation purposes.

I.M. Alatiqi; A.M. Meziou; G.A. Gasmelseed

1989-01-01T23:59:59.000Z

69

High temperature gas cooled reactor steam-methane reformer design  

SciTech Connect (OSTI)

The concept of the long distance transportation of process heat energy from a High Temperature Gas Cooled Reactor (HTGR) heat source, based on the steam-methane reforming reaction, is being evaluated by the Department of Energy as an energy source/application for use early in the 21st century. This paper summaries the design of a helium heated steam reformer utilized in conjunction with an intermediate loop, 850/degree/C reactor outlet temperature, HTGR process heat plant concept. This paper also discusses various design considerations leading to the mechanical design features, the thermochemical performance, the materials selection and the structural design analysis. 12 refs.

Impellezzeri, J.R.; Drendel, D.B.; Odegaard, T.K.

1981-01-01T23:59:59.000Z

70

Hydrogen From MillHydrogen From Mill--Scale Waste Via MetalScale Waste Via Metal--Steam ReformingSteam Reforming INTRODUCTIONINTRODUCTION  

E-Print Network [OSTI]

1 Hydrogen From MillHydrogen From Mill--Scale Waste Via MetalScale Waste Via Metal--Steam ReformingSteam Reforming INTRODUCTIONINTRODUCTION Hydrogen is considered to be the ideal energy carrying medium for fuel and supplying hydrogen to the end user in more reversible, much simpler and far safer ways. Metal-steam

Azad, Abdul-Majeed

71

Static and Dynamic Simulation of Steam Methane Reformers  

Science Journals Connector (OSTI)

The steam-methane reaction is an essential step for many processing plants. Hydrogen, ammonia and methanol are mostly produced by means of methane steam reforming. Since hydrogen is essential for any refinery employing hydrotreating, the performance monitoring of the hydrogen plant is highly desirable. The use of models or simulation is now a standard practice in most chemical plants and refineries. However, reliable models are still lacking for speciality reactors like the methane steam reformer. This paper describes steady-state and dynamic models for the reactions involved in reforming methane and higher hydrocarbon gases. The performance of the reformer is then illustrated by sensitivity analysis to various input disturbances like inlet pressure, temperature, feed concentration and rate, fuel rate and density and steam to carbon ratio. The effect of these disturbances on exit temperature and conversion is studied and analyzed. Catalyst deactivation effects are also discussed and it is shown by sample calculations that the simulator can give insight into catalyst performance and assist in monitoring catalyst deactivation. The transient effects are also reported and dynamic elements like gains and response time are discussed. Such information should give insight into controller design and effects of various parameters.

I.M. Alatiqi; A.M. Meziou; G.A. Gasmelseed

1989-01-01T23:59:59.000Z

72

Steam Reforming of Low-Level Mixed Waste  

SciTech Connect (OSTI)

Under DOE Contract No. DE-AR21-95MC32091, Steam Reforming of Low-Level Mixed Waste, ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design construction, and testing of the PDU as well as performance and economic projections for a 500- lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area published April 1997.1 The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfidly tested including a 750-hour test on material simulating a PCB- and Uranium- contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (>99.9999oA) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radlonuclides in the volume-reduced solids. Cost studies have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

None

1998-01-01T23:59:59.000Z

73

The use of advanced steam reforming technology for hydrogen production  

SciTech Connect (OSTI)

The demand for supplementary hydrogen production in refineries is growing significantly world-wide as environmental legislation concerning cleaner gasoline and diesel fuels is introduced. The main manufacturing method is by steam reforming. The process has been developed both to reduce the capital cost and increase efficiency, reliability and ease of operation. ICI Katalco`s Leading Concept Hydrogen or LCH process continues this process of improvement by replacing the conventional fired steam reformer with a type of heat exchange reformer known as the Gas Heated Reformer or GHR. The GHR was first used in the Leading Concept Ammonia process, LCA at ICI`s manufacturing site at Severnside, England and commissioned in 1988 and later in the Leading Concept Methanol (LCM) process for methanol at Melbourne, Australia and commissioned in 1994. The development of the LCH process follows on from both LCA and LCM processes. This paper describes the development and use of the GHR in steam reforming, and shows how the GHR can be used in LCH. A comparison between the LCH process and a conventional hydrogen plant is given, showing the benefits of the LCH process in certain circumstances.

Abbishaw, J.B.; Cromarty, B.J. [ICI Katalco, Billingham (United Kingdom)

1996-12-01T23:59:59.000Z

74

Steam methane reforming in molten carbonate salt. Final report  

SciTech Connect (OSTI)

This report documents the work accomplished on the project {open_quotes}Steam Methane Reforming in Molten Carbonate Salt.{close_quotes}. This effort has established the conceptual basis for molten carbonate-based steam reforming of methane. It has not proceeded to prototype verification, because corrosion concerns have led to reluctance on the part of large hydrogen producers to adopt the technology. Therefore the focus was shifted to a less corrosive embodiment of the same technology. After considerable development effort it was discovered that a European company (Catalysts and Chemicals Europe) was developing a similar process ({open_quotes}Regate{close_quotes}). Accordingly the focus was shifted a second time, to develop an improvement which is generic to both types of reforming. That work is still in progress, and shows substantial promise.

Erickson, D.C.

1996-05-01T23:59:59.000Z

75

Fuel processing for fuel cells: a model for fuel conversion and carbon formation in the adiabatic steam reformer  

SciTech Connect (OSTI)

In present fuel cell power plants the fuel processor is a catalytic steam reformer which is limited to the use of fuels such as naphtha and natural gas. The sulfur content of these feeds must be reduced to low levels by hydrotreatment before contacting the nickel catalyst in the reformer. However, future fuel cell power plants may be required to ue coal-derived liquid fuel or heavy petroleum distillates which are more difficult to hydrotreat and reform. To meet this requirement, an adiabatic steam reformer is being developed by United Technologies Corporation with the support of the Electric Power Research Institute. In the adiabatic reformer, air is added to the process stream to provide, by combustion, the heat for endothermic reforming in a catalyst bed. In the inlet section of the reformer, air and fuel combust, and reforming is initiated on special catalysts whose primary functon is to prevent formation and accumulation of carbon. Following the inlet section, catalysts with high activity for steam reforming complete the conversion of the remaining fuel, principally methane. The objective of the present program is to establish a reactor model for the adiabatic reformer which would predict process stream compositions and temperatures and include carbon formation processes. Progress is reported on the four tasks: (1) determine rate expressions for catalytic reactions occurring in the adiabatic reformer; (2) establish a reactor model to predict process stream compositions in the adiabatic reformer using data from Task 1 for cataytic reactions and data from the literature for homogeneous gas-phase reactions; (3) determine critical conditions for carbon formation on selected catalysts using microbalance experiments; and (4) establish a model to predict carbon formation by combination of the model for process stream composition from Task 2 and data for carbon formation from Task 3. (WHK)

Bett, J.A.S.; Cutlip, M.C.; Foley, P.F.; Lesieur, R.R.; Meyer, A.P.; Sederquist, R.A.; Setzer, H.J.

1981-01-01T23:59:59.000Z

76

Sulfur-deactivated steam reforming of gasified biomass  

SciTech Connect (OSTI)

The effect of hydrogen sulfide on the stream reforming of methane has been studied. Methane is the most difficult component to convert by steam reforming in the mixture of hydrocarbons, which is produced in biomass gasification. Two catalysts were subjected to hydrogen sulfide levels up to 300 ppm so as to study the effect of sulfur on their deactivation. These catalysts were the C11-9-061, from United Catalyst Inc., and the HTSR1, from Haldor Topsoee. The activation energy of the sulfur-deactivated steam-reforming reaction was calculated to be 280 and 260 kJ/mol, for each catalyst, respectively. The high values most probably originate from the fact that the degree of sulfur coverage of the nickel surface is close to 1 for these experiments. Even under these severe conditions, steam reforming of methane is possible without any carbon formation. The HTSR1 catalyst exhibits a very high sulfur-free activity, resulting in a performance in the presence of hydrogen sulfide higher than that for the C11-9-061 catalyst. By using the HTSR1 catalyst, the reactor temperature can be lowered by 60 C in order to reach comparable levels of conversion.

Koningen, J.; Sjoestroem, K. [Kungl Tekniska Hoegskolan, Stockholm (Sweden)] [Kungl Tekniska Hoegskolan, Stockholm (Sweden)

1998-02-01T23:59:59.000Z

77

Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane  

Science Journals Connector (OSTI)

Lately, there has been considerable interest in the development of more efficient processes to generate syngas, an intermediate in the production of fuels and chemicals, including methanol, dimethyl ether, ethylene, propylene and Fischer–Tropsch fuels. Steam methane reforming (SMR) is the most widely applied method of producing syngas from natural gas. Dry reforming of methane (DRM) is a process that uses waste carbon dioxide to produce syngas from natural gas. Dry reforming alone has not yet been implemented commercially; however, a combination of steam methane reforming and dry reforming of methane (SMR + DRM) has been used in industry for several years. The aim of this work was to simulate both the SMR and SMR + DRM processes and to conduct an economic and environmental analysis to determine whether the SMR + DRM process is competitive with the more popular SMR process. The results indicate that the SMR + DRM process has a lower carbon footprint. Further research on DRM catalysts could make this process economically competitive with steam methane reforming.

Preeti Gangadharan; Krishna C. Kanchi; Helen H. Lou

2012-01-01T23:59:59.000Z

78

Phase 2 TWR Steam Reforming Test for Sodium-Bearing Waste Treatment  

SciTech Connect (OSTI)

About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste (SBW) is stored in stainless steel tanks a the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory (INEEL). Steam reforming is a candidate technology being investigated for converting the SBW into a road ready waste form that can be shipped to the Waste Isolation Pilot Plant in New Mexico for interment. Fluidized bed steam reforming technology, licensed to ThermoChem Waste Remediation, LLC (TWR) by Manufacturing Technology Conversion International, was tested in two phases using an INEEL (Department of Energy) fluidized bed test system located at the Science Applications International Corporation (SAIC) Science and Technology Applications Research Center in Idaho Falls, Idaho. The Phase 1 tests were reported earlier. The Phase 2 tests are reported here. For Phase 2, the process feed rate, reductant stoichiometry, and process temperature were varied to identify and demonstrate how the process might be optimized to improve operation and product characteristics. The first week of testing was devoted primarily to process chemistry and the second week was devoted more toward bed stability and particle size control.

Nicholas R. Soelberg; Doug Marshall; Dean Taylor; Steven Bates

2004-01-01T23:59:59.000Z

79

Steam Gasification of Bio-Oil and Bio-Oil/Char Slurry in a Fluidized Bed Reactor  

Science Journals Connector (OSTI)

In the present study, the steam gasification of bio-oil/char slurry was investigated using a lab-scale fluidized bed reactor filled with either Ni-based naphtha steam reforming catalyst or silica sand. ... LOI: Loss on ignition after a 30 min fusion at 1000 °C. ... Table 5. Product Gas Composition (in Mol %) and Heating Value from Steam Gasification of the Bio-Oil and the Slurry with the Catalyst and the Sand at T ? 800°C, H2O/C ? 5.5, and GC1HSV ? 340 h?1; Wet with Nitrogen and Dry Nitrogen Free Basisa ...

Masakazu Sakaguchi; A. Paul Watkinson; Naoko Ellis

2010-08-23T23:59:59.000Z

80

Catalyst and process for steam-reforming of hydrocarbons  

SciTech Connect (OSTI)

An improved catalyst and an improved process for use of the catalyst in the steam-hydrocarbon reforming reaction are disclosed. The catalyst comprises a group VIII metal on a cylindrical ceramic support consisting essentially of alpha alumina and having a plurality of gas passages extending axially therethrough. These supported catalysts display a higher geometric surface area and a lower pressure drop than do standard rings.

Atwood, K.; Merriam, J.S.; Wright, J.H.

1980-11-11T23:59:59.000Z

Note: This page contains sample records for the topic "bed steam reformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

BENCH-SCALE STEAM REFORMING OF ACTUAL TANK 48H WASTE  

SciTech Connect (OSTI)

Fluidized Bed Steam Reforming (FBSR) has been demonstrated to be a viable technology to remove >99% of the organics from Tank 48H simulant, to remove >99% of the nitrate/nitrite from Tank 48H simulant, and to form a solid product that is primarily carbonate based. The technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration Fluidized Bed Steam Reformer1 (ESTD FBSR) at the Hazen Research Inc. (HRI) facility in Golden, CO. The purpose of the Bench-scale Steam Reformer (BSR) testing was to demonstrate that the same reactions occur and the same product is formed when steam reforming actual radioactive Tank 48H waste. The approach used in the current study was to test the BSR with the same Tank 48H simulant and same Erwin coal as was used at the ESTD FBSR under the same operating conditions. This comparison would allow verification that the same chemical reactions occur in both the BSR and ESTD FBSR. Then, actual radioactive Tank 48H material would be steam reformed in the BSR to verify that the actual tank 48H sample reacts the same way chemically as the simulant Tank 48H material. The conclusions from the BSR study and comparison to the ESTD FBSR are the following: (1) A Bench-scale Steam Reforming (BSR) unit was successfully designed and built that: (a) Emulated the chemistry of the ESTD FBSR Denitration Mineralization Reformer (DMR) and Carbon Reduction Reformer (CRR) known collectively as the dual reformer flowsheet. (b) Measured and controlled the off-gas stream. (c) Processed real (radioactive) Tank 48H waste. (d) Met the standards and specifications for radiological testing in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF). (2) Three runs with radioactive Tank 48H material were performed. (3) The Tetraphenylborate (TPB) was destroyed to > 99% for all radioactive Bench-scale tests. (4) The feed nitrate/nitrite was destroyed to >99% for all radioactive BSR tests the same as the ESTD FBSR. (5) The radioactive Tank 48H DMR product was primarily made up of soluble carbonates. The three most abundant species were thermonatrite, [Na{sub 2}CO{sub 3} {center_dot} H{sub 2}O], sodium carbonate, [Na{sub 2}CO{sub 3}], and trona, [Na{sub 3}H(CO{sub 3}){sub 2} {center_dot} 2H{sub 2}O] the same as the ESTD FBSR. (6) Insoluble solids analyzed by X-Ray Diffraction (XRD) did not detect insoluble carbonate species. However, they still may be present at levels below 2 wt%, the sensitivity of the XRD methodology. Insoluble solids XRD characterization indicated that various Fe/Ni/Cr/Mn phases are present. These crystalline phases are associated with the insoluble sludge components of Tank 48H slurry and impurities in the Erwin coal ash. The percent insoluble solids, which mainly consist of un-burnt coal and coal ash, in the products were 4 to 11 wt% for the radioactive runs. (7) The Fe{sup +2}/Fe{sub total} REDOX measurements ranged from 0.58 to 1 for the three radioactive Bench-scale tests. REDOX measurements > 0.5 showed a reducing atmosphere was maintained in the DMR indicating that pyrolysis was occurring. (8) Greater than 90% of the radioactivity was captured in the product for all three runs. (9) The collective results from the FBSR simulant tests and the BSR simulant tests indicate that the same chemistry occurs in the two reactors. (10) The collective results from the BSR simulant runs and the BSR radioactive waste runs indicates that the same chemistry occurs in the simulant as in the real waste. The FBSR technology has been proven to destroy the organics and nitrates in the Tank 48H waste and form the anticipated solid carbonate phases as expected.

Burket, P; Gene Daniel, G; Charles Nash, C; Carol Jantzen, C; Michael Williams, M

2008-09-25T23:59:59.000Z

82

Steam reforming of low-level mixed waste. Final report  

SciTech Connect (OSTI)

ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

NONE

1998-06-01T23:59:59.000Z

83

THOR Bench-Scale Steam Reforming Demonstration  

SciTech Connect (OSTI)

The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

Marshall, D.W.; Soelberg, N.R.; Shaber, K.M.

2003-05-21T23:59:59.000Z

84

THOR Bench-Scale Steam Reforming Demonstration  

SciTech Connect (OSTI)

The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

D. W. Marshall; N. R. Soelberg; K. M. Shaber

2003-05-01T23:59:59.000Z

85

Fluidized bed combustion picks up steam  

SciTech Connect (OSTI)

Industrial interest in fluidized-bed combustion (FBC) continues, although the technology has been slow to enter the marketplace. Two FBC pilot plants funded by DOE and one commercial size project are in operation. FBC designs and commercial warranties are already available from the boiler industry, but 1981 was the first year to see significant numbers of privately-funded orders, now numbering 38 out of 50 boilers. Manufacturers are working on a universal boiler able to accept any fuel, but potential users are wary of new technology without a long-term demonstration of reliability and economics. There is interest in second generation designs, a new shallow-bed design suitable for retrofitting, and circulating bed types that decouple the combustion system from the heat removal system. (DCK)

Lawn, J.

1982-02-01T23:59:59.000Z

86

Modeling of membrane reactor for steam methane reforming: From granular to structured catalysts  

Science Journals Connector (OSTI)

Different types and operating modes of a tubular membrane reactor for steam methane reforming with a production rate of 0.6...

A. B. Shigarov; V. A. Kirillov

2012-04-01T23:59:59.000Z

87

Computational heterogeneous catalysis applied to steam methane reforming over nickel and nickel/silver catalysts .  

E-Print Network [OSTI]

??The steam methane reforming (SMR) reaction is the primary industrial means for producing hydrogen gas. As such, it is a critical support process for applications… (more)

Blaylock, Donnie Wayne

2011-01-01T23:59:59.000Z

88

Methane Steam Reforming in Hydrogen-permeable Membrane Reactor for Pure Hydrogen Production  

Science Journals Connector (OSTI)

Steam reforming of methane over a ruthenium catalyst has been carried ... hydrogen separation from the reaction mixture, the methane conversion significantly exceeds the equilibrium value, which ... an important ...

Yasuyuki Matsumura; Jianhua Tong

2008-12-01T23:59:59.000Z

89

A novel integrated thermally double coupled configuration for methane steam reforming, methane oxidation and dehydrogenation of propane  

Science Journals Connector (OSTI)

Abstract The goal of this study is the simultaneous production of synthesis gas, hydrogen and propylene in a thermally double coupled steam reformer reactor. This reactor has three concentric tubes where the exothermic reaction of methane oxidation is supposed to occur in the middle tube and the inner and outer tubes are considered to be endothermic sides of steam reforming and propane dehydrogenation, respectively. The motivation is to combine the energy efficient concept of coupling one exothermic reaction with two endothermic reactions, enhancement of synthesis gas production, propylene and hydrogen production and also producing two different H2/CO ratio streams of syngas. A steady state homogeneous model of fixed bed for three sides predicts the performance of this new configuration. The simulation results are compared with corresponding predictions of the conventional steam reformer. The results prove that synthesis gas production is increased in a thermally double coupled reactor in comparison with conventional steam reforming. In addition, the thermally double coupled reactor reduces the capital and operating costs by reducing the reactor size and consumption of energy.

D. Karimipourfard; S. Kabiri; M.R. Rahimpour

2014-01-01T23:59:59.000Z

90

BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Pressure Steam Reforming of High Pressure Steam Reforming of Bio-Derived Liquids S. Ahmed, S. Lee, D. Papadias, and R. Kumar November 6, 2007 Laurel, MD Research sponsored by the Hydrogen, Fuel Cells, and Infrastructure Technologies Program of DOE's Office of Energy Efficiency and Renewable Energy Rationale and objective Rationale „ Steam reforming of liquid fuels at high pressures can reduce hydrogen compression costs - Much less energy is needed to pressurize liquids (fuel and water) than compressing gases (reformate or H 2 ) „ High pressure reforming is advantageous for subsequent separations and hydrogen purification Objective „ Develop a reformer design that takes advantage of the savings in compression cost in the steam reforming bio-derived liquid fuels - Metric:

91

ENGINEERING SCALE UP OF RENEWABLE HYDROGEN PRODUCTION BY CATALYTIC STEAM REFORMING OF PEANUT  

E-Print Network [OSTI]

ENGINEERING SCALE UP OF RENEWABLE HYDROGEN PRODUCTION BY CATALYTIC STEAM REFORMING OF PEANUT SHELLS, and academic organizations is developing a steam reforming process to be demonstrated on the gaseous byproducts of this engineering demonstration project. After an initial problem with the heaters that required modification

92

Modified Ni-Cu catalysts for ethanol steam reforming  

SciTech Connect (OSTI)

Three Ni-Cu catalysts, having different Cu content, supported on ?-alumina were synthesized by wet co-impregnation method, characterized and tested in the ethanol steam reforming (ESR) reaction. The catalysts were characterized for determination of: total surface area and porosity (N{sub 2} adsorption - desorption using BET and Dollimer Heal methods), Ni surface area (hydrogen chemisorption), crystallinity and Ni crystallites size (X-Ray Diffraction), type of catalytic active centers (Hydrogen Temperature Programmed Reduction). Total surface area and Ni crystallites size are not significantly influenced by the addition of Cu, while Ni surface area is drastically diminished by increasing of Cu concentration. Steam reforming experiments were performed at atmospheric pressure, temperature range 150-350°C, and ethanol - water molar ration of 1 at 30, using Ar as carrier gas. Ethanol conversion and hydrogen production increase by the addition of Cu. At 350°C there is a direct connection between hydrogen production and Cu concentration. Catalysts deactivation in 24h time on stream was studied by Transmission Electron Microscopy (TEM) and temperature-programmed reduction (TPR) on used catalysts. Coke deposition was observed at all studied temperatures; at 150°C amorphous carbon was evidenced, while at 350°C crystalline, filamentous carbon is formed.

Dan, M.; Mihet, M.; Almasan, V.; Borodi, G. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293, Cluj-Napoca (Romania)] [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293, Cluj-Napoca (Romania); Katona, G.; Muresan, L. [Univ. Babes Bolyai, Fac. Chem. and Chem. Eng.,11 Arany Janos, 400028, Cluj-Napoca (Romania)] [Univ. Babes Bolyai, Fac. Chem. and Chem. Eng.,11 Arany Janos, 400028, Cluj-Napoca (Romania); Lazar, M. D., E-mail: diana.lazar@itim-cj.ro [65-103 Donath Street (Romania)

2013-11-13T23:59:59.000Z

93

Internal tar/CH4 reforming in a biomass dual fluidised bed gasifier  

Science Journals Connector (OSTI)

An internal reformer is developed for in situ catalytic reforming of tar and methane (CH4) in allothermal gasifiers. The study has been performed in the ... 150 kW dual fluidised bed (DFB) biomass gasifier at Mid...

Kristina Göransson; Ulf Söderlind; Till Henschel…

2014-10-01T23:59:59.000Z

94

Phase 2 THOR Steam Reforming Tests for Sodium Bearing Waste Treatment  

SciTech Connect (OSTI)

About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste is stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Steam reforming is a candidate technology being investigated for converting the waste into a road ready waste form that can be shipped to the Waste Isolation Pilot Plant in New Mexico for interment. A steam reforming technology patented by Studsvik, Inc., and licensed to THOR Treatment Technologies has been tested in two phases using a Department of Energy-owned fluidized bed test system located at the Science Applications International Corporation (SAIC) Science and Technology Applications Research Center located in Idaho Falls, Idaho. The Phase 1 tests were reported earlier in 2003. The Phase 2 tests are reported here. For Phase 2, the process feed rate, stoichiometry, and chemistry were varied to identify and demonstrate process operation and product characteristics under different operating conditions. Two test series were performed. During the first series, the process chemistry was designed to produce a sodium carbonate product. The second series was designed to produce a more leach-resistant, mineralized sodium aluminosilicate product. The tests also demonstrated the performance of a MACT-compliant off-gas system.

Nicholas R. Soelberg

2004-01-01T23:59:59.000Z

95

Process for alternately steam reforming sulfur containing hydrocarbons that vary in oxygen content  

SciTech Connect (OSTI)

In the hydrotreating and steam reforming of an oxygen and sulfur bearing hydrocarbon fuel, the oxygen is first removed in an oxidizer containing a bed of platinum catalyst, the inlet temperature being well below 1000/sup 0/F and preferably on the order of 300/sup 0/F. The sulfur in the fuel does not harm the oxidizer catalyst and may be removed downstream by known hydrodesulfurization techniques prior to reforming. A process is described for removing oxygen from an oxygen and sulfur bearing hydrocarbon fuel, such as peak shared natural gas, upstream in the process so that sulfur can be removed later. The fuel and some hydrogen are introduced into an oxidizer at a temperature of 350/sup 0/F or less down to the minimum ignition temperature. The oxidizer consists of a platinum bed catalyst which catalyzes the oxidation of the oxygen to water with accompanying heat release to raise the exit gas temperature to less than 650/sup 0/F. The temperature desorbs the sulfur from the catalyst, and the exit gases are passed downstream to nickel subsulfide or molybdenum desfulfide catalysts where the hydrosulfurization process takes place. (BLM)

Lesieur, R.R.; Setzer, H.J.; Hawkins, J.R.

1980-01-01T23:59:59.000Z

96

Steam Reforming, 6-in. Bench-Scale Design and Testing Project -- Technical and Functional Requirements Description  

SciTech Connect (OSTI)

Feasibility studies and technology development work are currently being performed on several processes to treat radioactive liquids and solids currently stored at the Idaho Nuclear Technology and Engineering Center (INTEC), located within the Idaho National Engineering and Environmental Laboratory (INEEL). These studies and development work will be used to select a treatment process for treatment of the radioactive liquids and solids to meet treatment milestones of the Settlement Agreement between the Department of Energy and the State of Idaho. One process under consideration for treating the radioactive liquids and solids, specifically Sodium-Bearing Waste (SBW) and tank heel solids, is fluid bed steam reforming (FBSR). To support both feasibility and development studies a bench-scale FBSR is being designed and constructed. This report presents the technical and functional requirements, experimental objectives, process flow sheets, and equipment specifications for the bench-scale FBSR.

Losinski, Sylvester John; Marshall, Douglas William

2002-08-01T23:59:59.000Z

97

In silico search for novel methane steam reforming catalysts  

Science Journals Connector (OSTI)

This paper demonstrates a method for screening transition metal and metal alloy catalysts based on their predicted rates and stabilities for a given catalytic reaction. This method involves combining reaction and activation energies (available to the public via a web-based application 'CatApp') with a microkinetic modeling technique to predict the rates and selectivities of a prospective material. This paper illustrates this screening technique using the steam reforming of methane to carbon monoxide and hydrogen as a test reaction. While catalysts are already commercially available for this process, the method demonstrated in this paper is very general and could be applied to a wide range of catalytic reactions. Following the steps outlined herein, such an analysis could potentially enable researchers to understand reaction mechanisms on a fundamental level and, on this basis, develop leads for new metal alloy catalysts.

Yue Xu; Adam C Lausche; Shengguang Wang; Tuhin S Khan; Frank Abild-Pedersen; Felix Studt; Jens K Nřrskov; Thomas Bligaard

2013-01-01T23:59:59.000Z

98

Catalytic deactivation on methane steam reforming catalysts. 2. Kinetic study  

SciTech Connect (OSTI)

The kinetics of methane steam reforming reaction over an alumina-supported nickel catalyst was investigated at a temperature range of 640-740/sup 0/C in a flow reactor at atmospheric pressure. The experiments were performed varying the inlet concentration of methane, hydrogen, and water. A kinetic scheme of the Houghen-Watson type was satisfactorily proposed assuming the dissociative adsorption of CH/sub 4/ as the rate-limiting step, but this kinetic scheme can be easily replaced by a first-order kinetics (r/sub CH/4/sub / = kapparho/sub CH/4/sub /) for engineering purposes. Catalyst activation with H/sub 2/ and N/sub 2/ mixtures or with the reactant mixture results in the same extent of reaction.

Agnelli, M.E.; Ponzi, E.N.; Yeramian, A.A.

1987-08-01T23:59:59.000Z

99

Steam reforming of gasification-derived tar for syngas production  

Science Journals Connector (OSTI)

Abstract In this study, the steam reforming of tar was catalyzed by dolomite, Ni/dolomite, and Ni/CeO2 for syngas production under different reaction temperature and weight hourly space velocity (WHSV, h?1). The tar was the major side product from the biomass gasification. Current results revealed that the nickel doped catalyst on dolomite with CO2 in the feed stream yielded the highest H2 and syngas production among all reaction conditions. Comparing to the use of dolomite, when Ni–dolomites was used as catalyst, the yield of H2 increased by 33%, the yield of syngas increased by 7%, and the yield of CH4 decreased by 59%. It was also found that the yield of syngas, H2, or CO under the Ni/dolomite catalyst were significant higher (p  CO2 concentration in the feed stream > reaction temperature > weight hourly space velocity.

Alex C.-C. Chang; Lung-Shiang Chang; Cheng-You Tsai; Yu-Chun Chan

2014-01-01T23:59:59.000Z

100

Solar steam reforming of natural gas integrated with a gas turbine power plant  

Science Journals Connector (OSTI)

Abstract This paper shows a hybrid power plant wherein solar steam reforming of natural gas and a steam injected gas turbine power plant are integrated for solar syngas production and use. The gas turbine is fed by a mixture of natural gas and solar syngas (mainly composed of hydrogen and water steam) from mid-low temperature steam reforming reaction whose heat duty is supplied by a parabolic trough Concentrating Solar Power plant. A comparison is made between a traditional steam injected gas turbine and the proposed solution to underline the improvements introduced by the integration with solar steam reforming of the natural gas process. The paper also shows how solar syngas can be considered as an energy vector consequent to solar energy conversion effectiveness and the natural gas pipeline as a storage unit, thus accomplishing the idea of a smart energy grid.

Augusto Bianchini; Marco Pellegrini; Cesare Saccani

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed steam reformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

New nickel-based material (Sr12Al14O33) for biomass tar steam reforming for syngas production  

Science Journals Connector (OSTI)

A new “free oxygen” material Sr12Al14O33 (Sr12A7) was developed as a Ni support for biomass tar steam reforming. Toluene was chosen as the model compound for biomass gasification tar. The steam reforming process was investigated in a fixed-bed reactor. The influence of the operating parameters (i.e. reaction temperature steam-to-carbon ratio and space time) on catalyst activity and product selectivity were studied. Ni/Sr12A7 (5?wt %) showed a higher activity compared with a similar commercial catalyst Ni/Dolomite. The influence of the steam/carbon (S/C) molar ratio on gas yields at values ranging from 1.5 to 4.0 was investigated. The results show that the H2 and CO2 yields increased whereas the CO yield decreased when the S/C ratio was increased. The influence of space-time (w cat/F toluene) was also determined. The H2 CO2 and total gas yields increased when the ratio was increased. Catalyst ageing experiments were characterized by Brunauer-Emmett-Teller (BET) X-ray diffraction (XRD) and energy dispersive X-ray spectrometer (EDX). Based on the results the kinetic model is proposed as a first-order reaction for toluene with an activation energy of 131.2?kJ·mol?1 as generally accepted in the literature.

Chunshan Li

2013-01-01T23:59:59.000Z

102

Numerical simulation of micro/mini-channel based methane-steam reformer.  

E-Print Network [OSTI]

??Numerical modeling of methane-steam reforming is performed in a micro/mini-channel with heat input through catalytic channel walls. The low-Mach number, variable density Navier-Stokes equations together… (more)

Peterson, Daniel Alan

2010-01-01T23:59:59.000Z

103

Steam Reforming of Methane Over Nickel: Development of a Multi-Step Surface Reaction Mechanism  

Science Journals Connector (OSTI)

A detailed multi-step reaction mechanism is developed for modeling steam reforming of methane over nickel-based catalysts. The mechanism also ... tested by simulating experimental investigations of SR of methane ...

L. Maier; B. Schädel; K. Herrera Delgado; S. Tischer; O. Deutschmann

2011-09-01T23:59:59.000Z

104

Thermally Coupled Catalytic Reactor for Steam Reforming of Methane and Liquid Hydrocarbons: Experiment and Mathematical Modeling  

Science Journals Connector (OSTI)

An energy-efficient catalytic reactor for producing synthesis gas from methane and liquid hydrocarbons is proposed that is ... on the coupling of an endothermic reaction (steam reforming of methane, hexane, or is...

V. A. Kirillov; N. A. Kuzin; A. V. Kulikov…

2003-05-01T23:59:59.000Z

105

Kinetic studies of methane steam reforming on ceria-supported Pd  

Science Journals Connector (OSTI)

Steady-state, steam-reforming rates for methane were measured on model and high-surface-...5...and were higher even than rates reported in the literature for Ni catalysts. Model catalysts prepared with Pt or Rh o...

R. Craciun; B. Shereck; R.J. Gorte

106

Computational heterogeneous catalysis applied to steam methane reforming over nickel and nickel/silver catalysts  

E-Print Network [OSTI]

The steam methane reforming (SMR) reaction is the primary industrial means for producing hydrogen gas. As such, it is a critical support process for applications including petrochemical processing and ammonia synthesis. ...

Blaylock, Donnie Wayne

2011-01-01T23:59:59.000Z

107

Demonstration of a high-efficiency steam reformer for fuel cell power plant applications  

SciTech Connect (OSTI)

Full-scale tests of a new modular steam reformer confirm its suitability for a wide range of fuel cell power plant applications. This new fuel processor offers interested utilities excellent performance, operating flexibility, reliability, and maintainability.

Udengaard, N.R.; Christiansen, L.J.; Summers, W.A.

1987-08-01T23:59:59.000Z

108

Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming  

Broader source: Energy.gov [DOE]

A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences.

109

Steam Reforming on Transition-metal Carbides from Density-functional Theory  

SciTech Connect (OSTI)

A screening study of the steam reforming reaction on clean and oxygen covered early transition-metal carbides surfaces is performed by means of density-functional theory calculations. It is found that carbides provide a wide spectrum of reactivities, from too reactive via suitable to too inert. Several molybdenum-based systems are identified as possible steam reforming catalysts. The findings suggest that carbides provide a playground for reactivity tuning, comparable to the one for pure metals.

Vojvodic, Aleksandra

2012-05-11T23:59:59.000Z

110

Online quality control methods for steam-gas reformers  

Science Journals Connector (OSTI)

This paper presents a classification of online quality control (QC) methods from the view of process control. The QC can be applied on the control loops from each of its three sides: the input (manipulative variable) side, the output (controlled variable) side and from the disturbance side. It was found that online QC can be direct or indirect, depending on the measures taken for quality. This classification can lead to interesting and new options for the control variables that otherwise would have been obscure. Once the proper control variable is selected (in terms of adequate representation of quality) it can be used for control systems analysis and design. Process application is presented for an industrial Steam Gas Reformer. The input is the fuel gas quality for which various options were presented. A correlation was obtained to relate heat input to simple measurements. The output hydrogen quality control options were discussed. Coil outlet temperature is adequate for a crude estimate of conversion, provided that S/C ratio is controlled. S/C ratio correlation was obtained to enable its estimation and control from simple measurements. A precise quality control of hydrogen can be achieved provided that COT is also controlled to protect reformer catalyst. An improved strategy can be implemented where both COT and conversion are controlled in a multivariable sense. This strategy is economically attractive, since it allows continuous manipulation of S/C ratio to the minimum required for COT control. Savings in fuel gas can be achieved accordingly. The feasibility of multivariable control was established via interaction analysis.

I.M. Alatiqi

1990-01-01T23:59:59.000Z

111

Steam reforming of low-level mixed waste  

SciTech Connect (OSTI)

The U.S. department of Energy (DOE) is responsible for the treatment and disposal of an inventory of approximately 160,000 tons of Low-Level Mixed Waste (LLMW). Most of this LLMW is stored in drums, barrels and steel boxes at 20 different sites throughout the DOE complex. The basic objective of low-level mixed waste treatment systems is to completely destroy the hazardous constituents and to simultaneously isolate and capture the radionuclides in a superior final waste form such as glass. The DOE is sponsoring the development of advanced technologies that meet this objective while achieving maximum volume reduction, low-life cycle costs and maximum operational safety. ThermoChem, Inc. is in the final stages of development of a steam-reforming system capable of treating a wide variety of DOE low-level mixed waste that meets these objectives. The design, construction, and testing of a nominal 1 ton/day Process Development Unit is described.

Voelker, G.E.; Steedman, W.G. [Thermochem, Inc., Columbia, MD (United States); Chandran, R.R. [Manufacturing and Technology Conversion International, Inc., Columbia, MD (United States)

1996-12-31T23:59:59.000Z

112

High-temperature gas-cooled-reactor steam-methane reformer design  

SciTech Connect (OSTI)

The concept of the long distance transportation of process heat energy from a High Temperature Gas Cooled Reactor (HTGR) heat source, based on the steam reforming reaction, is currently being evaluated as an energy source/application for use early in the 21st century. The steam-methane reforming reaction is an endothermic reaction at temperatures approximately 700/sup 0/C and higher, which produces hydrogen, carbon monoxide and carbon dioxide. The heat of the reaction products can then be released, after being pumped to industrial site users, in a methanation process producing superheated steam and methane which is then returned to the reactor plant site. In this application the steam reforming reaction temperatures are produced by the heat energy from the core of the HTGR through forced convection of the primary or secondary helium circuit to the catalytic chemical reactor (steam reformer). This paper summarizes the design of a helium heated steam reformer utilized in conjunction with a 1170 MW(t) intermediate loop, 850/sup 0/C reactor outlet temperature, HTGR process heat plant concept. This paper also discusses various design considerations leading to the mechanical design features, the thermochemical performance, materials selection and the structural design analysis.

Impellezzeri, J.R.; Drendel, D.B.; Odegaard, T.K.

1981-01-20T23:59:59.000Z

113

Computational Investigation of the Thermochemistry and Kinetics of Steam Methane Reforming Over a Multi-Faceted Nickel Catalyst  

Science Journals Connector (OSTI)

A microkinetic model of steam methane reforming over a multi-faceted nickel surface using ... on the Ni(100) surface. The primary reforming pathway is predicted to be through C* ... reactions are predicted to be ...

D. Wayne Blaylock; Yi-An Zhu; William H. Green

2011-09-01T23:59:59.000Z

114

An experimental study of a heatexchanger-type steam reformer with a low steam/carbon ratio. Effect of carbon deposition on the distribution of flow among the catalyst tubes and of temperature among and along the tubes  

SciTech Connect (OSTI)

An experimental heat-exchanger-type steam reformer containing eight full-sized tubes of catalyst was operated at low steam/carbon ratios up to the point of onset of carbon deposition. The following phenomena were investigated: the effect of carbon deposition on the distribution of the gas stream among the tubes, the effect of this distribution on the nonuniformity of temperature on the outer surface of the tubes, and the distribution of carbon deposition in the beds of catalyst. At steam/carbon ratios close to the onset of carbon deposition, the average pressure differential through the tubes rose at a rate of 0.1-0.5 kg/cm/sup 2/ . hr. The temperature at the bottom of the catalyst tubes varied about 10 /sup 0/C due to the deposition of carbon. Most of the carbon is deposited within about 1,000 mm from the top of the bed.

Miyasuai T; Kosaka, S.; Suzuki, A.; Yoshioka, S.

1985-07-01T23:59:59.000Z

115

Hydrogen production from methane steam reforming: parametric and gradient based optimization of a Pd-based membrane reactor  

Science Journals Connector (OSTI)

In this work three mathematical models for methane steam reforming in membrane reactors were developed. The first ... , the influence of five important parameters on methane conversion (X ...

Leandro C. Silva; Valéria V. Murata; Carla E. Hori…

2010-09-01T23:59:59.000Z

116

Effect of nickel loading on the activity of Ni/ZrO2 for methane steam reforming at low temperature  

Science Journals Connector (OSTI)

The effect of Ni loading on the catalytic activity of Ni/ZrO2 catalyst for methane steam reforming was investigated. The sample containing 15 wt...

Long Q. Nguyen; Leonila C. Abella…

2008-04-01T23:59:59.000Z

117

UNDERSTANDING OF CATALYST DEACTIVATION CAUSED BY SULFUR POISONING AND CARBON DEPOSITION IN STEAM REFORMING OF LIQUID HYDROCARBON FUELS.  

E-Print Network [OSTI]

??The present work was conducted to develop a better understanding on the catalyst deactivation in steam reforming of sulfur-containing liquid hydrocarbon fuels for hydrogen production.… (more)

Xie, Chao

2011-01-01T23:59:59.000Z

118

Initial Design of a Dual Fluidized Bed Reactor  

E-Print Network [OSTI]

from a steam hydro gasification and reforming process.study on biomass Air-steam gasification in a fluidized bed.limestone calcination on the gasification processes in a BFB

Yun, Minyoung

2014-01-01T23:59:59.000Z

119

Catalytic performances of Ni–CaO–mayenite in CO2 sorption enhanced steam methane reforming  

Science Journals Connector (OSTI)

Abstract Ni–CaO–mayenite (Ca12Al14O33) catalysts for the CO2 Sorption Enhanced Steam Methane Reforming (SE-SMR) have been developed using the microwave assisted self-combustion method of preparation. The sorption of CO2 by CaO shifts the steam reforming and the Water Gas Shift reaction (WGS) towards H2 production and favors the heat balance of the global reaction. The CO2 sorption has been studied on materials with different CaO/Ca12Al14O33 ratios and for different types of preparation. The specific surface area of materials, the temperature of Ni phases' reducibility and CO2 sorption are all essential for material efficiency. The Ni–CA75MM catalyst was the most active and stable in methane steam reforming with CO2 sorption, even at an unusually low temperature (650 °C).

Moisés R. Cesário; Braúlio S. Barros; Claire Courson; Dulce M.A. Melo; Alain Kiennemann

2015-01-01T23:59:59.000Z

120

Steam reforming on transition-metal carbides from density-functional theory  

E-Print Network [OSTI]

A screening study of the steam reforming reaction (CH_4 + H_2O -> CO + 3H_2) on early transition-metal carbides (TMC's) is performed by means of density-functional theory calculations. The set of considered surfaces includes the alpha-Mo_2C(100) surfaces, the low-index (111) and (100) surfaces of TiC, VC, and delta-MoC, and the oxygenated alpha-Mo_2C(100) and TMC(111) surfaces. It is found that carbides provide a wide spectrum of reactivities towards the steam reforming reaction, from too reactive via suitable to too inert. The reactivity is discussed in terms of the electronic structure of the clean surfaces. Two surfaces, the delta-MoC(100) and the oxygen passivated alpha-Mo_2C(100) surfaces, are identified as promising steam reforming catalysts. These findings suggest that carbides provide a playground for reactivity tuning, comparable to the one for pure metals.

Vojvodic, Aleksandra

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed steam reformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fixed Bed Counter Current Gasification of Mesquite and Juniper Biomass Using Air-steam as Oxidizer  

E-Print Network [OSTI]

Thermal gasification of biomass is being considered as one of the most promising technologies for converting biomass into gaseous fuel. Here we present results of gasification, using an adiabatic bed gasifier with air, steam as gasification medium...

Chen, Wei 1981-

2012-11-27T23:59:59.000Z

122

Influence of preparation method on performance of Cu(Zn)(Zr)-alumina catalysts for the hydrogen production via steam reforming of methanol  

Science Journals Connector (OSTI)

The selective production of hydrogen via steam reforming of methanol (SRM)...?C. Reverse water gas shift reaction and methanol decomposition reactions also take place simultaneously with the steam reforming react...

Sanjay Patel; K. K. Pant

2006-08-01T23:59:59.000Z

123

Highly stable Ni catalyst supported on Ce–ZrO2 for oxy-steam reforming of methane  

Science Journals Connector (OSTI)

A novel catalyst, Ni/Ce–ZrO2..., exhibits very high catalytic activity and stability even in the stoichiometric steam reforming of methane (H2O/CH4...= 1). Furthermore, when it was employed in oxy-steam reforming

Hyun-Seog Roh; Ki-Won Jun; Wen-Sheng Dong; Sang-Eon Park…

2001-06-01T23:59:59.000Z

124

976 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 15, NO. 4, AUGUST 2006 Methanol Steam Reformer on a Silicon Wafer  

E-Print Network [OSTI]

976 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 15, NO. 4, AUGUST 2006 Methanol Steam Reformer without mass transport considerations. The 1-D model provided a rapid analytical tool to assess is achieved through on-chip resis- tive heaters, whereby methanol steam reforming reactions were studied over

Malen, Jonathan A.

125

Hydrogen production from steam reforming of coke oven gas and its utility for indirect reduction of iron oxides in blast  

E-Print Network [OSTI]

of coal and coke are consumed for heating and reducing iron oxides [2,3]. As a result, BFs have becomeHydrogen production from steam reforming of coke oven gas and its utility for indirect reduction 2012 Available online 18 June 2012 Keywords: Steam reforming Hydrogen and syngas production Coke oven

Leu, Tzong-Shyng "Jeremy"

126

Steam reforming of fuel to hydrogen in fuel cells  

SciTech Connect (OSTI)

A fuel cell is claimed capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

Fraioli, A.V.; Young, J.E.

1984-06-12T23:59:59.000Z

127

Steam reforming of fuel to hydrogen in fuel cells  

DOE Patents [OSTI]

A fuel cell capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

Fraioli, Anthony V. (Hawthorne Woods, IL); Young, John E. (Woodridge, IL)

1984-01-01T23:59:59.000Z

128

Steam reforming of fuel to hydrogen in fuel cell  

DOE Patents [OSTI]

A fuel cell is described capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

Young, J.E.; Fraioli, A.V.

1983-07-13T23:59:59.000Z

129

Simultaneous carbon dioxide and steam reforming of methane to syngas over NiO-CaO catalyst  

SciTech Connect (OSTI)

Steam reforming, Co{sub 2} reforming, and simultaneous steam and CO{sub 2} reforming of methane to CO and H{sub 2} over NiO-CaO catalyst (without any prereduction treatment) at different temperatures (700--850 C) and space velocities (5000--70,000 cm{sup 3}/g{center_dot}h) are investigated. The catalyst is characterized by XRD, XPS, and temperature-programmed reduction (TPR). The catalyst showed high activity/selectivity in both the steam and CO{sub 2} reforming reactions and the simultaneous steam and CO{sub 2} reforming. In the CO{sup 2} reforming, the coke deposition on the catalyst is found to be very fast. However, when the CO{sub 2} reforming is carried out simultaneously with the steam reforming, the coke deposition on the catalyst is drastically reduced. By the simultaneous CO{sub 2} and steam reforming (at {ge} 800 C and space velocity of about 20,000--30,000 cm{sup 3}/g{center_dot}h)m methane can be converted almost completely to syngas with 100% selectivity for both CO and H{sub 2}. The H{sub 2}/CO ratio in products can be varied between 1.5 and 2.5 quite conveniently by manipulating the relative concentration of steam and CO{sub 2} in the feed.

Choudhary, V.R.; Rajput, A.M. [National Chemical Lab., Pune (India). Chemical Engineering Div.] [National Chemical Lab., Pune (India). Chemical Engineering Div.

1996-11-01T23:59:59.000Z

130

Investigation of Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Bio-Derived Liquids to Hydrogen Distributed DOE Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Meeting Investigation of Bio-Ethanol Steam Reforming over Cobalt-based Catalysts Hua Song Lingzhi Zhang Umit S. Ozkan* November 6 th , 2007 Heterogeneous Catalysis Research Group Department of Chemical and Biomolecular Engineering The Ohio State University Columbus, OH 43210 *Ozkan.1@osu.edu Biomass to Hydrogen (Environmentally Friendly) Plant cultivation Plant cultivation Saccharification Saccharification / / Fermentation Fermentation Anaerobic digestion Anaerobic digestion Residues of Residues of agroindustries agroindustries and cultivations and cultivations Municipal Solid Waste Municipal Solid Waste (organic fraction) (organic fraction) Distillation Distillation Reformation of ethanol

131

Hydrogen production in Multi-Channel Membrane Reactor via Steam Methane Reforming and Methane Catalytic Combustion  

Science Journals Connector (OSTI)

Abstract A novel Multi-Channel Membrane Reactor (MCMR) was designed and built for the small-scale production of hydrogen via Steam Methane Reforming (SMR). The prototype alternates an SMR gas channel to produce hydrogen catalytically, with a Methane Catalytic Combustion (MCC) gas channel to provide the heat of reaction needed by the endothermic reforming. A palladium–silver membrane inside the reforming gas channel shifts the reaction equilibrium, allowing lower operating temperatures, and producing pure hydrogen in a single vessel. Using an innovative air-spray coating technique, channels were coated with Ru–MgO–La2O3/?-Al2O3 and Pd/?-Al2O3 catalyst particles for the SMR and MCC reactions, respectively. Results for the proof-of-concept MCMR showed that methane conversion in the reformer of 91% and a hydrogen purity in excess of 99.99% were possible with the reformer operating at 570 °C and 15 bar.

Alexandre Vigneault; John R. Grace

2014-01-01T23:59:59.000Z

132

Selectivity of the steam reforming of methane over metallic catalysts  

Science Journals Connector (OSTI)

The activity and selectivity of the methane-steam reaction has been studied in a gradientless reactor at atmospheric pressure and 700–850 °C. Differences were found in the course of the reaction on Pd relative...

T. Borowiecki; J. Barcicki

1979-01-01T23:59:59.000Z

133

Coupling of Catalytic Partial Oxidation and Steam Reforming of Methane to Syngas  

Science Journals Connector (OSTI)

Methane-to-syngas (i.e.CO and H2...) conversion reactions involving exothermic oxidative conversion of methane and endothermic steam reforming of methane have been carried simultaneously NiO-CaO (Ni...4/02 (1.8 –...

V. R. Choudhary; A. M. Rajput; B. Prabhakar

1995-01-01T23:59:59.000Z

134

Supported nickel catalysts for low temperature methane steam reforming: comparison between metal additives and support modification  

Science Journals Connector (OSTI)

The effect of Ag (1 wt%) and Au (1 wt%) on the catalytic properties of Ni/Al2O3 (7 wt% Ni) for methane steam reforming (MSR) was studied in parallel with...2 (6 wt%) and La2O3 (6 wt%) addition. The addition of 1 ...

Monica Dan; Maria Mihet; Alexandru R. Biris…

2012-02-01T23:59:59.000Z

135

EFFECT OF H2 PRODUCED THROUGH STEAM-METHANE REFORMING ON CHP PLANT EFFICIENCY  

E-Print Network [OSTI]

1 EFFECT OF H2 PRODUCED THROUGH STEAM-METHANE REFORMING ON CHP PLANT EFFICIENCY O. Le Corre1 , C for a CHP plant based on spark ignition engine running under lean conditions. An overall auto combustion engine. The potential benefits of using H2 in spark ignition (SI) engines may be listed as follows

Paris-Sud XI, Université de

136

Process and apparatus for the production of hydrogen by steam reforming of hydrocarbon  

DOE Patents [OSTI]

In the steam reforming of hydrocarbon, particularly methane, under elevated temperature and pressure to produce hydrogen, a feed of steam and hydrocarbon is fed into a first reaction volume containing essentially only reforming catalyst to partially reform the feed. The balance of the feed and the reaction products of carbon dioxide and hydrogen are then fed into a second reaction volume containing a mixture of catalyst and adsorbent which removes the carbon dioxide from the reaction zone as it is formed. The process is conducted in a cycle which includes these reactions followed by countercurrent depressurization and purge of the adsorbent to regenerate it and repressurization of the reaction volumes preparatory to repeating the reaction-sorption phase of the cycle.

Sircar, Shivaji (Wescosville, PA); Hufton, Jeffrey Raymond (Fogelsville, PA); Nataraj, Shankar (Allentown, PA)

2000-01-01T23:59:59.000Z

137

Thermodynamics of Hydrogen Production from Dimethyl Ether Steam Reforming and Hydrolysis  

SciTech Connect (OSTI)

The thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the process of dimethyl ether (DME) steam reforming were investigated as a function of steam-to-carbon ratio (0-4), temperature (100 C-600 C), pressure (1-5 atm), and product species: acetylene, ethanol, methanol, ethylene, methyl-ethyl ether, formaldehyde, formic acid, acetone, n-propanol, ethane and isopropyl alcohol. Results of the thermodynamic processing of dimethyl ether with steam indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure was observed to shift the equilibrium toward the reactants; increasing the pressure from 1 atm to 5 atm decreased the conversion of dimethyl ether from 99.5% to 76.2%. The order of thermodynamically stable products in decreasing mole fraction was methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol--formaldehyde, formic acid, and acetylene were not observed. The optimal processing conditions for dimethyl ether steam reforming occurred at a steam-to-carbon ratio of 1.5, a pressure of 1 atm, and a temperature of 200 C. Modeling the thermodynamics of dimethyl ether hydrolysis (with methanol as the only product considered), the equilibrium conversion of dimethyl ether is limited. The equilibrium conversion was observed to increase with temperature and steam-to-carbon ratio, resulting in a maximum dimethyl ether conversion of approximately 68% at a steam-to-carbon ratio of 4.5 and a processing temperature of 600 C. Thermodynamically, dimethyl ether processed with steam can produce hydrogen-rich fuel-cell feeds--with hydrogen concentrations exceeding 70%. This substantiates dimethyl ether as a viable source of hydrogen for PEM fuel cells.

T.A. Semelsberger

2004-10-01T23:59:59.000Z

138

Studies of mechanisms and kinetics of methane and ethane steam reforming on nickel catalysts  

SciTech Connect (OSTI)

Methane and ethane adsorption/desorption and reaction on steam-reforming catalysts, Ni(INCO), Ni/ZrO{sub 2}, and Ni/CaAl{sub 2}O{sub 4}, were studied by temperature-programmed desorption (TPD), temperature-programmed surface reaction (TPSR), and thermogravimetric (TGA) techniques. The data show that only a fraction of the methane adsorbed (determined by TPSR with H{sub 2}) on nickel catalysts is desorbed during TPD experiments. The results of TPD indicate supports and promoters affect the adsorption of methane and ethane, and transformation of adsorbed carbon species. Several carbon types formed during methane and ethane adsorptions including {alpha}, {beta}, {gamma}, vermicular (v), and graphitic (c) carbon can be identified by TPSR. These data indicate that the distribution of these carbon forms is also strongly a function of adsorption temperature and catalyst. The results show that there are significant quantities of CH{sub 4}, CO, and CO{sub 2} desorbed during TPSR reaction of H{sub 2}O with preadsorbed CH{sub 4}, CD{sub 4} and C{sub 2}H{sub 6}. The agreement between previously reported steady-state and the unsteady-state steam reforming reforming rates of this study indicates that the steam-reforming kinetic data can be quantitatively measured by TPSR experiments.

Hsieh, H.Y.

1988-01-01T23:59:59.000Z

139

Thermodynamic investigation and environment impact assessment of hydrogen production from steam reforming of poultry tallow  

Science Journals Connector (OSTI)

Abstract In this research, various assessment tools are applied to comprehensively investigate hydrogen production from steam reforming of poultry tallow (PT). These tools investigate the chemical reactions, design and simulate the entire hydrogen production process, study the energetic performance and perform an environment impact assessment using life cycle assessment (LCA) methodology. The chemical reaction investigation identifies thermodynamically optimal operating conditions at which PT may be converted to hydrogen via the steam reforming process. The synthesis gas composition was determined by simulations to minimize the Gibbs free energy using the Aspen Plus™ 10.2 software. These optimal conditions are, subsequently, used in the design and simulation of the entire PT-to-hydrogen process. LCA is applied to evaluate the environmental impacts of PT-to-hydrogen system. The system boundaries include rendering and reforming along with the required transportation process. The reforming inventories data are derived from process simulation in Aspen Plus™, whereas the rendering data are adapted from a literature review. The life cycle inventories data of PT-to-hydrogen are computationally implemented into SimaPro 7.3. A set of seven relevant environmental impact categories are evaluated: global warming, abiotic depletion, acidification, eutrophication, ozone layer depletion, photochemical oxidant formation, and cumulative non-renewable fossil and nuclear energy demand. The results are subject to a systematic sensitivity analysis and compared to those calculated for hydrogen production from conventional steam methane reforming. The LCA results indicate that the thermal energy production process is the main contributor to the selected environmental impact categories. Improvement actions to minimize the reforming thermal energy and the transport distance are strongly recommended as they would lead to relevant environmental improvements.

Noureddine Hajjaji

2014-01-01T23:59:59.000Z

140

Effect of specific surface area on oxygen storage capacity (OSC) and methane steam reforming reactivity of CeO2  

Science Journals Connector (OSTI)

It was found from the work that the specific surface area of ceria presents an important role on the oxygen storage capacity (OSC), the reactivity toward methane steam reforming, and the resistance toward carbon ...

W. Sutthisripok; S. Sattayanurak; L. Sikong

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed steam reformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Suppression of carbon formation in steam reforming of methane by addition of Co into Ni/ZrO2 catalysts  

Science Journals Connector (OSTI)

We investigated the steam reforming of methane (SRM) over various NiCo bimetallic catalysts...2...to determine whether the addition of Co on the Ni catalyst suppressed carbon formation. The effect of metal loadin...

Dasika Harshini; Yongchai Kwon; Jonghee Han…

2010-03-01T23:59:59.000Z

142

Application of carbonized paper sludge as support of a Ni catalyst. Performance in steam reforming of methane  

Science Journals Connector (OSTI)

Carbonized paper sludge (C.P.S....) from an industrial waste was employed for steam reforming of methane, and Ni loaded C.P.S. pretreated at 973 K showed an initial methane conversion of over 90% at 1073 K...

Toru Kanno; Kiyoshi Tada; Jun-ichi Horiuchi…

2007-06-01T23:59:59.000Z

143

Combined Steam Reforming of Methane and Fischer–Tropsch Synthesis for the Formation of Hydrocarbons: A Proof of Concept Study  

Science Journals Connector (OSTI)

The concept of combining the reactions of methane steam reforming and the Fischer–Tropsch synthesis is explored in an attempt to convert methane directly to hydrocarbons. Consideration of the thermodynamics ... c...

Meleri Johns; Paul Collier; Michael S. Spencer; Tony Alderson…

2003-10-01T23:59:59.000Z

144

Investigation of Reaction Networks and Active Sites In Bio-Ethanol Steam Reforming Over Co-Based Catalysts  

Broader source: Energy.gov [DOE]

Paper by Umit S. Ozkan, Hua Song, and Lingzhi Zhang (Ohio State University) on the fundamental understanding of reaction networks, active sites of deactivation mechanisms of potential bio-ethanol steam reforming catalysts.

145

Influence of Ceria and Nickel Addition to Alumina-Supported Rhodium Catalyst for Propane Steam Reforming at Low Temperatures.  

E-Print Network [OSTI]

??This work aims to develop a fundamental understanding of the catalyst composition-structure-activity relationships for propane steam reforming over supported Rh catalysts. The work investigates the… (more)

Li, Yan

2009-01-01T23:59:59.000Z

146

Steam reforming of n-heptane at low concentration as a means for hydrogen injection into internal combustion engines  

SciTech Connect (OSTI)

Steam reforming of n-heptane at low concentration as a means for hydrogen injection into internal combustion engines, with the aim of running the engine at a lean fuel-air ratio (to reduce emissions and improve fuel economy), was studied in laboratory flow systems with both an integral and gradientless (Berty-type) fixed-bed reactor. The reaction kinetics were determined in the gradientless reactor over a Ni/Al/sub 2/O/sub 3/ catalyst at 632/sup 0/-679/sup 0/K, 1 atm total pressure, and 0.15-1.75 kPa partial pressure of n-heptane, with a recycling ratio of over 20:1. The reaction orders in hydrogen and n-heptane were 0.22 and -0.23, respectively, and the activation energy was 83.6 kj/mole. The reactant concentrations did not satisfy the equilibrium equations for the water-gas shift and methane-steam reactions at low conversions, but the agreement was good at high conversions. A small amount of benzene was produced, which decreased with increasing temperature, probably because of the polymerization, and ultimately, carbon formation.

Sjoestroem, K.

1980-01-01T23:59:59.000Z

147

Ethanol Steam Reforming Thermally Coupled with Fuel Combustion in a Parallel Plate Reactor  

Science Journals Connector (OSTI)

Experimental Conditions for Measuring the Isothermal Kinetics of the Pd-Based Catalytic Spacers for Ethanol Steam Reforming ... (9) On the basis of previous experience,(23) a mixture of hydrogen with CO2 (about 1:2 in molar ratio) is used as fuel in order to reduce the danger of homogeneous combustion of the fuel in the mixing zones. ... 0.09 (after mixing with air) were necessary to prevent ignition of the homogeneous reaction. ...

Eduardo Lopez; Vanessa Gepert; Achim Gritsch; Ulrich Nieken; Gerhart Eigenberger

2012-02-28T23:59:59.000Z

148

Studies of potassium-promoted nickel catalysts for methane steam reforming: Effect of surface potassium location  

Science Journals Connector (OSTI)

Abstract The effect of potassium addition to the Ni/Al2O3 steam reforming catalyst has been investigated on several model systems, including K/Al2O3 with various amounts of alkali promoters (1–4 wt% of K2O), a model catalyst 90%NiO-10%Al2O3 promoted with potassium and a commercial catalyst. The potassium surface state and stability were investigated by means of the Species Resolved Thermal Alkali Desorption method (SR-TAD). The activity of the catalysts in the steam reforming of methane and their coking-resistance were also evaluated. The results reveal that the beneficial effect of potassium addition is strongly related to its location in the catalysts. The catalyst surface should be promoted with potassium in order to obtain high coking-resistant catalysts. Moreover, the catalyst preparation procedure should ensure a direct interaction of potassium with the Al2O3 support surface. Due to the low stability of potassium on ?-Al2O3 this phase is undesirable during the preparation of a stable steam reforming catalyst.

Tadeusz Borowiecki; Andrzej Denis; Micha? Rawski; Andrzej Go??biowski; Kazimierz Sto?ecki; Jaromir Dmytrzyk; Andrzej Kotarba

2014-01-01T23:59:59.000Z

149

Methane steam reforming at low temperature: Effect of light alkanes’ presence on coke formation  

Science Journals Connector (OSTI)

Abstract Steam reforming of natural gas for the production of hydrogen at low operation temperature offers significant financial and environmental advantages. However, the presence of higher hydrocarbons as minor components of natural gas can significantly affect the formation of coke and thus the effectiveness of the catalyst. In this study, the effect of the presence of C2–C3 alkanes in the feedstock on the carbon accumulation during low temperature steam reforming of methane is investigated over Ni and Rh catalysts supported on lanthanum doped ceria–zirconia mixed oxide. Both catalysts showed high resistance to coke formation and especially in the case of Rh/La/CeO2–ZrO2, the carbon accumulation detected was low even after 10 h on stream in steam reforming of all mixtures of hydrocarbons tested. The presence of higher alkanes in methane increased the amount of carbon on Ni(10)CeZrLa compared to pure methane as well as the nature of the carbonaceous species. Increase in the C-number of the additive alkane had almost no influence on the total amount of carbon formed (C/H feed ratio = constant) but favored the formation of filamentous carbon.

Sofia D. Angeli; Fotis G. Pilitsis; Angeliki A. Lemonidou

2015-01-01T23:59:59.000Z

150

High Temperature Gas-Cooled Reactor Program. Modular HTGR systems design and cost summary. [Methane reforming; steam cycle-cogeneration  

SciTech Connect (OSTI)

This report provides a summary description of the preconceptual design and energy product costs of the modular High Temperature Gas-Cooled Reactor (HTGR). The reactor system was studied for two applications: (1) reforming of methane to produce synthesis gas and (2) steam cycle/cogeneration to produce process steam and electricity.

Not Available

1983-09-01T23:59:59.000Z

151

Steam Gasification of Cellulose with Cobalt Catalysts in a Fluidized Bed Reactor  

Science Journals Connector (OSTI)

The catalytic performance of Co/MgO catalysts for the treatment of tar derived from cellulose steam gasification in a bubbling fluidized bed gasifier of 22 mm i.d. and 500 mm height was investigated by means of two different methods:? hot gas cleaning in a fixed bed reactor after the fluidized bed gasifier (secondary method) and treatment inside the gasifier with catalyst as a fluidizing medium (primary method). ... From this perspective, developing a more effective catalyst is essential for scaling down the plant size while still facilitating high and stable catalytic performance. ... At 720-760°, space-times 0.10-0.20 s, catalyst sizes <1.0 ...

Kazuhiko Tasaka; Takeshi Furusawa; Atsushi Tsutsumi

2007-01-19T23:59:59.000Z

152

Plasma steam reforming of E85 for hydrogen rich gas production  

Science Journals Connector (OSTI)

E85 (85?vol% ethanol and 15?vol% gasoline) is a partly renewable fuel that is increasing in supply availability. Hydrogen production from E85 for fuel cell or internal combustion engine applications is a potential method for reducing CO2 emissions. Steam reforming of E85 using a nonthermal plasma (pulse corona discharge) reactor has been exploited at low temperature (200–300?°C) without external heating, diluent gas, oxidant or catalyst in this work. Several operational parameters, including the discharge current, E85 concentration and feed flow rate, have been investigated. The results show that hydrogen rich gases (63–67% H2 and 22–29% CO, with small amounts of CO2, C2 hydrocarbons and CH4) can be produced by this method. A comparison with ethanol reforming and gasoline reforming under identical conditions has also been made and the behaviour of E85 reforming is found to be close to that of ethanol reforming with slightly higher C2 hydrocarbons yields.

Xinli Zhu; Trung Hoang; Lance L Lobban; Richard G Mallinson

2011-01-01T23:59:59.000Z

153

Maximum Hydrogen Production by Autothermal Steam Reforming of Bio-oil With NiCuZnAl Catalyst  

Science Journals Connector (OSTI)

Autothermal steam reforming (ATR) of bio-oil, which couples the endothermic steam reforming reaction with the exothermic partial oxidation, offers many advantages from a technical and economic point of view. Effective production of hydrogen through ATR of bio-oil was performed at lower temperature with NiCuZnAl catalyst. The highest hydrogen yield from bio-oil reached 64.3% with a nearly complete bio-oil conversion at 600 °C, the ratio of steam to carbon fed (S/C) of 3 and the oxygen to carbon ratio (O/C) of 0.34. The reaction conditions in ATR including temperature, O/C, S/C and weight hourly space velocity can be used to control both hydrogen yield and products distribution. The comparison between the ATR and common steam reforming of bio-oil was studied. The mechanism of the ATR of bio-oil was also discussed.

Shi-zhi Yan; Qi Zhai; Quan-xin Li

2012-01-01T23:59:59.000Z

154

A Comparison of Oxygen-vacancy Effect on Activity Behaviors of Carbon Dioxide and Steam Reforming of Methane over Supported Nickel Catalysts  

Science Journals Connector (OSTI)

A comparison of the activity behaviors of the mechanistically similar reactions of carbon dioxide reforming and steam reforming of methane was carried out at 400?550 °C ... show that the activity behaviors of car...

Ta-Jen Huang; Han-Jun Lin; Tien-Chun Yu

2005-12-01T23:59:59.000Z

155

Promoting Effect of Pt on Self-activation over NiO–MgO Solid Solution in Oxidative Steam Reforming of Methane  

Science Journals Connector (OSTI)

The addition of Pt on NiO–MgO solid solution enhanced the performance of oxidative steam reforming of methane, especially, the catalyst can be activated during the oxidative reforming of methane at low reaction t...

Mohammad Nurunnabi; Baitao Li; Kimio Kunimori; Kimihito Suzuki…

2005-10-01T23:59:59.000Z

156

Efficient Utilization of Greenhouse Gases in a Gas-to-Liquids Process Combined with CO2/Steam-Mixed Reforming and Fe-Based Fischer–Tropsch Synthesis  

Science Journals Connector (OSTI)

In the reforming unit, CO2 reforming and steam reforming of methane are combined together to produce syngas in flexible composition. ... In the burner-type reformer, NG is used as a heating fuel, in order to reduce the consumption of NG, the vent gas can be applied to the burner to replace some part of NG as fuel. ...

Chundong Zhang; Ki-Won Jun; Kyoung-Su Ha; Yun-Jo Lee; Seok Chang Kang

2014-06-16T23:59:59.000Z

157

Effect of ceria loading on the carbon formation during low temperature methane steam reforming over a Ni/CeO2/ZrO2 catalyst  

Science Journals Connector (OSTI)

The characterization and catalytic activity of a Ni/CeO2/ZrO2 catalyst for methane steam reforming at 600°C were investigated. The addition...

Anton Purnomo; Susan Gallardo; Leonila Abella…

2008-12-01T23:59:59.000Z

158

Steam reforming of methane using double-walled reformer tubes containing high-temperature thermal storage Na2CO3/MgO composites for solar fuel production  

Science Journals Connector (OSTI)

Abstract Double-walled reactor tubes containing thermal storage materials based on the molten carbonate salts—100 wt% Na2CO3 molten salt, 90 wt% Na2CO3/10 wt% MgO and 80 wt% Na2CO3/20 wt% MgO composite materials—were studied for the performances of the reactor during the heat charging mode, while those of methane reforming with steam during heat discharging mode for solar steam reforming. The variations in the temperatures of the catalyst and storage material, methane conversion, duration of reforming for obtaining high levels of methane conversion (>90%), higher heating value (HHV) power of reformed gas and efficiency of the reactor tubes were evaluated for the double-walled reactor tubes and a single-wall reactor tube without the thermal storage. The results for the heat charging mode indicated that the composite thermal storage could successfully store the heat transferred from the exterior wall of the reactor in comparison to the pure molten-salt. The double-walled reactor tubes with the 90 wt% Na2CO3/10 wt% MgO composite material was the most desirable for steam reforming of methane to realize large HHV amounts of reformed gas and higher efficiencies during heat-discharging mode.

Nobuyuki Gokon; Shohei Nakamura; Tsuyoshi Hatamachi; Tatsuya Kodama

2014-01-01T23:59:59.000Z

159

Air and steam coal partial gasification in an atmospheric fluidized bed  

SciTech Connect (OSTI)

Using the mixture of air and steam as gasification medium, three different rank coal partial gasification studies were carried out in a bench-scale atmospheric fluidized bed with the various operating parameters. The effects of air/coal (Fa/Fc) ratio, steam/coal (Fs/Fc) ratio, bed temperature, and coal rank on the fuel gas compositions and the high heating value (HHV) were reported in this paper. The results show that there is an optimal Fa/Fc ratio and Fs/Fc ratio for coal partial gasification. A rise of bed temperature favors the semigasification reaction of coal, but the concentrations of carbon monoxide and methane and the HHV decrease with the rise of bed temperature, except hydrogen. In addition, the gas HHVs are between 2.2 and 3.4 MJ/Nm{sup 3}. The gas yield and carbon conversion increase with Fa/Fc ratio, Fs/Fc ratio, and bed temperature, while they decrease with the rise of the rank of coal. 7 refs., 9 figs., 2 tabs.

Hongcang Zhou; Baosheng Jing; Zhaoping Zhong; Yaji Huang; Rui Xiao [Nanjing University of Information Science & Technology, Nanjing (China). Department of Environmental Science & Engineering

2005-08-01T23:59:59.000Z

160

Feasibility Analysis of Steam Reforming of Biodiesel by-product Glycerol to Make Hydrogen  

E-Print Network [OSTI]

, lubricants, cleaners, and semiconductor circuits. It can be used to make electricity. NASA is the primary user of hydrogen as energy fuel-called fuel cells- to power the shuttle?s electrical system (Hydrogen Energy, 2008). Hydrogen can fuel tomorrow?s fuel-cell... wide application in industries and refineries. In the United States, about 17.2 billion pounds of hydrogen are produced per year and 95% are from steam reforming of methane (Hydrogen Now). It can be used as a fuel in tomorrow?s fuel-cell vehicles...

Joshi, Manoj

2009-06-09T23:59:59.000Z

Note: This page contains sample records for the topic "bed steam reformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Calcined Dolomite, Magnesite, and Calcite for Cleaning Hot Gas from a Fluidized Bed Biomass Gasifier with Steam:? Life and Usefulness  

Science Journals Connector (OSTI)

Calcined Dolomite, Magnesite, and Calcite for Cleaning Hot Gas from a Fluidized Bed Biomass Gasifier with Steam:? Life and Usefulness ... About the temperature effect, at low (800 °C) and medium (840 °C) temperatures, the calcite is soon deactivated. ...

Jesús Delgado; María P. Aznar; José Corella

1996-10-08T23:59:59.000Z

162

Effect of palladium addition on catalytic activity in steam methane reforming over Ni-YSZ porous membrane  

Science Journals Connector (OSTI)

Abstract This study investigated the additive effects of palladium, and the deposition method of palladium on Ni-YSZ porous membrane in steam methane reforming. Pd–Ni-YSZ porous membrane prepared by the wet impregnation method showed superior catalytic activity, where the methane conversion reached 94.6% at 650 °C, with H2 yield above 3.9. The palladium particles were well dispersed, and the Pd–Ni-YSZ porous membrane exhibited high adsorption capacity for water. The addition of palladium and the deposition method of palladium are very important for the steam methane reforming reaction.

Sang Moon Lee; Sung Chang Hong

2014-01-01T23:59:59.000Z

163

Steam Reforming Application for Treatment of DOE Sodium Bearing Tank Wastes at INL for ICP  

SciTech Connect (OSTI)

The patented THOR® steam reforming waste treatment technology has been selected as the technology of choice for treatment of Sodium Bearing Waste (SBW) at the Idaho National Laboratory (INL) for the Idaho Cleanup Project (ICP). SBW is an acidic tank waste at the Idaho Nuclear Technology and Engineering Center (INTEC) at INL. It consists primarily of waste from decontamination activities and laboratory wastes. SBW contains high concentrations of nitric acid, alkali and aluminum nitrates, with minor amounts of many inorganic compounds including radionuclides, mainly cesium and strontium. The THOR® steam reforming process will convert the SBW tank waste feed into a dry, solid, granular product. The THOR® technology was selected to treat SBW, in part, because it can provide flexible disposal options to accommodate the final disposition path selected for SBW. THOR® can produce a final end-product that will meet anticipated requirements for disposal as Remote-Handled TRU (RH-TRU) waste; and, with modifications, THOR® can also produce a final endproduct that could be qualified for disposal as High Level Waste (HLW). SBW treatment will be take place within the Integrated Waste Treatment Unit (IWTU), a new facility that will be located at the INTEC. This paper provides an overview of the THOR® process chemistry and process equipment being designed for the IWTU.

J. Bradley Mason; Kevin Ryan; Scott Roesener; Michael Cowen; Duane Schmoker; Pat Bacala; Bill Landman

2006-03-01T23:59:59.000Z

164

Sulfur-passivated nickel catalysts for carbon-free steam reforming of methane  

SciTech Connect (OSTI)

It has been observed that carbon-free steam reforming of methane can be obtained on a partly sulfur-passivated nickel catalyst under conditions which, without the presence of sulfur, would result in formation of whisker carbon. This effect has been studied by means of kinetic experiments and thermogravimetry. The kinetic data can be explained by simple blockage of the surface as reflected in the observed kinetic orders and activation energy. The studies of carbon formation confirm a threshold coverage of about 70% of full coverage below which the inhibition of carbon is not effective. Above this coverage, amorphous carbon structures may be formed at a very high carbon potentials. The retarding effect of sulfur on carbon formation is a dynamic phenomenon. Sulfur inhibits the rate of carbon formation more than the rate of the reforming reactions. The effects are explained by assuming that a large ensemble is involved in the nucleation of carbon, whereas the reforming reaction can proceed on the small ensembles left a high sulfur coverages. 6 figures, 6 tables.

Rostrup-Nielsen, J.R.

1984-01-01T23:59:59.000Z

165

Reformer-pressure swing adsorption process for the production of carbon monoxide  

SciTech Connect (OSTI)

An improved process for the production of carbon monoxide by the steam reforming of hydrocarbons is described comprising: (a) catalytically reacting a fluid hydrocarbon feed stream with steam in a steam reformer; (b) passing the reformer effluent containing hydrogen, carbon monoxide and carbon dioxide from the steam reformer, without scrubbing to remove the carbon dioxide content thereof, to a pressure swing adsorption system having at least four adsorbent beds, each bed of which, on a cyclic basis, undergoes a processing sequence; (c) recycling the carbon dioxide-rich stream to the steam reformer for reaction with additional quantities of the hydrocarbon feed stream being passed to the stream reformer to form additional quantities of carbon monoxide and hydrogen, with product recovery being enhanced and the need for employing a carbon dioxide wash system being obviated.

Fuderer, A.

1988-02-23T23:59:59.000Z

166

Hydrogen Production by Low-temperature Steam Reforming of Bio-oil over Ni/HZSM-5 Catalyst  

Science Journals Connector (OSTI)

We investigated high catalytic activity of Ni/HZSM-5 catalysts synthesized by the impregnation method, which was successfully applied for low-temperature steam reforming of bio-oil. The influences of the catalyst composition, reforming temperature and the molar ratio of steam to carbon fed on the stream reforming process of bio-oil over the Ni/HZSM-5 catalysts were investigated in the reforming reactor. The promoting effects of current passing through the catalyst on the bio-oil reforming were also studied using the electrochemical catalytic reforming approach. By comparing Ni/HZSM-5 with commonly used Ni/Al2O3 catalysts, the Ni20/ZSM catalyst with Ni-loading content of about 20% on the HZSM-5 support showed the highest catalytic activity. Even at 450 °C, the hydrogen yield of about 90% with a near complete conversion of bio-oil was obtained using the Ni20/ZSM catalyst. It was found that the performance of the bio-oil reforming was remarkably enhanced by the HZSM-5 supporter and the current through the catalyst. The features of the Ni/HZSM-5 catalysts were also investigated via X-ray diffraction, inductively coupled plasma and atomic emission spectroscopy, hydrogen temperature-programmed reduction, and Brunauer-Emmett-Teller methods.

Song-bai Qiu; Lu Gong; Lu Liu; Cheng-gui Hong; Li-xia Yuan; Quan-xin Li

2011-01-01T23:59:59.000Z

167

Analysis of design variables for an efficient natural gas steam reforming process comprised in a small scale hydrogen fueling station  

Science Journals Connector (OSTI)

Natural gas steam reforming process comprised in a small scale H2-fueling station for on-site hydrogen production was simulated and analyzed. The effects of process variables on the process efficiency of hydrogen production were investigated, and their optimum set point values were suggested to minimize the sizes of the process sub-units and to secure a stable operability of the reforming process. Steam to carbon (S/C) ratio of the reforming reactants was found to be a crucial parameter mostly governing both the hydrogen production efficiency and the stable operability of the process. In this study, a process run was assumed stable if feed water (WR) as a reforming reactant could have been completely evaporated into dry steam through a heat recovery steam generator (HRSG). The optimum S/C ratio was 3.0 where the process efficiency of hydrogen production was maximized and the stable operability of the process was secured. The optimum feed rates of natural gas (NGR) and WR as reforming reactants and of natural gas (NGB) as a burner fuel were also determined for a target rate of hydrogen production, 27 Nm3/h. Set point temperatures of the combustion flue gas (CFG) and the reformed gas (RFG) from the reformer had no effects on the hydrogen production efficiency, however, they were important parameters affecting the stable operability of the process. The effect of the set point temperatures of the RFG from cooler and the CFG from HRSG on the hydrogen production efficiency was not much significant as compared to the S/C ratio, but needed to be adjusted because of their considerable effects on the stable operability of the process and the required heat transfer areas in cooler and HRSG.

Deuk Ki Lee; Kee Young Koo; Dong Joo Seo; Wang Lai Yoon

2012-01-01T23:59:59.000Z

168

An attempt to minimize the temperature gradient along a plug-flow methane/steam reforming reactor by adopting locally controlled heating zones  

Science Journals Connector (OSTI)

Plug flow reactors are very common in the chemical process industry, including methane/steam reforming applications. Their operation presents many challenges, such as a strong dependence of temperature and composition distribution on the inlet conditions. The strongly endothermic methane/steam reforming reaction might result in a temperature drop at the inlet of the reactor and consequently the occurrence of large temperature gradients. The strongly non-uniform temperature distribution due to endothermic chemical reaction can have tremendous consequences on the operation of the reactor, such as catalyst degradation, undesired side reactions and thermal stresses. To avoid such unfavorable conditions, thermal management of the reactor becomes an important issue. To carry out thermal management properly, detailed modeling and corresponding numerical analyses of the phenomena occurring inside the reforming system is required. This paper presents experimental and numerical studies on the methane/steam reforming process inside a plug-flow reactor. To optimize the reforming reactors, detailed data about the entire reforming process is required. In this study the kinetics of methane/steam reforming on the Ni/YSZ catalyst was experimentally investigated. Measurements including different thermal boundary conditions, the fuel flow rate and the steam- to-methane ratios were performed. The reforming rate equation derived from experimental data was used in the numerical model to predict gas composition and temperature distribution along the steam-reforming reactor. Finally, an attempt was made to control the temperature distribution by adopting locally controlled heating zones.

M Mozdzierz; G Brus; A Sciazko; Y Komatsu; S Kimijima; J S Szmyd

2014-01-01T23:59:59.000Z

169

Effects of anode microstructures on durability of microtubular solid oxide fuel cells during internal steam reforming of methane  

Science Journals Connector (OSTI)

Abstract When hydrocarbons are used as a fuel in solid oxide fuel cells (SOFCs), internal steam reforming increases the energy conversion efficiency and simplifies the system, including the balance-of-plant. However, conventional nickel–yttria stabilized zirconia (Ni–YSZ) anodes are prone to deterioration at high temperatures and high humidity. This paper focuses on effects in anode microstructure on performance and durability of microtubular SOFCs. The evaluations were conducted under high steam content and internal methane reforming conditions using Ni–YSZ anodes using acrylic resin and graphite pore formers. The initial cell performance was almost identical to that of \\{SOFCs\\} with anodes using acrylic resin and graphite pore formers in 40% H2–3% H2O at 700 °C. However, the anode using acrylic resin deteriorated rapidly in 40% H2–30% H2O over a period of 28 h. Furthermore, it generated almost no electric power by internal steam reforming of methane. The local oxidation of nickel particles was observed at the interface between the electrolyte and the deteriorated anodes. The anode using graphite pore former provided stable power generation in 40% H2–30% H2O, and was able to generate power in 10% CH4–30% H2O. The pore formers strongly affect fuel diffusivity in the SOFC anodes, which is an important factor in stable internal steam reforming of methane.

Hirofumi Sumi; Toshiaki Yamaguchi; Toshio Suzuki; Hiroyuki Shimada; Koichi Hamamoto; Yoshinobu Fujishiro

2014-01-01T23:59:59.000Z

170

Catalyst for steam reforming of hydrocarbons and process of preparing the catalyst  

SciTech Connect (OSTI)

A catalyst is provided for the steam reforming of normally liquid hydrocarbons to produce carbon monoxide and hydrogen, which does not promote the deposition of carbonaceous materials upon the catalytic surfaces. The catalyst consists of nickel promoted with the oxides of iron and manganese within a specific manganese to iron ratio, said metal and metal oxides being supported upon a refractory support. The support is preferably aluminum oxide in its alpha phase having a surface area of less than 15 m2/gm. The metallic constituents are impregnated onto said refractory low surface area support as salts and are calcined at sufficiently high temperature to convert the salts to the oxide but at a sufficiently low temperature that they do not chemically react with the support.

Broughton, D.R.; Russ, K.J.

1980-06-10T23:59:59.000Z

171

Outside-the-firebox creep rupture failures of steam reformer catalyst tubes  

SciTech Connect (OSTI)

Metallographic investigations of failures in the HK40 alloy catalyst tubes of a steam methane reformer below the floor of the firebox, where temperatures were 1470/sup 0/-1500/sup 0/F, at about 100,000 hr operation showed typical creep rupture damage in the catalyst tube base metal near the outlet pigtail opening. Calculated stress levels for the unreinforced opening showed that the equivalent stress concentration factor was 2.82, i.e., for the nominal equivalent stress in the tube of 1616 psi, the stress at the outlet opening was 4557 psi. This stress value and 100,000 hr time to rupture, incorporated into the stress vs. Larson-Miller relationship, gave a temperature of 1460/sup 0/F. The use of the ''weldolet'' reinforced outlet connection design is recommended.

Creamer, E.L.; Kelley, J.W.

1980-01-01T23:59:59.000Z

172

Thermodynamic analysis of hydrogen production via chemical looping steam methane reforming coupled with in situ CO2 capture  

Science Journals Connector (OSTI)

Abstract In this study, a detailed thermodynamic analysis of the sorption enhanced chemical looping reforming of methane (SE-CL-SMR), using CaO and NiO as CO2 sorbent and oxygen transfer material respectively, was conducted. The effect of different parameters, such as reactor temperature, pressure, H2O/CH4 ratio, CaO/CH4 ratio and CaO/NiO ratio was investigated. Moreover, the use of different sweep gases and oxidants for the re-oxidation/calcination cycle, like pure oxygen, air, steam and CO2, was specifically addressed. Conventional steam reforming (SMR) and sorption enhanced steam reforming (SE-SMR) were also investigated for comparison reasons. The results of thermodynamic analysis show that there are significant advantages of both sorption enhanced processes compared to conventional steam reforming. Presence of CaO sorbent in the reformer leads to higher methane conversion, hydrogen purity and yield at low temperatures (?650 °C). Addition of the oxygen carrier, in the chemical looping reforming concept, minimizes thermal requirements of the process, and results in superior performance compared to SE-SMR and SMR processes. A negative effect from NiO addition is reduction in hydrogen production (due to the reaction of part of methane with NiO to form CO/CO2). Hydrogen yield is up to 11% lower compared to SE-SMR for a NiO/CaO ratio of 0.7. It was found that only pure O2 can be used for re-oxidation/regeneration in order to reduce the energy requirements of the SE-CL-SMR process up to 26% compared to SE-SMR and up to 55% compared to conventional SMR.

A. Antzara; E. Heracleous; D.B. Bukur; A.A. Lemonidou

2015-01-01T23:59:59.000Z

173

Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production  

Science Journals Connector (OSTI)

Abstract Steam methane reforming (SMR) is currently the main hydrogen production process in industry, but it has high emissions of CO2, at almost 7 kg CO2/kg H2 on average, and is responsible for about 3% of global industrial sector CO2 emissions. Here, the results are reported of an investigation of the effect of steam-to-carbon ratio (S/C) on CO2 capture criteria from various locations in the process, i.e. synthesis gas stream (location 1), pressure swing adsorber (PSA) tail gas (location 2), and furnace flue gases (location 3). The CO2 capture criteria considered in this study are CO2 partial pressure, CO2 concentration, and CO2 mass ratio compared to the final exhaust stream, which is furnace flue gases. The CO2 capture number (Ncc) is proposed as measure of capture favourability, defined as the product of the three above capture criteria. A weighting of unity is used for each criterion. The best S/C ratio, in terms of providing better capture option, is determined. CO2 removal from synthesis gas after the shift unit is found to be the best location for CO2 capture due to its high partial pressure of CO2. However, furnace flue gases, containing almost 50% of the CO2 in produced in the process, are of great significance environmentally. Consequently, the effects of oxygen enrichment of the furnace feed are investigated, and it is found that this measure improves the CO2 capture conditions for lower S/C ratios. Consequently, for an S/C ratio of 2.5, CO2 capture from a flue gas stream is competitive with two other locations provided higher weighting factors are considered for the full presence of CO2 in the flue gases stream. Considering carbon removal from flue gases, the ratio of hydrogen production rate and Ncc increases with rising reformer temperature.

R. Soltani; M.A. Rosen; I. Dincer

2014-01-01T23:59:59.000Z

174

PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam Reforming, and Reverse-Water-Gas-Shift  

SciTech Connect (OSTI)

Pd/ZnO/Al2O3 catalysts were studied for water-gas-shift (WGS), methanol steam reforming, and reverse-water-gas-shift (RWGS) reactions. WGS activity was found to be dependent on the Pd:Zn ratio with a maximum activity obtained at approximately 0.50, which was comparable to that of a commercial Pt-based catalyst. The catalyst stability was demonstrated for 100 hours time-on-stream at a temperature of 3600C without evidence of metal sintering. WGS reaction rates were approximately 1st order with respect to CO concentration, and kinetic parameters were determined to be Ea = 58.3 kJ mol-1 and k0 = 6.1x107 min-1. During methanol steam reforming, the CO selectivities were observed to be lower than the calculated equilibrium values over a range of temperatures and steam/carbon ratios studied while the reaction rate constants were approximately of the same magnitude for both WGS and methanol steam reforming. These results indicate that although Pd/ZnO/Al2O3 are active WGS catalysts, WGS is not involved in methanol steam reforming. RWGS rate constants are on the order of about 20 times lower than that of methanol steam reforming, suggesting that RWGS reaction could be one of the sources for small amount of CO formation in methanol steam reforming.

Dagle, Robert A.; Platon, Alexandru; Datye, Abhaya K.; Vohs, John M.; Wang, Yong; Palo, Daniel R.

2008-03-07T23:59:59.000Z

175

3D Computational Fluid Dynamics Simulation of Natural Coke Steam Gasification in General and Improved Fluidized Beds  

Science Journals Connector (OSTI)

The thermal characteristics of natural coke steam gasification in a fluidized bed were three-dimensionally (3D) simulated based on the computational fluid dynamics (CFD) method using Fluent code. ... However, this technology seems difficult to carry out due to its abradability, hard ignition, hot burst, and so on. ... In short, all the results in this work have a significance to provide the theoretical basis for the design, operational optimization, and scale-up of the natural coke steam gasification process. ...

Ya-li Tang; Dai-jun Liu; Yu-hong Liu; Qian Luo

2010-09-30T23:59:59.000Z

176

CeO2 Promoted Ni/Al2O3 Catalyst in Combined Steam and Carbon Dioxide Reforming of Methane for Gas to Liquid (GTL) Process  

Science Journals Connector (OSTI)

The effect of ceria promotion over Ni/Al2O3...catalysts on the catalytic activity and coke formation was investigated in combined steam and carbon dioxide reforming of methane (CSCRM) to produce synthesis gas (H2

Kee Young Koo; Hyun-Seog Roh; Un Ho Jung; Wang Lai Yoon

2009-06-01T23:59:59.000Z

177

Effects of Preparation Method on the Performance of Ni/Al2O3 Catalysts for Hydrogen Production by Bio-Oil Steam Reforming  

Science Journals Connector (OSTI)

Steam reforming of bio-oil derived from the fast pyrolysis of biomass is an economic and renewable process for hydrogen production. The main objective of the present work ... been to investigate the effects of th...

Xinbao Li; Shurong Wang; Qinjie Cai; Lingjun Zhu…

2012-09-01T23:59:59.000Z

178

Sorption-enhanced steam reforming of hydrocarbons with autothermal sorbent regeneration in a moving heat wave of a catalytic combustion reaction  

Science Journals Connector (OSTI)

A novel technological concept of sorption-enhanced steam reforming of hydrocarbons is suggested. The peculiarity of the concept ... carbon dioxide scavenger in the moving super-adiabatic heat wave of an exothermi...

Andrey N. Zagoruiko; Alexey G. Okunev

2007-09-01T23:59:59.000Z

179

In Situ Catalytic Ceramic Candle Filtration for Tar Reforming and Particulate Abatement in a Fluidized-Bed Biomass Gasifier  

Science Journals Connector (OSTI)

In Situ Catalytic Ceramic Candle Filtration for Tar Reforming and Particulate Abatement in a Fluidized-Bed Biomass Gasifier ... In fact, the complications resulting from the requirement to obtain a tar-free product often contribute significantly to the overall investment and operating costs of small- to medium-scale gasification units. ...

Sergio Rapagnŕ; Katia Gallucci; Manuela Di Marcello; Pier Ugo Foscolo; Manfred Nacken; Steffen Heidenreich

2009-06-23T23:59:59.000Z

180

A numerical study of the effectiveness factors of nickel catalyst pellets used in steam methane reforming for residential fuel cell applications  

Science Journals Connector (OSTI)

Abstract A numerical study is performed to evaluate the effectiveness factors of commercial nickel catalyst pellets commonly used in small-scale steam methane reformers for residential fuel cell applications. Based on the intrinsic reaction kinetics of the steam reforming process, the standard composition of the partially reformed gas mixture is determined as a function of the methane conversion. The heterogeneous reforming reactions inside the spherical catalyst pellets are then modeled by considering the distributed reaction, multi-component diffusion and permeation, and conductive and convective heat transfer in the porous media. Various operating conditions, including the reforming temperature, steam-to-carbon (S/C) ratio, operating pressure, and geometrical parameters, such as the pellet diameter and mean pore size, are simulated. The effectiveness factors calculated for each condition are presented as a function of the methane conversion. Finally, simple correlations for the effectiveness factors are presented, and their accuracies are assessed.

Seung Man Baek; Jung Ho Kang; Kyu-Jin Lee; Jin Hyun Nam

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed steam reformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Investigation of Multistage Circulating Fast Fluidized Bed Membrane Reformers for Production of Ultraclean Hydrogen and Syngas  

Science Journals Connector (OSTI)

Investigation of Multistage Circulating Fast Fluidized Bed Membrane Reformers for Production of Ultraclean Hydrogen and Syngas ... In order to distinguish between the two catalysts employed in this study, the catalyst over which the CSRM and CPOM reactions take place is considered catalyst 1 and that over which the CDRM reaction takes place is considered catalyst 2. The physical significance of catalyst 1 is that both reaction schemes of the CSRM and CPOM are catalyzed by this catalyst to produce hydrogen and syngas and to supply the necessary energy for the heat integration, though catalyst 2 plays an important role to steer the quality of the syngas and to enhance the hydrogen yield. ... In order to check the quality of the corresponding syngas produced in the reaction side, the hydrogen to carbon monoxide feed ratio (H2/CO) profile is presented in Figure 15. ...

Mohamed E. E. Abashar; Said S. E. H. Elnashaie

2014-03-05T23:59:59.000Z

182

Evaluation of the economic impact of hydrogen production by methane decomposition with steam reforming of methane process  

Science Journals Connector (OSTI)

Abstract There has been considerable interest in the development of more efficient processes to generate hydrogen. Currently, steam methane reforming (SMR) is the most widely applied route for producing hydrogen from natural gas. Researchers worldwide have been working to invent more efficient routes to produce hydrogen. One of the routes is thermocatalytic decomposition of methane (TCDM) - a process that decomposes methane thermally to produce hydrogen from natural gas. TCDM has not yet been commercialized. However, the aim of this work was to conduct an economic and environmental analysis to determine whether the TCDM process is competitive with the more popular SMR process. The results indicate that the TCDM process has a lower carbon footprint. Further research on TCDM catalysts could make this process economically competitive with steam methane reforming.

Kartick C. Mondal; S. Ramesh Chandran

2014-01-01T23:59:59.000Z

183

Hydrogen production by methane steam reforming over Ru supported on Ni–Mg–Al mixed oxides prepared via hydrotalcite route  

Science Journals Connector (OSTI)

Abstract Catalytic performance of Ru/NixMg6?xAl2 800 800 mixed oxides, with x = 2, 4 and 6, x being the molar ratio, towards Methane Steam Reforming, was studied. NixMg6?xAl2 800 oxide, used as support, was prepared via hydrotalcite route. It was thermally stabilized at 800 °C, impregnated with 0.5 wt.% ruthenium using ruthenium (III) nitrosyl nitrate Ru(NO) (NO3)3 precursor and then calcined again at 800 °C under an air flow. Ruthenium impregnation significantly enhanced the reactivity of the oxides in Methane Steam Reforming. In fact, it was found, that even with a low ruthenium content (0.5 wt.%), ruthenium oxide particles are formed but are well dispersed over the surface of the oxide NixMg6?xAl2 800. Ru/Ni6Al2 800 800 showed better catalytic performances, towards Methane Steam Reforming, than ruthenium impregnated on the two other supports. Indeed, nickel content is higher in Ni6Al2 800 than in the other studied supports and therefore the probability of Ni–Ru interaction should be greater and consequently catalytic performances could be improved.

Mira Nawfal; Cédric Gennequin; Madona Labaki; Bilal Nsouli; Antoine Aboukaďs; Edmond Abi-Aad

2014-01-01T23:59:59.000Z

184

Application of boron-modified nickel catalysts on the steam reforming of ethanol  

Science Journals Connector (OSTI)

Abstract This paper describes the fabrication of NiCe and \\{BNiCe\\} catalysts for steam reforming of ethanol (SRE) via co-precipitation and impregnation methods using Ni(NO3)2·6H2O, Ce(NO3)3·6H2O and H3BO3 as precursors. All samples were characterized by using X-ray diffraction (XRD), BET surface area, temperature programmed reduction (TPR), temperature programmed oxidation (TPO), transmission electron microscopy (TEM), elemental analysis (EA) and thermogravimetry (TG) techniques at various stages of the catalyst. The results indicated that the incorporation of nickel and boron into the ceria lattice could increase the dispersion of the catalyst especially prepared by the co-precipitation method. The formation of Ni–B alloy and CeBO3 intermediate might be the impact factors necessary for enhancement of the catalytic performance and removal of deposited carbon. As a result, boron-modified catalysts are preferential to non-boron catalysts, where the Y H 2 exceeds 5 at 375 °C and only minor CO (<0.1%) and CH4 (?2%) species are detected over the BNiCe(C) and BNi/Ce(I) catalysts. The behavior of coke for the used catalysts was characterized using TG, TPR, TPO and EA methods. The results indicated that the NiCe(C) catalyst accumulated more deposited carbon in the confined space than the \\{BNiCe\\} catalysts.

Hsin-Hua Huang; Shen-Wei Yu; Chen-Lung Chuang; Chen-Bin Wang

2014-01-01T23:59:59.000Z

185

Steam gasification of various feedstocks at a dual fluidised bed gasifier: Impacts of operation conditions and bed materials  

Science Journals Connector (OSTI)

Gasification of biomass is an attractive technology for...2, CO, CO2 and CH4. The DFB steam gasification process has been developed at Vienna University ... fuel moisture content, steam/fuel ratio and gasification

Christoph Pfeifer; Stefan Koppatz; Hermann Hofbauer

2011-03-01T23:59:59.000Z

186

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network [OSTI]

+ H 2 -41 MJ/kmol Steam methane reforming reaction CH 4 + Htechnologies such as steam methane reforming, gas shiftingand preparation, steam methane reforming and FT synthesis,

Lu, Xiaoming

2012-01-01T23:59:59.000Z

187

A study of the deactivation of low loading Ni/Al2O3 steam reforming catalyst by tetrahydrothiophene  

Science Journals Connector (OSTI)

Abstract The steam reforming (SR) of ethanol/phenol mixture (168 gTOT/N m3, ethanol:phenol 2:1 mol, GHSV = 54,000 h? 1), assumed as a model for tar mixtures, has been studied over a 5% Ni/Al2O3 catalyst (155 m2/g), in the presence and in the absence of 210 ppm tetrahydrothiophene (THT) as a sulphur containing contaminant. The sulphidation of the catalyst by THT has been studied by IR spectroscopy. Infrared spectra of CO adsorbed at low temperature over the oxidized, the reduced and the sulphurized catalyst have also been recorded. The catalyst acts as a bifunctional one, with the behaviour attributed to the uncovered support (alumina modified by nickel ions) at 773 K (dehydration of ethanol to ethylene, dehydrogenation to acetaldehyde and alkylation of phenol with ethanol) that fully disappears at 973 K when steam reforming occurs very selectively. By lowering back the reaction temperature, the support behaviour reappears. THT poisons selectively the Ni component, thus causing the appearance of the support behaviour also at 973 K. IR experiments show that THT deposes sulphur at the catalyst surface with the production of gas-phase 1,3-butadiene, thus converting the catalyst into a “sulphided” SR-inactive state. The steam reforming activity of the poisoned catalyst progressively reappears upon feeding back S-free feed at 973 K. IR study suggests that steam “cleans” the catalyst surface by sulphur, generating a “disordered” surface with dispersed Ni2 + and Ni0 species, that could slowly re-approach the initial active state.

Gabriella Garbarino; Alvaro Romero Perez; Elisabetta Finocchio; Guido Busca

2013-01-01T23:59:59.000Z

188

Steam Reforming of Methane over Ni Catalysts Prepared from Hydrotalcite-Type Precursors: Catalytic Activity and Reaction Kinetics  

Science Journals Connector (OSTI)

Abstract Ni/Mg-Al catalysts derived from hydrotalcite-type precursors were prepared by a co-precipitation technique and applied to steam reforming of methane. By comparison with Ni/?-Al2O3 and Ni/?-Al2O3 catalysts prepared by incipient wetness impregnation, the Ni/Mg-Al catalyst presented much higher activity as a result of higher specific surface area and better Ni dispersion. The Ni/Mg-Al catalyst with a Ni/Mg/Al molar ratio of 0.5:2.5:1 exhibited the highest activity for steam methane reforming and was selected for kinetic investigation. With external and internal diffusion limitations eliminated, kinetic experiments were carried out at atmospheric pressure and over a temperature range of 823 ? 973 K. The results demonstrated that the overall conversion of CH4 and the conversion of CH4 to CO2 were strongly influenced by reaction temperature, residence time of reactants as well as molar ratio of steam to methane. A classical Langmuir-Hinshelwood kinetic model proposed by Xu and Froment (1989) fitted the experimental data with excellent agreement. The estimated adsorption parameters were consistent thermodynamically.

Yang Qi; Zhenmin Cheng; Zhiming Zhou

2014-01-01T23:59:59.000Z

189

Co-gasification of Plastics and Biomass in a Dual Fluidized-Bed Steam Gasifier: Possible Interactions of Fuels  

Science Journals Connector (OSTI)

Co-gasification of Plastics and Biomass in a Dual Fluidized-Bed Steam Gasifier: Possible Interactions of Fuels ... Temperatures of up to 1000 °C were measured with high-temperature thermocouples, while high-quality flow meters (Krohne) were employed for the adjustment of process media inputs, such as the fluidization agents, steam and air. ... A GC–MS device (gas chromatograph with a mass spectrometer) was used to measure the content of 50 different tar species of medium molecular weight in the product gas. ...

Veronika Wilk; Hermann Hofbauer

2013-04-25T23:59:59.000Z

190

NiW and NiRu Bimetallic Catalysts for Ethylene Steam Reforming: Alternative Mechanisms for Sulfur Resistance  

SciTech Connect (OSTI)

Previous investigations of Ni-based catalysts for the steam reforming of hydrocarbons have indicated that the addition of a second metal can reduce the effects of sulfur poisoning. Two systems that have previously shown promise for such applications, NiW and NiRu, are considered here for the steam reforming of ethylene, a key component of biomass derived tars. Monometallic and bimetallic Al{sub 2}O{sub 3}-supported Ni and W catalysts were employed for ethylene steam reforming in the presence and absence of sulfur. The NiW catalysts were less active than Ni in the absence of sulfur, but were more active in the presence of 50 ppm H{sub 2}S. The mechanism for the W-induced improvements in sulfur resistance appears to be different from that for Ru in NiRu. To probe reasons for the sulfur resistance of NiRu, the adsorption of S and C{sub 2}H{sub 4} on several bimetallic NiRu alloy surfaces ranging from 11 to 33 % Ru was studied using density functional theory (DFT). The DFT studies reveal that sulfur adsorption is generally favored on hollow sites containing Ru. Ethylene preferentially adsorbs atop the Ru atom in all the NiRu (111) alloys investigated. By comparing trends across the various bimetallic models considered, sulfur adsorption was observed to be correlated with the density of occupied states near the Fermi level while C{sub 2}H{sub 4} adsorption was correlated with the number of unoccupied states in the d-band. The diverging mechanisms for S and C{sub 2}H{sub 4} adsorption allow for bimetallic surfaces such as NiRu that enhance ethylene binding without accompanying increases in sulfur binding energy. In contrast, bimetallics such as NiSn and NiW appear to decrease the affinity of the surface for both the reagent and the poison.

Rangan, M.; Yung, M. M.; Medlin, J. W.

2012-06-01T23:59:59.000Z

191

The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification  

E-Print Network [OSTI]

steam methane reforming .H 2 O ? CO 2 + H 2 Steam methane reforming reaction: CH 4 +by the SMR (Steam Methane Reforming) step and a final step

Luo, Qian

2012-01-01T23:59:59.000Z

192

Air–steam gasification of biomass in fluidized bed with CO2 absorption: A kinetic model for performance prediction  

Science Journals Connector (OSTI)

Abstract Significance of decarbonized energy production in the context of a foreseeable hydrogen economy has called for the need of extensive research in biomass gasification-carbon dioxide capture technique. The feasibility of calcium oxide as a sorbent for CO2 in syngas is studied for air–steam fluidized bed (FB) gasification through a reaction kinetic modeling approach. Arrhenius rate equations are employed for primary and secondary pyrolysis, gasification and carbonation reactions. Devolatilization product yields are predicted using available correlations for FB gasification and cracking of tar is incorporated. Parametric performance analysis is carried out highlighting the significance of equivalence ratio (ER), gasification temperature, steam to biomass ratio (SBR) and sorbent to biomass ratio (SOBR). The effects of various gasifying media on H2 concentration and performance indicators such as heating value and efficiencies are analyzed. The simulation results are validated with the reported experimental results. The kinetic study reveals that air–steam gasification significantly reduces the unreacted steam but at a lower H2 concentration than steam gasification. A maximum of 53% hydrogen rich gas mixture is predicted at ER = 0.25, SBR = 1.5, SOBR = 2.7 and 1000 K. Against fossil fuel expended steam gasification, pure oxygen gasification is suggested by the study.

C.C. Sreejith; C. Muraleedharan; P. Arun

2015-01-01T23:59:59.000Z

193

Unsteady-state kinetic simulation of naphtha reforming and coke combustion processes in the fixed and moving catalyst beds  

Science Journals Connector (OSTI)

Abstract The work is dedicated to the construction of kinetics models for the naphtha reforming process and the adjacent process of catalyst regeneration by coke combustion. The proposed kinetic model for the reforming process is based on the use of common rate equations for the groups of similar reactions with account of difference in reaction rates for individual homologs within these groups by simple correlations with thermodynamic properties (first of all – with the values of Gibbs free energy) of individual reactions and by other simplification methods. Such approach gives the way to construct the kinetics models optimal from the point of view of compromise between accuracy and simplicity. The proposed naphtha reforming model is characterized with the high level of kinetic scheme detailization (62 individual and group reactants and 146 individual reactions), at the same it is rather simple and provides the accurate description of the experimental data using only 22 kinetic parameters. This model is thermodynamically consistent and provides accurate description of experimental data in a wide range of process parameters. Account of catalyst deactivation by coke deposition in the model gives the way to simulate transient reforming process performance both in fixed and moving catalyst beds. Kinetics of coke combustion for catalysts with moderate coke content (up to 3% mass) may described by simple kinetic equation with apparent reaction rate orders closed to unit for relative coke content and to 1/2 for oxygen. Demonstration simulations of naphtha reforming and coke combustion processes are presented.

Andrey N. Zagoruiko; Alexander S. Belyi; Mikhail D. Smolikov; Alexander S. Noskov

2014-01-01T23:59:59.000Z

194

BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation)  

Broader source: Energy.gov [DOE]

Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

195

Investigation of Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation)  

Broader source: Energy.gov [DOE]

Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

196

Steam-methane reforming at low temperature on nickel-based catalysts  

Science Journals Connector (OSTI)

Abstract In this work, we report the activity results obtained in steam-methane reforming (SMR) at 500 and 600 °C using four nickel-based catalysts: (a) Ni/?-Al2O3 and Ni/SiO2, prepared by incipient wetness impregnation method and (b) Ni–Zn–Al and Ni–Mg–Al, prepared by coprecipitation method. In all of the samples, the nickel load ranged between 7% and 9%. The catalytic activity in SMR at steady state followed the pattern: Ni–Mg–Al ? Ni–Zn–Al > Ni/?-Al2O3 > Ni/SiO2. According to characterization results, the interaction between Ni2+ species and support in precursor oxides was stronger in Ni–Mg–Al and Ni–Zn–Al than in Ni/?-Al2O3 and Ni/SiO2. After activation in H2 flow, large metal nickel particles with low or none interaction with the support were obtained in the case of Ni/?-Al2O3 and Ni/SiO2. On the contrary, small metal particles, between 3 and 6 nm, in high interaction with support were obtained in Ni–Zn–Al and Ni–Mg–Al catalysts. The metal phase formed in Ni–Mg–Al and Ni–Zn–Al was the most active and resistant to sintering under reaction conditions at T ? 600 °C. It was also found that carbon nanofibers were formed on Ni/?-Al2O3, Ni/SiO2 and Ni–Mg–Al catalysts during SMR at 600 °C. The amount and diameter of nanofibers formed on Ni–Mg–Al were lower than on catalysts prepared by impregnation method, which is in agreement with the relative sizes of metal nickel particles in each case. Amazingly, no filamentary carbon was detected on the used Ni–Zn–Al sample: only amorphous coke in low amounts was formed. This was attributed to the proper interaction of small metal nickel particles with the non-stoichiometric zinc aluminate-like phase formed after thermal treatments of catalyst precursor.

María A. Nieva; María M. Villaverde; Antonio Monzón; Teresita F. Garetto; Alberto J. Marchi

2014-01-01T23:59:59.000Z

197

Process evaluation - steam reforming of diesel fuel oil. Final technical report 24 Apr-24 Dec 79 on phases 1-4  

SciTech Connect (OSTI)

This project is an evaluation of a proprietary catalyst as a means of steam-reforming diesel fuel oil (Fed. Spec. VV-F-800B, symbol DF-2). A system for testing the catalyst has been designed, built and successfully used to screen operating conditions of temperature, space velocity, and H2O/C ratio. A duration test has been conducted showing the catalyst capable of steam reforming diesel fuel, but with the production of naphthalene after 30 hours. Hydrogen production remained stable through the 86 hours of the test.

Jarvi, G.A.; Bowman, R.M.; Camara, E.H.; Lee, A.L.

1980-02-15T23:59:59.000Z

198

Design of an annular microchannel reactor (AMR) for hydrogen and/or syngas production via methane steam reforming  

Science Journals Connector (OSTI)

Abstract A bench-scale annular microchannel reactor (AMR) prototype with microchannel width of 0.3 mm and total catalyst length of 9.53 × 10?2 m active for the endothermic steam reforming of methane is presented. Experimental results at a steam to methane feed molar ratio of 3.3:1, reactor temperature of 1023 K, and pressure of 11 bar confirm catalyst power densities upwards of 1380 W per cm3 of catalyst at hydrogen yields >98% of thermodynamic equilibrium. A two-dimensional steady-state computational fluid dynamic model of the AMR prototype was validated using experimental data and subsequently employed to identify suitable operating conditions for an envisioned mass-production AMR design with 0.3 mm annular channel width and a single catalyst length of 254 mm. Thermal efficiencies, defined based upon methane and product hydrogen higher heating values (HHVs), of 72.7–57.7% were obtained from simulations for methane capacities of 0.5–2S LPM (space velocities of 195,000–782,000 h?1) at hydrogen yields corresponding to 99%–75% of equilibrium values. Under these conditions, analysis of local composition, temperature and pressure indicated that catalyst deactivation via coke formation or Nickel oxidation is not thermodynamically favorable. Lastly, initial analysis of an envisioned 10 kW autothermal reformer combining 19 parallel \\{AMRs\\} within a single methane-air combustion chamber, based upon existing manufacturing capabilities within Power & Energy, Inc., is presented.

Holly Butcher; Casey J.E. Quenzel; Luis Breziner; Jacques Mettes; Benjamin A. Wilhite; Peter Bossard

2014-01-01T23:59:59.000Z

199

Hydrogen production by sorption-enhanced steam methane reforming process using CaO-Zr/Ni bifunctional sorbent–catalyst  

Science Journals Connector (OSTI)

Abstract A bifunctional CaO-Zr/Ni (13, 18, and 20.5 wt% NiO) sorbent–catalyst was developed using the wet-mixing/sonication technique and applied for hydrogen production by sorption-enhanced steam methane reforming (SESMR), an intensified process that integrates hydrogen production with CO2 capture. The material was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and N2 physisorption (BET). CO2 sorption efficiency of the developed materials was evaluated during 25 CO2 sorption/regeneration cycles. The prepared sorbent–catalysts were then applied in the SESMR during 10 reaction cycles. The results showed that the bifunctional sorbent–catalyst with 20.5 wt% NiO loading presented the most suitable activity. The H2 yield of ?91% at the end of the 10th SESMR cycle is considerably higher than equilibrium H2 yield that could be obtained by traditional steam methane reforming.

Hamid R. Radfarnia; Maria C. Iliuta

2014-01-01T23:59:59.000Z

200

A comprehensive energy–exergy-based assessment and parametric study of a hydrogen production process using steam glycerol reforming  

Science Journals Connector (OSTI)

Abstract Various assessment tools are applied to comprehensively investigate a glycerol-to-hydrogen production system. These tools investigate the chemical reactions, design and simulate the entire hydrogen production process, study the energetic and exergetic performances and perform parametric analyses (using intuitive and design of experiment-based methods). Investigating the chemical reaction of steam glycerol reforming reveals that the optimal conditions, determined based on maximizing the hydrogen production while minimizing the methane and carbon monoxide contents and coke formation, can be achieved at a reforming temperature and a water-to-glycerol feed ratio (WGFR) of 950 K and 9, respectively. The thermal and exergetic efficiencies of the resulting process are 66.6% and 59.9%, respectively. These findings are lower than those cited in the literature and relative to other reformates (methane, ethanol and methanol). The parametric investigation indicates that the performance of the process (energetic and exergetic) could be ensured by using an appropriate and judiciously selected combination of the reactor temperature and WGFR. Based on the parametric energetic and exergetic investigation, WGFR = 6 and T = 1100 K appear to be the most accurate parameters for the entire glycerol-to-hydrogen process. For this recommend configuration, the thermal and exergetic efficiencies are 78.1% and 66.1%, respectively.

Noureddine Hajjaji; Amna Chahbani; Zouhour Khila; Marie-Noëlle Pons

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed steam reformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hydrogen production through CO2 sorption-enhanced methane steam reforming: Comparison between different adsorbents  

Science Journals Connector (OSTI)

A two-dimensional transient model has been developed to describe the catalytic methane reforming (MSR) coupled with simultaneous CO2...removal by different absorbents under non-isothermal, non-isobaric and non-ad...

YuMing Chen; YongChun Zhao; JunYing Zhang…

2011-11-01T23:59:59.000Z

202

Influence of MgO in the CO2 – steam reforming of methane to syngas by NiO/MgO/ ?-Al2O3 catalyst  

Science Journals Connector (OSTI)

Simultaneous steam and CO2 reforming of methane to syngas (H2and CO) over NiO/MgO/a-Al2O3 catalyst have been investigated at different MgO wt.%. The catalyst has been characterized by temperature-programmed reduc...

Jafar Yeganeh Mehr; Kheirolah Jafari Jozani…

2002-03-01T23:59:59.000Z

203

Ru/Ni/MgAl2O4 catalysts for steam reforming of methane: effects of Ru content on self-activation property  

Science Journals Connector (OSTI)

The effects of Ru on the self-reducibility of Ru-doped Ni/MgAl2O4 catalysts, which do not need pre-reduction treatment with H2, were investigated in the steam reforming of methane (SRM). The Ru-promoted Ni/MgAl2O

Seung-Chan Baek; Ki-Won Jun; Yun-Jo Lee; Jae Dong Kim…

2012-04-01T23:59:59.000Z

204

New data on gas-phase radical reactions in the steam reforming of methane in the presence of catalysts: I. Nickel catalysts  

Science Journals Connector (OSTI)

Methane pyrolysis and steam reforming were studied over a series of nickel...2O3, Ni/MgO, and Ni/LiAlO2) under the same conditions (650-750°C, PCH4...= 0.001-0.03 MPa). Unlike heterogeneous reaction of pyrolysis,...

I. I. Bobrova; V. V. Chesnokov; N. N. Bobrov; V. I. Zaikovskii…

205

Combined Steam and Carbon Dioxide Reforming of Methane on Ni/MgAl2O4: Effect of CeO2 Promoter to Catalytic Performance  

Science Journals Connector (OSTI)

The catalytic performance during combined steam and carbon dioxide reforming of methane (SCR) was investigated on Ni/MgAl2O4 catalyst promoted with CeO2. The SCR catalyst was prepared by co-impregnation method us...

Seung-Chan Baek; Jong-Wook Bae; Joo Yeong Cheon; Ki-Won Jun…

2011-02-01T23:59:59.000Z

206

Catalytic Properties of MnO, Fe2O3, and MnFe2O4 in the Steam Reforming of Ethanol  

Science Journals Connector (OSTI)

The catalytic activity of manganese ferrite MnFe2O4 and the oxides MnO and Fe2O3 in the steam reforming of ethanol (SRE) has been studied. The similarity...2O3 and MnFe2O4 has been established which may indicate ...

L. Yu. Dolgykh; I. L. Stolyarchuk; L. A. Staraya…

2014-09-01T23:59:59.000Z

207

Attrition resistant fluidizable reforming catalyst  

DOE Patents [OSTI]

A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

Parent, Yves O. (Golden, CO); Magrini, Kim (Golden, CO); Landin, Steven M. (Conifer, CO); Ritland, Marcus A. (Palm Beach Shores, FL)

2011-03-29T23:59:59.000Z

208

Operation of a steam hydro-gasifier in a fluidized bed reactor  

E-Print Network [OSTI]

Using Self-Sustained Hydro- Gasification." [0011] In aprocess, using a steam hydro-gasification reactor (SHR) thepyrolysis and hydro-gasification in a single step. This

Park, Chan Seung; Norbeck, Joseph N.

2008-01-01T23:59:59.000Z

209

Catalytic roles of Co0 and Co2+ during steam reforming of ethanol on Co/MgO catalysts  

SciTech Connect (OSTI)

Abstract: The catalytic roles of Co0 and Co2+ during steam reforming of ethanol were investigated over Co/MgO catalysts. Catalysts with different Co0/(Co0+Co2+) fraction were prepared through calcination and/or reduction at different temperatures, and the Co0 fraction was quantified by TPR and in-situ XPS. High temperature calcination of Co/MgO allowed us to prepare catalysts with more non-reducible Co2+ incorporated in the MgO lattice, while lower calcination temperatures allowed for the preparation of catalysts with higher Co0/(Co0+Co2+) fractions. The catalytic tests on Co0, non-reducible Co2+, and reducible Co2+ indicated that Co0 is much more active than either reducible or non-reducible Co2+ for C-C cleavage and water gas shift reaction. In addition, catalysts with a higher Co0 surface fraction exhibited a lower selectivity to CH4.

Karim, Ayman M.; Su, Yu; Engelhard, Mark H.; King, David L.; Wang, Yong

2011-02-25T23:59:59.000Z

210

Biomass heat pipe reformer—design and performance of an indirectly heated steam gasifier  

Science Journals Connector (OSTI)

Indirectly heated dual fluidized bed (DFB) gasifiers are a promising option for the production ... syngas, in particular in the small- and medium-scale range. The application of so-called ... pipes solves the key...

Jürgen Karl

2014-03-01T23:59:59.000Z

211

Techno-economic assessment of CO2 capture at steam methane reforming facilities using commercially available technology  

Science Journals Connector (OSTI)

This study aimed to identify the optimal techno-economic configuration of CO2 capture at steam methane reforming facilities using currently available technologies by means of process simulations. Results indicate that the optimal system is CO2 capture with ADIP-X located between the water–gas shift and pressure swing adsorption units. Process simulations of this system configuration showed a CO2 emission reduction of 60% at 41 €/t CO2 avoidance. This is at the lower end of the range reported in open literature for CO2 capture at refineries (26–82 €/t CO2) and below the avoidance costs for CO2 capture at natural gas-fired power plants (44–93 €/t CO2). CO2 avoidance costs are dominated by the natural gas consumption, responsible for up to 66% of total costs. Using imported steam and electricity can reduce CO2 avoidance costs by 45%. Addition of small amounts of piperazine to aqueous MDEA solutions results in up to 70% smaller absorbers or 10% lower reboiler heat duty. Optimising the whole capture process instead of individual units resulted in lower piperazine concentrations than the common industrial practice (3 mass% vs. 5 mass%). Finally, keeping the solvent rate constant when operating the capture unit below its design load resulted in a lower specific energy for CO2 capture than when the solvent rate was downscaled with the syngas flow.

J.C. Meerman; E.S. Hamborg; T. van Keulen; A. Ramírez; W.C. Turkenburg; A.P.C. Faaij

2012-01-01T23:59:59.000Z

212

DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR BENCH-SCALE REFORMER TREATABILITY STUDIES  

SciTech Connect (OSTI)

This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Bench-Scale Reforming testing. The type, quantity, and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluidized bed steam reformer. A determination of the adequacy of the fluidized bed steam reformer process to treat Hanford tank waste is required. The initial step in determining the adequacy of the fluidized bed steam reformer process is to select archived waste samples from the 222-S Laboratory that will be used in a bench scale tests. Analyses of the selected samples will be required to confirm the samples meet the shipping requirements and for comparison to the bench scale reformer (BSR) test sample selection requirements.

BANNING DL

2011-02-11T23:59:59.000Z

213

Renewable Hydrogen from Ethanol by Autothermal Reforming  

Science Journals Connector (OSTI)

...soy oil limits its economics. Ethanol is now...desirability of autothermal reforming of ethanol (10...reaction with water in the steam-reforming reaction (1113...partial oxidation with steam reforming and the WGS...

G. A. Deluga; J. R. Salge; L. D. Schmidt; X. E. Verykios

2004-02-13T23:59:59.000Z

214

Operation of a steam hydro-gasifier in a fluidized bed reactor  

E-Print Network [OSTI]

OF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BED REACTOROF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BED REACTOR F Iis fed into a hydro-gasifier reactor. One such process was

Park, Chan Seung; Norbeck, Joseph N.

2008-01-01T23:59:59.000Z

215

Production of Liquid Feedstock from Biomass via Steam Pyrolysis in a Fluidized Bed Reactor  

Science Journals Connector (OSTI)

Dry basis. ... loss on ignition ... A pre-charred, wood-based carbonaceous precursor was activated using a two-step process (steam-pyrolysis activation) to investigate the potential for optimizing an activation protocol for the prodn. of powd. ...

Efthymios Kantarelis; Weihong Yang; Wlodzimierz Blasiak

2013-06-25T23:59:59.000Z

216

Feasibility of Steam Hydrogasification of Microalgae for Production of Synthetic Fuels  

E-Print Network [OSTI]

and is followed by steam methane reforming ( SMR). The finalReaction: Steam Methane Reforming: Fischer–Tropsch Reaction:methane and steam in steam methane reforming generates the

Suemanotham, Amornrat

2014-01-01T23:59:59.000Z

217

Process to Accomplish Autothermal or Steam Reforming Via a Reciprocating Compression Device  

SciTech Connect (OSTI)

The invention provides a method and apparatus for producing a synthesis gas from a variety of hydrocarbons. The apparatus (device) consists of a semi-batch, non-constant volume reactor to generate a synthesis gas. While the apparatus feeds mixtures of air, steam, and hydrocarbons into a cylinder where work is performed on the fluid by a piston to adiabatically raise its temperature without heat transfer from an external source.

Lyons, David K.; James, Robert; Berry, David A.; Gardern, Todd

2004-09-21T23:59:59.000Z

218

Selective Production of Hydrogen for Fuel Cells Via Oxidative Steam Reforming of Methanol Over CuZnAl Oxide Catalysts: Effect of Substitution of Zirconium and Cerium on the Catalytic Performance  

Science Journals Connector (OSTI)

H2 fuel, for fuel cells, is traditionally produced from methanol by the endothermic steam reforming of methanol (SRM). Partial oxidation of methanol (POM), which is highly exothermic, has also been suggested as ....

S. Velu; K. Suzuki

2003-04-01T23:59:59.000Z

219

Endurance testing of a high-efficiency steam reformer for fuel cell power plants: Final report  

SciTech Connect (OSTI)

This final report documents the results from demonstration and endurance tests, conducted in 1987 and 1988, of the Haldor Topsoe Heat Exchange Reformer. The primary objectives of this EPRI project were to develop, test and verify fuel processing components suitable for use in a Westinghouse Electric Corporation 7.5-MW phosphoric acid fuel cell power plant. EPRI's project is part of a larger national program sponsored by the Department of Energy to develop the technology and systems which are technically and economically viable for electric utility power generation applications. 26 figs., 11 tabs.

Udengaard, N.R.; Christiansen, L.J.; Summers, W.A.

1988-10-01T23:59:59.000Z

220

Statistical validation and an empirical model of hydrogen production enhancement found by utilizing passive flow disturbance in the steam-reformation process  

SciTech Connect (OSTI)

A passive flow disturbance has been proven to enhance the conversion of fuel in a methanol-steam reformer. This study presents a statistical validation of the experiment based on a standard 2{sup k} factorial experiment design and the resulting empirical model of the enhanced hydrogen producing process. A factorial experiment design was used to statistically analyze the effects and interactions of various input factors in the experiment. Three input factors, including the number of flow disturbers, catalyst size, and reactant flow rate were investigated for their effects on the fuel conversion in the steam-reformation process. Based on the experimental results, an empirical model was developed and further evaluated with an uncertainty analysis and interior point data. (author)

Erickson, Paul A.; Liao, Chang-hsien [Department of Mechanical and Aeronautical Engineering, University of California, One Shields Avenue, Davis, CA 95616 (United States)

2007-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "bed steam reformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Kinetics of the steam reforming of methane with iron, nickel, and iron-nickel alloys as catalysts  

SciTech Connect (OSTI)

The steam reforming of methane on iron or nickel, CH/sub 4/ + H/sub 2/O ..-->.. CO + 3H/sub 2/, can be regarded as a sequence of two reactions with adsorbed carbon as an intermediate species: CH/sub 4/ ..-->.. C(ads) + 2H/sub 2/, C(ads) + H/sub 2/O ..-->.. CO + H/sub 2/. As the first reaction is rate limiting, the following rate law can be applied to methane reforming catalysed by iron: v = k/sub 2//sup Fe/ a/sub 0//sup -n/ p/sub CH/sub 4///P/sub H/sub 2///sup 1/2/, 0.6 less than or equal to n less than or equal to 1.0. The oxygen activity a/sub 0/ on the catalyst surface is virtually determined by the ratio P/sub H/sub 2/O//P/sub H/sub 2// in the gas atmosphere. The above rate equation was confirmed by measurements in a flow apparatus for the temperature range 700 to 900/sup 0/C. In agreement with the reaction model the steady-state carbon activity on the iron surface and the steady-state carbon concentration in the iron catalyst are very low. With nickel as catalyst the reaction rate is much higher and independent of the oxygen activity on the catalyst surface. The rate equation reads: v = k/sub 2//sup Ni/ P/sub CH/sub 4//. Different partial reaction steps of the methane decomposition are rate determining on iron and nickel.

Muenster, P.; Grabke, H.J.

1981-12-01T23:59:59.000Z

222

Development of Al-stabilized CaO–nickel hybrid sorbent–catalyst for sorption-enhanced steam methane reforming  

Science Journals Connector (OSTI)

Abstract In this work, Al-stabilized CaO–Ni hybrid sorbent–catalysts integrated in a single particle with various nickel loadings (12, 18 and 25 wt% NiO) were developed and tested in cyclic hydrogen production by sorption-enhanced steam methane reforming (SESMR) process. A simple wet-mixing technique based on limestone acidification and two-step calcination was employed to produce hybrid materials with different nickel loadings. All developed materials were characterized by BET, XRD, SEM and TEM and studied during 25 CO2 sorption/regeneration cycles as well as for 10 SESMR cycles. Based on both CO2 sorption and SESMR results, it was concluded that the proposed hybrid sorbent–catalyst with NiO loading of 25 wt% led to the best performances: (i) CaO molar conversion is 41.2% at the end of the 25th sorption cycle and (ii) average CH4 conversion and H2 production efficiency during 10 SESMR cycles are remarkable (99.1% and 96.1%, respectively). For the most efficient hybrid sorbent–catalyst (25 wt% NiO), the influence of CH4 flow rate and steam to carbon ratio (S/C) was also investigated, as well as its behavior during long-term cyclic operation of SESMR (30 cycles), where the H2 production time was just limited to pre-breakthrough period. The very efficient performance (average of H2 yield 97.3%) of the proposed hybrid sorbent–catalyst material in long-term operation confirmed its high potential for use in SESMR process.

Hamid R. Radfarnia; Maria C. Iliuta

2014-01-01T23:59:59.000Z

223

Synthesis Gas Production by Combined Reforming of CO2-Containing Natural Gas with Steam and Partial Oxidation in a Multistage Gliding Arc Discharge System  

Science Journals Connector (OSTI)

Synthesis Gas Production by Combined Reforming of CO2-Containing Natural Gas with Steam and Partial Oxidation in a Multistage Gliding Arc Discharge System ... with low-current arcs available in the literature. ... Larkin, D. W.; Caldwell, T. A.; Lobban, L. L.; Mallinson, R. G.Oxygen pathways and carbon dioxide utilization in methane partial oxidation in ambient temperature electric discharges Energy Fuels 1998, 12, 740 ...

Krittiya Pornmai; Narissara Arthiwet; Nongnuch Rueangjitt; Hidetoshi Sekiguchi; Sumaeth Chavadej

2014-07-08T23:59:59.000Z

224

High Activity of Ce1-xNixO2-y for H2 Production through Ethanol Steam Reforming: Tuning Catalytic Performance through Metal-Oxide Interactions  

SciTech Connect (OSTI)

The importance of the oxide: Ce{sub 0.8}Ni{sub 0.2}O{sub 2-y} is an excellent catalyst for ethanol steam reforming. Metal-oxide interactions perturb the electronic properties of the small particles of metallic nickel present in the catalyst under the reaction conditions and thus suppress any methanation activity. The nickel embedded in ceria induces the formation of O vacancies, which facilitate cleavage of the OH bonds in ethanol and water.

G Zhou; L Barrio; S Agnoli; S Senanayake; J Evans; A Kubacka; M Estrella; J Hanson; A Martinez-Arias; et al.

2011-12-31T23:59:59.000Z

225

Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous Ni–La–Al2O3 aerogel catalysts: Effect of La content  

Science Journals Connector (OSTI)

Mesoporous Ni–La–Al2O3 aerogel catalysts (denoted as (40-x)NixLa) with different lanthanum content (x) were prepared by a single-step sol-gel method and a subsequent CO2 supercritical drying method. The effect of lanthanum content on the physicochemical properties and catalytic performance of mesoporous (40-x)NixLa catalysts in the steam reforming of liquefied natural gas (LNG) was investigated. Physicochemical properties of (40-x)NixLa catalysts were strongly influenced by lanthanum content. Dispersion and reducibility of nickel aluminate phase in the (40-x)NixLa catalysts increased with increasing lanthanum content. Small amount of lanthanum addition was effective for dispersion of metallic nickel in the (40-x)NixLa catalysts, but large amount of lanthanum addition was not favorable for nickel dispersion due to the blocking of active sites. In the steam reforming of LNG, both LNG conversion and hydrogen yield showed volcano-shaped curves with respect to lanthanum content. Average nickel diameter of (40-x)NixLa catalysts was well correlated with LNG conversion and hydrogen yield over the catalysts. Among the catalysts tested, 36Ni4La (36 wt% Ni and 4 wt% La) catalyst with the smallest average nickel diameter exhibited the best catalytic performance and the strongest resistance toward carbon deposition in the steam reforming of LNG.

Yongju Bang; Jeong Gil Seo; In Kyu Song

2011-01-01T23:59:59.000Z

226

Influence of preparation methods and Zr and Y promoters on Cu/ZnO catalysts used for methanol steam reforming  

Science Journals Connector (OSTI)

Binary Cu/ZnO catalysts were prepared using three different methods (coprecipitation, sequential precipitation and homogeneous precipitation) and tested in a methanol steam reforming reaction. Zirconium and yttrium were tested as promoters, and their effects were evaluated in the same reaction. The studied preparation methods influenced the surface area of the Cu-based catalysts and consequently their catalytic activity; however, we verified that surface area was not the only factor influencing activity. Different structural changes in the aurichalcite precursor resulted from the different preparation methods used, and these differences were also observed in the reduced catalysts. An expansion of the Cu lattice with an increase in microstrain were identified and attributed to the formation of a Cu–Zn alloy. Based on the correlation found between these structural changes and the catalytic activity, the Cu–Zn alloy was proposed as active site. We concluded that the preparation methods used influenced Cu dispersion and overall catalyst structure, and Cu–Zn alloy formation resulted from the incorporation of Zn atoms into the Cu lattice. This influence was more pronounced in the catalysts prepared by homogeneous precipitation and coprecipitation. The yttrium promoter did not provide textural or structural advantages. In contrast, the incorporation of Zr promoted both greater Cu dispersion and structural changes in the Cu lattice.

S.G. Sanches; J. Huertas Flores; R.R. de Avillez; M.I. Pais da Silva

2012-01-01T23:59:59.000Z

227

Metal foam-supported Pd–Rh catalyst for steam methane reforming and its application to SOFC fuel processing  

Science Journals Connector (OSTI)

Abstract Pd–Rh/metal foam catalyst was studied for steam methane reforming and application to SOFC fuel processing. Performance of 0.068 wt% Pd–Rh/metal foam catalyst was compared with 13 wt% Ni/Al2O3 and 8 wt% Ru/Al2O3 catalysts in a tubular reactor. At 1023 K with GHSV 2000 h?1 and S/C ratio 2.5, CH4 conversion and H2 yield were 96.7% and 3.16 mol per mole of CH4 input for Pd–Rh/metal foam, better than the alumina-supported catalysts. In 200 h stability test, Pd–Rh/metal foam catalyst exhibited steady activity. Pd–Rh/metal foam catalyst performed efficiently in a heat exchanger platform reactor to be used as prototype SOFC fuel processor: at 983 K with GHSV 1200 h?1 and S/C ratio 2.5, CH4 conversion was nearly the same as that in the tubular reactor, except for more H2 and CO2 yields. Used Pd–Rh/metal foam catalyst was characterized by SEM, TEM, BET and CO chemisorption measurements, which provided evidence for thermal stability of the catalyst.

Partho Sarothi Roy; No-Kuk Park; Kiseok Kim

2014-01-01T23:59:59.000Z

228

Catalytic aspects of high-temperature methanation of synthesis gas from coal or steam reforming of natural gas  

SciTech Connect (OSTI)

Pilot and catalyst tests showed that the Haldor Topsoe A/S MCR-2X catalyst allows methanation from 250/sup 0/ to well above 700/sup 0/C. Catalyst regeneration by oxidation and reduction after 4700 hr of operation restored > 50% of the original activity. The Topsoe recycle methanation process would give an over-all conversion of 95% in three adiabatic reactors, according to a comparison with results to be expected from the use of a steam reforming catalyst. The Topsoe catalyst maintained a high total surface area and mechanical strength during sintering at 400/sup 0/-800/sup 0/C for 140-170 hr in a comparison with nickel/..cap alpha..-alumina and nickel/ceramic catalyst. Prevention of carbon formation was also demonstrated in the pilot test. In general, it appeared that the use of a nickel catalyst for methanation is limited to a minimum operating temperature because of the risk of nickel carbonyl formation and catalyst deactivation and to a maximum-operating temperature because of sintering, and in some cases, carbon formation.

Pedersen, K.; Skov, A.; Rostrup-Nielsen, J.R.

1980-01-01T23:59:59.000Z

229

Study of Co/CeO2-?-Al2O3 catalysts for steam and oxidative reforming of ethanol for hydrogen production  

Science Journals Connector (OSTI)

Abstract Cobalt catalysts supported on ?Al2O3, CeO2 and CeO2-?Al2O3 were prepared by the impregnation method and applied to steam and oxidative reforming of ethanol. The catalysts were characterized by temperature-programmed reduction with H2 (TPR-H2), X-ray diffraction (XRD), N2-physisorption and diffuse reflectance spectroscopy in the ultra-violet visible range (DRS-UV–Vis). Steam reforming of ethanol was carried out at 400 °C, 500 °C and 600 °C with an ethanol/water feed in a molar ratio of 1:3. The oxidative reforming of ethanol was carried out at 500 °C with an ethanol/H2O/O2 feed in molar proportion 1:3:0.20. Analysis of the gaseous products showed that the Co/?Al2O3 and Co/CeO2-?Al2O3 catalysts were highly selective for H2 and CO2, and this was attributed to the high specific surface area of these catalysts. The addition of O2 to the feed improved the hydrogen selectivity and reduced the carbon formation on Co/?Al2O3, which suffered fast deactivation in the SRE reaction at low temperature.

Thaisa A. Maia; José M. Assaf; Elisabete M. Assaf

2014-01-01T23:59:59.000Z

230

Hydrogen production by steam reforming of simulated liquefied natural gas (LNG) over mesoporous nickel–M–alumina (M = Ni, Ce, La, Y, Cs, Fe, Co, and Mg) aerogel catalysts  

Science Journals Connector (OSTI)

Mesoporous nickel–M–alumina aerogel catalysts (denoted as NiMAE) with different second metal (M = Ni, Ce, La, Y, Cs, Fe, Co, and Mg) were prepared by a single-step sol–gel method and a subsequent CO2 supercritical drying method. The effect of second metal of mesoporous nickel–M–alumina aerogel catalysts on their physicochemical properties and catalytic activity for steam reforming of simulated liquefied natural gas (LNG) was investigated. Textural and chemical properties of NiMAE catalysts were strongly influenced by the identity of second metal. Nickel species were highly dispersed on the surface of NiMAE catalysts through the formation of nickel aluminate phase. In the steam reforming of LNG, both LNG conversion and hydrogen yield decreased in the order of NiLaAE > NiCeAE > NiYAE > NiCsAE > NiNiAE > NiFeAE > NiCoAE > NiMgAE. Average nickel diameter of NiMAE catalysts was well correlated with LNG conversion and hydrogen yield over the catalysts. Among the catalysts tested, NiLaAE catalyst exhibited the best catalytic performance due to its smallest average nickel diameter. Furthermore, NiLaAE catalyst exhibited a strong capability of facilitating heat and mass transfer of reactant and product during the steam reforming of LNG. Water–gas shift reaction governed the steam reforming reaction over NiLaAE catalyst under the steam-rich reaction condition (steam/carbon > 2).

Jeong Gil Seo; Min Hye Youn; Yongju Bang; In Kyu Song

2011-01-01T23:59:59.000Z

231

Influence of mean gas residence time in the bubbling fluidised bed on the performance of a 100-kW dual fluidised bed steam gasifier  

Science Journals Connector (OSTI)

In this study, the influence of mean gas residence time in the bubbling fluidised bed, ? f..., on the performance of a pilot scale 100 kW dual fluidised bed gasifier was experimentally investigate...

W. L. Saw; S. S. Pang

2012-09-01T23:59:59.000Z

232

Modeling the Effects of Steam-Fuel Reforming Products on Low Temperature Combustion of n-Heptane  

Broader source: Energy.gov [DOE]

The effects of blends of base fuel (n-heptane) and fuel-reformed products on the low-temperature combustion process were investigated.

233

Numerical analysis of hydrogen production via methane steam reforming in porous media solar thermochemical reactor using concentrated solar irradiation as heat source  

Science Journals Connector (OSTI)

Abstract The calorific value of syngas can be greatly upgraded during the methane steam reforming process by using concentrated solar energy as heat source. In this study, the Monte Carlo Ray Tracing (MCRT) and Finite Volume Method (FVM) coupling method is developed to investigate the hydrogen production performance via methane steam reforming in porous media solar thermochemical reactor which includes the mass, momentum, energy and irradiative transfer equations as well as chemical reaction kinetics. The local thermal non-equilibrium (LTNE) model is used to provide more temperature information. The modified P1 approximation is adopted for solving the irradiative heat transfer equation. The MCRT method is used to calculate the sunlight concentration and transmission problems. The fluid phase energy equation and transport equations are solved by Fluent software. The solid phase energy equation, irradiative transfer equation and chemical reaction kinetics are programmed by user defined functions (UDFs). The numerical results indicate that concentrated solar irradiation on the fluid entrance surface of solar chemical reactor is highly uneven, and temperature distribution has significant influence on hydrogen production.

Fuqiang Wang; Jianyu Tan; Yong Shuai; Liang Gong; Heping Tan

2014-01-01T23:59:59.000Z

234

The role of CeO2–ZrO2 distribution on the Ni/MgAl2O4 catalyst during the combined steam and CO2 reforming of methane  

Science Journals Connector (OSTI)

The effect of the distribution of CeO2–ZrO2 on Ni/MgAl2O4 catalyst on the catalytic performance during the combined steam and carbon dioxide reforming of CH4 (CSCR) was investigated on two different catalysts pre...

Jong Wook Bae; A Rong Kim; Seung-Chan Baek…

2011-12-01T23:59:59.000Z

235

Effect of CeO2 and La2O3 on the Activity of CeO2?La2O3/Al2O3-Supported Pd Catalysts for Steam Reforming of Methane  

Science Journals Connector (OSTI)

The effect of the addition of CeO2 or La2O3 on the surface properties and catalytic behaviors of Al2O3-supported Pd catalysts was studied in the steam reforming of methane. The FTIR spectroscopy of adsorbed CO an...

W. H. Cassinelli; L. S. F. Feio; J. C. S. Araújo; C. E. Hori…

2008-01-01T23:59:59.000Z

236

Effect of Additives La2O3 AND CeO2 on the Activity and Selectivity of Ni-Al2O3/Cordierite Catalysts in Steam Reforming of Methane  

Science Journals Connector (OSTI)

The introduction of rare-earth elements (CeO2 and La2O3) into Ni-Al2O3.../cordierite catalysts permits a decrease in the water to methane ratio in the reaction mixture for the steam reforming of methane. The carb...

Ie. V. Gubareni; Ya. P. Kurilets; S. O. Soloviev

2014-12-01T23:59:59.000Z

237

Biomass Gasification with Steam in Fluidized Bed:? Effectiveness of CaO, MgO, and CaO?MgO for Hot Raw Gas Cleaning  

Science Journals Connector (OSTI)

The upgrading of the raw hot gas from a bubbling fluidized bed biomass gasifier is studied using cheap calcined minerals or rocks downstream from the gasifier. ... Gasification with steam (with or without O2 added) is another process which produces a medium heating (10?16 MJ/m3n) value gas with a 30?60 vol % H2 content. ... The effect of the particle diameter has been studied at 794 ± 9 °C (T2) with sizes between 1.0 and 4.0 mm (dp,mean = 1.30?3.25 mm). ...

Jesús Delgado; María P. Aznar; José Corella

1997-05-05T23:59:59.000Z

238

Experimental Investigation of Natural Coke Steam Gasification in a Bench-Scale Fluidized Bed: Influences of Temperature and Oxygen Flow Rate  

Science Journals Connector (OSTI)

However, natural coke was restricted in application and research due to its hot burst, difficult ignition, and abradability. ... disordering as a cause is now a real possibility on the basis of correlated optical and x-ray diffraction data from samples analyzed from within a thermal aureole of a Tertiary dyke emplaced in Permian coal-bearing strata. ... The thermal characteristics of natural coke steam gasification in a fluidized bed were three-dimensionally (3D) simulated based on the computational fluid dynamics (CFD) method using Fluent code. ...

Wen-guo Xiang; Chang-sui Zhao; Ke-liang Pang

2009-01-05T23:59:59.000Z

239

A highly reactive and stable Ru/Co6?xMgxAl2 catalyst for hydrogen production via methane steam reforming  

Science Journals Connector (OSTI)

Abstract Hydrogen production by methane steam reforming is an important yet challenging process. A performing catalyst will favor the thermodynamic equilibrium while ensuring good hydrogen selectivity. We hereby report the synthesis of a ruthenium based catalyst on a cobalt, magnesium, and aluminum mixed oxides supports. An interaction between cobalt and ruthenium favors the formation of smaller, well dispersed cobalt/ruthenium oxide species. The Ru/Co6Al2 catalyst outmatches the widely used industrial Ru/Al2O3 catalyst. The catalyst is stable for 100 h on stream. After test characterization shows the formation of carbon and coke deposits at trace levels. However, this does not affect the catalytic performance of the catalysts making it good candidates for industrial applications.

Doris Homsi; Samer Aouad; Cédric Gennequin; Antoine Aboukaďs; Edmond Abi-Aad

2014-01-01T23:59:59.000Z

240

CFD analysis of the effects of the flow distribution and heat losses on the steam reforming of methanol in catalytic (Pd/ZnO) microreactors  

Science Journals Connector (OSTI)

Abstract A three-dimensional computational fluid dynamics (CFD) simulation study of the effects of the flow distribution and the heat losses on the performance of microchannels and microslits reactors for the steam reforming of methanol (SRM) over Pd/ZnO is presented. Several flow distributing headers covering a wide range of the flow diffuser expansion angle (?) have been considered. Large values of ? lead to flow maldistribution characterized by jet flow resulting in negative effects on the SRM conversion and hydrogen yield, especially for the microslits at high reaction temperatures and space velocities. Simulations have also evidenced that heat losses constitute a critical issue for microreactors operation, particularly at low space velocities. Heat losses may reach very high values, above 80–90% of the energy supplied to the microreactor, with the consequence that it may be necessary to provide up to 9 times the heat of the SRM reaction to achieve high methanol conversions.

I. Uriz; G. Arzamendi; P.M. Diéguez; F.J. Echave; O. Sanz; M. Montes; L.M. Gandía

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed steam reformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Experimental Study of Chemical-Looping Reforming in a Fixed-Bed Reactor: Performance Investigation of Different Oxygen Carriers on Al2O3 and TiO2 Support  

Science Journals Connector (OSTI)

E. Karimi †, H. R. Forutan †, M. Saidi †, M. R. Rahimpour *†‡, and A. Shariati † ... Rahimpour, M. R.; Hesami, M.; Saidi, M.; Jahanmiri, A.; Farniaei, M.; Abbasi, M.Methane steam reforming thermally coupled with fuel combustion: Application of chemical looping concept as a novel technology Energy Fuels 2013, 27 ( 4) 2351– 2362 ... Rahimpour, Mohammad Reza; Hesami, Marziyeh; Saidi, Majid; Jahanmiri, Abdolhossein; Farniaei, Mahdi; Abbasi, Mohsen ...

E. Karimi; H. R. Forutan; M. Saidi; M. R. Rahimpour; A. Shariati

2014-03-26T23:59:59.000Z

242

Bimetallic Ni-Rh catalysts with low amounts of Rh for the steam and autothermal reforming of n-butane for fuel-cell applications.  

SciTech Connect (OSTI)

Mono-metallic nickel and rhodium catalysts and bimetallic Ni-Rh catalysts supported on La-Al{sub 2}O{sub 3}, CeZrO{sub 2} and CeMgOx were prepared and evaluated for catalyzing the steam and autothermal reforming of n-butane. The binary Ni-Rh supported on La-Al{sub 2}O{sub 3} catalysts with low weight loading of rhodium exhibited higher H{sub 2} yields than Ni or Rh alone. The Ni-Rh/CeZrO{sub 2} catalyst exhibited higher performance and no coke formation, compared to the same metals on other supports. A NiAl{sub 2}O{sub 4} spinel phase was obtained on all Ni and Ni-Rh catalysts supported on La-Al{sub 2}O{sub 3}. The presence of rhodium stabilized the spinel phase as well as NiOx species upon reforming while Ni alone was mostly reduced into metallic species. Extended X-ray absorption fine-structure analysis showed evidence of Ni-Rh alloy during preparation and even further after an accelerated aging at 900C in a H{sub 2}/H{sub 2}O atmosphere.

Ferrandon, M.; Kropf, A. J.; Krause, T.; Chemical Sciences and Engineering Division

2010-05-15T23:59:59.000Z

243

Diesel Reforming for Fuel Cell Auxiliary Power Units  

SciTech Connect (OSTI)

This objective of this project was to develop technology suitable for onboard reforming of diesel. The approach was to examine catalytic partial oxidation and steam reforming.

Borup, R.; Parkinson, W. J.; Inbody, M.; Brosha, E.L.; Guidry, D.R.

2005-01-27T23:59:59.000Z

244

1 6/11/2003 Progress in Microchannel SteamProgress in  

E-Print Network [OSTI]

1 6/11/2003 Progress in Microchannel SteamProgress in Reformation of Hydrocarbon Fuels Progress in MicrochannelMicrochannel SteamSteam Reformation of HydrocarbonReformation of Hydrocarbon FuelsFuels 2003 steam reformer at higher temperature. Productivity for benchmark fuel increased 3X between 650°C and 850

245

Process for generating steam in a fuel cell powerplant  

SciTech Connect (OSTI)

The steam for a steam reforming reactor of a fuel cell powerplant is generated by humidifying the reactor feed gas in a saturator by evaporating a small portion of a mass of liquid water which circulates in a loop passing through the saturator. The water is reheated in each pass through the loop by waste heat from the fuel cell, but is not boiled. In the saturator the relatively dry feed gas passes in direct contact with the liquid water over and through a bed a high surface area material to cause evaporation of some of the water in the loop. All the steam requirements for the reactor can be generated in this manner without the need for a boiler; and steam can be raised at a higher total pressure than in a boiler heated by the same source.

Sederquist, R. A.

1985-09-03T23:59:59.000Z

246

High-Temperature Air/Steam-Blown Gasification of Coal in a Pressurized Spout-Fluid Bed  

Science Journals Connector (OSTI)

7-10 However, in the MEET system a pebble bed slagging entrained-flow gasifier was used that had to be operated at very high temperatures (1350?1550 °C), which required excessive energy input to maintain such a high gasification temperature when compared with fluidized bed gasifiers, such as spout-fluid bed gasifiers which used medium temperatures (800?1100 °C) to convert coal to fuel gas. ... The typical size distribution is shown in Table 2, where is specific surface-equivalent diameter. ...

Rui Xiao; Mingyao Zhang; Baosheng Jin; Yaji Huang; Hongcang Zhou

2006-02-10T23:59:59.000Z

247

Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts  

Science Journals Connector (OSTI)

Fuel cell powered vehicles using hydrogen (H2) as a fuel are currently being developed in an effort to mitigate the emissions of green house gases such as CO2, NOx, and hydrocarbons. The H2 fuel is extracted from methanol onboard a vehicle by steam reforming of methanol (SRM) reaction. A considerable amount of CO is produced as a by-product, which is a poison to the Pt anode of the fuel cell. Very recently, we have demonstrated that a combined SRM and partial oxidation of methanol (POM), which we labeled as “oxidative steam reforming of methanol (OSRM)” reaction is more efficient for the selective production of H2 relatively at a lower temperature of around 230°C over CuZnAl(Zr)-oxide catalysts derived from hydroxycarbonate precursors containing hydrotalcite (HT)-like layered double hydroxides (LDHs)/aurichalcite phases. There are several operating parameters such as catalyst composition, reaction temperature, O2/CH3OH and H2O/CH3OH molar ratios and methanol injection rate that are need to be optimized in order to produce H2 suitable for fuelling a fuel cell. In the present study, we have investigated the effect of these variable parameters on the catalytic performance over a series of CuZnAl- and CuZnAlZr-oxide catalysts. Our study indicated that among the CuZn-based catalysts, those containing Zr were the most active. The optimum O2/CH3OH and H2O/CH3OH molar ratios should be in the ranges 0.20–0.30 and 1.3–1.6, respectively, in order to achieve a better catalytic performance. Studies of the effect of methanol contact time on the catalytic performance over a Zr-containing catalyst revealed that the OSRM reaction proceeds through the formation of formaldehyde intermediate. CO was produced as a secondary product by the decomposition of formaldehyde and it is subsequently transformed into CO2 and H2 by the water-gas shift (WGS) reaction.

S Velu; K Suzuki; M.P Kapoor; F Ohashi; T Osaki

2001-01-01T23:59:59.000Z

248

Influence of Sulfur on the Carbon Deposition in Liquid Hydrocarbon Steam Reforming over CeO2-Al2O3 supported Ni and Rh Catalysts  

SciTech Connect (OSTI)

This study was performed to elucidate the influence of sulfur on the carbon deposition in steam reforming of liquid hydrocarbons over CeO{sub 2}-Al{sub 2}O{sub 3} supported Ni and Rh catalysts at 800 C. The characteristics of the carbon deposits on the used catalysts after the reactions without and with sulfur were investigated by temperature-programmed oxidation (TPO), transmission electron microscopy (TEM), scanning transmission X-ray microscopy (STXM), temperature-programmed hydrogenation (TPH), X-ray absorption near edge structure (XANES), and scanning electron microscopy (SEM). Though abundant carbon deposits can accumulate on the pure CeO{sub 2}-Al{sub 2}O{sub 3} support due to fuel thermal cracking, the addition of Ni or Rh metal greatly reduced the carbon deposition in the sulfur-free reaction. The presence of sulfur increased the carbon deposition on both catalysts, which has a much more significant impact for the Ni catalyst. Carbon XANES study on the used catalysts revealed that graphitic carbon was dominant in the presence of sulfur, while oxidized carbon species (quinone-like carbon, carboxyl and carbonate) prevailed without sulfur. Meanwhile, the formation of carboxyl and carbonate more dramatically dropped on the Ni catalyst than that on the Rh catalyst. Our results strongly suggest that (I) the presence of sulfur can suppress carbon gasification and promote the formation of graphitic carbon on reforming catalysts due mainly to its poisoning effect on metals, and (II) Rh catalyst possesses stronger capability to maintain carbon gasification activity than Ni catalyst in the presence of sulfur.

C Xie; Y Chen; Y Li; X Wang; C Song

2011-12-31T23:59:59.000Z

249

Steam reforming of methanol on binary CuZnO catalysts: Effects of preparation condition upon precursors, surface structure and catalytic activity  

Science Journals Connector (OSTI)

Precursors for CuZnO catalysts, with CuZn molar ratios in the range from 1000 to 0100, were prepared by two coprecipitation methods. These methods differ by the addition rate of a mixed Cu(NO3)2Zn(NO3)2 solution to a NaHCO3 solution. Characterisation by powder X-ray diffraction (PXRD), differential thermal analysis (DTA), thermal gravimetric analysis (TGA), FT-IR and UV/VIS spectroscopies indicated that the structure of precursors with CuZn ratios in the range of 3070 to 7030 depends greatly upon the addition rate of the mixed solution. Amorphous copper hydroxycarbonate and sodium zinc carbonate were formed prior to the various precursors such as malachite, aurichalcite and hydrozincite. The uZnO catalysts subsequently formed from the precursors showed the activity for steam reforming of methanol to vary with its composition. Based on the results of temperature programmed oxidation (TPO) with N2O and an infrared spectra of CO chemisorption, the TOF of the reaction is proposed to be associated with the surface of metallic Cu.

Guo-Cheng Shen; Shin-ichiro Fujita; Susumu Matsumoto; Nobutsun Takezawa

1997-01-01T23:59:59.000Z

250

Hydrogen Production From Crude Bio-oil and Biomass Char by Electrochemical Catalytic Reforming  

Science Journals Connector (OSTI)

We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H2O. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.

Xing-long Li; Shen Ning; Li-xia Yuan; Quan-xin Li

2011-01-01T23:59:59.000Z

251

Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass  

E-Print Network [OSTI]

H 2 Equation (1.8) Steam methane reforming CH 4 + H 2 O ? 3HH 2 +CO) by the Steam Methane Reforming (SMR). The steam2 Equation (1.10) Steam Methane Reforming: CH 4 + H 2 O ? 3H

FAN, XIN

2012-01-01T23:59:59.000Z

252

Steam Gasification of Coal at Low?Medium (600?800 °C) Temperature with Simultaneous CO2 Capture in a Bubbling Fluidized Bed at Atmospheric Pressure. 2. Results and Recommendations for Scaling Up  

Science Journals Connector (OSTI)

Steam Gasification of Coal at Low?Medium (600?800 °C) Temperature with Simultaneous CO2 Capture in a Bubbling Fluidized Bed at Atmospheric Pressure. ... Once the existence of segregation in the bed of the gasifier with the particles' sizes used for coal and for the CaO in the preliminary tests are confirmed and analyzed, the particle size of the coal was increased to 0.4?2.0 ... In general small differences in d. readily lead to segregation while quite differently sized particles are fairly easily mixed. ...

Jose Corella; Jose M. Toledo; Gregorio Molina

2008-02-15T23:59:59.000Z

253

Effect of Ni/Al atomic ratio of mesoporous Ni–Al2O3 aerogel catalysts on their catalytic activity for hydrogen production by steam reforming of liquefied natural gas (LNG)  

Science Journals Connector (OSTI)

Mesoporous Ni–Al2O3 (XNiAE) aerogel catalysts with different Ni/Al atomic ratio (X) were prepared by a single-step sol-gel method and a subsequent CO2 supercritical drying method. The effect of Ni/Al atomic ratio of mesoporous \\{XNiAE\\} aerogel catalysts on their physicochemical properties and catalytic activity for steam reforming of liquefied natural gas (LNG) was investigated. Textural properties and chemical properties of \\{XNiAE\\} catalysts were strongly influenced by Ni/Al atomic ratio. Nickel species were highly dispersed on the surface of \\{XNiAE\\} catalysts through the formation of surface nickel aluminate phase. In the steam reforming of LNG, both LNG conversion and hydrogen yield showed volcano-shaped curves with respect to Ni/Al atomic ratio. Average nickel diameter of \\{XNiAl\\} catalysts was well correlated with LNG conversion and hydrogen yield over the catalysts. Among the catalysts tested, 0.35NiAE (Ni/Al = 0.35) catalyst with the smallest average nickel diameter showed the best catalytic performance. The highest surface area, the largest pore volume, the largest average pore size, and the highest reducibility of 0.35NiAE catalyst were also partly responsible for its superior catalytic performance.

Jeong Gil Seo; Min Hye Youn; Yongju Bang; In Kyu Song

2010-01-01T23:59:59.000Z

254

Modeling of Pressurized Electrochemistry and Steam-Methane Reforming in Solid Oxide Fuel Cells and the Effects on Thermal and Electrical Stack Performance  

SciTech Connect (OSTI)

Summarizes work done to extend the electrochemical performance and methane reforming submodels to include the effects of pressurization and to demonstrate this new modeling capability by simulating large stacks operating on methane-rich fuel under pressurized and non-pressurized conditions. Pressurized operation boosts electrochemical performance, alters the kinetics of methane reforming, and effects the equilibrium composition of methane fuels. This work developed constitutive submodels that couple the electrochemistry, reforming, and pressurization to yield an increased capability of the modeling tool for prediction of SOFC stack performance.

Recknagle, Kurtis P.; Khaleel, Mohammad A.

2009-03-01T23:59:59.000Z

255

Process gas and steam-electric system parameters and advanced reformer concept guidelines for 850/sup 0/C IDC and 950/sup 0/C monolithic HTGR concepts  

SciTech Connect (OSTI)

The following is a description of the endeavors being pursued at ARSD as potential means of directly reducing the reformer plant and/or product costs. Three broad areas are currently under evaluation to achieve the cost reduction objectives and they include: (1) reduced reformer cost by simplifying the design, (2) improving thermochemical performance by enhanced heat transfer and catalyst activity, and (3) modification of process condition assumptions.

Not Available

1982-01-21T23:59:59.000Z

256

Steam gasification of coal at low-medium (600-800{sup o}C) temperature with simultaneous CO{sub 2} capture in fluidized bed at atmospheric pressure: The effect of inorganic species. 1. Literature review and comments  

SciTech Connect (OSTI)

This paper addresses the H{sub 2} production with simultaneous CO{sub 2} capture by steam gasification of coal in a fluidized bed, at low/medium temperatures (600-800{sup o}C) and atmospheric pressure. This work is mainly aimed at reviewing the effects of the inorganic species present in the matrix of the coal or added to the gasifier bed. The most promising species seems to be the calcined limestone (CaO), which intervenes in the overall gasification reaction network in at least five different types of reactions. The effectiveness of the CaO for CO{sub 2} capture in the coal gasifier is, therefore, affected/influenced by the other four simultaneous or competitive types of reactions in the gasifier. The effects of the temperature in the gasifier and of the (CaO/coal) ratio fed to the gasifier are finally reviewed and discussed in detail.

Corella, J.; Toledo, J.M.; Molina, G. [Universidad Complutense de Madrid, Madrid (Spain). Dept. for Chemical Engineering

2006-08-30T23:59:59.000Z

257

Understanding the effect of Sm2O3 and CeO2 promoters on the structure and activity of Rh/Al2O3 catalysts in methane steam reforming  

Science Journals Connector (OSTI)

The role of Sm2O3 and CeO2 promoters on the structural properties and catalytic behavior of Rh/xSm2O3–yCeO2–Al2O3 catalysts during methane steam reforming (MSR) was investigated. Promoted catalysts showed higher reaction rates per surface Rh atom and improved stability compared to Rh/Al2O3. In situ X-ray absorption revealed that the structure of Rh particles in Rh/Al2O3 changes drastically during MSR, while it was stable in the presence of Sm2O3–CeO2. Sintering of the active metal phase was the main cause of deactivation. STEM images showed stronger Rh agglomeration of the unpromoted catalyst with time on stream.

R.B. Duarte; M. Nachtegaal; J.M.C. Bueno; J.A. van Bokhoven

2012-01-01T23:59:59.000Z

258

" "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 8.3;" 3 Relative Standard Errors for Table 8.3;" " Unit: Percents." " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," " " "," " ," " "NAICS Code(a)","Subsector and Industry","Establishments(b)","Establishments with Any Cogeneration Technology in Use(c)","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know"

259

DUNCAN PRITCHARD Reforming Reformed Epistemology*  

E-Print Network [OSTI]

DUNCAN PRITCHARD Reforming Reformed Epistemology* 0. Introduction There has been a renaissance-called "reformed" defence of the rationality of reli- gious belief. The starting-point for this reformed conception concern here. Instead, I will be outlining one way in which the reformed epistemological stance can

Edinburgh, University of

260

Reforming Science: Structural Reforms  

Science Journals Connector (OSTI)

...Managing the business of science. Physiology 24 :2-3. 7. Bush V . 1945. Science the endless frontier. U.S. Government Printing Office, Washington, DC. 8. Casadevall...FC Fang. 2012. Reforming science: Methodological and culture...

Ferric C. Fang; Arturo Casadevall

2011-12-19T23:59:59.000Z

Note: This page contains sample records for the topic "bed steam reformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Nature of carbon in Ni/. cap alpha. -Al/sub 2/O/sub 3/ catalyst deactivated by the methane-steam reforming reaction  

SciTech Connect (OSTI)

The mechanism of carbon formation on Ni surfaces has been studied extensively because of its importance both for coke formation on the Ni alloy reactor walls in steam cracking (pyrolysis) of naphtha or paraffinic gases in the petrochemical industry, and for catalyst deactivation in processes using supported Ni catalysts at high temperatures. Characterization of the carbon on Ni catalysts is desirable. In particular, the question whether the carbon is found only on the surface of Ni, or whether it also diffuses or dissolves in Ni, needs to be answered. Information on this is sought here from temperature programmed combustion of the carbon on/in Ni and from x-ray photoelectron spectroscopy (XPS). The very slow combustion of the C in the catalyst and an XPS study of the depth composition profile of the catalyst indicate that the C has diffused or dissolved into the bulk of Ni and a part of it is in a carbidic form.

De DeRen, J. (Laboratorium voor Petrochemische Techniek, Gent, Belgium); Menon, P.G.; Froment, G.F.; Haemers, G.

1981-07-01T23:59:59.000Z

262

Effects of dispersion and partial reduction on the catalytic properties of Rh/Al sub 2 O sub 3 catalysts in the steam reforming of mono- and bicyclic aromatics  

SciTech Connect (OSTI)

The steam reforming of toluene, cumene, and methyl-1-naphthalene was studied on well-reduced Rh/Al{sub 2}O{sub 3} catalysts of different dispersions and on partially reduced catalysts in which the dispersion of the metallic phase was maintained at 25 {plus minus} 2%. The principal reactions were dehydrogenation DH (cumene {yields} {alpha}-methylstyrene), dealkylation DA (for instance, toluene {yields} benzene), naphthalene ring opening NRO (methylnaphthalene {yields} benzene + toluene), and degradations DN (total gasification of the molecules). Dispersion and partial reduction effects are shown to occur and can be summarized as follows: a partially reduced sample behaves catalytically as would dispersed and well-reduced catalysts. In this case, DN reactions are much inhibited, whereas DA and, to a lesser extent, NRO are relatively less affected by partial reduction. Moreover, DH is quite unaffected by these factors. The results may be expressed in terms of either electronic (DN favored on particles where the metal is more capable of donating electrons) or geometric effects (DN favored on a large ensemble of adjacent sites). These models are discussed on the basis of kinetic and XPS results, particularly those obtained on partially reduced Rh/Al{sub 2}O{sub 3} catalyst samples. Alloy effects (selectivities modified by the presence of RhAl alloy) could also occur on a catalyst calcined and reduced at high temperatures.

Delahay, G.; Duprez, D. (Universite de Poitiers (France))

1989-02-01T23:59:59.000Z

263

Development of thin palladium membranes supported on large porous 310L tubes for a steam reformer operated with gas-to-liquid fuel  

Science Journals Connector (OSTI)

Abstract Palladium membranes were prepared on large tubes (80 mm diameter and 150 mm length) of porous stainless steel supports (PSS) using a modified electroless plating technique. The morphology of the palladium layer was found to be depending on the container material of the coating apparatus. The use of PMMA resulted in compact palladium layers with smooth surfaces whereas PTFE led to inhomogeneous palladium coating with rough surface. Two different ceramic materials and coating methods were used to prepare an intermediate layer needed to prevent intermetallic diffusion between the palladium and the support at elevated temperatures. Wet powder spraying of TiO2 followed by sintering resulted in a smoother surface than atmospheric plasma spraying of YSZ, thus allowing for a thinner palladium coating. Pd/TiO2/PSS membranes showed about 4 times higher hydrogen permeances than Pd/YSZ/PSS membranes as a consequence of higher palladium thickness and lower porosity of the ceramic intermediate layer. The selectivity against nitrogen was comparable for both membranes. However, the YSZ intermediate layer showed better stability at elevated temperatures. Two membrane tubes were applied in the membrane reformer, which produced hydrogen successfully from a gas-to-liquid (GtL) fuel.

Grazyna Straczewski; Johannes Völler-Blumenroth; Hubert Beyer; Peter Pfeifer; Michael Steffen; Ingmar Felden; Angelika Heinzel; Matthias Wessling; Roland Dittmeyer

2014-01-01T23:59:59.000Z

264

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents [OSTI]

A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

1995-01-01T23:59:59.000Z

265

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents [OSTI]

A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

Viscovich, P.W.; Bannister, R.L.

1995-07-11T23:59:59.000Z

266

Applications of solar reforming technology  

SciTech Connect (OSTI)

Research in recent years has demonstrated the efficient use of solar thermal energy for driving endothermic chemical reforming reactions in which hydrocarbons are reacted to form synthesis gas (syngas). Closed-loop reforming/methanation systems can be used for storage and transport of process heat and for short-term storage for peaking power generation. Open-loop systems can be used for direct fuel production; for production of syngas feedstock for further processing to specialty chemicals and plastics and bulk ammonia, hydrogen, and liquid fuels; and directly for industrial processes such as iron ore reduction. In addition, reforming of organic chemical wastes and hazardous materials can be accomplished using the high-efficiency destruction capabilities of steam reforming. To help identify the most promising areas for future development of this technology, we discuss in this paper the economics and market potential of these applications.

Spiewak, I. [Weizmann Inst. of Science, Rehovoth (Israel); Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States); Langnickel, U. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany)

1993-11-01T23:59:59.000Z

267

Effect of steam injection location on syngas obtained from an air–steam gasifier  

Science Journals Connector (OSTI)

Abstract For a fluidized-bed gasifier, reaction conditions vary along the height of the reactor. Hence, the steam injection location may have a considerable effect on the syngas quality. The objective of this study was to investigate the effects of steam injection location and steam-to-biomass ratio (SBR) on the syngas quality generated from an air–steam gasification of switchgrass in a 2–5 kg/h autothermal fluidized-bed gasifier. Steam injection locations of 51, 152, and 254 mm above the distributor plate and \\{SBRs\\} of 0.1, 0.2, and 0.3 were selected. Results showed that the syngas H2 and CO yields were significantly influenced by the steam injection location (p gasifier efficiencies (cold gas efficiency of 67%, hot gas efficiency of 72%, and carbon conversion efficiency of 96%) were at the steam injection location of 254 mm and SBR of 0.2.

Ashokkumar M. Sharma; Ajay Kumar; Raymond L. Huhnke

2014-01-01T23:59:59.000Z

268

Reduction on Synthesis Gas Costs by Decrease of Steam/Carbon and Oxygen/Carbon Ratios in the Feedstock  

Science Journals Connector (OSTI)

The costs for syngas production at low steam/carbon and oxygen/carbon ratios have been analyzed for simplified process schemes of the main syngas production technologies (steam?CO2 reforming, autothermal reforming, and combined reforming) and different synthesis gas compositions. ... The process scheme is shown in Figure 2. Natural gas, saturated steam, and CO2 are preheated to 300?500 °C and mixed in the reactor burner at a pressure of 30 kg/cm2. ...

L. Basini; L. Piovesan

1998-01-05T23:59:59.000Z

269

Application of Exhaust Gas Fuel Reforming in Compression Ignition Engines Fueled by Diesel and Biodiesel Fuel Mixtures  

Science Journals Connector (OSTI)

In recent years, ester-based oxygenated fuels have been used in compression ignition engines in pure form or as an addition to diesel fuel. ... In hydrocarbon steam reforming (SR), high-temperature steam separates hydrogen from carbon atoms. ...

A. Tsolakis; A. Megaritis; M. L. Wyszynski

2003-09-19T23:59:59.000Z

270

Biogas fuel reforming for solid oxide fuel cells  

Science Journals Connector (OSTI)

In this paper strategies for biogas reforming and their ensuing effects on solid oxide fuel cell(SOFC) performance are explored. Synthesized biogas (65% CH4?+?35% CO2) fuel streams are reformed over a rhodium catalyst supported on a porous ?-alumina foam. Reforming approaches include steam reforming and catalytic partial oxidation (CPOX) utilizing either air or pure oxygen as the oxidant. A computational model is developed and utilized to guide the specification of reforming conditions that maximize both CH4 and CO2 conversions. Model predictions are validated with experimental measurements over a wide range of biogas-reforming conditions. Higher reforming temperatures are shown to activate the biogas-borne CO2 to enable significant methane dry-reforming chemistry. Dry reforming minimizes the oxidant-addition needs for effective biogas conversion potentially decreasing the thermal requirements for reactant heating and improving system efficiency. Such high-temperature reforming conditions are prevalent during CPOX with a pure-O2 oxidant. While CPOX-with-O2 reforming is highly exothermic the endothermicity of dry-reforming chemistry can be exploited to ensure that catalyst temperatures do not reach levels which cause catalyst sintering and degradation. SOFCelectrochemical performance under biogas reformate is shown to vary substantially with reforming approach. Cell operation under CPOX-with-O2 reformate is found to be comparable to that under humidified hydrogen.

Danielle M. Murphy; Amy E. Richards; Andrew Colclasure; Wade A. Rosensteel; Neal P. Sullivan

2012-01-01T23:59:59.000Z

271

Superheated steam power plant with steam to steam reheater. [LMFBR  

SciTech Connect (OSTI)

A desuperheater is disposed in a steam supply line supplying superheated steam to a shell and tube reheater.

Silvestri, G.J.

1981-06-23T23:59:59.000Z

272

Solar Steam Reforming of Methane Program Proposals  

Science Journals Connector (OSTI)

Concentration of solar radiation to provide a high temperature heat source is — principally — relatively simple. This can be seen in the fact that the costs of highly concentrated solar heat are not higher tha...

U. Leuchs

1987-01-01T23:59:59.000Z

273

Steam Reforming of Methane Utilizing Solar Heat  

Science Journals Connector (OSTI)

There is a worldwide interest to use solar energy to save or substitute fossil material, which is taken as fuel or chemical feedstock in present technologies. Among the possibilities, which are studied in deta...

W. D. Müller

1987-01-01T23:59:59.000Z

274

Failure Analysis of Bed Coil Tube in an Atmospheric Fluidized Bed Combustion Boiler  

Science Journals Connector (OSTI)

The fluidized bed combustion (FBC) technology is being used in thermal power plants for steam generation. FBC plants are more flexible than conventional plants ... fuels may be used for firing. The FBC technology...

M. Venkateswara Rao; S. U. Pathak…

2014-06-01T23:59:59.000Z

275

CRUCIBLE TESTING OF TANK 48H RADIOACTIVEWASTE SAMPLE USING FLUIDIZED BED STEAMREFORMING TECHNOLOGY FOR ORGANICDESTRUCTION  

SciTech Connect (OSTI)

The purpose of crucible scale testing with actual radioactive Tank 48H material was to duplicate the test results that had been previously performed on simulant Tank 48H material. The earlier crucible scale testing using simulants was successful in demonstrating that bench scale crucible tests produce results that are indicative of actual Fluidized Bed Steam Reforming (FBSR) pilot scale tests. Thus, comparison of the results using radioactive Tank 48H feed to those reported earlier with simulants would then provide proof that the radioactive tank waste behaves in a similar manner to the simulant. Demonstration of similar behavior for the actual radioactive Tank 48H slurry to the simulant is important as a preliminary or preparation step for the more complex bench-scale steam reformer unit that is planned for radioactive application in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF) later in 2008. The goals of this crucible-scale testing were to show 99% destruction of tetraphenylborate and to demonstrate that the final solid product produced is sodium carbonate. Testing protocol was repeated using the specifications of earlier simulant crucible scale testing, that is sealed high purity alumina crucibles containing a pre-carbonated and evaporated Tank 48H material. Sealing of the crucibles was accomplished by using an inorganic 'nepheline' sealant. The sealed crucibles were heat-treated at 650 C under constant argon flow to inert the system. Final product REDOX measurements were performed to establish the REDuction/OXidation (REDOX) state of known amounts of added iron species in the final product. These REDOX measurements confirm the processing conditions (pyrolysis occurring at low oxygen fugacity) of the sealed crucible environment which is the environment actually achieved in the fluidized bed steam reformer process. Solid product dissolution in water was used to measure soluble cations and anions, and to investigate insoluble fractions of the product solids. Radioanalytical measurements were performed on the Tank 48H feed material and on the dissolved products in order to estimate retention of Cs-137 in the process. All aspects of prior crucible scale testing with simulant Tank 48H slurry were demonstrated to be repeatable with the actual radioactive feed. Tetraphenylborate destruction was shown to be >99% and the final solid product is sodium carbonate crystalline material. Less than 10 wt% of the final solid products are insoluble components comprised of Fe/Ni/Cr/Mn containing sludge components and Ti from monosodium titanate present in Tank 48H. REDOX measurements on the radioactive solid products indicate a reducing atmosphere with extremely low oxygen fugacity--evidence that the sealed crucible tests performed in the presence of a reductant (sugar) under constant argon purge were successful in duplicating the pyrolysis reactions occurring with the Tank 48H feed. Soluble anion measurements confirm that using sugar as reductant at 1X stoichiometry was successful in destroying nitrate/nitrite in the Tank 48H feed. Radioanalytical measurements indicate that {approx}75% of the starting Cs-137 is retained in the solid product. No attempts were made to analyze/measure other potential Cs-137 in the process, i.e., as possible volatile components on the inner surface of the alumina crucible/lid or as offgas escaping the sealed crucible. The collective results from these crucible scale tests on radioactive material are in good agreement with simulant testing. Crucible scale processing has been shown to duplicate the complex reactions of an actual fluidized bed steam reformer. Thus this current testing should provide a high degree of confidence that upcoming bench-scale steam reforming with radioactive Tank 48H slurry will be successful in tetraphenylborate destruction and production of sodium carbonate product.

Crawford, C

2008-07-31T23:59:59.000Z

276

Heat exchanger for fuel cell power plant reformer  

DOE Patents [OSTI]

A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

Misage, Robert (Manchester, CT); Scheffler, Glenn W. (Tolland, CT); Setzer, Herbert J. (Ellington, CT); Margiott, Paul R. (Manchester, CT); Parenti, Jr., Edmund K. (Manchester, CT)

1988-01-01T23:59:59.000Z

277

Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications  

Science Journals Connector (OSTI)

Abstract The fuel processor in which hydrogen is produced from fuels is an important unit in a fuel cell system. The aim of this study is to apply a thermodynamic concept to identify a suitable reforming process for an ethanol-fueled solid oxide fuel cell (SOFC). Three different reforming technologies, i.e., steam reforming, partial oxidation and autothermal reforming, are considered. The first and second laws of thermodynamics are employed to determine an energy demand and to describe how efficiently the energy is supplied to the reforming process. Effect of key operating parameters on the distribution of reforming products, such as H2, CO, CO2 and CH4, and the possibility of carbon formation in different ethanol reformings are examined as a function of steam-to-ethanol ratio, oxygen-to-ethanol ratio and temperatures at atmospheric pressure. Energy and exergy analysis are performed to identify the best ethanol reforming process for SOFC applications.

Phanicha Tippawan; Amornchai Arpornwichanop

2014-01-01T23:59:59.000Z

278

Fossil Fuels Without CO2 Emissions  

Science Journals Connector (OSTI)

...oxygen, or by steam reforming of the fuel to yield...coal beds contain methane adsorbed on...oxygen, or by steam reforming of the...coal beds contain methane adsorbed on...to coal-bed methane production, these...

E. A. Parson; D. W. Keith

1998-11-06T23:59:59.000Z

279

FUEL CELLS – SOLID OXIDE FUEL CELLS | Internal and External Reformation  

Science Journals Connector (OSTI)

Three basic concepts of solid oxide fuel cell (SOFC) systems operating on hydrocarbon fuels, with external, internal, and partial prereforming, respectively, are presented and discussed. Internal reforming of methane is advantageously used for additional cooling of the SOFC stack, thus increasing system efficiency. Basic thermodynamics, catalysis, and kinetics of the methane steam reforming process are presented. Examples of SOFC stacks operating on internal reforming of methane and simulated partial prereforming of mine gas and natural gas are discussed. The latter is used to illustrate the effect of internal methane reforming on heat management in SOFC stacks.

L.G.J. de Haart; R. Peters

2009-01-01T23:59:59.000Z

280

Steam Turbine Cogeneration  

E-Print Network [OSTI]

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed steam reformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Achieve Steam System Excellence- Steam Overview  

Broader source: Energy.gov [DOE]

This fact sheet describes a steam systems approach to help companies operate and maintain their industrial steam plants and thermal manufacturing processes more efficiently.

282

Simulation of biomass gasification in a dual fluidized bed gasifier  

Science Journals Connector (OSTI)

Biomass gasification with steam in a dual-fluidized bed gasifier (DFBG) was simulated with ASPEN Plus. ... that the content of char transferred from the gasifier to the combustor decreases from 22.5...2 concentra...

Jie He; Kristina Göransson; Ulf Söderlind…

2012-03-01T23:59:59.000Z

283

Reforming of Liquid Hydrocarbons in a Novel Hydrogen-Selective Membrane-Based Fuel Processor  

SciTech Connect (OSTI)

In this work, asymmetric dense Pd/porous stainless steel composite membranes were fabricated by depositing palladium on the outer surface of the tubular support. The electroless plating method combined with an osmotic pressure field was used to deposit the palladium film. Surface morphology and microstructure of the composite membranes were characterized by SEM and EDX. The SEM and EDX analyses revealed strong adhesion of the plated pure palladium film on the substrate and dense coalescence of the Pd film. Membranes were further characterized by conducting permeability experiments with pure hydrogen, nitrogen, and helium gases at temperatures from 325 to 450 C and transmembrane pressure differences from 5 to 45 psi. The permeation results showed that the fabricated membranes have both high hydrogen permeability and selectivity. For example, the hydrogen permeability for a composite membrane with a 20 {micro}m Pd film was 3.02 x 10{sup -5} moles/m{sup 2}.s.Pa{sup 0.765} at 450 C. Hydrogen/nitrogen selectivity for this composite membrane was 1000 at 450 C with a transmembrane pressure difference of 14.7 psi. Steam reforming of methane is one of the most important chemical processes in hydrogen and syngas production. To investigate the usefulness of palladium-based composite membranes in membrane-reactor configuration for simultaneous production and separation of hydrogen, steam reforming of methane by equilibrium shift was studied. The steam reforming of methane using a packed-bed inert membrane tubular reactor (PBIMTR) was simulated. A two-dimensional pseudo-homogeneous reactor model with parallel flow configuration was developed for steam reforming of methane. The shell volume was taken as the feed and sweep gas was fed to the inside of the membrane tube. Radial diffusion was taken into account for concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system and then solved by finite difference method with appropriate boundary and initial conditions. An iterative scheme was used to obtain a converged solution. Membrane reactor performance was compared to that in a traditional non-membrane packed-bed reactor (PBR). Their performances were also compared with thermodynamic equilibrium values achievable in a conventional non-membrane reactor. Numerical results of the models show that the methane conversions in the PBIMTR are always higher than that in the PBR, as well as thermodynamic equilibrium conversions. For instance, at a reaction pressure of 6 atm, a temperature of 650 C, a space velocity of 900/16.0 SCCM/gm{sub cat}, a steam to methane molar feed ratio of 3.0, a sweep ratio of 0.15, the conversion in the membrane reactor is about 86.5%, while the conversion in the non-membrane reactor is about 50.8%. The corresponding equilibrium conversion is about 56.4%. The effects on the degree of conversion and hydrogen yield were analyzed for different parameters such as temperature, reactor pressure, feed and sweep flow rate, feed molar ratio, and space time. From the analysis of the model results, it is obvious that the membrane reactor operation can be optimized for conversion or yield through the choice of proper operating and design parameters. Comparisons with available literature data for both membrane and non-membrane reactors showed a good agreement.

Shamsuddin Ilias

2006-03-10T23:59:59.000Z

284

HP Steam Trap Monitoring  

E-Print Network [OSTI]

Consumption Peak Demand Mgt Peak Demand Mgt Similar Weather Day Analysis Metering and Verafication Steam Meter Monitoring ? Peak Demand Management ? Steam Consumption Management ? Steam Bill Verification ? Measurement and Verification ... Consumption Peak Demand Mgt Peak Demand Mgt Similar Weather Day Analysis Metering and Verafication Steam Meter Monitoring ? Peak Demand Management ? Steam Consumption Management ? Steam Bill Verification ? Measurement and Verification ...

Pascone, S.

2011-01-01T23:59:59.000Z

285

Steam Gasification of Coal at Low?Medium (600?800 °C) Temperature with Simultaneous CO2 Capture in Fluidized Bed at Atmospheric Pressure:? The Effect of Inorganic Species. 1. Literature Review and Comments  

Science Journals Connector (OSTI)

2,3 Apart from optimizing the design (topology) of the gasifier, its operating conditions, and the composition, moisture, and particle size of the feedstock, there is another operation variable that can be used to achieve the above said objectives:? the presence of some inorganic species (ISs) in the gasifier. ... bed?composition?(AAEM?solids?and?particle?sizes) ... When some calcined dolomite (CaO·MgO) is used in the bed of a biomass gasifier of fluidized bed type the raw gas produced is cleaner than when only silica sand is used in it as fluidizing medium. ...

Jose Corella; Jose M. Toledo; Gregorio Molina

2006-07-29T23:59:59.000Z

286

Improve reformer operation with trace sulfur removal  

SciTech Connect (OSTI)

Modern bimetallic reforming catalysts typically have feed specifications for sulfur of 0.5 to 1 wppm in the reformer naphtha carge. Sulfur in the raw naphtha is reduced to this level by naphtha hydrotreating. While most naphtha hydrotreating operations can usually obtain these levels without substantial problems. It is difficult to obtain levels much below 0.5 to 1 wppm with this process. Revamp of a constrained existing hydrotreater to reduce product sulfur slightly can be extremely costly typically entailing replacement or addition of a new reactor. At Engelhard the authors demonstrated that if the last traces of sulfur remaining from hydrotreating can be removed, the resulting ultra-low sulfur feed greatly improves the reformer operation and provides substantial economic benefit to the refiner. Removal of the remaining trace sulfur is accomplished in a simple manner with a special adsorbent bed, without adding complexity to the reforming operation.

McClung, R.G.; Novak, W.J.

1987-01-01T23:59:59.000Z

287

Fluid Bed Combustion Applied to Industrial Waste  

E-Print Network [OSTI]

of its relatively recent application to coal fired steam production, fluid beds have been uti lized in industry for over 60 years. Beginning in Germany in the twenties for coal gasification, the technology was applied to catalytic cracking of heavy... system cost), use of minimum excess air required, and maintaining the min"imum reactor temperature neces sary to sustain combustion. For superautogenous fuels, where incineration. only is desired, minimum capital cost is achieved by using direct bed...

Mullen, J. F.; Sneyd, R. J.

288

Steam System Survey Guide  

Broader source: Energy.gov [DOE]

This guide provides technical information for steam system operational personnel and plant energy managers on some of the major opportunities available to improve the energy efficiency and productivity of industrial steam systems. The guide covers five main areas of investigation: (1) profiling a steam system, (2) identifying steam properties for the steam system, (3) improving boiler operations, (4) improving resource utilization in the steam system, and (5) investigating energy losses in the steam distribution system.

289

Hydrogen & Fuel Cells - Hydrogen - Distributed Ethanol Reforming  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen from Bio-Derived Liquids Hydrogen from Bio-Derived Liquids Bio-derived liquid fuels can be produced from renewable agricultural products, such as wood chips. Background Bio-derived renewable fuels are attractive for their high energy density and ease of transport. One scenario for a sustainable hydrogen economy considers that these bio-derived liquid fuels will be produced at plants close to the biomass resource, and then transported to distributed hydrogen production centers (e.g., hydrogen refueling stations), where the fuels will be reformed via the steam reforming process, similar to the current centralized production of hydrogen by the steam reforming of natural gas. Hydrogen produced by reforming these fuels must first be purified and compressed to appropriate storage and dispensing pressures. Compressing

290

Steam Path Audits on Industrial Steam Turbines  

E-Print Network [OSTI]

steam Path Audits on Industrial steam Turbines DOUGLAS R. MITCHELL. ENGINEER. ENCOTECH, INC., SCHENECTADY, NEW YORK ABSTRACT The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits... not extend the turbine outage. To assure that all of the turbine audit data are available, the audit engineer must be at the turbine site the day the steam path is first exposed. A report of the opening audit findings is generated to describe the as...

Mitchell, D. R.

291

Steam injection method and apparatus for recovery of oil  

SciTech Connect (OSTI)

A method and apparatus for recovering oil from an oil bearing formation utilizing steam injected into the formation. A working fluid is heated at the surface to produce a reversible, chemical reaction, particularly a reforming reaction in a reforming/methanation reaction cycle. The products of the reforming reaction are transported at near ambient temperatures to a downhole heat exchanger through which water is circulated. There a catalyst triggers the methanation reaction, liberating heat energy to convert the water to steam. The products of the methanation reaction are recirculated to the surface to repeat the cycle. In one embodiment the products of the methanation reaction are injected into the formation along with the steam. Various catalysts, and various systems for heating the working fluid are disclosed.

Meeks, T.; Rhoades, C.A.

1983-02-08T23:59:59.000Z

292

Verification of the Accountability Method as a Means to Classify Radioactive Wastes Processed Using THOR Fluidized Bed Steam Reforming at the Studsvik Processing Facility in Erwin, Tennessee, USA - 13087  

SciTech Connect (OSTI)

Studsviks' Processing Facility Erwin (SPFE) has been treating Low-Level Radioactive Waste using its patented THOR process for over 13 years. Studsvik has been mixing and processing wastes of the same waste classification but different chemical and isotopic characteristics for the full extent of this period as a general matter of operations. Studsvik utilizes the accountability method to track the movement of radionuclides from acceptance of waste, through processing, and finally in the classification of waste for disposal. Recently the NRC has proposed to revise the 1995 Branch Technical Position on Concentration Averaging and Encapsulation (1995 BTP on CA) with additional clarification (draft BTP on CA). The draft BTP on CA has paved the way for large scale blending of higher activity and lower activity waste to produce a single waste for the purpose of classification. With the onset of blending in the waste treatment industry, there is concern from the public and state regulators as to the robustness of the accountability method and the ability of processors to prevent the inclusion of hot spots in waste. To address these concerns and verify the accountability method as applied by the SPFE, as well as the SPFE's ability to control waste package classification, testing of actual waste packages was performed. Testing consisted of a comprehensive dose rate survey of a container of processed waste. Separately, the waste package was modeled chemically and radiologically. Comparing the observed and theoretical data demonstrated that actual dose rates were lower than, but consistent with, modeled dose rates. Moreover, the distribution of radioactivity confirms that the SPFE can produce a radiologically homogeneous waste form. The results of the study demonstrate: 1) the accountability method as applied by the SPFE is valid and produces expected results; 2) the SPFE can produce a radiologically homogeneous waste; and 3) the SPFE can effectively control the waste package classification. (authors)

Olander, Jonathan [Studsvik Processing Facility Erwin, 151 T.C. Runnion Rd., Erwin, TN 37650 (United States)] [Studsvik Processing Facility Erwin, 151 T.C. Runnion Rd., Erwin, TN 37650 (United States); Myers, Corey [Studsvik, Inc., 5605 Glenridge Drive, Suite 705, Atlanta, GA 30342 (United States)] [Studsvik, Inc., 5605 Glenridge Drive, Suite 705, Atlanta, GA 30342 (United States)

2013-07-01T23:59:59.000Z

293

Thomas Reddinger Director, Steam  

E-Print Network [OSTI]

Thomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Supervisor (Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator Richard Redfield Steam Plant Operator SU Steam Station/Chilled Water Plant Bohdan Sawa Steam Plant Operator Robert

McConnell, Terry

294

Mill Integration-Pulping, Stream Reforming and Direct Causticization for Black Liquor Recovery  

SciTech Connect (OSTI)

MTCI/StoneChem developed a steam reforming, fluidized bed gasification technology for biomass. DOE supported the demonstration of this technology for gasification of spent wood pulping liquor (or 'black liquor') at Georgia-Pacific's Big Island, Virginia mill. The present pre-commercial R&D project addressed the opportunities as well as identified negative aspects when the MTCI/StoneChem gasification technology is integrated in a pulp mill production facility. The opportunities arise because black liquor gasification produces sulfur (as H{sub 2}S) and sodium (as Na{sub 2}CO{sub 3}) in separate streams which may be used beneficially for improved pulp yield and properties. The negative aspect of kraft black liquor gasification is that the amount of Na{sub 2}CO{sub 3} which must be converted to NaOH (the so called causticizing requirement) is increased. This arises because sulfur is released as Na{sub 2}S during conventional kraft black liquor recovery, while during gasification the sodium associated Na{sub 2}S is partly or fully converted to Na{sub 2}CO{sub 3}. The causticizing requirement can be eliminated by including a TiO{sub 2} based cyclic process called direct causticization. In this process black liquor is gasified in the presence of (low sodium content) titanates which convert Na{sub 2}CO{sub 3} to (high sodium content) titanates. NaOH is formed when contacting the latter titanates with water, thereby eliminating the causticizing requirement entirely. The leached and low sodium titanates are returned to the gasification process. The project team comprised the University of Maine (UM), North Carolina State University (NCSU) and MTCI/ThermoChem. NCSU and MTCI are subcontractors to UM. The principal organization for the contract is UM. NCSU investigated the techno-economics of using advanced pulping techniques which fully utilize the unique cooking liquors produced by steam reforming of black liquor (Task 1). UM studied the kinetics and agglomeration problems of the conversion of Na{sub 2}CO{sub 3} to (high sodium) titanates during gasification of black liquor in the presence of (low sodium) titanates or TiO{sub 2} (Task 2). MTCI/ThermoChem tested the performance and operability of the combined technology of steam reforming and direct causticization in their Process Development Unit (PDU) (Task 3). The specific objectives were: (1) to investigate how split sulfidity and polysulfide (+ AQ) pulping can be used to increase pulp fiber yield and properties compared to conventional kraft pulping; (2) to determine the economics of black liquor gasification combined with these pulping technologies in comparison with conventional kraft pulping and black liquor recovery; (3) to determine the effect of operating conditions on the kinetics of the titanate-based direct causticization reaction during black liquor gasification at relatively low temperatures ({le} 750 C); (4) to determine the mechanism of particle agglomeration during gasification of black liquor in the presence of titanates at relatively low temperatures ({le} 750 C); and (5) to verify performance and operability of the combined technology of steam reforming and direct causticization of black liquor in a pilot scale fluidized bed test facility.

Adriaan van Heiningen

2007-06-30T23:59:59.000Z

295

Combining steam-methane reforming, water-gas shift, and CO{sub 2} removal in a single-step process for hydrogen production. Final report for period March 15, 1997 - December 14, 2000  

SciTech Connect (OSTI)

The objective of the research project was to determine the feasibility of a simpler, more energy-efficient process for the production of 95+% H{sub 2} from natural gas, and to collect sufficient experimental data on the effect of reaction parameters to guide additional larger-scale process development. The overall objectives were accomplished. 95+% H{sub 2} was produced in a single reaction step by adding a calcium-based CO{sub 2} acceptor to standard Ni-based reforming catalyst. The spent acceptor was successfully regenerated and used in a number of reaction steps with only moderate loss in activity as the number of cycles increased. Sufficient experimental data were collected to guide further larger-scale experimental work designed to investigate the economic feasibility of the process.

Alejandro Lopez Ortiz; Bhaskar Balasubramanian; Douglas P. Harrison

2001-02-01T23:59:59.000Z

296

Development of a Sorption Enhanced Steam Hydrogasification Process for In-situ Carbon Dioxide (CO2) Removal and Enhanced Synthetic Fuel Production  

E-Print Network [OSTI]

J. Different types of gasifiers and their integration withCO 2 in a pressurized-gasifier-based process. Energ Fuel.fluidized bed biomass steam gasifier-bed material and fuel

Liu, Zhongzhe

2013-01-01T23:59:59.000Z

297

Experimental and numerical analysis of transport phenomena in an internal indirect fuel reforming type Solid Oxide Fuel Cells using Ni/SDC as a catalyst  

Science Journals Connector (OSTI)

This paper presents experimental and numerical studies on the fuel reforming process on an Ni/SDC catalyst. To optimize the reforming reactors, detailed data about the entire reforming process is required. In the present paper kinetics of methane/steam reforming on the Ni/SDC catalyst was experimentally investigated. Measurements including different thermal boundary conditions, the fuel flow rate and the steam-to-methane ratios were performed. The reforming rate equation derived from experimental data was implemented in into numerical model which was numerically solved in order to discuss this process in details.

G Brus; S Kimijima; J S Szmyd

2012-01-01T23:59:59.000Z

298

SteamMaster: Steam System Analysis Software  

E-Print Network [OSTI]

STEAMMASTER: STEAM SYSTEM ANALYSIS SOFTW ARE Greg Wheeler Associate Professor Oregon State University Corvallis, OR 9733 I ABSTRACT As director of Oregon's ]ndustrial Assessment Center, [ have encountered many industrial steam systems during... plant visits. We analyze steam systems and make recommendations to improve system efficiency. [n nearly 400 industrial assessments, we have recommended 210 steam system improvements, excluding heat recovery, that would save $1.5 million/year with a...

Wheeler, G.

299

Syngas production in a novel methane dry reformer by utilizing of tri-reforming process for energy supplying: Modeling and simulation  

Science Journals Connector (OSTI)

Abstract In this study, tri-reforming process has been utilized as an energy source for driving highly endothermic process of methane dry reforming process in a multi-tubular recuperative thermally coupled reactor (TCTDR). 184 two-concentric-tubes have been proposed for this configuration. Outer tube sides of the two-concentric-tubes have been considered for the tri-reforming reactions while dry reforming process takes place in inner tube sides. Simulation results of co-current mode have been compared with corresponding predictions of thermally coupled tri- and steam reformer (TCTSR); in which the tri-reforming process has been coupled with steam reforming of methane in same conditions. A mathematical heterogeneous model has been applied to simulate both dry and tri-reforming sides of the TCTDR. Results showed that methane conversion at the output of dry and tri-reforming sides reached to 63% and 93%, respectively. Also, molar flow rate of syngas at the output of DR side of TCTDR reached to 7464 kmol h?1 in comparison to 3912 kmol h?1 for SR side of TCTSR.

Mehdi Farniaei; Mohsen Abbasi; Hamid Rahnama; Mohammad Reza Rahimpour; Alireza Shariati

2014-01-01T23:59:59.000Z

300

Circulating fluidised-bed combustion  

SciTech Connect (OSTI)

Steam generators with circulating fluidized-bed combustion systems (CFBC) are characterized by a high degree of environmental comparability and a wide acceptance for FBC boiler plants involving a wide fuel spectrum which ranges from dried brown coal to high-ash coal and low-volatile bituminous coal as well as wood waste and bark. These plants incorporate a variety of CFBC systems. The choice in favor of different system options was not motivated by the inherent fuel properties but has evolved from the progressive advancement in power station FBC technology. The article elucidates several FBC system variants.

Rettemeier, W.; von der Kammer, G. (Steinmueller (L.u.C.) GmbH, Gummersbach (Germany, F.R.))

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed steam reformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advanced atmospheric fluidized-bed combustion design - spouted bed  

SciTech Connect (OSTI)

This report describes the Spouted-Fluidized Bed Boiler that is an advanced atmospheric fluidized bed combustor (FBC). The objective of this system design study is to develop an advanced AFBC with improved performance and reduced capital and operating costs compared to a conventional AFBC and an oil-fired system. The Spouted-Fluidized Bed (SFB) system is a special type of FBC with a distinctive jet of air in the bed to establish an identifiable solids circulation pattern. This feature is expected to provide: reduced NO/sub x/ emissions because of the fuel rich spout zone; high calcium utilization, calcium-to-sulfur ratio of 1.5, because of the spout attrition and mixing; high fuel utilization because of the solids circulation and spout attrition; improved thermal efficiency because of reduced solids heat loss; and improved fuel flexibility because of the spout phenomena. The SFB was compared to a conventional AFBC and an oil-fired package boiler for 15,000 pound per hour system. The evaluation showed that the operating cost advantages of the SFB resulted from savings in fuel, limestone, and waste disposal. The relative levelized cost for steam from the three systems in constant 1985 dollars is: SFB - $10 per thousand pounds; AFBC - $11 per thousand pounds; oil-fired - $14 per thousand pounds. 18 refs., 5 figs., 11 tabs.

Shirley, F.W.; Litt, R.D.

1985-11-27T23:59:59.000Z

302

Steam Systems | Department of Energy  

Office of Environmental Management (EM)

Reduction: Opportunities and Issues How to Calculate the True Cost of Steam Industrial Heat Pumps for Steam and Fuel Savings Industrial Steam System Heat-Transfer Solutions...

303

Steam Oxidation of Advanced Steam Turbine Alloys  

SciTech Connect (OSTI)

Power generation from coal using ultra supercritical steam results in improved fuel efficiency and decreased greenhouse gas emissions. Results of ongoing research into the oxidation of candidate nickel-base alloys for ultra supercritical steam turbines are presented. Exposure conditions range from moist air at atmospheric pressure (650°C to 800°C) to steam at 34.5 MPa (650°C to 760°C). Parabolic scale growth coupled with internal oxidation and reactive evaporation of chromia are the primary corrosion mechanisms.

Holcomb, Gordon R.

2008-01-01T23:59:59.000Z

304

Steam atmosphere drying exhaust steam recompression system  

DOE Patents [OSTI]

This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

1994-03-08T23:59:59.000Z

305

Quantitative description of steam channels after steam flooding  

Science Journals Connector (OSTI)

Steam channeling is one of the main barriers for EOR after steam flooding. In order to enhance the oil recovery in steam flooded reservoirs, steam channel volumes should be precisely known. In ... methods has bee...

Qiang Zheng; HuiQing Liu; Fang Li; Qing Wang…

2013-05-01T23:59:59.000Z

306

Effects of Current upon Electrochemical Catalytic Reforming of Anisole  

Science Journals Connector (OSTI)

The reforming of anisole (as model compound of bio-oil) was performed over the NiCuZn-Al2O3 catalyst, using a recently-developed electrochemical catalytic reforming (ECR). The influence of the current on the anisole reforming in the ECR process has been investigated. It was observed that anisole reforming was significantly enhanced by the current approached over the catalyst in the electrochemical catalytic process, which was due to the non-uniform temperature distribution in the catalytic bed and the role of the thermal electrons originating from the electrified wire. The maximum hydrogen yield of 88.7% with a carbon conversion of 98.3% was obtained through the ECR reforming of anisole at 700°C and 4 A. X-ray diffraction was employed to characterize catalyst features and their alterations in the anisole reforming. The apparent activation energy for the anisole reforming is calculated as 99.54 kJ/mol, which is higher than ethanol, acetic acid, and light fraction of bio-oil. It should owe to different physical and chemical properties and reforming mechanism for different hydrocarbons.

Jia-xing Xiong; Tao Kan; Xing-long Li; Tong-qi Ye; Quan-xin Li

2010-01-01T23:59:59.000Z

307

Waste Steam Recovery  

E-Print Network [OSTI]

An examination has been made of the recovery of waste steam by three techniques: direct heat exchange to process, mechanical compression, and thermocompression. Near atmospheric steam sources were considered, but the techniques developed are equally...

Kleinfeld, J. M.

1979-01-01T23:59:59.000Z

308

Downhole steam quality measurement  

DOE Patents [OSTI]

The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

1985-06-19T23:59:59.000Z

309

Steam Digest 2001  

SciTech Connect (OSTI)

Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

Not Available

2002-01-01T23:59:59.000Z

310

Fluid-bed combustion of solid wastes  

SciTech Connect (OSTI)

For over ten years combustion Power Company has been conducting experimental programs and developing fluid bed systems for agencies of the federal government and for private industry and institutions. Many of these activities have involved systems for the combustion of solid waste materials. Discussed here will be three categories of programs, development of Municipal Solid Waste (MSW) fired fluid beds, development of wood waste fired fluid beds, and industrial installations. Research and development work on wood wastes has led to the design and construction of two large industrial fluid bed combustors. In one of these, a fluid bed is used for the generation of steam with a fuel that was previously suited only for landfill. Rocks and inerts are continuously removed from this combustor using a patented system. The second FBC is designed to use a variety of fuels as the source of energy to dry hog fuel for use in a high performance power boiler. Here the FBC burns green hog fuel, log yard debris, fly ash (char) from the boiler, and dried wood fines to produce a hot gas system for the wood dryer. A significant advantage of the fluidized bed reactor over conventional incinerators is its ability to reduce noxious gas emission and, finally, the fluidized bed is unique in its ability to efficiently consume low quality fuels. The relatively high inerts and moisture content of solid wastes pose no serious problem and require no associated additional devices for their removal.

Vander Molen, R.H.

1980-01-01T23:59:59.000Z

311

Sequential steam; An engineered cyclic steaming method  

SciTech Connect (OSTI)

Cyclic steam injection has been the most widely used EOR method in areas of the Potter sand in the Midway-Sunset field, Kern County, CA. This paper discusses the field pilot and the statistical and theoretical studies leading to the design of a sequential steaming process,plus the implementation of this process on three leases.

Jones, J. (Santa Fe Energy Resources Inc., Bakersfield, CA (US)); Cawthon, J. (Groundwater Resources Inc. (US))

1990-07-01T23:59:59.000Z

312

Autothermal and partial oxidation reformer-based fuel processor, method for improving catalyst function in autothermal and partial oxidation reformer-based processors  

DOE Patents [OSTI]

The invention provides a fuel processor comprising a linear flow structure having an upstream portion and a downstream portion; a first catalyst supported at the upstream portion; and a second catalyst supported at the downstream portion, wherein the first catalyst is in fluid communication with the second catalyst. Also provided is a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.

Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon H. D.; Ahluwalia, Rajesh K.

2013-01-08T23:59:59.000Z

313

Pillars of reform  

Science Journals Connector (OSTI)

... misgivings seem to have reached crisis point. China today is full of new initiatives, reforms and an anti-corruption drive that together aim to set the nation on the right ... to be monumental — if China follows it through. The nation is also right to reform how the Chinese Academy of Sciences supports promising research projects. And perhaps most boldly ...

2014-10-29T23:59:59.000Z

314

Natural Gas Reforming  

Broader source: Energy.gov [DOE]

Natural gas reforming is an advanced and mature production process that builds upon the existing natural gas pipeline delivery infrastructure. Today, 95% of the hydrogen produced in the United States is made by natural gas reforming in large central plants. This technology is an important pathway for near-term hydrogen production.

315

NIH Peer Review Reform  

Science Journals Connector (OSTI)

...EDITOR LETTER TO THE EDITOR NIH Peer Review Reform Marc C. Torjman Phone...Camden, NJ 08103 The editorial NIH Peer Review Reform-Change We Need, or Lipstick...better exposed the problems of grant peer review and, more importantly, the irreparable...

Marc C. Torjman

2009-07-01T23:59:59.000Z

316

Geothermal steam quality testing  

SciTech Connect (OSTI)

Geothermal steam quality and purity have a significant effect on the operational efficiency and life of geothermal steam turbines and accessory equipment. Poor steam processing can result in scaled nozzles/blades, erosion, corrosion, reduced utilization efficiency, and early fatigue failures accelerated by stress corrosion cracking (SCC). Upsets formed by undetected slugs of liquid entering the turbine can cause catastrophic failure. The accurate monitoring and determination of geothermal steam quality/purity is intrinsically complex which often results in substantial errors. This paper will review steam quality and purity relationships, address some of the errors, complexities, calibration and focus on: thermodynamic techniques for evaluating and monitoring steam quality by use of the modified throttling calorimeters.

Jung, D.B. [Two-Phase Engineering & Research, Inc., Santa Rosa, CA (United States)

1995-12-31T23:59:59.000Z

317

Improving steam turbine efficiency  

SciTech Connect (OSTI)

This paper describes the condition of a significant number of fossil steam turbines operating in the United States and the maintenance practices used to improve their performance. Through the use of steam path audits conducted by the authors` company and by several utilities, a large data base of information on turbine heat rate, casing efficiency, and maintenance practices is available to help the power generation industry understand how different maintenance practices and steam path damage impact turbine performance. The data base reveals that turbine cycle heat rate is typically 5.23% poorer than design just prior to major outages. The degraded condition of steam turbines presents an opportunity for utilities to improve heat rate and reduce emissions without increasing fuel costs. The paper describes what losses typically contribute to the 5.23% heat rate degradation and how utilities can recover steam turbine performance through maintenance actions aimed at improving steam path efficiency.

Cioffi, D.H.; Mitchell, D.R.; Whitecar, S.C. [Encotech, Inc., Schenectady, NY (United States)

1995-06-01T23:59:59.000Z

318

Steam generator support system  

DOE Patents [OSTI]

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

Moldenhauer, James E. (Simi Valley, CA)

1987-01-01T23:59:59.000Z

319

Steam generator support system  

DOE Patents [OSTI]

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

Moldenhauer, J.E.

1987-08-25T23:59:59.000Z

320

The Invisibility of Steam  

Science Journals Connector (OSTI)

Almost everyone “knows” that steam is visible. After all one can see the cloud of white issuing from the spout of a boiling tea kettle. In reality steam is the gaseous phase of water and is invisible. What you see is light scattered from the tiny droplets of water that are the result of the condensation of the steam as its temperature falls below 100 °C (under standard conditions).

Thomas B. Greenslade Jr.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed steam reformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Multi-fuel reformers for fuel cells used in transportation. Multi-fuel reformers: Phase 1 -- Final report  

SciTech Connect (OSTI)

DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

Not Available

1994-05-01T23:59:59.000Z

322

Advanced turbine systems program conceptual design and product development Task 8.3 - autothermal fuel reformer (ATR). Topical report  

SciTech Connect (OSTI)

Autothermal fuel reforming (ATR) consists of reacting a hydrocarbon fuel such as natural gas or diesel with steam to produce a hydrogen-rich {open_quotes}reformed{close_quotes} fuel. This work has been designed to investigate the fuel reformation and the product gas combustion under gas turbine conditions. The hydrogen-rich gas has a high flammability with a wide range of combustion stability. Being lighter and more reactive than methane, the hydrogen-rich gas mixes readily with air and can be burned at low fuel/air ratios producing inherently low emissions. The reformed fuel also has a low ignition temperature which makes low temperature catalytic combustion possible. ATR can be designed for use with a variety of alternative fuels including heavy crudes, biomass and coal-derived fuels. When the steam required for fuel reforming is raised by using energy from the gas turbine exhaust, cycle efficiency is improved because of the steam and fuel chemically recuperating. Reformation of natural gas or diesel fuels to a homogeneous hydrogen-rich fuel has been demonstrated. Performance tests on screening various reforming catalysts and operating conditions were conducted on a batch-tube reactor. Producing over 70 percent of hydrogen (on a dry basis) in the product stream was obtained using natural gas as a feedstock. Hydrogen concentration is seen to increase with temperature but less rapidly above 1300{degrees}F. The percent reforming increases as the steam to carbon ratio is increased. Two basic groups of reforming catalysts, nickel - and platinum-basis, have been tested for the reforming activity.

NONE

1996-11-01T23:59:59.000Z

323

Nickel catalysts based on porous nickel for methane steam reforming  

Science Journals Connector (OSTI)

The influence of synthesis conditions on the phase composition and texture of porous nickel supports as plates with a magnesium oxide underlayer were investigated by X-ray diffraction, low-temperature nitrogen...

Z. A. Sabirova; M. M. Danilova; V. I. Zaikovskii; N. A. Kuzin…

2008-05-01T23:59:59.000Z

324

Catalytic deactivation of methane steam reforming catalysts. I. Activation  

SciTech Connect (OSTI)

An alumina-supported catalyst was studied both in its original state and after activation and sintering. Chemical composition and textural properties were determined, and crystalline compounds were identified. Active-phase and support transformations occurring during activation were determined by differential thermoanalysis (DTA), temperature-programmed reduction (TPR), and X-ray diffraction. The catalyst activated by means of various procedures was characterized by measuring crystallite size.

Agnelli, M.E.; Demicheli, M.C.; Ponzi, E.N.

1987-08-01T23:59:59.000Z

325

Experiences of niobium containing alloys for steam reformers  

SciTech Connect (OSTI)

This paper is concerned with the results and findings of investigations on the relation of chemical composition to rupture strength and to tensile properties after aging of niobium containing cast alloys. Tensile and creep rupture properties, tensile ductility, decomposition and coalescence of carbides, and the effects of the above on mechanical properties are discussed in this article.

Not Available

1986-01-01T23:59:59.000Z

326

Nanocomposite catalysts for soot combustion and propane steam reforming  

E-Print Network [OSTI]

A nanocomposite system, CuO-Ag/CeO 2, has been successfully developed to complete carbon black combustion by 400*C. This novel catalyst has excellent potential for application in the emission control of soot particulates ...

He, Hong, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

327

Staged Catalytic Gasification/Steam Reforming of Pyrolysis Oil  

Science Journals Connector (OSTI)

While the slag can be used in the current industry infrastructure as a construction material, up-scaling of biomass utilization will lead to land depletion because the mineral and metal balances are not closed. ... Table 4 shows gasification results at similar temperatures for two different types of pyrolysis oil (pine and beech) and of another liquid biomass stream, a “light” and a “heavy” sugar waste stream. ... The sugar waste streams that were gasified are a side product from lactic acid production. ...

Guus van Rossum; Sascha R. A. Kersten; Wim P. M. van Swaaij

2009-05-21T23:59:59.000Z

328

Catalytic steam gasification of coals  

Science Journals Connector (OSTI)

Catalytic steam gasification of coals ... Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ... Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ...

P. Pereira; G. A. Somorjai; H. Heinemann

1992-07-01T23:59:59.000Z

329

Options for Generating Steam Efficiently  

E-Print Network [OSTI]

This paper describes how plant engineers can efficiently generate steam when there are steam generators and Heat Recovery Steam Generators in their plant. The process consists of understanding the performance characteristics of the various equipment...

Ganapathy, V.

330

Solar Steam Nanobubbles  

Science Journals Connector (OSTI)

Solar Steam Nanobubbles ... The generated steam may also be used to drive a turbine directly for electricity generation. ... Furthermore, sputtering at gas–solid and gas–liquid interfaces may occur, and thermal desorption at the metal–water interface may affect the heat transfer as well. ...

Albert Polman

2013-01-02T23:59:59.000Z

331

Inspect and Repair Steam Traps  

Broader source: Energy.gov [DOE]

This tip sheet on inspecting and repairing steam traps provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

332

Renewable Liquid Fuels Reforming  

Broader source: Energy.gov [DOE]

The Program anticipates that distributed reforming of biomass-derived liquid fuels could be commercial during the transition to hydrogen and used in the mid- and long-term time frames.

333

NETL - Fuel Reforming Facilities  

ScienceCinema (OSTI)

Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

None

2014-06-27T23:59:59.000Z

334

Process development studies in coal gasification. Volume II. Reaction of aromatic compounds with steam. Final report, August 1, 1979-November 30, 1983  

SciTech Connect (OSTI)

The objective of this research has been to explore and define the potential of steam reforming to produce light gases from coal-derived liquids. This was achieved through a study of the reaction of a model aromatic compound and of a coal-derived liquid with steam over an alumina supported nickel catalyst. The reaction of steam with benzene and SRC-II liquids over an alumina supported nickel catalyst has been investigated in a plug flow reactor. The primary process variables investigated were reactor pressure and temperature, contact time, and steam/carbon ratio. A proposed reaction network was also developed to explain the data obtained in this study. The effect of process variables on the conversion and product distribution when steam reforming the SRC-II coal-derived liquid was similar to that observed for benzene-steam reforming. The results indicated that a high yield of methane is favored at high pressures, low temperatures, and low steam-to-carbon ratios; and that a high yield of hydrogen is favored at low pressures and high steam-to-carbon ratios. The empirical rate equation for the benzene steam reforming reaction at 973 K, 300 psig, and a steam/carbon ratio of approximately 3 was r/sub C/sub 6/H/sub 6// = 1.92 x 10/sup -3/ P/sub C/sub 6/H/sub 6//. The activation energy was 88 KJ/mol, or 21 kcal/mol in the temperature range 748-973 K. A correlation was developed to predict product yields and hydrocarbon conversion over the range of process variables investigated. A second correlation was developed to predict the yields and conversion beyond the range of variables investigated. A reaction network for aromatic steam reforming was proposed. 87 refs., 47 figs., 3 tabs.

Oblad, A.G.

1984-12-12T23:59:59.000Z

335

Natural Gas Reforming | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Production Natural Gas Reforming Natural Gas Reforming Photo of Petroleum Refinery Natural gas reforming is an advanced and mature production process that builds upon...

336

Streams of Steam The Steam Boiler Specification Case Study  

E-Print Network [OSTI]

Streams of Steam ­ The Steam Boiler Specification Case Study Manfred Broy, Franz Regensburger-tuned con- cepts of FOCUS by its application of the requirements specification of a steam boiler, see [Abr96-studies. In this context, applying FOCUS to the steam boiler case study ([Abr96]) led us to a couple of questions re- #12

337

Bed material agglomeration during fluidized bed combustion  

SciTech Connect (OSTI)

The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

Brown, R.C.; Dawson, M.R.; Noble, S.

1993-02-01T23:59:59.000Z

338

Refurbishing steam turbines  

SciTech Connect (OSTI)

Power-plant operators are reducing maintenance costs of their aging steam turbines by using wire-arc spray coating and shot peening to prolong the service life of components, and by replacing outmoded bearings and seals with newer designs. Steam-turbine operators are pressed with the challenge of keeping their aging machines functioning in the face of wear problems that are exacerbated by the demand for higher efficiencies. These problems include intense thermal cycling during both start-up and shutdown, water particles in steam and solid particles in the air that pit smooth surfaces, and load changes that cause metal fatigue.

Valenti, M.

1997-12-01T23:59:59.000Z

339

Evaluating Steam Trap Performance  

E-Print Network [OSTI]

~LmT " TRIf' 1 TRIf' 2 Figure 2 It has become common practice for engineers to oversize steam traps and place more emphasis on first cost than on maintenance cost and operating 766 3 4 ESL-IE-86-06-126 Proceedings from the Eighth Annual Industrial...EVALUATING STEAM TRAP PERFORMANCE Noel Y Fuller, P.E. Holston Defense Corporation Kingsport, Tennessee ABSTRACT Laboratory tests were conducted on several types of steam traps at Holston Defense Corporation in Kingsport, Tennessee. Data...

Fuller, N. Y.

340

Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol  

SciTech Connect (OSTI)

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the fourth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of July 1-Sept 30, 2004 along with a recap of progress from the start of the project on Oct 1, 2003 to Sept 30, 2004. All of the projects are proceeding on or slightly ahead of schedule. This year saw progress in several areas. These areas are: (1) External and internal evaluation of coal based methanol and a fuel cell grade baseline fuel, (2) Design set up and initial testing of three laboratory scale steam reformers, (3) Design, set up and initial testing of a laboratory scale autothermal reactor, (4) Hydrogen generation from coal-derived methanol using steam reformation, (5) Experiments to determine the axial and radial thermal profiles of the steam reformers, (6) Initial catalyst degradation studies with steam reformation and coal based methanol, and (7) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2004-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "bed steam reformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Joining semi-closed gas turbine cycle and tri-reforming: SCGT-TRIREF as a proposal for low CO2 emissions powerplants  

Science Journals Connector (OSTI)

Methane conversion to a rich H2 fuel by reforming reactions is a largely applied industrial process. Recently, it has been considered for applications combined to gas turbine powerplants, as a mean for (I) chemical recuperation (i.e. chemical looping CRGT) and (II) decarbonising the primary fuel and make the related power cycle a low CO2 releaser. The possibility of enhancing methane conversion by the addition of CO2 to the steam reactant flow (i.e. tri-reforming) has been assessed and showed interesting results. When dealing with gas turbines, the possibility of applying tri-reforming is related to the availability of some CO2 into the fluegas going to the reformer. This happens in semi-closed gas turbine cycles (SCGT), where the fluegas has a typical 14–15% CO2 mass content. The possibility of joining CRGT and SCGT technologies to improve methane reforming and propose an innovative, low CO2 emissions gas turbine cycle was assessed here. One of the key issues of this joining is also the possibility of greatly reduce the external water consumption due to the reforming, as the SCGT is a water producer cycle. The SCGT-TRIREF cycle is an SCGT cycle where fuel tri-reforming is applied. The steam due to the reformer is generated by the vaporization of the condensed water coming out from the fluegas condensing heat exchanger, upstream the main compressor, where the exhausts are cooled down and partially recirculated. The heat due to the steam generation is recuperated from the turbine exhausts cooling. The reforming process is partially sustained by the heat recovered from the turbine exhausts (which generates superheated steam) and partially by the auto thermal reactions of methane with fresh air, coming from the compressor (i.e. partial combustion). The effect of CO2 on methane reforming (tri-reforming effect) increases with decreasing steam/methane ratio: at very low values, around 30% of methane is converted by reactions with CO2. At high values of steam/methane ratio, the steam reforming reactions are dominant and only a marginal fraction of methane is interested to tri-reforming. Under optimised conditions, which can be reached at relatively high pressure ratios (25–30), the power cycle showed a potential efficiency around 46% and specific work at 550 kJ/kg level. When the amine CO2 capture is applied, the specific CO2 emissions range between 45 and 55 g CO 2 / kW h .

Daniele Fiaschi; Andrea Baldini

2009-01-01T23:59:59.000Z

342

Tar Reforming in Model Gasifier Effluents: Transition Metal/Rare Earth Oxide Catalysts  

Science Journals Connector (OSTI)

Tar Reforming in Model Gasifier Effluents: Transition Metal/Rare Earth Oxide Catalysts ... So in this work we investigated the action of transition metal oxides (TMOs) other than Ni (e.g., Fe, Mn) mixed with REOs for tar reforming, at a medium temperature range (923–1073 K) and under conditions where direct reforming would dominate. ... The heated gas mixture passed through a 1/2” stainless steel tube containing 0.2–1 g of catalyst (40–60 mesh size) diluted with mullite and positioned between beds of ?-Al2O3. ...

Rui Li; Amitava Roy; Joseph Bridges; Kerry M. Dooley

2014-04-24T23:59:59.000Z

343

Steam Champions in Manufacturing  

E-Print Network [OSTI]

into equivalent corporate rewards, such as increased profitability, reliability, workplace safety, and other benefits. The prerequisites for becoming a true steam champion will include engineering, business, and management skills....

Russell, C.

344

Steam Trap Application  

E-Print Network [OSTI]

characteristics. 2. Understand advantages and limitations of various checking methods. 3. Use more than one checking method. 4. Understand flash condensate. 5. Condensate makes more noise than steam. 6. Trouble shoot the system. 7. Review trap... or failed steam and condensate flow~' H closed to be undetected -Not always insensitive to back ground or ambient noise -Noise in electrical system if volume too high -Head set quality important -Location of probe on trap, contact force, pressure drop...

Murphy, J. J.

1982-01-01T23:59:59.000Z

345

FOOD REFORM MOVEMENTS Nicolas Larchet  

E-Print Network [OSTI]

FOOD REFORM MOVEMENTS Nicolas Larchet Social historians have broadly defined two cycles of American history characterized by an efflorescence of social movements aiming to reform both the individual to the 1920s. The reform impulse thrived wherever there was a perceived vice, abuse or corruption

Boyer, Edmond

346

Reforming the Private Insurance Market  

E-Print Network [OSTI]

SUMMARY s national health care reform efforts go forward, it is instructive to review states' experience INTRODUCTION he prospects for national health care reform are more promising than at any time since 1994. President Obama and Members of Congress have made health care reform a top priority and legislation

Kammen, Daniel M.

347

Biomass Gasification with Steam and Oxygen Mixtures at Pilot Scale and with Catalytic Gas Upgrading. Part I: Performance of the Gasifier  

Science Journals Connector (OSTI)

Biomass gasification with steam + O2...mixtures is studied at small pilot plant (10–20 kg/h) scale. The gasifier used is a turbulent fluidized bed of ... tested till date. Product distribution from the gasifier, ...

M. P. Aznar; J. Corella; J. Gil…

1997-01-01T23:59:59.000Z

348

EA-1846: Demonstration of Carbon Dioxide Capture and Sequestration of Steam  

Broader source: Energy.gov (indexed) [DOE]

46: Demonstration of Carbon Dioxide Capture and Sequestration 46: Demonstration of Carbon Dioxide Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production, Port Arthur, Texas EA-1846: Demonstration of Carbon Dioxide Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production, Port Arthur, Texas Overview DOE completed a final environmental assessment (EA) for a project under Area I of the Industrial Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use . Based on the analyses in the EA DOE determined that its proposed action - awarding a grant to Air Products and Chemicals, Inc. to design and demonstrate a state-of-the-art system to concentrate carbon dioxide (CO,) from two steam

349

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network [OSTI]

DOE's BestPractices Steam End User Training Steam End User Training Steam Distribution Losses Module 1 June 29, 2010 Steam EndUser Training Steam Distribution System Losses Module Slide 1 pressure. #12;DOE's BestPractices Steam End User Training Steam End User Training Steam Distribution

Oak Ridge National Laboratory

350

Steam Basics: Use Available Data to Lower Steam System Cost  

E-Print Network [OSTI]

Industrial steam users recognize the need to reduce system cost in order to remain internationally competitive. Steam systems are a key utility that influence cost significantly, and represent a high value opportunity target. However, the quality...

Risko, J. R.

2011-01-01T23:59:59.000Z

351

Dry reforming of hydrocarbon feedstocks  

SciTech Connect (OSTI)

Developments in catalyst technology for the dry reforming of hydrocarbon feedstocks are reviewed for methane, higher hydrocarbons and alcohols. Thermodynamics, mechanisms and the kinetics of dry reforming are also reviewed. The literature on Ni catalysts, bi-metallic Ni catalysts and the role of promoters on Ni catalysts is critically evaluated. The use of noble and transitional metal catalysts for dry reforming is discussed. The application of solid oxide and metal carbide catalysts to dry reforming is also evaluated. Finally, various mechanisms for catalyst deactivation are assessed. This review also examines the various process related issues associated with dry reforming such as its application and heat optimization. Novel approaches such as supercritical dry reforming and microwave assisted dry reforming are briefly expanded upon.

Shah, Yatish T. [Norfolk State University; Gardner, Todd H. [U.S. DOE

2014-01-01T23:59:59.000Z

352

Kinetic evaluation of the tri-reforming process of methane for syngas production  

Science Journals Connector (OSTI)

The conversion of natural gas was carried out via tri-reforming of methane in a fixed bed reactor employing a Ni/?-Al2O3 catalyst. The kinetic evaluations were performed in a temperature range from 923 to 1,123 K...

Leonardo J. L. Maciel…

2010-12-01T23:59:59.000Z

353

Reaction of aromatic compounds and coal-derived liquids with steam over alumina supported nickel catalysts  

SciTech Connect (OSTI)

The objective of this research program has been to explore and define the potential of steam reforming to produce light gases from coal-derived liquids. This was achieved through a study of the reaction of a model aromatic compound and of a coal-derived liquid with steam over an alumina supported nickel catalyst. The reaction of steam with benzene and SRC-II liquids over an alumina supported nickel-catalyst has been investigated in a plug flow reactor. The primary process variables investigated were reactor pressure and temperature, contact time, and steam/carbon ratio. A proposed reaction network was also developed to explain the data obtained in this study. The empirical rate equation for the benzene steam reforming reaction at 973 K, 300 psig, and a steam/carbon ratio of approximately 3 was r/sub C6H6/ = 1.92 x 10 TP/sub C6H6/. The activation energy was 88 KJ/mol, or 21 kcal/mol in the temperature range 748-973 K. A correlation was developed to predict product yields and hydrocarbon conversion over the range of process variables investigated. A second correlation was developed to predict the yields and conversion beyond the range of variables investigated.

Chen, I.E.

1985-01-01T23:59:59.000Z

354

Steam System Improvements at a Manufacturing Plant  

E-Print Network [OSTI]

BWX Technologies, Naval Nuclear Fuel Division (NNFD) is a manufacturing company with a steam system consisting of two Babcock & Wilcox boilers and approximately 350 steam traps. The steam system is used to produce and distribute steam for space...

Compher, J.; Morcom, B.

355

Steam Power Partnership: Improving Steam System Efficiency Through Marketplace Partnerships  

E-Print Network [OSTI]

to support the steam efficiency program. Today, the Steam Team includes, the North American Insulation Manufacturers Association (NAIMA), the American Gas Association (AGA), the Council of Industrial Boiler Owners (ClBO), Armstrong International... pinch technology, and high performance steam. ? Armstrong International - Three worldwide factory seminar facilities, 13 North American sales representative facilities, 4 international sales representative facilities, 8 co-sponsored facilities, 2...

Jones, T.

356

Reduction in Unit Steam Production  

E-Print Network [OSTI]

In 2001 the company's Arch-Brandenburg facility faced increased steam costs due to high natural gas prices and decreased production due to shutdown of a process. The facility was challenged to reduce unit steam consumption to minimize the effects...

Gombos, R.

2004-01-01T23:59:59.000Z

357

Belgrade Lot Steam Plant Lot  

E-Print Network [OSTI]

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Hamlin Steam Plant Crosby Machine Tool Lab Children's Center Rogers N S Estabrooke Memorial Gym Stevens

Thomas, Andrew

358

Heat Recovery Steam Generator Simulation  

E-Print Network [OSTI]

The paper discusses the applications of Heat Recovery Steam Generator Simulation. Consultants, plant engineers and plant developers can evaluate the steam side performance of HRSGs and arrive at the optimum system which matches the needs...

Ganapathy, V.

359

Consider Steam Turbine Drives for Rotating Equipment  

Broader source: Energy.gov [DOE]

This tip sheet outlines the benefits of steam turbine drives for rotating equipment as part of optimized steam systems.

360

Four Rivers second generation Pressurized Circulating Fluidized Bed Combustion Project  

SciTech Connect (OSTI)

Air Products has been selected in the DOE Clean Coal Technology Round V program to build, own, and operate the first commercial power plant using second generation Pressurized Circulating Fluidized Bed (PCFB) combustion technology. The four Rivers Energy Project (Four Rivers) will produce up to 400,000 lb/hr steam, or an equivalent gross capacity of 95 MWe. The unit will be used to repower an Air Products chemicals manufacturing facility in Calvert City, Kentucky.

Holley, E.P.; Lewnard, J.J. [Air Products and Chemicals, Inc. (United States); von Wedel, G. [LLB Lurgi Lentjes Babcock Energietechnik (GmbH); Richardson, K.W. [Foster Wheeler Energy Corp. (United States); Morehead, H.T. [Westinghouse Electric Corp. (United States)

1995-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed steam reformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

In situ Gas Conditioning in Fuel Reforming for Hydrogen Generation  

SciTech Connect (OSTI)

The production of hydrogen for fuel cell applications requires cost and energy efficient technologies. The Absorption Enhanced Reforming (AER), developed at ZSW with industrial partners, is aimed to simplify the process by using a high temperature in situ CO2 absorption. The in situ CO2 removal results in shifting the steam reforming reaction equilibrium towards increased hydrogen concentration (up to 95 vol%). The key part of the process is the high temperature CO2 absorbent. In this contribution results of Thermal Gravimetric Analysis (TGA) investigations on natural minerals, dolomites, silicates and synthetic absorbent materials in regard of their CO2 absorption capacity and absorption/desorption cyclic stability are presented and discussed. It has been found that the inert parts of the absorbent materials have a structure stabilizing effect, leading to an improved cyclic stability of the materials.

Bandi, A.; Specht, M.; Sichler, P.; Nicoloso, N.

2002-09-20T23:59:59.000Z

362

Methanol partial oxidation reformer  

DOE Patents [OSTI]

A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

1999-01-01T23:59:59.000Z

363

Methanol partial oxidation reformer  

DOE Patents [OSTI]

A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

2001-01-01T23:59:59.000Z

364

Methanol partial oxidation reformer  

DOE Patents [OSTI]

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-17T23:59:59.000Z

365

Methanol partial oxidation reformer  

DOE Patents [OSTI]

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-24T23:59:59.000Z

366

Watt steam governor  

Science Journals Connector (OSTI)

The physics of the fly-ball governor, introduced to regulate the speed of steam engines, is here analysed anew. The original analysis is generalized to arbitrary governor geometry. The well-known stability criterion for the linearized system breaks down for large excursions from equilibrium; we show approximately how this criterion changes.

Mark Denny

2002-01-01T23:59:59.000Z

367

Steamed dinosaur eggs  

Science Journals Connector (OSTI)

... a Cretaceous hatchery shows that some dinosaurs liked their nesting sites steam-heated — by geothermal vents. A paper in Nature Communications today says that certain dinosaurs regularly returned to ... vents. A paper in Nature Communications today says that certain dinosaurs regularly returned to geothermal fields to shape nests and deposit eggs more than 100 million years ago. ...

Rex Dalton

2010-06-29T23:59:59.000Z

368

Steam management in composite mature steam floods, Midway Sunset field  

SciTech Connect (OSTI)

Vogel noted that oil production rates in many steam floods are not predictable from steam injection rates and must be estimated on some other basis. He presented a conservative method, based on simple models assuming instantaneous steam overlay, to calculate heat requirements once the oil rate is known. By more accurately describing the reservoir being flooded and the steam flood process, Vogel`s method was refined resulting in significant steam savings for SWEPI`s leasehold in the northern part of the Midway Sunset field. Analytical expressions are presented for (1) the heat required to support a steam chest descending into an oil column, (2) the heating of a cap or base rock already partially heated by an adjacent steam flood and (3) the heating of a cap or base rock which is exposed to a uniformly growing steam zone. A method is also described to operate a mature steam flood at a constant oil steam ratio while scavenging some heat stored in the steam zone.

Dorp, J.J. van; Roach, R.H.

1995-12-31T23:59:59.000Z

369

Chemical Looping Reforming for H2, CO and Syngas Production  

SciTech Connect (OSTI)

We demonstrate that the extension of CLC onto oxidants beyond air opens new, highly efficient pathways for production of ultra-pure hydrogen, activation of CO{sub 2} via reduction to CO, and are currently working on production of syngas using nanocomposite Fe-BHA. CLR hold great potential due to fuel flexibility and CO{sub 2} capture. Chemical Looping Combustion (CLC) is a novel clean combustion technology which offers an elegant and highly efficient route for fossil fuel combustion. In CLC, combustion of a fuel is broken down into two spatially separated steps. In the reducer, the oxygen carrier (typically a metal) supplies the stoichiometric oxygen required for fuel combustion. In the oxidizer, the oxygen-depleted carrier is then re-oxidized with air. After condensation of steam from the effluent of the reducer, a high-pressure, high-purity sequestration-ready CO{sub 2} stream is obtained. In the present study, we apply the CLC principle to the production of high-purity H{sub 2}, CO, and syngas streams by replacing air with steam and/or CO{sub 2} as oxidant, respectively. Using H{sub 2}O as oxidant, pure hydrogen streams can be obtained. Similarly, using CO{sub 2} as oxidant, CO is obtained, thus opening an efficient route for CO{sub 2} utilization. Using steam and CO{sub 2} mixtures for carrier oxidation should thus allow production of syngas with adjustable CO:H{sub 2} ratios. Overall, these processes result in Chemical Looping Reforming (CLR), i.e. the net overall reaction is the steam and/or dry reforming of the respective fuel.

Bhavsar,Saurabh; Najera,Michelle; Solunke,Rahul; Veser,Götz

2001-06-06T23:59:59.000Z

370

Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided Fundamental Atomistic Insights  

SciTech Connect (OSTI)

Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, various Ni alloy catalysts as potential carbon tolerant reforming catalysts. The alloy catalysts were synthesized and tested in steam reforming and partial oxidation of methane, propane, and isooctane. We demonstrated that the alloy catalysts are much more carbon-tolerant than monometallic Ni catalysts under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by two characteristics: (a) knowledge-based, bottomup approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) the focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.

Suljo Linic

2008-12-31T23:59:59.000Z

371

Distributed Bio-Oil Reforming  

Broader source: Energy.gov [DOE]

Presentation by NREL's Robert Evans at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

372

Steam System Balancing and Tuning  

Broader source: Energy.gov (indexed) [DOE]

Steam System Balancing and Steam System Balancing and Tuning Building America Stakeholder Meeting Austin, TX Jayne Choi, Energy Analyst, CNT Energy March 2, 2012 PARR Current collaboration with GTI as a part of the PARR Building America team - Steam Systems Balancing and Tuning Study - Heating season 2011-2012 Background In Chicago, heating is the focus of residential energy use Of the 470,000 multifamily units in the Chicago region, at least 70,000 of those are steam heated Old steam systems invariably suffer from imbalance - Tenants must use supplemental heat or open their windows to cool their apartments during the heating season Buildings are often overheated Problem Statement (CNT Energy) Steam Heating Steam heat was the best option for buildings constructed between 1900 and 1930

373

Thermodynamics and Transport Phenomena in High Temperature Steam Electrolysis Cells  

SciTech Connect (OSTI)

Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technology will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.

James E. O'Brien

2012-03-01T23:59:59.000Z

374

Integrated catalytic coal devolatilization and steam gasification process  

SciTech Connect (OSTI)

Hydrocarbon liquids and a methane-containing gas are produced from carbonaceous feed solids by contacting the solids with a mixture of gases containing carbon monoxide and hydrogen in a devolatilization zone at a relatively low temperature in the presence of a carbon-alkali metal catalyst. The devolatilization zone effluent is treated to condense out hydrocarbon liquids and at least a portion of the remaining methane-rich gas is steam reformed to produce the carbon monoxide and hydrogen with which the carbonaceous feed solids are contacted in the devolatilization zone. The char produced in the devolatilization zone is reacted with steam in a gasification zone under gasification conditions in the presence of a carbon-alkali metal catalyst and the resultant raw product gas is treated to recover a methane-containing gas.

Ryan, D.F.; Wesselhoft, R.D.

1981-09-29T23:59:59.000Z

375

--No Title--  

Broader source: Energy.gov (indexed) [DOE]

A mixed waste treatability study will be performed to test the fluidized bed steam reforming (FBSR) technology on SRS Low Activity Waste (LAW) modified to simulate Hanford waste....

376

Savannah River Site - Tank 48 Transmittal Letter of SRS Tank...  

Office of Environmental Management (EM)

carried forward by WSRC as leading candidates for Tank 48 applications, Fluidized Bed Steam Reforming and Wet-Air Oxidation (WAO), are technically sound, are likely to prove...

377

SRS Tank 48H Waste Treatment Project Technology Readiness Assessment...  

Office of Environmental Management (EM)

Project More Documents & Publications Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) Technology Maturation...

378

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

SciTech Connect (OSTI)

Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the sixth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2005. This quarter saw progress in four areas. These areas are: (1) Autothermal reforming of coal derived methanol, (2) Catalyst deactivation, (3) Steam reformer transient response, and (4) Catalyst degradation with bluff bodies. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2005-04-01T23:59:59.000Z

379

17 - Fluidized bed gasification  

Science Journals Connector (OSTI)

Abstract: The chapter describes the state-of-the-art of fluidized bed gasification of solid fuels, starting from the key role played by hydrodynamics, and its strong correlation with physical and chemical phenomena of the process and operating performance parameters of the reactor. The possible configurations of fluidized bed gasification plants are also assessed, and an analysis of the main methods for syngas cleaning is reported. Finally, the chapter describes some of the most interesting commercial experiences. The analysis indicates that the gasification of biomass and also of municipal and industrial solid wastes appear to be the most interesting sectors for the industrial development and utilization of fluidized bed gasifiers.

U. Arena

2013-01-01T23:59:59.000Z

380

Method for using fast fluidized bed dry bottom coal gasification  

DOE Patents [OSTI]

Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature. This gasification arrangement provides for increased utilization of the secondary char material to produce higher overall carbon conversion and product yields in the process.

Snell, George J. (Fords, NJ); Kydd, Paul H. (Lawrenceville, NJ)

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed steam reformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

What's right SHIP & Healthcare Reform Forum  

E-Print Network [OSTI]

&Health Reform What's right for you SHIP & Healthcare Reform Forum: What's Right for You This session will help you: * demystify the healthcare reform changes * explore your options * learn how

Walker, Matthew P.

382

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Dry Steam) (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

383

Simulation of petcoke gasification in slagging moving bed reactors  

Science Journals Connector (OSTI)

A mathematical model for simulation of moving bed petcoke gasifiers was developed. The model introduces a new feed characterization method, gas-phase resistance and volatilization models. The model is validated using reported data for a slagging gasifier. Effect of feed oxygen-to-coke and steam-to-coke ratios and feed coke rates on gasification performance was examined. Slagging zone moving bed gasifier operation with very high petcoke fluxes of over 4000 kg/m2/h was possible with high petcoke conversion. Peak gas temperatures exceeded 1500 °C. Fluxes higher than 5000 kg/m2/h are limited by an approach to fluidization of small particles in the combustion zone. The moving bed gasifier performance was found superior to performance of an entrained flow gasifier (EFG) with respect to energy efficiency and oxygen consumption.

Soumitro Nagpal; T.K. Sarkar; P.K. Sen

2005-01-01T23:59:59.000Z

384

CO-PRODUCTION OF HYDROGEN AND ELECTRICITY USING PRESSURIZED CIRCULATING FLUIDIZED BED GASIFICATION TECHNOLOGY  

SciTech Connect (OSTI)

Foster Wheeler has completed work under a U.S. Department of Energy cooperative agreement to develop a gasification equipment module that can serve as a building block for a variety of advanced, coal-fueled plants. When linked with other equipment blocks also under development, studies have shown that Foster Wheeler's gasification module can enable an electric generating plant to operate with an efficiency exceeding 60 percent (coal higher heating value basis) while producing near zero emissions of traditional stack gas pollutants. The heart of the equipment module is a pressurized circulating fluidized bed (PCFB) that is used to gasify the coal; it can operate with either air or oxygen and produces a coal-derived syngas without the formation of corrosive slag or sticky ash that can reduce plant availabilities. Rather than fuel a gas turbine for combined cycle power generation, the syngas can alternatively be processed to produce clean fuels and or chemicals. As a result, the study described herein was conducted to determine the performance and economics of using the syngas to produce hydrogen for sale to a nearby refinery in a hydrogen-electricity co-production plant setting. The plant is fueled with Pittsburgh No. 8 coal, produces 99.95 percent pure hydrogen at a rate of 260 tons per day and generates 255 MWe of power for sale. Based on an electricity sell price of $45/MWhr, the hydrogen has a 10-year levelized production cost of $6.75 per million Btu; this price is competitive with hydrogen produced by steam methane reforming at a natural gas price of $4/MMBtu. Hence, coal-fueled, PCFB gasifier-based plants appear to be a viable means for either high efficiency power generation or co-production of hydrogen and electricity. This report describes the PCFB gasifier-based plant, presents its performance and economics, and compares it to other coal-based and natural gas based hydrogen production technologies.

Zhen Fan

2006-05-30T23:59:59.000Z

385

NEPA Contracting Reform Guidance  

Broader source: Energy.gov (indexed) [DOE]

defining early what contractors should accomplish < establishing contracts ahead of time < minimizing cost while maintaining quality by * maximizing competition and use of incentives * using past performance information in awarding work * managing the NEPA process as a project This guidance provides: < model statements of work < information on contract types and incentives < direction on effective NEPA contract management by the NEPA Document Manager < a system for measuring NEPA process costs < NEPA contractor evaluation procedures < details on the DOE NEPA Web site U.S. Department of Energy, Office of NEPA Policy and Assistance, December 1996 NEPA CONTRACTING REFORM GUIDANCE Table of Contents 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

386

dist_steam.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

District Steam Usage Form District Steam Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed questionnaire is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may c

387

Integrated two stage coking and steam cracking process and apparatus therefor  

SciTech Connect (OSTI)

The invention relates to an improvement in an integrated, two stage coking and steam cracking process for the production of unsaturated light hydrocarbons. A heavy hydrocarbonaceous oil is first coked in a fluidized bed coking zone. The vaporous conversion product is passed to a dilute phase. High temperature cracking in the presence of steam is carried out on the vaporous coker conversion product by injecting into the vapors a stream of hot coke particles at a sufficient temperature and in sufficient amount to raise the coker vapors to steam cracking temperature and supply the endothermic heat of reaction. Solids are separated from product gas in a gas-solids separation zone such as one or more cyclones and sent to the fluid coking zone and the gas is quenched to stop olefin degradation reactions. According to the improvement, relatively low temperature steam is introduced into contact with the separated solids to superheat the steam and cool the solids. Suitably this is effected in a riser on the cyclone dipleg. The solids, after having given up heat to the steam, pass into the coking zone and the superheated steam passes into the dilute phase and serves as part of the dilution steam therefor. Conservation of fuel and mitigation of coke on reactor walls and equipment are advantages of the process.

Oldweiler, M.E.

1983-10-25T23:59:59.000Z

388

Packed Bed Combustion: An Overview  

E-Print Network [OSTI]

;Packed Bed Combustion - University of Ottawa - CICS 2005 fuel fuel feed air products air fuel Retort) products Underfeed Combustion fuel feed air #12;Packed Bed Combustion - University of Ottawa - CICS 2005 required #12;Packed Bed Combustion - University of Ottawa - CICS 2005 Overfeed Bed fuel motion products air

Hallett, William L.H.

389

Topping PCFB combustion plant with supercritical steam pressure  

SciTech Connect (OSTI)

Research is being conducted to develop a new type of coal fired plant for electric power generation. This new type of plant, called a second generation or topping pressurized circulating fluidized bed combustion (topping PCFB) plant, offers the promise of efficiencies greater than 46 percent (HHV), with both emissions and a cost of electricity that are significantly lower than conventional pulverized coal fired plants with scrubbers. The topping PCFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized bed combustor (PCFB), and the combustion of carbonizer fuel gas in a topping combustor to achieve gas turbine inlet temperatures of 2,300 F and higher. After completing pilot plant tests of a carbonizer, a PCFB, and a gas turbine topping combustor, all being developed for this new plant, the authors calculated a higher heating value efficiency of 46.2 percent for the plant. In that analysis, the plant operated with a conventional 2,400 psig steam cycle with 1,000 F superheat and reheat steam and a 2.5 inch mercury condenser back pressure. This paper identifies the efficiency gains that this plant will achieve by using supercritical pressure steam conditions.

Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); White, J. [Parsons Power Group Inc., Reading, PA (United States)

1997-11-01T23:59:59.000Z

390

Co-Gasification of Wood and Lignite in a Dual Fluidized Bed Gasifier  

Science Journals Connector (OSTI)

Mixts. of coal and biomass were co-gasified in a jetting, ash-agglomerating, fluidized-bed, pilot scale-sized gasifier to provide steady-state operating data for numerical simulation verification. ... Downstream cleaning of gas by catalytic cracking and/or scrubbing is complex and/or expensive for small to medium gasification plants, so conversion of tar within the gasifier is preferred. ... Kern, S.; Pfeifer, C.; Hofbauer, H. Gasification of lignite in a dual fluidized bed gasifier - Influence of bed material particle size and the amount of steam. ...

Stefan Kern; Christoph Pfeifer; Hermann Hofbauer

2013-01-15T23:59:59.000Z

391

Air-cooled vacuum steam condenser  

SciTech Connect (OSTI)

This patent describes a steam powered system. It comprises: a turbine for converting steam energy into mechanical energy upon expansion of steam therein, a boiler for generating steam to be fed to the turbine, and a conduit arrangement coupling the boiler to the turbine and then recoupling the turbine exhaust to the boiler through steam condensing mechanisms.

Larinoff, M.W.

1990-02-27T23:59:59.000Z

392

Steam Pressure Reduction: Opportunities and Issues; A BestPractices Steam Technical Brief  

SciTech Connect (OSTI)

A BestPractices Technical Brief describing industrial steam generation systems and opportunities for reducing steam system operating pressure.

Not Available

2005-11-01T23:59:59.000Z

393

Steam Cracker Furnace Energy Improvements  

E-Print Network [OSTI]

Channel, ~ 25 mi. east of Houston ? Includes 4 manufacturing sites, 2 technology/engineering offices ?Significant community involvement Baytown Refinery Page 4 Steam Cracking to Olefins ? Process 60+ years old; ExxonMobil one of pioneers... Steam Cracker Furnace Energy Improvements Tim Gandler Energy Coordinator Baytown Olefins Plant, Baytown Tx 2010 Industrial Energy Technology Conference May, 2010 Page 2 ? Baytown Complex ? Steam Cracking to Olefins ? Furnace overview...

Gandler, T.

394

Steam System Forecasting and Management  

E-Print Network [OSTI]

by manipulation of operating schedules to avoid steam balances that result in steam venting, off gas-flaring, excessive condensing on extraction/condensing turbines, and ineffective use of extraction turbines. For example, during the fourth quarter of 1981... minimum turndown levels. Several boilers would have oeen shut down; by-product fuel gas would have been flared; and surplus low level steam would have been vented to the atmosphere. Several scenarios were studied with SFC and evaluated based...

Mongrue, D. M.; Wittke, D. O.

1982-01-01T23:59:59.000Z

395

Deaerators in Industrial Steam Systems  

Broader source: Energy.gov [DOE]

This tip sheet on deaerators provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

396

Multipath Curved Planar Reformation of the Peripheral  

E-Print Network [OSTI]

Multipath Curved Planar Reformation of the Peripheral Arterial Tree in CT Angiography1 Justus that cause artifacts in multipath curved planar reformations (MPCPRs) of the peripheral arterial tree in 10-oblique multiplanar reformations perpendicular to the ves- sel centerline (10), and curved planar reformations

397

Toward a Reformalization of QSIM Benjamin Shults  

E-Print Network [OSTI]

Toward a Reformalization of QSIM Benjamin Shults Department of Mathematics University of Texas is to reformalize part of the framework of the Guaranteed Coverage Theorem for QSIM. The intention is not to reformalize every detail of the proof but merely to mention some areas whose reformalization lends deeper

Kuipers, Benjamin

398

Optimization of Multiplanar Reformations from Isotropic  

E-Print Network [OSTI]

Optimization of Multiplanar Reformations from Isotropic Data Sets Acquired with 16­ Detector Row coronal reformations at vari- ous thicknesses were ranked qualitatively by three radiol- ogists. Effective reformations of data acquired in the custom phantom were compared, coronal reformations obtained with the 16

399

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

400

Steam System Improvement: A Case Study  

E-Print Network [OSTI]

. For industries, this will result in the reduction of production cost. In industry where steam is utilized, the steam production and distribution system consumes a significant portion of energy. Therefore, optimization of steam system is among the biggest energy...

Venkatesan, V. V.; Leigh, N.

Note: This page contains sample records for the topic "bed steam reformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry  

E-Print Network [OSTI]

SRU SWS Sulfuric Acid Steam Methane Reforming Steam & Powerproduction by Steam Methane Reforming (SMR), which involves

Morrow III, William R.

2014-01-01T23:59:59.000Z

402

Transportation Safeguards & Security Test Bed (TSSTB) | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Safeguards and Security Test Bed May 30, 2013 The Transportation Safeguards and Security Test Bed consists of a test-bed vehicle and a monitoringlaboratorytraining...

403

Tenth annual fluidized bed conference  

SciTech Connect (OSTI)

The proceedings of the Tenth Annual Fluidized Bed Conference is presented. The Conference was held November 14-15, 1994 in Jacksonville, FL and covered such topics as: opportunity fuels, the fluid bed market, bubbling fluid bed retrofitting, waste fuel-based circulating fluidized-bed project, construction permits for major air pollution sources, fluidized bed residues, uses for fluidized bed combustion ash, ash pelletization, sorbents for FBC applications, refractory maintenance, and petroleum coke. A separate abstract and indexing have been prepared for each paper for inclusion in the Energy Science and Technology Database.

NONE

1994-12-31T23:59:59.000Z

404

Six years of ABB-CE, petcoke and fluid beds  

SciTech Connect (OSTI)

Combustion Engineering, Inc. (ABB-CE) has constructed twenty circulating fluidized bed (CFB) boilers and 2 bubbling fluidized bed (BFB) boilers throughout North America. The units were designed to fire a wide range of fuels from anthracite culm to coals, lignites and biomasses. Based on fuels economics, some plants have decided to use petroleum coke as a replacement or supplemental fuel. The fluid bed boiler can inherently handle a wide range of fuel types without requiring modification or down-rating. ABB-CE units have a significant amount of petroleum coke operating experience firing 100% petroleum coke with no supplemental fuel ranging from the first commercial CFB unit at New Brunswick Power to the largest CFB unit at Texas New Mexico Power. Petroleum coke is also being co-fired with anthracite culm at the Scott Paper CFB. The world`s largest operating BFB, the 160 MWe unit at TVA`s Shawnee plant, has also been co-firing petroleum coke. The ability of the fluidized bed technology to fire low volatile fuels such as petroleum cokes, efficiently and in an environmentally acceptable manner will result in the use of this technology as a preferred means of power generation. This report gives a brief description of the petroleum coke firing experiences with ABB-CE fluid bed steam generators over the last six years.

Tanca, M.

1994-12-31T23:59:59.000Z

405

Limestone calcination with CO{sub 2} capture (II): decomposition in CO{sub 2}/steam and CO{sub 2}/N{sub 2} atmospheres  

SciTech Connect (OSTI)

Decomposition of limestone particles (0.25-0.5 mm) in a steam dilution atmosphere (20-100% steam in CO{sub 2}) was investigated by using a continuously operating fluidized bed reactor for CO{sub 2} capture. The decomposition conversion of limestone increased as the steam dilution percentage in the CO{sub 2} supply gas increased. At a bed temperature of 1193 K, the conversions were 72% without dilution (100% CO{sub 2}) and 98% with 60% steam dilution. The decomposition conversions obtained with steam dilution and N{sub 2} dilution differed significantly, and this result is explained in terms of the difference between the heat transfer to particle in steam and N{sub 2} dilution atmosphere. The reactivities of the CaO produced from limestone decomposition with steam dilution and without dilution (100% CO{sub 2}) were tested by means of hydration and carbonation reactions. In the hydration test, the time required for complete conversion (CaO{yields}Ca(OH){sub 2}) of the CaO produced by steam dilution was approximately half that required for the CaO produced without dilution. In the carbonation test, carbonation conversion (CaO{yields}CaCO{sub 3}) of the CaO produced by steam dilution was approximately 70%, whereas the conversion was approximately 40% for the CaO produced without dilution. 17 refs., 8 figs., 5 tabs.

Yin Wang; Shiying Lin; Yoshizo Suzuki [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan)

2008-07-15T23:59:59.000Z

406

Agenda for the Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Hydrogen Production Technical Team Research Review  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Hydrogen Production Technical Team Research Review Agenda for Tuesday, November 6, 2007 Location: BCS Incorporated, 8929 Stephens Road, Laurel, MD. 20723 410-997-7778 8:30 - 9:00 Continental Breakfast 9:00 DOE Targets, Tools and Technology o Bio-Derived Liquids to Hydrogen Distributed Reforming Targets DOE, Arlene Anderson o H2A Overview, NREL, Darlene Steward o Bio-Derived Liquids to Hydrogen Distributed Reforming Cost Analysis DTI, Brian James 10:00 Research Review o Low-Cost Hydrogen Distributed Production Systems, H2Gen, Sandy Thomas o Integrated Short Contact Time Hydrogen Generator, GE Global Research, Wei Wei o Distributed Bio-Oil Reforming, NREL, Darlene Steward o High Pressure Steam Ethanol Reforming, ANL, Romesh Kumar

407

Staged fluidized bed  

DOE Patents [OSTI]

The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

Mallon, R.G.

1983-05-13T23:59:59.000Z

408

Training: Steam Systems | Department of Energy  

Office of Environmental Management (EM)

required to register. Steam End User - 1 day workshop Availability: Onsite instructor-led and online self-paced workshop This course covers the operation of typical steam...

409

Benchmark the Fuel Cost of Steam Generation  

Broader source: Energy.gov [DOE]

This tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

410

Steam System Modeler | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency (%) Isentropic Efficiency (%) Blowdown Rate (%) Deaerator Vent Rate (%) Heat Loss (%) Condensate Return (%) Steam Mass Flow Feedwater Mass Flow Initial HP Steam...

411

Hydrogen plant expansion using oxygen secondary reforming  

SciTech Connect (OSTI)

As crude oil feedstocks become heavier and more sour, the H/sub 2/ demands of a refinery increase. Heavier sour crudes require more H/sub 2/ for hydrodesulfurization, hydrocracking and hydrotreating to produce the lighter, high quality products currently in demand. In most cases, this additional H/sub 2/ requirement is satisfied by the generation of on purpose H/sub 2/. The on purpose H/sub 2/ demand is typically satisfied by steam methane reforming (SMR). The conventional SMR process, utilizing shift, CO/sub 2/ removal, and methanation for H/sub 2/ purification, can produce 90 to 98% pure H/sub 2/ at 150 to 400 psig at an energy efficiency of 410 Btu (HHV)/SCF H/sub 2/. An SMR process employing shift and pressure swing adsorption (PSA) for H/sub 2/ purification can produce H/sub 2/ at a purity up to 99.999% and an energy efficiency of 390 Btu (HHV)/SCF H/sub 2/. Two options available for satisfying an increased on purpose H/sub 2/ demand are the addition of a new SMR plant and the debottlenecking of an existing SMR. A new SMR plant is the most capital-intensive means of expanding H/sub 2/ capacity.

Snyder, G.D.; Wang, S.I.

1986-01-01T23:59:59.000Z

412

Hiring Reform | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hiring Reform Hiring Reform Hiring Reform President Obama's Memorandum dated May 11, 2010, Improving the Federal Recruitment and Hiring Process, is Phase I of the Administration's comprehensive initiative to address major, long-standing impediments to recruiting and hiring the best and the brightest into the Federal civilian workforce. The Memorandum is based on issues that DOE and others brought to the attention of OPM, and it is designed to help Agencies build the workforce you need to achieve your goals. The Presidential Memorandum launches the Obama Administration's flagship personnel policy reform initiative. It builds on a nearly year-long collaboration between OPM and Agencies aimed at streamlining the hiring process and recruiting top talent, especially for mission-critical jobs.

413

Fluidized Bed Fuel Cell Electrodes  

Science Journals Connector (OSTI)

... smoothed the electrolyte flow through the bed. The mesh acted as bed support and electrical contactor to the beads. In the case of the hydrogen peroxide electrode the nickel mesh ... at the top 'of the bed for the hydrogen peroxide electrode and close to the contactor for the methanol electrode. In both cases polarization measurements were carried out at 20 ...

T. BERENT; I. FELLS; R. MASON

1969-09-06T23:59:59.000Z

414

Behavior of Inorganic Matter in a Dual Fluidized Steam Gasification Plant  

Science Journals Connector (OSTI)

The principle of DFB steam gasification is based on the separation of the endothermic gasification process and the external heat supply from a separate combustion chamber. ... The precoat material described in Table 8 shows a typical composition of the natural mineral dolomite, whose main components are calcium and magnesium oxide, with a high ignition loss at 1050 °C, when the carbonates are released. ... On the basis of a dual fluidized bed system, steam gasification of biomass is coupled with in situ CO2 absorption to enhance the formation of hydrogen. ...

Friedrich Kirnbauer; Markus Koch; Reinhard Koch; Christian Aichernig; Hermann Hofbauer

2013-05-29T23:59:59.000Z

415

ULTRA-SUPERCRITICAL STEAM CORROSION  

SciTech Connect (OSTI)

Efficiency increases in fossil energy boilers and steam turbines are being achieved by increasing the temperature and pressure at the turbine inlets well beyond the critical point of water. To allow these increases, advanced materials are needed that are able to withstand the higher temperatures and pressures in terms of strength, creep, and oxidation resistance. As part of a larger collaborative effort, the Albany Research Center (ARC) is examining the steam-side oxidation behavior for ultrasupercritical (USC) steam turbine applications. Initial tests are being done on six alloys identified as candidates for USC steam boiler applications: ferritic alloy SAVE12, austenitic alloy Super 304H, the high Cr-high Ni alloy HR6W, and the nickel-base superalloys Inconel 617, Haynes 230, and Inconel 740. Each of these alloys has very high strength for its alloy type. Three types of experiments are planned: cyclic oxidation in air plus steam at atmospheric pressure, thermogravimetric ana lysis (TGA) in steam at atmospheric pressure, and exposure tests in supercritical steam up to 650 C (1202 F) and 34.5 MPa (5000 psi). The atmospheric pressure tests, combined with supercritical exposures at 13.8, 20.7, 24.6, and 34.5 MPa (2000, 3000, 4000, and 5000 psi) should allow the determination of the effect of pressure on the oxidation process.

Holcomb, G.R.; Alman, D.E.; Bullard, S.B.; Covino, B.S., Jr.; Cramer, S.D.; Ziomek-Moroz, M.

2003-04-22T23:59:59.000Z

416

GCFR steam generator conceptual design  

SciTech Connect (OSTI)

The gas-cooled fast reactor (GCFR) steam generators are large once-through heat exchangers with helically coiled tube bundles. In the GCFR demonstration plant, hot helium from the reactor core is passed through these units to produce superheated steam, which is used by the turbine generators to produce electrical power. The paper describes the conceptual design of the steam generator. The major components and functions of the design are addressed. The topics discussed are the configuration, operating conditions, design criteria, and the design verification and support programs.

Holm, R.A.; Elliott, J.P.

1980-01-01T23:59:59.000Z

417

Combined Heat and Power Plant Steam Turbine  

E-Print Network [OSTI]

Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

418

Steam System Tool Suite Introduction Guide  

E-Print Network [OSTI]

)........................................................................................8 Steam System Assessment Tool (SSAT Tool, the Steam System Assessment Tool, and the 3E Plus Insulation Tool. Each one of these trainings.S.DOE Steam Tools are designed to aid in assessing steam systems by identifying areas to investigate

Oak Ridge National Laboratory

419

Wet-steam erosion of steam turbine disks and shafts  

SciTech Connect (OSTI)

A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

Averkina, N. V. [JSC 'NPO TsKTI' (Russian Federation); Zheleznyak, I. V. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation); Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G., E-mail: orlikvg@mail.ru [JSC 'NPO TsKTI' (Russian Federation); Shishkin, V. I. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation)

2011-01-15T23:59:59.000Z

420

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network [OSTI]

DOE's BestPractices Steam End User Training Steam End User Training Welcome Module - 1 8/27/2010 Steam End User Training Welcome Module Slide 1 ­ Steam End User Training Welcome to the Department of Energy's Industrial Technologies Program BestPractices Steam End-User Training. The Department of Energy

Oak Ridge National Laboratory

Note: This page contains sample records for the topic "bed steam reformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The Steam System Scoping Tool: Benchmarking Your Steam Operations Through Best Practices  

E-Print Network [OSTI]

system efficiency. The BestPractices Steam effort, a part of the DOE-OIT effort, has developed a new tool that steam energy managers and operations personnel can use to assess their steam operations and improve their steam energy usage -the Steam System...

Wright, A.; Hahn, G.

422

Water and Energy Issues in Gas-to-Liquid Processes: Assessment and Integration of Different Gas-Reforming Alternatives  

Science Journals Connector (OSTI)

Energy and water management effects are analyzed for the development of syngas processes under the integration of three gas reforming alternatives ... Gandrick et al.(9) considered the recycling of the light gas from FT synthesis and refining areas to fire gas turbines to produce electricity and the reuse of the gas turbines to produce superheated steam. ... We address in this paper several aspects related to such issues: (a) A comparative analysis is developed for assesing the impact of the use of different reforming technologies on energy and water usage. ...

Diana Yered Martínez; Arturo Jiménez-Gutiérrez; Patrick Linke; Kerron J. Gabriel; Mohamed M. B. Noureldin; Mahmoud M. El-Halwagi

2013-10-24T23:59:59.000Z

423

Evaluation and selection of circulating fluidized bed boilers  

SciTech Connect (OSTI)

The use of circulating fluidized bed (CFB) boilers to generate steam on an industrial scale is increasing. The reasons for this growth include high combustion efficiency, fuel flexibility, and inherent emissions control capability, particularly with regards to control of nitrogen oxides (NO{sub x}) and sulfur oxides (SO{sub x}). However, CFB boiler technology is unique, with operating performance, and construction features that differ significantly from those used in conventional pulverized coal (PC) and stoker-fired boiler technology. An overview of these features is presented by the author.

Marcinek, F.T. (Charles B. Tibbits and Associates, Seattle, WA (US))

1989-05-01T23:59:59.000Z

424

Hydrogen Generation Via Fuel Reforming  

Science Journals Connector (OSTI)

Reforming is the conversion of a hydrocarbon based fuel to a gas mixture that contains hydrogen. The H2 that is produced by reforming can then be used to produce electricity via fuel cells. The realization of H2?based power generation via reforming is facilitated by the existence of the liquid fuel and natural gas distribution infrastructures. Coupling these same infrastructures with more portable reforming technology facilitates the realization of fuel cell powered vehicles. The reformer is the first component in a fuel processor. Contaminants in the H2?enriched product stream such as carbon monoxide (CO) and hydrogen sulfide (H2S) can significantly degrade the performance of current polymer electrolyte membrane fuel cells (PEMFC’s). Removal of such contaminants requires extensive processing of the H2?rich product stream prior to utilization by the fuel cell to generate electricity. The remaining components of the fuel processor remove the contaminants in the H2 product stream. For transportation applications the entire fuel processing system must be as small and lightweight as possible to achieve desirable performance requirements. Current efforts at Argonne National Laboratory are focused on catalyst development and reactor engineering of the autothermal processing train for transportation applications.

John F. Krebs

2003-01-01T23:59:59.000Z

425

Experimental and computational investigations of sulfur-resistant bimetallic catalysts for reforming of biomass gasification products  

SciTech Connect (OSTI)

A combination of density functional theory (DFT) calculations and experimental studies of supported catalysts was used to identify H{sub 2}S-resistant biomass gasification product reforming catalysts. DFT calculations were used to search for bimetallic, nickel-based (1 1 1) surfaces with lower sulfur adsorption energies and enhanced ethylene adsorption energies. These metrics were used as predictors for H{sub 2}S resistance and activity toward steam reforming of ethylene, respectively. Relative to Ni, DFT studies found that the Ni/Sn surface alloy exhibited enhanced sulfur resistance and the Ni/Ru system exhibited an improved ethylene binding energy with a small increase in sulfur binding energy. A series of supported bimetallic nickel catalysts was prepared and screened under model ethylene reforming conditions and simulated biomass tar reforming conditions. The observed experimental trends in activity were consistent with theoretical predictions, with observed reforming activities in the order Ni/Ru > Ni > Ni/Sn. Interestingly, Ni/Ru showed a high level of resistance to sulfur poisoning compared with Ni. This sulfur resistance can be partly explained by trends in sulfur versus ethylene binding energy at different types of sites across the bimetallic surface.

Rangan, Meghana; Yung, Matthew M.; Medlin, J. William (NREL); (Colorado)

2011-11-17T23:59:59.000Z

426

Comparison of several glycerol reforming methods for hydrogen and syngas production using Gibbs energy minimization  

Science Journals Connector (OSTI)

Abstract This paper focuses on the comparison of different glycerol reforming technologies aimed to hydrogen and syngas production. The reactions of steam reforming, partial oxidation, autothermal reforming, dry reforming and supercritical water gasification were analyzed. For this, the Gibbs energy minimization approach was used in combination with the virial equation of state. The validation of the model was made between the simulations of the proposed model and both, simulated and experimental data obtained in the literature. The effects of modifications in the operational temperature, operational pressure and reactants composition were analyzed with regard to composition of the products. The effect of coke formation was discussed too. Generally, higher temperatures and lower pressures resulted in higher hydrogen and syngas production. All reforming technologies demonstrated to be feasible for use in hydrogen or synthesis gas production in respect of the products composition. The proposed model showed good predictive ability and low computational time (close to 1 s) to perform the calculation of the combined chemical and phase equilibrium for all systems analyzed.

Antonio C.D. Freitas; Reginaldo Guirardello

2014-01-01T23:59:59.000Z

427

Steam Field | Open Energy Information  

Open Energy Info (EERE)

Field Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Steam Field Dictionary.png Steam Field: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Steam field reservoirs are special cases where the fluid is predominantly found in a gas phase between 230°C to 240°C. "This special class of resource needs to be recognized, its uniqueness being the remarkably consistent initial temperature and pressure

428

Steam in the Ring Discharge  

Science Journals Connector (OSTI)

The behaviour of steam and its decomposition products in the ring discharge has been examined. Dry hydrogen is not dissociated. The production of atomic hydrogen is dependent upon the presence of steam which dissociates into hydroxyl and atomic hydrogen. A secondary source of atomic hydrogen is then afforded by the interaction of hydroxyl with molecular hydrogen. The escape from the discharge of atomic hydrogen, a long-lived species, favours the dissociation of steam. Mercury vapour, on the other hand, inhibits the formation of atomic hydrogen and thus leads to a high equilibrium steam concentration. Unlike dry hydrogen, dry oxygen is dissociated into atoms, but these have a short life as such and recombine in the discharge to form molecular oxygen and ozone. The reaction mechanisms occurring in the discharge are discussed in the light of spectrographic results.

G I Finch

1949-01-01T23:59:59.000Z

429

Managing the Steam Trap Population  

E-Print Network [OSTI]

hundred steam traps installed only 58 were working effectively -- 42% needed attention! These programs had associated cost benefits of at least 100% return on investment, a maximum six month breakeven on cash flow, and an energy cost reduction amounting...

Atlas, R. D.

1983-01-01T23:59:59.000Z

430

Foam Cleaning of Steam Turbines  

E-Print Network [OSTI]

The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

Foster, C.; Curtis, G.; Horvath, J. W.

431

The steam engine and industrialization  

E-Print Network [OSTI]

Simon Schaffer in York Rail Museum talks to the camera about the relationship between the steam engine and industrialization and whatsteam meant; a regular supply of moving power for workshops and factories....

Dugan, David

2004-08-17T23:59:59.000Z

432

Capturing Energy Savings with Steam Traps  

E-Print Network [OSTI]

Capturing Energy Savings with Steam Traps Richard C; Bockwinkel General Manager Armstrong Service? A Division of Armstrong International, Inc. Orlando, Florida ABSTRACT This paper will discuss the energy savings potential of steam... Engineer Steam Traps Armstrong International, Inc. Three Rivers, Michigan basis. Finally, it's important to recognize that a steam trap program will reduce steam waste> which will reduce the amount of fuel burned> which will reduce pollutants...

Bockwinkel, R. G.; French, S. A.

433

Review of Orifice Plate Steam Traps  

Broader source: Energy.gov [DOE]

This guide was prepared to serve as a foundation for making informed decisions about when orifice plate steam traps should be considered for use in new or existing steam systems. It presents background information about different types of steam traps and defines their unique functional and operational characteristics. The advantages and disadvantages associated with using orifice plate steam traps are provided to highlight their capabilities and limitations. Finally, recommendations for using orifice plate steam traps are presented, and possible applications are identified.

434

The Elimination of Steam Traps  

E-Print Network [OSTI]

claims and misinformation gener ated by over thirty-six steam trap manufacturers in the United States alone. A PARTIAL LIST OF STEAM TRAP MANUFACTURERS AAF GESTRA ANDERSON HIROSS ARMSTRONG HOFFMAN BARNES &JONES HONEYWELL BRAUKMANN BESTOBELL... removal had been devised and these same methods, with minor variations, are employed today. The inverted bucket trap was in vented in 1910 by Otto Arner, a friend of Adam Armstrong. Armstrong began his business career by making bicycle spokes...

Dickman, F.

435

Energy recovery from municipal solid waste and sewage sludge using multi-solid fluidized bed combustion technology  

SciTech Connect (OSTI)

This study was initiated to investigate the recovery of energy from municipal solid waste (MSW) and domestic sewage sludge (DSS) simultaneously by using Battelle's multi-solid fluidized-bed combustion (MS-FBC) technology. The concept was to recover energy as high and low pressure steam, simultaneously. High pressure steam would be generated from flue gas using a conventional tubular boiler. Low pressure steam would be generated by direct contact drying of DSS (as 4% solids) with hot sand in a fluidized bed that is an integral part of the MS-FBC process. It was proposed that high pressure steam could be used for district heating or electricity generation. The low pressure steam could be used for close proximity building heat. Alternatively, low pressure steam could be used to heat wastewater in a sewage treatment plant to enhance sedimentation and biological activity that would provide a captive market for this part of the recovered energy. The direct contact drying or tubeless steam generation eliminates fouling problems that are common during heat exchange with DSS. The MS-FBC process was originally developed for coal and was chosen for this investigation because its combustion rate is about three times that of conventional fluidized beds and it was projected to have the flexibility needed for accomplishing tubeless steam generation. The results of the investigation show that the MS-FBC process concept for the co-utilization of MSW and DSS is technically feasible and that the thermal efficiency of the process is 76 to 82% based on experiments conducted in a 70 to 85 lb/h pilot plant and calculations on three conceptual cases.

Not Available

1981-07-01T23:59:59.000Z

436

Heat transfer characteristics of fluidized bed heat exchanger in a 300 MW CFB boiler  

Science Journals Connector (OSTI)

In order to investigate the heat transfer characteristics of fluidized bed heat exchanger (FBHE), a series of experiments was carried out in a commercial 300 MW circulating fluidized bed (CFB) boiler with FBHE. The parameters of steam, solids and air in FBHE were measured at different boiler loads, based on which the absorbed heat and heat transfer coefficient were calculated. Further study indicates that when the calculated results are applied to the design of large-scale CFB boilers, the bed side heat transfer coefficient in FBHE can be simplified as the function of solids temperature and flow. Therefore, the empirical model of heat transfer coefficient at bed side is put forward. The deviation between calculated results and measured values is acceptable in engineering application. This model provides strong support for the FBHE design in 600 MW supercritical CFB boilers.

Man Zhang; Haibo Wu; Qinggang Lu; Yunkai Sun; Guoliang Song

2012-01-01T23:59:59.000Z

437

Safety and Security Directives Reform  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reforming a "Mountain" of Policy Reforming a "Mountain" of Policy Beginning with his confirmation hearings in January 2009, Energy Secretary Steven Chu challenged the Department of Energy to take a fresh look at how we conduct business. This challenge provided the opportunity for DOE to put in place the most effective and efficient strategies to accomplish the Department's missions safely and securely. In response to the Secretary's challenge and building on the results of Deputy Secretary Poneman's Safety and Security Reform studies, the Office of Health, Safety and Security (HSS) broadened its directives review activities during 2009. By November 2009 HSS had initiated a disciplined review of all health, safety, and security directives, which included a systematic review of the Department's safety and security regulatory model.

438

Catalytic Air Gasification of Plastic Waste (Polypropylene) in a Fluidized Bed. Part II: Effects of Some Operating Variables on the Quality of the Raw Gas Produced Using Olivine as the In-Bed Material  

Science Journals Connector (OSTI)

Catalytic Air Gasification of Plastic Waste (Polypropylene) in a Fluidized Bed. ... Wu et al.(11) reported a process involving pyrolysis combined with catalytic steam gasification for postconsumer plastic wastes, mixed plastics, and real-world plastic wastes. ... In this case, the plastic waste was composed of a mixture of PE and PP (50 wt %) from the car industry. ...

José M. Toledo; María P. Aznar; Jesús A. Sancho

2011-09-26T23:59:59.000Z

439

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network [OSTI]

to make additional steam for the steam turbine cycle. Thein multi-pressure-level steam turbines to produce additionalthe superheated steam to the steam turbine cycle. The most

Lu, Xiaoming

2012-01-01T23:59:59.000Z

440

Design and Experimental Study of the Steam Mining System for Natural Gas Hydrates  

Science Journals Connector (OSTI)

Figure 3. Schematic diagram of the SMSGH: (1) water tank, (2) water pump, (3) water treatment system, (4) soft water tank, (5) small pump, (6) electricity steam generator, (7) steam control valve, (8) orifice device, (9) dual-wall drill pipe, (10) non-productive layer bushing, (11) floral tube in the mined bed, (12) submersible pump, (13) air pump, (14) water tank, (15) gas–liquid separator, (16) cartridge gas filter, (17) gas flow meter, (18) gas storage tank, and (19) ignition device. ... The working principle of the gas collection system is as follows: The obtained natural gas spills from the layer of earth through the floral tube in the mined bed (11) and will generate a high flow rate with the vapor and water mixture using the pump function of the air pump (13). ... Hydrates continuously generated natural gas. ...

You-hong Sun; Rui Jia; Wei Guo; Yong-qin Zhang; You-hai Zhu; Bing Li; Kuan Li

2012-11-06T23:59:59.000Z

Note: This page contains sample records for the topic "bed steam reformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT  

SciTech Connect (OSTI)

Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Power’s Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: • scale up of gas to solid heat transfer • high temperature finned surface design • the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas-to-solids heat transfer. A stress test rig was built and tested to provide validation data for a stress model needed to support high temperature finned surface design. Additional cold flow model tests and MTF tests were conducted to address mechanical and process design issues. This information was then used to design and cost a commercial CMB design concept. Finally, the MBHE was reconfigured into a slice arrangement and tested for an extended duration at a commercial CFB plant.

Jukkola, Glen

2010-06-30T23:59:59.000Z

442

Bed drain cover assembly for a fluidized bed  

DOE Patents [OSTI]

A loose fitting movable cover plate (36), suitable for the severe service encountered in a fluidized bed combustor (10), restricts the flow of solids into the combustor drain lines (30) during shutdown of the bed. This cover makes it possible to empty spent solids from the bed drain lines which would otherwise plug the piping between the drain and the downstream metering device. This enables use of multiple drain lines each with a separate metering device for the control of solids flow rate.

Comparato, Joseph R. (Bloomfield, CT); Jacobs, Martin (Hartford, CT)

1982-01-01T23:59:59.000Z

443

Best Management Practice #8: Boiler and Steam Systems | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

implement a routine inspection and maintenance program to check steam traps and steam lines for leaks. Repair leaks and replace faulty steam traps as soon as possible. Develop...

444

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

Broader source: Energy.gov [DOE]

This tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

445

Systematic Errors in Measuring the Energy of Wet Steam with Dry-Steam Meters  

Science Journals Connector (OSTI)

Systematic errors are considered in measuring mass flow rate, specific enthalpy, thermal power, and energy for wet steam by means of meters intended for dry saturated steam.

E. G. Abarinov; K. S. Sarelo

2002-03-01T23:59:59.000Z

446

Some Comments on James Watt's Published Account of His Work on Steam and Steam Engines  

Science Journals Connector (OSTI)

1 June 1971 research-article Some Comments on James Watt's Published Account of His Work on Steam and Steam Engines W. A. Smeaton

1971-01-01T23:59:59.000Z

447

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

SciTech Connect (OSTI)

Industrial Technologies Program's BestPractices tip sheet on improving efficiency of industrial steam systems by recovery latent heat from low-pressure steam.

Not Available

2005-09-01T23:59:59.000Z

448

Steam Pressure Reduction, Opportunities, and Issues  

SciTech Connect (OSTI)

Steam pressure reduction has the potential to reduce fuel consumption for a minimum capital investment. When the pressure at the boiler is reduced, fuel and steam are saved as a result of changes in the high-pressure side of the steam system from the boiler through the condensate return system. In the boiler plant, losses from combustion, boiler blowdown, radiation, and steam venting from condensate receivers would be reduced by reducing steam pressure. Similarly, in the steam distribution system, losses from radiation, flash steam vented from condensate receivers, and component and steam trap leakage would also be reduced. There are potential problems associated with steam pressure reduction, however. These may include increased boiler carryover, boiler water circulation problems in watertube boilers, increased steam velocity in piping, loss of power in steam turbines, and issues with pressure reducing valves. This paper is based a Steam Technical Brief sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and Enbridge Gas Distribution, Inc. (5). An example illustrates the use of DOE BestPractices Steam System Assessment Tool to model changes in steam, fuel, electricity generation, and makeup water and to estimate resulting economic benefits.

Berry, Jan [ORNL; Griffin, Mr. Bob [Enbridge Gas Distribution, Inc.; Wright, Anthony L [ORNL

2006-01-01T23:59:59.000Z

449

Effects of Current on Microcosmic Properties of Catalyst and Reforming of Bio-oil  

Science Journals Connector (OSTI)

Highly effective production of hydrogen from bio-oil was achieved by using a low-temperature electrochemical catalytic reforming approach over the conventional Ni-based reforming catalyst (NiO-Al2O3), where an AC electronic current passed through the catalyst bed. The promoting effects of current on the bio-oil reforming were studied. It was found that the performance of the bio-oil reforming was remarkably enhanced by the current which passed through the catalyst. The effects of currents on the microcosmic properties of the catalyst, including the Brunauer–Emmett–Teller (BET) surface area, pore diameter, pore volume, the size of the crystallites and the reduction level of NiO into Ni, were carefully characterized by BET, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscope. The desorption of the thermal electrons from the electrified catalyst was directly observed by the TOF (time of flight) measurements. The mechanism of the electrochemical catalytic reforming of bio-oil is discussed based on the above investigation.

Li-xia Yuan; Tong-qi Ye; Fei-yan Gong; Quan-xin Li

2009-01-01T23:59:59.000Z

450

Coal Bed Methane Primer  

SciTech Connect (OSTI)

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

451

Production of Middle Caloric Fuel Gas from Coal by Dual-Bed Gasification Technology  

Science Journals Connector (OSTI)

This work demonstrated the dual-bed gasification technology on a pilot plant (1000 tons of coal/a) mainly consisting of a fluidized-bed gasifier and a pneumatic combustor using the coal with a particle size of less than 20 mm. ... It can be seen in Table 1 that the mass fraction of the coal with sizes less than 2.0 mm was about 45 wt %. ... Coal was continuously fed in the gasifier, and meanwhile, air or gas mixture (air and steam) as the fluidizing medium and gasifying reagent was introduced from the bottom of the gasifier. ...

Yin Wang; Wen Dong; Li Dong; Junrong Yue; Shiqiu Gao; Toshiyuki Suda; Guangwen Xu

2010-04-23T23:59:59.000Z

452

Fluidized bed boiler feed system  

DOE Patents [OSTI]

A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

Jones, Brian C. (Windsor, CT)

1981-01-01T23:59:59.000Z

453

Biparticle fluidized bed reactor  

DOE Patents [OSTI]

A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

Scott, C.D.; Marasco, J.A.

1995-04-25T23:59:59.000Z

454

Biparticle fluidized bed reactor  

DOE Patents [OSTI]

A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

Scott, C.D.; Marasco, J.A.

1996-02-27T23:59:59.000Z

455

Efficient Utilization of Greenhouse Gas in a Gas-to-Liquids Process Combined with Carbon Dioxide Reforming of Methane  

Science Journals Connector (OSTI)

And it is found that the operation of the process can be successfully done without any CO2 absorber and separation units, and GHG emission is significantly reduced by recycling some portion of the unreacted syngas mixture and CO2 generated from combustion at the reformer burner. ... The basic idea is to thermally couple a gasifier, fed with coal and steam, and a combustor where coal is burnt with air, thus overcoming the need of expensive pure oxygen as a feedstock. ...

Kyoung-Su Ha; Jong Wook Bae; Kwang-Jae Woo; Ki-Won Jun

2010-01-15T23:59:59.000Z

456

Plasma catalytic reforming of methane  

Science Journals Connector (OSTI)

Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This article describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius), and a high degree of dissociation and a substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (40% H2, 17% CO2 and 33% N2, for partial oxidation/water shifting) can be efficiently made in compact plasma reformers. Experiments have been carried out in a small device (2–3 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H2 with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content (?1.5%) with power densities of ?30 kW (H2 HHV)/l of reactor, or ?10 m3/h H2 per liter of reactor. Power density should further increase with increased power and improved design.

L Bromberg; D.R Cohn; A Rabinovich; N Alexeev

1999-01-01T23:59:59.000Z

457

NEPA Contracting Reform Guidance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Contracting Reform Guidance Contracting Reform Guidance NEPA Contracting Reform Guidance This documents provides guidance on NEPA contracting strategy, including: defining the work of the contractor; establishing contracts ahead of time; minimizing cost while maintaining quality. Guidance also provides: model statements of work, direction on NEPA contract management by NEPA Document Manager; a system for measuring NEPA costs and for evaluating contractor procedures; details on the DOE NEPA website. NEPA Contracting Reform Guidance More Documents & Publications NEPA Contracting Reform Guidance (December 1996) Statement of Work-National Environmental Policy Act (NEPA) Support Services Acquisition: Preparation and Review of Environmental Impact Statements, Environmental Assessments, Environmental Reports, and other Environmental

458

Unfunded Mandates Reform Act; Intergovernmental Consultation | Department  

Broader source: Energy.gov (indexed) [DOE]

Unfunded Mandates Reform Act; Intergovernmental Consultation Unfunded Mandates Reform Act; Intergovernmental Consultation Unfunded Mandates Reform Act; Intergovernmental Consultation The Department of Energy (DOE) today publishes a final statement of policy on intergovernmental consultation under the Unfunded Mandates Reform Act of 1995. The policy reflects the guidelines and instructions that the Director of the Office of Management and Budget (OMB) provided to each agency to develop, with input from State, local, and tribal officials, an intergovernmental consultation process with regard to significant intergovernmental mandates contained in a notice of proposed rulemaking. Unfunded Mandates Reform Act; Intergovernmental Consultation More Documents & Publications TEC Working Group Topic Groups Tribal Key Documents

459

Unfunded Mandates Reform Act; Intergovernmental Consultation | Department  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Unfunded Mandates Reform Act; Intergovernmental Consultation Unfunded Mandates Reform Act; Intergovernmental Consultation Unfunded Mandates Reform Act; Intergovernmental Consultation The Department of Energy (DOE) today publishes a final statement of policy on intergovernmental consultation under the Unfunded Mandates Reform Act of 1995. The policy reflects the guidelines and instructions that the Director of the Office of Management and Budget (OMB) provided to each agency to develop, with input from State, local, and tribal officials, an intergovernmental consultation process with regard to significant intergovernmental mandates contained in a notice of proposed rulemaking. Unfunded Mandates Reform Act; Intergovernmental Consultation More Documents & Publications TEC Working Group Topic Groups Tribal Key Documents

460

Fluidized-bed retrofit a practical alternative to FGD  

SciTech Connect (OSTI)

When SO/sub 2/ emissions from an existing utility boiler must be reduced, retrofitting for fluidized-bed combustion may be an attractive alternative. In addition to reducing atmospheric pollutants during combustion, FBC retrofits allow simultaneous burning of a wide range of low-cost fuels. Also, since new components are incorporated in the steam generator rather than added on as pollution-control equipment, they extend the use of the plant beyond its normal life expectancy. There are five types of fossil-fuel-fired boilers used by utilities (pulverized coal, cyclone, stoker, oil, and gas), and literally hundreds of designs. Not all of these designs lend themselves to FBC retrofit, and much depends on the size and age of the boiler. Units that are not structurally sound or that have extensive internal corrosion are generally not suitable. Boilers over 150 MW usually have complicated water circuitry and small furnace plan areas, and may not have enough space to accommodate the fluidized bed. Other important considerations are: Water/steam-circulation design, Furnace bottom-to-grade clearance, Air-heater type and arrangement, Boiler support, Type of particulate-control device, Fan capacity, Space available in the boiler island for alterations.

Stringfellow, T.E.; Nolte, F.S.; Sage, W.L.

1984-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed steam reformer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Catalyst deactivation by coking in the MTG process in fixed and fluidized bed reactors  

Science Journals Connector (OSTI)

The validity of a kinetic model for describing the deactivation of a catalyst based on a HZSM5 zeolite has been studied by carrying out reaction in fixed and fluidized bed reactors. The kinetic model takes into account that activity is dependent on the concentration of the lumps of oxygenates, of light olefins and of the remaining products and shows that coke formation capability follows this order. The difference between the deactivation kinetic constants calculated for the fixed and fluidized bed reactors is explained by the effect of the steam produced in the reaction, where coke stripping attenuates deactivation. Future improvements in the deactivation kinetic model must take into account coke stripping by the steam produced in the reaction.

Andrés T. Aguayo; Ana G. Gayubo; JoséM. Ortega; Martin Olazar; Javier Bilbao

1997-01-01T23:59:59.000Z

462

What Determines the Likelihood of Structural Reforms?  

Science Journals Connector (OSTI)

Abstract We use data for a panel of 60 countries over the period 1980-2005 to investigate the main drivers of the likelihood of structural reforms. We find that: (i) external debt crises are the main trigger of financial and banking reforms; (ii) inflation and banking crises are the key drivers of external capital account reforms; (iii) banking crises also hasten financial reforms; and (iv) economic recessions play an important role in promoting the necessary consensus for financial, capital, banking and trade reforms, especially in the group of OECD-countries. Additionally, we also observe that the degree of globalisation is relevant for financial reforms, in particular in the group of non-OECD countries. Moreover, an increase in the income gap accelerates the implementation of structural reforms, but increased political fragmentation does not seem to have a significant impact.

Luca Agnello; Vitor Castro; Joăo Tovar Jalles; Ricardo M. Sousa

2014-01-01T23:59:59.000Z

463

Determining average bed temperature of nonisothermal fixed-bed hydrotreater  

Science Journals Connector (OSTI)

Employing three catalysts in three parallel pilot-scale fixed-bed reactors, hydrotreating experiments were performed in both isothermal and ascending temperature modes to investigate kinetics and to determine a representative bed temperature. Assuming 1.5th-order for hydrodesulfurization (HDS) and 1st-order for both hydrodenitrogenation (HDN) and mild hydrocracking (MHC), kinetic parameters were obtained from the isothermal mode operation. With the activation energies from isothermal operations, equivalent isothermal temperatures (EITs) in the ascending mode operations were established for specific HDS, HDN and MHC. Employing 19 thermocouple readouts in the catalyst beds and applying an Arrhenius-type rate equation containing the same activation energy, the representative bed temperature was determined. The temperature so determined is called kinetic EIT. The kinetic EIT was found to be the best to represent the nonisothermal bed temperature. The kinetic EIT has been applied to monitoring the catalyst activity in commercial hydrotreating units.

Sok Yui; John Adjaye

2004-01-01T23:59:59.000Z

464

Evaluation of steam path audits  

SciTech Connect (OSTI)

Tri-State Generation and Transmission association is the operating agent for the 1350 megawatt Craig Generating Station, located in northwestern Colorado. Tri-State has recently incorporated turbine steam path audits into their aggressive performance improvement program. The intent of the audits are to quantify and attain the most cost effective increase in turbine performance as a result of a major outage. Valuable information about performance losses in the turbine has been obtained from steam path audits conducted on the three Craig Units. However, accurate audit results often depend on the quality of measurements and the experience of the auditor. Without a second method to verify the results of a steam path audit, repairs might be performed on a non-cost effective basis, or significant performance degradations might be overlooked. In addition, an inaccurate audit may lead to erroneous expectations for performance improvements resulting from the maintenance performed during the outage.

Caudill, M.B. [Tri-State Generation and Transmission Association, Inc., Montrose, CO (United States); Griebenow, R.D. [SAIC, Huntersville, NC (United States)

1995-06-01T23:59:59.000Z

465

Lowest Pressure Steam Saves More BTU's Than You Think  

E-Print Network [OSTI]

ABSTRACT Steam is the most transferring heat from But most steam systems LOWEST PRESSURE STEAM SAVES MORE BTU'S THAN YOU THINK Stafford J. Vallery Armstrong Machine Works Three Rivers, Michigan steam to do the process heating rather than...

Vallery, S. J.

466

Power plant computer aided design software char properties generated by a fluidized bed gasifier  

E-Print Network [OSTI]

and process steam. The most reliable way to convert cotton gin trash to energy is through gasification. The carbon conversion of the fluidized bed gasification system developed by TAES is not efficient. The char collected by the cleanup subsystem contains... to thermochemical conversion of cotton gin waste including fuel analyses (Schacht ~ 1978), fuel feed, combustion (LePori et a 1. , 1981), gasification (Groves, 1979; Craig, 1980; LePori et al. , 1981), gas cleanup (Datin, 1983; Jones et al. , 1984) low energy...

Siebold, Walter Joachim

2012-06-07T23:59:59.000Z

467

Gasification Characteristics of Coal/Biomass Blend in a Dual Circulating Fluidized Bed Reactor  

Science Journals Connector (OSTI)

circulating flow/forestry, agricultural waste, industry wastes + coalcoke ... Whereas, a dual fluidized bed gasification technology enables production of the medium calorific value gas (12?18 MJ/Nm3) by separating the combustion and gasification zones in which steam is used as a gasifying agent. ... Since Quercus acutissima is widely used in building, pulp, and shipping industries, its demand and supply in Korea is high. ...

Myung Won Seo; Jeong Hoi Goo; Sang Done Kim; See Hoon Lee; Young Chan Choi

2010-04-23T23:59:59.000Z

468

The steam engine and what it needs  

E-Print Network [OSTI]

Simon Schaffer explains that to produce an effective steam engine you do not just need specific inventions, such as the separate condenser of James Watt, but also skills from clockworking, distillation, metal working and so on. Then the steam power...

Dugan, David

2004-08-18T23:59:59.000Z

469

Insulate Steam Distribution and Condensate Return Lines  

Broader source: Energy.gov [DOE]

This tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

470

The Future of Steam: A Preliminary Discussion  

E-Print Network [OSTI]

Steam production represents a significant proportion of today's industrial energy demand. But the evolution of process technologies, as well as turbulence in energy markets, suggests that steam's role may be subject to change in the next decade...

Russell, C.; Harrell, G.; Moore, J.; French, S.

471

Benchmark the Fuel Cost of Steam Generation  

SciTech Connect (OSTI)

This revised ITP tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

472

Insulate Steam Distribution and Condensate Return Lines  

SciTech Connect (OSTI)

This revised ITP tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

473

Steam System Assessment Tool (CD-ROM)  

SciTech Connect (OSTI)

The tool will help users determine the potential energy cost and emission savings of key steam-system improvements. The tool is designed for energy operations, production, project managers, and engineers who are responsible for steam systems.

Not Available

2002-12-01T23:59:59.000Z

474

FEMP-FTA--Steam Trap Performance Assessment  

Broader source: Energy.gov (indexed) [DOE]

Steam Trap Function Steam Trap Function Steam traps are automatic valves used in every steam system to remove conden- sate, air, and other non-condensable gases while preventing or minimizing the passing of steam. If condensate is allowed to collect, it reduces the flow capacity of steam lines and the thermal capacity of heat transfer equipment. In addition, excess condensate can lead to "water hammer," with potentially destructive and dangerous results. Air that remains after system startup reduces steam pressure and temperature and may also reduce the thermal capacity of heat transfer equipment. Non-condensable gases, such as oxygen and carbon dioxide, cause corrosion. Steam that passes through the trap provides no heating ser- vice. This effectively reduces the heating capacity

475

Warm or Steaming Ground | Open Energy Information  

Open Energy Info (EERE)

Warm or Steaming Ground Warm or Steaming Ground Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Warm or Steaming Ground Dictionary.png Warm or Steaming Ground: An area where geothermal heat is conducted to the earth's surface, warming the ground and sometimes causing steam to form when water is present. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Steam rising from the ground at Eldvorp, a 10 km row of craters, in Southwestern Iceland. http://www.visiticeland.com/SearchResults/Attraction/eldvorp Warm or steaming ground is often an indicator of a geothermal system beneath the surface. In some cases a geothermal system may not show any

476

Pulsed atmospheric fluidized bed combustion  

SciTech Connect (OSTI)

The general specifications for a Pulsed Atmospheric Fluidized Bed Combustor Design Report (PAFBC) plant are presented.