National Library of Energy BETA

Sample records for bed methane protection

  1. Coal Bed Methane Primer

    SciTech Connect (OSTI)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

  2. Saga of coal bed methane, Ignacio Blanco gas field, Colorado

    SciTech Connect (OSTI)

    Boyce, B.C.; Harr, C.L.; Burch, L.C. )

    1989-09-01

    Prior to the 1977 discovery of the Cedar Hill Basal Fruitland pool (the first officially designated coal-bed methane field in the western US) 28.5 bcf of gas had been produced from Fruitland Formation coal seams in the Ignacio Blanco Fruitland-Pictured Cliffs field, Northern San Juan basin, Colorado. The discovery well for the field, Southern Ute D-1, was drilled and completed in 1951 on the Ignacio anticline, La Plata County, Colorado. Initial completion was attempted in the Pictured Cliffs Sandstone. The well was plugged back after making water from the Pictured Cliffs and was completed in the lower coal-bearing section of the Fruitland Formation. The well produced 487,333 mcf of gas in nine years and was abandoned in 1959 due to water encroachment. Additionally, 52 similarly completed Ignacio anticline Fruitland wells were abandoned by the early 1970s due to the nemesis of If it's starting to kick water, you're through. Under today's coal-bed methane technology and economics, Amoco has twinned 12 of the abandoned wells, drilled five additional wells, and is successfully dewatering and producing adsorbed methane from previously depleted coal sections of the Ignacio structure. Field-wide drilling activity in 1988 exceeded all previous annual levels, with coal-seam degasification projects leading the resurgence. Drilling and completion forecasts for 1989 surpass 1988 levels by 50%.

  3. Enhanced Coal Bed Methane Recovery and CO2 Sequestration in the Powder River Basin

    SciTech Connect (OSTI)

    Eric P. Robertson

    2010-06-01

    Unminable coal beds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this report is to provide a final topical report on enhanced coal bed methane recovery and CO2 sequestration to the U.S. Department of Energy in fulfillment of a Big Sky Carbon Sequestration Partnership milestone. This report summarizes work done at Idaho National Laboratory in support of Phase II of the Big Sky Carbon Sequestration Partnership. Research that elucidates the interaction of CO2 and coal is discussed with work centering on the Powder River Basin of Wyoming and Montana. Sorption-induced strain, also referred to as coal swelling/shrinkage, was investigated. A new method of obtaining sorption-induced strain was developed that greatly decreases the time necessary for data collection and increases the reliability of the strain data. As coal permeability is a strong function of sorption-induced strain, common permeability models were used to fit measured permeability data, but were found inadequate. A new permeability model was developed that can be directly applied to coal permeability data obtained under laboratory stress conditions, which are different than field stress conditions. The coal permeability model can be used to obtain critical coal parameters that can be applied in field models. An economic feasibility study of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming was done. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can effectively sequester over 86,000 tons (78,200 Mg) of CO2 per acre while recovering methane to offset costs. The cost to separate CO2 from flue gas was identified as the major cost driver associated with CO2 sequestration in unminable coal seams. Improvements in separations technology alone are unlikely to drive costs low enough for CO2 sequestration in unminable coal seams in the Powder River Basin to become economically viable. Breakthroughs in separations technology could aid the economics, but in the Powder River Basin, they cannot achieve the necessary cost reductions for breakeven economics without incentives.

  4. A Perspective of petroleum, natural gas, and coal bed methane on the energy security of India

    SciTech Connect (OSTI)

    Ghose, M.K.; Paul, B.

    2008-07-01

    The global energy requirement has grown at a phenomenal rate and the consumption of primary energy sources has been a very high positive growth. This article focuses on the consumption of different primary energy sources and it identifies that coal will continue to remain as the prime energy in the foreseeable future. It examines energy requirement perspectives for India and demands of petroleum, natural gas, and coal bed methane in the foreseeable future. It discusses the state of present day petroleum and petrochemical industries in the country and the latest advances in them to take over in the next few years. The regional pattern of consumption of primary energy sources shows that oil remains as the largest single source of primary energy in most parts of the world. However, gas dominates as the prime source in some parts of the world. Economic development and poverty alleviation depend on securing affordable energy sources and for the country's energy security; it is necessary to adopt the latest technological advances in petroleum and petrochemical industries by supportive government policies. But such energy is very much concerned with environmental degradation and must be driven by contemporary managerial acumen addressing environmental and social challenges effectively. Environmental laws for the abatement of environmental degradation are discussed in this paper. The paper concludes that energy security leading to energy independence is certainly possible and can be achieved through a planned manner.

  5. Sequestration and Enhanced Coal Bed Methane: Tanquary Farms Test Site, Wabash County, Illinois

    SciTech Connect (OSTI)

    Scott Frailey; Thomas Parris; James Damico; Roland Okwen; Ray McKaskle; Charles Monson; Jonathan Goodwin; E. Beck; Peter Berger; Robert Butsch; Damon Garner; John Grube; Keith Hackley; Jessica Hinton; Abbas Iranmanesh; Christopher Korose; Edward Mehnert; Charles Monson; William Roy; Steven Sargent; Bracken Wimmer

    2012-05-01

    The Midwest Geological Sequestration Consortium (MGSC) carried out a pilot project to test storage of carbon dioxide (CO{sub 2}) in the Springfield Coal Member of the Carbondale Formation (Pennsylvanian System), in order to gauge the potential for large-scale CO{sub 2} sequestration and/or enhanced coal bed methane recovery from Illinois Basin coal beds. The pilot was conducted at the Tanquary Farms site in Wabash County, southeastern Illinois. A four-well design— an injection well and three monitoring wells—was developed and implemented, based on numerical modeling and permeability estimates from literature and field data. Coal cores were taken during the drilling process and were characterized in detail in the lab. Adsorption isotherms indicated that at least three molecules of CO{sub 2} can be stored for each displaced methane (CH{sub 4}) molecule. Microporosity contributes significantly to total porosity. Coal characteristics that affect sequestration potential vary laterally between wells at the site and vertically within a given seam, highlighting the importance of thorough characterization of injection site coals to best predict CO{sub 2} storage capacity. Injection of CO{sub 2} gas took place from June 25, 2008, to January 13, 2009. A “continuous” injection period ran from July 21, 2008, to December 23, 2008, but injection was suspended several times during this period due to equipment failures and other interruptions. Injection equipment and procedures were adjusted in response to these problems. Approximately 92.3 tonnes (101.7 tons) of CO{sub 2} were injected over the duration of the project, at an average rate of 0.93 tonne (1.02 tons) per day, and a mode injection rate of 0.6–0.7 tonne/day (0.66–0.77 ton/day). A Monitoring, Verification, and Accounting (MVA) program was set up to detect CO{sub 2 leakage. Atmospheric CO{sub 2} levels were monitored as were indirect indicators of CO{sub 2} leakage such as plant stress, changes in gas composition at wellheads, and changes in several shallow groundwater characteristics (e.g., alkalinity, pH, oxygen content, dissolved solids, mineral saturation indices, and isotopic distribution). Results showed that there was no CO{sub 2} leakage into groundwater or CO{sub 2} escape at the surface. Post-injection cased hole well log analyses supported this conclusion. Numerical and analytical modeling achieved a relatively good match with observed field data. Based on the model results the plume was estimated to extend 152 m (500 ft) in the face cleat direction and 54.9 m (180 ft) in the butt cleat direction. Using the calibrated model, additional injection scenarios—injection and production with an inverted five-spot pattern and a line drive pattern—could yield CH{sub 4} recovery of up to 70%.

  6. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    SciTech Connect (OSTI)

    James Bauder

    2008-09-30

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when water supplies sourced from coalbed methane extraction are plentiful. Constructed wetlands, planted to native, salt tolerant species demonstrated potential to utilize substantial volumes of coalbed methane product water, although plant community transitions to mono-culture and limited diversity communities is a likely consequence over time. Additionally, selected, cultured forage quality barley varieties and native plant species such as Quail bush, 4-wing saltbush, and seaside barley are capable of sustainable, high quality livestock forage production, when irrigated with coalbed methane product water sourced from the Powder River Basin. A consequence of long-term plant water use which was enumerated is elevated salinity and sodicity concentrations within soil and shallow alluvial groundwater into which coalbed methane product water might drain. The most significant conclusion of these investigations was the understanding that phytoremediation is not a viable, effective technique for management of coalbed methane product water under the present circumstances of produced water within the Powder River Basin. Phytoremediation is likely an effective approach to sodium and salt removal from salt-impaired sites after product water discharges are discontinued and site reclamation is desired. Coalbed methane product water of the Powder River Basin is most frequently impaired with respect to beneficial use quality by elevated sodicity, a water quality constituent which can cause swelling, slaking, and dispersion of smectite-dominated clay soils, such as commonly occurring within the Powder River Basin. To address this issue, a commercial-scale fluid-bed, cationic resin exchange treatment process and prototype operating treatment plant was developed and beta-tested by Drake Water Technologies under subcontract to this award. Drake Water Technologies secured U.S. Patent No. 7,368,059-B2, 'Method for removal of benevolent cations from contaminated water', a beta Drake Process Unit (DPU) was developed and deployed for operation in the Powder River Basin. First year operatio

  7. Summary of Technical Meeting To Compare US/French Approaches for Physical Protection Test Beds

    SciTech Connect (OSTI)

    Mack, Thomas Kimball; Martinez, Ruben; Thomas, Gerald; Palut, Jean-Michel

    2016-01-01

    In September 2015, representatives of the US Department of Energy/National Nuclear Security Administration, including test bed professionals from Sandia National Laboratories, and representatives of the French Alternative Energies and Atomic Energy Commission participated in a one-week workshop to share best practices in design, organization, operations, utilization, improvement, and performance testing of physical protection test beds. The intended workshop outcomes were to (1) share methods of improving respective test bed methodologies and programs and (2) prepare recommendations for standards regarding creating and operating testing facilities for nations new to nuclear operations. At the workshop, the French and American subject matter experts compared best practices as developed at their respective test bed sites; discussed access delay test bed considerations; and presented the limitations/ constraints of physical protection test beds.

  8. China United Coalbed Methane Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Coalbed Methane Co Ltd Jump to: navigation, search Name: China United Coalbed Methane Co Ltd Place: Beijing Municipality, China Zip: 100011 Product: Coal bed methane developer in...

  9. A Physical Protection Systems Test Bed for International Counter-Trafficking System Development

    SciTech Connect (OSTI)

    Stinson, Brad J; Kuhn, Michael J; Donaldson, Terrence L; Richardson, Dave; Rowe, Nathan C; Younkin, James R; Pickett, Chris A

    2011-01-01

    Physical protection systems have a widespread impact on the nuclear industry in areas such as nuclear safeguards, arms control, and trafficking of illicit goods (e.g., nuclear materials) across international borders around the world. Many challenges must be overcome in design and deployment of foreign border security systems such as lack of infrastructure, extreme environmental conditions, limited knowledge of terrain, insider threats, and occasional cultural resistance. Successful security systems, whether it be a system designed to secure a single facility or a whole border security system, rely on the entire integrated system composed of multiple subsystems. This test bed is composed of many unique sensors and subsystems, including wireless unattended ground sensors, a buried fiber-optic acoustic sensor, a lossy coaxial distributed sensor, wireless links, pan-tilt-zoom cameras, mobile power generation systems, unmanned aerial vehicles, and fiber-optic-fence intrusion detection systems. A Common Operating Picture software architecture is utilized to integrate a number of these subsystems. We are currently performance testing each system for border security and perimeter security applications by examining metrics such as probability of sense and a qualitative understanding of the sensor s vulnerability of defeat. The testing process includes different soil conditions for buried sensors (e.g., dry, wet, and frozen) and an array of different tests including walking, running, stealth detection, and vehicle detection. Also, long term sustainability of systems is tested including performance differences due to seasonal variations (e.g. summer versus winter, while raining, in foggy conditions). The capabilities of the test bed are discussed. Performance testing results, both at the individual component level and integrated into a larger system for a specific deployment (in situ), help illustrate the usefulness and need for integrated testing facilities to carry out this mission. The test bed provides access to grassy fields, wooded areas, and a large waterway three distinct testing environments. The infrastructure supporting deployment of systems at the test bed includes grid power, renewable power systems, climate controlled enclosures, high bandwidth wireless links, and a fiber optic communications backbone. With over 10 acres of dedicated area and direct waterway access, the test bed is well suited for long term test and evaluation of physical protection and security systems targeting a wide range of applications.

  10. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    SciTech Connect (OSTI)

    Knutson, Chad; Dastgheib, Seyed A.; Yang, Yaning; Ashraf, Ali; Duckworth, Cole; Sinata, Priscilla; Sugiyono, Ivan; Shannon, Mark A.; Werth, Charles J.

    2012-07-01

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO2 enhanced oil recovery (CO2-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO2-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter ($15 to $60 per 1000 gallons), with treatment costs accounting for 13-23% of the overall cost. Results from this project suggest that produced water is a potential large source of cooling water, but treatment and transportation costs for this water are large.

  11. Analysis of fixed bed data for the extraction of a rate mechanism for the reaction of hematite with methane

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Breault, Ronald W.; Monazam, Esmail R.

    2015-04-01

    In this study, chemical looping combustion is a promising technology for the capture of CO2 involving redox materials as oxygen carriers. The effects of reduction conditions, namely, temperature and fuel partial pressure on the conversion products are investigated. The experiments were conducted in a laboratory fixed-bed reactor that was operated cyclically with alternating reduction and oxidation periods. Reactions are assumed to occur in the shell surrounding the particle grains with diffusion of oxygen to the surface from the grain core. Activation energies for the shell and core reactions range from 9 to 209 kJ/mol depending on the reaction step.

  12. US EPA Landfill Methane Outreach Program | Open Energy Information

    Open Energy Info (EERE)

    EPA Landfill Methane Outreach Program Jump to: navigation, search Name US EPA Landfill Methane Outreach Program AgencyCompany Organization United States Environmental Protection...

  13. Methane production by attached film

    DOE Patents [OSTI]

    Jewell, William J.

    1981-01-01

    A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

  14. METHOD FOR PRODUCING ISOTOPIC METHANES AND PARTIALLY HALOGENATED DERIVATIVES THEROF

    DOE Patents [OSTI]

    Frazer, J.W.

    1959-08-18

    A method is given for producing isotopic methanes and/ or partially halogenated derivatives. Lithium hydride, deuteride, or tritide is reacted with a halogenated methane or with a halogenated methane in combination with free halogen. The process is conveniently carried out by passing a halogenated methane preferably at low pressures or in an admixture with an inert gas through a fixed bed of finely divided lithium hydride heated initially to temperatures of 100 to 200 deg C depending upon the halogenated methane used.

  15. Methane Credit | Open Energy Information

    Open Energy Info (EERE)

    Methane Credit Jump to: navigation, search Name: Methane Credit Place: Charlotte, North Carolina Zip: 28273 Product: Specialises in utilising methane produced on municipal landfill...

  16. Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460

    SciTech Connect (OSTI)

    Yanochko, Ronald M; Corcoran, Connie

    2012-11-15

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling.

  17. ARM - Measurement - Methane flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Methane flux Vertical flux of methane near the surface due to turbulent transport. Categories...

  18. ARM - Measurement - Methane concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Methane concentration The amount of methane, a greenhouse gas, per unit of volume. Categories...

  19. Methane Hydrate Program

    Energy Savers [EERE]

    FY 2011 Methane Hydrate Program Report to Congress July 2012 United States Department of Energy Washington, DC 20585 Department of Energy | July 2012 FY 2011 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report entitled U.S. Department of Energy FY 2011 Methane

  20. Methane Hydrate Program

    Energy Savers [EERE]

    Fiscal Year 2013 Methane Hydrate Program Report to Congress October 2014 United States Department of Energy Washington, DC 20585 Department of Energy | October 2014 Fiscal Year 2013 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary The Department of Energy is required 1 to submit to Congress an annual report on the actions taken to carry out methane hydrate research. I am pleased to submit the enclosed Report to Congress, Fiscal Year 2013 Methane Hydrate Program.

  1. Waste Treatment and Immobilization Plant U. S. Department of Energy Office of River Protection Submerged Bed Scrubber Condensate Disposition Project - 13460

    SciTech Connect (OSTI)

    Yanochko, Ronald M. [Washington River Protection Solutions, P.O. Box 850, Richland, Washington 99352 (United States)] [Washington River Protection Solutions, P.O. Box 850, Richland, Washington 99352 (United States); Corcoran, Connie [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, Washington 99352 (United States)] [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, Washington 99352 (United States)

    2013-07-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix [1]. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility [2]. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling. This study [2] concluded that SBS direct disposal is a viable option to the WTP baseline. The results show: - Off-site transportation and disposal of the SBS condensate is achievable and cost effective. - Reduction of approximately 4,325 vitrified WTP Low Activity Waste canisters could be realized. - Positive WTP operational impacts; minimal WTP construction impacts are realized. - Reduction of mass flow from the LAW Facility to the Pretreatment Facility by 66%. - Improved Double Shell Tank (DST) space management is a benefit. (authors)

  2. Heat pipe methanator

    DOE Patents [OSTI]

    Ranken, William A.; Kemme, Joseph E.

    1976-07-27

    A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

  3. Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water

    SciTech Connect (OSTI)

    Song Jin

    2007-05-31

    Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

  4. Hybrid fluidized bed combuster

    DOE Patents [OSTI]

    Kantesaria, Prabhudas P. (Windsor, CT); Matthews, Francis T. (Poquonock, CT)

    1982-01-01

    A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.

  5. Bed material agglomeration during fluidized bed combustion

    SciTech Connect (OSTI)

    Brown, R.C.; Dawson, M.R.; Noble, S.

    1993-02-01

    The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

  6. Methane Hydrate Field Program

    SciTech Connect (OSTI)

    2013-12-31

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report

  7. Methane Hydrate Program

    Energy Savers [EERE]

    Fiscal Year 2012 Methane Hydrate Program Report to Congress August 2013 United States Department of Energy Washington, DC 20585 Department of Energy | August 2013 Fiscal Year 2012 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the actions taken to carry out methane hydrate research. I am pleased to submit the enclosed report, entitled U.S.

  8. Methane Hydrate | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methane hydrate is a cage-like lattice of ice inside of which are trapped molecules of methane, the chief constituent of natural gas. If methane hydrate is either warmed or ...

  9. Methane Hydrates and Climate Change

    Broader source: Energy.gov [DOE]

    Methane hydrates store huge volumes of methane formed by the bacterial decay of organic matter or leaked from underlying oil and natural gas deposits. The active formation of methane hydrates in...

  10. The future of methane

    SciTech Connect (OSTI)

    Howell, D.G.

    1995-12-31

    Natural gas, mainly methane, produces lower CO{sub 2}, CO, NO{sub x}, SO{sub 2} and particulate emissions than either oil or coal; thus further substitutions of methane for these fuels could help mitigate air pollution. Methane is, however, a potent greenhouse gas and the domestication of ruminants, cultivation of rice, mining of coal, drilling for oil, and transportation of natural gas have all contributed to a doubling of the amount of atmospheric methane since 1800. Today nearly 300,000 wells yearly produce ca. 21 trillion cubic feet of methane. Known reserves suggest about a 10 year supply at the above rates of recovery; and the potential for undiscovered resources is obscured by uncertainty involving price, new technologies, and environmental restrictions steming from the need to drill an enormous number of wells, many in ecologically sensitive areas. Until all these aspects of methane are better understood, its future role in the world`s energy mix will remain uncertain. The atomic simplicity of methane, composed of one carbon and four hydrogen atoms, may mask the complexity and importance of this, the most basic of organic molecules. Within the Earth, methane is produced through thermochemical alteration of organic materials, and by biochemical reactions mediated by metabolic processes of archaebacteria; some methane may even be primordial, a residue of planetary accretion. Methane also occurs in smaller volumes in landfills, rice paddies, termite complexes, ruminants, and even many humans. As an energy source, its full energy potential is controversial. Methane is touted by some as a viable bridge to future energy systems, fueled by the sun and uranium and carried by electricity and hydrogen.

  11. Methanation assembly using multiple reactors

    DOE Patents [OSTI]

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  12. Volatiles combustion in fluidized beds. Technical progress report, 4 March 1993--3 June 1993

    SciTech Connect (OSTI)

    Hesketh, R.P.

    1993-09-01

    The goal of this project is to investigate the conditions in which volatiles will burn within both the dense and freeboard regions of fluidized beds. Experiments using a fluidized bed operated at incipient fluidization will be performed to characterize the effect of particle surface area, initial fuel concentration, and particle type on the inhibition of volatiles within a fluidized bed. The work conducted during the period 4 March, 1993 through 3 June, 1993 is reported in this technical progress report. The work during this time period consists primarily of the startup and trouble shooting of the fluidized bed reactor and gas phase modeling of methane and propane.

  13. Fluidized bed combustion

    SciTech Connect (OSTI)

    Sowards, N.K.; Murphy, M.L.

    1991-10-29

    This patent describes a vessel. It comprises a fluid bed for continuously incinerating fuel comprising tire segments and the like which comprise metallic wire tramp and for concurrently removing tramp and bed materials at a bottom effluent exit means of the vessel, the vessel further comprising static air distributor means at the periphery of the bed comprising a substantially centrally unobstructed relatively large central region in which the fluid bed and fuel only are disposed and through which bed material and tramp migrate without obstruction to and through the effluent exit means, downwardly and inwardly stepped lower vessel wall means and a plurality of peripherally located centrally directed vertically and horizontally offset spaced air influent means surrounding the central region and associated with the stepped lower vessel wall means by which the bed is supported and fluidized.

  14. Enzymatic Oxidation of Methane

    SciTech Connect (OSTI)

    Sirajuddin, S; Rosenzweig, AC

    2015-04-14

    Methane monooxygenases (MMOs) are enzymes that catalyze the oxidation of methane to methanol in methanotrophic bacteria. As potential targets for new gas-to-liquid methane bioconversion processes, MMOs have attracted intense attention in recent years. There are two distinct types of MMO, a soluble, cytoplasmic MMO (sMMO) and a membrane-bound, particulate MMO (pMMO). Both oxidize methane at metal centers within a complex, multisubunit scaffold, but the structures, active sites, and chemical mechanisms are completely different. This Current Topic review article focuses on the overall architectures, active site structures, substrate reactivities, proteinprotein interactions, and chemical mechanisms of both MMOs, with an emphasis on fundamental aspects. In addition, recent advances, including new details of interactions between the sMMO components, characterization of sMMO intermediates, and progress toward understanding the pMMO metal centers are highlighted. The work summarized here provides a guide for those interested in exploiting MMOs for biotechnological applications.

  15. Electrochemical methane sensor

    DOE Patents [OSTI]

    Zaromb, S.; Otagawa, T.; Stetter, J.R.

    1984-08-27

    A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

  16. Fluidized bed calciner apparatus

    DOE Patents [OSTI]

    Owen, Thomas J.; Klem, Jr., Michael J.; Cash, Robert J.

    1988-01-01

    An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

  17. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting Minutes May 15, 2014 Washington, DC...

  18. International Cooperation in Methane Hydrates | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil & Gas Methane Hydrate International Cooperation in Methane Hydrates International Cooperation in Methane Hydrates In 1982 the multi-national Deep Sea Drilling Program ...

  19. Cyclic process for producing methane in a tubular reactor with effective heat removal

    DOE Patents [OSTI]

    Frost, Albert C.; Yang, Chang-Lee

    1986-01-01

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  20. Cyclic process for producing methane from carbon monoxide with heat removal

    DOE Patents [OSTI]

    Frost, Albert C.; Yang, Chang-lee

    1982-01-01

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  1. Geomechanical risks in coal bed carbon dioxide sequestration

    SciTech Connect (OSTI)

    Myer, Larry R.

    2003-07-01

    The purpose of this report is to summarize and evaluate geomechanical factors which should be taken into account in assessing the risk of leakage of CO{sub 2} from coal bed sequestration projects. The various steps in developing such a project will generate stresses and displacements in the coal seam and the adjacent overburden. The question is whether these stresses and displacements will generate new leakage pathways by failure of the rock or slip on pre-existing discontinuities such as fractures and faults. In order to evaluate the geomechanical issues in CO{sub 2} sequestration in coal beds, it is necessary to review each step in the process of development of such a project and evaluate its geomechanical impact. A coal bed methane production/CO{sub 2} sequestration project will be developed in four steps: (1) Formation dewatering and methane production; (2) CO{sub 2} injection with accompanying methane production; (3) Possible CO{sub 2} injection for sequestration only; and The approach taken in this study was to review each step: Identify the geomechanical processes associated with it, and assess the risks that leakage would result from these processes.

  2. Methane Hydrate Program Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Reports Methane Hydrate Program Reports PDF icon Secretary of Energy Advisory Board Task Force Report on Methane Hydrate PDF icon FY14 Methane Hydrate Report to Congress PDF icon FY13 Methane Hydrate Report to Congress PDF icon FY12 Methane Hydrate Report to Congress More Documents & Publications Methane Hydrate Annual Reports Report of the Task Force on Methane Hydrates Presentations from the March 27th - 28th Methane Hydrates Advisory Committee

  3. Fluidized Bed Technology- Overview

    Broader source: Energy.gov [DOE]

    Fluidized beds suspend solid fuels on upward-blowing jets of air during the combustion process. The result is a turbulent mixing of gas and solids. The tumbling action, much like a bubbling fluid,...

  4. Tapered bed bioreactor

    DOE Patents [OSTI]

    Scott, Charles D.; Hancher, Charles W.

    1977-01-01

    A vertically oriented conically shaped column is used as a fluidized bed bioreactor wherein biologically catalyzed reactions are conducted in a continuous manner. The column utilizes a packing material a support having attached thereto a biologically active catalytic material.

  5. Sea bed mechanics

    SciTech Connect (OSTI)

    Sleath, J.F.A.

    1984-01-01

    This book provides a discussion on sea bed processes with engineering applications. It brings together the material currently available only in technical reports of research papers. It provides formulae and background references necessary for design calculation of problems such as sea bed or coastal erosion, and sub-marine pipeline stability. It also covers dissipation of wave energy, formation of ripples and dunes, and the transportation of sediments.

  6. Ancient Salt Beds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ancient Salt Beds Dr. Jack Griffith The key to the search for life on other planets may go through WIPP's ancient salt beds. In 2008, a team of scientists led by Jack Griffith, from the University of North Carolina, Chapel Hill, retrieved salt samples from the WIPP underground and studied them with a transmission electron microscopy lab at the Lineberger Comprehensive Cancer Center of the University of North Carolina School of Medicine. In examining fluid inclusions in the salt and solid halite

  7. Coalbed Methane | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coalbed Methane Coalbed Methane Coalbed methane is natural gas found in coal deposits. It was once considered a nuisance and mine safety hazard, but today has become a valuable part of the U.S. energy portfolio. A major reason for this is resource characterization and the establishment of efficient recovery methods pioneered by Office of Fossil Energy R&D. PDF icon Fossil Energy Research Benefits - Coalbed Methane More Documents & Publications Before the Senate Energy and Natural

  8. Control of bed height in a fluidized bed gasification system

    DOE Patents [OSTI]

    Mehta, Gautam I.; Rogers, Lynn M.

    1983-12-20

    In a fluidized bed apparatus a method for controlling the height of the fdized bed, taking into account variations in the density of the bed. The method comprises taking simultaneous differential pressure measurements at different vertical elevations within the vessel, averaging the differential pressures, determining an average fluidized bed density, then periodically calculating a weighting factor. The weighting factor is used in the determination of the actual bed height which is used in controlling the fluidizing means.

  9. Direct Aromaization of Methane

    SciTech Connect (OSTI)

    George Marcelin

    1997-01-15

    The thermal decomposition of methane offers significant potential as a means of producing higher unsaturated and aromatic hydrocarbons when the extent of reaction is limited. Work in the literature previous to this project had shown that cooling the product and reacting gases as the reaction proceeds would significantly reduce or eliminate the formation of solid carbon or heavier (Clo+) materials. This project studied the effect and optimization of the quenching process as a means of increasing the amount of value added products during the pyrolysis of methane. A reactor was designed to rapidly quench the free-radical combustion reaction so as to maximize the yield of aromatics. The use of free-radical generators and catalysts were studied as a means of lowering the reaction temperature. A lower reaction temperature would have the benefits of more rapid quenching as well as a more feasible commercial process due to savings realized in energy and material of construction costs. It was the goal of the project to identify promising routes from methane to higher hydrocarbons based on the pyrolysis of methane.

  10. Methane Stakeholder Roundtables

    Broader source: Energy.gov [DOE]

    As part of the President's Climate Action Plan, the Department of Energy will host stakeholder meetings on reducing methane emissions from the mid- and downstream segments of natural gas systems. The stakeholder meetings convene natural gas companies, academics, non-governmental organizations, labor, environmental groups, manufacturers, and public sector partners to discuss best practices and catalyze action.

  11. CERTS Microgrid Laboratory Test Bed

    SciTech Connect (OSTI)

    ETO, J.; LASSETER, R.; SCHENKMAN, B.; STEVENS, J.; KLAPP, D.; VOLKOMMER, H.; LINTON, E.; HURTADO, H.; ROY, J.

    2010-06-08

    The objective of the CERTS Microgrid Test Bed project was to enhance the ease of integrating energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of generating sources less than 100kW. The techniques comprising the CERTS Microgrid concept are: 1 a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation, islanding the microgrid's load from a disturbance, thereby maintaining a higher level of service, without impacting the integrity of the utility's electrical power grid; 2 an approach to electrical protection within a limited source microgrid that does not depend on high fault currents; and 3 a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications between sources.

  12. Staged fluidized bed

    DOE Patents [OSTI]

    Mallon, R.G.

    1983-05-13

    The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

  13. CERTS Microgrid Laboratory Test Bed

    SciTech Connect (OSTI)

    Eto, Joe; Lasseter, Robert; Schenkman, Ben; Stevens, John; Klapp, Dave; Volkommer, Harry; Linton, Ed; Hurtado, Hector; Roy, Jean

    2009-06-18

    The objective of the CERTS Microgrid Test Bed project was to enhance the ease of integrating energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of generating sources less than 100kW. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation, islanding the microgrid's load from a disturbance, thereby maintaining a higher level of service, without impacting the integrity of the utility's electrical power grid; 2) an approach to electrical protection within a limited source microgrid that does not depend on high fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications between sources. These techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations,and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults. The results from these tests are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations involving microgrids that involve one or more of the CERTS Microgrid concepts. Future planned microgrid work involves unattended continuous operation of the microgrid for 30 to 60 days to determine how utility faults impact the operation of the microgrid and to gage the power quality and reliability improvements offered by microgrids.

  14. Apparatus for controlling fluidized beds

    DOE Patents [OSTI]

    Rehmat, A.G.; Patel, J.G.

    1987-05-12

    An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

  15. Fluid bed material transfer method

    DOE Patents [OSTI]

    Pinske, Jr., Edward E.

    1994-01-01

    A fluidized bed apparatus comprising a pair of separated fluid bed enclosures, each enclosing a fluid bed carried on an air distributor plate supplied with fluidizing air from below the plate. At least one equalizing duct extending through sidewalls of both fluid bed enclosures and flexibly engaged therewith to communicate the fluid beds with each other. The equalizing duct being surrounded by insulation which is in turn encased by an outer duct having expansion means and being fixed between the sidewalls of the fluid bed enclosures.

  16. Apparatus for controlling fluidized beds

    DOE Patents [OSTI]

    Rehmat, Amirali G.; Patel, Jitendra G.

    1987-05-12

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  17. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  18. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, Richard W.; Lokhandwala, Kaaeid A.; Pinnau, Ingo; Segelke, Scott

    1997-01-01

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  19. Methane Hydrate Advisory Committee | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methane Hydrate Advisory Committee Methane Hydrate Advisory Committee The Methane Hydrate Advisory Committee was created in response to provisions of the Methane Hydrate Research and Development Act of 2000 and reauthorized by the Energy Policy Act of 2005. The Committee is to advise the Secretary of Energy on potential applications of methane hydrate; assist in developing recommendations and priorities for the methane hydrate research and development program; and submit to Congress one or more

  20. Methane Hydrate Annual Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Reports Methane Hydrate Annual Reports Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of Methane Hydrate research. Listed are the Annual Reports per Fiscal Year. PDF icon FY 13 Methane Hydrates Annual Report to Congress PDF icon FY 12 Methane Hydrates Annual Report to Congress PDF icon FY 11 Methane Hydrates Annual Report to Congress PDF icon FY 10 Methane Hydrates Annual Report to Congress More

  1. Methane Hydrate Reservoir Simulator Code Comparison Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Reports Methane Hydrate Annual Reports Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of Methane Hydrate research. Listed are the Annual Reports per Fiscal Year. PDF icon FY 13 Methane Hydrates Annual Report to Congress PDF icon FY 12 Methane Hydrates Annual Report to Congress PDF icon FY 11 Methane Hydrates Annual Report to Congress PDF icon FY 10 Methane Hydrates Annual Report to Congress More

  2. Fluidized-bed combustion

    SciTech Connect (OSTI)

    Botros, P E

    1990-04-01

    This report describes the activities of the Morgantown Energy Technology Center's research and development program in fluidized-bed combustion from October 1, 1987, to September 30, 1989. The Department of Energy program involves atmospheric and pressurized systems. Demonstrations of industrial-scale atmospheric systems are being completed, and smaller boilers are being explored. These systems include vortex, multi-solid, spouted, dual-sided, air-cooled, pulsed, and waste-fired fluidized-beds. Combustion of low-rank coal, components, and erosion are being studied. In pressurized combustion, first-generation, combined-cycle power plants are being tested, and second-generation, advanced-cycle systems are being designed and cost evaluated. Research in coal devolatilization, metal wastage, tube corrosion, and fluidization also supports this area. 52 refs., 24 figs., 3 tabs.

  3. Staged fluidized bed

    DOE Patents [OSTI]

    Mallon, Richard G. (Livermore, CA)

    1984-01-01

    Method and apparatus for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

  4. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012 Houston, TX PDF icon July 26, 2012 Meeting Minutes More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting...

  5. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Office of Environmental Management (EM)

    Washington, DC PDF icon July 16, 2013 Meeting Minutes More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting...

  6. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Energy Savers [EERE]

    DC PDF icon March 27-28, 2014, Meeting Minutes More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes, March 2010 Methane Hydrate Advisory...

  7. methane_hydrates | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane Hydrates Special Report: Frozen Heat: A Global Outlook on Methane Hydrates The United Nations Environmental Programme released this new, two-volume report in March 2015....

  8. Methane Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Power Inc Jump to: navigation, search Logo: Methane Power Inc. Name: Methane Power Inc. Address: 121 Edinburgh South Drive Place: Cary, NC Zip: 27511 Sector: Renewable Energy...

  9. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Broader source: Energy.gov (indexed) [DOE]

    June 6th - 7th, 2013 Meeting Minutes More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes, June 6th-7th, 2013 Methane Hydrate Advisory Committee Meeting...

  10. Coal mine methane global review

    SciTech Connect (OSTI)

    2008-07-01

    This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

  11. Bed drain cover assembly for a fluidized bed

    DOE Patents [OSTI]

    Comparato, Joseph R. (Bloomfield, CT); Jacobs, Martin (Hartford, CT)

    1982-01-01

    A loose fitting movable cover plate (36), suitable for the severe service encountered in a fluidized bed combustor (10), restricts the flow of solids into the combustor drain lines (30) during shutdown of the bed. This cover makes it possible to empty spent solids from the bed drain lines which would otherwise plug the piping between the drain and the downstream metering device. This enables use of multiple drain lines each with a separate metering device for the control of solids flow rate.

  12. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Marasco, Joseph A. (Kingston, TN)

    1996-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.

  13. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, C.D.; Marasco, J.A.

    1995-04-25

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

  14. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, C.D.; Marasco, J.A.

    1996-02-27

    A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

  15. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  16. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Marasco, Joseph A. (Kingston, TN)

    1995-01-01

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  17. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN)

    1993-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  18. Fast fluidized bed steam generator

    DOE Patents [OSTI]

    Bryers, Richard W. (Flemington, NJ); Taylor, Thomas E. (Bergenfield, NJ)

    1980-01-01

    A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

  19. CERTS Microgrid Laboratory Test Bed

    SciTech Connect (OSTI)

    Lasseter, R. H.; Eto, J. H.; Schenkman, B.; Stevens, J.; Volkmmer, H.; Klapp, D.; Linton, E.; Hurtado, H.; Roy, J.

    2010-06-08

    CERTS Microgrid concept captures the emerging potential of distributed generation using a system approach. CERTS views generation and associated loads as a subsystem or a 'microgrid'. The sources can operate in parallel to the grid or can operate in island, providing UPS services. The system can disconnect from the utility during large events (i.e. faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid falls below certain standards. CERTS Microgrid concepts were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resynchronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults.

  20. Fluidized bed boiler feed system

    DOE Patents [OSTI]

    Jones, Brian C.

    1981-01-01

    A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

  1. 7.4 Landfill Methane Utilization

    Broader source: Energy.gov [DOE]

    A chapter on Landfill Methane Utilization from the Clean Energy Strategies for Local Governments publication.

  2. Coalbed Methane Production

    Gasoline and Diesel Fuel Update (EIA)

    Methane Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012 2013 2014 View History U.S. 1,914 1,886 1,763 1,655 1,466 1,404 1989-2014 Alabama 105 102 98 91 62 78 1989-2014 Alaska 0 0 0 0 0 0 2005-2014 Arkansas 3 3 4 2 2 2 2005-2014 California 0 0 0 0 0 0 2005-2014 Colorado 498 533 516 486 444 412 1989-2014 Florida 0 0 0 0 0 0 2005-2014 Kansas 43 41 37 34 30 27

  3. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, Juhani

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  4. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  5. Method for packing chromatographic beds

    DOE Patents [OSTI]

    Freeman, David H.; Angeles, Rosalie M.; Keller, Suzanne

    1991-01-01

    Column chromatography beds are packed through the application of static force. A slurry of the chromatography bed material and a non-viscous liquid is filled into the column plugged at one end, and allowed to settle. The column is transferred to a centrifuge, and centrifuged for a brief period of time to achieve a predetermined packing level, at a range generally of 100-5,000 gravities. Thereafter, the plug is removed, other fixtures may be secured, and the liquid is allowed to flow out through the bed. This results in an evenly packed bed, with no channeling or preferential flow characteristics.

  6. Fluidized bed deposition of diamond

    DOE Patents [OSTI]

    Laia, Jr., Joseph R.; Carroll, David W.; Trkula, Mitchell; Anderson, Wallace E.; Valone, Steven M.

    1998-01-01

    A process for coating a substrate with diamond or diamond-like material including maintaining a substrate within a bed of particles capable of being fluidized, the particles having substantially uniform dimensions and the substrate characterized as having different dimensions than the bed particles, fluidizing the bed of particles, and depositing a coating of diamond or diamond-like material upon the substrate by chemical vapor deposition of a carbon-containing precursor gas mixture, the precursor gas mixture introduced into the fluidized bed under conditions resulting in excitation mechanisms sufficient to form the diamond coating.

  7. methane hydrates | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methane hydrates methane-hydrates.jpg Maintaining a focused vision on what's next is one trait that makes NETL a lab of the future, and methane hydrates are one "cool" part of that vision. Found in Arctic and deep-water marine environments, methane hydrates are an untapped abundant source of natural gas. A hydrate comprises a crystal structure in which frozen water creates a cage that traps molecules of primarily methane (natural gas). NETL researchers are exploring and developing

  8. Science on the Hill: Methane cloud hunting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane cloud hunting Science on the Hill: Methane cloud hunting Los Alamos researchers go hunting for methane gas over the Four Corners area of northwest New Mexico and find a strange daily pattern. July 12, 2015 methane map Methane, the primary component of natural gas, is also a potent greenhouse gas, trapping energy in the atmosphere. Last year NASA released satellite images showing a hot spot in the area where New Mexico, Colorado, Utah and Arizona meet, prompting scientists to go in search

  9. Methane Hydrate Advisory Committee Meeting

    Broader source: Energy.gov (indexed) [DOE]

    Methane Hydrate Advisory Committee Meeting May 15, 2014 11:00am - 12:30pm (EDT) Public Access U.S. Department of Energy Forrestal Building, Room 3G-043 1000 Independence Ave., SW...

  10. Methane emissions from MBT landfills

    SciTech Connect (OSTI)

    Heyer, K.-U. Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. Methane oxidation in the waste itself and in soil covers. Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (Umweltbundesamt), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 1824 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD) model of the IPCC Guidelines for National Greenhouse Gas Inventories, 2006, was used to estimate the methane emissions from MBT landfills. Due to the calculation made by the authors emissions in the range of 60,000135,000 t CO{sub 2-eq.}/a for all German MBT landfills can be expected. This wide range shows the uncertainties when the here used procedure and the limited available data are applied. It is therefore necessary to generate more data in the future in order to calculate more precise methane emission rates from MBT landfills. This is important for the overall calculation of the climate gas production in Germany which is required once a year by the German Government.

  11. Methane generation from animal wastes

    SciTech Connect (OSTI)

    Fulton, E.L.

    1980-06-01

    The conversion of manure to biogas via anaerobic digestion is described. The effluent resulting from the conversion retains fertilizer value and is environmentally acceptable. Discussion is presented under the headings: methane formation in the digester; the Tarleton State Poultry Waste to Methane production system; operating experience at Tarleton State; economics of biogas production from poultry waste; construction cost and biogas value; energy uses; feed and waste processing; and advantages of anaerobic digestion. (DMC)

  12. Dynamic bed reactor

    DOE Patents [OSTI]

    Stormo, Keith E. (Moscow, ID)

    1996-07-02

    A dynamic bed reactor is disclosed in which a compressible open cell foam matrix is periodically compressed and expanded to move a liquid or fluid through the matrix. In preferred embodiments, the matrix contains an active material such as an enzyme, biological cell, chelating agent, oligonucleotide, adsorbent or other material that acts upon the liquid or fluid passing through the matrix. The active material may be physically immobilized in the matrix, or attached by covalent or ionic bonds. Microbeads, substantially all of which have diameters less than 50 microns, can be used to immobilize the active material in the matrix and further improve reactor efficiency. A particularly preferred matrix is made of open cell polyurethane foam, which adsorbs pollutants such as polychlorophenol or o-nitrophenol. The reactors of the present invention allow unidirectional non-laminar flow through the matrix, and promote intimate exposure of liquid reactants to active agents such as microorganisms immobilized in the matrix.

  13. Methane and Methanotrophic Bacteria as a Biotechnological Platform

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fuels from methane: a sustainable, abundant resource that does not compete with the human food chain 3 Sustainable Methane * Methane can be captured from anaerobic digestion of...

  14. May 15, 2014 Methane Hydrates Committee Meeting Agenda | Department...

    Office of Environmental Management (EM)

    May 15, 2014 Methane Hydrates Committee Meeting Agenda May 15, 2014 Methane Hydrates Committee Meeting Agenda May 15, 2014 Methane Hydrates Committee Meeting Agenda PDF icon...

  15. Methane Hydrate Advisory Committee Meeting Minutes, March 2010...

    Energy Savers [EERE]

    March 2010 Methane Hydrate Advisory Committee Meeting Minutes, March 2010 Methane Hydrate Advisory Committee Meeting Minutes March 2010 Washington, DC PDF icon Methane Hydrate...

  16. Methane Hydrate Advisory Committee Meeting Minutes, January 2010...

    Broader source: Energy.gov (indexed) [DOE]

    0 Atlanta, GA Methane Hydrate Advisory Committee Meeting Minutes, January 2010 More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes, March 2010 Methane...

  17. Methane Hydrate Advisory Committee Meeting Minutes, June 6th...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methane Hydrate Advisory Committee Meeting Minutes, June 6th-7th, 2013 Methane Hydrate Advisory Committee Meeting Minutes, June 6th-7th, 2013 Methane Hydrate Advisory Committee...

  18. Metro Methane Recovery Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass...

  19. Capture and Use of Coal Mine Ventilation Air Methane

    SciTech Connect (OSTI)

    Deborah Kosmack

    2008-10-31

    CONSOL Energy Inc., in conjunction with MEGTEC Systems, Inc., and the U.S. Department of Energy with the U.S. Environmental Protection Agency, designed, built, and operated a commercial-size thermal flow reversal reactor (TFRR) to evaluate its suitability to oxidize coal mine ventilation air methane (VAM). Coal mining, and particularly coal mine ventilation air, is a major source of anthropogenic methane emissions, a greenhouse gas. Ventilation air volumes are large and the concentration of methane in the ventilation air is low; thus making it difficult to use or abate these emissions. This test program was conducted with simulated coal mine VAM in advance of deploying the technology on active coal mine ventilation fans. The demonstration project team installed and operated a 30,000 cfm MEGTEC VOCSIDIZER oxidation system on an inactive coal mine in West Liberty, WV. The performance of the unit was monitored and evaluated during months of unmanned operation at mostly constant conditions. The operating and maintenance history and how it impacts the implementation of the technology on mine fans were investigated. Emission tests showed very low levels of all criteria pollutants at the stack. Parametric studies showed that the equipment can successfully operate at the design specification limits. The results verified the ability of the TFRR to oxidize {ge}95% of the low and variable concentration of methane in the ventilation air. This technology provides new opportunities to reduce greenhouse gas emissions by the reduction of methane emissions from coal mine ventilation air. A large commercial-size installation (180,000 cfm) on a single typical mine ventilation bleeder fan would reduce methane emissions by 11,000 to 22,100 short tons per year (the equivalent of 183,000 to 366,000 metric tonnes carbon dioxide).

  20. Distribution plate for recirculating fluidized bed

    DOE Patents [OSTI]

    Yang, Wen-ching; Vidt, Edward J.; Keairns, Dale L.

    1977-01-01

    A distribution plate for a recirculating fluidized bed has a centrally disposed opening and a plurality of apertures adjacent the periphery to eliminate dead spots within the bed.

  1. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    SciTech Connect (OSTI)

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  2. Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water

    SciTech Connect (OSTI)

    David Kirchman

    2011-12-31

    The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (??Methane in the Arctic Shelf? or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (??metagenomes?). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in anaerobic methane oxidation.

  3. METHANE HYDRATE ADVISORY COMMITTEE U.S. Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    METHANE HYDRATE ADVISORY COMMITTEE U.S. Department of Energy Advisory Committee Charter - - - - ---- ---- ------ 1. Committee's Official Designation. Methane Hydrate Advisory...

  4. Methane Gas Conversion Property Tax Exemption

    Broader source: Energy.gov [DOE]

    Under Iowa's methane gas conversion property tax exemption, real and personal property used to decompose waste and convert the waste to gas, collect the methane or other gases, convert the gas to...

  5. MethaneHydrateRD_FC.indd

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FOSSIL ENERGY RESEARCH BENEFITS Methane Hydrate R&D "The (DOE) Program has supported and ... The Nati onal Academies 2010 One of these is methane hydrate - molecules of natural gas ...

  6. File:Methane.pdf | Open Energy Information

    Open Energy Info (EERE)

    Methane.pdf Jump to: navigation, search File File history File usage File:Methane.pdf Size of this preview: 448 600 pixels. Go to page 1 2 3 4 5 Go next page next page ...

  7. Methane Hydrate Advisory Committee Charter | Department of Energy

    Energy Savers [EERE]

    Charter Methane Hydrate Advisory Committee Charter Methane Hydrate Advisory Committee Charter PDF icon Methane Hydrate Advisory Committee Charter More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes, March 2010 Methane Hydrate Advisory Committee Meeting Minutes, January 2010 Methane Hydrate Advisory Committee Meeting Minutes, October 2011

  8. Method for the photocatalytic conversion of methane

    DOE Patents [OSTI]

    Noceti, Richard P.; Taylor, Charles E.; D'Este, Joseph R.

    1998-01-01

    A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time.

  9. Method for the photocatalytic conversion of methane

    DOE Patents [OSTI]

    Noceti, R.P.; Taylor, C.E.; D`Este, J.R.

    1998-02-24

    A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time. 3 figs.

  10. Rapid ignition of fluidized bed boiler

    DOE Patents [OSTI]

    Osborn, Liman D.

    1976-12-14

    A fluidized bed boiler is started up by directing into the static bed of inert and carbonaceous granules a downwardly angled burner so that the hot gases cause spouting. Air is introduced into the bed at a rate insufficient to fluidize the entire bed. Three regions are now formed in the bed, a region of lowest gas resistance, a fluidized region and a static region with a mobile region at the interface of the fluidized and static regions. Particles are transferred by the spouting action to form a conical heap with the carbonaceous granules concentrated at the top. The hot burner gases ignite the carbonaceous matter on the top of the bed which becomes distributed in the bed by the spouting action and bed movement. Thereafter the rate of air introduction is increased to fluidize the entire bed, the spouter/burner is shut off, and the entire fluidized bed is ignited.

  11. Methane generation from waste materials

    DOE Patents [OSTI]

    Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  12. Methane sources and emissions in Italy

    SciTech Connect (OSTI)

    Guidotti, G.R.; Castagnola, A.M.

    1994-12-31

    Methane emissions in Italy were assessed in the framework of the measures taken to follow out the commitments undertaken at the 1992 U.N. Conference for Environment and Development. Methane emissions of anthropic origin were estimated to be in the range of 1.6 to 2.3 million ton of methane per year. Some of these methane sources (natural gas production, transmission and distribution; rice paddies; managed livestock enteric fermentation and waste; solid waste landfills) are given here particular care as they mainly contribute to the total methane emission budget.

  13. High temperature degradation by erosion-corrosion in bubbling fluidized bed combustors

    SciTech Connect (OSTI)

    Hou, Peggy Y.; MacAdam, S.; Niu, Y.; Stringer, J.

    2003-04-22

    Heat-exchanger tubes in fluidized bed combustors (FBCs) often suffer material loss due to combined corrosion and erosion. Most severe damage is believed to be caused by the impact of dense packets of bed material on the lower parts of the tubes. In order to understand this phenomenon, a unique laboratory test rig at Berkeley was designed to simulate the particle hammering interactions between in-bed particles and tubes in bubbling fluidized bed combustors. In this design, a rod shaped specimen is actuated a short distance within a partially fluidized bed. The downward specimen motion is controlled to produce similar frequencies, velocities and impact forces as those experienced by the impacting particle aggregates in practical systems. Room temperature studies have shown that the degradation mechanism is a three-body abrasion process. This paper describes the characteristics of this test rig, reviews results at elevated temperatures and compares them to field experience. At higher temperatures, deposits of the bed material on tube surfaces can act as a protective layer. The deposition depended strongly on the type of bed material, the degree of tube surface oxidation and the tube and bed temperatures. With HCl present in the bed, wastage was increased due to enhanced oxidation and reduced oxide scale adherence.

  14. Tubing wastage in fluidized-bed coal combustors (Grimethorpe PFBC (pressurized fluidized-bed combustion) Tube Bank E'')

    SciTech Connect (OSTI)

    Witherell, C.E.

    1989-10-04

    Samples of evaporator tubing from Tube Bank E'' of the Grimethorpe pressurized fluidized-bed combustion (PFBC) facility in the UK were examined in the third of a series of studies being conducted at Lawrence Livermore National Laboratory (LLNL) under sponsorship of the US Department of Energy's Morgantown Energy Technology Center (METC). The program is being conducted to identify the mechanism or mechanisms responsible for metal loss (wastage) of in-bed carbon-steel evaporator tubes in bubbling-bed coal combustors. Results of examination suggest that bed conditions were less aggressive than in previous experiments in this combustor; however, tubing wastage was observed in some samples. Observations made on these tubes are consistent with the hypothesis of tubing wastage proposed in reports of previous LLNL studies conducted under this program that the dominant cause of metal loss is exfoliation of the normally-protective oxide scale by impacting bed particulates. Good correlation was also observed with trends noted earlier that microstructure of the tubing steel plays a role in its wastage response. 12 refs., 29 figs., 3 tabs.

  15. Reduction of ruminant methane emissions - a win-win-win opportunity for business, development, and the environment

    SciTech Connect (OSTI)

    Livingston, R.

    1997-12-31

    This paper describes research efforts of The Global Livestock Producers Program (GLPP) in establishing self-sustaining enterprises for cost-effective technologies (i.e., animal nutrition and genetic improvement) and global methane emissions reductions in developing world nations. The US Environmental Protection Agency has funded several studies to examine the possibilities of reducing ruminant methane emissions in India, Tanzania, Bangladesh, and Brazil. The results of the studies showed that: (1) many developing countries` production systems are inefficient, and (2) great potential exists for decreasing global methane emissions through increasing animal productivity. From this effort, the GLPP established livestock development projects in India, Zimbabwe, and Tanzania, and is developing projects for Bangladesh, Nepal, and Brazil. The GLPP has developed a proven methodology for assessing ruminant methane and incorporating methane emissions monitoring into viable projects.

  16. Stored CO2 and Methane Leakage Risk Assessment and Monitoring Tool Development: CO2 Capture Project Phase 2 (CCP2)

    SciTech Connect (OSTI)

    Dan Kieki

    2008-09-30

    The primary project goal is to develop and test tools for optimization of ECBM recovery and geologic storage of CO{sub 2} in coalbeds, in addition to tools for monitoring CO{sub 2} sequestration in coalbeds to support risk assessment. Three critical topics identified are (1) the integrity of coal bed methane geologic and engineered systems, (2) the optimization of the coal bed storage process, and (3) reliable monitoring and verification systems appropriate to the special conditions of CO{sub 2} storage and flow in coals.

  17. Turbulent burning rates of methane and methane-hydrogen mixtures

    SciTech Connect (OSTI)

    Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2009-04-15

    Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)

  18. Staged cascade fluidized bed combustor

    DOE Patents [OSTI]

    Cannon, Joseph N.; De Lucia, David E.; Jackson, William M.; Porter, James H.

    1984-01-01

    A fluid bed combustor comprising a plurality of fluidized bed stages interconnected by downcomers providing controlled solids transfer from stage to stage. Each stage is formed from a number of heat transfer tubes carried by a multiapertured web which passes fluidizing air to upper stages. The combustor cross section is tapered inwardly from the middle towards the top and bottom ends. Sorbent materials, as well as non-volatile solid fuels, are added to the top stages of the combustor, and volatile solid fuels are added at an intermediate stage.

  19. The Methane to Markets Coal Mine Methane Subcommittee meeting

    SciTech Connect (OSTI)

    2008-07-01

    The presentations (overheads/viewgraphs) include: a report from the Administrative Support Group; strategy updates from Australia, India, Italy, Mexico, Nigeria, Poland and the USA; coal mine methane update and IEA's strategy and activities; the power of VAM - technology application update; the emissions trading market; the voluntary emissions reduction market - creating profitable CMM projects in the USA; an Italian perspective towards a zero emission strategies; and the wrap-up and summary.

  20. Apparatus and process for controlling fluidized beds

    DOE Patents [OSTI]

    Rehmat, Amirali G.; Patel, Jitendra G.

    1985-10-01

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  1. Fact #825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus Nitrogen Oxide Emission Standards, Model Years 2017-2025

    Broader source: Energy.gov [DOE]

    The Environmental Protection Agency finalized Tier 3 emission standards in a rule issued in March 2014. One effect of the rule is a decrease in the combined amount of non-methane organic gases ...

  2. Char binder for fluidized beds

    DOE Patents [OSTI]

    Borio, Richard W.; Accortt, Joseph I.

    1981-01-01

    An arrangement that utilizes agglomerating coal as a binder to bond coal fines and recycled char into an agglomerate mass that will have suitable retention time when introduced into a fluidized bed 14 for combustion. The simultaneous use of coal for a primary fuel and as a binder effects significant savings in the elimination of non-essential materials and processing steps.

  3. Z-Bed Recovery Water Disposal

    Office of Environmental Management (EM)

    Z-Bed Recovery Water Disposal Tritium Programs Engineering Louis Boone Josh Segura ... detailed explanation of the plan to capture and dispose of Z-Bed Recovery (ZR) water. ...

  4. Methane Hydrate Program Annual Report to Congress

    Energy Savers [EERE]

    FY 2010 Methane Hydrate Program Annual Report to Congress September 2011 U.S. Department of ENERGY United States Department of Energy Washington, DC 20585 Department of Energy | September 2011 FY 2010 Methane Hydrate Program Annual Report to Congress | Page 2 Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report

  5. MethaneHydrateRD_FC.indd

    Energy Savers [EERE]

    Research and Development Act of 2000 Methane Hydrate Research and Development Act of 2000 Methane Hydrate Research and Development Act of 2000 PDF icon Methane Hydrate Research and Development Act of 2000 More Documents & Publications NATIONAL DEFENSE AUTHORIZATION ACT FOR FISCAL YEAR 2000 E:\PUBLAW\PUBL404.106 Intelligence Reform and Terrorism Prevention Act - December 17, 200

    gas is an important energy resource for the United States, providing nearly one-quarter of total energy use. The

  6. Fluidization quality analyzer for fluidized beds

    DOE Patents [OSTI]

    Daw, C. Stuart; Hawk, James A.

    1995-01-01

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.

  7. Fluidization quality analyzer for fluidized beds

    DOE Patents [OSTI]

    Daw, C.S.; Hawk, J.A.

    1995-07-25

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence. 9 figs.

  8. EIA - Greenhouse Gas Emissions - Methane Emissions

    Gasoline and Diesel Fuel Update (EIA)

    3. Methane Emissions 3.1. Total emissions The major sources of U.S. methane emissions are energy production, distribution, and use; agriculture; and waste management (Figure 17). U.S. methane emissions in 2009 totaled 731 MMTCO2e, 0.9 percent higher than the 2008 total of 724 MMTCO2e (Table 17). Methane emissions declined steadily from 1990 to 2001, as emissions from coal mining and landfills fell, then rose from 2002 to 2009 as a result of moderate increases in emissions related to energy,

  9. Modeling Methane Adsorption in Interpenetrating Porous Polymer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Methane Adsorption in Interpenetrating Porous Polymer Networks Previous Next List Richard L. Martin, Mahdi Niknam Shahrak, Joseph A. Swisher, Cory M. Simon, Julian P....

  10. Methane Hydrate Advisory Committee (MHAC) Meeting

    Broader source: Energy.gov (indexed) [DOE]

    the U.S. Department of Energy (DOE) and Designated Federal Officer (DFO) for the Methane Hydrate Advisory Committee (MHAC). She thanked members for their continued...

  11. Capping methane leaks a win-win

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capping methane leaks a win-win Capping methane leaks a win-win As special correspondent Kathleen McCleery explains, that's why both environmentalists and the energy industry are trying to find ways to capture leaks from oil and gas facilities. November 13, 2015 Capping methane leaks a win-win Methane, the primary component of natural gas, is also a potent greenhouse gas, trapping energy in the atmosphere. Last year NASA released satellite images showing a hot spot in the area where New Mexico,

  12. Investigation of fluid-bed combustion of municipal solid waste

    SciTech Connect (OSTI)

    Eustis, R.H.; Wilson, K.B.; Preuit, L.C.; Marasigan, M.M.

    1985-08-01

    An experimental study was undertaken to burn processed municipal solid waste in a fluid-bed combustor containing water-cooled tubes in the bed. The 300-hour test was performed without incident and terminated on schedule. The combustor and ducting were clean on inspection after the test, and bed agglomeration did not occur. A corrosion tube placed in the free-board showed considerable metal wastage for carbon and low-alloy steels and some wastage for stainless steels. Low-temperature carbon steel water tubes in the bed showed negligible wastage. It was concluded that heat-exchanger tubes in the freeboard require protection from the high-velocity elutriated solids. Combustion efficiency was greater than 99%, and pollutants were measured as follows: SO/sub 2/ = 58 ppm, NOx = 178 ppm, CO = 242 ppm, hydrocarbons = 5.4 ppm. A system study was conducted for a cogeneration, 800-tons/day power plant to be located on the Stanford U. campus to supply all of the process steam requirement and as much of the electrical power as possible.

  13. Four Corners methane hotspot points to coal-related sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane hotspot points to coal-related sources Four Corners methane hotspot points to coal-related sources Methane is very efficient at trapping heat in the atmosphere and, like ...

  14. New Methane Hydrate Research: Investing in Our Energy Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ...

  15. Method and apparatus for a combination moving bed thermal treatment reactor and moving bed filter

    DOE Patents [OSTI]

    Badger, Phillip C.; Dunn, Jr., Kenneth J.

    2015-09-01

    A moving bed gasification/thermal treatment reactor includes a geometry in which moving bed reactor particles serve as both a moving bed filter and a heat carrier to provide thermal energy for thermal treatment reactions, such that the moving bed filter and the heat carrier are one and the same to remove solid particulates or droplets generated by thermal treatment processes or injected into the moving bed filter from other sources.

  16. Northern Cheyenne Reservation Coal Bed Natural Resource Assessment and Analysis of Produced Water Disposal Options

    SciTech Connect (OSTI)

    Shaochang Wo; David A. Lopez; Jason Whiteman Sr.; Bruce A. Reynolds

    2004-07-01

    Coalbed methane (CBM) development in the Powder River Basin (PRB) is currently one of the most active gas plays in the United States. Monthly production in 2002 reached about 26 BCF in the Wyoming portion of the basin. Coalbed methane reserves for the Wyoming portion of the basin are approximately 25 trillion cubic feet (TCF). Although coal beds in the Powder River Basin extend well into Montana, including the area of the Northern Cheyenne Indian Reservation, the only CBM development in Montana is the CX Field, operated by the Fidelity Exploration, near the Wyoming border. The Northern Cheyenne Reservation is located on the northwest flank of the PRB in Montana with a total land of 445,000 acres. The Reservation consists of five districts, Lame Deer, Busby, Ashland, Birney, and Muddy Cluster and has a population of 4,470 according to the 2000 Census. The CBM resource represents a significant potential asset to the Northern Cheyenne Indian Tribe. Methane gas in coal beds is trapped by hydrodynamic pressure. Because the production of CBM involves the dewatering of coalbed to allow the release of methane gas from the coal matrix, the relatively large volume of the co-produced water and its potential environmental impacts are the primary concerns for the Tribe. Presented in this report is a study conducted by the Idaho National Engineering and Environmental Laboratory (INEEL) and the Montana Bureau of Mines and Geology (MBMG) in partnership with the Northern Cheyenne Tribe to assess the Tribes CBM resources and evaluate applicable water handling options. The project was supported by the U.S. Department of Energy (DOE) through the Native American Initiative of the National Petroleum Technology Office, under contract DEAC07- 99ID13727. Matching funds were granted by the MBMG in supporting the work of geologic study and mapping conducted at MBMG.

  17. Rivesville multicell fluidized bed boiler

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    One objective of the experimental MFB at Rivesville, WV, was the evaluation of alternate feed systems for injecting coal and limestone into a fluidized bed. A continuous, uniform feed flow to the fluid bed is essential in order to maintain stable operations. The feed system originally installed on the MFB was a gravity feed system with an air assist to help overcome the back pressure created by the fluid bed. The system contained belt, vibrating, and rotary feeders which have been proven adequate in other material handling applications. This system, while usable, had several operational and feeding problems during the MFB testing. A major portion of these problems occurred because the coal and limestone feed control points - a belt feeder and rotary feeder, respectively - were pressurized in the air assist system. These control points were not designed for pressurized service. An alternate feed system which could accept feed from the two control points, split the feed into six equal parts and eliminate the problems of the pressurized system was sought. An alternate feed system designed and built by the Fuller Company was installed and tested at the Rivesville facility. Fuller feed systems were installed on the north and south side of C cell at the Rivesville facility. The systems were designed to handle 10,000 lb/hr of coal and limestone apiece. The systems were installed in late 1979 and evaluated from December 1979 to December 1980. During this time period, nearly 1000 h of operating time was accumulated on each system.

  18. New Metabolic Pathway Discovered in Methane-Consuming Bacteria...

    Office of Science (SC) Website

    from Kalyuzhnaya, M. G., et al. "Highly efficient methane biocatalysis revealed in a ... Publications Kalyuzhnaya, M. G., et al. "Highly efficient methane biocatalysis revealed in ...

  19. California (with State off) Coalbed Methane Production (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane Estimated Production California Coalbed Methane Proved Reserves, Reserves Changes, and ...

  20. Controlling Methane Emissions in the Natural Gas Sector: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methane Emissions in the Natural Gas Sector: A Review of Federal & State Regulatory Frameworks Governing Production, Processing, Transmission, and Distribution Controlling Methane ...

  1. Texas--State Offshore Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  2. Texas--RRC District 5 Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  3. Texas--RRC District 1 Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  4. Methane and Methanotrophic Bacteria as a Biotechnological Platform...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methane and Methanotrophic Bacteria as a Biotechnological Platform Methane and Methanotrophic Bacteria as a Biotechnological Platform Breakout Session 2-B: NewEmerging Pathways ...

  5. Texas--RRC District 9 Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  6. Estimating global and North American methane emissions with high...

    Office of Scientific and Technical Information (OSTI)

    methane emissions with high spatial resolution using GOSAT satellite data Citation Details In-Document Search Title: Estimating global and North American methane emissions ...

  7. Texas--RRC District 8 Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  8. U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  9. Texas--RRC District 6 Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  10. Scientists detect methane levels three times larger than expected...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane levels larger over Four Corners region Scientists detect methane levels three times larger than expected over Four Corners region Study is first to show space-based...

  11. Methane Hydrate Advisory Committee Meeting Minutes, October 2011...

    Office of Environmental Management (EM)

    October 2011 Methane Hydrate Advisory Committee Meeting Minutes, October 2011 Methane Hydrate Advisory Committee Meeting Minutes October 2011 Washington, DC PDF icon Advisory...

  12. Landfill Methane Project Development Handbook | Open Energy Informatio...

    Open Energy Info (EERE)

    Methane Project Development Handbook Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Landfill Methane Project Development Handbook AgencyCompany Organization: United...

  13. Erosion-corrosion behavior of PFBC in-bed tubes

    SciTech Connect (OSTI)

    Tsumita, Yoshi; Namba, Kazuo; Kajigaya, Ichiro; Sonoya, Keiji

    1997-12-31

    In the design and operation of Pressurized Fluidized-Bed Combustion (PFBC) plant, it is important to investigate erosion-corrosion behavior of in-bed heat exchanger tubes, since such phenomena is complicated by interaction of erosion and corrosion due to high operating temperature. Investigations to clarify the erosion-corrosion mechanism of materials were performed by using laboratory test facility and PFBC pilot plant (3MW), to determine the specifications of in-bed tubes and assess their life for the first commercial PFBC plant having a capacity of 360MW. In the laboratory test, erosion-corrosion behavior of wide variety of coated materials, which include thermally sprayed coatings, diffusion coatings and hard metal claddings, and non-coated steel candidates for the typical boiler tubes were evaluated by using fluidized-bed type erosion test rig. The erosion tests were carried out in order to obtain the tanking of candidate materials. And test coupons of candidate materials were also inserted into IHI`s PFBC pilot plant in order to predict the material wastage of actual boiler environment. The following guidelines for selecting the appropriate materials and assessing the life of in-bed tubes were given by these test results. (1) At lower temperature, applying thermal spray coatings is the best solution to protect erosion damage. (2) At higher temperature, materials show enough erosion-corrosion resistance because of the formation of hard oxide scale on the surface. These results have been verified by long-term operational experience of the 71MW Wakamatsu PFBC, which is the first demonstration plant in Japan.

  14. Rural Alaska Coal Bed Methane: Application of New Technologies to Explore and Produce Energy

    SciTech Connect (OSTI)

    David O. Ogbe; Shirish L. Patil; Doug Reynolds

    2005-06-30

    The Petroleum Development Laboratory, University of Alaska Fairbanks prepared this report. The US Department of Energy NETL sponsored this project through the Arctic Energy Technology Development Laboratory (AETDL) of the University of Alaska Fairbanks. The financial support of the AETDL is gratefully acknowledged. We also acknowledge the co-operation from the other investigators, including James G. Clough of the State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys; Art Clark, Charles Barker and Ed Weeks of the USGS; Beth Mclean and Robert Fisk of the Bureau of Land Management. James Ferguson and David Ogbe carried out the pre-drilling economic analysis, and Doug Reynolds conducted post drilling economic analysis. We also acknowledge the support received from Eric Opstad of Elko International, LLC; Anchorage, Alaska who provided a comprehensive AFE (Authorization for Expenditure) for pilot well drilling and completion at Fort Yukon. This report was prepared by David Ogbe, Shirish Patil, Doug Reynolds, and Santanu Khataniar of the University of Alaska Fairbanks, and James Clough of the Alaska Division of Geological and Geophysical Survey. The following research assistants, Kanhaiyalal Patel, Amy Rodman, and Michael Olaniran worked on this project.

  15. ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS

    SciTech Connect (OSTI)

    Gary L. Cairns

    2003-04-01

    This is the third semi-annual Technical Progress report under the subject agreement. During this report period, substantial progress was made on finalizing NEPA approval, securing well permits for the project wells, developing the well sites, and drilling at the north well site. These aspects of the project, as well as progress on public communications, are discussed in detail in this report.

  16. Emission factors for several toxic air pollutants from fluidized-bed combustion of coal

    SciTech Connect (OSTI)

    Smith, A.E.

    1986-03-01

    Clean coal technologies such as fluidized-bed combustion have the potential to emit the same trace elements as conventional combustors. Since the US Environmental Protection Agency (EPA) is likely to promulgate National Emission Standards for Hazardous Air Pollutants for several trace elements, the feasibility of using fluidized-bed combustors to reduce sulfur dioxide emissions may depend in part on the relative amounts of trace elements emitted by fluidized-bed and conventional combustors. Emissions of trace elements from both atmospheric and pressurized fluidized-bed combustors were compared with those from conventional combustors by developing fluidized-bed emission factors from information available in the literature and comparing them with the emission factors for conventional combustors recommended in a literature search conducted for EPA. The comparisons are based on the mass of emission per unit of heat input for antimony, arsenic, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, mercury, nickel, vanadium, and zinc. When inaccuracies in the data were taken into account, the trace element emissions from atmospheric fluidized-bed combustion seem to be somewhat higher than those from a conventional utility boiler burning pulverized coal and somewhat lower than those from pressurized fluidized-bed combustion.

  17. Methane

    Energy Savers [EERE]

    Storage » Metal Hydride Storage Materials Metal Hydride Storage Materials The Fuel Cell Technologies Office's (FCTO's) metal hydride storage materials research focuses on improving the volumetric and gravimetric capacities, hydrogen adsorption/desorption kinetics, cycle life, and reaction thermodynamics of potential material candidates. Technical Overview Figure shows pressure composition isotherms and van't Hoff traces for metal hydride materials. Metal hydrides (MHx) are the most

  18. Methane

    Energy Savers [EERE]

    ... implications for resource use efficiency, worker and public safety, air pollution, and human health (4), and for the climate impact of NG as a large and growing source of energy. ...

  19. Battery using a metal particle bed electrode

    DOE Patents [OSTI]

    Evans, J.V.; Savaskan, G.

    1991-04-09

    A zinc-air battery in a case is described including a zinc particle bed supported adjacent the current feeder and diaphragm on a porous support plate which holds the particles but passes electrolyte solution. Electrolyte is recycled through a conduit between the support plate and top of the bed by convective forces created by a density of differential caused by a higher concentration of high density discharge products in the interstices of the bed than in the electrolyte recycle conduit. 7 figures.

  20. Battery using a metal particle bed electrode

    DOE Patents [OSTI]

    Evans, James V.; Savaskan, Gultekin

    1991-01-01

    A zinc-air battery in a case including a zinc particle bed supported adjacent the current feeder and diaphragm on a porous support plate which holds the particles but passes electrolyte solution. Electrolyte is recycled through a conduit between the support plate and top of the bed by convective forces created by a density of differential caused by a higher concentration of high density discharge products in the interstices of the bed than in the electrolyte recycle conduit.

  1. National SCADA Test Bed | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cybersecurity » Energy Delivery Systems Cybersecurity » National SCADA Test Bed National SCADA Test Bed Created in 2003, the National SCADA Test Bed (NSTB) is a one-of-a-kind national resource that draws on the integrated expertise and capabilities of the Argonne, Idaho, Lawrence Berkeley, Los Alamos, Oak Ridge, Pacific Northwest, and Sandia National Laboratories to address the cybersecurity challenges of energy delivery systems. Core and Frontier Research The NSTB core capabilities combine a

  2. Gas distributor for fluidized bed coal gasifier

    DOE Patents [OSTI]

    Worley, Arthur C.; Zboray, James A.

    1980-01-01

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  3. Enhanced Renewable Methane Production System | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Renewable Methane Production System Technology available for licensing: Enhanced renewable methane production system provides a low-cost process that accelerates biological methane production rates at least fivefold. Low cost Delivers near-pipeline-quality gas and eliminates carbon dioxide emissions PDF icon methane_production_system

  4. Department of Energy Advance Methane Hydrates Science and Technology Projects

    Broader source: Energy.gov [DOE]

    Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

  5. Packed fluidized bed blanket for fusion reactor

    DOE Patents [OSTI]

    Chi, John W. H.

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  6. National SCADA Test Bed Fact Sheet

    Office of Environmental Management (EM)

    their systems in an operational environment and test or verify security upgrades prior to installation. The National SCADA Test Bed Program is a national resource to help secure ...

  7. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL...

    Office of Scientific and Technical Information (OSTI)

    The char residue is not wasted; it can also be used to generate electricity by fueling ... SYSTEMS; COAL; COAL GASIFICATION; ELECTRICITY; FLUIDIZED BEDS; GAS TURBINES; ...

  8. DEVELOPMENT OF PRESSURIZED CIRCULATIONG FLUIDIZED BED PARTIAL...

    Office of Scientific and Technical Information (OSTI)

    The char residue is not wasted; it can also be used to generate electricity by fueling ... CHARS; COAL; COAL GASIFICATION; ELECTRICITY; FLUIDIZED BEDS; GAS TURBINES; ...

  9. Combined fluidized bed retort and combustor

    DOE Patents [OSTI]

    Shang, Jer-Yu; Notestein, John E.; Mei, Joseph S.; Zeng, Li-Wen

    1984-01-01

    The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.

  10. Standby cooling system for a fluidized bed boiler

    DOE Patents [OSTI]

    Crispin, Larry G.; Weitzel, Paul S.

    1990-01-01

    A system for protecting components including the heat exchangers of a fluidized bed boiler against thermal mismatch. The system includes an injection tank containing an emergency supply of heated and pressurized feedwater. A heater is associated with the injection tank to maintain the temperature of the feedwater in the tank at or about the same temperature as that of the feedwater in the heat exchangers. A pressurized gas is supplied to the injection tank to cause feedwater to flow from the injection tank to the heat exchangers during thermal mismatch.

  11. Utah Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Utah Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 74 83 103...

  12. Methane storage capabilities of diamond analogues

    SciTech Connect (OSTI)

    Haranczyk, M; Lin, LC; Lee, K; Martin, RL; Neaton, JB; Smit, B

    2013-01-01

    Methane can be an alternative fuel for vehicular usage provided that new porous materials are developed for its efficient adsorption-based storage. Herein, we search for materials for this application within the family of diamond analogues. We used density functional theory to investigate structures in which tetrahedral C atoms of diamond are separated by-CC-or-BN-groups, as well as ones involving substitution of tetrahedral C atoms with Si and Ge atoms. The adsorptive and diffusive properties of methane are studied using classical molecular simulations. Our results suggest that the all-carbon structure has the highest volumetric methane uptake of 280 VSTP/V at p = 35 bar and T = 298 K. However, it suffers from limited methane diffusion. Alternatively, the considered Si and Ge-containing analogies have fast diffusive properties but their adsorption is lower, ca. 172-179 VSTP/V, at the same conditions.

  13. Virginia Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Virginia Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 56 81...

  14. Wyoming Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Production (Billion Cubic Feet) Wyoming Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 133 278...

  15. Methane Hydrate Field Studies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Field Studies Methane Hydrate Field Studies Arctic/Alaska North Slope Field Studies Since 2001, DOE has conducted field trials of exploration and production technology in the Alaska North Slope. Although Alaska methane hydrate resources are smaller than marine deposits and currently lack outlets to commercial markets, Alaska provides an excellent laboratory to study E&P technology. The research also has implications for various Alaska resources, including potential gas hydrate resources for

  16. Building Controls Virtual Test Bed

    Energy Science and Technology Software Center (OSTI)

    2008-04-01

    The Building Controls Virtual Test Bed (BCVTB) is a modular software environment that is based on the Ptolemy II software environment. The BCVTB can be used for design and analysis of heterogenous systems, such as building energy and controls systems. Our additions to Ptolemy II allow users to Couple to Ptolemy II simulation software such as EnergyPlus, MATLAB/Simulink or Dymola for data exchange during run-time. Future versions of the BCVTS will also contain an interfacemore » to BACnet which is a communication protocol for building Control systems, and interfaces to digital/analog converters that allow communication with controls hardware. Through Ptolemy II, the BCVTB provides a graphical model building environment, synchronizes the exchanged data and visualizes the system evolution during run- time.« less

  17. Fluidized bed heat treating system

    DOE Patents [OSTI]

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  18. Fluidized-bed combustion fuel

    SciTech Connect (OSTI)

    Rich, J.W. Jr.

    1990-10-09

    This patent describes a process for producing from a solid carbonaceous refuse a high ash fuel for use in a circulating fluidized-bed combustion chamber. It comprises separating from the refuse a carbonaceous portion having an ash content in a selected range percent by weight; separating the carbonaceous portion into first and second fractions, the first fraction being at or above a selected size; crushing the first fraction; and combining the crushed first fraction with the second fraction. Also described is a process wherein the selected ash content range is between about 30 percent and about 50 percent, by weight. Also described is a process wherein the selected size is above about 1/4 inch.

  19. Discovery of New Materials to Capture Methane | U.S. DOE Office...

    Office of Science (SC) Website

    methane from natural gas systems and separate methane from coal mine ventilation systems. ... global climate change and improve coal mine safety by decreasing methane concentrations. ...

  20. Particle Pressures in Fluidized Beds. Final report

    SciTech Connect (OSTI)

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction): they impart to the bed. So rather than directly measure the particle pressure, we inferred the values of the elasticity from measurements of instability growth in liquid beds the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined)and then working backwards to determine the unknown coefficients, including the elasticity.

  1. Particle pressures in fluidized beds. Final report

    SciTech Connect (OSTI)

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction), they impart to the bed. So rather than directly measure the particle pressure, the authors inferred the values of the elasticity from measurements of instability growth in liquid beds; the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined) and then working backwards to determine the unknown coefficients, including the elasticity.

  2. Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report

    SciTech Connect (OSTI)

    McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

    2007-09-01

    Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

  3. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  4. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:www.nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  5. Solids feed nozzle for fluidized bed

    DOE Patents [OSTI]

    Zielinski, Edward A.

    1982-01-01

    The vertical fuel pipe of a fluidized bed extends up through the perforated support structure of the bed to discharge granulated solid fuel into the expanded bed. A cap, as a deflecting structure, is supported above the discharge of the fuel pipe and is shaped and arranged to divert the carrier fluid and granulated fuel into the combusting bed. The diverter structure is spaced above the end of the fuel pipe and provided with a configuration on its underside to form a venturi section which generates a low pressure in the stream into which the granules of solid fuel are drawn to lengthen their residence time in the combustion zone of the bed adjacent the fuel pipe.

  6. CERTS Microgrid Laboratory Test Bed - PIER Final Project Report

    SciTech Connect (OSTI)

    Eto, Joseph H.; Eto, Joseph H.; Lasseter, Robert; Schenkman, Ben; Klapp, Dave; Linton, Ed; Hurtado, Hector; Roy, Jean; Lewis, Nancy Jo; Stevens, John; Volkommer, Harry

    2008-07-25

    The objective of the CERTS Microgrid Laboratory Test Bed project was to enhance the ease of integrating small energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of small generating sources. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation; 2) an approach to electrical protection within the microgrid that does not depend on high fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications. The techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers 1547 and power quality requirements. The electrical protections system was able to distinguish between normal and faulted operation. The controls were found to be robust and under all conditions, including difficult motor starts. The results from these test are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations involving microgrids that involve one or mroe of the CERTS Microgrid concepts.

  7. Simulated process test bed for integrated safeguards operations...

    Office of Scientific and Technical Information (OSTI)

    Simulated process test bed for integrated safeguards operations monitoring Citation Details In-Document Search Title: Simulated process test bed for integrated safeguards ...

  8. National SCADA Test Bed - Enhancing control systems security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National SCADA Test Bed - Enhancing control systems security in the energy sector (September 2009) National SCADA Test Bed - Enhancing control systems security in the energy sector...

  9. The Anaerobic Fluidized Bed Membrane Bioreactor for Energy-Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Anaerobic Fluidized Bed Membrane Bioreactor for Energy-Efficient Wastewater Reuse The Anaerobic Fluidized Bed Membrane Bioreactor for Energy-Efficient Wastewater Reuse ...

  10. National SCADA Test Bed Substation Automation Evaluation Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: National SCADA Test Bed Substation Automation Evaluation Report Citation Details In-Document Search Title: National SCADA Test Bed Substation Automation ...

  11. CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE TREATMENT...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE TREATMENT Citation Details In-Document Search Title: CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE ...

  12. Deep Bed Adsorption Testing using Silver-Functionalized Aerogel...

    Office of Scientific and Technical Information (OSTI)

    Deep Bed Adsorption Testing using Silver-Functionalized Aerogel Citation Details In-Document Search Title: Deep Bed Adsorption Testing using Silver-Functionalized Aerogel Nuclear ...

  13. National SCADA Test Bed - Enhancing control systems security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SCADA Test Bed - Enhancing control systems security in the energy sector (September 2009) National SCADA Test Bed - Enhancing control systems security in the energy sector ...

  14. Adsorbent and adsorbent bed for materials capture and separation...

    Office of Scientific and Technical Information (OSTI)

    Adsorbent and adsorbent bed for materials capture and separation processes Title: Adsorbent and adsorbent bed for materials capture and separation processes A method device and ...

  15. New Methane Hydrate Research: Investing in Our Energy Future | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped

  16. Tube construction for fluidized bed combustor

    DOE Patents [OSTI]

    De Feo, Angelo; Hosek, William

    1984-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  17. Fluidized bed combustor and tube construction therefor

    DOE Patents [OSTI]

    De Feo, Angelo; Hosek, William

    1981-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  18. Potential Cost-Effective Opportunities for Methane Emission Abatement

    SciTech Connect (OSTI)

    Warner, Ethan; Steinberg, Daniel; Hodson, Elke; Heath, Garvin

    2015-08-01

    The energy sector was responsible for approximately 84% of carbon dioxide equivalent (CO2e) greenhouse gas (GHG) emissions in the U.S. in 2012 (EPA 2014a). Methane is the second most important GHG, contributing 9% of total U.S. CO2e emissions. A large portion of those methane emissions result from energy production and use; the natural gas, coal, and oil industries produce approximately 39% of anthropogenic methane emissions in the U.S. As a result, fossil-fuel systems have been consistently identified as high priority sectors to contribute to U.S. GHG reduction goals (White House 2015). Only two studies have recently attempted to quantify the abatement potential and cost associated with the breadth of opportunities to reduce GHG emissions within natural gas, oil, and coal supply chains in the United States, namely the U.S. Environmental Protection Agency (EPA) (2013a) and ICF (2014). EPA, in its 2013 analysis, estimated the marginal cost of abatement for non-CO2 GHG emissions from the natural gas, oil, and coal supply chains for multiple regions globally, including the United States. Building on this work, ICF International (ICF) (2014) provided an update and re-analysis of the potential opportunities in U.S. natural gas and oil systems. In this report we synthesize these previously published estimates as well as incorporate additional data provided by ICF to provide a comprehensive national analysis of methane abatement opportunities and their associated costs across the natural gas, oil, and coal supply chains. Results are presented as a suite of marginal abatement cost curves (MACCs), which depict the total potential and cost of reducing emissions through different abatement measures. We report results by sector (natural gas, oil, and coal) and by supply chain segment - production, gathering and boosting, processing, transmission and storage, or distribution - to facilitate identification of which sectors and supply chain segments provide the greatest opportunities for low cost abatement.

  19. In-Bed Accountability Development for a Passively Cooled, Electrically Heated Hydride (PACE) Bed

    SciTech Connect (OSTI)

    Klein, J.E.

    2005-07-15

    A nominal 1500 STP-L PAssively Cooled, Electrically heated hydride (PACE) Bed has been developed for implementation into a new Savannah River Site tritium project. The 1.2 meter (four-foot) long process vessel contains on internal 'U-tube' for tritium In-Bed Accountability (IBA) measurements. IBA will be performed on six, 12.6 kg production metal hydride storage beds.IBA tests were done on a prototype bed using electric heaters to simulate the radiolytic decay of tritium. Tests had gas flows from 10 to 100 SLPM through the U-tube or 100 SLPM through the bed's vacuum jacket. IBA inventory measurement errors at the 95% confidence level were calculated using the correlation of IBA gas temperature rise, or (hydride) bed temperature rise above ambient temperature, versus simulated tritium inventory.Prototype bed IBA inventory errors at 100 SLPM were the largest for gas flows through the vacuum jacket: 15.2 grams for the bed temperature rise and 11.5 grams for the gas temperature rise. For a 100 SLPM U-tube flow, the inventory error was 2.5 grams using bed temperature rise and 1.6 grams using gas temperature rise. For 50 to 100 SLPM U-tube flows, the IBA gas temperature rise inventory errors were nominally one to two grams that increased above four grams for flows less than 50 SLPM. For 50 to 100 SLPM U-tube flows, the IBA bed temperature rise inventory errors were greater than the gas temperature rise errors, but similar errors were found for both methods at gas flows of 20, 30, and 40 SLPM.Electric heater IBA tests were done for six production hydride beds using a 45 SLPM U-tube gas flow. Of the duplicate runs performed on these beds, five of the six beds produced IBA inventory errors of approximately three grams: consistent with results obtained in the laboratory prototype tests.

  20. In-Bed Accountability Development for a Passively Cooled, Electrically Heated Hydride (PACE) Bed

    SciTech Connect (OSTI)

    KLEIN, JAMES

    2004-10-12

    A nominal 1500 STP-L PAssively Cooled, Electrically heated hydride (PACE) Bed has been developed for implementation into a new Savannah River Site tritium project. The 1.2 meter (four-foot) long process vessel contains an internal ''U-tube'' for tritium In-Bed Accountability (IBA) measurements. IBA will be performed on six, 12.6 kg production metal hydride storage beds. IBA tests were done on a prototype bed using electric heaters to simulate the radiolytic decay of tritium. Tests had gas flows from 10 to 100 SLPM through the U-tube or 100 SLPM through the bed's vacuum jacket. IBA inventory measurement errors at the 95 percent confidence level were calculated using the correlation of IBA gas temperature rise, or (hydride) bed temperature rise above ambient temperature, versus simulated tritium inventory. Prototype bed IBA inventory errors at 100 SLPM were the largest for gas flows through the vacuum jacket: 15.2 grams for the bed temperature rise and 11.5 grams for the gas temperature rise. For a 100 SLPM U-tube flow, the inventory error was 2.5 grams using bed temperature rise and 1.6 grams using gas temperature rise. For 50 to 100 SLPM U-tube flows, the IBA gas temperature rise inventory errors were nominally one to two grams that increased above four grams for flows less than 50 SLPM. For 50 to 100 SLPM U-tube flows, the IBA bed temperature rise inventory errors were greater than the gas temperature rise errors, but similar errors were found for both methods at gas flows of 20, 30, and 40 SLPM. Electric heater IBA tests were done for six production hydride beds using a 45 SLPM U-tube gas flow. Of the duplicate runs performed on these beds, five of the six beds produced IBA inventory errors of approximately three grams: consistent with results obtained in the laboratory prototype tests.

  1. Temperature dependence of steel wastage in a bubbling fluidized bed simulator

    SciTech Connect (OSTI)

    MacAdam, S.S. ); Stringer, J. )

    1993-02-01

    Tubes within bubbling fluidized bed combustors have in many instances suffered wastage. The wastage can be quite high at temperatures near 300 C, but it typically shows an abrupt decrease at approximately 400 C. Superheater tubes that operate at higher temperatures generally do not experience wastage. It is widely believed that this decrease in wastage with temperature is due to the development of a continuous oxide layer that protects the metal substrate by virtue of its hardness and resistance to spalling. In this study, the temperature effect is examined using a wear rig specially designed to simulate the impact conditions relevant to in-bed tubes. It was discovered that wastage for mild steel can decrease from a relatively high value to essential zero within the temperature range of 400 to 430 C. This decrease was attributable not to the presence of an oxide scale but to the development of a protective deposit layer. The deposit consisted of an agglomeration of submicron bed material particles. The submicron dust is created through the normal attrition process and it tends to form an adherent coating on the bulk bed particles. Deposition on the specimen occurs by transfer of agglomerated material from bulk particles during impact. Subsequent impacts compact the deposit into a continuous protective layer.

  2. Fluidized bed catalytic coal gasification process

    DOE Patents [OSTI]

    Euker, Jr., Charles A.; Wesselhoft, Robert D.; Dunkleman, John J.; Aquino, Dolores C.; Gouker, Toby R.

    1984-01-01

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  3. Updraft Fixed Bed Gasification Aspen Plus Model

    Energy Science and Technology Software Center (OSTI)

    2007-09-27

    The updraft fixed bed gasification model provides predictive modeling capabilities for updraft fixed bed gasifiers, when devolatilization data is available. The fixed bed model is constructed using Aspen Plus, process modeling software, coupled with a FORTRAN user kinetic subroutine. Current updraft gasification models created in Aspen Plus have limited predictive capabilities and must be "tuned" to reflect a generalized gas composition as specified in literature or by the gasifier manufacturer. This limits the applicability ofmore » the process model.« less

  4. A Summary of Tritium In-Bed Accountability for 1500 Liter La-Ni-Al Storage Beds

    SciTech Connect (OSTI)

    Klein, J.E.

    2001-07-31

    This paper summarizes the in-bed accountability (IBA) calibration results for all the RF LaNi4.25Al0.75 tritium storage beds.

  5. protective force

    National Nuclear Security Administration (NNSA)

    ntex%20-%20protective%20force%20-%20edited.jpg" alt"successfully completed a recent assessment by the U.S. Department " >

    Members of Pantex's Protective Force on...

  6. Mechanism of Methane Chemical Looping Combustion with Hematite Promoted with CeO2

    SciTech Connect (OSTI)

    Miller, Duane D.; Siriwardane, Ranjani

    2013-08-01

    Chemical looping combustion (CLC) is a promising technology for fossil fuel combustion that produces sequestration-ready CO{sub 2} stream, reducing the energy penalty of CO{sub 2} separation from flue gases. An effective oxygen carrier for CLC will readily react with the fuel gas and will be reoxidized upon contact with oxygen. This study investigated the development of a CeO{sub 2}-promoted Fe{sub 2}O{sub 3}?hematite oxygen carrier suitable for the methane CLC process. Composition of CeO{sub 2} is between 5 and 25 wt % and is lower than what is generally used for supports in Fe{sub 2}O{sub 3} carrier preparations. The incorporation of CeO{sub 2} to the natural ore hematite strongly modifies the reduction behavior in comparison to that of CeO{sub 2} and hematite alone. Temperature-programmed reaction studies revealed that the addition of even 5 wt % CeO{sub 2} enhances the reaction capacity of the Fe{sub 2}O{sub 3} oxygen carrier by promoting the decomposition and partial oxidation of methane. Fixed-bed reactor data showed that the 5 wt % cerium oxides with 95 wt % iron oxide produce 2 times as much carbon dioxide in comparison to the sum of carbon dioxide produced when the oxides were tested separately. This effect is likely due to the reaction of CeO{sub 2} with methane forming intermediates, which are reactive for extracting oxygen from Fe{sub 2}O{sub 3} at a considerably faster rate than the rate of the direct reaction of Fe{sub 2}O{sub 3} with methane. These studies reveal that 5 wt % CeO{sub 2}/Fe{sub 2}O{sub 3} gives stable conversions over 15 reduction/oxidation cycles. Lab-scale reactor studies (pulsed mode) suggest the methane reacts initially with CeO{sub 2} lattice oxygen to form partial oxidation products (CO + H{sub 2}), which continue to react with oxygen from neighboring Fe{sub 2}O{sub 3}, leading to its complete oxidation to form CO{sub 2}. The reduced cerium oxide promotes the methane decomposition reaction to form C + H{sub 2}, which continue to react with Fe{sub 2}O{sub 3}/Fe{sub 3}O{sub 4} to form CO/CO{sub 2} and H{sub 2}O. This mechanism is supported by the characterization studies, which also suggest that the formation of carbonaceous intermediates may affect the reaction rate and selectivity of the oxygen carrier.

  7. Protections: Sampling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protections: Sampling Protections: Sampling Protection #3: Sampling for known and unexpected contaminants August 1, 2013 Monitoring stormwater in Los Alamos Canyon Monitoring stormwater in Los Alamos Canyon The Environmental Sampling Board, a key piece of the Strategy, ensures that LANL collects relevant and appropriate data to answer questions about the protection of human and environmental health, and to satisfy regulatory requirements. LANL must demonstrate the data are technically justified

  8. Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  9. Texas--RRC District 10 Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 10 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  10. Texas--RRC District 2 Onshore Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 2 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  11. Texas (with State Offshore) Coalbed Methane Proved Reserves ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  12. Texas--RRC District 3 Onshore Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 3 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  13. Texas--RRC District 4 Onshore Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 4 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  14. Western States Coalbed Methane Production (Billion Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Western States Coalbed Methane Production (Billion Cubic Feet) Western States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  15. Impact of mammalian megaherbivores on global methane examined

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Today, livestock are major contributors to the atmospheric methane budget, with as much as 85% of methane in countries such as New Zealand coming from this source. In the United ...

  16. Direct use of methane in coal liquefaction

    DOE Patents [OSTI]

    Sundaram, M.S.; Steinberg, M.

    1985-06-19

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20 to 120 minutes at a temperature of 250 to 750/sup 0/C, preferably 350 to 450/sup 0/C, pressurized up to 6000 psi, and preferably in the 1000 to 2500 psi range, preferably directly utilizing methane 50 to 100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0 to 100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems. 1 fig.

  17. Direct use of methane in coal liquefaction

    DOE Patents [OSTI]

    Sundaram, Muthu S.; Steinberg, Meyer

    1987-01-01

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20-120 minutes at a temperature of 250.degree.-750.degree. C., preferably 350.degree.-450.degree. C., pressurized up to 6000 psi, and preferably in the 1000-2500 psi range, preferably directly utilizing methane 50-100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0-100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems.

  18. Fluidized bed injection assembly for coal gasification

    DOE Patents [OSTI]

    Cherish, Peter; Salvador, Louis A.

    1981-01-01

    A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

  19. Particle motion at fluidized bed tube surfaces

    SciTech Connect (OSTI)

    Drennen, J.F.; Hocking, W.R.; Howard, D.A.

    1990-06-01

    Metal loss from in-bed heat transfer tubes in fluidized bed combustors is recognized as a problem that is affecting the commercialization of FBC technology for coal utilization. A program has been initiated to address the erosion aspect of the wastage problem. Objectives were: (1) to develop a method for measuring the particle impact velocities and mass flux at a fluidized bed tube surface, (2) to obtain wear data from test tubes in an operating cold flow model, and (3) to correlate the results. An instrumented probe was develop during Phase I that could be used to obtain the three orthogonal velocity components and mass flux at a fluidized bed tube surface. The sensors were contained in a 2 inch diameter schedule 40 pipe that can be installed in the cold flow model in place of one of the test tubes. This arrangement allows measurements to be made non-intrusively. The velocity measuring portion used a Laser Doppler Velocimeter (LDV) for obtaining the resultant impact velocity and impact angle of the bed particles at the immersed tube surface. Mass flux was derived from the output of a high speed force transducer that measured the individual particle impact momentum signals. The above system was used successfully to measure particle impact velocities and momentum during a limited test program. Test were run in a 1 ft {times} 2 ft ambient temperature fluidized bed test facility using sand and acrylic test tubes. Measurements were taken in the center of the bed at eight circumferential location, by rotating the probe to the desired tube angle. Tube erosion data were also taken at locations corresponding to the above measurement points. The instrumentation provided a wealth of information about the internal hydrodynamics of the fluidized bed. 3 refs., 49 figs., 17 tabs.

  20. Fluid-bed air-supply system

    DOE Patents [OSTI]

    Zielinski, Edward A.; Comparato, Joseph R.

    1979-01-01

    The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.

  1. WTP Pretreatment Facility Potential Design Deficiencies--Sliding Bed and Sliding Bed Erosion Assessment

    SciTech Connect (OSTI)

    Hansen, E. K.

    2015-05-06

    This assessment is based on readily available literature and discusses both Newtonian and non-Newtonian slurries with respect to sliding beds and erosion due to sliding beds. This report does not quantify the size of the sliding beds or erosion rates due to sliding beds, but only assesses if they could be present. This assessment addresses process pipelines in the Pretreatment (PT) facility and the high level waste (HLW) transfer lines leaving the PT facility to the HLW vitrification facility concentrate receipt vessel.

  2. Report of the Task Force on Methane Hydrates

    Broader source: Energy.gov [DOE]

    This report presents the findings and recommendations for the Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates.

  3. Process for separating nitrogen from methane using microchannel process

    Office of Scientific and Technical Information (OSTI)

    technology (Patent) | SciTech Connect Process for separating nitrogen from methane using microchannel process technology Citation Details In-Document Search Title: Process for separating nitrogen from methane using microchannel process technology The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator

  4. Draft Report of the Task Force on Methane Hydrates

    Broader source: Energy.gov [DOE]

    This report presents the findings and recommendations for the Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates.

  5. Method for removal of methane from coalbeds

    DOE Patents [OSTI]

    Pasini, III, Joseph; Overbey, Jr., William K.

    1976-01-01

    A method for removing methane gas from underground coalbeds prior to mining the coal which comprises drilling at least one borehole from the surface into the coalbed. The borehole is started at a slant rather than directly vertically, and as it descends, a gradual curve is followed until a horizontal position is reached where the desired portion of the coalbed is intersected. Approaching the coalbed in this manner and fracturing the coalbed in the major natural fraction direction cause release of large amounts of the trapped methane gas.

  6. Formation and retention of methane in coal

    SciTech Connect (OSTI)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  7. Generating power with drained coal mine methane

    SciTech Connect (OSTI)

    2005-09-01

    The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

  8. Protecting Wildlife

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protecting Wildlife Protecting Wildlife We monitor and protect the wildlife and their habitats on Laboratory property. February 2, 2015 Mule deer on LANL property LANL has been home to mule deer since its creation in 1942 and has seasonally been home to elk since their reintroduction to New Mexico in the 1960s. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Protecting our wildlife Since the early 1940s, LANL's

  9. Protections: Sampling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection 3: Sampling for known and unexpected contaminants August 1, 2013 Monitoring stormwater in Los Alamos Canyon Monitoring stormwater in Los Alamos Canyon The Environmental ...

  10. Ash bed level control system for a fixed-bed coal gasifier

    DOE Patents [OSTI]

    Fasching, George E.; Rotunda, John R.

    1984-01-01

    An ash level control system is provided which incorporates an ash level meter to automatically control the ash bed level of a coal gasifier at a selected level. The ash level signal from the ash level meter is updated during each cycle that a bed stirrer travels up and down through the extent of the ash bed level. The ash level signal is derived from temperature measurements made by thermocouples carried by the stirrer as it passes through the ash bed and into the fire zone immediately above the ash bed. The level signal is compared with selected threshold level signal to determine if the ash level is above or below the selected level once each stirrer cycle. A first counter is either incremented or decremented accordingly. The registered count of the first counter is preset in a down counter once each cycle and the preset count is counted down at a selected clock rate. A grate drive is activated to rotate a grate assembly supporting the ash bed for a period equal to the count down period to maintain the selected ash bed level. In order to avoid grate binding, the controller provides a short base operating duration time each stirrer cycle. If the ash bed level drops below a selected low level or exceeds a selected high level, means are provided to notify the operator.

  11. In-bed accountability of tritium in production scale metal hydride storage beds

    SciTech Connect (OSTI)

    Klein, J.E.

    1995-10-01

    An `in-bed accountability` (IBA) flowing gas calorimetric measurement method has been developed and implemented to eliminate the need to remove tritium from production scale metal hydride storage beds for inventory measurement purposes. Six-point tritium IBA calibration curves have been completed for two, 390 gram tritium metal hydride storage beds. The calibration curves for the two tritium beds are similar to those obtained from the `cold` test program. Tritium inventory errors at the 95 percent confidence level ranged from {+-} 7.3 to 8.6 grams for the cold test results compared to {+-} 4.2 to 7.5 grams obtained for the two tritium calibrated beds. 5 refs., 4 figs., 1 tab.

  12. Bed material agglomeration during fluidized bed combustion. Technical progress report, September 30, 1992--December 31, 1992

    SciTech Connect (OSTI)

    Brown, R.C.; Dawson, M.R.; Noble, S.

    1993-02-01

    The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

  13. A study of cellulose gasification in a fluidized bed using a high-temperature solar furnace

    SciTech Connect (OSTI)

    Murray, J.P.

    1989-01-01

    A 4.2-meter solar furnace was used to study the gasification of cellulose with steam in a fluidized bed. The heating value of the high-temperature equilibrium products is about twenty percent higher than that of the reactants. The increase represents stored solar energy; and the product, synthesis gas, is valuable as a chemical feedstock or pipeline gas. All experiments were performed at atmospheric pressure. Pure tabular alumina as well as crushed automotive exhaust was used as a bed material. Microcrystalline {alpha}-cellulose, entrained in argon, entered the fluidized bed just above the distributor. Steam heated to the operating temperature in a 10 cm packed bed section below the fluidized bed. In all cases, the process ran with more steam than required to produce an equimolar mixture of carbon monoxide and hydrogen. We used a quartz reactor between 1100 and 1430 K; a steel reactor at 1500 K and an Inconel reactor at 1600 K. Reactor inside diameter, nominally 5 cm, varied slightly; the bed height was adjusted to keep the gas residence time constant. Hydrogen production rate was measured before and after experiments with steam alone, with this amount subtracted. Equilibrium mixtures were not achieved. Catalysts improved hydrogen yields with higher than expected concentrations of carbon monoxide, methane and lighter hydrocarbons such as ethylene and acetylene. Experiments performed without catalyst at 1300 K, achieved a mixture (dry, argon-free) of 46 mole% CO, 30% H{sub 2} 14% CH{sub 4} 5% CO{sub 2} and 5% C{sub 2}H{sub 4}. An equilibrium mixture at this temperature would have contained 39% CO, 30% H{sub 2} 7% CO{sub 2} and no CH{sub 4} or C{sub 2}H{sub 4}. With the catalyst, the CO and CH{sub 4} decreased to 40% and 2% respectively, the H{sub 2} increased to 47%, and CO{sub 2} remained the same. No ethylene was formed. The hydrocarbon-rich mixtures achieved are typical of rapid-pyrolysis processes.

  14. Wear prediction in a fluidized bed

    SciTech Connect (OSTI)

    Boyle, E.J.; Rogers, W.A.

    1993-06-01

    A procedure to model the wear of surfaces exposed to a fluidized bed is formulated. A stochastic methodology adapting the kinetic theory of gases to granular flows is used to develop an impact wear model. This uses a single-particle wear model to account for impact wear from all possible-particle collisions. An adaptation of a single-particle abrasion model to describe the effects of many abrading particles is used to account for abrasive wear. Parameters describing granular flow within the fluidized bed, necessary for evaluation of the wear expressions, are determined by numerical solution of the fluidized bed hydrodynamic equations. Additional parameters, describing the contact between fluidized particles and the wearing surface, are determined by optimization based on wear measurements. The modeling procedure was used to analyze several bubbling and turbulent fluidized bed experiments with single-tube and tube bundle configurations. Quantitative agreement between the measured and predicted wear rates was found, with some exceptions for local wear predictions. This work demonstrates a methodology for wear predictions in fluidized beds.

  15. Thermodynamic properties and diffusion of water + methane binary mixtures

    SciTech Connect (OSTI)

    Shvab, I.; Sadus, Richard J.

    2014-03-14

    Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methane concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions.

  16. Fire Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-05

    This Standard was developed to provide acceptable methods and approaches for meeting DOE fire protection program and design requirements and to address special or unique fire protection issues at DOE facilities that are not comprehensively or adequately addressed in national consensus standards or other design criteria.

  17. Fluidized bed selective pyrolysis of coal

    DOE Patents [OSTI]

    Shang, J.Y.; Cha, C.Y.; Merriam, N.W.

    1992-12-15

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.

  18. Fluidized bed selective pyrolysis of coal

    DOE Patents [OSTI]

    Shang, Jer Y.; Cha, Chang Y.; Merriam, Norman W.

    1992-01-01

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.

  19. Particle withdrawal from fluidized bed systems

    DOE Patents [OSTI]

    Salvador, Louis A.; Andermann, Ronald E.; Rath, Lawrence K.

    1982-01-01

    Method and apparatus for removing ash formed within, and accumulated at the lower portion of, a fluidized bed coal gasification reactor vessel. A supplemental fluidizing gas, at a temperature substantially less than the average fluidized bed combustion operating temperature, is injected into the vessel and upwardly through the ash so as to form a discrete thermal interface region between the fluidized bed and the ash. The elevation of the interface region, which rises with ash accumulation, is monitored by a thermocouple and interrelated with a motor controlled outlet valve. When the interface rises above the temperature indicator, the valve opens to allow removal of some of the ash, and the valve is closed, or positioned at a minimum setting, when the interface drops to an elevation below that of the thermocouple.

  20. AIR PASSIVATION OF METAL HYDRIDE BEDS FOR WASTE DISPOSAL

    SciTech Connect (OSTI)

    Klein, J; R. H. Hsu, R

    2007-07-02

    Metal hydride beds offer compact, safe storage of tritium. After metal hydride beds have reached the end of their useful life, the beds will replaced with new beds and the old beds prepared for disposal. One acceptance criteria for hydride bed waste disposal is that the material inside the bed not be pyrophoric. To determine the pyrophoric nature of spent metal hydride beds, controlled air ingress tests were performed. A simple gas handling manifold fitted with pressure transducers and a calibrated volume were used to introduce controlled quantities of air into a metal hydride bed and the bed temperature rise monitored for reactivity with the air. A desorbed, 4.4 kg titanium prototype hydride storage vessel (HSV) produced a 4.4 C internal temperature rise upon the first air exposure cycle and a 0.1 C temperature rise upon a second air exposure. A total of 346 scc air was consumed by the bed (0.08 scc per gram Ti). A desorbed, 9.66 kg LaNi{sub 4.25}Al{sub 0.75} prototype storage bed experienced larger temperature rises over successive cycles of air ingress and evacuation. The cycles were performed over a period of days with the bed effectively passivated after the 12th cycle. Nine to ten STP-L of air reacted with the bed producing both oxidized metal and water.

  1. Proceedings of the sixth international conference on fluidized bed combustion. Volume III. Technical sessions

    SciTech Connect (OSTI)

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. Forty-five papers from Vol. III of the proceedings have been entered individually into EDB and ERA. Two papers had been entered previously from other sources. (LTN)

  2. Fixed bed reduction of hematite under alternating reduction and oxidation cycles

    SciTech Connect (OSTI)

    Breault, Ronald W.; Monazam, Esmail R.

    2015-02-28

    The rate of the reduction reaction of a low cost natural hematite oxygen carrier for chemical looping combustion was investigated in a fixed bed reactor where hematite samples of about 1 kg were exposed to a flowing stream of methane and argon. The investigation aims to develop understanding of the factors that govern the rate of reduction with in larger reactors as compared to mostly TGA investigations in the literature. Comparison of the experimental data with a model indicated that reaction between the methane and the iron oxide shows multi-step reactions. The analysis also shows that the conversion occurs with a process that likely consumes all the oxygen close to the surface of the hematite particles and another process that is likely controlled by the diffusion of oxygen to the surface of the particles. Additional analysis shows that the thickness of the fast layer is on the order of 8 unit crystals. This is about 0.4% of the hematite; however, it comprises about 20 to 25% of the conversion for the 10 min reduction cycle.

  3. Fixed bed reduction of hematite under alternating reduction and oxidation cycles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Breault, Ronald W.; Monazam, Esmail R.

    2015-02-28

    The rate of the reduction reaction of a low cost natural hematite oxygen carrier for chemical looping combustion was investigated in a fixed bed reactor where hematite samples of about 1 kg were exposed to a flowing stream of methane and argon. The investigation aims to develop understanding of the factors that govern the rate of reduction with in larger reactors as compared to mostly TGA investigations in the literature. Comparison of the experimental data with a model indicated that reaction between the methane and the iron oxide shows multi-step reactions. The analysis also shows that the conversion occurs withmorea process that likely consumes all the oxygen close to the surface of the hematite particles and another process that is likely controlled by the diffusion of oxygen to the surface of the particles. Additional analysis shows that the thickness of the fast layer is on the order of 8 unit crystals. This is about 0.4% of the hematite; however, it comprises about 20 to 25% of the conversion for the 10 min reduction cycle.less

  4. TRITIUM IN-BED ACCOUNTABILITY FOR A PASSIVELY COOLED, ELECTRICALLY HEATED HYDRIDE BED

    SciTech Connect (OSTI)

    Klein, J.; Foster, P.

    2011-01-21

    A PAssively Cooled, Electrically heated hydride (PACE) Bed has been deployed into tritium service in the Savannah River Site (SRS) Tritium Facilities. The bed design, absorption and desorption performance, and cold (non-radioactive) in-bed accountability (IBA) results have been reported previously. Six PACE Beds were fitted with instrumentation to perform the steady-state, flowing gas calorimetric inventory method. An IBA inventory calibration curve, flowing gas temperature rise ({Delta}T) versus simulated or actual tritium loading, was generated for each bed. Results for non-radioactive ('cold') tests using the internal electric heaters and tritium calibration results are presented. Changes in vacuum jacket pressure significantly impact measured IBA {Delta}T values. Higher jacket pressures produce lower IBA {Delta}T values which underestimate bed tritium inventories. The exhaust pressure of the IBA gas flow through the bed's U-tube has little influence on measured IBA {Delta}T values, but larger gas flows reduce the time to reach steady-state conditions and produce smaller tritium measurement uncertainties.

  5. Internal dust recirculation system for a fluidized bed heat exchanger

    DOE Patents [OSTI]

    Gamble, Robert L.; Garcia-Mallol, Juan A.

    1981-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided in a heat exchange relation to the bed and includes a steam drum disposed adjacent the bed and a tube bank extending between the steam drum and a water drum. The tube bank is located in the path of the effluent gases exiting from the bed and a baffle system is provided to separate the solid particulate matter from the effluent gases. The particulate matter is collected and injected back into the fluidized bed.

  6. Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes

    DOE Patents [OSTI]

    Talmud, Fred M.; Garcia-Mallol, Juan-Antonio

    1980-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.

  7. 3-D capacitance density imaging of fluidized bed

    DOE Patents [OSTI]

    Fasching, George E.

    1990-01-01

    A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved.

  8. Solid fuel feed system for a fluidized bed

    DOE Patents [OSTI]

    Jones, Brian C.

    1982-01-01

    A fluidized bed for the combustion of coal, with limestone, is replenished with crushed coal from a system discharging the coal laterally from a station below the surface level of the bed. A compartment, or feed box, is mounted at one side of the bed and its interior separated from the bed by a weir plate beneath which the coal flows laterally into the bed while bed material is received into the compartment above the plate to maintain a predetermined minimum level of material in the compartment.

  9. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong, Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2003-01-01

    Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane recovery. Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that are significant targets for coalbed methane production and carbon sequestration, and net coal thickness generally increases southeastward. Pottsville strata have effectively no matrix permeability to water, so virtually all flow is through natural fractures. Faults and folds influence the abundance and openness of fractures and, hence, the performance of coalbed methane wells. Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L. Carbon dioxide becomes a supercritical fluid above a temperature of 88 F and a pressure of 1,074 psi. Reservoir temperature exceeds 88 F in much of the study area. Hydrostatic pressure gradients range from normal to extremely underpressured. A large area of underpressure is developed around closely spaced longwall coal mines, and areas of natural underpressure are distributed among the coalbed methane fields. The mobility and reactivity of supercritical CO{sub 2} in coal-bearing strata is unknown, and potential exists for supercritical conditions to develop below a depth of 2,480 feet following abandonment of the coalbed methane fields. High-pressure adsorption isotherms confirm that coal sorbs approximately twice as much CO{sub 2} as CH{sub 4} and approximately four times as much CO{sub 2} as N{sub 2}. Analysis of isotherm data reveals that the sorption performance of each gas can vary by a factor of two depending on rank and ash content. Gas content data exhibit extreme vertical and lateral variability that is the product of a complex burial history involving an early phase of thermogenic gas generation and an ongoing stage of late biogenic gas generation. Production characteristics of coalbed methane wells are helpful for identifying areas that are candidates for carbon sequestration and enhanced coalbed methane recovery. Many geologic and engineering factors, including well construction, well spacing, and regional structure influence well performance. Close fault spacing limits areas where five-spot patterns may be developed for enhanced gas recovery, but large structural panels lacking normal faults are in several gas fields and can be given priority as areas to demonstrate and commercialize carbon sequestration technology in coalbed methane reservoirs.

  10. Methyl chloride via oxyhydrochlorination of methane. Quarterly technical progress report No. 13, October--December 1994

    SciTech Connect (OSTI)

    1995-02-01

    The purpose of this contract is to develop a process for converting light alkane gases to methyl chloride via oxyhydrochlorination using highly selective, stable catalysts in fixed-bed reactors designed to remove the large amount of heat generated, so as to control the reaction temperature. Further, the objective is to obtain the engineering data base necessary for developing a commercially feasible process and to evaluate t economics of the process. Significant progress was made in six different technical areas during this quarter. These key highlights are: (1) Evaluation of catalyst samples from UCI led to the ordering of the OHC PDU catalyst batch. This catalyst batch arrived, was screened and found to be defective, and was reordered. (2) Natural gas containing higher hydrocarbons was used as a methane source. The reactant mixture formed oxygenates at temperatures lower than observed in the past. Burning at such low temperatures seems to create a product stream containing very little CH{sub 2}Cl{sub 2}. (3) Although it has not been decided if the PDU will use natural gas from the plant or methane or natural gas from cylinders as a methane feed source, it was concluded that an adsorption unit to remove sulfur and higher hydrocarbons is not necessary at this time. (4) PDU construction was completed in December. The bulk of insulation work was completed at the end of November. Much effort has been put into pressure testing the PDU`s systems. The startup team has become adept at finding and correcting such leaks. (5) SOP writing for the PDU was completed this quarter with communication with the software programmer to insure agreement between the software and SOP.

  11. Protective Force

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26

    Establishes requirements for management and operation of the DOE Protective Force (PF), establishes requirements for firearms operations and defines the firearms courses of fire. Cancels: DOE M 473.2-1A DOE M 473.2-2

  12. Effect of bubble size and density on methane conversion to hydrate

    SciTech Connect (OSTI)

    Leske, J.; Taylor, C.E.; Ladner, E.P.

    2007-03-01

    Research is underway at NETL to understand the physical properties of methane hydrates. One area of investigation is the storage of methane as methane hydrates. An economical and efficient means of storing methane in hydrates opens many commercial opportunities such as transport of stranded gas, off-peak storage of line gas, etc.We have observed during our investigations that the ability to convert methane to methane hydrate is enhanced by foaming of the methanewater solution using a surfactant. The density of the foam, along with the bubble size, is important in the conversion of methane to methane hydrate.

  13. Protective Force

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-03-07

    The manual establishes requirements for management and operation of the DOE Protective Force, establishes requirements for firearms operations and defines the firearms courses of fire. Chg 1 dated 3/7/06. DOE M 470.4-3A cancels DOE M 470.4-3, Chg 1, Protective Force, dated 3-7-06, Attachment 2, Contractor Requirement Document (CRD) only (except for Section C). Chg 1, dated 3-7-06, cancels DOE M 470.4-3

  14. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26

    This Manual establishes requirements for the physical protection of safeguards and security interests. Copies of Section B, Safeguards and Security Alarm Management System, which contains Unclassified Controlled Nuclear Information, and Appendix 1, Security Badge Specifications, which contains Official Use Only information, are only available, by request, from the program manager, Protection Program Operations, 301-903-6209. Chg 1, dated 3/7/06. Cancels: DOE M 473.1-1 and DOE M 471.2-1B

  15. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26

    Establishes requirements for the physical protection of safeguards and security interests. Copies of Section B, Safeguards and Security Alarm Management System, which contains Unclassified Controlled Nuclear Information, and Appendix 1, Security Badge Specifications, which contains Official Use Only information, are only available, by request, from the program manager, Protection Program Operations, 301-903-6209. Cancels: DOE M 473.1-1 and DOE M 471.2-1B.

  16. Corrosion protection

    DOE Patents [OSTI]

    Brown, Donald W.; Wagh, Arun S.

    2003-05-27

    There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.

  17. TITAN'S TRANSPORT-DRIVEN METHANE CYCLE

    SciTech Connect (OSTI)

    Mitchell, Jonathan L.

    2012-09-10

    The mechanisms behind the occurrence of large cloud outbursts and precipitation on Titan have been disputed. A global- and annual-mean estimate of surface fluxes indicated only 1% of the insolation, or {approx}0.04 W m{sup -2}, is exchanged as sensible and/or latent fluxes. Since these fluxes are responsible for driving atmospheric convection, it has been argued that moist convection should be quite rare and precipitation even rarer, even if evaporation globally dominates the surface-atmosphere energy exchange. In contrast, climate simulations indicate substantial cloud formation and/or precipitation. We argue that the top-of-atmosphere (TOA) radiative imbalance is diagnostic of horizontal heat transport by Titan's atmosphere, and thus constrains the strength of the methane cycle. Simple calculations show the TOA radiative imbalance is {approx}0.5-1 W m{sup -2} in Titan's equatorial region, which implies 2-3 MW of latitudinal heat transport by the atmosphere. Our simulation of Titan's climate suggests this transport may occur primarily as latent heat, with net evaporation at the equator and net accumulation at higher latitudes. Thus, the methane cycle could be 10-20 times previous estimates. Opposing seasonal transport at solstices, compensation by sensible heat transport, and focusing of precipitation by large-scale dynamics could further enhance the local, instantaneous strength of Titan's methane cycle by a factor of several. A limited supply of surface liquids in regions of large surface radiative imbalance may throttle the methane cycle, and if so, we predict more frequent large storms over the lakes district during Titan's northern summer.

  18. Enhanced carbon monoxide utilization in methanation process

    DOE Patents [OSTI]

    Elek, Louis F.; Frost, Albert C.

    1984-01-01

    Carbon monoxide - containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is subsequently reacted with steam or hydrogen to form methane. Surprisingly, hydrogen and water vapor present in the feed gas do not adversely affect CO utilization significantly, and such hydrogen actually results in a significant increase in CO utilization.

  19. Cross Sections for Electron Collisions with Methane

    SciTech Connect (OSTI)

    Song, Mi-Young Yoon, Jung-Sik; Cho, Hyuck; Itikawa, Yukikazu; Karwasz, Grzegorz P.; Kokoouline, Viatcheslav; Nakamura, Yoshiharu; Tennyson, Jonathan

    2015-06-15

    Cross section data are compiled from the literature for electron collisions with methane (CH{sub 4}) molecules. Cross sections are collected and reviewed for total scattering, elastic scattering, momentum transfer, excitations of rotational and vibrational states, dissociation, ionization, and dissociative attachment. The data derived from swarm experiments are also considered. For each of these processes, the recommended values of the cross sections are presented. The literature has been surveyed through early 2014.

  20. Reversed flow fluidized-bed combustion apparatus

    DOE Patents [OSTI]

    Shang, Jer-Yu; Mei, Joseph S.; Wilson, John S.

    1984-01-01

    The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

  1. Fluidized bed electrowinning of copper. Final report

    SciTech Connect (OSTI)

    1997-07-01

    The objectives of the study were to: design and construct a 10,000- amp fluidized bed electrowinning cell for the recovery of copper from acidic sulfate solutions; demonstrate the technical feasibility of continuous particle recirculation from the electrowinning cell with the ultimate goal of continuous particle removal; and measure cell efficiency as a function of operating conditions.

  2. In-bed measurement of tritium loading in process metal hydride beds

    SciTech Connect (OSTI)

    Nobile, A.

    1988-01-01

    The Replacement Tritium Facility at Savannah River Plant will make extensive use of metal hydride technology for the storage, pumping, isotopic separation, and compression of hydrogen isotopes. Two options were considered for routine accountability of tritium stored in metal hydride beds. One option was to use standard P-V-T-mass spectrometry techniques after desorption of storage beds to tanks of known volume. The second option was to develop a technique for direct measurement of bed loading. It was thought that such a technique would be more rapid and would account for heel, although some accuracy would be lost.The static nitrogen and flowing nitrogen methods were considered for this option. The flowing nitrogen method was eventually selected because it was insensitive to bed physical properties and isotopic gas composition, as well as being more accurate and easier to automate.

  3. Workshop on wear potential of bed material in fluidized-bed combustors

    SciTech Connect (OSTI)

    Not Available

    1991-11-01

    A workshop was held in November 1990 at Argonne National Laboratory to investigate the wear potential of bed material in fluidized-bed combustors (FBCs). The overall objective was to relate feedstock analyses to bed-material characteristics. The potential effects of quartz, alkali, chlorine, particle angularity, particle coatings, and coal rank were discussed. It was concluded that inadequate data exist to draw substantive conclusions, although in the case of two specific FBC facilities, high wastage rates could be related to the accumulation of quartz particles in the bed. The primary research needs identified in the workshop were for standardized methodologies for sampling solids, for measuring their characteristics, and for correlating those characteristics with some measure of materials wastage.

  4. DOE - Fossil Energy: A Bed for Burning Coal?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-Bed for Burning Coal An Energy Lesson Cleaning Up Coal A "Bed" for Burning Coal? It was a wet, chilly day in Washington DC in 1979 when a few scientists and engineers joined with ...

  5. Percolation behavior of tritiated water into a soil packed bed...

    Office of Scientific and Technical Information (OSTI)

    Percolation behavior of tritiated water into a soil packed bed Citation Details In-Document Search Title: Percolation behavior of tritiated water into a soil packed bed A large ...

  6. Iodine Sorbent Performance in FY 2012 Deep Bed Tests (Technical...

    Office of Scientific and Technical Information (OSTI)

    Iodine Sorbent Performance in FY 2012 Deep Bed Tests Citation Details In-Document Search Title: Iodine Sorbent Performance in FY 2012 Deep Bed Tests You are accessing a document ...

  7. Models to interpret bed-form geometries from cross-bed data

    SciTech Connect (OSTI)

    Luthi, S.M. (Schlumberger-Doll Research, Ridgefield, CT (USA)); Banavar, J.R. (Pennsylvania State Univ., University Park (USA)); Bayer, U. (Institute Erdoel und Organische Chemie, Kernforschungsanlage Juelich (West Germany))

    1990-05-01

    To improve the understanding of the relation of cross-bed azimuth distributions to bed-forms, geometric models were developed for migrating bed forms using a minimum number of parameters. Semielliptical and sinusoidal bed-form crestlines were modeled with curvature and sinuosity as parameters. Both bedform crestlines are propagated at various angles of migration over a finite area of deposition. Two computational approaches are used, a statistical random sampling (Monte Carlo) technique over the area of the deposit, and an analytical method based on topology and differential geometry. The resulting foreset azimuth distributions provide a catalog for a variety of simulations. The resulting thickness distributions have a simple shape and can be combined with the azimuth distributions to further constrain the cross-strata geometry. Paleocurrent directions obtained by these models can differ substantially from other methods, especially for obliquely migrating low-curvature bed forms. Interpretation of foreset azimuth data from outcrops and wells can be done either by visual comparison with the cataloged distributions, or by iterative computational fits. Studied examples include eolian cross-strata from the Permian Rotliegendes in the North Sea, fluvial dunes from the Devonian in the Catskills (New York state), the Triassic Schilfsandstein (Federal Republic of Germany), and the Paleozoic-Jurassic of the Western Desert (Egypt), as well as recent tidal dunes from the German coast of the North Sea and tidal cross-strata from the Devonian Koblentzquartzit (Federal Republic of Germany). In all cases the semi-elliptical bed-form model gave a good fit to the data, suggesting that it may be applicable over a wide range of bed forms. The data from the Western Desert could be explained only by data scatter due to channel sinuosity combined with the scatter attributed to the ellipticity of the bed-form crestlines.

  8. Method of feeding particulate material to a fluidized bed

    DOE Patents [OSTI]

    Borio, Richard W. (Somers, CT); Goodstine, Stephen L. (Windsor, CT)

    1984-01-01

    A centrifugal spreader type feeder that supplies a mixture of particulate limestone and coal to the top of a fluidized bed reactor having a flow of air upward therethrough. Large particles of particulate matter are distributed over the upper surface of the bed to utilize the natural mixing within the bed, while fine particles are adapted to utilize an independent feeder that separates them from the large particles and injects them into the bed.

  9. Methane Hydrate Production Technologies to be Tested on Alaska's North

    Energy Savers [EERE]

    Slope | Department of Energy Methane Hydrate Production Technologies to be Tested on Alaska's North Slope Methane Hydrate Production Technologies to be Tested on Alaska's North Slope October 24, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and ConocoPhillips will work together to test innovative technologies for producing methane gas from hydrate deposits on the Alaska North Slope. The collaborative testing will

  10. Enhanced Renewable Methane Production System Benefits Wastewater Treatment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plants, Farms, and Landfills - Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Enhanced Renewable Methane Production System Benefits Wastewater Treatment Plants, Farms, and Landfills Argonne National Laboratory Contact ANL About This Technology <p> Argonne&rsquo;s Enhanced Renewable Methane Production System &mdash; Process Schematic.</p> Argonne's Enhanced Renewable Methane Production System - Process Schematic.

  11. DOE Announces $2 Million Funding for Methane Hydrates Projects | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2 Million Funding for Methane Hydrates Projects DOE Announces $2 Million Funding for Methane Hydrates Projects November 7, 2005 - 12:43pm Addthis Seeks to Unlock World's Biggest Potential Source of "Ice That Burns" WASHINGTON, DC - The Department of Energy (DOE) today announced a total of $2 million in funding to five research projects that will assess the energy potential, safety, and environmental aspects of methane hydrate exploration and development. Termed the

  12. Methane and Methanotrophic Bacteria as a Biotechnological Platform |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Methane and Methanotrophic Bacteria as a Biotechnological Platform Methane and Methanotrophic Bacteria as a Biotechnological Platform Breakout Session 2-B: New/Emerging Pathways Methane and Methanotrophic Bacteria as a Biotechnological Platform Dr. Lori Giver, Vice President of Biological Engineering, Calysta Energy, Inc. PDF icon giver_bioenergy_2015.pdf More Documents & Publications CX-100166 Categorical Exclusion Determination Biobased Chemicals Landscape in 2015:

  13. Natural Gas Methane Emissions in the United States Greenhouse Gas Inventory: Sources, Uncertainties and Opportunities for Improvement

    SciTech Connect (OSTI)

    Heath, Garvin; Warner, Ethan; Steinberg, Daniel; Brandt, Adam

    2015-11-19

    Presentation summarizing key findings of a Joint Institute for Strategic Energy Analysis Report at an Environmental Protection Agency workshop: 'Stakeholder Workshop on EPA GHG Data on Petroleum and Natural Gas Systems' on November 19, 2015. For additional information see the JISEA report, 'Estimating U.S. Methane Emissions from the Natural Gas Supply Chain: Approaches, Uncertainties, Current Estimates, and Future Studies' NREL/TP-6A50-62820.

  14. Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 1 1 1 0 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Ohio Coalbed Methane Proved Reserves,

  15. ,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"06301989"...

  16. Montana Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 73 77 66 75 37 2010's 64 25 11 16 11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Montana Coalbed Methane

  17. Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Kentucky Coalbed Methane Proved

  18. Critical Factors Driving the High Volumetric Uptake of Methane...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Factors Driving the High Volumetric Uptake of Methane in Cu-3(btc)(2) Previous Next List Hulvey, Zeric; Vlaisavljevich, Bess; Mason, Jarad A.; Tsivion, Ehud; Dougherty,...

  19. High Methane Storage Capacity in Aluminum Metal-Organic Frameworks...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Methane Storage Capacity in Aluminum Metal-Organic Frameworks Previous Next List Felipe Gndara, Hiroyasu Furukawa, Seungkyu Lee, and Omar M. Yaghi, J. Am. Chem. Soc., 136,...

  20. Converting Methane to Methanol: Structural Insight into the Reaction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biology, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA. Methane-oxidizing bacteria (methanotrophs) are extremely attractive from a chemist's...

  1. High-pressure solvent extraction of methane from geopressured...

    Office of Scientific and Technical Information (OSTI)

    of recovering dissolved methane from geopressured-geothermal brines at high pressures. ... The contributions of hydraulic (pressure) energy recovery and geothermal power production ...

  2. Natural Gas Infrastructure R&D and Methane Mitigation Woekshop...

    Energy Savers [EERE]

    engine retrofits reduce emissions & increase efficiency * ... Infrastructure R&D and Methane Mitigation Workshop - Nov. ... type) ** not common in upstream applications (low hanging ...

  3. UPGRADING METHANE USING ULTRA-FAST THERMAL SWING ADSORPTION

    SciTech Connect (OSTI)

    Anna Lee Tonkovich

    2004-01-01

    The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the feasibility of upgrading low-Btu methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys' modular microchannel process technology. The project is on schedule and under budget. For Task 1.1, the open literature, patent information, and vendor contacts were surveyed to identify adsorbent candidates for experimental validation and subsequent demonstration in an MPT-based ultra-fast TSA separation for methane upgrading. The leading candidates for preferential adsorption of methane over nitrogen are highly microporous carbons. A Molecular Gate{trademark} zeolite from Engelhard Corporation has emerged as a candidate. For Task 1.2, experimental evaluation of adsorbents was initiated, and data were collected on carbon (MGN-101) from PICA, Inc. This carbon demonstrated a preferential capacity for methane over nitrogen, as well as a reasonable thermal swing differential capacity for a 90% methane and 10% nitrogen mixture. A similar methane swing capacity at 2 psig was measured. The mixture composition is relevant because gob gas contains nearly 85% methane and must be purified to 97% methane for pipeline quality.

  4. ,"New Mexico Coalbed Methane Proved Reserves, Reserves Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"0...

  5. Process for separating nitrogen from methane using microchannel...

    Office of Scientific and Technical Information (OSTI)

    microchannel process technology Citation Details In-Document Search Title: Process for separating nitrogen from methane using microchannel process technology The disclosed ...

  6. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G.; Pienkos, Philip T.; Guarnieri, Michael T.

    2016-02-23

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resultedmore » in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels.« less

  7. Analysis/control of in-bed tube erosion phenomena in the fluidized bed combustion system. Final technical report

    SciTech Connect (OSTI)

    Lee, Seong W.

    1996-11-01

    Research is presented on erosion and corrosion of fluidized bed combustor component materials. The characteristics of erosion of in-bed tubes was investigated. Anti-corrosion measures were also evaluated.

  8. Fluidized bed steam reformed mineral waste form performance testing to support Hanford Supplemental Low Activity Waste Immobilization Technology Selection

    SciTech Connect (OSTI)

    Jantzen, C. M.; Pierce, E. M.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Crawford, C. L.; Daniel, W. E.; Fox, K. M.; Herman, C. C.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.; Brown, C. F.; Qafoku, N. P.; Neeway, J. J.; Valenta, M. M.; Gill, G. A.; Swanberg, D. J.; Robbins, R. A.; Thompson, L. E.

    2015-10-01

    This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Waste and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.

  9. weapons material protection | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    material protection

  10. Durability Testing of Fluidized Bed Steam Reforming Products

    SciTech Connect (OSTI)

    JANTZEN, CAROL M.; PAREIZS, JOHN M.; LORIER, TROY H.; MARRA, JAMES C.

    2005-07-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of radioactive wastes but especially aqueous high sodium wastes at the Hanford site, at the Idaho National Laboratory (INL), and at the Savannah River Site (SRS). The FBSR technology converts organic compounds to CO{sub 2} and H{sub 2}O, converts nitrate/nitrite species to N{sub 2}, and produces a solid residue through reactions with superheated steam, the fluidizing media. If clay is added during processing a ''mineralized'' granular waste form can be produced. The mineral components of the waste form are primarily Na-Al-Si (NAS) feldspathoid minerals with cage-like and ring structures and iron bearing spinel minerals. The cage and ring structured minerals atomically bond radionuclides like Tc{sup 99} and Cs{sup 137} and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals appear to stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Durability testing of the FBSR products was performed using ASTM C1285 (Product Consistency Test) and the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP). The FBSR mineral products (bed and fines) evaluated in this study were found to be two orders of magnitude more durable than the Hanford Low Activity Waste (LAW) glass requirement of 2 g/m{sup 2} release of Na{sup +}. The PCT responses for the FBSR samples tested were consistent with results from previous FBSR Hanford LAW product testing. Differences in the response can be explained by the minerals formed and their effects on PCT leachate chemistry.

  11. A Path to Reduce Methane Emissions from Gas Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Path to Reduce Methane Emissions from Gas Systems A Path to Reduce Methane Emissions from Gas Systems July 29, 2014 - 3:33pm Addthis A researcher evaluates methane produced in a unique conservation process. Methane is both a potent greenhouse gas and valuable energy resource.| Photo courtesy of the Energy Department. A researcher evaluates methane produced in a unique conservation process. Methane is both a potent greenhouse gas and valuable energy resource.| Photo courtesy of the Energy

  12. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-07-23

    This Manual establishes requirements for the physical protection of interests under the U.S. Department of Energys (DOEs) purview ranging from facilities, buildings, Government property, and employees to national security interests such as classified information, special nuclear material (SNM), and nuclear weapons. Cancels Section A of DOE M 470.4-2 Chg 1. Canceled by DOE O 473.3.

  13. Fundamentals of fluidized bed chemical processes

    SciTech Connect (OSTI)

    Yates, J.G.

    1983-01-01

    Chemical processes based on the use of fluidized solids, although widely used on an industrial scale for some four decades, are currently increasing in importance as industry looks for improved methods for handling and reacting solid materials. This book provides background necessary for an understanding of the technique of gas-solid fluidization. Contents: Some Fundamental Aspects of Fluidization-General Features of Gas-Solid Fluidization; Minimum Fluidization Velocity; Inter-particle forces; Liquid-Solid Fluidization; Bubbles; Slugging; Entrainment and Elutriation; Particle Movement; Bed Viscosity; Fluidization Under Pressure. Fluidized-Bed Reactor Models-ome Individual Models; Model Comparisons; Multiple Region Models. Catalytic Cracking-Process Developments Riser Cracking; Catalysis; Process Chemistry; Kinetics; Process Models. Combustion and Gasification-Plant Developments; Oil and Gas Combustion; Desulphurization; No/sub x/ Emissions; Coal Gassification. Miscellaneous Processes-Phthalic Anhydride (1,3-isobezofurandione); Acrylonitrile (prop-3-enenitrile); Vinyl Chloride (chloroethene); Titanium Dioxide; Uranium Processing; Sulphide Roasting; Indexes.

  14. Fluidized bed gasification of extracted coal

    DOE Patents [OSTI]

    Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

    1984-07-06

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

  15. Fluidized bed gasification of extracted coal

    DOE Patents [OSTI]

    Aquino, Dolores C.; DaPrato, Philip L.; Gouker, Toby R.; Knoer, Peter

    1986-01-01

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

  16. Fluidized bed boiler having a segmented grate

    DOE Patents [OSTI]

    Waryasz, Richard E.

    1984-01-01

    A fluidized bed furnace (10) is provided having a perforate grate (9) within a housing which supports a bed of particulate material including some combustibles. The grate is divided into a plurality of segments (E2-E6, SH1-SH5, RH1-RH5), with the airflow to each segment being independently controlled. Some of the segments have evaporating surface imbedded in the particulate material above them, while other segments are below superheater surface or reheater surface. Some of the segments (E1, E7) have no surface above them, and there are ignitor combustors (32, 34) directed to fire into the segments, for fast startup of the furnace without causing damage to any heating surface.

  17. Method for in situ gasification of a subterranean coal bed

    DOE Patents [OSTI]

    Shuck, Lowell Z.

    1977-05-31

    The method of the present invention relates to providing controlled directional bores in subterranean earth formations, especially coal beds for facilitating in situ gasification operations. Boreholes penetrating the coal beds are interconnected by laser-drilled bores disposed in various arrays at selected angles to the major permeability direction in the coal bed. These laser-drilled bores are enlarged by fracturing prior to the gasification of the coal bed to facilitate the establishing of combustion zones of selected configurations in the coal bed for maximizing the efficiency of the gasification operation.

  18. Reducing mode circulating fluid bed combustion

    DOE Patents [OSTI]

    Lin, Yung-Yi; Sadhukhan, Pasupati; Fraley, Lowell D.; Hsiao, Keh-Hsien

    1986-01-01

    A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.

  19. Pulsed atmospheric fluidized bed combustor apparatus

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD)

    1993-10-26

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

  20. Status of the fluidized bed unit

    SciTech Connect (OSTI)

    Williams, P.M.; Wade, J.F.

    1994-06-01

    Rocky Flats has a serious mixed waste problem. No technology or company has a license and available facilities to remedy this dilemma. One solution under study is to use a catalytic fluidized bed unit to destroy the combustible portion of the mixed waste. The fluidized bed thermal treatment program at Rocky Flats is building on knowledge gained over twenty years of successful development activity. The FBU has numerous technical advantages over other thermal technologies to treat Rocky Flats` mixed waste, the largest being the lower temperature (700{degrees}C versus 1000{degrees}C) which reduces acid corrosion and mechanical failures and obviates the need for ceramic lining. Successful demonstrations have taken place on bench, pilot, and full-scale tests using radioactive mixed wastes. The program is approaching implementation and licensing of a production-scale fluidized bed system for the safe treatment of mixed waste. The measure for success on this project is the ability to work closely with the community to jointly solve problems and respond to concerns of mixed waste treatment at Rocky Flats.

  1. Staged fluidized-bed combustion and filter system

    DOE Patents [OSTI]

    Mei, Joseph S.; Halow, John S.

    1994-01-01

    A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.

  2. Presentations from the March 27th - 28th Methane Hydrates Advisory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the March 27th - 28th Methane Hydrates Advisory Committee Meeting Presentations from the March 27th - 28th Methane Hydrates Advisory Committee Meeting PDF icon International Gas ...

  3. Texas--RRC District 8A Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    A Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  4. Texas--RRC District 7C Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    C Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  5. Texas--RRC District 7B Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    B Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  6. Methanation process utilizing split cold gas recycle

    DOE Patents [OSTI]

    Tajbl, Daniel G.; Lee, Bernard S.; Schora, Jr., Frank C.; Lam, Henry W.

    1976-07-06

    In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.

  7. Enhanced Microbial Pathways for Methane Production from Oil Shale

    SciTech Connect (OSTI)

    Paul Fallgren

    2009-02-15

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  8. Proceedings of the sixth international conference on fluidized bed combustion. Volume II. Technical sessions

    SciTech Connect (OSTI)

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. The papers covered recent developments in atmospheric and pressurized fluidized-bed combustion, especially the design, operation and control of pilot and demonstration plants. The cleanup of combustion products and the erosion, corrosion and fouling of gas turbines was emphasized also. Fifty-five papers from Volume 2 of the proceedings have been entered individually into EDB and ERA; five papers had been entered previously from other sources. (LTN)

  9. Methane production from grape skins. Final technical report

    SciTech Connect (OSTI)

    Yunghans, W.N.

    1981-10-09

    Methane production from grape pomace was measured for a 50-day digestion period. Gas production was calculated to be 2400 ft/sup 3//10 d/ton at 53% methane content. Microorganisms particularly a fungus which grows on grape pomace and lignin was isolated. Lignin content of pomace was measured at approximately 60%. Lignin is slowly digested and may represent a residue which requires long term digestion. Research is continuing on isolation of anaerobic methane bacteria and codigestion of pomace with enzymes as cellulase and pectinase. The sewage sludge functioned adequately as a mixed source of organisms capable of digesting grape pomace. A sediment from stored grape juice produced significant amounts of methane and represents a nutrient substrate for additional studies on continuous flow methane production. 3 figs.

  10. METHANE AND NITROGEN ABUNDANCES ON PLUTO AND ERIS

    SciTech Connect (OSTI)

    Tegler, S. C.; Cornelison, D. M.; Abernathy, M. R.; Bovyn, M. J.; Burt, J. A.; Evans, D. E.; Maleszewski, C. K.; Thompson, Z.; Grundy, W. M.; Romanishin, W.; Vilas, F. E-mail: David.Cornelison@nau.ed E-mail: wjr@nhn.ou.ed

    2010-12-10

    We present spectra of Eris from the MMT 6.5 m Telescope and Red Channel Spectrograph (5700-9800 A, 5 A pixel{sup -1}) on Mt. Hopkins, AZ, and of Pluto from the Steward Observatory 2.3 m Telescope and Boller and Chivens Spectrograph (7100-9400 A, 2 A pixel{sup -1}) on Kitt Peak, AZ. In addition, we present laboratory transmission spectra of methane-nitrogen and methane-argon ice mixtures. By anchoring our analysis in methane and nitrogen solubilities in one another as expressed in the phase diagram of Prokhvatilov and Yantsevich, and comparing methane bands in our Eris and Pluto spectra and methane bands in our laboratory spectra of methane and nitrogen ice mixtures, we find Eris' bulk methane and nitrogen abundances are {approx}10% and {approx}90% and Pluto's bulk methane and nitrogen abundances are {approx}3% and {approx}97%. Such abundances for Pluto are consistent with values reported in the literature. It appears that the bulk volatile composition of Eris is similar to the bulk volatile composition of Pluto. Both objects appear to be dominated by nitrogen ice. Our analysis also suggests, unlike previous work reported in the literature, that the methane and nitrogen stoichiometry is constant with depth into the surface of Eris. Finally, we point out that our Eris spectrum is also consistent with a laboratory ice mixture consisting of 40% methane and 60% argon. Although we cannot rule out an argon-rich surface, it seems more likely that nitrogen is the dominant species on Eris because the nitrogen ice 2.15 {mu}m band is seen in spectra of Pluto and Triton.

  11. In-bed tube bank for a fluidized-bed combustor

    DOE Patents [OSTI]

    Hemenway, Jr., Lloyd F.

    1990-01-01

    An in-bed tube bank (10) for a fluidized bed combustor. The tube bank (10) of the present invention comprises one or more fluid communicating boiler tubes (30) which define a plurality of selectively spaced boiler tube sections (32). The tube sections (32) are substantially parallel to one another and aligned in a common plane. The tube bank (10) further comprises support members (34) for joining adjacent tube sections (32), the support members (34) engaging and extending along a selected length of the tube sections (32) and spanning the preselected space therebetween.

  12. Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer

    SciTech Connect (OSTI)

    Kevin Whitty

    2007-06-30

    University of Utah's project entitled 'Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer' (DOE Cooperative Agreement DE-FC26-02NT41490) was developed in response to a solicitation released by the U.S. Department of Energy in December 2001, requesting proposals for projects targeted towards black liquor/biomass gasification technology support research and development. Specifically, the solicitation was seeking projects that would provide technical support for Department of Energy supported black liquor and biomass gasification demonstration projects under development at the time.

  13. Erosion of heat exchanger tubes in fluidized beds

    SciTech Connect (OSTI)

    Johnson, E.K.; Flemmer, R.L.C.

    1991-01-01

    This final report describes the activities of the 3-year project entitled Erosion of Heat Exchanger Tubes In Fluidized Beds.'' which was completed at the end of 1990. Project accomplishments include the collection of a substantial body of wear data In a 24in. [times] 24in. fluidized bed, comparative wear results In a 6in. [times] 6in. fluidized bed, the development of a dragometer and the collection of a comprehensive set of drag force data in the 24in. [times] 24in. bed, Fast Fourier Transform (FFT) analysis of bubble probe data to establish dominant bubble frequencies in the 24in. [times] 24in. bed, the use of a heat flux gauge for measurement of heat transfer coefficients in the 24in. [times] 24in. bed and the modeling of the tube wear in the 24in. [times] 24in. bed. Analysis of the wear data from the 24in. square bed indicates that tube wear increases with increase in superficial velocity, and with increase in tube height. The latter effect is a result of the tubes higher up in the bed seeing greater movement of dense phase than tubes lower down In the bed. In addition, tube wear was found to decrease with increase in particle size, for constant superficial velocity. Three models of tube wear were formulated and provided acceptable prediction of wear when compared with the experimental data.

  14. Gas fluidized-bed stirred media mill

    DOE Patents [OSTI]

    Sadler, III, Leon Y.

    1997-01-01

    A gas fluidized-bed stirred media mill is provided for comminuting solid ticles. The mill includes a housing enclosing a porous fluidizing gas diffuser plate, a baffled rotor and stator, a hollow drive shaft with lateral vents, and baffled gas exhaust exit ports. In operation, fluidizing gas is forced through the mill, fluidizing the raw material and milling media. The rotating rotor, stator and milling media comminute the raw material to be ground. Small entrained particles may be carried from the mill by the gas through the exit ports when the particles reach a very fine size.

  15. Storage opportunities in Arizona bedded evaporites

    SciTech Connect (OSTI)

    Neal, J.T.; Rauzi, S.L.

    1996-10-01

    Arizona is endowed with incredibly diverse natural beauty, and has also been blessed with at least seven discrete deposits of bedded salt. These deposits are dispersed around the state and cover some 2, 500 square miles; they currently contain 14 LPG storage caverns, with preliminary plans for more in the future. The areal extent and thickness of the deposits creates the opportunity for greatly expanded storage of LPG, natural gas, and compressed air energy storage (CAES). The location of salt deposits near Tucson and Phoenix may make CAES an attractive prospect in the future. The diversity of both locations and evaporate characteristics allows for much tailoring of individual operations to meet specific requirements.

  16. CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT

    SciTech Connect (OSTI)

    Jukkola, Glen

    2010-06-30

    Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Power’s Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: • scale up of gas to solid heat transfer • high temperature finned surface design • the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas-to-solids heat transfer. A stress test rig was built and tested to provide validation data for a stress model needed to support high temperature finned surface design. Additional cold flow model tests and MTF tests were conducted to address mechanical and process design issues. This information was then used to design and cost a commercial CMB design concept. Finally, the MBHE was reconfigured into a slice arrangement and tested for an extended duration at a commercial CFB plant.

  17. Fluidized bed pyrolysis to gases containing olefins

    SciTech Connect (OSTI)

    Kuester, J.L.

    1980-01-01

    Recent gasification data are presented for a system designed to produce liquid hydrocarbon fuel from various biomass feedstocks. The factors under investigation were feedstock type, fluidizing gas type, residence time, temperature and catalyst usage. The response was gas phase composition. A fluidized bed system was utilized with a separate regenerator-combustor. An olefin content as high as 39 mole % was achieved. Hydrogen/carbon monoxide ratios were easily manipulated via steam addition over a broad range with an autocatalytic effect apparent for most feedstocks.

  18. Pyrolysis reactor and fluidized bed combustion chamber

    DOE Patents [OSTI]

    Green, Norman W.

    1981-01-06

    A solid carbonaceous material is pyrolyzed in a descending flow pyrolysis reactor in the presence of a particulate source of heat to yield a particulate carbon containing solid residue. The particulate source of heat is obtained by educting with a gaseous source of oxygen the particulate carbon containing solid residue from a fluidized bed into a first combustion zone coupled to a second combustion zone. A source of oxygen is introduced into the second combustion zone to oxidize carbon monoxide formed in the first combustion zone to heat the solid residue to the temperature of the particulate source of heat.

  19. Electrode assembly for a fluidized bed apparatus

    DOE Patents [OSTI]

    Schora, Jr., Frank C.; Matthews, Charles W.; Knowlton, Ted M.

    1976-11-23

    An electrode assembly comprising a high voltage electrode having a generally cylindrical shape and being electrically connected to a high voltage source, where the cylinder walls may be open to flow of fluids and solids; an electrically grounded support electrode supporting said high voltage electrode by an electrically insulating support where both of the electrically grounded and electrically insulating support may be hollow; and an electrically grounded liner electrode arranged concentrically around both the high voltage and support electrodes. This assembly is specifically adapted for use in a fluidized bed chemical reactor as an improved heating means therefor.

  20. Wood fuel in fluidized bed boilers

    SciTech Connect (OSTI)

    Virr, M.J.

    1982-01-01

    Development of fluidized bed fire-tube and water-tube boilers for the burning of wood, gas, and refuse-derived fuel will be reviewed. Experience gained in already installed plants will be outlined. Research experiments results on the use of various forms of wood and other biomass fuels, such as wood chips, pellets, peach pits, nut shells and kernels and refuse-derived fuels, will be described for small and medium sized fire-tube boilers, and for larger water-tube boilers for co-generation. (Refs. 4).

  1. Metal wastage in fluidized-bed combustors

    SciTech Connect (OSTI)

    Berry, G.F.; Podolski, W.F.; Reimann, K.J.; Lyczkowski, R.W.; Youngdahl, C.A.

    1987-01-01

    Objectives of the research are (1) to develop guidelines for the design and operation of fluidized-bed combustion (FBC) units with minimum metal wastage rates and (2) to develop continuous erosion monitors for use in pilot plant and full-scale FBC units. The design guidelines will be developed from the understanding gained from the experimental studies and analytical model development activities. The computational models are being developed in order to predict the rates of metal wastage for specific FBC designs and operating conditions. 14 refs., 6 figs.

  2. Metal wastage in fluidized-bed combustors

    SciTech Connect (OSTI)

    Podolski, W.F.; Reimann, K.J.; Swift, W.M.; Carls, E.L.

    1989-01-01

    This paper presents an overview and status of a cooperative research joint venture on metal wastage in fluidized bed combustors. The participants are the US Department of Energy/Morgantown Energy Technology Center, Argonne National Laboratory, Electric Power Research Institute, State of Illinois Center for Research on Sulfur in Coal, Tennessee Valley Authority, ASEA Babcock, Combustion Engineering, and Foster Wheeler. Tasks are being carried out in three main technical areas: (1) hydrodynamic and erosion modeling (the subject of a separate paper), (2) erosion monitor development, and (3) experimental testing and model validation. The latter two areas are discussed in this paper. 7 refs., 11 figs., 1 tab.

  3. Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed and Entrained-Flow Reactor

    SciTech Connect (OSTI)

    Buitrago, Paula A; Morrill, Mike; Lighty, JoAnn S; Silcox, Geoffrey D

    2014-08-20

    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150oC. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150?C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and intraparticle diffusion. The Freundlich isotherm more accurately described in-flight mercury capture. Using these parameters, very little intraparticle diffusion was evident. Consistent with other data, smaller particles resulted in higher mercury uptake due to available surface area. Therefore, it is important to capture the particle size distribution in the model. At typical full-scale sorbent feed rates, the calculations underpredicted adsorption, suggesting that wall effects can account for as much as 50 percent of the removal, making it an important factor in entrained-mercury adsorption models.

  4. Methane Recovery from Hydrate-bearing Sediments

    SciTech Connect (OSTI)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with emphasis; (6) detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2; (7) the relevance of fines in otherwise clean sand sediments on gas recovery and related phenomena such as fines migration and clogging, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.

  5. Table 11.3 Methane Emissions, 1980-2009 (Million Metric Tons of Methane)

    U.S. Energy Information Administration (EIA) Indexed Site

    Methane Emissions, 1980-2009 (Million Metric Tons of Methane) Year Energy Sources Waste Management Agricultural Sources Industrial Processes 9 Total 5 Coal Mining Natural Gas Systems 1 Petroleum Systems 2 Mobile Com- bustion 3 Stationary Com- bustion 4 Total 5 Landfills Waste- water Treatment 6 Total 5 Enteric Fermen- tation 7 Animal Waste 8 Rice Cultivation Crop Residue Burning Total 5 1980 3.06 4.42 NA 0.28 0.45 8.20 10.52 0.52 11.04 5.47 2.87 0.48 0.04 8.86 0.17 28.27 1981 2.81 5.02 NA .27

  6. Hydrodynamic aspects of a circulating fluidized bed with internals

    SciTech Connect (OSTI)

    Balasubramanian, N.; Srinivasakannan, C.

    1998-06-01

    An attempt is made to examine the influence of internals (baffles) in the riser of the circulating fluidized bed. Experiments are conducted in a circulating fluidized bed, having perforated plates with different free areas. It is noticed from the present work that a circulating fluidized bed having 45% free area gives uniform solids concentration and pressure drop along the length of the riser. In addition to the uniformity, the circulating fluidized bed with internals gives higher pressure drop (solids concentration) compared to a conventional circulating fluidized bed. For internals having 67.6% free area the pressure drop is higher at the lower portion of the riser compared to the upper portion, similar to a conventional circulating fluidized bed. For 30% free area plates the solids concentration varies axially within the stage and remains uniform from stage to stage.

  7. Studying methane migration mechanisms at Walker Ridge, Gulf of Mexico, via 3D methane hydrate reservoir modeling

    SciTech Connect (OSTI)

    Nole, Michael; Daigle, Hugh; Mohanty, Kishore; Cook, Ann; Hillman, Jess

    2015-12-15

    We have developed a 3D methane hydrate reservoir simulator to model marine methane hydrate systems. Our simulator couples highly nonlinear heat and mass transport equations and includes heterogeneous sedimentation, in-situ microbial methanogenesis, the influence of pore size contrast on solubility gradients, and the impact of salt exclusion from the hydrate phase on dissolved methane equilibrium in pore water. Using environmental parameters from Walker Ridge in the Gulf of Mexico, we first simulate hydrate formation in and around a thin, dipping, planar sand stratum surrounded by clay lithology as it is buried to 295mbsf. We find that with sufficient methane being supplied by organic methanogenesis in the clays, a 200x pore size contrast between clays and sands allows for a strong enough concentration gradient to significantly drop the concentration of methane hydrate in clays immediately surrounding a thin sand layer, a phenomenon that is observed in well log data. Building upon previous work, our simulations account for the increase in sand-clay solubility contrast with depth from about 1.6% near the top of the sediment column to 8.6% at depth, which leads to a progressive strengthening of the diffusive flux of methane with time. By including an exponentially decaying organic methanogenesis input to the clay lithology with depth, we see a decrease in the aqueous methane supplied to the clays surrounding the sand layer with time, which works to further enhance the contrast in hydrate saturation between the sand and surrounding clays. Significant diffusive methane transport is observed in a clay interval of about 11m above the sand layer and about 4m below it, which matches well log observations. The clay-sand pore size contrast alone is not enough to completely eliminate hydrate (as observed in logs), because the diffusive flux of aqueous methane due to a contrast in pore size occurs slower than the rate at which methane is supplied via organic methanogenesis. Therefore, it is likely that additional mechanisms are at play, notably bound water activity reduction in clays. Three-dimensionality allows for inclusion of lithologic heterogeneities, which focus fluid flow and subsequently allow for heterogeneity in the methane migration mechanisms that dominate in marine sediments at a local scale. Incorporating recently acquired 3D seismic data from Walker Ridge to inform the lithologic structure of our modeled reservoir, we show that even with deep adjective sourcing of methane along highly permeable pathways, local hydrate accumulations can be sourced either by diffusive or advective methane flux; advectively-sourced hydrates accumulate evenly in highly permeable strata, while diffusively-sourced hydrates are characterized by thin strata-bound intervals with high clay-sand pore size contrasts.

  8. The Anaerobic Fluidized Bed Membrane Bioreactor for Energy-Efficient

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wastewater Reuse | Department of Energy The Anaerobic Fluidized Bed Membrane Bioreactor for Energy-Efficient Wastewater Reuse The Anaerobic Fluidized Bed Membrane Bioreactor for Energy-Efficient Wastewater Reuse Presentation by Perry McCarty, Stanford University, during the "Targeting High-Value Challenges" panel at the Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop held March 18-19, 2015. PDF icon The Anaerobic Fluidized Bed Membrane Bioreactor for

  9. Key technologies for tritium storage bed development

    SciTech Connect (OSTI)

    Yu, S.H.; Chang, M.H.; Kang, H.G.; Chung, D.Y.; Oh, Y.H.; Jung, K.J.; Chung, H.; Koo, D.; Sohn, S.H.; Song, K.M.

    2015-03-15

    ITER Storage and Delivery System (SDS) is a complex system involving tens of storage beds. The most important SDS getter bed will be used for the absorption and desorption of hydrogen isotopes in accordance with the fusion fuel cycle scenario. In this paper the current status concerning research/development activities for the optimal approach to the final SDS design is introduced. A thermal analysis is performed and discussed on the aspect of heat losses considering whether the reflector and/or the feed-through is present or not. A thermal hydraulic simulation shows that the presence of 3 or 4 reflectors minimize the heat loss. Another important point is to introduce the real-time gas analysis in the He{sup 3} collection system. In this study 2 independent strength methods based on gas chromatography and quadruple mass spectrometer for one and on a modified self-assaying quadruple mass spectrometer for the second are applied to separate the hydrogen isotopes in helium gas. Another issue is the possibility of using depleted uranium getter material for the storage of hydrogen isotopes, especially of tritium.

  10. Predictive models of circulating fluidized bed combustors

    SciTech Connect (OSTI)

    Gidaspow, D.

    1992-07-01

    Steady flows influenced by walls cannot be described by inviscid models. Flows in circulating fluidized beds have significant wall effects. Particles in the form of clusters or layers can be seen to run down the walls. Hence modeling of circulating fluidized beds (CFB) without a viscosity is not possible. However, in interpreting Equations (8-1) and (8-2) it must be kept in mind that CFB or most other two phase flows are never in a true steady state. Then the viscosity in Equations (8-1) and (8-2) may not be the true fluid viscosity to be discussed next, but an Eddy type viscosity caused by two phase flow oscillations usually referred to as turbulence. In view of the transient nature of two-phase flow, the drag and the boundary layer thickness may not be proportional to the square root of the intrinsic viscosity but depend upon it to a much smaller extent. As another example, liquid-solid flow and settling of colloidal particles in a lamella electrosettler the settling process is only moderately affected by viscosity. Inviscid flow with settling is a good first approximation to this electric field driven process. The physical meaning of the particulate phase viscosity is described in detail in the chapter on kinetic theory. Here the conventional derivation resented in single phase fluid mechanics is generalized to multiphase flow.

  11. Technical evaluation: pressurized fluidized-bed combustion technology...

    Office of Scientific and Technical Information (OSTI)

    The evaluation concludes with a broad survey of the principal related research and ... FLUIDIZED-BED COMBUSTORS; TECHNOLOGY ASSESSMENT; ECONOMICS; ENVIRONMENTAL IMPACTS; ...

  12. Deep Bed Adsorption Testing using Silver-Functionalized Aerogel...

    Office of Scientific and Technical Information (OSTI)

    Bed Adsorption Testing using Silver-Functionalized Aerogel Nick Soelberg; Tony Watson 12 MGMT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES aerogel; iodine...

  13. German Pebble Bed Research Reactor Highly Enriched Uranium (HEU) Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    German Pebble Bed Research Reactor Highly Enriched Uranium (HEU) Fuel Environmental Assessment Maxcine Maxted, DOE-SR Used Nuclear Fuel Program Manager June 24, 2014 Public Scoping Meeting

  14. Geomechanical Analysis and Design Considerations for Thin-Bedded...

    Office of Scientific and Technical Information (OSTI)

    Geomechanical Analysis and Design Considerations for Thin-Bedded Salt Caverns Citation Details In-Document Search Title: Geomechanical Analysis and Design Considerations for...

  15. German Pebble Bed Research Reactor Highly Enriched Uranium (HEU...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential Acceptance and Disposition of German Pebble Bed Research Reactor Highly Enriched Uranium (HEU) Fuel Environmental Assessment Maxcine Maxted, DOE-SR Used Nuclear Fuel...

  16. Methane recovery from animal manures: A current opportunities casebook

    SciTech Connect (OSTI)

    1995-08-01

    This Casebook examines some of the current opportunities for the recovery of methane from the anaerobic digestion of animal manures US livestock operations currently employ four types of anaerobic digester technology: Slurry, plug flow, complete mix, and covered lagoon. An introduction to the engineering economies of these technologies is provided, and possible end-use applications for the methane gas generated by the digestion process are discussed. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Regression models, which can be used to estimate digester cost and internal rate of return, are developed from the evaluations.

  17. North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 North Dakota Coalbed Methane Proved Reserves, Reserves

  18. Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 568 684 1,265 511 338 2010's 325 274 439 440 602 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Oklahoma

  19. Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 45 50 108 102 131 2010's 129 124 106 161 158 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31

  20. Louisiana (with State Offshore) Coalbed Methane Proved Reserves (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Coalbed Methane Proved Reserves (Billion Cubic Feet) Louisiana (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 1 7 9 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of

  1. Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 1 7 9 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 North Louisiana Coalbed

  2. Louisiana--South Onshore Coalbed Methane Proved Reserves (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) South Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 LA, South Onshore Coalbed Methane Proved Reserves, Reserves Changes,

  3. Lower 48 States Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Lower 48 States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 19,892 19,620 21,874 20,798 18,578 2010's 17,508 16,817 13,591 12,392 15,696 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane

  4. Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 19 28 29 41 17 2010's 16 17 13 23 11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31

  5. New York Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 New York Coalbed Methane Proved Reserves, Reserves Changes, and Production

  6. Alaska (with Total Offshore) Coalbed Methane Proved Reserves (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Alaska Coalbed Methane Proved Reserves, Reserves Changes, and Production

  7. Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 30 34 31 31 22 2010's 28 21 10 13 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Arkansas Coalbed

  8. California (with State off) Coalbed Methane Proved Reserves (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) (with State off) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 California Coalbed Methane Proved Reserves, Reserves Changes, and

  9. California - Coastal Region Coalbed Methane Proved Reserves (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Coastal Region Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 CA, Coastal Region Onshore Coalbed Methane Proved Reserves, Reserves

  10. California--State Offshore Coalbed Methane Proved Reserves (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) California--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 CA, State Offshore Coalbed Methane Proved Reserves,

  11. Florida Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Florida Coalbed Methane Proved Reserves, Reserves Changes, and Production

  12. Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 257 234 340 301 163 2010's 258 228 183 189 211 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Kansas Coalbed

  13. Mississippi (with State off) Coalbed Methane Production (Billion Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Mississippi Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane Production

  14. Texas (with State Offshore) Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Texas (with State Offshore) Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 11 8 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Texas Coalbed Methane Proved Reserves, Reserves

  15. Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,572 1,813 1,948 1,851 2,261 2010's 1,752 1,623 1,535 1,387 2,233 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of

  16. West Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) West Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 186 194 255 246 220 2010's 220 139 107 113 76 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 West

  17. The Secretary of Energy Advisory Board (SEAB) Task Force on Methane

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrates | Department of Energy Methane Hydrates The Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates The Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates is composed of SEAB members and independent experts charged with recommending a framework for DOE methane hydrate research programs. Purpose of the Task Force: The purpose of this task force is to provide a framework for DOE's pre-commercial methane hydrate research effort, in particular, the

  18. Methane Hydrate R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D Methane Hydrate R&D Natural gas is an important energy resource for the United States, providing nearly one-quarter of total energy use. The Department of Energy's Office of ...

  19. West Virginia Coalbed Methane Production (Billion Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Production (Billion Cubic Feet) West Virginia Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 30...

  20. Methane storage in advanced porous materials | Center for Gas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane storage in advanced porous materials Previous Next List Trevor A. Makal, Jian-Rong Li, Weigang Lu and Hong-Cai Zhou, Chem. Soc. Rev., 2012,41, 7761-7779 DOI: 10.1039...

  1. Commodity chemicals from natural gas by methane chlorination

    SciTech Connect (OSTI)

    Che, S.C.; Minet, R.G.; Giacobbe, F.; Mullick, S.L.

    1987-01-01

    Ethylene and vinyl chloride monomer (VCM) can be produced from natural gas through methane chlorination by reacting methane and chlorine at 900/sup 0/C or higher. Experimental results indicate total ethylene equivalent yield from methane of 45%(wt) and marginal process economics. Fundamental kinetic modeling predicts improved C/sub 2/ yields of up to 70%(wt) at optimum reaction conditions. This optimum condition established the basis for the process design study to evaluate the potential for producing ethylene and VCM from natural gas. HCl by-product is recycled for economic viability. Using the Kel-Chlor process for recycling HCl, the proposed plant produces 27,200 TPA of C/sub 2/H/sub 4/ and 383,800 TPA of VCM. The Midwest is an ethylene consumption area requiring imports of ethylene derivatives from other regions. A methane chlorination plant located on a Midwestern natural gas pipeline network has a good commercial potential.

  2. Biomass Gasification and Methane Digester Property Tax Exemption

    Broader source: Energy.gov [DOE]

    In order to be eligible for the exemption, methane digester equipment must be certified by the Michigan Department of Agriculture (MDA) and the farm must be verified as compliant under the Michig...

  3. Methane Hydrate Advisory Committee Meetings | Department of Energy

    Energy Savers [EERE]

    Meetings Methane Hydrate Advisory Committee Meetings May 7, 2015 Advisory Committee Meeting Presentations from the Advisory Committee Meeting May 21, 2014 Committee Recommendations to Secretary of Energy Advisory Committee Meeting Minutes, May 7, 2015 Federal Register Notice for May 7, 2015 Meeting May 15, 2014 Advisory Committee Meeting Federal Register Notice for May 15, 2014 Meeting Methane Hydrates Committee Meeting Agenda Advisory Committee Meeting Minutes, May 15, 2014 March 27-28, 2014

  4. Towards a Computational Model of a Methane Producing Archaeum (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Towards a Computational Model of a Methane Producing Archaeum Citation Details In-Document Search Title: Towards a Computational Model of a Methane Producing Archaeum Authors: Peterson, Joseph R. ; Labhsetwar, Piyush Search SciTech Connect for author "Labhsetwar, Piyush" Search SciTech Connect for ORCID "0000000159333609" Search orcid.org for ORCID "0000000159333609" ; Ellermeier, Jeremy R. ; Kohler, Petra R. A. ; Jain, Ankur Search

  5. NREL Research Helps Convert Overabundant Methane into Useful Products |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy | NREL NREL Research Helps Convert Overabundant Methane into Useful Products March 18, 2016 Photo of a fermentation vessel cultivating our bacteria to produce lactic acid. Using fermentation vessels such as the one pictured here, NREL researchers have discovered how to cultivate genetically engineered methanotrophic bacteria to produce lactic acid, a high-value precursor to bioplastics. Photo by Holly Smith, NREL Methane is Earth's second most abundant greenhouse gas (GHG) after

  6. Process for separating nitrogen from methane using microchannel process

    Office of Scientific and Technical Information (OSTI)

    technology (Patent) | SciTech Connect Process for separating nitrogen from methane using microchannel process technology Citation Details In-Document Search Title: Process for separating nitrogen from methane using microchannel process technology × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional

  7. Raman spectra of methane, ethylene, ethane, dimethyl ether, formaldehyde

    Office of Scientific and Technical Information (OSTI)

    and propane for combustion applications (Journal Article) | SciTech Connect Raman spectra of methane, ethylene, ethane, dimethyl ether, formaldehyde and propane for combustion applications Citation Details In-Document Search This content will become publicly available on May 27, 2017 Title: Raman spectra of methane, ethylene, ethane, dimethyl ether, formaldehyde and propane for combustion applications Authors: Magnotti, G. ; KC, U. ; Varghese, P. L. ; Barlow, R. S. Publication Date:

  8. Membrane-augmented cryogenic methane/nitrogen separation

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid

    1997-01-01

    A membrane separation process combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C.sub.3+ hydrocarbons that might otherwise freeze and plug the cryogenic equipment.

  9. Method of determining methane and electrochemical sensor therefor

    DOE Patents [OSTI]

    Zaromb, Solomon; Otagawa, Takaaki; Stetter, Joseph R.

    1986-01-01

    A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about about 1.4 volts versus R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

  10. Membrane-augmented cryogenic methane/nitrogen separation

    DOE Patents [OSTI]

    Lokhandwala, K.

    1997-07-15

    A membrane separation process is described which is combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C{sub +2} hydrocarbons that might otherwise freeze and plug the cryogenic equipment. 10 figs.

  11. Ownership questions can stymie development of coalbed methane

    SciTech Connect (OSTI)

    Counts, R.A. )

    1990-01-01

    Although the technology exists for commercial recovery of coalbed methane, production has been hindered because of the legal quandary as to ownership. The author discusses how claims to ownership of coalbed methane can and have been made by the coal owner or lessee, the oil and gas owner or lessee, the surface owner, or any combination thereof. The federal perspective on this question of ownership is described and several state rulings are assessed.

  12. Towards a Computational Model of a Methane Producing Archaeum (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | DOE PAGES Published Article: Towards a Computational Model of a Methane Producing Archaeum Title: Towards a Computational Model of a Methane Producing Archaeum Authors: Peterson, Joseph R. ; Labhsetwar, Piyush Search DOE PAGES for author "Labhsetwar, Piyush" Search DOE PAGES for ORCID "0000000159333609" Search orcid.org for ORCID "0000000159333609" ; Ellermeier, Jeremy R. ; Kohler, Petra R. A. ; Jain, Ankur Search DOE PAGES for author "Jain,

  13. Anaerobic Digestion (AD): not only methane | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anaerobic Digestion (AD): not only methane Anaerobic Digestion (AD): not only methane Breakout Session 1: New Developments and Hot Topics Session 1-C: Beyond Biofuels Larry Baresi, Professor of Biology, California State University, Northridge PDF icon b13_baresi_1-C.pdf More Documents & Publications Electrobiocommodities from Carbon Dioxide: Enhancing Microbial Electrosynthesis with Synthetic Electromicrobiology and System Design Hydrogen, Hydrocarbons, and Bioproduct Precursors from

  14. Settlement of footing on compacted ash bed

    SciTech Connect (OSTI)

    Ramasamy, G.; Pusadkar, S.S.

    2007-11-15

    Compacted coal ash fills exhibit capillary stress due to contact moisture and preconsolidation stress due to the compaction process. As such, the conventional methods of estimating settlement of footing on cohesionless soils based on penetration tests become inapplicable in the case of footings on coal ash fills, although coal ash is also a cohesionless material. Therefore, a method of estimating load-settlement behavior of footings resting on coal ash fills accounting for the effect of capillary and preconsolidation stresses is presented here. The proposed method has been validated by conducting plate load tests on laboratory prepared compacted ash beds and comparing the observed and predicted load-settlement behavior. Overestimation of settlement greater than 100% occurs when capillary and preconsolidation stresses are not accounted for, as is the case in conventional methods.

  15. Waters LANL Protects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waters LANL Protects Waters LANL Protects LANL watersheds source in the Jemez Mountains and end at the Rio Grande.

  16. Fluidized bed combustor and coal gun-tube assembly therefor

    DOE Patents [OSTI]

    Hosek, William S. (Mt. Tabor, NJ); Garruto, Edward J. (Wayne, NJ)

    1984-01-01

    A coal supply gun assembly for a fluidized bed combustor which includes heat exchange elements extending above the bed's distributor plate assembly and in which the gun's nozzles are disposed relative to the heat exchange elements to only discharge granular coal material between adjacent heat exchange elements and in a path which is substantially equidistant from adjacent heat exchange elements.

  17. YPF uses horizontal reentry to aid thin bed production

    SciTech Connect (OSTI)

    Acosta, M.R.; Leiro, F.A.; Sesano, G.S.; Hill, D.

    1997-01-01

    Reentry and horizontal drilling/completion techniques have proven themselves useful in exploiting thin beds. A pilot horizontal reentry contracted by Yacimiento Petroliferos Fiscales (YPF) for a marginal well in its Lomita Sur field resulted in decreased water coning and production rates four times greater than expected. Further horizontal reentries in this thin-bed field are planned.

  18. Synthetic aggregate compositions derived from spent bed materials from fluidized bed combustion and fly ash

    DOE Patents [OSTI]

    Boyle, Michael J.

    1994-01-01

    Cementitious compositions useful as lightweight aggregates are formed from a blend of spent bed material from fluidized bed combustion and fly ash. The proportions of the blend are chosen so that ensuing reactions eliminate undesirable constituents. The blend is then mixed with water and formed into a shaped article. The shaped article is preferably either a pellet or a "brick" shape that is later crushed. The shaped articles are cured at ambient temperature while saturated with water. It has been found that if used sufficiently, the resulting aggregate will exhibit minimal dimensional change over time. The aggregate can be certified by also forming standardized test shapes, e.g., cylinders while forming the shaped articles and measuring the properties of the test shapes using standardized techniques including X-ray diffraction.

  19. Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y.; Litt, Robert D.; Dongming, Qiu; Silva, Laura J.; Lamont, Micheal Jay; Fanelli, Maddalena; Simmons, Wayne W.; Perry, Steven

    2011-10-04

    Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

  20. Methods of forming a fluidized bed of circulating particles

    DOE Patents [OSTI]

    Marshall, Douglas W.

    2011-05-24

    There is disclosed an apparatus for forming a fluidized bed of circulating particles. In an embodiment, the apparatus includes a bottom portion having a sidewall, the sidewall defining a curvilinear profile, and the bottom portion configured to contain a bed of particles; and a gas inlet configured to produce a column of gas to carry entrained particles therein. There is disclosed a method of forming a fluidized bed of circulating particles. In an embodiment, the method includes positioning particles within a bottom portion having a sidewall, the sidewall defining a curvilinear profile; producing a column of gas directed upwardly through a gas inlet; carrying entrained particles in the column of gas to produce a fountain of particles over the fluidized bed of circulating particles and subside in the particle bed until being directed inwardly into the column of gas within the curvilinear profile.

  1. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-02-26

    Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  2. Field Exploration of Methane Seep Near Atqasuk

    SciTech Connect (OSTI)

    Katey Walter, Dennis Witmer, Gwen Holdmann

    2008-12-31

    Methane (CH{sub 4}) in natural gas is a major energy source in the U.S., and is used extensively on Alaska's North Slope, including the oilfields in Prudhoe Bay, the community of Barrow, and the National Petroleum Reserve, Alaska (NPRA). Smaller villages, however, are dependent on imported diesel fuel for both power and heating, resulting in some of the highest energy costs in the U.S. and crippling local economies. Numerous CH{sub 4} gas seeps have been observed on wetlands near Atqasuk, Alaska (in the NPRA), and initial measurements have indicated flow rates of 3,000-5,000 ft{sup 3} day{sup -1} (60-100 kg CH{sub 4} day{sup -1}). Gas samples collected in 1996 indicated biogenic origin, although more recent sampling indicated a mixture of biogenic and thermogenic gas. In this study, we (1) quantified the amount of CH{sub 4} generated by several seeps and evaluated their potential use as an unconventional gas source for the village of Atqasuk; (2) collected gas and analyzed its composition from multiple seeps several miles apart to see if the source is the same, or if gas is being generated locally from isolated biogenic sources; and (3) assessed the potential magnitude of natural CH{sub 4} gas seeps for future use in climate change modeling.

  3. New Methane-Producing Microbe Found in Thawing Permafrost | U.S. DOE Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped

  4. Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    DOE Patents [OSTI]

    Grindley, Thomas

    1989-01-01

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

  5. Effect of air distribution on solid fuel bed combustion

    SciTech Connect (OSTI)

    Kuo, J.T.; Hsu, W.S.; Yo, T.C.

    1996-09-01

    One important aspect of refuse mass-burn combination control is the manipulation of combustion air. Proper air manipulation is key to the achievement of good combustion efficiency and reduction of pollutant emissions. Experiments, using a small fix-grate laboratory furnace with cylindrical combustion chamber, were performed to investigate the influence of undergrate/sidewall air distribution on the combustion of beds of wood cubes. Wood cubes were used as a convenient laboratory surrogate of solid refuse. Specifically, for different bed configurations (e.g. bed height, bed voidage and bed fuel size, etc.), burning rates and combustion temperatures at different bed locations were measured under various air supply and distribution conditions. One of the significant results of the experimental investigation is that combustion, with air injected from side walls and no undergrate air, provide the most efficient combustion. On the other hand, combustion with undergrate air achieves higher combustion rates but with higher CO emissions. A simple one-dimensional model was constructed to derive correlations of combustion rate as functions of flue gas temperature and oxygen concentration. Despite the fact that the model is one dimensional and many detailed chemical and physical processes of combustion are not considered, comparisons of the model predictions and the experimental results indicate that the model is appropriate for quantitative evaluation of bed burning rates.

  6. Methane Hydrate Field Program. Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    SciTech Connect (OSTI)

    Collett, Tim; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta; Myers, Greg; Divins, David; Morell, Margo

    2013-12-31

    This topical report represents a pathway toward better understanding of the impact of marine methane hydrates on safety and seafloor stability and future collection of data that can be used by scientists, engineers, managers and planners to study climate change and to assess the feasibility of marine methane hydrate as a potential future energy resource. Our understanding of the occurrence, distribution and characteristics of marine methane hydrates is incomplete; therefore, research must continue to expand if methane hydrates are to be used as a future energy source. Exploring basins with methane hydrates has been occurring for over 30 years, but these efforts have been episodic in nature. To further our understanding, these efforts must be more regular and employ new techniques to capture more data. This plan identifies incomplete areas of methane hydrate research and offers solutions by systematically reviewing known methane hydrate “Science Challenges” and linking them with “Technical Challenges” and potential field program locations.

  7. Particle Receiver Integrated with Fludized Bed | Department of Energy

    Office of Environmental Management (EM)

    Particle Receiver Integrated with Fludized Bed Particle Receiver Integrated with Fludized Bed This fact sheet describes a project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program to NREL which features a particle receiver with a fluidized bed. The research team is working to develop a technology that uses gas/solid, two-phase flow as a heat-transfer fluid and separated, stable, solid particles as a thermal energy storage medium. This project provides a pathway

  8. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom part of the Ugnu and throughout the West Sak. No hydrate-bearing zones were identified either in recovered core or on well logs. The base of the permafrost was found at about 1260 ft. With the exception of the deepest sands in the West Sak and some anomalous thin, tight zones, all sands recovered (after thawing) are unconsolidated with high porosity and high permeability. At 800 psi, Ugnu sands have an average porosity of 39.3% and geometrical mean permeability of 3.7 Darcys. Average grain density is 2.64 g/cc. West Sak sands have an average porosity of 35.5%, geometrical mean permeability of 0.3 Darcys, and average grain density of 2.70 g/cc. There were several 1-2 ft intervals of carbonate-cemented sandstone recovered from the West Sak. These intervals have porosities of only a few percent and very low permeability. On a well log they appear as resistive with a high sonic velocity. In shallow sections of other wells these usually are the only logs available. Given the presence of gas in Hot Ice No. 1, if only resistivity and sonic logs and a mud log had been available, tight sand zones may have been interpreted as containing hydrates. Although this finding does not imply that all previously mapped hydrate zones are merely tight sands, it does add a note of caution to the practice of interpreting the presence of hydrates from old well information. The methane hydrate stability zone below the Hot Ice No. 1 location includes thick sections of sandstone and conglomerate which would make excellent reservoir rocks for hydrates and below the permafrost zone shallow gas. The Ugnu formation comprises a more sand-rich section than does the West Sak formation, and the Ugnu sands when cleaned and dried are slightly more porous and significantly more permeable than the West Sak.

  9. Apparatus for fixed bed coal gasification

    DOE Patents [OSTI]

    Sadowski, Richard S.

    1992-01-01

    An apparatus for fixed-bed coal gasification is described in which coal such as caking coal is continuously pyrolyzed with clump formation inhibited, by combining the coal with a combustible gas and an oxidant, and then continually feeding the pyrolyzed coal under pressure and elevated temperature into the gasification region of a pressure vessel. The materials in the pressure vessel are allowed to react with the gasifying agents in order to allow the carbon contents of the pyrolyzed coal to be completely oxidized. The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

  10. COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS

    SciTech Connect (OSTI)

    Ibrahim, Essam A

    2013-01-09

    Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations to study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.

  11. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports.

  12. Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?

    SciTech Connect (OSTI)

    Paull, C.K.; Ussler, W. III; Borowski, W.S.

    1993-09-01

    Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

  13. ADVANCED SORBENT DEVELOPMENT PROGRAM; DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS

    SciTech Connect (OSTI)

    R.E. AYALA; V.S. VENKATARAMANI

    1998-09-30

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.?s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 C (700 F) to 538 C (1000 F) and regeneration tempera-tures up to 760 C (1400 F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent develop-ment at General Electric?s Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT).

  14. Production of methane by anaerobic fermentation of waste materials

    SciTech Connect (OSTI)

    Hitzman, D.O.

    1989-01-17

    This patent describes an apparatus for producing methane by anaerobic fermentation of waste material, comprising: cavity means in the earth for holding a quantity of the waste material; means for covering a quantity of the waste material in the cavity means and thereby separating the quantity of the waste material from the atmosphere; first conduit means communicating between the waste material in the cavity means and a location remote from the cavity means for conveying gas comprising carbon dioxide and methane from the cavity means to the location; gas separation means communicating with the first conduit means at the location for separating carbon dioxide from methane, the first conduit means including at least one pipe having a plurality of apertures therein and disposed in the cavity means extending into and in fluid flow communication with the waste material for receiving gas liberated by the anaerobic fermentation of the waste material and comprising carbon dioxide and methane, through the apertures therein for conveyance via the first conduit means to the gas separation means; second conduit means communicating between the gas separation means and the waste material in the cavity means for conveying carbon dioxide from the gas separation means to the waste material; and third conduit means communicating with the gas separation means for conveying methane from the gas separation means.

  15. Spray-dried fluid-bed sorbents tests - CMP-5

    SciTech Connect (OSTI)

    Gangwal, S.K.; Gupta, R.P.

    1995-12-01

    The objective of this study is to determine the feasibility of manufacturing highly reactive and attrition-resistant zinc titanate sorbents by spray drying, suitable for bubbling (conventional) as well as transport-type fluidized-bed reactor systems.

  16. LIQUID-FLUIDIZED-BED HEAT' EXCHANGER FLOW DISTRIBUTION MODELS

    Office of Scientific and Technical Information (OSTI)

    ... J. Shakiri, "Heat Transfer for Immersed Surfaces in Liquid-Fluidized-Beds", Chemical Engi- neering Science, Vol. 31, 1976, pp. 619-624. 5. W. Hamilton, " A Correlation of Heat ...

  17. Community-Based Energy Development (C-BED) Tariff

    Broader source: Energy.gov [DOE]

    The C-BED tariff rate must be higher in the first 10 years of the agreement than the last 10 years. The intent of this structure is to provide renewable energy projects with better cash flow during...

  18. Shielded fluid stream injector for particle bed reactor

    DOE Patents [OSTI]

    Notestein, John E. (Morgantown, WV)

    1993-01-01

    A shielded fluid-stream injector assembly is provided for particle bed reactors. The assembly includes a perforated pipe injector disposed across the particle bed region of the reactor and an inverted V-shaped shield placed over the pipe, overlapping it to prevent descending particles from coming into direct contact with the pipe. The pipe and shield are fixedly secured at one end to the reactor wall and slidably secured at the other end to compensate for thermal expansion. An axially extending housing aligned with the pipe and outside the reactor and an in-line reamer are provided for removing deposits from the inside of the pipe. The assembly enables fluid streams to be injected and distributed uniformly into the particle bed with minimized clogging of injector ports. The same design may also be used for extraction of fluid streams from particle bed reactors.

  19. Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study

    SciTech Connect (OSTI)

    Pajunen, A. J.; Tedeschi, A. R.

    2012-09-18

    This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.

  20. Fluidized Bed Technology - An R&D Success Story | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Nucla fluidized bed power plant in Colorado was operated in DOE's Clean Coal ... when it replaced two of the plant's obsolete and inefficient oil- and gas-fired units. ...

  1. Fluidized Bed Technology- An R&D Success Story

    Office of Energy Efficiency and Renewable Energy (EERE)

    In the early 1990s, POWER magazine called the development of fluidized bed coal combustors "the commercial success story of the last decade in the power generation business." The success, perhaps...

  2. Final report for the Iowa Livestock Industry Waste Characterization and Methane Recovery Information Dissemination Project

    SciTech Connect (OSTI)

    Garrison, M.V.; Richard, Thomas L

    2001-11-13

    This report summarizes analytical methods, characterizes Iowa livestock wastes, determines fossil fuel displacement by methane use, assesses the market potential, and offers recommendations for the implementation of methane recovery technologies.

  3. Fact #825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    16, 2014 Tier 3 Non-Methane Organic Gases Plus Nitrogen Oxide Emission Standards, Model Years 2017-2025 Fact 825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus Nitrogen ...

  4. The Young Planet-mass Ob ject 2M1207b: A cool, cloudy, and methane...

    Office of Scientific and Technical Information (OSTI)

    A cool, cloudy, and methane-poor atmosphere Citation Details In-Document Search Title: The Young Planet-mass Ob ject 2M1207b: A cool, cloudy, and methane-poor atmosphere ...

  5. The Young Planet-mass Ob ject 2M1207b: A cool, cloudy, and methane...

    Office of Scientific and Technical Information (OSTI)

    A cool, cloudy, and methane-poor atmosphere Citation Details In-Document Search Title: The Young Planet-mass Ob ject 2M1207b: A cool, cloudy, and methane-poor atmosphere You ...

  6. Methane activation using Kr and Xe in a dielectric barrier discharge reactor

    SciTech Connect (OSTI)

    Jo, Sungkwon; Lee, Dae Hoon Kim, Kwan-Tae; Kang, Woo Seok; Song, Young-Hoon

    2014-10-15

    Methane has interested many researchers as a possible new energy source, but the high stability of methane causes a bottleneck in methane activation, limiting its practical utilization. To determine how to effectively activate methane using non-thermal plasma, the conversion of methane is measured in a planar-type dielectric barrier discharge reactor using three different noble gases—Ar, Kr, and Xe—as additives. In addition to the methane conversion results at various applied voltages, the discharge characteristics such as electron temperature and electron density were calculated through zero-dimensional calculations. Moreover, the threshold energies of excitation and ionization were used to distinguish the dominant particle for activating methane between electrons, excited atoms, and ionized atoms. From the experiments and calculations, the selection of the additive noble gas is found to affect not only the conversion of methane but also the selectivity of product gases even under similar electron temperature and electron density conditions.

  7. Methane drainage with horizontal boreholes in advance of longwall mining: an analysis. Final report

    SciTech Connect (OSTI)

    Gabello, D.P.; Felts, L.L.; Hayoz, F.P.

    1981-05-01

    The US Department of Energy (DOE) Morgantown Energy Technology Center has implemented a comprehensive program to demonstrate the technical and economic viability of coalbed methane as an energy resource. The program is directed toward solution of technical and institutional problems impeding the recovery and use of large quantities of methane contained in the nation's minable and unminable coalbeds. Conducted in direct support of the DOE Methane Recovery from Coalbeds Project, this study analyzes the economic aspects of a horizontal borehole methane recovery system integrated as part of a longwall mine operation. It establishes relationships between methane selling price and annual mine production, methane production rate, and the methane drainage system capital investment. Results are encouraging, indicating that an annual coal production increase of approximately eight percent would offset all associated drainage costs over the range of methane production rates and capital investments considered.

  8. DOE-Sponsored Beaufort Sea Expedition Studies Methane's Role in Global Climate Cycle

    Broader source: Energy.gov [DOE]

    Washington, D.C. -- Increased understanding of methane's role in the global climate cycle and the potential of methane hydrate as a future energy resource could result from a recent joint research...

  9. Methanation of gas streams containing carbon monoxide and hydrogen

    DOE Patents [OSTI]

    Frost, Albert C.

    1983-01-01

    Carbon monoxide-containing gas streams having a relatively high concentration of hydrogen are pretreated so as to remove the hydrogen in a recoverable form for use in the second step of a cyclic, essentially two-step process for the production of methane. The thus-treated streams are then passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. This active carbon is reacted with said hydrogen removed from the feed gas stream to form methane. The utilization of the CO in the feed gas stream is appreciably increased, enhancing the overall process for the production of relatively pure, low-cost methane from CO-containing waste gas streams.

  10. Investigation of Compton profiles of molecular methane and ethane

    SciTech Connect (OSTI)

    Zhao, Xiao-Li; Xu, Long-Quan; Kang, Xu; Liu, Ya-Wei; Ni, Dong-Dong; Zhu, Lin-Fan; Yang, Ke Ma, Yong-Peng; Yan, Shuai

    2015-02-28

    The Compton profiles of methane and ethane molecules have been determined at an incident photon energy of 20 keV based on the third generation synchrotron radiation, and the statistical accuracy of 0.2% is achieved near p{sub z} = 0. The density functional theory with aug-cc-pVTZ basis set was used to calculate the Compton profiles of methane and ethane. The present experimental Compton profiles are in better agreement with the theoretical calculations in the whole p{sub z} region than the previous experimental results, which indicates that the present experimental Compton profiles are accurate enough to serve as the benchmark data for methane and ethane molecules.

  11. Dewatering of coalbed methane wells with hydraulic gas pump

    SciTech Connect (OSTI)

    Amani, M.; Juvkam-Wold, H.C.

    1995-12-31

    The coalbed methane industry has become an important source of natural gas production. Proper dewatering of coalbed methane (CBM) wells is the key to efficient gas production from these reservoirs. This paper presents the Hydraulic Gas Pump as a new alternative dewatering system for CBM wells. The Hydraulic Gas Pump (HGP) concept offers several operational advantages for CBM wells. Gas interference does not affect its operation. It resists solids damage by eliminating the lift mechanism and reducing the number of moving parts. The HGP has a flexible production rate and is suitable for all production phases of CBM wells. It can also be designed as a wireline retrievable system. We conclude that the Hydraulic Gas Pump is a suitable dewatering system for coalbed methane wells.

  12. Simulated process test bed for integrated safeguards operations monitoring

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Simulated process test bed for integrated safeguards operations monitoring Citation Details In-Document Search Title: Simulated process test bed for integrated safeguards operations monitoring No abstract prepared. Authors: Laughter, Mark D [1] ; Krichinsky, Alan M [1] ; Hines, Jairus B [1] ; Kovacic, Donald N [1] ; Younkin, James R [1] + Show Author Affiliations ORNL Publication Date: 2008-01-01 OSTI Identifier: 937137 DOE Contract Number: DE-AC05-00OR22725

  13. Deep Bed Adsorption Testing using Silver-Functionalized Aerogel (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Deep Bed Adsorption Testing using Silver-Functionalized Aerogel Citation Details In-Document Search Title: Deep Bed Adsorption Testing using Silver-Functionalized Aerogel Nuclear fission results in the production of fission products and activation products, some of which tend to be volatile during used fuel reprocessing and evolve in gaseous species into the reprocessing facility off-gas systems. Analyses have shown that I129, due to its radioactivity, high

  14. Deep Bed Adsorption Testing using Silver-Functionalized Aerogel (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Deep Bed Adsorption Testing using Silver-Functionalized Aerogel Citation Details In-Document Search Title: Deep Bed Adsorption Testing using Silver-Functionalized Aerogel Nuclear fission results in the production of fission products and activation products, some of which tend to be volatile during used fuel reprocessing and evolve in gaseous species into the reprocessing facility off-gas systems. Analyses have shown that I129, due to its radioactivity, high

  15. First Trinity supercomputer test beds delivered to Los Alamos, Sandia |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration First Trinity supercomputer test beds delivered to Los Alamos, Sandia Tuesday, February 24, 2015 - 1:41pm NNSA Blog Staff at Los Alamos and Sandia national laboratories welcomed the first hardware delivery for NNSA's next generation supercomputer, called Trinity. Test beds for Trinity were delivered (two to Los Alamos and one to Sandia) as part of the New Mexico Alliance for Computing at Extreme Scale (ACES) collaboration. Trinity came out of a

  16. Protections = Defenses in Depth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protections: Cleanup Cleanup 101 Corrective Measures Process Protection 1: Remove the Source Example Cleanup: Removal of Polychlorinated Biphenyls from Hillside 140 Environmental ...

  17. Model Fire Protection Program

    Broader source: Energy.gov [DOE]

    This program demonstrates acceptable methods and examples to assist each DOE site in meeting the fire protection objectives provided in DOE Order 5480.7A, "Fire Protection."

  18. ORISE: Protecting Human Subjects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protecting Human Subjects Protecting Human Subjects The U.S. Department of Energy (DOE) Human Subjects Research Program exists to ensure that all research conducted at DOE...

  19. Office of Physical Protection

    Broader source: Energy.gov [DOE]

    The Office of Physical Protection is comprised of a team of security specialists engaged in providing Headquarters-wide physical protection.

  20. Benefits and hurdles for biological methane upgrading; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Fei, Qiang

    2015-09-01

    The presentation will focus on the technical hurdles for bioconversion of methane into chemical and liquid fuel.

  1. Development and applications of clean coal fluidized bed technology

    SciTech Connect (OSTI)

    Eskin, N.; Hepbasli, A.

    2006-09-15

    Power generation in Europe and elsewhere relies heavily on coal and coal-based fuels as the source of energy. The reliance will increase in the future due to the decreasing stability of price and security of oil supply. In other words, the studies on fluidized bed combustion systems, which is one of the clean coal technologies, will maintain its importance. The main objective of the present study is to introduce the development and the applications of the fluidized bed technology (FBT) and to review the fluidized bed combustion studies conducted in Turkey. The industrial applications of the fluidized bed technology in the country date back to the 1980s. Since then, the number of the fluidized bed boilers has increased. The majority of the installations are in the textile sector. In Turkey, there is also a circulating fluidized bed thermal power plant with a capacity of 2 x 160 MW under construction at Can in Canakkale. It is expected that the FBT has had, or will have, a significant and increasing role in dictating the energy strategies for Turkey.

  2. Ash level meter for a fixed-bed coal gasifier

    DOE Patents [OSTI]

    Fasching, George E.

    1984-01-01

    An ash level meter for a fixed-bed coal gasifier is provided which utilizes the known ash level temperature profile to monitor the ash bed level. A bed stirrer which travels up and down through the extent of the bed ash level is modified by installing thermocouples to measure the bed temperature as the stirrer travels through the stirring cycle. The temperature measurement signals are transmitted to an electronic signal process system by an FM/FM telemetry system. The processing system uses the temperature signals together with an analog stirrer position signal, taken from a position transducer disposed to measure the stirrer position to compute the vertical location of the ash zone upper boundary. The circuit determines the fraction of each total stirrer cycle time the stirrer-derived bed temperature is below a selected set point, multiplies this fraction by the average stirrer signal level, multiplies this result by an appropriate constant and adds another constant such that a 1 to 5 volt signal from the processor corresponds to a 0 to 30 inch span of the ash upper boundary level. Three individual counters in the processor store clock counts that are representative of: (1) the time the stirrer temperature is below the set point (500.degree. F.), (2) the time duration of the corresponding stirrer travel cycle, and (3) the corresponding average stirrer vertical position. The inputs to all three counters are disconnected during any period that the stirrer is stopped, eliminating corruption of the measurement by stirrer stoppage.

  3. Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 LA, State Offshore

  4. Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore U.S.

  5. Michigan Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Michigan

  6. Mississippi (with State off) Coalbed Methane Proved Reserves (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Mississippi (with State off) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Mississippi

  7. California - Los Angeles Basin Onshore Coalbed Methane Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Los Angeles Basin Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 CA, Los Angeles

  8. California - San Joaquin Basin Onshore Coalbed Methane Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) San Joaquin Basin Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 CA, San Joaquin

  9. Federal Offshore California Coalbed Methane Proved Reserves (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Offshore California Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore, Pacific (California)

  10. Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Offshore--Texas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore, Gulf of Mexico, Texas

  11. Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed Methane

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec.

  12. ISOTOPIC RATIOS IN TITAN's METHANE: MEASUREMENTS AND MODELING

    SciTech Connect (OSTI)

    Nixon, C. A.; Achterberg, R. K.; Temelso, B.; Vinatier, S.; Bezard, B.; Coustenis, A.; Teanby, N. A.; Mandt, K. E.; Sherrill, C. D.; Irwin, P. G. J.; Jennings, D. E.; Romani, P. N.; Flasar, F. M.

    2012-04-20

    The existence of methane in Titan's atmosphere ({approx}6% level at the surface) presents a unique enigma, as photochemical models predict that the current inventory will be entirely depleted by photochemistry in a timescale of {approx}20 Myr. In this paper, we examine the clues available from isotopic ratios ({sup 12}C/{sup 13}C and D/H) in Titan's methane as to the past atmosphere history of this species. We first analyze recent infrared spectra of CH{sub 4} collected by the Cassini Composite Infrared Spectrometer, measuring simultaneously for the first time the abundances of all three detected minor isotopologues: {sup 13}CH{sub 4}, {sup 12}CH{sub 3}D, and {sup 13}CH{sub 3}D. From these we compute estimates of {sup 12}C/{sup 13}C = 86.5 {+-} 8.2 and D/H = (1.59 {+-} 0.33) Multiplication-Sign 10{sup -4}, in agreement with recent results from the Huygens GCMS and Cassini INMS instruments. We also use the transition state theory to estimate the fractionation that occurs in carbon and hydrogen during a critical reaction that plays a key role in the chemical depletion of Titan's methane: CH{sub 4} + C{sub 2}H {yields} CH{sub 3} + C{sub 2}H{sub 2}. Using these new measurements and predictions we proceed to model the time evolution of {sup 12}C/{sup 13}C and D/H in Titan's methane under several prototypical replenishment scenarios. In our Model 1 (no resupply of CH{sub 4}), we find that the present-day {sup 12}C/{sup 13}C implies that the CH{sub 4} entered the atmosphere 60-1600 Myr ago if methane is depleted by chemistry and photolysis alone, but much more recently-most likely less than 10 Myr ago-if hydrodynamic escape is also occurring. On the other hand, if methane has been continuously supplied at the replenishment rate then the isotopic ratios provide no constraints, and likewise for the case where atmospheric methane is increasing. We conclude by discussing how these findings may be combined with other evidence to constrain the overall history of the atmospheric methane.

  13. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models and to research teams for developing future gas-hydrate projects. No gas hydrates were encountered in this well; however, a wealth of information was generated and has been documented by the project team. This Topical Report documents drilling and coring operations and other daily activities.

  14. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists planning hydrate exploration and development projects. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this and other project reports. This Topical Report contains details describing logging operations.

  15. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the revolutionary and new Arctic Drilling Platform in search of gas hydrate and free gas accumulations at depths of approximately 1200 to 2500 ft MD. A secondary objective was the gas-charged sands of the uppermost Campanian interval at approximately 3000 ft. Summary results of geophysical analysis of the well are presented in this report.

  16. Methane Hydrate Research and Development Act of 2000 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development Act of 2000 Methane Hydrate Research and Development Act of 2000 Methane Hydrate Research and Development Act of 2000 PDF icon Methane Hydrate Research and Development Act of 2000 More Documents & Publications NATIONAL DEFENSE AUTHORIZATION ACT FOR FISCAL YEAR 2000 E:\PUBLAW\PUBL404.106 Intelligence Reform and Terrorism Prevention Act - December 17, 2004

  17. Method of burning sulfur-containing fuels in a fluidized bed boiler

    DOE Patents [OSTI]

    Jones, Brian C.

    1982-01-01

    A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

  18. Effect of operating and design parameters on fluidized-bed combustor in-bed tube metal wastage

    SciTech Connect (OSTI)

    Deffenbaugh, D.M.; Wei, W.; Page, R.A.

    1988-04-01

    The overall program objective is to determine the effect of operating and design parameters of fluidized-bed combustors (FBCs) on in-bed tube metal wastage. The overall program approach is: (1) develop an experimental approach for acquiring tube metal wastage data under controlled and measurable conditions that reproduce the combined local mechanical and chemical environment that exists at the FBC in-bed tube surface, (2) document the precise local mechanical and chemical environment at the in-bed tube surface of an FBC and correlate these local data with global bed operating and design parameters, (3) use the above experimental approach over the entire range of documented local environments to develop a complete database of tube metal wastage results, and (4) analyze this database to determine the effect of operating and design parameters on in-bed tube metal wastage. The project consisted of a literature review, facility design and fabrication, experimentation, and data analysis. The following chapters of this report summarize each of these activities. 80 refs., 47 figs., 11 tabs.

  19. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    SciTech Connect (OSTI)

    Rokkam, Ram

    2012-11-02

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  20. Gettering of hydrogen and methane from a helium gas mixture

    SciTech Connect (OSTI)

    Crdenas, Rosa Elia; Stewart, Kenneth D.; Cowgill, Donald F.

    2014-11-01

    In this study, the authors developed an approach for accurately quantifying the helium content in a gas mixture also containing hydrogen and methane using commercially available getters. The authors performed a systematic study to examine how both H{sub 2} and CH{sub 4} can be removed simultaneously from the mixture using two SAES St 172{sup } getters operating at different temperatures. The remaining He within the gas mixture can then be measured directly using a capacitance manometer. The optimum combination involved operating one getter at 650?C to decompose the methane, and the second at 110?C to remove the hydrogen. This approach eliminated the need to reactivate the getters between measurements, thereby enabling multiple measurements to be made within a short time interval, with accuracy better than 1%. The authors anticipate that such an approach will be particularly useful for quantifying the He-3 in mixtures that include tritium, tritiated methane, and helium-3. The presence of tritiated methane, generated by tritium activity, often complicates such measurements.

  1. Gettering of Hydrogen and Methane from a Helium Gas Mixture

    SciTech Connect (OSTI)

    Cardenas, Rosa E.; Stewart, Kenneth D.; Cowgill, Donald F.

    2014-10-21

    In our study, the authors developed an approach for accurately quantifying the helium content in a gas mixture also containing hydrogen and methane using commercially available getters. The authors performed a systematic study to examine how both H2 and CH4 can be removed simultaneously from the mixture using two SAES St 172 getters operating at different temperatures. The remaining He within the gas mixture can then be measured directly using a capacitance manometer. Moreover, the optimum combination involved operating one getter at 650C to decompose the methane, and the second at 110C to remove the hydrogen. Finally, this approach eliminated the need to reactivate the getters between measurements, thereby enabling multiple measurements to be made within a short time interval, with accuracy better than 1%. The authors anticipate that such an approach will be particularly useful for quantifying the He-3 in mixtures that include tritium, tritiated methane, and helium-3. The presence of tritiated methane, generated by tritium activity, often complicates such measurements.

  2. Formation and retention of methane in coal. Final report

    SciTech Connect (OSTI)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  3. Methane-derived hydrocarbons produced under upper-mantle conditions

    SciTech Connect (OSTI)

    Kolesnikov, Anton; Kutcherov, Vladimir G.; Goncharov, Alexander F.

    2009-08-13

    There is widespread evidence that petroleum originates from biological processes. Whether hydrocarbons can also be produced from abiogenic precursor molecules under the high-pressure, high-temperature conditions characteristic of the upper mantle remains an open question. It has been proposed that hydrocarbons generated in the upper mantle could be transported through deep faults to shallower regions in the Earth's crust, and contribute to petroleum reserves. Here we use in situ Raman spectroscopy in laser-heated diamond anvil cells to monitor the chemical reactivity of methane and ethane under upper-mantle conditions. We show that when methane is exposed to pressures higher than 2 GPa, and to temperatures in the range of 1,000-1,500 K, it partially reacts to form saturated hydrocarbons containing 2-4 carbons (ethane, propane and butane) and molecular hydrogen and graphite. Conversely, exposure of ethane to similar conditions results in the production of methane, suggesting that the synthesis of saturated hydrocarbons is reversible. Our results support the suggestion that hydrocarbons heavier than methane can be produced by abiogenic processes in the upper mantle.

  4. Gettering of Hydrogen and Methane from a Helium Gas Mixture

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cardenas, Rosa E.; Stewart, Kenneth D.; Cowgill, Donald F.

    2014-10-21

    In our study, the authors developed an approach for accurately quantifying the helium content in a gas mixture also containing hydrogen and methane using commercially available getters. The authors performed a systematic study to examine how both H2 and CH4 can be removed simultaneously from the mixture using two SAES St 172® getters operating at different temperatures. The remaining He within the gas mixture can then be measured directly using a capacitance manometer. Moreover, the optimum combination involved operating one getter at 650°C to decompose the methane, and the second at 110°C to remove the hydrogen. Finally, this approach eliminatedmore » the need to reactivate the getters between measurements, thereby enabling multiple measurements to be made within a short time interval, with accuracy better than 1%. The authors anticipate that such an approach will be particularly useful for quantifying the He-3 in mixtures that include tritium, tritiated methane, and helium-3. The presence of tritiated methane, generated by tritium activity, often complicates such measurements.« less

  5. Detection and Production of Methane Hydrate

    SciTech Connect (OSTI)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand processes that control production potential of hydrates in marine settings, Mallik was included because of the extensive data collected in a producible hydrate accumulation. To date, such a location had not been studied in the oceanic environment. The project worked closely with ongoing projects (e.g. GOM JIP and offshore India) that are actively investigating potentially economic hydrate accumulations in marine settings. The overall approach was fivefold: (1) collect key data concerning hydrocarbon fluxes which is currently missing at all locations to be included in the study, (2) use this and existing data to build numerical models that can explain gas hydrate variance at all four locations, (3) simulate how natural gas could be produced from each location with different production strategies, (4) collect new sediment property data at these locations that are required for constraining fluxes, production simulations and assessing sediment stability, and (5) develop a method for remotely quantifying heterogeneities in gas hydrate and free gas distributions. While we generally restricted our efforts to the locations where key parameters can be measured or constrained, our ultimate aim was to make our efforts universally applicable to any hydrate accumulation.

  6. Durable zinc oxide containing sorbents for moving bed and fluid-bed applications

    SciTech Connect (OSTI)

    Siriwardane, R.V.

    1998-12-31

    A series of novel regenerable desulfurization sorbents operational at a wide range of temperatures (260--600 C) has been developed by the in-house research staff at the US Department of Energy`s Federal Energy Technology Center. The sorbent, identified as METC10, has demonstrated very high attrition resistance as well as very high and stable reactivity conducted under numerous testing regimes under both simulated and actual fuel gas conditions. The METC10 sorbent suitable for moving bed reactor applications is the only sorbent which has exceeded all the criteria required for use in the Tampa Electric Company (TECO) Clean Coal Technology (CCT) demonstration project. The required criteria for the TECO project included, a sulfur loading of 6.7 lb/ft{sup 3} while maintaining the outlet H{sub 2}S level < 20 ppmv, attrition of < 5 wt% after 25 cycle test and regeneration under the very drastic conditions of 10% SO{sub 2} at 510 C under 5--7 atmospheres. In addition, the sorbent was also tested at temperatures ranging from 370 C to 260 C with simulated coal gas. At this low temperature, it was possible to achieve a sulfur loading > 6 lb/ft{sup 3}, indicating that the sorbent is suitable for applications over a wide range of temperatures. It was also possible to prepare METC10 sorbent suitable for fluidized/transport reactor bed applications utilizing spray drying technique. These sorbents had both high attrition resistance (> 95%) and high sulfur capacity (> 14 wt%), and showed stable reactivity during multi-cycle testing.

  7. State-of-the-art in coalbed methane drilling fluids

    SciTech Connect (OSTI)

    Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

    2008-09-15

    The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impact on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.

  8. Materials performance in fluidized-bed air heaters

    SciTech Connect (OSTI)

    Natesan, K.; Podolski, W.

    1991-12-01

    Development of cogeneration systems that involve combustion of coal in a fluidized bed and use of air heaters to generate hot air for turbine systems has been in progress for a number of years. The US Department of Energy (DOE) sponsored the Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) to assess the performance of various heat exchanger materials and establish confidence in the resultant designs of fluidized-bed-combustion air heater systems. Westinghouse Electric Corporation, in association with Babcock Wilcox, Foster Wheeler, and ABB/Combustion Engineering, prepared specifications and hardware for the ACAHE. Argonne National Laboratory, through a contract with the Rocketdyne Division of Rockwell International, conducted tests in the DOE 1.8 {times} 1.8 m atmospheric fluidized-bed combustion facility in El Segundo, California. This paper presents an assessment of the materials performance in fluidized bed environments and examines guidelines for materials selection on the basis of corrosion resistance in air and in combustion environments, mechanical properties, fabricability/thermal stability, and cost.

  9. Materials performance in fluidized-bed air heaters

    SciTech Connect (OSTI)

    Natesan, K.; Podolski, W.

    1991-12-01

    Development of cogeneration systems that involve combustion of coal in a fluidized bed and use of air heaters to generate hot air for turbine systems has been in progress for a number of years. The US Department of Energy (DOE) sponsored the Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) to assess the performance of various heat exchanger materials and establish confidence in the resultant designs of fluidized-bed-combustion air heater systems. Westinghouse Electric Corporation, in association with Babcock & Wilcox, Foster Wheeler, and ABB/Combustion Engineering, prepared specifications and hardware for the ACAHE. Argonne National Laboratory, through a contract with the Rocketdyne Division of Rockwell International, conducted tests in the DOE 1.8 {times} 1.8 m atmospheric fluidized-bed combustion facility in El Segundo, California. This paper presents an assessment of the materials performance in fluidized bed environments and examines guidelines for materials selection on the basis of corrosion resistance in air and in combustion environments, mechanical properties, fabricability/thermal stability, and cost.

  10. Coal-Derived Warm Syngas Purification and CO2 Capture-Assisted Methane Production

    SciTech Connect (OSTI)

    Dagle, Robert A.; King, David L.; Li, Xiaohong S.; Xing, Rong; Spies, Kurt A.; Zhu, Yunhua; Rainbolt, James E.; Li, Liyu; Braunberger, B.

    2014-10-01

    Gasifier-derived syngas from coal has many applications in the area of catalytic transformation to fuels and chemicals. Raw syngas must be treated to remove a number of impurities that would otherwise poison the synthesis catalysts. Inorganic impurities include alkali salts, chloride, sulfur compounds, heavy metals, ammonia, and various P, As, Sb, and Se- containing compounds. Systems comprising multiple sorbent and catalytic beds have been developed for the removal of impurities from gasified coal using a warm cleanup approach. This approach has the potential to be more economic than the currently available acid gas removal (AGR) approaches and improves upon currently available processes that do not provide the level of impurity removal that is required for catalytic synthesis application. Gasification also lends itself much more readily to the capture of CO2, important in the regulation and control of greenhouse gas emissions. CO2 capture material was developed and in this study was demonstrated to assist in methane production from the purified syngas. Simultaneous CO2 sorption enhances the CO methanation reaction through relaxation of thermodynamic constraint, thus providing economic benefit rather than simply consisting of an add-on cost for carbon capture and release. Molten and pre-molten LiNaKCO3 can promote MgO and MgO-based double salts to capture CO2 with high cycling capacity. A stable cycling CO2 capacity up to 13 mmol/g was demonstrated. This capture material was specifically developed in this study to operate in the same temperature range and therefore integrate effectively with warm gas cleanup and methane synthesis. By combining syngas methanation, water-gas-shift, and CO2 sorption in a single reactor, single pass yield to methane of 99% was demonstrated at 10 bar and 330°C when using a 20 wt% Ni/MgAl2O4 catalyst and a molten-phase promoted MgO-based sorbent. Under model feed conditions both the sorbent and catalyst exhibited favorable stability after multiple test cycles. The cleanup for warm gas cleanup of inorganics was broken down into three major steps: chloride removal, sulfur removal, and the removal for a multitude of trace metal contaminants. Na2CO3 was found to optimally remove chlorides at an operating temperature of 450ºC. For sulfur removal two regenerable ZnO beds are used for bulk H2S removal at 450ºC (<5 ppm S) and a non-regenerable ZnO bed for H2S polishing at 300ºC (<40 ppb S). It was also found that sulfur from COS could be adsorbed (to levels below our detection limit of 40 ppb) in the presence of water that leads to no detectable slip of H2S. Finally, a sorbent material comprising of Cu and Ni was found to be effective in removing trace metal impurities such as AsH3 and PH3 when operating at 300ºC. Proof-of-concept of the integrated cleanup process was demonstrated with gasifier-generated syngas produced at the Western Research Institute using Wyoming Decker Coal. When operating with a ~1 SLPM feed, multiple inorganic contaminant removal sorbents and a tar-reforming bed was able to remove the vast majority of contaminants from the raw syngas. A tar-reforming catalyst was employed due to the production of tars generated from the gasifier used in this particular study. It is envisioned that in a real application a commercial scale gasifier operating at a higher temperature would produce lesser amount of tar. Continuous operation of a poison-sensitive copper-based WGS catalyst located downstream from the cleanup steps resulted in successful demonstration.

  11. CO-PRODUCTION OF HYDROGEN AND ELECTRICITY USING PRESSURIZED CIRCULATING FLUIDIZED BED GASIFICATION TECHNOLOGY

    SciTech Connect (OSTI)

    Zhen Fan

    2006-05-30

    Foster Wheeler has completed work under a U.S. Department of Energy cooperative agreement to develop a gasification equipment module that can serve as a building block for a variety of advanced, coal-fueled plants. When linked with other equipment blocks also under development, studies have shown that Foster Wheeler's gasification module can enable an electric generating plant to operate with an efficiency exceeding 60 percent (coal higher heating value basis) while producing near zero emissions of traditional stack gas pollutants. The heart of the equipment module is a pressurized circulating fluidized bed (PCFB) that is used to gasify the coal; it can operate with either air or oxygen and produces a coal-derived syngas without the formation of corrosive slag or sticky ash that can reduce plant availabilities. Rather than fuel a gas turbine for combined cycle power generation, the syngas can alternatively be processed to produce clean fuels and or chemicals. As a result, the study described herein was conducted to determine the performance and economics of using the syngas to produce hydrogen for sale to a nearby refinery in a hydrogen-electricity co-production plant setting. The plant is fueled with Pittsburgh No. 8 coal, produces 99.95 percent pure hydrogen at a rate of 260 tons per day and generates 255 MWe of power for sale. Based on an electricity sell price of $45/MWhr, the hydrogen has a 10-year levelized production cost of $6.75 per million Btu; this price is competitive with hydrogen produced by steam methane reforming at a natural gas price of $4/MMBtu. Hence, coal-fueled, PCFB gasifier-based plants appear to be a viable means for either high efficiency power generation or co-production of hydrogen and electricity. This report describes the PCFB gasifier-based plant, presents its performance and economics, and compares it to other coal-based and natural gas based hydrogen production technologies.

  12. Deep subsurface drip irrigation using coal-bed sodic water: Part I. Water and solute movement

    SciTech Connect (OSTI)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-02-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  13. Simulation of an integrated system for the production of methane and single cell protein from biomass

    SciTech Connect (OSTI)

    Thomas, M.V.

    1989-01-01

    A numerical model was developed to simulate the operation of an integrated system for the production of methane and single-cell algal protein from a variety of biomass energy crops or waste streams. Economic analysis was performed at the end of each simulation. The model was capable of assisting in the determination of design parameters by providing relative economic information for various strategies. Three configurations of anaerobic reactors were simulated. These included fed-bed reactors, conventional stirred tank reactors, and continuously expanding reactors. A generic anaerobic digestion process model, using lumped substrate parameters, was developed for use by type-specific reactor models. The generic anaerobic digestion model provided a tool for the testing of conversion efficiencies and kinetic parameters for a wide range of substrate types and reactor designs. Dynamic growth models were used to model the growth of algae and Eichornia crassipes was modeled as a function of daily incident radiation and temperature. The growth of Eichornia crassipes was modeled for the production of biomass as a substrate for digestion. Computer simulations with the system model indicated that tropical or subtropical locations offered the most promise for a viable system. The availability of large quantities of digestible waste and low land prices were found to be desirable in order to take advantage of the economies of scale. Other simulations indicated that poultry and swine manure produced larger biogas yields than cattle manure. The model was created in a modular fashion to allow for testing of a wide variety of unit operations. Coding was performed in the Pascal language for use on personal computers.

  14. Metallic species derived from fluidized bed coal combustion. [59 references

    SciTech Connect (OSTI)

    Natusch, D.F.S.; Taylor, D.R.

    1980-01-01

    Samples of fly ash generated by the combustion of Montana Rosebud coal in an experimental 18 inch fluidized bed combustor were collected. The use of a heated cascade impactor permitted collection of size fractionated material that avoided condensation of volatile gases on the particles. Elemental concentration trends were determined as a function of size and temperature and the results compared to published reports for conventional power plants. The behavior of trace metals appears to be substantially different in the two systems due to lower operating temperatures and the addition of limestone to the fluidized bed. Corrosion of the impactor plates was observed at the highest temperature and lowest limestone feed rate sampled during the study. Data from the elemental concentration and leaching studies suggest that corrosion is most likely due to reactions involving sodium sulfate. However, it is concluded that corrosion is less of a potential problem in fluidized-bed systems than in conventional coal-fired systems.

  15. Decontamination of combustion gases in fluidized bed incinerators

    DOE Patents [OSTI]

    Leon, Albert M.

    1982-01-01

    Sulfur-containing atmospheric pollutants are effectively removed from exit gas streams produced in a fluidized bed combustion system by providing a fluidized bed of particulate material, i.e. limestone and/or dolomite wherein a concentration gradient is maintained in the vertical direction. Countercurrent contacting between upwardly directed sulfur containing combustion gases and descending sorbent particulate material creates a concentration gradient across the vertical extent of the bed characterized in progressively decreasing concentration of sulfur, sulfur dioxide and like contaminants upwardly and decreasing concentration of e.g. calcium oxide, downwardly. In this manner, gases having progressively decreasing sulfur contents contact correspondingly atmospheres having progressively increasing concentrations of calcium oxide thus assuring optimum sulfur removal.

  16. Coal hydrogenation and deashing in ebullated bed catalytic reactor

    DOE Patents [OSTI]

    Huibers, Derk T. A.; Johanson, Edwin S.

    1983-01-01

    An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.

  17. THERMAL ENHANCEMENT CARTRIDGE HEATER MODIFIED TECH MOD TRITIUM HYDRIDE BED DEVELOPMENT PART I DESIGN AND FABRICATION

    SciTech Connect (OSTI)

    Klein, J.; Estochen, E.

    2014-03-06

    The Savannah River Site (SRS) tritium facilities have used 1{sup st} generation (Gen1) LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride storage beds for tritium absorption, storage, and desorption. The Gen1 design utilizes hot and cold nitrogen supplies to thermally cycle these beds. Second and 3{sup rd} generation (Gen2 and Gen3) storage bed designs include heat conducting foam and divider plates to spatially fix the hydride within the bed. For thermal cycling, the Gen2 and Gen 3 beds utilize internal electric heaters and glovebox atmosphere flow over the bed inside the bed external jacket for cooling. The currently installed Gen1 beds require replacement due to tritium aging effects on the LANA0.75 material, and cannot be replaced with Gen2 or Gen3 beds due to different designs of these beds. At the end of service life, Gen1 bed desorption efficiencies are limited by the upper temperature of hot nitrogen supply. To increase end-of-life desorption efficiency, the Gen1 bed design was modified, and a Thermal Enhancement Cartridge Heater Modified (TECH Mod) bed was developed. Internal electric cartridge heaters in the new design to improve end-of-life desorption, and also permit in-bed tritium accountability (IBA) calibration measurements to be made without the use of process tritium. Additional enhancements implemented into the TECH Mod design are also discussed.

  18. Coal-feeding mechanism for a fluidized bed combustion chamber

    DOE Patents [OSTI]

    Gall, Robert L.

    1981-01-01

    The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, e.g. coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.

  19. Regeneration of lime from sulfates for fluidized-bed combustion

    DOE Patents [OSTI]

    Yang, Ralph T.; Steinberg, Meyer

    1980-01-01

    In a fluidized-bed combustor the evolving sulfur oxides are reacted with CaO to form calcium sulfate which is then decomposed in the presence of carbonaceous material, such as the fly ash recovered from the combustion, at temperatures of about 900.degree. to 1000.degree. C., to regenerate lime. The regenerated lime is then recycled to the fluidized bed combustor to further react with the evolving sulfur oxides. The lime regenerated in this manner is quite effective in removing the sulfur oxides.

  20. Evaluation of temperature profiles in packed beds by simulation

    SciTech Connect (OSTI)

    Serrano, M.T.C.; Hernandez Suarez, R.

    1996-12-31

    The packed bed reactors with cocurrent upflow or downflow of gas and liquid are widely used in chemical and petrochemical industries for solid-catalysed heterogeneous reactions. It`s well known that a preferential-flow exists, thus the estimation of heat transfer parameters such as thermal conductivity of the bed and wall transfer resistance are important in order to predict the temperature profiles inside the reactor. This paper let us simulate the influence of these preferential zones of flow on the heat transfer parameters on this type of reactor. 6 refs., 1 fig., 2 tabs.

  1. Pressurized fluidized-bed combustion technology exchange workshop

    SciTech Connect (OSTI)

    ,

    1980-04-01

    The pressurized fluidized-bed combustion technology exchange workshop was held June 5 and 6, 1979, at The Meadowlands Hilton Hotel, Secaucus, New Jersey. Eleven papers have been entered individually into EDB and ERA. The papers include reviews of the US DOE and EPRI programs in this area and papers by Swedish, West German, British and American organizations. The British papers concern the joint program of the USA, UK and FRG at Leatherhead. The key factor in several papers is the use of fluidized bed combustors, gas turbines, and steam turbines in combined-cycle power plants. One paper examines several combined-cycle alternatives. (LTN)

  2. Protection Program Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-10-14

    This Order establishes requirements for the management and operation of the Department of Energy (DOE) Federal Protective Forces (FPF), Contractor Protective Forces (CPF), and the Physical Security of property and personnel under the cognizance of DOE.

  3. Protective Force Program Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-30

    Provides detailed requirements to supplement DOE O 473.2, Protective Force Program, which establishes the requirements and responsibilities for management and operation of the Department of Energy (DOE) Protective Force (PF) Program. Does not cancel other directives.

  4. Voluntary Protection Program Announcement

    Broader source: Energy.gov [DOE]

    Secretary O'Leary formally announced a new initiative, "The Department of Energy Voluntary Protection Program (DOEVPP)," which is designed to recognize contractor sites that are providing excellent safety and health protection to their employees.

  5. Fire Protection Program Metrics

    Broader source: Energy.gov [DOE]

    Presenter: Perry E. D ’Antonio, P.E., Acting Sr. Manager, Fire Protection - Sandia National Laboratories

  6. ORISE: Human Subjects Protection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human Subjects Protection The Oak Ridge Institute for Science and Education (ORISE) performs technical assessments to assist U.S. Department of Energy (DOE) laboratories involved in human subjects research projects. Under DOE Order and Policy 443.1A, Protection of Human Subjects, and 10 CFR 745, DOE employees and contractors are expected to protect the rights and welfare of human research subjects. In support of the DOE Office of Science and the Human Subjects Protection Program (HSPP), ORISE

  7. Model Fire Protection Program

    Broader source: Energy.gov [DOE]

    To facilitate conformance with its fire safety directives and the implementation of a comprehensive fire protection program, DOE has developed a number of "model" program documents. These include a comprehensive model fire protection program, model fire hazards analyses and assessments, fire protection system inspection and testing procedures, and related material.

  8. Corium protection assembly

    DOE Patents [OSTI]

    Gou, Perng-Fei; Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A corium protection assembly includes a perforated base grid disposed below a pressure vessel containing a nuclear reactor core and spaced vertically above a containment vessel floor to define a sump therebetween. A plurality of layers of protective blocks are disposed on the grid for protecting the containment vessel floor from the corium.

  9. New Mexico Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) New Mexico Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,022 1990's 2,510 4,206 4,724 4,775 4,137 4,299 4,180 4,351 4,232 4,080 2000's 4,278 4,324 4,380 4,396 5,166 5,249 4,894 4,169 3,991 3,646 2010's 3,532 3,358 2,772 2,856 4,120 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  10. Catalyst for the methanation of carbon monoxide in sour gas

    DOE Patents [OSTI]

    Kustes, William A. (Louisville, KY); Hausberger, Arthur L. (Louisville, KY)

    1985-01-01

    The invention involves the synergistic effect of the specific catalytic constituents on a specific series of carriers for the methanation of carbon monoxide in the presence of sulfur at relatively high temperatures and at low steam to gas ratios in the range of 0.2:1 or less. This effect was obtained with catalysts comprising the mixed sulfides and oxides of nickel and chromium supported on carriers comprising magnesium aluminate and magnesium silicate. Conversion of carbon monoxide to methane was in the range of from 40 to 80%. Tests of this combination of metal oxides and sulfides on other carriers and tests of other metal oxides and sulfides on the same carrier produced a much lower level of conversion.

  11. HYDROGEN-DEUTERIUM EXCHANGE IN PHOTOLYZED METHANE-WATER ICES

    SciTech Connect (OSTI)

    Weber, Amanda S.; Hodyss, Robert; Johnson, Paul V.; Willacy, Karen; Kanik, Isik

    2009-09-20

    Previous work has concluded that H-D exchange occurs readily in polycyclic aromatic hydrocarbons frozen in deuterated water (D{sub 2}O) irradiated with ultraviolet light. Here, we examine H-D exchange in methane-water ices following exposure to ultraviolet radiation and analyze the products formed as a result. We find that H-D exchange also occurs in methane-water ices by means of ultraviolet photolysis. Exchange proceeds through a radical mechanism that implies that almost all organic species will undergo significant H-D exchange with the matrix in water ices exposed to ultraviolet radiation. Given sufficient energetic processing of the ice, the H/D ratio of an ice matrix may be transferred to the organic species in the ice.

  12. Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 537 1990's 1,224 1,714 1,968 1,237 976 972 823 1,077 1,029 1,060 2000's 1,241 1,162 1,283 1,665 1,900 1,773 2,068 2,126 1,727 1,342 2010's 1,298 1,210 1,006 413 978 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  13. Colorado Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,117 1990's 1,320 2,076 2,716 3,107 2,913 3,461 3,711 3,890 4,211 4,826 2000's 5,617 6,252 6,691 6,473 5,787 6,772 6,344 7,869 8,238 7,348 2010's 6,485 6,580 5,074 4,391 5,103 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  14. Methane recovery from animal manures: A current opportunities casebook

    SciTech Connect (OSTI)

    Lusk, P.

    1994-12-01

    One manure management system provides not only pollution prevention but also converts a manure management problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially-available bioconversion technology with considerable potential for providing profitable co-products including a cost-effective renewable fuel for livestock production operations. This Casebook examines some of the current opportunities for the recovery of methane from the anaerobic digestion of animal manures. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Regression models, which can be used to estimate digester cost and internal rate of return, are developed from the evaluations. Finally, anaerobic digestion has considerable potential beyond agribusiness. Examples of digesters currently employed by other industries are provided.

  15. Methane Recovery from Animal Manures The Current Opportunities Casebook

    SciTech Connect (OSTI)

    Lusk, P.

    1998-09-22

    Growth and concentration of the livestock industry create opportunities for the proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. Pollutants from unmanaged livestock wastes can degrade the environment, and methane emitted from decomposing manure may contribute to global climate change. One management system not only helps prevent pollution but can also convert a manure problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially viable conversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewable fuel for livestock production operations. This casebook examines some of the current opportunities for recovering methane from anaerobic digestion animal manures.

  16. Catalysts for conversion of methane to higher hydrocarbons

    DOE Patents [OSTI]

    Siriwardane, Ranjani V.

    1993-01-01

    Catalysts for converting methane to higher hydrocarbons such as ethane and ethylene in the presence of oxygen at temperatures in the range of about 700.degree. to 900.degree. C. are described. These catalysts comprise calcium oxide or gadolinium oxide respectively promoted with about 0.025-0.4 mole and about 0.1-0.7 mole sodium pyrophosphate. A preferred reaction temperature in a range of about 800.degree. to 850.degree. C. with a preferred oxygen-to-methane ratio of about 2:1 provides an essentially constant C.sub.2 hydrocarbon yield in the range of about 12 to 19 percent over a period of time greater than about 20 hours.

  17. Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,540 2,297 2,371 2,759 2,085 2,446 2,448 2,738 2,781 2,328 2010's 2,683 2,539 1,736 1,810 1,572 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed

  18. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl

    2003-05-15

    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US Department of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled ''Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers.'' This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146). Phase I consisted of an evaluation of the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants, and supporting bench-scale testing. And Phase II consists of pilot-scale testing, supporting a refined performance and economic evaluation of the oxygen-fired AFC concept. Phase I, detailed in this report, entails a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen separate but related cases (listed below), representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included herein for completeness.

  19. Carbon adsorption system protects LPG storage sphere

    SciTech Connect (OSTI)

    Gothenquist, C.A.; Rooker, K.M.

    1996-07-01

    Chevron U.S.A. Products Co. installed a carbon adsorption system to protect an LPG storage sphere at its refinery in Richmond, Calif. Vessel damage can result when amine contamination leads to emulsion formation and consequent amine carry-over, thus promoting wet-H{sub 2}S cracking. In Chevron`s No. 5 H{sub 2}S recovery plant, a mixture of butane and propane containing H{sub 2}S is contacted with diethanolamine (DEA) in a liquid-liquid absorber. The absorber is a countercurrent contactor with three packed beds. Because the sweetening system did not include a carbon adsorption unit for amine purification, contaminants were building up in the DEA. The contaminants comprised: treatment chemicals, hydrocarbons, foam inhibitors, and amine degradation products. The paper describes the solution to this problem.

  20. Methane Hydrate Research and Modeling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Modeling Methane Hydrate Research and Modeling Research is focused on understanding the physical and chemical nature of gas hydrate-bearing sediments. These studies advance the understanding of the in situ nature of GHBS and their potential response in terms of fluid flow and geomechanical response to destabilizing forces. The latest research results from DOE projects, both current and completed, can be found on the NETL website. These include: Gas Hydrate Characterization in the

  1. Thermal Conversion of Methane to Acetylene Final Report

    SciTech Connect (OSTI)

    Fincke, J.R.; Anderson, R.P.; Hyde, T.; Wright, R.; Bewley, R.; Haggard, D.C.; Swank, W.D.

    2000-01-31

    This report describes the experimental demonstration of a process for the direct thermal conversion of methane to acetylene. The process utilizes a thermal plasma heat source to dissociation products react to form a mixture of acetylene and hydrogen. The use of a supersonic expansion of the hot gas is investigated as a method of rapidly cooling (quenching) the product stream to prevent further reaction or thermal decomposition of the acetylene which can lower the overall efficiency of the process.

  2. Enhanced catalyst stability for cyclic co methanation operations

    DOE Patents [OSTI]

    Risch, Alan P.; Rabo, Jule A.

    1983-01-01

    Carbon monoxide-containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is thereafter reacted with steam or hydrogen to form methane. Enhanced catalyst stability for long term, cyclic operation is obtained by the incorporation of an alkali or alkaline earth dopant in a silica binding agent added to the catalyst-support additive composition.

  3. Flash hydropyrolysis and methanolysis of biomass with hydrogen and methane

    SciTech Connect (OSTI)

    Steinberg, M.

    1985-04-01

    The process chemistry of the flash pyrolysis of biomass (wood) with the reactive gases, H/sub 2/ and CH/sub 4/ and with the non-reactive gases He and N/sub 2/ is being determined in a 1 in. downflow tubular reactor at pressures from 20 to 1000 psi and temperatures from 600 to 1000/sup 0/C. With hydrogen, flash hydropyrolysis leads to high yields of methane and CO which can be used for SNG and methanol fuel production. With methane, flash methanolysis leads to high yields of ethylene, benzene and CO which can be used for the production of valuable chemical feedstocks and methanol transportation fuel. At reactor conditions of 50 psi and 1000/sup 0/C and approximately 1 sec residence time, the yields based on pine wood carbon conversion are up to 30% for ethylene, 25% for benzene, and 45% for CO, indicating that over 90% of the carbon in pine is converted to valuable products. Pine wood produces higher yields of hydrocarbon products than Douglas fir wood; the yield of ethylene is 2.3 times higher with methane than with helium or nitrogen, and for pine, the ratio is 7.5 times higher. The mechanism appears to be a free radical reaction between CH/sub 4/ and the pyrolyzed wood. There appears to be no net production or consumption of methane. A preliminary process design and analysis indicates an economically competitive system for the production of ethylene, benzene and methanol based on the methanolysis of wood. 8 refs., 18 figs., 1 tab.

  4. Fire Protection Program Manual

    SciTech Connect (OSTI)

    Sharry, J A

    2012-05-18

    This manual documents the Lawrence Livermore National Laboratory (LLNL) Fire Protection Program. Department of Energy (DOE) Orders 420.1B, Facility Safety, requires LLNL to have a comprehensive and effective fire protection program that protects LLNL personnel and property, the public and the environment. The manual provides LLNL and its facilities with general information and guidance for meeting DOE 420.1B requirements. The recommended readers for this manual are: fire protection officers, fire protection engineers, fire fighters, facility managers, directorage assurance managers, facility coordinators, and ES and H team members.

  5. Pebble Bed Reactor review update. Fiscal year 1979 annual report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Updated information is presented on the Pebble Bed Reactor (PBR) concept being developed in the Federal Republic of Germany for electricity generation and process heat applications. Information is presented concerning nuclear analysis and core performance, fuel cycle evaluation, reactor internals, and safety and availability.

  6. Packed bed reactor for photochemical .sup.196 Hg isotope separation

    DOE Patents [OSTI]

    Grossman, Mark W.; Speer, Richard

    1992-01-01

    Straight tubes and randomly oriented pieces of tubing having been employed in a photochemical mercury enrichment reactor and have been found to improve the enrichment factor (E) and utilization (U) compared to a non-packed reactor. One preferred embodiment of this system uses a moving bed (via gravity) for random packing.

  7. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect (OSTI)

    Gupta, R.P.; Gangwal, S.K.

    1991-06-01

    Advanced integrated gasification combined cycle (IGCC) power systems require the development of high-temperature desulfurization sorbents capable of removing hydrogen sulfide from coal gasifier down to very low levels. The objective of this investigation was to identify and demonstrate methods for enhancing the long-term chemical reactivity and mechanical strength of zinc ferrite, a leading regenerable sorbent, for fluidized-bed applications. Fluidized sorbent beds offer significant potential in IGCC systems because of their ability to control the highly exothermic regeneration involved. However, fluidized beds require a durable, attrition-resistant sorbent in the 100--300 {mu}m size range. A bench-scale high-temperature, high- pressure (HTHP) fluidized-bed reactor (7.6-cm I.D.) system capable of operating up to 24 atm and 800{degree}C was designed, built and tested. A total of 175 sulfidation-regeneration cycles were carried out using KRW-type coal gas with various zinc ferrite formulations. A number of sorbent manufacturing techniques including spray drying, impregnation, crushing and screening, and granulation were investigated. While fluidizable sorbents prepared by crushing durable pellets and screening had acceptable sulfur capacity, they underwent excessive attrition during multicycle testing. The sorbent formulations prepared by a proprietary technique were found to have excellent attrition resistance and acceptable chemical reactivity during multicycle testing. However, zinc ferrite was found to be limited to 550{degree}C, beyond which excessive sorbent weakening due to chemical transformations, e.g., iron oxide reduction, was observed.

  8. Fluidized-bed combustion and gasification of biomass

    SciTech Connect (OSTI)

    LePori, W.A.; Anthony, R.G.; Lalk, T.R.; Craig, J.D.

    1981-01-01

    A 0.61 meter (2 ft) diameter fluidized-bed combustion reactor was used for tests on direct combustion of cotton gin trash. Raw gin trash was continuously augered into the unit with fuel and air rates set to maintain bed temperatures of 760/sup 0/ to 816/sup 0/C (1400/sup 0/ to 1500/sup 0/F). Particulate emissions in the hot stack gases were measured and found to be lower than federal standards for incinerators. Mild steel and stainless alloy samples were placed in the hot stack gas stream to study corrosion and erosion of materials. High rates of potassium, calcium, and sodium deposits accumulated on the samples, and high erosion rates were found. A 0.3 meter (13 in) diameter fluidized-bed gasifier was used to convert raw gin trash into a combustible gas with bed temperatures between 683/sup 0/C and 881/sup 0/C (1261/sup 0/F and 1618/sup 0/F). By limiting the amount of oxygen compared to the fuel feed, only partial combustion occurs, producing heat and endothermic gasification chemical reactions. The combustible gas was composed primarily of carbon monoxide and hydrogen. It had a heating value ranging from 3.40 to 4.82 M Joules per standard cubic meter (98 to 142 Btu/scf), and about 50 percent of the heat value of the gin trash was converted into this low energy gas.

  9. Method for using fast fluidized bed dry bottom coal gasification

    DOE Patents [OSTI]

    Snell, George J.; Kydd, Paul H.

    1983-01-01

    Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature. This gasification arrangement provides for increased utilization of the secondary char material to produce higher overall carbon conversion and product yields in the process.

  10. Corrosion assessment in FBC (fluidized-bed combustion) systems

    SciTech Connect (OSTI)

    Natesan, K.

    1990-01-01

    Metallic materials selected for the construction of heat exchangers and tube support structure in fluidized-bed combustion (FBC) systems must withstand the dynamic corrosive conditions prevalent in these systems. Oxidation-sulfidation interactions leading to accelerated metal wastage of components can occur owing to the presence of sorbent deposits on metal surface and/or the low-oxygen partial pressures in the exposure environment. A number of laboratory tests were conducted to examine the influence of deposit chemistry, gas chemistry, and alloy pretreatment on corrosion of high-chromium alloys, such as, Incoloy 800 and Type 310 stainless steel. Detailed chemical and physical analyses of spent-bed materials were made and correlated with the observed corrosion behavior of the alloys. A comparative analysis was made of the influence of bubbling-bed and circulating-bed deposits on corrosion of several candidate alloys. Finally, a comparison was made of the laboratory corrosion test data with the metal wastage information developed over the years in several FBC test facilities. 5 refs., 20 figs., 3 tabs.

  11. Isolated thermocouple amplifier system for stirred fixed-bed gasifier

    DOE Patents [OSTI]

    Fasching, George E.

    1992-01-01

    A sensing system is provided for determining the bed temperature profile of the bed of a stirred, fixed-bed gasifier including a plurality of temperature sensors for sensing the bed temperature at different levels, a transmitter for transmitting data based on the outputs of the sensors to a remote operator's station, and a battery-based power supply. The system includes an isolation amplifier system comprising a plurality of isolation amplifier circuits for amplifying the outputs of the individual sensors. The isolation amplifier circuits each comprise an isolation operational amplifier connected to a sensor; a first "flying capacitor" circuit for, in operation, controlling the application of power from the power supply to the isolation amplifier; an output sample and hold circuit connected to the transmitter; a second "flying capacitor" circuit for, in operation, controlling the transfer of the output of the isolation amplifier to the sample and hold circuit; and a timing and control circuit for activating the first and second capacitor circuits in a predetermined timed sequence.

  12. Cyclic process for producing methane with catalyst regeneration

    DOE Patents [OSTI]

    Frost, Albert C.; Risch, Alan P.

    1980-01-01

    Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. For practical commercial operations utilizing the two-step process of the invention of a cyclic basis, nickel, cobalt, ruthenium, thenium and alloys thereof are especially prepared for use in a metal state, with CO disproportionation being carried out at temperatures up to about 350.degree. C. and with the conversion of active surface carbon to methane being carried out by reaction with steam. The catalyst is employed in such cyclic operations without the necessity for employing a regeneration step as part of each processing cycle. Inactive carbon or coke that tends to form on the catalyst over the course of continuous operations utilizing such cyclic process is effectively and advantageously removed, on a periodic basis, in place of conventional burn off with an inert stream containing a low concentration of oxygen.

  13. Extension - Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption

    SciTech Connect (OSTI)

    Anna Lee Tonkovich

    2008-08-11

    The need for cost effective technologies for upgrading coal mine methane to pipeline quality natural gas is becoming ever greater. The current work presents and investigates a new approach to reduce the impact of the most costly step in the conventional technology, nitrogen rejection. The proposed approach is based on the Velocys microchannel platform, which is being developed to commercialize compact and cost efficient chemical processing technology. For this separation, ultra fast thermal swing sorption is enabled by the very high rates of heat and mass transfer inherent in microchannel processing. In a first phase of the project solid adsorbents were explored. Feasibility of ultrafast thermal swing was demonstrated but the available adsorbents had insufficient differential methane capacity to achieve the required commercial economics. In a second phase, ionic liquids were adopted as absorbents of choice, and experimental work and economic analyses, performed to gauge their potential, showed promise for this novel alternative. Final conclusions suggest that a combination of a required cost target for ionic liquids or a methane capacity increase or a combination of both is required for commercialization.

  14. Methane ignition catalyzed by in situ generated palladium nanoparticles

    SciTech Connect (OSTI)

    Shimizu, T.; Abid, A.D.; Poskrebyshev, G.; Wang, H. [Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089 (United States); Nabity, J.; Engel, J.; Yu, J. [TDA Research, Inc., 12345 W. 52nd Ave, Wheat Ridge, CO 80033 (United States); Wickham, D. [Reaction Systems, LLC, 19039 E. Plaza Drive, Suite 290, Parker, CO 80134 (United States); Van Devener, B.; Anderson, S.L. [Department of Chemistry, University of Utah, Salt Lake City, UT 84112 (United States); Williams, S. [Air Force Research Laboratory, Mail Stop RZA, 1950 Fifth Street, WPAFB, OH 45433 (United States)

    2010-03-15

    Catalytic ignition of methane over the surfaces of freely-suspended and in situ generated palladium nanoparticles was investigated experimentally and numerically. The experiments were conducted in a laminar flow reactor. The palladium precursor was a compound (Pd(THD){sub 2}, THD: 2,2,6,6-tetramethyl-3,5-heptanedione) dissolved in toluene and injected into the flow reactor as a fine aerosol, along with a methane-oxygen-nitrogen mixture. For experimental conditions chosen in this study, non-catalytic, homogeneous ignition was observed at a furnace temperature of {proportional_to}1123 K, whereas ignition of the same mixture with the precursor was found to be {proportional_to}973 K. In situ production of Pd/PdO nanoparticles was confirmed by scanning mobility, transmission electron microscopy and X-ray photoelectron spectroscopy analyses of particles collected at the reactor exit. The catalyst particle size distribution was log-normal. Depending on the precursor loading, the median diameter ranged from 10 to 30 nm. The mechanism behind catalytic ignition was examined using a combined gas-phase and gas-surface reaction model. Simulation results match the experiments closely and suggest that palladium nanocatalyst significantly shortens the ignition delay times of methane-air mixtures over a wide range of conditions. (author)

  15. Method for in situ biological conversion of coal to methane

    DOE Patents [OSTI]

    Volkwein, Jon C.

    1995-01-01

    A method and apparatus are provided for the in situ biological conversion of coal to methane comprising culturing on a coal-containing substrate a consortium of microorganisms capable of degrading the coal into methane under suitable conditions. This consortium of microorganisms can be obtained from an underground cavity such as an abandoned mine which underwent a change from being supplied with sewage to where no sewage was present, since these conditions have favored the development of microorganisms capable of using coal as a carbon source and converting coal to methane. The consortium of microorganisms obtained from such abandoned coal mines can be isolated and introduced to hard-to-reach coal-containing substrates which lack such microorganisms and which would otherwise remain unrecoverable. The present invention comprises a significant advantage in that useable energy can be obtained from a number of abandoned mine sites or other areas wherein coal is no longer being recovered, and such energy can be obtained in a safe, efficient, and inexpensive manner.

  16. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    SciTech Connect (OSTI)

    Soelberg, Nicholas Ray; Watson, Tony Leroy

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  17. Microsoft Word - Wireless Test Bed named NUF_INL version.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Wireless Test Bed as a National User Facility IDAHO FALLS - The U.S. Department of Energy (DOE) recently designated Idaho National Laboratory's (INL) Wireless Test Bed as a ...

  18. DOE/OE National SCADA Test Bed Fiscal Year 2009 Work Plan | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OE National SCADA Test Bed Fiscal Year 2009 Work Plan DOEOE National SCADA Test Bed Fiscal Year 2009 Work Plan This document is designed to help guide and strengthen the DOEOE ...

  19. Corrosion within the Z-Bed Recovery Systems at the Savannah River...

    Office of Environmental Management (EM)

    Corrosion within the Z-Bed Recovery Systems at the Savannah River Site's Tritium Facilities Corrosion within the Z-Bed Recovery Systems at the Savannah River Site's Tritium...

  20. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems...

    Office of Scientific and Technical Information (OSTI)

    Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems Citation Details In-Document Search Title: Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems You ...