Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bed demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

DMEC-1 Pressurized Circulating Fluidized-Bed Demonstration Project  

SciTech Connect

The DMEC-1 project will demonstrate the use of Pyropower`s PYROFLOW pressurized circulating fluidized bed technology to repower an existing coal fired generating station. This will be the first commercial application of this technology in the world. The project is now in budget period 1, the preliminary design phase.

Kruempel, G.E.; Ambrose, S.J. [Midwest Power, Des Moines, IA (United States); Provol, S.J. [Pyropower Corp., San Diego, CA (United States)

1992-12-01T23:59:59.000Z

2

West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE))

West Valley Demonstration Project compliance agreements, along with summaries of the agreements, can be viewed here.

3

Project CRAFT: A Test Bed for Demonstrating the Real Time Acquisition and Archival of WSR-88D Base  

E-Print Network (OSTI)

the long-term needs for WSR-88D base data archival, and in light of the compelling need for real time. The initial test bed of six radars, located in and around Oklahoma, has been delivering real time base data to substantial improvements in the identification and short-term warning of hazardous local weather (e.g., Crum

Droegemeier, Kelvin K.

4

Notice of Intent to Prepare an Environmental Impact Statement for the Proposed McIntosh Unit 4 Pressurized Circulating Fluidized Bed Demonstration Project, March 25, 1999  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 10 Federal Register / Vol. 64, No. 58 / Friday, March 26, 1999 / Notices DEPARTMENT OF ENERGY Notice of Intent To Prepare an Environmental Impact Statement for the Proposed McIntosh Unit 4 Pressurized Circulating Fluidized Bed Demonstration Project AGENCY: U.S. Department of Energy. ACTION: Notice of intent to prepare an Environmental Impact Statement. SUMMARY: The U.S. Department of Energy (DOE) announces its intent to prepare an Environmental Impact Statement (EIS) pursuant to the National Environmental Policy Act (NEPA), the Council on Environmental Quality (CEQ) NEPA regulations (40 CFR Parts 1500-1508), and the DOE NEPA regulations (10 CFR Part 1021), to assess the potential environmental and human health impacts of a proposed project to expand the C. D. McIntosh, Jr. Power

5

West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE))

The West Valley Demonstration Project came into being through the West Valley Demonstration Project Act of 1980. The Act requires that the DOE is responsible for solidifying the high-level waste, disposing of waste created by the solidification, and decommissioning the facilities used in the process.

6

LIMB demonstration project extension  

SciTech Connect

The purpose of the DOE limestone injection multistage burner (LIMB) Demonstration Project Extension is to extend the data base on LIMB technology and to expand DOE's list of Clean Coal Technologies by demonstrating the Coolside process as part of the project. The main objectives of this project are: to demonstrate the general applicability of LIMB technology by testing 3 coals and 4 sorbents (total of 12 coal/sorbent combinations) at the Ohio Edison Edgewater plant; and to demonstrate that Coolside is a viable technology for improving precipitator performance and reducing sulfur dioxide emissions while acceptable operability is maintained. Progress is reported. 3 figs.

Not Available

1990-09-21T23:59:59.000Z

7

GATEWAY Demonstration Outdoor Projects  

Energy.gov (U.S. Department of Energy (DOE))

DOE shares the results of completed GATEWAY demonstration projects, publishing detailed reports that include analysis of data collected, projected energy savings, economic analyses, and user feedback. Report briefs summarize key findings in a quick-scan format. Both the reports and briefs are available as Adobe Acrobat PDFs.

8

GATEWAY Demonstration Indoor Projects  

Energy.gov (U.S. Department of Energy (DOE))

DOE shares the results of completed GATEWAY demonstration projects, publishing detailed reports that include analysis of data collected, projected energy savings, economic analyses, and user feedback. Report briefs summarize key findings in a quick-scan format. Both the reports and briefs are available as Adobe Acrobat PDFs.

9

EIS-0289: JEA Circulating Fluidized Bed Combustor Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

289: JEA Circulating Fluidized Bed Combustor Project 289: JEA Circulating Fluidized Bed Combustor Project EIS-0289: JEA Circulating Fluidized Bed Combustor Project SUMMARY This EIS assesses environmental issues associated with constructing and demonstrating a project that would be cost-shared by DOE and JEA (formerly the Jacksonville Electric Authority) under the Clean Coal Technology Program. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 7, 2000 EIS-0289: Record of Decision JEA Circulating Fluidized Bed Combustor Project, Jacksonville, Duval County, FL June 1, 2000 EIS-0289: Final Environmental Impact Statement JEA Circulating Fluidized Bed Combustor Project August 1, 1999 EIS-0289: Draft Environmental Impact Statement JEA Circulating Fluidized Bed Combustor

10

LIMB Demonstration Project Extension  

SciTech Connect

The DOE LIMB Demonstration Project Extension is a continuation of the EPA Limestone Injection Multistage Burner (LIMB) Demonstration. EPA ultimately expects to show that LIMB is a low cost control technology capable of producing moderate SO{sub x} and NO{sub x} control (50--60 percent) with applicability for retrofit to the major portion of the existing coal-fired boiler population. The current EPA Wall-Fired LIMB Demonstration is a four-year project that includes design and installation of a LIMB system at the 105-MW Unit 4 boiler at Ohio Edison's Edgewater Station in Lorain, Ohio. LIMB Extension testing continued during the quarter with lignosulfonated hydrated lime, pulverized limestone, and hydrated dolomitic lime while firing 1.8% and 3% sulfur coals. Sulfur dioxide removal efficiencies were equivalent to the results found during EPA, base LIMB testing. Sulfur dioxide removal efficiencies were lower than expected while testing with pulverized limestone without humidification. A slight increase in sulfur capture was noted while injecting pulverized limestone at the 187' elevation and with the humidifier outlet temperature at 145{degree}F.

Not Available

1990-09-21T23:59:59.000Z

11

LIMB demonstration project extension  

SciTech Connect

The main objectives of this project are: (1) To demonstrate the general applicability of Limestone Injection Multistage Burner (LIMB) technology by testing 3 coals and 4 sorbents (total of 12 coal/sorbent combinations) at the Ohio Edison Edgewater Plant. (2) To demonstrate that Coolside is a viable technology for improving precipitator performance and reducing sulfur dioxide emissions while acceptance operability is maintained. During the past quarter, activities for phase I, design and permitting, and phase II, construction, shakedown and start-up were completed for phase III, operation, data collection, reporting and disposition, activities continued with consol completing the revisions to the Coolside Topical report, the completion of LIMB Extension testing, and the start of demobilization and restoration.

Not Available

1991-12-16T23:59:59.000Z

12

LIMB Demonstration Project Extension  

SciTech Connect

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (1) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems; (2) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit; and (3) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater. The demonstration project consists of several distinct phases: a preliminary phase to develop the LIMB process design applicable to the host boiler, a construction and start-up phase, and an operating and evaluation phase. The first major activity, the development of the Edgewater LIMB design, was completed in January 1986 and detailed engineering is now complete. Major boiler-related components were installed during a September 1986 boiler outage. Start-up activities began in March of 1987 with tuning of the low NO{sub x} burners. Sorbent injection activities were underway as of July 1987. 3 figs.

Not Available

1991-09-15T23:59:59.000Z

13

Livestock Odor Reduction Demonstration Project  

E-Print Network (OSTI)

Livestock Odor Reduction Demonstration Project Objectives The 1996 and 1997 Iowa General Assembly-share basis to livestock producers and operators selected to carry out various demonstration projects. Organization The Livestock Odor Reduction Demonstration Project was administered by ISU Extension. Stewart

Lin, Zhiqun

14

LIMB Demonstration Project Extension  

SciTech Connect

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1989-06-15T23:59:59.000Z

15

LIMB Demonstration Project Extension  

SciTech Connect

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1989-03-15T23:59:59.000Z

16

LIMB Demonstration Project Extension  

SciTech Connect

The basic goal of the Limestone Injection Mitigation Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1989-11-15T23:59:59.000Z

17

LIMB Demonstration Project Extension  

SciTech Connect

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1988-12-15T23:59:59.000Z

18

LIMB Demonstration Project Extension  

SciTech Connect

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full-scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO and NO emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1988-09-15T23:59:59.000Z

19

LIMB Demonstration Project Extension  

SciTech Connect

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full-scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1988-03-15T23:59:59.000Z

20

LIMB Demonstration Project Extension and Coolside Demonstration  

SciTech Connect

This report presents results from the limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. LIMB is a furnace sorbent injection technology designed for the reduction of sulfur dioxide (SO[sub 2]) and nitrogen oxides (NO[sub x]) emissions from coal-fired utility boilers. The testing was conducted on the 105 Mwe, coal-fired, Unit 4 boiler at Ohio Edison's Edgewater Station in Lorain, Ohio. In addition to the LIMB Extension activities, the overall project included demonstration of the Coolside process for S0[sub 2] removal for which a separate report has been issued. The primary purpose of the DOE LIMB Extension testing, was to demonstrate the generic applicability of LIMB technology. The program sought to characterize the S0[sub 2] emissions that result when various calcium-based sorbents are injected into the furnace, while burning coals having sulfur content ranging from 1.6 to 3.8 weight percent. The four sorbents used included calcitic limestone, dolomitic hydrated lime, calcitic hydrated lime, and calcitic hydrated lime with a small amount of added calcium lignosulfonate. The results include those obtained for the various coal/sorbent combinations and the effects of the LIMB process on boiler and plant operations.

Goots, T.R.; DePero, M.J.; Nolan, P.S.

1992-11-10T23:59:59.000Z

Note: This page contains sample records for the topic "bed demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DoD ESTCP Energy Test Bed Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ESTCP Energy Test Bed Project ESTCP Energy Test Bed Project EW-201016 "High Efficiency - Reduced Emissions Boiler Controls" 23 May 2012 Dr. Jim Galvin ESTCP Program Manager for Energy & Water ESTCP Energy Test Bed Project Location 2 3 Boiler Efficiency Improvement Demo Oxygen Sensor Servo Controls * 90% of boilers lack automated controls * State of the art automated controls sense only oxygen * Demonstrated prototype sensed oxygen and carbon monoxide Prototype CO Sensor Key Findings Boiler Before Demo 4 * Size: 25 MMBtu * Age: 30 years * Fuel: Natural Gas or Oil * Demo performed by United Technologies Research Center * Technology demonstrated: Fireye PPC4000 (Oxygen trim control) * Upgraded PPC4000 tested as a prototype 5 Three Phased Test ● Test Phase 1: Existing Legacy System (baseline)

22

Oversight Reports - West Valley Demonstration Project | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project Oversight Reports - West Valley Demonstration Project August 24, 2012 Independent Activity Report, West Valley Demonstration Project - July 2012...

23

Shallow Carbon Sequestration Demonstration Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Shallow Carbon SequeStration Shallow Carbon SequeStration DemonStration ProjeCt Background The Shallow Carbon Sequestration Pilot Demonstration Project is a cooperative effort involving City Utilities of Springfield (CU); Missouri Department of Natural Resources (MDNR); Missouri State University (MSU); Missouri University of Science & Technology (MS&T); AmerenUE; Aquila, Inc.; Associated Electric Cooperative, Inc.; Empire District Electric Company; and Kansas City Power & Light. The purpose of this project is to assess the feasibility of carbon sequestration at Missouri power plant sites. The six electric utilities involved in the project account for approximately 90 percent of the electric generating capacity in Missouri. Description The pilot demonstration will evaluate the feasibility of utilizing the Lamotte and

24

Ground Source Heat Pump Demonstration Projects  

Energy.gov (U.S. Department of Energy (DOE))

Below are the project presentations and respective peer review results for Ground Source Heat Pump Demonstration Projects.

25

Clean Coal Diesel Demonstration Project  

SciTech Connect

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

26

Independent Activity Report, West Valley Demonstration Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 2011 Independent Activity Report, West Valley Demonstration Project - November 2011 November 2011 West Valley Demonstration Project Orientation Visit HIAR-WVDP-2011-11-07...

27

Enforcement Documents - West Valley Demonstration Project | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project Enforcement Documents - West Valley Demonstration Project December 7, 1999 Preliminary Notice of Violation, West Valley Nuclear Services -...

28

Thanksgiving Goodwill: West Valley Demonstration Project Food...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive...

29

Independent Activity Report, West Valley Demonstration Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 2012 Independent Activity Report, West Valley Demonstration Project - July 2012 July 2012 Operational Awareness Oversight of the West Valley Demonstration Project HIAR...

30

Independent Oversight Review, West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Review, West Valley Demonstration Project Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 September 2000 Transportation Emergency Management Review of the West Valley Demonstration Project (WVDP) and National Transportation Program (NTP)/Transportation Compliance Evaluation/Assistance Program (TCEAP) The U.S. Department of Energy (DOE) Office of Emergency Management Oversight, within the Secretary of Energy's Office of Independent Oversight and Performance Assurance, conducted a transportation emergency management review of the West Valley Demonstration Project (WVDP) and National Transportation Program (NTP)/Transportation Compliance Evaluation/Assistance Program (TCEAP) in September 2000.

31

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

SciTech Connect

The objective of the CERTS Microgrid Laboratory Test Bed project was to enhance the ease of integrating small energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of small generating sources. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation; 2) an approach to electrical protection within the microgrid that does not depend on high fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications. The techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers 1547 and power quality requirements. The electrical protections system was able to distinguish between normal and faulted operation. The controls were found to be robust and under all conditions, including difficult motor starts. The results from these test are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations involving microgrids that involve one or mroe of the CERTS Microgrid concepts.

Eto, Joseph H.; Eto, Joseph H.; Lasseter, Robert; Schenkman, Ben; Klapp, Dave; Linton, Ed; Hurtado, Hector; Roy, Jean; Lewis, Nancy Jo; Stevens, John; Volkommer, Harry

2008-07-25T23:59:59.000Z

32

Oak Ridge City Center Technology Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge City Center Technology Demonstration Project David Thrash, Principal Investigator Oak Ridge City Center, LLC Track Name May 18, 2010 This presentation does not contain...

33

NASA's Laser Communications Relay Demonstration Project  

Science Journals Connector (OSTI)

This paper provides an overview of NASA's Laser Communications Relay Demonstration Project (LCRD). LCRD will provide two years of continuous high data rate optical communications as a...

Edwards, Bernard L; Fletcher, Andrew

34

Categorical Exclusion Determinations: West Valley Demonstration Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Valley Demonstration Valley Demonstration Project Categorical Exclusion Determinations: West Valley Demonstration Project Categorical Exclusion Determinations issued by West Valley Demonstration Project. DOCUMENTS AVAILABLE FOR DOWNLOAD July 11, 2013 CX-010718: Categorical Exclusion Determination Replacement Ventilation System for the Main Plant Process Building CX(s) Applied: B6.3 Date: 07/11/2013 Location(s): New York Offices(s): West Valley Demonstration Project December 20, 2012 CX-009527: Categorical Exclusion Determination WVDP-2012-02 Routine Maintenance CX(s) Applied: B1.3 Date: 12/20/2012 Location(s): New York Offices(s): West Valley Demonstration Project August 2, 2012 CX-009528: Categorical Exclusion Determination WVDP-2012-01 WVDP Reservoir Interconnecting Canal Maintenance Activities

35

Milestone Project Demonstrates Innovative Mercury Emissions Reduction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Milestone Project Demonstrates Innovative Mercury Emissions Milestone Project Demonstrates Innovative Mercury Emissions Reduction Technology Milestone Project Demonstrates Innovative Mercury Emissions Reduction Technology January 12, 2010 - 12:00pm Addthis Washington, DC - An innovative technology that could potentially help some coal-based power generation facilities comply with anticipated new mercury emissions standards was successfully demonstrated in a recently concluded milestone project at a Michigan power plant. Under a cooperative agreement with the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), WE Energies demonstrated the TOXECON(TM) process in a $52.9million project at the Presque Isle Power Plant in Marquette, Mich. TOXECON is a relatively cost-effective option for achieving significant reductions in mercury emissions and increasing the

36

MODULAR PEBBLE BED REACTOR PROJECT UNIVERSITY RESEARCH CONSORTIUM  

E-Print Network (OSTI)

Annual Report Page ii MODULAR PEBBLE BED REACTOR ABSTRACT This project is developing a fundamental. Publication of an archival journal article covering this work is being prepared. · Detailed gas reactor Abstract

37

LIMB demonstration project extension and Coolside demonstration: A DOE assessment  

SciTech Connect

The goal of the US Department of Energy (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have already reached the proof-of-concept stage. This document serves as a DOE post-project assessment of the CCT Round 1 project ``LIMB Demonstration Project Extension and Coolside Demonstration'', described in a report to Congress (Babcock and Wilcox 1987), a paper by DePero et al. (1992), and in a report by Goots et al. (1992). The original limestone injection multistage burner (LIMB) demonstration work was conducted by Babcock and Wilcox Company (B and W) beginning in 1984, under the sponsorship of the US Environmental Protection Agency (EPA) and the State of Ohio Coal Development Office (OCDO). In 1987, B and W and the Ohio Edison Company agreed to extend the full-scale demonstration of LIMB technology under the sponsorship of DOE through its CCT Program, and with support from OCDO and Consolidation Coal Company, now known as CONSOL. In a separate effort, CONSOL had been developing another flue gas desulfurization (FGD) technology known as the Coolside process. Both LIMB and Coolside use sorbent injection to remove SO{sub 2}. The LIMB process injects the sorbent into the furnace and the Coolside injects the sorbent into the flue gas duct. In addition, LIMB uses low-NO{sub x} burners to reduce NO{sub x} emissions; hence it is categorized as a combination SO{sub 2}/NO{sub x} control technology. To take advantage of synergism between the two processes, the CCT project was structured to incorporate demonstration of both the LIMB and Coolside processes. Coolside testing was accomplished between July 1989 and February 1990, and the LIMB Extension test program was conducted between April 1990 and August 1991. The host site for both tests was the 105 MWe coal-fired Unit 4 at Ohio Edison's Edgewater Station in Lorain, Ohio. The major performance objectives of this project were successfully achieved, with SO{sub 2} emissions reductions of up to 70% demonstrated in both processes.

National Energy Technology Laboratory

2000-04-30T23:59:59.000Z

38

Power Plant Optimization Demonstration Projects Cover Photos:  

NLE Websites -- All DOE Office Websites (Extended Search)

5 SEPTEMBER 2007 5 SEPTEMBER 2007 Power Plant Optimization Demonstration Projects Cover Photos: * Top left: Coal Creek Station * Top right: Big Bend Power Station * Bottom left: Baldwin Energy Complex * Bottom right: Limestone Power Plant A report on four projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Great River Energy * Tampa Electric Company * Pegasus Technologies * NeuCo. , Inc.  Power Plant Optimization Demonstration Projects Executive Summary .......................................................................................4 Background: Power Plant Optimization ......................................................5 Lignite Fuel Enhancement Project ...............................................................8

39

Hampton Roads Demonstration Project | Open Energy Information  

Open Energy Info (EERE)

Roads Demonstration Project Roads Demonstration Project Jump to: navigation, search Name Hampton Roads Demonstration Project Facility Hampton Roads Demonstration Project Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Virginia State Government Location Chesapeake Bay VA Coordinates 36.965°, -76.289° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.965,"lon":-76.289,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

40

Grays Harbor Demonstration Project | Open Energy Information  

Open Energy Info (EERE)

Demonstration Project Demonstration Project Jump to: navigation, search Name Grays Harbor Demonstration Project Facility Grays Harbor Demonstration Project Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Grays Harbor Ocean Energy Company LLC Developer Grays Harbor Ocean Energy Company LLC Location Pacific Ocean Coordinates 46.858°, -124.187° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.858,"lon":-124.187,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "bed demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

West Valley Demonstration Project Low-Level Waste Shipment |...  

Office of Environmental Management (EM)

West Valley Demonstration Project Low-Level Waste Shipment West Valley Demonstration Project Low-Level Waste Shipment West Valley Demonstration Project Low-Level Waste Shipment...

42

LIMB Demonstration Project Extension and Coolside Demonstration. [Final report  

SciTech Connect

This report presents results from the limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. LIMB is a furnace sorbent injection technology designed for the reduction of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions from coal-fired utility boilers. The testing was conducted on the 105 Mwe, coal-fired, Unit 4 boiler at Ohio Edison`s Edgewater Station in Lorain, Ohio. In addition to the LIMB Extension activities, the overall project included demonstration of the Coolside process for S0{sub 2} removal for which a separate report has been issued. The primary purpose of the DOE LIMB Extension testing, was to demonstrate the generic applicability of LIMB technology. The program sought to characterize the S0{sub 2} emissions that result when various calcium-based sorbents are injected into the furnace, while burning coals having sulfur content ranging from 1.6 to 3.8 weight percent. The four sorbents used included calcitic limestone, dolomitic hydrated lime, calcitic hydrated lime, and calcitic hydrated lime with a small amount of added calcium lignosulfonate. The results include those obtained for the various coal/sorbent combinations and the effects of the LIMB process on boiler and plant operations.

Goots, T.R.; DePero, M.J.; Nolan, P.S.

1992-11-10T23:59:59.000Z

43

York County Energy Partners DOE CCI ACFB demonstration project  

SciTech Connect

The York County Energy Partners (YCEP) project, to be located in York County, Pennsylvania, will demonstrate the world`s largest atmospheric circulating fluidized bed boiler under sponsorship of the US Department of Energy`s Clean Coal Technology I Program. The single ACFB boiler, designed by Foster Wheeler Energy Corporation, will produce 227 MWe of net electrical power and export approximately 50,000 lb/hr of steam. This paper explains how the technical challenges to the design of a utility-scale ACFB boiler were met and presents the innovative features of this design.

Wang, S. [Air Products and Chemicals, Inc., Allentown, PA (United States); Cox, J.; Parham, D. [Foster Wheeler Energy Corp., Clinton, NJ (United States)

1992-09-01T23:59:59.000Z

44

York County Energy Partners DOE CCI ACFB demonstration project  

SciTech Connect

The York County Energy Partners (YCEP) project, to be located in York County, Pennsylvania, will demonstrate the world's largest atmospheric circulating fluidized bed boiler under sponsorship of the US Department of Energy's Clean Coal Technology I Program. The single ACFB boiler, designed by Foster Wheeler Energy Corporation, will produce 227 MWe of net electrical power and export approximately 50,000 lb/hr of steam. This paper explains how the technical challenges to the design of a utility-scale ACFB boiler were met and presents the innovative features of this design.

Wang, S. (Air Products and Chemicals, Inc., Allentown, PA (United States)); Cox, J.; Parham, D. (Foster Wheeler Energy Corp., Clinton, NJ (United States))

1992-01-01T23:59:59.000Z

45

What is the Federal Demonstration Project  

SciTech Connect

The Federal Demonstration Project is a cooperative effort between a number of universities, a private research institute, and several federal agencies to increase research productivity by eliminating unnecessary administrative procedures and by streamlining and standardizing needed controls. The Project aims to locate responsibility for decision-making as close as possible to principal investigators while maintaining necessary institutional and agency oversight to ensure accountability. By freeing researchers from some of their paperwork burden, more efficient research administration systems will enable investigators to spend more of their time doing science and engineering. The Federal Demonstration Project is an outgrowth of an earlier activity sponsored by five major federal R D agencies at the Florida State University System and the University of Miami. In Florida, the focus was on standardizing and streamlining procedures for administering research grants after the grants had been awarded to the universities. (See Attachment 1 for descriptions of the demonstrations carried out under the Florida Demonstration Project). In May 1988, the most successful of the demonstrated procedures were approved by the US Office of Management and Budget for use in grants awarded by any federal agency to any research organization. The new procedures give agencies authority to waive requirements that grantees obtain federal approval prior to taking a number of administrative actions with respect to grant management. The FDP institutions together with the participating federal agencies are designing and demonstrating innovative research administration procedures and are assessing the impact of those new procedures.

Not Available

1990-01-01T23:59:59.000Z

46

Western Greenbrier Co-Production Demonstration Project  

NLE Websites -- All DOE Office Websites (Extended Search)

contacts contacts Brad tomer Director Office of Major Demonstrations National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4692 brad.tomer@netl.doe.gov nelson Rekos Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4066 nelson.rekos@netl.doe.gov PaRtIcIPant Western Greenbrier Co-Generation, LLC Lewisburg, WV Western Greenbrier Co-ProduCtion demonstration ProjeCt (disContinued) Project Description The Western Greenbrier Co-Production (WGC) project will generate about 100 megawatts of electricity and commercial quantities of salable ash by-products by burning waste coal presently contained in numerous coal refuse dumps in the vicinity of the plant. These refuse dumps, created by coal cleaning operations over

47

Prototypical Consolidation Demonstration Project: Final report  

SciTech Connect

This is the final report of the Prototypical Consolidation Demonstration Project, which was funded by the US Department of Energy`s Office of Civilian Radioactive Waste Management. The project had two objectives: (a) to develop and demonstrate a prototype of production-scale equipment for the dry, horizontal consolidation and packaging of spent nuclear fuel rods from commercial boiling water reactor and pressurized water reactor fuel assemblies, and (b) to report the development and demonstration results to the US Department of Energy, Idaho Operations Office. This report summarizes the activities and conclusions of the project management contractor, EG&G Idaho, Inc., and the fabrication and testing contractor, NUS Corporation (NUS). The report also presents EG&G Idaho`s assessments of the equipment and procedures developed by NUS.

Gili, J.A.; Poston, V.K.

1993-11-01T23:59:59.000Z

48

LIFAC sorbent injection desulfurization demonstration project  

SciTech Connect

In December 1990, the US Department of Energy selected 13 projects for funding under the Federal Clean Coal Technology Program (Round 3). One of the projects selected was the project sponsored by LIFAC North America, (LIFAC NA), titled LIFAC Sorbent Injection Desulfurization Demonstration Project.'' The host site for this $17 million, three-phase project is Richmond Power and Light's Whitewater Valley Unit No. 2 in Richmond, Indiana. The LIFAC technology uses upper-furnace limestone injection with patented humidification of the flue gas to remove 75--80% of the sulfur dioxide (SO{sub 2}) in the flue gas. In November 1990, after a ten (10) month negotiation period, LIFAC NA and the US DOE entered into a Cooperative Agreement for the design, construction, and demonstration of the LIFAC system. This report is the first Technical Progress Report covering the period from project execution through the end of December 1990. Due to the power plant's planned outage schedule, and the time needed for engineering, design and procurement of critical equipment, DOE and LIFAC NA agreed to execute the Design Phase of the project in August 1990, with DOE funding contingent upon final signing of the Cooperative Agreement.

Not Available

1991-01-01T23:59:59.000Z

49

Pecan Street Project, Inc. Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Project, Inc. Smart Grid Demonstration Project Project, Inc. Smart Grid Demonstration Project Jump to: navigation, search Project Lead Pecan Street Project, Inc. Country United States Headquarters Location Austin, Texas Recovery Act Funding $10,403,570.00 Total Project Value $24,656,485.00 Coordinates 30.267153°, -97.7430608° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

50

2012 Annual Planning Summary for West Valley Demonstration Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project 2012 Annual Planning Summary for West Valley Demonstration Project The ongoing and projected Environmental Assessments and Environmental Impact...

51

Oak Ridge City Center Technology Demonstration Project | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge City Center Technology Demonstration Project Oak Ridge City Center Technology Demonstration Project Project objectives: To broaden market understanding of large-scale...

52

Demand Response Projects: Technical and Market Demonstrations  

E-Print Network (OSTI)

Demand Response Projects: Technical and Market Demonstrations Philip D. Lusk Deputy Director Energy Analyst #12;PLACE CAPTION HERE. #12;#12;#12;#12;City of Port Angeles Demand Response History energy charges · Demand charges during peak period only ­ Reduced demand charges for demand response

53

Category:Smart Grid Projects - Regional Demonstrations | Open Energy  

Open Energy Info (EERE)

Demonstrations Demonstrations Jump to: navigation, search Smart Grid Regional Demonstrations Projects category. Pages in category "Smart Grid Projects - Regional Demonstrations" The following 16 pages are in this category, out of 16 total. B Battelle Memorial Institute, Pacific Northwest Division Smart Grid Demonstration Project C Center for the Commercialization of Electric Technologies Smart Grid Demonstration Project Columbus Southern Power Company (doing business as AEP Ohio) Smart Grid Demonstration Project Consolidated Edison Company of New York, Inc. Smart Grid Demonstration Project K Kansas City Power & Light Company Smart Grid Demonstration Project L Long Island Power Authority Smart Grid Demonstration Project L cont. Los Angeles Department of Water and Power Smart Grid Demonstration Project

54

CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT  

SciTech Connect

This project deals with the demonstration of a coking process using proprietary technology of Calderon, with the following objectives geared to facilitate commercialization: (1) making coke of such quality as to be suitable for use in hard-driving, large blast furnaces; (2) providing proof that such process is continuous and environmentally closed to prevent emissions; (3) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process; (4) conducting a blast furnace test to demonstrate the compatibility of the coke produced; and (5) demonstrating that coke can be produced economically, at a level competitive with coke imports. The activities of the past quarter were focused on the following: Detailed studies of LTV's site for the installation of the commercial Demonstration Unit with site specific layouts; Environmental Work; Firm commitments for funding from the private sector; and Federal funding to complement the private contribution.

Albert Calderon

1999-06-23T23:59:59.000Z

55

U.S. Offshore Wind Advanced Technology Demonstration Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration Projects...

56

Calderon Cokemaking Process/Demonstration Project  

SciTech Connect

This project deals with the demonstration of a coking process using proprietary technology of Calderon with the following objectives in order to enable its commercialization: (i) making coke of such quality as to be suitable for use in high driving (highly productive) blast furnaces; (ii) providing proof that such process is continuous and environmentally closed to prevent emissions; and (iii) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process. The activities of the past quarter were entirely focused on operating the Calderon Process Development Unit (PDU-I) in Alliance, Ohio conducting a series of tests under steady state using coal from Bethlehem Steel and U.S. Steel in order to demonstrate the above. The objectives mentioned above were successfully demonstrated.

None

1998-04-08T23:59:59.000Z

57

Demonstration project Smart Charging (Smart Grid Project) | Open Energy  

Open Energy Info (EERE)

project Smart Charging (Smart Grid Project) project Smart Charging (Smart Grid Project) Jump to: navigation, search Project Name Demonstration project Smart Charging Country Netherlands Headquarters Location Noord-Brabant, Netherlands Coordinates 51.482655°, 5.232169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.482655,"lon":5.232169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

58

Heat Pump Water Heaters Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump Water Heaters Heat Pump Water Heaters Demonstration Project Building America Stakeholder Meeting Ron Domitrovic Ammi Amarnath 3/1/2012 Austin, TX 2 © 2011 Electric Power Research Institute, Inc. All rights reserved. HPWH Field Demonstration: Research Objectives * Assess heat pump water heater technology by measuring efficiency. * Provide credible data on the performance and reliability of heat pump water heaters. * Assess user satisfaction in a residential setting. 3 © 2011 Electric Power Research Institute, Inc. All rights reserved. Demonstration Host Utilities Target: 40 Units per Utility Installed and Potential Sites by Climate Zone Source: Department of Energy (DOE), Building America climate regions 4 © 2011 Electric Power Research Institute, Inc. All rights reserved. Installation Locations-Southern Company Region

59

CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT  

SciTech Connect

This project deals with the demonstration of a coking process using proprietary technology of Calderon, with the following objectives geared to facilitate commercialization: (i) making coke of such quality as to be suitable for use in hard-driving, large blast furnaces; (ii) providing proof that such process is continuous and environmentally closed to prevent emissions; (iii) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process; and (iv) demonstrating that coke can be produced economically, at a level competitive with coke imports. The activities of the past quarter were focused on the following: ? Consolidation of the project team-players; ? Recruiting Koppers Industries as an additional stakeholder; ? Developing a closed system for the production of binder pitch from tar in the Calderon coking process as the incentive for Koppers to join the team; ? Gathering appropriate equipment for conducting a set of experiments at bench scale to simulate tar quality produced from the Calderon coking process for the production of binder pitch; and ? Further progress made in the design of the commercial coking reactor.

ALBERT CALDERON

1998-09-22T23:59:59.000Z

60

Category:Smart Grid Projects - Energy Storage Demonstrations | Open Energy  

Open Energy Info (EERE)

Energy Storage Demonstrations Energy Storage Demonstrations Jump to: navigation, search Smart Grid Energy Storage Demonstration Projects category. Pages in category "Smart Grid Projects - Energy Storage Demonstrations" The following 16 pages are in this category, out of 16 total. 4 44 Tech Inc. Smart Grid Demonstration Project A Amber Kinetics, Inc. Smart Grid Demonstration Project B Beacon Power Corporation Smart Grid Demonstration Project C City of Painesville Smart Grid Demonstration Project D Duke Energy Business Services, LLC Smart Grid Demonstration Project E East Penn Manufacturing Co. Smart Grid Demonstration Project K Ktech Corporation Smart Grid Demonstration Project N New York State Electric & Gas Corporation Smart Grid Demonstration Project P Pacific Gas & Electric Company Smart Grid Demonstration Project

Note: This page contains sample records for the topic "bed demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

2014 Annual Planning Summary for the West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the West Valley Demonstration Project.

62

Newberry EGS Demonstration Project Environmental Analysis (EA)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Newberry Volcano Enhanced Geothermal System (EGS) Demonstration Project UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT (BLM) DOI-BLM-OR-P000-2011-0003-EA DOE/EA-1897 ENVIRONMENTAL ASSESSMENT DECEMBER 2011 Location: Federal Geothermal Leases on the West Flank of Newberry Volcano, Deschutes County, 22 miles south of Bend, Oregon Applicant: Davenport Newberry Holdings LLC and AltaRock Energy, Inc. 225 NW Franklin Avenue, Suite 1 Bend, OR 97701 Tel: 541-323-1190 Lead Agency: U.S. Department of the Interior,

63

CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT  

SciTech Connect

This project deals with the demonstration of a coking reactor (Process Development Unit-- PDU-11) using Calderon's proprietary technology for making commercially acceptable coke. The activities of the past quarter were focused on the following: 1. Testing and Designing of the Submerged Quenching Closed System for the Process; 2. Usage of the Cracked Desulfurized Gas as a Reducing Gas to Make Directly Reduced Iron (DRI) in Order to Make the Process Economics Viable; 3. Changes in the Ceramic Liners for Supporting Them in the Coking Reactor; 4. Work Towards Testing of U.S. Steel's Coal in the Existing Process Development Unit in Alliance (PDU-1); 5. Permitting.

Albert Calderon

1998-04-08T23:59:59.000Z

64

The Southern California Conversion Technology Demonstration Project | Open  

Open Energy Info (EERE)

The Southern California Conversion Technology Demonstration Project The Southern California Conversion Technology Demonstration Project Jump to: navigation, search Tool Summary Name: The Southern California Conversion Technology Demonstration Project Agency/Company /Organization: The Southern California Conversion Technology Demonstration Project Sector: Energy, Land Focus Area: - Waste to Energy Phase: Create a Vision Resource Type: Publications User Interface: Website Website: www.socalconversion.org/resources.html Cost: Free The Southern California Conversion Technology Demonstration Project website is focused on a specific conversion technology demonstration project in L. A. County. Overview The Southern California Conversion Technology Demonstration Project website is focused on a specific conversion technology demonstration project in L.

65

FTCP Site Specific Information - West Valley Demonstration Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project FTCP Site Specific Information - West Valley Demonstration Project Annual Workforce Analysis and Staffing Plan Report Calendar Year 2012...

66

West Valley Demonstration Project - North Plateau Strontium-90...  

Office of Environmental Management (EM)

Demonstration Project - North Plateau Strontium-90 West Valley Demonstration Project - North Plateau Strontium-90 January 1, 2014 - 12:00pm Addthis US Department of Energy...

67

EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

70: Fishermen's Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project, offshore...

68

Property:Did The Test Results Demonstrate Projected Performance...  

Open Energy Info (EERE)

Did The Test Results Demonstrate Projected Performance? Jump to: navigation, search Property Name Did The Test Results Demonstrate Projected Performance? Property Type Text...

69

MHK Projects/Pulse Stream 100 Demonstration Project | Open Energy  

Open Energy Info (EERE)

Pulse Stream 100 Demonstration Project Pulse Stream 100 Demonstration Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.6405,"lon":-0.16257,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

70

Four Rivers second generation Pressurized Circulating Fluidized Bed Combustion Project  

SciTech Connect

Air Products has been selected in the DOE Clean Coal Technology Round V program to build, own, and operate the first commercial power plant using second generation Pressurized Circulating Fluidized Bed (PCFB) combustion technology. The four Rivers Energy Project (Four Rivers) will produce up to 400,000 lb/hr steam, or an equivalent gross capacity of 95 MWe. The unit will be used to repower an Air Products chemicals manufacturing facility in Calvert City, Kentucky.

Holley, E.P.; Lewnard, J.J. [Air Products and Chemicals, Inc. (United States); von Wedel, G. [LLB Lurgi Lentjes Babcock Energietechnik (GmbH); Richardson, K.W. [Foster Wheeler Energy Corp. (United States); Morehead, H.T. [Westinghouse Electric Corp. (United States)

1995-04-01T23:59:59.000Z

71

Pacific Northwest Smart Grid Demonstration Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Western Interconnection Synchrophasor Project Resources & Links Demand Response Energy Efficiency Emerging Technologies BPA has joined 11 utilities, a major...

72

CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT  

SciTech Connect

This project deals with the demonstration of a coking process using proprietary technology of Calderon, with the following objectives geared to facilitating commercialization: (1) making coke of such quality as to be suitable for use in hard-driving, large blast furnaces; (2) providing proof that such process is continuous and environmentally closed to prevent emissions; (3) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process; and (4) demonstrating that coke can be produced economically, at a level competitive with coke imports. The activities of the past quarter were focused on three main activities: Continuation of design of the coking reactor; Raising funds from the private sector; and Detailed analysis of the tests conducted in Alliance, Ohio. The design of the reactor work centered on the provision for the capability to inspect and maintain the internals of the reactor. The activities relating to raising funds from the steel industry have been fruitful. Bethlehem Steel has agreed to contribute funds. The collected data from the tests at Alliance were analyzed and a detailed report was completed and presented to the International Iron & Steel Institute by invitation.

ALBERT CALDERON

1998-06-22T23:59:59.000Z

73

High-Temperature Superconductivity Cable Demonstration Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Temperature Temperature Superconductivity Cable Demonstration Projects Superconductivity Power Equipment www.oe.energy.gov Phone: 202-586-1411 Office of Electricity Delivery and Energy Reliability, OE-1 U.S. Department of Energy - 1000 Independence Avenue, SW - Washington, DC 20585. Plugging America Into the Future of Power "A National Effort to Introduce New Technology into the Power Delivery Infrastructure" "In order to meet President Obama's ambitious energy goals, we must modernize the nation's electrical grid to improve the transmission, storage and reliability of clean energy across the country and help to move renewable energy from the places it can be produced to the places it can be used. The Department of Energy is working with industry partners to develop the

74

West Valley Demonstration Project Site Environmental Report Calendar Year 2000  

SciTech Connect

The annual site environmental monitoring report for the West Valley Demonstration Project nuclear waste management facility.

NONE

2001-08-31T23:59:59.000Z

75

Enterprise Assessments Review, West Valley Demonstration Project December 2014  

Energy.gov (U.S. Department of Energy (DOE))

Review of the West Valley Demonstration Project Emergency Management Program Technical Basis and Emergency Preparedness

76

Wave Power Demonstration Project at Reedsport, Oregon  

SciTech Connect

Ocean wave power can be a significant source of large?scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy? to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high?voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon?based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take?off subsystem are complete; additionally the power take?off subsystem has been successfully integrated into the spar.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Downie, Bruce [Project Manager] [Project Manager

2013-10-21T23:59:59.000Z

77

The Way Ahead - West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Update Update Project Update The Way Ahead The Way Ahead West Valley Demonstration Project Not to be Considered as a Regulatory Submittal Pre-decisional Draft 19817_1 The Way Ahead The Way Ahead Bryan Bower, DOE Director HLW Corporate Board October 6, 2008 FY 2008 Accomplishments Safety Performance Planned vs Actual 2.1 2.3 2 2 2.3 1.9 1.9 1.5 2 2.5 Actual Performance 1 Million Hours (9/3/08) 2007 DOE complex avg. TRC Safety Performance Planned vs Actual 2.1 2.3 2 2 2.3 1.9 1.9 1.5 2 2.5 Actual Performance 1 Million Hours (9/3/08) 2007 DOE complex avg. TRC One Million One Million Safe Work Hours! Safe Work Hours! TRC 0.5 DART 0.0 No lost-time injuries in FY 2008 Not to be Considered as a Regulatory Submittal Pre-decisional Draft 19817_2 0 0.0 0.0 0.0 0.0 0.0 1.4 1.4 1.4 1.4 0.8 0.3 0.3 0.3 1.2 1.2 1.3 1.3 1.0 0.8 0.8 0.3 0.3 0.3 0.3 0 0.5 1 Sep -07 O ct-07 Nov-07 Dec-07 Jan-08 Feb-08 Mar-08 Apr-08 May-08 Ju n-08

78

Demonstration of uniform retorting of oil shale beds with void contrasts  

SciTech Connect

Work during the past year addressed uniform retorting in a rubble bed with void contrasts. Specific objective were to:understand the effects of particle size distribution, particle shape and void on gas flow through oil shale rubble; overcome the non-uniform distribution of void on the laboratory scale by appropriately varying the particle size in order to maintain a uniform retorting front; and, develop a small-scale explosive blasting technique to provide low-void oil shale rubble (<25 volume percent) for future laboratory void contrast experiments. The experimental objective of demonstrating that a uniform retorting front could be achieved in an anisotropic rubble bed has been accomplished. The local yield of retort L-46 was comparable to the yield obtained if the rubble bed was one-dimensional. 9 refs., 9 figs., 1 tab.

Bickel, T.C.

1986-01-01T23:59:59.000Z

79

Big Island Demonstration Project Black Liquor  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheet summarizes a U.S. Department of Energy Biomass Program research and development project.

80

HTI retrieval demonstration project execution plan  

SciTech Connect

This plan describes the process for demonstrating the retrieval of difficult Hanford tank waste forms utilizing commercial technologies and the private sector to conduct the operations. The demonstration is to be conducted in Tank 241-C-106.

Ellingson, D.R.

1997-09-04T23:59:59.000Z

Note: This page contains sample records for the topic "bed demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Sapphire Energy, Inc. Demonstration-Scale Project  

Energy.gov (U.S. Department of Energy (DOE))

Sapphire Energy, Inc. is scaling up an operational facility to demonstrate conversion of algal carbon dioxide to green crude oil.

82

Full Reviews: Low-temperature and Exploration Demonstration Projects  

Energy.gov (U.S. Department of Energy (DOE))

Below are the project presentations and respective peer review results for Low-temperature and Exploration Demonstration Projects. The peer review results for each project will be available soon.

83

Pacific Northwest Smart Grid Demonstration Project  

NLE Websites -- All DOE Office Websites (Extended Search)

5 megawatt lithium-ion battery * Intelligent distribution management * Commercial demand response * Demonstrates renewable integration For More inForMation: Kevin Whitener...

84

West Valley Demonstration Project Phase I Decommissioning - Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Phase I Decommissioning - Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement The Department of Energy, West Valley Demonstration Project (DOE-WVDP) and CH2M Hill B&W West Valley (CHBWV) are committed to continuous improvement and will utilize principles of the DOE Environmental Management (DOE-EM) Partnering Policy to create and foster a team environment to successfully complete the West Valley Demonstration Project (WVDP) Phase I Decommissioning - Faciltiy Disposition. West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement More Documents & Publications CX-009527: Categorical Exclusion Determination

85

East Penn Manufacturing Co. Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Manufacturing Co. Smart Grid Demonstration Project Manufacturing Co. Smart Grid Demonstration Project Jump to: navigation, search Project Lead East Penn Manufacturing Co. Country United States Headquarters Location Lyon Station, Pennsylvania Recovery Act Funding $2,245,523.00 Total Project Value $4,491,046.00 References ARRA Smart Grid Demonstration Projects[1] This article is a stub. You can help OpenEI by expanding it. The East Penn Manufacturing Co. Smart Grid Demonstration Project is a U.S. Department of Energy Smart Grid Demonstration Project which is based in Lyon Station, Pennsylvania. Overview Demonstrate the economic and technical viability of a 3MW grid-scale, advanced energy storage system using the lead-carbon UltraBattery technology to regulate frequency and manage energy demand. This project

86

Newberry Volcano EGS Demonstration Geothermal Project | Open Energy  

Open Energy Info (EERE)

Volcano EGS Demonstration Geothermal Project Volcano EGS Demonstration Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Newberry Volcano EGS Demonstration Project Type / Topic 1 Recovery Act: Enhanced Geothermal System Demonstrations Project Type / Topic 2 EGS Demonstration Project Description The project will demonstrate EGS power generation from the Newberry Known Geothermal Resource Area ("Newberry"). Four deep, high temperature, very low permeability, production-size wells have been completed at Newberry, including two currently owned by Davenport. The Newberry project site exemplifies unparalleled EGS potential in the United States, with a large, high-temperature, conductive thermal anomaly yielding wells with permeability orders of magnitude less than conventional hydrothermal wells.

87

EIS-0282: McIntosh Unit 4 TCFB Demonstration Project, Clean Coal Technology Program, Lakeland, Florida (also see EIS-0304)  

Energy.gov (U.S. Department of Energy (DOE))

The proposed project, selected under DOEs Clean Coal Technology Program, would demonstrate both Pressurized Circulating Fluidized Bed (PCFB) and Topped PCFB technologies. The proposed project would involve the construction and operation of a nominal 238 MWe (megawatts of electric power) combined-cycle power plant designed to burn a range of low- to high-sulfur coals.

88

Utility Scale Wind turbine Demonstration Project  

SciTech Connect

The purpose of the Three Affiliated Tribes proposing to Department of Energy was nothing new to Denmark. National Meteorological Studies have proved that North Dakota has some of the most consistence wind resources in the world. The Three Affiliated Tribes wanted to assess their potential and become knowledgeable to developing this new and upcoming resource now valuable. By the Tribe implementing the Utility-scale Wind Turbine Project on Fort Berthold, the tribe has proven the ability to complete a project, and has already proceeded in a feasibility studies to developing a large-scale wind farm on the reservation due to tribal knowledge learned, public awareness, and growing support of a Nation wanting clean renewable energy. The tribe is working through the various measures and regulations with the want to be self-sufficient, independent, and marketable with 17,000 times the wind energy needed to service Fort Berthold alone.

Terry Fredericks

2006-03-31T23:59:59.000Z

89

3M's Motor Challenge Showcase Demonstration Project  

E-Print Network (OSTI)

. Cost control procedures are put into place and the team begins creating the specifications and drawings needed to physically complete the projects. Procurement of equipment, selection of craft labor, downtime coordination and field follow-up is all... to Management for Funding Approval Follow-up Obtain Authority For Expenditure vn Implementation Cost Control Procedures Engineer Specifications, Design Schedule Downtime Procure Equipment Select Contractor Field Follow-up vm Follow-up Measure...

Schultz, S. C.

90

Site Programs & Cooperative Agreements: West Valley Demonstration Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration West Valley Demonstration Project Site Programs & Cooperative Agreements: West Valley Demonstration Project West Valley Demonstration Project The Seneca Nation of Indians has interests and concerns regarding the West Valley Demonstration Project Site. Like at Hanford, DOE environmental cleanup activities have the potential to impact natural and cultural resources and to interfere with American Indian religious practices. Through a cooperative agreement, tribal staff is engaged on a frequent basis with DOE and its contractors. The principle activities engaged by tribes include reviewing and commenting on plans and documents, participating in meetings at the request of DOE, monitoring cultural resource sites, participating in site surveys, and identifying issues that

91

NETL: Clean Coal Demonstrations - Post-Project (DOE) Assessments  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Assessments DOE Assessments Clean Coal Demonstrations DOE Post-Project Assessments DOE Assessment of the Clean Coal Diesel Demonstration Project [PDF-590KB] DOE Assessment of the JEA Large-Scale CFB Combustion Demonstration Project [PDF-177KB] DOE Assessment of the Advanced Coal Conversion Process Demonstration [PDF-649KB] DOE Assessment of the Tampa Electric Integrated Gasification Combined-Cycle Demonstration Project [PDF-550KB] 500-MW Demonstration of Advanced Wall-Fired Combustion Techniques for the Reduction of Nitrogen Oxide (NOx) Emissions from Coal- Fired Boilers: A DOE Assessment [PDF-921KB] Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH™) Process [PDF-382KB] Healy Clean Coal Project: A DOE Assessment [PDF-713KB] Pulse Combustor Design: A DOE Assessment [PDF-569KB]

92

Independent Oversight Review, West Valley Demonstration Project Transportation- September 2000  

Energy.gov (U.S. Department of Energy (DOE))

Transportation Emergency Management Review of the West Valley Demonstration Project (WVDP) and National Transportation Program (NTP)/Transportation Compliance Evaluation/Assistance Program (TCEAP)

93

Demonstration Project for Fuel Cell Bus Commercialisation in...  

Open Energy Info (EERE)

Commercialisation in China Jump to: navigation, search Name: Demonstration Project for Fuel Cell Bus Commercialisation in China Place: Beijing and Shanghai, China Sector:...

94

Status report on the fluidized application of atmospheric fluidized-bed combustion demonstration program  

SciTech Connect

In 1975, the Government initiated a cost sharing program to expedite the development and demonstration of AFBC technology in the more obvious industrial applications areas. The purpose of the program was to speed up the technology development pace and to place demonstration units in the field to help overcome industry's reluctance toward accepting new and relatively unproven FBC boiler and heater systems. This report reviews the program objectives, summarizes the technology advances since the demonstrations began and makes recommendations for potential follow-on projects directed at the goal of establishing AFBC technology in the commercial sector. The industrial applications areas chosen included steam generation for process and space heating plus cogeneration, air heating, and process - heating of refinery feedstocks. Eight proposals were selected for funding and five projects were successfully negotiated into contracts effective on July 1, 1976. The first three: Georgetown University, Combustion Engineering/US Naval Great Lakes Training Center, and the Battelle project were aimed at steam production. The Exxon project investigated the potential of and problems associated with utilizing coal in FBC process heaters and the FluiDyne project was concerned with the development and demonstration of an FBC air heater for process and space heating a large hand tool factory. Each of these demonstration programs is described, its status and accomplishments are discussed, and recommendations are made for potential follow-up projects.

Not Available

1980-01-01T23:59:59.000Z

95

Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes  

SciTech Connect

Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.

Jantzen, C. M.; Crawford, C. L.; Burket, P. R.; Bannochie, C. J.; Daniel, W. G.; Nash, C. A.; Cozzi, A. D.; Herman, C. C.

2012-10-22T23:59:59.000Z

96

Thanksgiving Goodwill: West Valley Demonstration Project Food Drive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need November 26, 2013 - 12:00pm Addthis Volunteers from West Valley Demonstration Project gather before distributing items collected in an annual food drive. Volunteers from West Valley Demonstration Project gather before distributing items collected in an annual food drive. Volunteer John Schelble helps unload a delivery truck at a food pantry. Volunteer John Schelble helps unload a delivery truck at a food pantry. John Rizzo passes canned food to John Rendall to deliver to a food pantry. John Rizzo passes canned food to John Rendall to deliver to a food pantry.

97

Independent Activity Report, West Valley Demonstration Project - July 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project - West Valley Demonstration Project - July 2012 Independent Activity Report, West Valley Demonstration Project - July 2012 July 2012 Operational Awareness Oversight of the West Valley Demonstration Project [HIAR WVDP-2012-07-30] The purpose of this Office of Health, Safety and Security (HSS) activity was for the HS-45 Site Lead to meet with Department of Energy (DOE) site personnel, tour the facilities, and obtain a status report on the upcoming activities at the West Valley Demonstration Project (WVDP). In the fall of 2011, a new contractor, CH2M Hill-B&W West Valley (CHBWV), was selected to perform site operations for Phase 1 decommissioning and facility disposition, including the Main Plant Process Building, the Low-Level Waste Treatment Facility, and other facilities.

98

Independent Activity Report, West Valley Demonstration Project - November  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activity Report, West Valley Demonstration Project - Activity Report, West Valley Demonstration Project - November 2011 Independent Activity Report, West Valley Demonstration Project - November 2011 November 2011 West Valley Demonstration Project Orientation Visit [HIAR-WVDP-2011-11-07] The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit to the DOE West Valley Demonstration Project (WVDP) Office and the nuclear facility at West Valley, NY, on November 7, 2011. The purpose of the visit was to discuss the nuclear safety oversight strategy, describe the site lead program, increase HSS personnel's operational awareness of the site's activities, and identify specific activities that HSS can perform to carry out its independent oversight

99

Recycling and composting demonstration projects for the Memphis region  

SciTech Connect

This report documents the development and implementation of the project entitled Recycling and Composting Demonstration Projects for the Memphis Region.'' The project was funded by the Energy Task Force of the Urban Consortium for Technology Initiatives. This Project was implemented by the staff of the Special Programs Section of the Memphis and Shelby County Division of Planning and Development. The project began November 1, 1990, and was completed December 31, 1991. The purpose of the project was to evaluate the feasibility of a variety of solid waste disposal alternatives.

Muller, D. (Memphis and Shelby County Div. of Planning and Development, TN (United States))

1992-05-01T23:59:59.000Z

100

Recycling and composting demonstration projects for the Memphis region  

SciTech Connect

This report documents the development and implementation of the project entitled ``Recycling and Composting Demonstration Projects for the Memphis Region.`` The project was funded by the Energy Task Force of the Urban Consortium for Technology Initiatives. This Project was implemented by the staff of the Special Programs Section of the Memphis and Shelby County Division of Planning and Development. The project began November 1, 1990, and was completed December 31, 1991. The purpose of the project was to evaluate the feasibility of a variety of solid waste disposal alternatives.

Muller, D. [Memphis and Shelby County Div. of Planning and Development, TN (United States)

1992-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Evaluation and demonstration of the chemically active fluid bed. Final report May 75-Jul 81  

SciTech Connect

The report gives results of the operation of a 17-MW Chemically Active Fluid Bed (CAFB) demonstration unit, retrofitted to a natural gas boiler. The CAFB process gasifies high-sulfur, high-metals-content liquid and solid fuels. Residual oil, lignite, and bituminous coal were gasified separately or together between November 1979 and June 1981. Design and operational areas where upgrading would be beneficial were identified. Continuous monitors were used to measure boiler flue gas emissions of SO2, NOx, CO, oxygen, CO2, and opacity. Periodic manual emission tests were conducted for particulate, SO2, and NOx, using EPA reference methods. Emissions of these three criteria pollutants were generally lower than New Source Performance Standards for utility boilers, although occasionally excessive particulate and SO2 emissions were observed. NOx emissions were consistently lower than those from natural gas combustion. Results of detailed chemical analyses and biological assays are reported.

Sommer, R.E.; Werner, A.S.; Kowszun, Z.

1984-02-01T23:59:59.000Z

102

Mercury Control Demonstration Projects Cover Photos: * Top: Limestone Power Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

6 FEBRUARY 2008 6 FEBRUARY 2008 Mercury Control Demonstration Projects Cover Photos: * Top: Limestone Power Plant * Bottom left: AES Greenidge Power Plant * Bottom right: Presque Isle Power Plant A report on three projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Consol Energy * Pegasus Technologies * We Energies  Mercury Control Demonstration Projects Executive Summary ............................................................................ 4 Background ......................................................................................... 5 Mercury Removal Projects ................................................................ 7 TOXECON(tm) Retrofit For Mercury and Multi-Pollutant Control on Three 90-MW Coal-Fired Boilers ........................................7

103

EA-1116: Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16: Kalina Geothermal Demonstration Project, Steamboat 16: Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada EA-1116: Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada SUMMARY This EA evaluates the environmental impacts of the proposal for the U.S. Department of Energy Golden Field Office to partially fund assistance for the construction and operation of a privately owned 6-megawatt geothermal power plant which includes one geothermal production well, one injection well, and ancillary facilities such as on-site access road(s) and interconnected to electric transmission lines to existing geothermal power plants. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD February 22, 1999 EA-1116: Finding of No Significant Impact Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada

104

West Valley Demonstration Project Waste Incidental to Reprocessing Evaluation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project West Valley Demonstration Project Waste Incidental to Reprocessing Evaluation for the Concentrator Feed Makeup Tank and the Melter Feed Hold Tank February 2013 Prepared by the U.S. Department of Energy West Valley, New York This page is intentionally blank. WASTE-INCIDENTAL-TO-REPROCESSING EVALUATION FOR THE WVDP CFMT AND MFHT CONTENTS Revision 0 i NOTATION (Acronyms, Abbreviations, and Units).................................................. v 1.0 INTRODUCTION ...................................................................................................... 1 1.1 Purpose. ................................................................................................................. 2

105

The ethanol heavy-duty truck fleet demonstration project  

SciTech Connect

This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.

NONE

1997-06-01T23:59:59.000Z

106

Milliken Clean Coal Demonstration Project: A DOE Assessment  

SciTech Connect

The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal-utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage.

National Energy Technology Laboratory

2001-08-15T23:59:59.000Z

107

Pacific Northwest Smart GridPacific Northwest Smart Grid Demonstration ProjectDemonstration Project  

E-Print Network (OSTI)

Northwest Power and Conservation Council Lee Hall, BPA Smart Grid Program Manager Tracy Yount, Battelle ­ 16% less than the normal peak demand ­ Real capital cost savings when a $10M substation can transmission ­ BPA, PacifiCorp, Idaho Power represent region 9 This project is a cornerstone of the Pacific

108

Topic Area 1: Technology Demonstration Projects | Open Energy Information  

Open Energy Info (EERE)

1: Technology Demonstration Projects 1: Technology Demonstration Projects Jump to: navigation, search Geothermal ARRA Funded Projects for Topic Area 1: Technology Demonstration Projects Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

109

DOE-Sponsored Project Begins Demonstrating CCUS Technology in Alabama |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Begins Demonstrating CCUS Technology in Project Begins Demonstrating CCUS Technology in Alabama DOE-Sponsored Project Begins Demonstrating CCUS Technology in Alabama August 22, 2012 - 1:00pm Addthis Washington, DC - Carbon dioxide (CO2) injection has begun at the world's first fully integrated coal power and geologic storage project in southwest Alabama, with the goals of assessing integration of the technologies involved and laying the foundation for future use of CO2 for enhanced oil recovery (EOR). The "Anthropogenic Test"--conducted by the Southeast Regional Carbon Sequestration Partnership (SECARB), one of seven partnerships in DOE's Regional Carbon Sequestration Partnerships program--uses CO2 from a newly constructed post-combustion CO2-capture facility at Alabama Power's 2,657-megawatt Barry Electric Generating Plant (Plant Barry). It will help

110

Technical Services Contract Awarded for West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Services Contract Awarded for West Valley Demonstration Technical Services Contract Awarded for West Valley Demonstration Project Support Services Technical Services Contract Awarded for West Valley Demonstration Project Support Services February 21, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a task order to Safety and Ecology Corporation of Knoxville, Tennessee, for technical services at the West Valley Demonstration Project, West Valley, New York. The task order has a three-year performance period with a $1.3 million value. The task order will be issued from the Indefinite Delivery/Indefinite Quantity (ID/IQ) master contract, firm-fixed-price and time and materials. Under the task order, Safety and Ecology Corporation will perform technical

111

Santa Clara County Planar Solid Oxide Fuel Cell Demonstration Project  

SciTech Connect

The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project demonstrated the technical viability of pre-commercial PSOFC technology at the County 911 Communications headquarters, as well as the input fuel flexibility of the PSOFC. PSOFC operation was demonstrated on natural gas and denatured ethanol. The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project goals were to acquire, site, and demonstrate the technical viability of a pre-commercial PSOFC technology at the County 911 Communications headquarters. Additional goals included educating local permit approval authorities, and other governmental entities about PSOFC technology, existing fuel cell standards and specific code requirements. The project demonstrated the Bloom Energy (BE) PSOFC technology in grid parallel mode, delivering a minimum 15 kW over 8760 operational hours. The PSOFC system demonstrated greater than 81% electricity availability and 41% electrical efficiency (LHV net AC), providing reliable, stable power to a critical, sensitive 911 communications system that serves geographical boundaries of the entire Santa Clara County. The project also demonstrated input fuel flexibility. BE developed and demonstrated the capability to run its prototype PSOFC system on ethanol. BE designed the hardware necessary to deliver ethanol into its existing PSOFC system. Operational parameters were determined for running the system on ethanol, natural gas (NG), and a combination of both. Required modeling was performed to determine viable operational regimes and regimes where coking could occur.

Fred Mitlitsky; Sara Mulhauser; David Chien; Deepak Shukla; David Weingaertner

2009-11-14T23:59:59.000Z

112

Waukesha Electric Systems Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Electric Systems Smart Grid Demonstration Project Electric Systems Smart Grid Demonstration Project Jump to: navigation, search Project Lead Waukesha Electric Systems Country United States Headquarters Location Waukesha, Wisconsin Recovery Act Funding $10,744,409.00 Total Project Value $21,548,821.00 Coordinates 43.0116784°, -88.2314813° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

113

Long Island Power Authority Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Demonstration Project Demonstration Project Jump to: navigation, search Project Lead Long Island Power Authority Country United States Headquarters Location Uniondale, New York Recovery Act Funding $12,496,047.00 Total Project Value $25,293,735.00 Coordinates 40.7003793°, -73.5929056° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

114

City of Painesville Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Painesville Smart Grid Demonstration Project Painesville Smart Grid Demonstration Project Jump to: navigation, search Project Lead City of Painesville Country United States Headquarters Location Painesville, Ohio Recovery Act Funding $3,743,570.00 Total Project Value $7,487,153.00 Coordinates 41.7244885°, -81.245657° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

115

Primus Power Corporation Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Smart Grid Demonstration Project Smart Grid Demonstration Project Jump to: navigation, search Project Lead Primus Power Corporation Country United States Headquarters Location Alameda, California Recovery Act Funding $14,000,000.00 Total Project Value $46,700,000.00 Coordinates 37.7652065°, -122.2416355° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

116

Duke Energy Business Services, LLC Smart Grid Demonstration Project | Open  

Open Energy Info (EERE)

Demonstration Project Demonstration Project Jump to: navigation, search Project Lead Duke Energy Business Services, LLC Country United States Headquarters Location Charlotte, North Carolina Recovery Act Funding $21,806,232.00 Total Project Value $43,612,464.00 Coordinates 35.2270869°, -80.8431267° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

117

Seeo, Inc Smart Grid Demonstration Project | Open Energy Information  

Open Energy Info (EERE)

Seeo, Inc Smart Grid Demonstration Project Seeo, Inc Smart Grid Demonstration Project Jump to: navigation, search Project Lead Seeo, Inc Country United States Headquarters Location Berkeley, California Recovery Act Funding $6,196,060.00 Total Project Value $12,392,120.00 Coordinates 37.8715926°, -122.272747° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

118

Ktech Corporation Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Ktech Corporation Smart Grid Demonstration Project Ktech Corporation Smart Grid Demonstration Project Jump to: navigation, search Project Lead Ktech Corporation Country United States Headquarters Location Albuquerque, New Mexico Recovery Act Funding $4,764,284.00 Total Project Value $9,528,567.00 Coordinates 35.0844909°, -106.6511367° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

119

Premium Power Corporation Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Corporation Smart Grid Demonstration Project Corporation Smart Grid Demonstration Project Jump to: navigation, search Project Lead Premium Power Corporation Country United States Headquarters Location North Reading, Massachusetts Recovery Act Funding $7,320,000.00 Total Project Value $16,080,554.00 Coordinates 42.5750939°, -71.0786653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

120

Amber Kinetics, Inc. Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Kinetics, Inc. Smart Grid Demonstration Project Kinetics, Inc. Smart Grid Demonstration Project Jump to: navigation, search Project Lead Amber Kinetics, Inc. Country United States Headquarters Location Fremont, California Recovery Act Funding $4,000,000.00 Total Project Value $10,000,000.00 Coordinates 37.5482697°, -121.9885719° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "bed demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Southern California Edison Company Smart Grid Demonstration Project (2) |  

Open Energy Info (EERE)

Company Smart Grid Demonstration Project (2) Company Smart Grid Demonstration Project (2) Jump to: navigation, search Project Lead Southern California Edison Company Country United States Headquarters Location Rosemead, California Recovery Act Funding $24,978,264.00 Total Project Value $53,510,209.00 Coordinates 34.0805651°, -118.072846° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

122

Public Service Company of New Mexico Smart Grid Demonstration Project |  

Open Energy Info (EERE)

of New Mexico Smart Grid Demonstration Project of New Mexico Smart Grid Demonstration Project Jump to: navigation, search Project Lead Public Service Company of New Mexico Country United States Headquarters Location Albuquerque, New Mexico Recovery Act Funding $1,755,931.00 Total Project Value $5,851,303.00 Coordinates 35.0844909°, -106.6511367° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

123

The Boeing Company Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

The Boeing Company Smart Grid Demonstration Project The Boeing Company Smart Grid Demonstration Project Jump to: navigation, search Project Lead The Boeing Company Country United States Headquarters Location St. Louis, Missouri Recovery Act Funding $8,561,396.00 Total Project Value $17,172,844.00 Coordinates 38.646991°, -90.224967° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

124

44 Tech Inc. Smart Grid Demonstration Project | Open Energy Information  

Open Energy Info (EERE)

Inc. Smart Grid Demonstration Project Inc. Smart Grid Demonstration Project Jump to: navigation, search Project Lead 44 Tech Inc. Country United States Headquarters Location Pittsburgh, Pennsylvania Recovery Act Funding $5,000,000.00 Total Project Value $10,000,000.00 Coordinates 40.4406248°, -79.9958864° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

125

Oncor Electric Delivery Company, LLC Smart Grid Demonstration Project |  

Open Energy Info (EERE)

Company, LLC Smart Grid Demonstration Project Company, LLC Smart Grid Demonstration Project Jump to: navigation, search Project Lead Oncor Electric Delivery Company, LLC Country United States Headquarters Location Dallas, Texas Recovery Act Funding $3,471,681.00 Total Project Value $7,279,166.00 Coordinates 32.802955°, -96.769923° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

126

Nome, Alaska, Wind Turbine Demonstration Project Final Environmental Assessment and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Assessment and Final Environmental Assessment and Finding of No Significant Impact November 2000 Prepared for: U.S. Department of Energy Golden Field Office 1617 Cole Blvd. Golden, CO 80401 Prepared by: Battelle Memorial Institute 505 King Avenue Columbus, OH 43201 Nome, Alaska, Wind Turbine Demonstration Project Finding of No Significant Impact Nome, Alaska, Wind Turbine Demonstration Project FINDING OF NO SIGNIFICANT IMPACT S U M M A R Y The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) to provide DOE and other public agency decision makers witb tbe environmental documentation required to take informed discretionary action on the proposed Nome, Alaska, Wind Turbine Demonstration Project (DOE/EA-1280). The EA assesses the potential environmental impacts and cumulative i

127

West Valley Demonstration Project Waste Management Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WEST VALLEY DEMONSTRATION PROJECT WEST VALLEY DEMONSTRATION PROJECT WASTE MANAGEMENT ENVIRONMENTAL IMPACT STATEMENT FINAL SUMMARY December 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY DOE/EIS - 0337F For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE WEST VALLEY AREA OFFICE 10282 Rock Springs Road WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Final West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National

128

West Valley Demonstration Project 10282 Rock Springs Road  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project West Valley Demonstration Project 10282 Rock Springs Road West Valley, NY 141 71 -9799 Mr. Daniel W. Coyne President & General Manager CH2M HILL B&W West Valley, LLC West Valley Demonstration Project 10282 Rock Springs Road West Valley, NY 141 71 -9799 ATTENTION: J. D. Rendall, Regulatory Strategy, AC-EA SUBJECT: Environmental Checklist WVDP-20 12-0 1, " WVDP Reservoir Interconnecting Canal Maintenance Activities" REFERENCE: Letter WD:2012:0409 (357953), D. W. Coyne to R. W. Reffner, "CONTRACT NO. DE-EM000 1529, Section 5-3, Item 105, NEPA Documentation (Transmittal of Environmental Checklist WVDP-20 12-0 1, WVDP Reservoir Interconnecting Canal Maintenance Activities), Revision 1 ," dated July 24, 20 12 Dear Mr. Coyne:

129

DOE-Supported Project Demonstrates Benefits of Constructed Wetlands to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Demonstrates Benefits of Constructed Wetlands Project Demonstrates Benefits of Constructed Wetlands to Treat Non-Traditional Water Sources DOE-Supported Project Demonstrates Benefits of Constructed Wetlands to Treat Non-Traditional Water Sources March 10, 2009 - 1:00pm Addthis Washington, DC -- In a pilot-scale test supported by the U.S. Department of Energy (DOE) Office of Fossil Energy, Clemson University researchers have shown that manmade or "constructed" wetlands can be used to treat non-traditional water sources which could then be used in power plants or for other purposes. The successful test, which was managed by DOE's National Energy Technology Laboratory (NETL), could help power plants economically meet criteria for water reuse or discharge established by the National Pollution Discharge Elimination System and the Clean Water Act.

130

Final Report - Navajo Electrification Demonstration Project - FY2004  

SciTech Connect

The Navajo Electrification Demonstration Project (NEDP) is a multi-year projects which addresses the needs of unserved Navajo Nation residents without basic electricity services. The Navajo Nation is the United States' largest tribe, in terms of population and land. An estimated 18,000 Navajo Nation homes do not have basic grid-tied electricity--and this third year of funding, known as NEDP-3, provided 351 power line extensions to Navajo families.

Kenneth L. Craig, Interim General Manager

2007-03-31T23:59:59.000Z

131

US Recovery Act Smart Grid Energy Storage Demonstration Projects | Open  

Open Energy Info (EERE)

Storage Demonstration Projects Storage Demonstration Projects Jump to: navigation, search CSV Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

132

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop: Workshop: Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles December 11, 2009 John Garbak, Todd Ramsden Keith Wipke, Sam Sprik, Jennifer Kurtz Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project National Renewable Energy Laboratory 2 Innovation for Our Energy Future Fuel Cell Vehicle Learning Demonstration Project Objectives and Targets * Objectives - Validate H 2 FC Vehicles and Infrastructure in Parallel - Identify Current Status and Evolution of the Technology - Objectively Assess Progress Toward Technology Readiness - Provide Feedback to H 2 Research and Development Photo: NREL Solar Electrolysis Station, Sacramento, CA Performance Measure

133

Residential Energy Efficiency Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project  

SciTech Connect

In order to meet its energy goals, the Department of Defense (DOD) has partnered with the Department of Energy (DOE) to rapidly demonstrate and deploy cost-effective renewable energy and energy-efficiency technologies. The scope of this project was to demonstrate tools and technologies to reduce energy use in military housing, with particular emphasis on measuring and reducing loads related to consumer electronics (commonly referred to as 'plug loads'), hot water, and whole-house cooling.

Earle, L.; Sparn, B.; Rutter, A.; Briggs, D.

2014-03-01T23:59:59.000Z

134

RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT  

SciTech Connect

The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

2012-01-12T23:59:59.000Z

135

West Valley Demonstration Project Transportation Emergency Management Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West West Valley Demonstration Project Transportation Emergency Management Program Independent Oversight Review of the Office of Independent Oversight and Performance Assurance September 2000 OVERSIGHT Table of Contents EXECUTIVE SUMMARY ................................................................... 1 1.0 INTRODUCTION ........................................................................... 4 2.0 RESULTS ......................................................................................... 7 Hazards Survey and Hazards Assessment .................................... 7 Program Plans and Procedures ..................................................... 8 Emergency Responder Performance .......................................... 10 Feedback and Continuous Improvement....................................

136

Farmer's Market, Demonstration Gardens, and Research Projects Expand Outreach  

E-Print Network (OSTI)

Farmer's Market, Demonstration Gardens, and Research Projects Expand Outreach of Extension Master. A workshop format was used at the Annual Conference of the American Society for Horticultural Science on 31 volunteer outreach, leading to increased extension effectiveness. One program leader described how EMGs

137

DOE-Sponsored Syngas Cleanup Demonstration Project Reaches Development Milestone  

Energy.gov (U.S. Department of Energy (DOE))

In a project sponsored by the U.S. Department of Energy (DOE), a demonstration-scale application of RTI Internationals warm synthesis gas (syngas) cleanup process technology has achieved a key operational milestone at Tampa Electric Companys coal gasification plant in Polk County, Fla.

138

West Valley Demonstration Project Administrative Consent Order, August 27, 1996  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project (WVDP) Adminstrative Consent Order, August 27, 1.. Page 1 of 15 Project (WVDP) Adminstrative Consent Order, August 27, 1.. Page 1 of 15 EM Home | Regulatory Compliance | Environmental Compliance Agreements West Valley Demonstration Project (WVDP) Adminstrative Consent Order, August 27, 1996 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION AND THE UNITED STATES DEPARTMENT OF ENERGY EPA ID NUMBER NYD980779540 In the Matter of | | UNITED STATES | ORDER DEPARTMENT OF ENERGY, | Docket No. __________ | RESPONDENT | ___________________________| Table of Contents Parties Jurisdiction Purpose and Scope Statement of Facts & Conclusions of Law I. Implementation of the STP II Annual Updates III. Establishing Milestones and Planning Schedule Activity IV. Covered Matters V. Inclusion of New Waste Streams VI. Amendments VII. Project Managers

139

Final Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project  

SciTech Connect

This EIS assesses environmental issues associated with constructing and demonstrating a project that would be cost-shared by DOE and JEA (formerly the Jacksonville Electric Authority) under the Clean Coal Technology Program. The project would demonstrate circulating fluidized bed (CFB) combustion technology at JEA's existing Northside Generating Station in Jacksonville, Florida, about 9 miles northeast of the downtown area of Jacksonville. The new CFB combustor would use coal and petroleum coke to generate nearly 300 MW of electricity by repowering the existing Unit 2 steam turbine, a 297.5-MW unit that has been out of service since 1983. The proposed project is expected to demonstrate emission levels of sulfur dioxide (SO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter that would be lower than Clean Air Act limits while at the same time producing power more efficiently and at less cost than conventional coal utilization technologies. At their own risk, JEA has begun initial construction activities without DOE funding. Construction would take approximately two years and, consistent with the original JEA schedule, would be completed in December 2001. Demonstration of the proposed project would be conducted during a 2-year period from March 2002 until March 2004. In addition, JEA plans to repower the currently operating Unit 1 steam turbine about 6 to 12 months after the Unit 2 repowering without cost-shared funding from DOE. Although the proposed project consists of only the Unit 2 repowering, this EIS analyzes the Unit 1 repowering as a related action. The EIS also considers three reasonably foreseeable scenarios that could result from the no-action alternative in which DOE would not provide cost-shared funding for the proposed project. The proposed action, in which DOE would provide cost-shared finding for the proposed project, is DOE's preferred alternative. The EIS evaluates the principal environmental issues, including air quality, traffic, noise, and ecological resources, that could result from construction and operation of the proposed project. Key findings include that maximum modeled increases in ground-level concentrations of SO{sub 2} nitrogen dioxide (NO{sub 2}), and particulate matter (for the proposed project alone or in conjunction with the related action) would always be less than 10% of their corresponding standards for increases in pollutants. For potential cumulative air quality impacts, results of modeling regional sources and the proposed project indicate that the maximum 24-hour average SO{sub 2} concentration would closely approach (i.e., 97%) but not exceed the corresponding Florida standard. After the Unit 1 repowering, results indicate that the maximum 24-hour average SO{sub 2} concentration would be 91% of the Florida standard. Concentrations for other averaging periods and pollutants would be lower percentages of their standards. Regarding toxic air pollutants from the proposed project, the maximum annual cancer risk to a member of the public would be approximately 1 in 1 million; given the conservative assumptions in the estimate, the risk would probably be less. With regard to threatened and endangered species, impacts to manatees, gopher tortoises, and other species would be negligible or non-existent. Construction-induced traffic would result in noticeable congestion. In the unlikely event that all coal were transported by rail, up to 3 additional trains per week would exacerbate impacts associated with noise, vibration, and blocked roads at on-grade rail crossings. Additional train traffic could be minimized by relying more heavily on barges and ships for coal transport, which is likely to be a more economic fuel delivery mode. During construction of the proposed project, noise levels would increase from the current operational levels. Except possibly during steam blowouts and possibly during operation of equipment used to construct a nearby segment of a conveyor, construction noise should not appreciably affect the background noise of nearby residences or exceed local nois

N /A

2000-06-30T23:59:59.000Z

140

Rod consolidation at the West Valley Demonstration Project  

SciTech Connect

A rod consolidation demonstration with irradiated pressurized water reactor fuel was recently conducted by personnel from Nuclear Assurance Corporation and West Valley Nuclear Services Company at the West Valley Demonstration Project in West Valley, New York. The rod consolidation demonstration involved pulling all of the fuel rods from six fuel Assemblies. In general, the rod pulling proceeded smoothly. The highest compaction ratio attained was 1:8:1. Among the total of 1074 fuel rods were some known degraded rods (they had collapsed cladding, a result of in-reactor fuel densification), but no rods were broken or dropped during the demonstration. One aim was to gather information on the effect of rod consolidation operations on the integrity of the fuel rods during subsequent handling and storage. Another goal was to collect information on the condition and handling of intact, damaged, and failed fuel that has been in storage for an extended period. 9 refs., 8 figs., 1 tab.

Bailey, W.J.

1986-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT  

SciTech Connect

This project has two primary purposes: (1) Build a small-footprint (SFP) fuel production plant to prove the feasibility of this relatively transportable technology on an intermediate scale (i.e. between laboratory-bench and commercial capacity) and produce as much as 150,000 gallons of hydrogen-saturated Fischer-Tropsch (FT) diesel fuel; and (2) Use the virtually sulfur-free fuel produced to demonstrate (over a period of at least six months) that it can not only be used in existing diesel engines, but that it also can enable significantly increased effectiveness and life of the next-generation exhaust-after-treatment emission control systems that are currently under development and that will be required for future diesel engines. Furthermore, a well-to-wheels economic analysis will be performed to characterize the overall costs and benefits that would be associated with the actual commercial production, distribution and use of such FT diesel fuel made by the process under consideration, from the currently underutilized (or entirely un-used) energy resources targeted, primarily natural gas that is stranded, sub-quality, off-shore, etc. During the first year of the project, which is the subject of this report, there have been two significant areas of progress: (1) Most of the preparatory work required to build the SFP fuel-production plant has been completed, and (2) Relationships have been established, and necessary project coordination has been started, with the half dozen project-partner organizations that will have a role in the fuel demonstration and evaluation phase of the project. Additional project tasks directly related to the State of Alaska have also been added to the project. These include: A study of underutilized potential Alaska energy resources that could contribute to domestic diesel and distillate fuel production by providing input energy for future commercial-size SFP fuel production plants; Demonstration of the use of the product fuel in a heavy-duty diesel vehicle during the Alaska winter; a comparative study of the cold-starting characteristics of FT and conventional diesel fuel; and demonstration of the use of the fuel to generate electricity for rural Alaskan villages using both a diesel generator set, and a reformer-equipped fuel cell.

Stephen P. Bergin

2003-04-23T23:59:59.000Z

142

NETL: News Release - DOE-Supported Project Demonstrates Benefits of  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE-Supported Project Demonstrates Benefits of Constructed Wetlands to Treat Non-Traditional Water Sources DOE-Supported Project Demonstrates Benefits of Constructed Wetlands to Treat Non-Traditional Water Sources Flue gas desulfurization water was treated in a constructed wetlands system consisting of five reactors planted with vegetation found in natural wetlands. The water to be treated was received from an operating coal-fired power plant in the south-eastern United States. Flue gas desulfurization water was treated in a constructed wetlands system consisting of five "reactors" planted with vegetation found in natural wetlands. The water to be treated was received from an operating coal-fired power plant in the south-eastern United States. Washington, DC - In a pilot-scale test supported by the U.S. Department of Energy (DOE) Office of Fossil Energy, Clemson University researchers

143

West Valley Demonstration Project High-Level Waste Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT_19507_1 DRAFT_19507_1 High-Level Waste Management Bryan Bower, DOE Director - WVDP DOE High-Level Waste Corporate Board Meeting Savannah River Site April 1, 2008 West Valley Demonstration Project West Valley Demonstration Project DRAFT_19507_2 West Valley High-Level Waste To solidify the radioactive material from approximately 600,000 gallons of high-level radioactive waste into a durable, high-quality glass, both a pretreatment system to remove salts and sulfates from the waste and a vitrification system/process were designed. To solidify the radioactive material from approximately 600,000 gallons of high-level radioactive waste into a durable, high-quality glass, both a pretreatment system to remove salts and sulfates from the waste and a vitrification system/process were designed.

144

300kW Energy Storage Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kW Energy Storage Demonstration kW Energy Storage Demonstration Project Technical Overview Presented at: Annual Doe Peer Review Meeting ─ 2008 DOE Energy Storage & Power Electronics Research Programs By Ib I. Olsen September 29, 2008 116 John Street - Suite 2320 New York, New York 10038 (p) 1.212.732.5507 (f) 1.212.732.5597 www.gaiapowertech.com This project is part of the Joint Energy Storage Initiative between the New York State Energy Research and Development Authority (NYSERDA) and the Energy Storage Systems Program of the U.S. Department of Energy (DOE/ESS), and managed by Sandia National Laboratories (SNL). Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration, under contract DE-AC04-94AL85000

145

EIS-0337: West Valley Demonstration Project Waste Management  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of the Final West Valley Demonstration Project Waste Management Environmental Impact Statement is to provide information on the environmental impacts of the Department of Energys proposed action to ship radioactive wastes that are either currently in storage, or that will be generated from operations over the next 10 years, to offsite disposal locations, and to continue its ongoing onsite waste management activities.

146

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

SciTech Connect

General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

Stottler, Gary

2012-02-08T23:59:59.000Z

147

Successful scale-up of the fluid-bed methanol to gasoline (MTG) process to 100 BPD demonstration plant  

SciTech Connect

The 100 BPD fluid-bed methanol to gasoline (MTG) demonstration plant operation has exceeded the original process objectives. Specifically, the results show: stable unit operation is achieved with excellent gas/catalyst mixing resulting in complete methanol conversion; bed temperature control is readily accomplished although the process is highly exothemic; catalyst attrition is low, which confirms the mechanical strength of the catalyst; the small make-up used for activity control at normal conditions exceeds the low attrition rate; process parameters can be varied to obtain the desired gasoline yield and quality; and engineering design parameters have been confirmed at the pilot plant stage and scale-up to a commercial-size MTG fluid-bed system is now deemed feasible. The results obtained gave a broad basis for the conceptual design of a coal based commercial size plant for the production of MTG gasoline. This study is presently in preparation and will be completed by the middle of 1985. The conceptual design will be based on a 2500 tonnes/day methanol feeding a single fluid-bed. Six trains will be used for a maximum plant capacity of 15,000 tonnes/day. 12 refs., 14 figs., 5 tabs.

Gierlich, H.H.; Keim, K.H.; Thiagarajan, N.; Nitschke, E.; Kam, A.Y.; Daviduk, N.

1985-01-01T23:59:59.000Z

148

Automated Demand Response Technology Demonstration Project for Small and  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Demonstration Project for Small and Technology Demonstration Project for Small and Medium Commercial Buildings Title Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings Publication Type Report LBNL Report Number LBNL-4982E Year of Publication 2011 Authors Page, Janie, Sila Kiliccote, Junqiao Han Dudley, Mary Ann Piette, Albert K. Chiu, Bashar Kellow, Edward Koch, and Paul Lipkin Date Published 07/2011 Publisher CEC/LBNL Keywords demand response, emerging technologies, market sectors, medium commercial business, openadr, small commercial, small commercial business, technologies Abstract Small and medium commercial customers in California make up about 20-25% of electric peak load in California. With the roll out of smart meters to this customer group, which enable granular measurement of electricity consumption, the investor-owned utilities will offer dynamic prices as default tariffs by the end of 2011. Pacific Gas and Electric Company, which successfully deployed Automated Demand Response (AutoDR) Programs to its large commercial and industrial customers, started investigating the same infrastructures application to the small and medium commercial customers. This project aims to identify available technologies suitable for automating demand response for small-medium commercial buildings; to validate the extent to which that technology does what it claims to be able to do; and determine the extent to which customers find the technology useful for DR purpose. Ten sites, enabled by eight vendors, participated in at least four test AutoDR events per site in the summer of 2010. The results showed that while existing technology can reliably receive OpenADR signals and translate them into pre-programmed response strategies, it is likely that better levels of load sheds could be obtained than what is reported here if better understanding of the building systems were developed and the DR response strategies had been carefully designed and optimized for each site.

149

Diesel fueled ship propulsion fuel cell demonstration project  

SciTech Connect

The paper describes the work underway to adapt a former US Navy diesel electric drive ship as a 2.4 Megawatt fuel cell powered, US Coast Guard operated, demonstrator. The Project will design the new configuration, and then remove the four 600 kW diesel electric generators and auxiliaries. It will design, build and install fourteen or more nominal 180 kW diesel fueled molten carbonate internal reforming direct fuel cells (DFCs). The USCG cutter VINDICATOR has been chosen. The adaptation will be carried out at the USCG shipyard at Curtis Bay, MD. A multi-agency (state and federal) cooperative project is now underway. The USCG prime contractor, AEL, is performing the work under a Phase III Small Business Innovation Research (SBIR) award. This follows their successful completion of Phases I and II under contract to the US Naval Sea Systems (NAVSEA) from 1989 through 1993 which successfully demonstrated the feasibility of diesel fueled DFCs. The demonstrated marine propulsion of a USCG cutter will lead to commercial, naval ship and submarine applications as well as on-land applications such as diesel fueled locomotives.

Kumm, W.H. [Arctic Energies Ltd., Severna Park, MD (United States)

1996-12-31T23:59:59.000Z

150

West Valley Demonstration Project site environmental report, calendar year 1997  

SciTech Connect

This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1997 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

None

1998-06-01T23:59:59.000Z

151

MHK Projects/Race Rocks Demonstration | Open Energy Information  

Open Energy Info (EERE)

Race Rocks Demonstration Race Rocks Demonstration < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.2844,"lon":-123.531,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

152

LIMB Demonstraton Project Extension and Coolside Demonstration: A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 LIMB Demonstration Project Extension and Coolside Demonstration: A DOE Assessment April 2000 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial

153

MHK Projects/MORILD Demonstration Plant | Open Energy Information  

Open Energy Info (EERE)

MORILD Demonstration Plant MORILD Demonstration Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":69.8079,"lon":18.6795,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

154

PSNH's Northern Wood power project repowers coal-fired plant with new fluidized-bed combustor  

SciTech Connect

The Northern Wood Power project permanently replaced a 50-MW coal-burning boiler (Unit 5) at Public Service of New Hampshire's Schiller station with a state-of-the-art circulating fluidized bed wood-burning boiler of the same capacity. The project, completed in December 2006, reduced emissions and expanded the local market for low-grade wood. For planning and executing the multiyear, $75 million project at no cost to its ratepayers, PSNH wins Power's 2007 Marmaduke Award for excellence in O & M. The award is named for Marmaduke Surfaceblow, the fictional marine engineer/plant troubleshoot par excellence. 7 figs., 1 tab.

Peltier, R.

2007-08-15T23:59:59.000Z

155

Northwest Open Automated Demand Response Technology Demonstration Project  

SciTech Connect

The Lawrence Berkeley National Laboratory (LBNL) Demand Response Research Center (DRRC) demonstrated and evaluated open automated demand response (OpenADR) communication infrastructure to reduce winter morning and summer afternoon peak electricity demand in commercial buildings the Seattle area. LBNL performed this demonstration for the Bonneville Power Administration (BPA) in the Seattle City Light (SCL) service territory at five sites: Seattle Municipal Tower, Seattle University, McKinstry, and two Target stores. This report describes the process and results of the demonstration. OpenADR is an information exchange model that uses a client-server architecture to automate demand-response (DR) programs. These field tests evaluated the feasibility of deploying fully automated DR during both winter and summer peak periods. DR savings were evaluated for several building systems and control strategies. This project studied DR during hot summer afternoons and cold winter mornings, both periods when electricity demand is typically high. This is the DRRC project team's first experience using automation for year-round DR resources and evaluating the flexibility of commercial buildings end-use loads to participate in DR in dual-peaking climates. The lessons learned contribute to understanding end-use loads that are suitable for dispatch at different times of the year. The project was funded by BPA and SCL. BPA is a U.S. Department of Energy agency headquartered in Portland, Oregon and serving the Pacific Northwest. BPA operates an electricity transmission system and markets wholesale electrical power at cost from federal dams, one non-federal nuclear plant, and other non-federal hydroelectric and wind energy generation facilities. Created by the citizens of Seattle in 1902, SCL is the second-largest municipal utility in America. SCL purchases approximately 40% of its electricity and the majority of its transmission from BPA through a preference contract. SCL also provides ancillary services within its own balancing authority. The relationship between BPA and SCL creates a unique opportunity to create DR programs that address both BPA's and SCL's markets simultaneously. Although simultaneously addressing both market could significantly increase the value of DR programs for BPA, SCL, and the end user, establishing program parameters that maximize this value is challenging because of complex contractual arrangements and the absence of a central Independent System Operator or Regional Transmission Organization in the northwest.

Kiliccote, Sila; Piette, Mary Ann; Dudley, Junqiao

2010-03-17T23:59:59.000Z

156

AEP Ohio gridSMART Demonstration Project Real-Time Pricing Demonstration Analysis  

SciTech Connect

This report contributes initial findings from an analysis of significant aspects of the gridSMART Real-Time Pricing (RTP) Double Auction demonstration project. Over the course of four years, Pacific Northwest National Laboratory (PNNL) worked with American Electric Power (AEP), Ohio and Battelle Memorial Institute to design, build, and operate an innovative system to engage residential consumers and their end-use resources in a participatory approach to electric system operations, an incentive-based approach that has the promise of providing greater efficiency under normal operating conditions and greater flexibility to react under situations of system stress. The material contained in this report supplements the findings documented by AEP Ohio in the main body of the gridSMART report. It delves into three main areas: impacts on system operations, impacts on households, and observations about the sensitivity of load to price changes.

Widergren, Steven E.; Subbarao, Krishnappa; Fuller, Jason C.; Chassin, David P.; Somani, Abhishek; Marinovici, Maria C.; Hammerstrom, Janelle L.

2014-02-01T23:59:59.000Z

157

West Valley Demonstration Project Waste Management Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUMMARY April 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE WEST VALLEY AREA OFFICE P.O. BOX 191 WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Draft West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National Environmental Policy Act, contact: Daniel W. Sullivan Document Manager DOE West Valley Area Office

158

LIFAC Sorbent Injection Desulfurization Demonstration Project: A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

41 41 LIFAC Sorbent Injection Desulfurization Demonstration Project: A DOE Assessment January 2001 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 website: www.netl.doe.gov Disclaimer 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

159

Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Advanced Flue Gas Desulfurization (AFGD) Demonstration Project A DOE Assessment August 2001 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 website: www.netl.doe.gov 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

160

West Valley Demonstration Project Waste Management Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE-WEST VALLEY AREA OFFICE P.O. BOX 191 WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Draft West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National Environmental Policy Act, contact: Daniel W. Sullivan Document Manager DOE-West Valley Area Office

Note: This page contains sample records for the topic "bed demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

North Stanley Polymer Demonstration Project. Final summary report  

SciTech Connect

In February 1976, a fresh water preflush was injected into the North Stanley Polymer Demonstration Project, followed by a polymer solution until June 1977 which was chased by a fresh water after flush. A subsequent injection of produced water has been resumed to complete the injection program. Efforts were made to accelerate the change in injection profiles and to decrease per well injection rates by Channelblock treatments and by reducing the injection plant discharge pressures. Total oil production peaked at 660 BPD in January 1977. It slowly declined the remainder of the year to 637 BPD. Subsequent to March 1978, oil production has declined more rapidly and currently the rate of decline is 6.25% per year. As of January 1, 1980, the cumulative production since July 1, 1975 is as follows: (1) gross oil 923,574 barrels; (2) tertiary oil 144,974 barrels; and (3) water produced 57,854,282 barrels.

Upton, J.E.

1980-05-01T23:59:59.000Z

162

RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES  

SciTech Connect

The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the Savannah River National Laboratory (SRNL) to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125/129 and Tc-99 to chemically resemble WTP-SW. Ninety six grams of radioactive product were made for testing. The second campaign commenced using SRS LAW chemically trimmed to look like Hanford's LAW. Six hundred grams of radioactive product were made for extensive testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

2011-02-24T23:59:59.000Z

163

West Valley Demonstration Project Waste Management Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WVDP Waste Management EIS WVDP Waste Management EIS S-3 Figure S-1. Location of the West Valley Demonstration Project Not to scale Final WVDP Waste Management EIS S-23 Table S-2. Summary of Normal Operational Impacts at West Valley Impact Area Unit of Measure No Action Alternative Alternative A - Preferred Alternative B Human Health Impacts a Public Impacts from Ongoing Operations MEI LCF 3.7 × 10 -7 3.7 × 10 -7 3.7 × 10 -7 Population LCF 1.5 × 10 -3 1.5 × 10 -3 1.5 × 10 -3 Worker Impacts Involved worker MEI LCF 3.4 × 10 -4 1.3 × 10 -3 1.3 × 10 -3 Noninvolved worker MEI LCF 3.0 × 10 -4 3.0 × 10 -4 3.0 × 10 -4 Involved worker population LCF 2.1 × 10 -3 0.031 0.031 Noninvolved worker population LCF 0.075 0.075 0.075 Total worker population LCF 0.077 0.11 0.11

164

DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT  

SciTech Connect

The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Their strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis (FMEA, referred to by Air Products as a ''HAZOP'' analysis) with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operational in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation Institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the campus shuttle route began in early June 2002. However, the work and challenges continued as it has been difficult to maintain operability of the shuttle bus due to fuel and component difficulties. In late June 2002, the pump head itself developed operational problems (loss of smooth function) leading to excessive stress on the magnetic coupling and excessive current draw to operate. A new pump head was installed on the system to alleviate this problem and the shuttle bus operated successfully on DME blends from 10-25 vol% on the shuttle bus loop until September 30, 2002. During the period of operation on the campus loop, the bus was pulled from service, operated at the PTI test track and real-time emissions measurements were obtained using an on-board emissions analyzer from Clean Air Technologies International, Inc. Particulate emissions reductions of 60% and 80% were observed at DME blend ratios of 12 vol.% and 25 vol.%, respectively, as the bus was operated over the Orange County driving cycle. Increases in NOx, CO and HC emissions were observed, however. In summary, the conversion of the shuttle bus was successfully accomplished, particulate emissions reductions were observed, but there were operational challenges in the field. Nonetheless, they were able to demonstrate reliable operation of the shuttle bus on DME-diesel blends.

Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

2003-04-01T23:59:59.000Z

165

Over the Energy Edge: Results from a Seven Year New Commercial Buildings Research and Demonstration Project  

E-Print Network (OSTI)

Cody, Bonneville Power Administration Energy Edge was a research oriented demonstration project (Piette et al. 1994). Beginning in 1985, the project, sponsored by the Bonneville Power Adminis- tration

Diamond, Richard

166

Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES  

NLE Websites -- All DOE Office Websites (Extended Search)

advanced proven technologies and tested emerging technologies. Smart meters and demand response Before the project, more than 12,000, or nearly half, of Lower Valley's members...

167

Final Update on APBF-DEC EGR/DPF/SCR Demonstration Project at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Update on APBF-DEC EGRDPFSCR Demonstration Project at SwRI Final Update on APBF-DEC EGRDPFSCR Demonstration Project at SwRI 2005 Diesel Engine Emissions Reduction (DEER)...

168

Status of U.S. FCEV and Infrastructure Learning Demonstration Project (Presentation)  

SciTech Connect

Presented at the Japan Hydrogen and Fuel Cell Demonstration Project (JHFC), 1 March 2011, Tokyo, Japan. This presentation summarizes the status of U.S. fuel cell electric vehicles and infrastructure learning demonstration project.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

2011-03-01T23:59:59.000Z

169

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Fall 2008  

SciTech Connect

Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2008.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2008-10-01T23:59:59.000Z

170

A Demonstration Project for Capturing Geothermal Energy from Mine Waters beneath Butte, MT  

Energy.gov (U.S. Department of Energy (DOE))

Project objectives. Demonstrate performance of heat pumps in a large HVAC system in a heating-dominated climate.

171

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

Power Administration (BPA) in the Seattle City Light (SCL)times of the year. The project was funded by BPA and SCL.BPA is a U.S. Department of Energy agency headquartered in

Kiliccote, Sila

2010-01-01T23:59:59.000Z

172

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

Bonneville Power Administration (BPA) in Seattle City Lightproject was funded by BPA and SCL. This report summarizesPower Administration (BPA) and Seattle City Light (SCL) DR

Kiliccote, Sila

2010-01-01T23:59:59.000Z

173

SciTech Connect: Brown Grease to Biodiesel Demonstration Project...  

Office of Scientific and Technical Information (OSTI)

from both demonstration facilities to determine potential toxicity andor changes in biogas production in the WWTP anaerobic digester. While there is a lot of theoretical data...

174

SciTech Connect: Brown Grease to Biodiesel Demonstration Project...  

Office of Scientific and Technical Information (OSTI)

Grease as a feedstock. The demonstration facility was designed and built by Blackgold Biofuels (BGB). Side streams from this process were also co-digested with wastewater sludge....

175

Modular Pebble-Bed Reactor Project: Laboratory-Directed Research and Development Program FY 2002 Annual Report  

SciTech Connect

This report documents the results of our research in FY-02 on pebble-bed reactor technology under our Laboratory Directed Research and Development (LDRD) project entitled the Modular Pebble-Bed Reactor. The MPBR is an advanced reactor concept that can meet the energy and environmental needs of future generations under DOEs Generation IV initiative. Our work is focused in three areas: neutronics, core design and fuel cycle; reactor safety and thermal hydraulics; and fuel performance.

Petti, David Andrew; Dolan, Thomas James; Miller, Gregory Kent; Moore, Richard Leroy; Terry, William Knox; Ougouag, Abderrafi Mohammed-El-Ami; Oh, Chang H; Gougar, Hans D

2002-11-01T23:59:59.000Z

176

US Recovery Act Smart Grid Demonstration Projects | Open Energy Information  

Open Energy Info (EERE)

Projects Projects Jump to: navigation, search CSV Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

177

Tidd PFBC Demonstration Project. Final report, March 1, 1994--March 30, 1995  

SciTech Connect

The Tidd Pressurized Fluidized Bed Combustion (PFBC) Demonstration Plant was the first utility-scale pressurized fluidized bed combustor to operate in combined-cycle mode in the US. The 45-year old pulverized coal plant was repowered with PFBC components in order to demonstrate that PFBC combined-cycle technology is an economic, reliable, and environmentally superior alternative to conventional technology in using high-sulfur coal to generate electricity. The three-year demonstration period started on February 28, 1991 and terminated on February 28, 1994. The fourth year of testing started on March 1, 1994 and terminated on March 30, 1995. This report reviews the experience of the 70-MW(e), Tidd PFBC Demonstration Plant during the fourth year of operation.

Bauer, D.A.; Hoffman, J.D.; Marrocco, M.; Mudd, M.J.; Reinhart, W.P.; Stogran, H.K. [American Electric Power Service Corp., Columbus, OH (United States)

1995-08-01T23:59:59.000Z

178

Urban Options Solar Greenhouse Demonstration Project. Final report  

SciTech Connect

The following are included: the design process, construction, thermal performance, horticulture, educational activities, and future plans. Included in appendices are: greenhouse blueprints, insulating curtain details, workshop schedules, sample data forms, summary of performance calculations on the Urban Options Solar Greenhouse, data on vegetable production, publications, news articles on th Solar Greenhouse Project, and the financial statement. (MHR)

Cipparone, L.

1980-10-15T23:59:59.000Z

179

West Valley Demonstration Project Prepares to Relocate High-Level Waste |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project Prepares to Relocate High-Level West Valley Demonstration Project Prepares to Relocate High-Level Waste West Valley Demonstration Project Prepares to Relocate High-Level Waste December 24, 2013 - 12:00pm Addthis The West Valley Demonstration Project’s high-level waste canisters will be relocated to interim onsite storage. The West Valley Demonstration Project's high-level waste canisters will be relocated to interim onsite storage. The first group of eight concrete storage casks for the West Valley Demonstration Project’s high-level waste. The first group of eight concrete storage casks for the West Valley Demonstration Project's high-level waste. Site subcontractor American DND completed demolition of the contaminated 01-14 Building in 2013. Site subcontractor American DND completed demolition of the contaminated

180

West Valley Demonstration Project Prepares to Relocate High-Level Waste |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project Prepares to Relocate High-Level West Valley Demonstration Project Prepares to Relocate High-Level Waste West Valley Demonstration Project Prepares to Relocate High-Level Waste December 24, 2013 - 12:00pm Addthis The West Valley Demonstration Project’s high-level waste canisters will be relocated to interim onsite storage. The West Valley Demonstration Project's high-level waste canisters will be relocated to interim onsite storage. The first group of eight concrete storage casks for the West Valley Demonstration Project’s high-level waste. The first group of eight concrete storage casks for the West Valley Demonstration Project's high-level waste. Site subcontractor American DND completed demolition of the contaminated 01-14 Building in 2013. Site subcontractor American DND completed demolition of the contaminated

Note: This page contains sample records for the topic "bed demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

SRC-I Project Baseline. [SRC-I demonstration project near Owensboro, Kentucky  

SciTech Connect

The Process Design Criteria Specification forms the basis for process design for the 6000-TPSD SRC-I Demonstration Plant. It sets forth: basic engineering data, e.g., type and size of plant, feedstocks, product specifications, and atmospheric emission and waste disposal limits; utility conditions; equipment design criteria and sparing philosophy; and estimating criteria for economic considerations. Previously the formal ICRC Document No. 0001-01-002 has been submitted to DOE and revised, as necessary, to be consistent with the SRC-I Project Baseline. Revision 6, dated 19 March 1982, 51 pages, was forwarded to DOE on 19 March 1982.

None

1982-03-01T23:59:59.000Z

182

Geothermal Heat Pump System for the New 500-bed 200,000 SF Student Housing Project at the University at Albanys Main Campus  

Energy.gov (U.S. Department of Energy (DOE))

This project proposes to heat and cool planned 500-bed apartment-style student housing with closed loop vertical bore geothermal heat pump system installation.

183

Baca geothermal demonstration project. Power plant detail design document  

SciTech Connect

This Baca Geothermal Demonstration Power Plant document presents the design criteria and detail design for power plant equipment and systems, as well as discussing the rationale used to arrive at the design. Where applicable, results of in-house evaluations of alternatives are presented.

Not Available

1981-02-01T23:59:59.000Z

184

The Detroit Edison Company Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

The Detroit Edison Company The Detroit Edison Company Country United States Headquarters Location Detroit, Michigan Recovery Act Funding $4,995,271.00 Total Project Value $10,877,258.00 Coordinates 42.331427°, -83.0457538° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

185

NSTAR Electric & Gas Corporation Smart Grid Demonstration Project | Open  

Open Energy Info (EERE)

NSTAR Electric & Gas Corporation NSTAR Electric & Gas Corporation Country United States Headquarters Location Westwood, Massachusetts Recovery Act Funding $2,362,000.00 Total Project Value $4,724,000.00 Coordinates 42.2139873°, -71.2244987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

186

Pacific Gas & Electric Company Smart Grid Demonstration Project | Open  

Open Energy Info (EERE)

Pacific Gas & Electric Company Pacific Gas & Electric Company Country United States Headquarters Location San Francisco, California Recovery Act Funding $25,000,000.00 Total Project Value $355,938,600.00 Coordinates 37.7749295°, -122.4194155° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

187

NSTAR Electric & Gas Corporation Smart Grid Demonstration Project (2) |  

Open Energy Info (EERE)

Lead NSTAR Electric & Gas Corporation Lead NSTAR Electric & Gas Corporation Country United States Headquarters Location Westwood, Massachusetts Recovery Act Funding $5,267,592.00 Total Project Value $10,535,184.00 Coordinates 42.2139873°, -71.2244987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

188

Southern California Edison Company Smart Grid Demonstration Project | Open  

Open Energy Info (EERE)

Company Company Country United States Headquarters Location Rosemead, California Recovery Act Funding $40,134,700.00 Total Project Value $80,269,400.00 Coordinates 34.0805651°, -118.072846° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

189

Beacon Power Corporation Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Beacon Power Corporation Beacon Power Corporation Country United States Headquarters Location Tyngsboro, Massachusetts Recovery Act Funding $24,063,978.00 Total Project Value $48,127,957.00 Coordinates 42.6767568°, -71.4245085° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

190

Advanced Seismic Probabilistic Risk Assessment Demonstration Project Plan  

SciTech Connect

Idaho National Laboratories (INL) has an ongoing research and development (R&D) project to remove excess conservatism from seismic probabilistic risk assessments (SPRA) calculations. These risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. This report presents a plan for improving our current traditional SPRA process using a seismic event recorded at a nuclear power plant site, with known outcomes, to improve the decision making process. SPRAs are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility).

Justin Coleman

2014-09-01T23:59:59.000Z

191

SustainX, Inc. Smart Grid Demonstration Project | Open Energy Information  

Open Energy Info (EERE)

SustainX, Inc. Smart Grid Demonstration Project SustainX, Inc. Smart Grid Demonstration Project Jump to: navigation, search Project Lead SustainX, Inc. Country United States Headquarters Location West Lebanon, New Hampshire Recovery Act Funding $5,396,023.00 Total Project Value $10,792,045.00 References ARRA Smart Grid Demonstration Projects[1] This article is a stub. You can help OpenEI by expanding it. The SustainX, Inc. Smart Grid Demonstration Project is a U.S. Department of Energy Smart Grid Demonstration Project which is based in West Lebanon, New Hampshire. Overview Design, build, and deploy a utility-scale, low-cost compressed air energy storage system to support the integration of renewable energy sources onto the grid. The 1 MW/4hr system will store potential energy in the form of compressed air in above-ground industrial pressure facilities. The

192

Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project  

SciTech Connect

The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-?based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-?hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-?based energy recovery and storage system. This technology is being developed at TDIs facilities to capture and reuse the energy necessary for the companys core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-?hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries to utilize energy recycling technology to lower domestic energy use and see higher net energy efficiency. The prototype system and results will be used to seek additional resources to carry out full deployment of a system. Ultimately, this innovative technology is expected to be transferable to other testing applications involving energy-?based cycling within the company as well as throughout the industry.

Bigelow, Erik

2012-10-30T23:59:59.000Z

193

D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project - Technology Demonstration of Fixatives Applied Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms Many facilities slated for D&D across the DOE complex pose hazards (radiological, chemical, and structural) which prevent the use of traditional manual techniques. D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms More Documents & Publications Demonstration of Fixatives to Control Contamination and Accelerate D&D Demonstration of DeconGel (TM) at the Oak Ridge National Laboratory Building 2026 D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms

194

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Pre-Solicitation Meeting: Questions and Answers  

Energy.gov (U.S. Department of Energy (DOE))

Questions and answers from the pre-solicitation meeting for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project held March 19, 2003, in Southfield, Michigan.

195

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Fall 2006 Progress Update (Presentation)  

SciTech Connect

This presentation, given by NREL's Keith Wipke at EVS-22, provides an update on the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

Wipke, K.; Welch, C.; Thomas, H.; Sprik, S.; Gronich, S.; Garbak, J.

2006-10-26T23:59:59.000Z

196

Voluntary Protection Program Onsite Review, West Valley Demonstration Project- November 2009  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation to determine whether West Valley Demonstration Project is continuing to perform at a level deserving DOE-VPP Star recognition.

197

Voluntary Protection Program Onsite Review, West Valley Demonstration Project- June 2008  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation to determine whether West Valley Demonstration Project is continuing to perform at a level deserving DOE-VPP Star recognition.

198

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Pre-Solicitation Meeting: Supporting Information  

Energy.gov (U.S. Department of Energy (DOE))

Supporting information and objectives for the pre-solicitation meeting for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project held March 19, 2003 in Southfield, Michigan.

199

Data Management Plan for The Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

Energy.gov (U.S. Department of Energy (DOE))

The Data Management Plan describes how DOE will handle data submitted by recipients as deliverables under the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

200

Demonstrating Heat Changes on the Overhead Projector with a Projecting Thermometer  

Science Journals Connector (OSTI)

Demonstrating Heat Changes on the Overhead Projector with a Projecting Thermometer ... Demonstrations that provide dramatic heat changes aredescribed, including chemical reactions , dissolving of solutes andsimulation of flameless ration heaters and commercial hot and cold packs. ...

Chinhyu Hur; Sally Solomon; Christy Wetzel

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

EIS-0318: Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project, Trapp, Kentucky (Clark County)  

Energy.gov (U.S. Department of Energy (DOE))

This EIS analyzes DOE's decision to provide cost-shared financial support for The Kentucky Pioneer IGCC Demonstration Project, an electrical power station demonstrating use of a Clean Coal Technology in Clark County, Kentucky.

202

DOE/EIS-0289, Final Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project (June 1, 2000)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINAL FINAL ENVIRONMENTAL IMPACT STATEMENT FOR THE JEA CIRCULATING FLUIDIZED BED COMBUSTOR PROJECT JACKSONVILLE, FLORIDA June 2000 U.S. DEPARTMENT OF ENERGY COVER SHEET June 2000 RESPONSIBLE AGENCY U.S. Department of Energy (DOE) TITLE Final Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project; Jacksonville, Duval County, Florida CONTACT Additional copies or information concerning this final environmental impact statement (EIS) can be obtained from Ms. Lisa K. Hollingsworth, National Environmental Policy Act (NEPA) Document Manager, U.S. Department of Energy, National Energy Technology Laboratory, 3610 Collins Ferry Road, P. O. Box 880, Morgantown, WV 26507-0880. Telephone: (304) 285-4992. Fax: (304) 285-4403. E-mail: lisa.hollingsworth@netl.doe.gov.

203

DOE/EIS-0289; Draft Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project, August 1999  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Draft ENVIRONMENTAL IMPACT STATEMENT FOR THE JEA CIRCULATING FLUIDIZED BED COMBUSTOR PROJECT JACKSONVILLE, FLORIDA August 1999 U.S. DEPARTMENT OF ENERGY COVER SHEET August 1999 RESPONSIBLE AGENCY U.S. Department of Energy (DOE) TITLE Draft Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project; Jacksonville, Duval County, Florida CONTACT Additional copies or information concerning this draft environmental impact statement (EIS) can be obtained from Ms. Lisa K. Hollingsworth, National Environmental Policy Act (NEPA) Document Manager, U.S. Department of Energy, Federal Energy Technology Center, 3610 Collins Ferry Road, P. O. Box 880, Morgantown, WV 26507-0880. Telephone: (304) 285-4992. Fax: (304) 285-4403. E-mail: lisa.hollingsworth@fetc.doe.gov.

204

Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LWO-SPT-2007-00249 LWO-SPT-2007-00249 Rev. 1 Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) For Tank 48H Treatment Project (TTP) November, 2007 Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) LWO-SPT-2007-00249 Rev. 1 DISCLAIMER This report was prepared by Washington Savannah River Company (WSRC) for the United States Department of Energy under Contract No. DEA-AC09-96SR18500 and is an account of work performed under that contract. Neither the United States Department of Energy, nor WSRC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, or product or process

205

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A-1 A-1 APPENDIX A CONSULTATION LETTERS This appendix includes consultation/approval letters between the U.S. Department of Energy and the U.S. Fish and Wildlife Service regarding threatened and endangered species, and between other state and Federal agencies as needed. Consultation Letters A-2 Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement A-3 Consultation Letters A-4 Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement A-5 Consultation Letters A-6 Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement A-7 Consultation Letters A-8 Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement B-1 APPENDIX B NOTICE OF INTENT TO PREPARE AN ENVIRONMENTAL IMPACT STATEMENT FOR THE

206

Pre-solicitation Meeting for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was given to attendees of the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project pre-solicitation meeting held in Detroit, Michigan, on March 19, 2003.

207

DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at Three Sites DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at Three Sites May 3, 2012 - 1:00pm Addthis Washington, DC - Evaluation-related test drilling at geologic sites in three states that could store a combined 64 million metric tons of carbon dioxide (CO2) emissions - an important component of carbon capture, utilization and storage (CCUS) technology development - has been completed in projects supported by the U.S. Department of Energy. If the potential of the sites is eventually fulfilled, they could safely and permanently store combined CO2 emissions equivalent to that produced by more than 11 million passenger vehicles annually or from the electricity use of more than 7 million homes for one year, according to Environmental

208

DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drilling Projects Demonstrate Significant CO2 Storage Drilling Projects Demonstrate Significant CO2 Storage at Three Sites DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at Three Sites May 3, 2012 - 1:00pm Addthis Washington, DC - Evaluation-related test drilling at geologic sites in three states that could store a combined 64 million metric tons of carbon dioxide (CO2) emissions - an important component of carbon capture, utilization and storage (CCUS) technology development - has been completed in projects supported by the U.S. Department of Energy. If the potential of the sites is eventually fulfilled, they could safely and permanently store combined CO2 emissions equivalent to that produced by more than 11 million passenger vehicles annually or from the electricity use of more than 7 million homes for one year, according to Environmental

209

Clean Coal Power Initiative Round 1 Demonstration Projects Applying Advanced Technologies to Lower Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

7 JUNE 2012 7 JUNE 2012 Clean Coal Power Initiative Round 1 Demonstration Projects Applying Advanced Technologies to Lower Emissions and Improve Efficiency 2 Cover Photos: * Top left: Great River Energy's Coal Creek Station * Top right: We Energy's Presque Isle Power Plant * Bottom: Dynegy's Baldwin Energy Complex A report on three projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Great River Energy * NeuCo. , Inc. * WeEnergies 3 Executive Summary 4 Clean Coal Technology Demonstration Program 5 CCPI Program 6 Demonstration of Integrated Optimization Software at

210

DOE Funds 21 Research, Development and Demonstration Projects for up to $78  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funds 21 Research, Development and Demonstration Projects for Funds 21 Research, Development and Demonstration Projects for up to $78 Million to Promote Enhanced Geothermal Systems DOE Funds 21 Research, Development and Demonstration Projects for up to $78 Million to Promote Enhanced Geothermal Systems October 6, 2008 - 4:14pm Addthis RENO, Nev. - Today at the National Geothermal Conference in Reno, Nev., Deputy Assistant Secretary for Renewable Energy Steve Chalk announced the U.S. Department of Energy's (DOE) awards under a Funding Opportunity Announcement (FOA) for research, development and demonstration of Enhanced Geothermal Systems (EGS) for next-generation geothermal energy technologies. Subject to annual appropriations, the Department will provide up to $43.1 million over four years to 21 awardees, including a

211

West Valley Demonstration Project DOE Manual 435.1-1 Waste Incidental to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project DOE Manual 435.1-1 Waste West Valley Demonstration Project DOE Manual 435.1-1 Waste Incidental to Reprocessing Evaluations and Determinations West Valley Demonstration Project DOE Manual 435.1-1 Waste Incidental to Reprocessing Evaluations and Determinations The U.S. Department of Energy (DOE) Manual 435.1-1, Radioactive Waste Management Manual, which accompanies DOE Order 435.1, provides that the DOE may determine that certain waste from reprocessing spent nuclear fuel is waste incidental to reprocessing, is not high-level waste and may be managed and disposed of as low-level waste if the waste meets the criteria in DOE Manual 435.1-1, Chapter II, Section B. To determine that waste is incidental to reprocessing using the evaluation process from the Manual, and shall be managed as low level waste, DOE must demonstrate three

212

Reducing Plug Loads in Office Spaces: Hawaii and Guam Energy Improvement Technology Demonstration Project  

SciTech Connect

As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with the Department of Energy's National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This project was one of several demonstrations of new or underutilized commercial energy technologies. The common goal was to demonstrate and measure the performance and economic benefit of the system while monitoring any ancillary impacts to related standards of service and operation and maintenance (O&M) practices. In short, demonstrations at naval facilities simultaneously evaluate the benefits and compatibility of the technology with the U.S. Department of Defense (DOD) mission, and with NAVFAC's design, construction, operations, and maintenance practices, in particular. This project demonstrated the performance of commercially available advanced power strips (APSs) for plug load energy reductions in building A4 at Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii.

Sheppy, M.; Metzger, I.; Cutler, D.; Holland, G.; Hanada, A.

2014-01-01T23:59:59.000Z

213

Los Angeles Department of Water and Power Smart Grid Demonstration Project  

Open Energy Info (EERE)

Angeles Department of Water and Power Smart Grid Demonstration Project Angeles Department of Water and Power Smart Grid Demonstration Project Jump to: navigation, search Project Lead Los Angeles Department of Water and Power Country United States Headquarters Location Los Angeles, California Recovery Act Funding $60,280,000.00 Total Project Value $120,560,000.00 Coordinates 34.0522342°, -118.2436849° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

214

Power Authority of the State of New York Smart Grid Demonstration Project |  

Open Energy Info (EERE)

of the State of New York Smart Grid Demonstration Project of the State of New York Smart Grid Demonstration Project Jump to: navigation, search Project Lead Power Authority of the State of New York Country United States Headquarters Location White Plains, New York Recovery Act Funding $720,000.00 Total Project Value $1,440,000.00 Coordinates 41.0339862°, -73.7629097° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

215

New York State Electric & Gas Corporation Smart Grid Demonstration Project  

Open Energy Info (EERE)

New York State Electric & Gas Corporation Smart Grid Demonstration Project New York State Electric & Gas Corporation Smart Grid Demonstration Project Jump to: navigation, search Project Lead New York State Electric & Gas Corporation Country United States Headquarters Location Binghamton, New York Recovery Act Funding $29,561,142.00 Total Project Value $125,006,103.00 Coordinates 42.0986867°, -75.9179738° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

216

Kansas City Power & Light Company Smart Grid Demonstration Project | Open  

Open Energy Info (EERE)

Demonstration Project Demonstration Project Jump to: navigation, search Project Lead Kansas City Power & Light Company Country United States Headquarters Location Kansas City, Missouri Recovery Act Funding $23,940,112.00 Total Project Value $48,125,315.00 Coordinates 39.0997265°, -94.5785667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

217

Operational Awareness Oversight of the West Valley Demonstration Project, July 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WVDP-2012-07-30 WVDP-2012-07-30 Site: West Valley Demonstration Project Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations (HS-45) Activity Report for Operational Awareness Oversight of the West Valley Demonstration Project Dates of Activity : 07/30/2012 Report Preparer: Joseph P. Drago Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) activity was for the HS-45 Site Lead to meet with Department of Energy (DOE) site personnel, tour the facilities, and obtain a status report on the upcoming activities at the West Valley Demonstration Project (WVDP). Major decommissioning activities underway include removal of asbestos-containing materials, disassembly of the dissolver,

218

Operational Awareness Oversight of the West Valley Demonstration Project, July 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

WVDP-2012-07-30 WVDP-2012-07-30 Site: West Valley Demonstration Project Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations (HS-45) Activity Report for Operational Awareness Oversight of the West Valley Demonstration Project Dates of Activity : 07/30/2012 Report Preparer: Joseph P. Drago Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) activity was for the HS-45 Site Lead to meet with Department of Energy (DOE) site personnel, tour the facilities, and obtain a status report on the upcoming activities at the West Valley Demonstration Project (WVDP). Major decommissioning activities underway include removal of asbestos-containing materials, disassembly of the dissolver,

219

Update of the Status of the U.S. Department of Energy's Motor Challenge Showcase Demonstration Projects  

E-Print Network (OSTI)

This paper presents an update on the status of the U.S. Department of Energy's (DOE) Showcase Demonstration Projects. These projects are part of the DOE Motor Challenge Program, and are aimed at demonstrating increased electric motor system...

Szady, A. J.; Jallouk, P. A.; Olszewski, M.; Scheihing, P.

220

Pacific Northwest GridWise Testbed Demonstration Projects; Part I. Olympic Peninsula Project  

SciTech Connect

This report describes the implementation and results of a field demonstration wherein residential electric water heaters and thermostats, commercial building space conditioning, municipal water pump loads, and several distributed generators were coordinated to manage constrained feeder electrical distribution through the two-way communication of load status and electric price signals. The field demonstration took place in Washington and Oregon and was paid for by the U.S. Department of Energy and several northwest utilities. Price is found to be an effective control signal for managing transmission or distribution congestion. Real-time signals at 5-minute intervals are shown to shift controlled load in time. The behaviors of customers and their responses under fixed, time-of-use, and real-time price contracts are compared. Peak loads are effectively reduced on the experimental feeder. A novel application of portfolio theory is applied to the selection of an optimal mix of customer contract types.

Hammerstrom, Donald J.; Ambrosio, Ron; Carlon, Teresa A.; DeSteese, John G.; Horst, Gale R.; Kajfasz, Robert; Kiesling, Laura L.; Michie, Preston; Pratt, Robert G.; Yao, Mark; Brous, Jerry; Chassin, David P.; Guttromson, Ross T.; Jarvegren, Olof M.; Katipamula, Srinivas; Le, N. T.; Oliver, Terry V.; Thompson, Sandra E.

2008-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "bed demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Fall 2009; Composite Data Products, Final Version September 11, 2009  

SciTech Connect

Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2009.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2009-09-01T23:59:59.000Z

222

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Spring 2009; Composite Data Products, Final Version March 19, 2009  

SciTech Connect

Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through March 2009.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2009-03-01T23:59:59.000Z

223

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Spring 2010; Composite Data Products, Final Version March 29, 2010  

SciTech Connect

Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through March 2010.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2010-05-01T23:59:59.000Z

224

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project; Spring 2008 Composite Data Products, Final Version: February 29, 2008  

SciTech Connect

Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through February 2008.

Wipke, K.; Sprik, S.; Kurtz J.

2008-04-01T23:59:59.000Z

225

51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development  

Energy.gov (U.S. Department of Energy (DOE))

51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

226

Western Greenbrier Co-Production Demonstration Project Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WESTERN WESTERN GREENBRIER CO-PRODUCTION DEMONSTRATION PROJECT FINAL ENVIRONMENTAL IMPACT STATEMENT VOLUME 1 OF 3 DOE / EIS-0361 U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory NOVEMBER 2007 COVER SHEET Responsible Agency: U.S. Department of Energy Title: Western Greenbrier Co-Production Demonstration Project, Final Environmental Impact Statement (DOE/EIS-0361) Location: Rainelle, West Virginia Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National Environmental Policy Act, contact: Roy Spears, Document Manager National Energy Technology Laboratory U.S. Department of Energy 3610 Collins Ferry Road

227

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 U.S. Department of Energy Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project Final Environmental Impact Statement November 2002 U.S. Department of Energy National Energy Technology Laboratory COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project Final Environmental Impact Statement (EIS) (DOE/EIS-0318) Location: Clark County, Kentucky Contacts: For further information on this environmental For further information on the DOE National impact statement (EIS), call: Environmental Policy Act (NEPA) process, call: 1-800-432-8330 ext. 5460 1-800-472-2756 or contact: or contact: Mr. Roy Spears Ms. Carol Borgstrom

228

ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT  

SciTech Connect

The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: SFP Construction and Fuel Production, Impact of SFP Fuel on Engine Performance, Fleet Testing at WMATA and Denali National Park, Demonstration of Clean Diesel Fuels in Diesel Electric Generators in Alaska, and Economic Analysis. ICRC provided overall project organization and budget management for the project. ICRC held meetings with various project participants. ICRC presented at the Department of Energy's annual project review meeting. The plant began producing fuel in October 2004. The first delivery of finished fuel was made in March of 2004 after the initial start-up period.

Steve Bergin

2004-10-18T23:59:59.000Z

229

Environmental monitoring for the DOE coolside and LIMB demonstration extension projects  

SciTech Connect

The purpose of this document is to present environmental monitoring data collected during the US DOE Limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators. (VC)

White, T.; Contos, L.; Adams, L. (Radian Corp., Research Triangle Park, NC (United States). Progress Center)

1992-02-01T23:59:59.000Z

230

Ultra-Clean Fischer-Tropsch Fuels Production and Demonstration Project  

SciTech Connect

The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: Dynamometer Durability Testing, the Denali Bus Fleet Demonstration, Bus Fleet Demonstrations Emissions Analysis, Impact of SFP Fuel on Engine Performance, Emissions Analysis, Feasibility Study of SFPs for Rural Alaska, and Cold Weather Testing of Ultra Clean Fuel.

Steve Bergin

2005-10-14T23:59:59.000Z

231

RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM  

SciTech Connect

The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

2012-02-02T23:59:59.000Z

232

Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project  

SciTech Connect

The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandum of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.

Davis, J.; Gelman, R.; Tomberlin, G.; Bain, R.

2014-03-01T23:59:59.000Z

233

Environmental monitoring for the DOE coolside and LIMB demonstration extension projects  

SciTech Connect

The purpose of this document is to present environmental monitoring data collected during the US Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. These data were collected by implementing the Environmental Monitoring Plan (EMP) for the DOE LIMB Demonstration Project Extension, dated August 1988. This document is the fifth EMP status report to be published and presents the data generated during November and December 1990, and January 1991. These reports review a three or four month period and have been published since the project's start in October 1989. The DOE project is an extension of the US Environmental Protection Agency's (EPA) original LIMB Demonstration. The program is operated under DOE's Clean Coal Technology Program of emerging clean coal technologies'' under the categories of in boiler control of oxides of sulfur and nitrogen'' as well as post-combustion clean-up.'' The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators (ESPs). 5 figs., 12 tabs.

White, T.; Contos, L.

1991-09-01T23:59:59.000Z

234

EA-1970: Fishermens Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey  

Energy.gov (U.S. Department of Energy (DOE))

DOE is proposing to provide funding to Fishermens Energy LLC to construct and operate up to five 5.0 MW wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical miles off the coast of Atlantic City, NJ. The proposed action includes a cable crossing from the turbines to an on-shore existing substation.

235

Demonstration of Shibboleth in Action across a Range of Security focused Grid Projects  

E-Print Network (OSTI)

Demonstration of Shibboleth in Action across a Range of Security focused Grid Projects Prof. R. O of the critical factors to the success of Grid technologies is ease of use. To encourage wider uptake, the access to large scale computational and data resources such as the National Grid Service (NGS) (www

Glasgow, University of

236

Binational GIS database of coastal wetlands for Lake Ontario and the St. Lawrence: a demonstration project  

E-Print Network (OSTI)

Binational GIS database of coastal wetlands for Lake Ontario and the St. Lawrence: a demonstration In this project, I assembled a seamless binational GIS database that contains all available shapefiles of coastal (Wetland Inventory for Research and Education) website (http://www.wirenet.info). GIS was used to quantify

McMaster University

237

West Valley Demonstration Project Administrative Consent Order, August 27, 1996 Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project (WVDP) West Valley Demonstration Project (WVDP) Adminstrative Consent Order, August 27, 1996 State New York Agreement Type Consent Order Legal Driver(s) FFCAct Scope Summary Establish commitments regarding compliance with the approved Site Treatment Plan (STP) regarding mixed waste stored and generated at the WVDP Parties DOE; New York State Department of Environmental Conservation (NYSDEC) Date 8/27/1996 SCOPE * Establish commitments regarding compliance with the approved Site Treatment Plan (STP) regarding mixed waste stored and generated at the WVDP. * Establish an enforceable framework in which DOE will develop and apply treatment or otherwise meet Land Disposal Restriction (LDR) requirements. * Provide for storage of current and projected LDR mixed wastes at the WVDP pending

238

Water Use Optimization Toolset Project: Development and Demonstration Phase Draft Report  

SciTech Connect

This report summarizes the results of the development and demonstration phase of the Water Use Optimization Toolset (WUOT) project. It identifies the objective and goals that guided the project, as well as demonstrating potential benefits that could be obtained by applying the WUOT in different geo-hydrologic systems across the United States. A major challenge facing conventional hydropower plants is to operate more efficiently while dealing with an increasingly uncertain water-constrained environment and complex electricity markets. The goal of this 3-year WUOT project, which is funded by the U.S. Department of Energy (DOE), is to improve water management, resulting in more energy, revenues, and grid services from available water, and to enhance environmental benefits from improved hydropower operations and planning while maintaining institutional water delivery requirements. The long-term goal is for the WUOT to be used by environmental analysts and deployed by hydropower schedulers and operators to assist in market, dispatch, and operational decisions.

Gasper, John R. [Argonne National Laboratory] [Argonne National Laboratory; Veselka, Thomas D. [Argonne National Laboratory] [Argonne National Laboratory; Mahalik, Matthew R. [Argonne National Laboratory] [Argonne National Laboratory; Hayse, John W. [Argonne National Laboratory] [Argonne National Laboratory; Saha, Samrat [Argonne National Laboratory] [Argonne National Laboratory; Wigmosta, Mark S. [PNNL] [PNNL; Voisin, Nathalie [PNNL] [PNNL; Rakowski, Cynthia [PNNL] [PNNL; Coleman, Andre [PNNL] [PNNL; Lowry, Thomas S. [SNL] [SNL

2014-05-19T23:59:59.000Z

239

Nome, Alaska, Wind Turbine Demonstration Project Finding of No Significant Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding of No Significant Impact Finding of No Significant Impact Nome, Alaska, Wind Turbine Demonstration Project FINDING OF NO SIGNIFICANT IMPACT S U M M A R Y The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) to provide DOE and other public agency decision makers witb tbe environmental documentation required to take informed discretionary action on the proposed Nome, Alaska, Wind Turbine Demonstration Project (DOE/EA-1280). The EA assesses the potential environmental impacts and cumulative i m p a c t s that would result from the jnstallation and operation of wind turbines in Nome, Alaska DOE'S role in the proposed action would be limited to providing ,$ding assistance for a portion of the construction and demonstration of wind energy technology in the

240

Environmental monitoring for the DOE coolside and LIMB demonstration extension projects  

SciTech Connect

The purpose of this document is to present environmental monitoring data collected during the US Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. The DOE project is an extension of the US Environmental Protection Agency's (EPA's) original LIMB Demonstration. The program is operated nuclear DOE's Clean Coal Technology Program of emerging clean coal technologies'' under the categories of in boiler control of oxides of sulfur and nitrogen'' as well as post-combustion clean-up.'' The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators (ESPs).

White, T.; Contos, L.; Adams, L. (Radian Corp., Research Triangle Park, NC (United States))

1992-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2013  

SciTech Connect

West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2013. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2013. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOEs effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2013 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

Rendall, John D. [CH2MHILL B& W West Valley, LLC (CHBWV); Steiner, Alison F. [CH2MHILL B& W West Valley, LLC (CHBWV); Pendl, Michael P. [CH2MHILL B& W West Valley, LLC (CHBWV)

2014-09-16T23:59:59.000Z

242

Department Human Resources Bulletin, #027, FY06, dated August 1,2006 DOC Demonstration Project Operating Procedures  

E-Print Network (OSTI)

Project Operating Procedures Purpose This issuance provides NOAA managers with pay setting flexibilitywhen Demonstration Project OperatingProcedures. . . . , . . Background On August 1,2006, the Department issued Human setting pay for Presidential Management Fellows (PMF) who are covered by the DOC Demonstration Project

243

Incidental-to-Reprocessing Evaluation for the West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Responses to Public Comments on the Draft Waste- Responses to Public Comments on the Draft Waste- Incidental-to-Reprocessing Evaluation for the West Valley Demonstration Project Concentrator Feed Makeup Tank and Melter Feed Hold Tank 1 Introduction The U.S. Department of Energy (DOE) is providing responses to the comments received from the public and from state and county agencies on the West Valley Demonstration Project (WVDP) Draft Waste-Incidental-to-Reprocessing (WIR) Evaluation for the Concentrator Feed Makeup Tank (CFMT) and the Melter Feed Hold Tank (MFHT), referred to hereafter as the Draft Evaluation. As a matter of policy and to provide greater transparency in its efforts to cleanup waste at the WVDP, DOE made the Draft Evaluation available for public and state review and comment, as

244

Supplement analysis 2 of environmental impacts resulting from modifications in the West Valley Demonstration Project  

SciTech Connect

The West Valley Demonstration Project, located in western New York, has approximately 600,000 gallons of liquid high-level radioactive waste (HLW) in storage in underground tanks. While corrosion analysis has revealed that only limited tank degradation has taken place, the failure of these tanks could release HLW to the environment. Congress requires DOE to demonstrate the technology for removal and solidification of HLW. DOE issued the Final Environmental Impact Statement (FEIS) in 1982. The purpose of this second supplement analysis is to re-assess the 1982 Final Environmental Impact Statement's continued adequacy. This report provides the necessary and appropriate data for DOE to determine whether the environmental impacts presented by the ongoing refinements in the design, process, and operations of the Project are considered sufficiently bounded within the envelope of impacts presented in the FEIS and supporting documentation.

NONE

1998-06-23T23:59:59.000Z

245

2012 Annual Workforce Analysis and Staffing Plan Report - West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ATTACHMENT ATTACHMENT 1 Annual Workforce Analysis and Staffing Plan Report As ofDecember 31, 2012 Reporting Office: West Valley Demonstration Project Section 1: Current Mission(s) of the Organization and Potential Changes The mission of the WVDP as defined by the West Valley Demonstration Project Act (Public Law 96-368) is to accomplish five activities: 1) solidify high-level radioactive waste (HLW), 2) develop containers suitable for permanent disposal of the HLW, 3) transport the HLW to a Federal repository for permanent disposal, 4) dispose of low-level and transuranic waste produced by the solidification of the HLW, and 5) decontaminate and decommission the HLW tanks and facilities, materials and hardware used to solidify the HLW. DOE expects to accomplish these WVDP activities through proactive leadership, management, and implementation of safe and environmentally sound operations.

246

SRC-1: coal liquefaction demonstration plant. Project Baseline assessment report supplement  

SciTech Connect

ICRC issued a Revised Baseline for the SRC-I Demonstration Project in order to incorporate the results of these research activities and the changes in the design that had occurred since FY82. The Revised Baseline, prepared by ICRC, provides the necessary information for any future government or commercial decisions relating to the design, construction and operation of an SRC-I-type coal liquefaction facility. No further activities to complete the design of the demonstration plant, or to proceed with construction are planned by DOE. The Project Baseline is an ICRC-documented reference for controlling any future project work and cost. The original Baseline was issued in March 1982; this summary document is available from National Technical Information Service (NTIS) as document number DOE/ORO/030540-T13. The Revised Baseline (dated April 1984) is available as document numbers DOE/OR/03054-T14 and T16. Supporting documentation, in the main concerned with research activities undertaken in support of the design, is also available from NTIS as DOE/OR/03054-T1 through T10 and DOE/OR/03054-1 through 125. The Baseline itself is made up of a documented design configuration, a documented estimate, in First Quarter Fiscal Year 1982 Dollars (1QFY82$), and a detailed schedule of the activities required to complete the project as of 3QFY82. The Baseline design is embodied in the 26 process design packages and other support documentation identified in the Baseline, as well as preliminary engineering flow diagrams prepared for all of the major process areas of the plant. All elements of the Project Baseline were developed within the constraints of the project criteria.

Not Available

1984-09-01T23:59:59.000Z

247

City of Medicine Hat Concentrating Solar Thermal Demonstration Project, Alberta, Canada  

Science Journals Connector (OSTI)

Abstract Following a 2007 conceptual feasibility study on a demonstration project to use renewable energy to supplement the production of electricity in their municipal utility, the city council of Medicine Hat approved and identified funding sources to design and construct a commercially Integrated Solar Combined Cycle demonstration with a capacity of 1 MWe. The demonstration project was undertaken as a step to reduce green house gas emissions, explore the viability of concentrating solar thermal technology under local conditions, and introduce concentrated solar power electricity generation in Alberta, which enjoys the highest solar resource of direct normal irradiance (DNI) in the country. The 203 \\{MWe\\} municipal power plant consists of four combustion turbine (CT)/heat recovery steam generator (HRSG) units feeding superheated steam to two steam turbines. The project is located at a latitude of 50 N. Based on recent satellite evaluations of the DNI resource in Canada, a Typical Meteorological Year was established for project design. The solar field consists of eight SkyTrough (SkyFuel, Arvada, CO) collector assemblies located approximately 400m south of the power plant at a slightly lower elevation. Hot HTF exiting from the solar field is piped down to the power plant, where a solar steam generator (SSG) produces saturated steam for injection into the superheater section of the HRSG of a single CT unit. Permitting, preliminary and detailed design, and procurement tasks are complete. The short construction period started in April 2013 to be completed early Fall 2013 or Spring 2014, followed by commissioning, solar field acceptance testing, and initial operation.

K. MacKenzie; R. Bowers; D. Wacker; R. Drever; A. Jyoti; D. Kearney

2014-01-01T23:59:59.000Z

248

Synthetic Fuel from Biomass: The AVSA Dual Fluid Bed Combustor Gasifier Project  

Science Journals Connector (OSTI)

The AVSA project covers completely the generation of synthesis gas from wood waste: feed collection, sizing, drying and transportation as well as gasifier design.

A. Bary; H. A. Masson; P. Debaud

1982-01-01T23:59:59.000Z

249

RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project  

SciTech Connect

As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This was one of several demonstrations of new and underutilized commercial energy efficiency technologies. The consistent year-round demand for air conditioning and dehumidification in Hawaii provides an advantageous demonstration location for advanced rooftop control (ARC) retrofit kits to packaged rooftop units (RTUs). This report summarizes the field demonstration of ARCs installed on nine RTUs serving a 70,000-ft2 exchange store (large retail) and two RTUs, each serving small office buildings located on Joint Base Pearl Harbor-Hickam (JBPHH).

Doebber, I.; Dean, J.; Dominick, J.; Holland, G.

2014-03-01T23:59:59.000Z

250

The Mobile Test and Demonstration Unit, A Cooperative Project Between EPRI, Utilities and Industry to Demonstrate New Water Treatment Technologies  

E-Print Network (OSTI)

and has demonstrated that membrane processes like MF, UF, NF and RO can successfully be applied to remove BOD and TSS from process streams, often recovering valuable solids, reducing sewer charges and meeting environmental regulations....

Strasser, J.; Mannapperuma, J.

251

2012 SG Peer Review - Recovery Act: Secure Interoperable Open Smart Grid Demonstration Project - Tom Magee, ConEd NY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demonstration Project Demonstration Project Patricia Robison Con Edison June 8, 2012 December 2008 Smart Grid Demonstration Project Objective Life-cycle Funding FY10 - FY13 $45.4 m Technical Scope (Insert graphic here) 2 *Integrate Legacy and Smart Grid information systems *Integrate external DR into distribution grid systems: - EV/Battery storage - Building Management Systems (BMS) - Standby generation - Photovoltaic Demonstrate secure interoperable services between utility distribution systems and customer owned distributed resources (DR) December 2008 Needs and Project Targets Integrate customer owned resources into distribution operations to enable customer participation and defer capital investment *Integrate DR resources into operator platform *Implement secure communications to DR resources

252

USDA, DOE to Invest up to $18.4 million for Biomass Research, Development and Demonstration Projects  

Energy.gov (U.S. Department of Energy (DOE))

"USDA and DOE will invest up to $18.4 million, over three years, for 21 biomass research and development (R&D), and demonstration projects"

253

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Spring 2007 Composite Data Products; March 8, 2007  

SciTech Connect

This presentation provides the composite data products from Spring 2007 from NREL's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

Wipke, K.; Sprik, S.; Thomas, H.; Welch, C.

2007-04-01T23:59:59.000Z

254

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Advanced Electric Power Generation - Fluidized Bed Combustion McIntosh Unit 4A PCFB Demonstration Project - Project Brief [PDF-186KB] Lakeland Department of Electric & Water, Lakeland, FL PROGRAM PUBLICATIONS Annual/Quarterly Technical Reports Pressurized Circulating Fluidized Bed (PCFB) Repowering Project, Annual Report, January - December 1993 (Apr 1994) -- Not Available Pressurized Circulating Fluidized Bed (PCFB) Repowering Project, Annual Report, August 1991 - December 1992 (Apr 1993) -- Not Available Interim Reports Karhula Hot Gas Cleanup Test Results (June 1994) -- Not Available PCFB Repowering Project 80 MW Plant Description (May 1994) -- Not Available Comprehensive Report to Congress Comprehensive Report to Congress on the Clean Coal Technology Progam: Pressurized Circulating Fluidized Bed Demonstration Project (June 1991) -- Not Available

255

California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report  

SciTech Connect

Wastewater treatment is an energy-intensive process and electricity demand is especially high during the utilities summer peak electricity demand periods. This makes wastewater treatment facilities prime candidates for demand response programs. However, wastewater treatment is often peripheral to food processing operations and its demand response opportunities have often been overlooked. Phase I of this wastewater demonstration project monitored wastewater energy and environmental data at Bell-Carter Foods, Inc., California's largest olive processing plant. For this monitoring activity the project team used Green Energy Management System (GEMS) automated enterprise energy management (EEM) technologies. This report presents results from data collected by GEMS from September 15, 2008 through November 30, 2008, during the olive harvest season. This project established and tested a methodology for (1) gathering baseline energy and environmental data at an industrial food-processing plant and (2) using the data to analyze energy efficiency, demand response, daily peak load management, and environmental management opportunities at the plant. The Phase I goals were to demonstrate the measurement and interrelationship of electricity demand, electricity usage, and water quality metrics and to estimate the associated CO{sub 2} emissions.

Lewis, Glen; Atkinson, Barbara; Rhyne, Ivin

2009-09-09T23:59:59.000Z

256

ESS 2012 Peer Review - DOE-OE FY12 Electrical Energy Storage Demonstration Projects - Dan Borneo, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-OE FY12 Electrical DOE-OE FY12 Electrical Energy Storage Demonstration Projects The Renaissance Hotel Washington, D.C. September 2012 Presented by Dan Borneo SAND Document 5312608 SAND2012-7453 C Acknowledgements I would like to thank the DOE's Office of Electricity and Dr. Imre Gyuk, Program Manager of the Electrical Energy Storage Program, for their support and funding of the Energy Storage Demonstration Projects. 2 EES Emerging Technology Demonstrations Presentation Outline  Project Overview  Problem Statement  Approach  Current Status  Path Forward - Next Steps  Geographical Representation of Projects  Summary Chart of Projects  Brief Descriptions of Individual Projects  Concluding Remarks 3 EES Demonstrations Project Overview  Problem Statement

257

Technical support to the Solvent Refined Coal (SRC) demonstration projects: assessment of current research and development  

SciTech Connect

A program to demonstrate Solvent Refined Coal (SRC) technology has been initiated by the US Department of Energy (DOE) in partnership with two industrial groups. Project management responsibility has been assigned to the Oak Ridge Operations Office (ORO) of DOE. ORO requested that the Oak Ridge National Laboratory assess current research and development (R and D) activities and develop recommendations for those activities that might contribute to successful completion of the SRC demonstration plant projects. The objectives of this final report are to discuss in detail the problem areas in SRC; to discuss the current and planned R and D investigations relevant to the problems identified; and to suggest appropriate R and D activities in support of designs for the SRC demonstration plants. Four types of R and D activities are suggested: continuation of present and planned activities; coordination of activities and results, present and proposed; extension/redirection of activities not involving major equipment purchase or modifications; and new activities. Important examples of the first type of activity include continuation of fired heater, slurry rheology, and slurry mixing studies at Ft. Lewis. Among the second type of activity, coordination of data acquisition and interpretation is recommended in the areas of heat transfer, vapor/liquid equilibria, and physical properties. Principal examples of recommendations for extension/redirection include screening studies at laboratory scale on the use of carbonaceous precoat (e.g., anthracite) infiltration, and 15- to 30-day continuous tests of the Texaco gasifier at the Texaco Montebello facility (using SRC residues).

Edwards, M.S.; Rodgers, B.R.; Brown, C.H.; Carlson, P.K.; Gambill, W.R.; Gilliam, T.M.; Holmes, J.M.; Krishnan, R.P.; Parsly, L.F.

1980-12-01T23:59:59.000Z

258

Task 27 -- Alaskan low-rank coal-water fuel demonstration project  

SciTech Connect

Development of coal-water-fuel (CWF) technology has to-date been predicated on the use of high-rank bituminous coal only, and until now the high inherent moisture content of low-rank coal has precluded its use for CWF production. The unique feature of the Alaskan project is the integration of hot-water-drying (HWD) into CWF technology as a beneficiation process. Hot-water-drying is an EERC developed technology unavailable to the competition that allows the range of CWF feedstock to be extended to low-rank coals. The primary objective of the Alaskan Project, is to promote interest in the CWF marketplace by demonstrating the commercial viability of low-rank coal-water-fuel (LRCWF). While commercialization plans cannot be finalized until the implementation and results of the Alaskan LRCWF Project are known and evaluated, this report has been prepared to specifically address issues concerning business objectives for the project, and outline a market development plan for meeting those objectives.

NONE

1995-10-01T23:59:59.000Z

259

Explosives disposal demonstration projects. Progress report, April 12, 1995--June 30, 1995  

SciTech Connect

This report contains quarterly reports on two projects. The first is undertaking the environmental restoration at the Pantex Plant. Research objectives are organized under four general tasks: field testing and produced water treatment, bioremediation of contaminated groundwater and soils, vadose zone remediation, and chromium remediation. The other project goal is to demonstrate generation of diamond by explosive compression of Carbon 60 and Carbon 70 and mixtures of these fullerenes. The intent is to exploit expertise developed by Pantex and other DOE Laboratories in the area of understanding and modeling of explosive compression for initiation of nuclear fission reactions to explosively compress carbon in the form of fullerenes with the goal of transforming the material into the diamond phase.

Charbeneau, R.

1995-08-01T23:59:59.000Z

260

Stakeholder Views on Financing Carbon Capture and Storage Demonstration Projects in China  

Science Journals Connector (OSTI)

NDRCs approval can be viewed as an endorsement of at least the potential for financial incentives from the Chinese national government such as capital subsidies, feed-in-tariffs, or favorable tax rates. ... In the absence of policy incentives sufficient to encourage deploying CCS in China such as a feed-in-tariff or emission performance standard, financing the initial capital investment is a priority issue in demonstrating a large-scale CO2 capture project at a coal-fired power plant. ...

David Reiner; Xi Liang

2011-12-09T23:59:59.000Z

Note: This page contains sample records for the topic "bed demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The Role of Occupant Behavior in Achieving Net Zero Energy: A Demonstration Project at Fort Carson  

SciTech Connect

This study, sponsored by the U.S. General Services Administrations Office of Federal High-Performance Green Buildings, aimed to understand the potential for institutional and behavioral change to enhance the performance of buildings, through a demonstration project with the Department of Defense in five green buildings on the Fort Carson, Colorado, Army base. To approach this study, the research team identified specific occupant behaviors that had the potential to save energy in each building, defined strategies that might effectively support behavior change, and implemented a coordinated set of actions during a three-month intervention.

Judd, Kathleen S.; Sanquist, Thomas F.; Zalesny, Mary D.; Fernandez, Nicholas

2013-09-30T23:59:59.000Z

262

MHK Projects/Evopod E1 1 10 scale grid connected demonstrator | Open Energy  

Open Energy Info (EERE)

Evopod E1 1 10 scale grid connected demonstrator Evopod E1 1 10 scale grid connected demonstrator < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.388,"lon":-5.566,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

263

MHK Projects/NJBPU 1 5 MW Demonstration Program | Open Energy Information  

Open Energy Info (EERE)

NJBPU 1 5 MW Demonstration Program NJBPU 1 5 MW Demonstration Program < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6032,"lon":-74.3401,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

264

LIMB demonstration project extension. Quarterly report No. 18, August--October 1991  

SciTech Connect

The main objectives of this project are: (1) To demonstrate the general applicability of Limestone Injection Multistage Burner (LIMB) technology by testing 3 coals and 4 sorbents (total of 12 coal/sorbent combinations) at the Ohio Edison Edgewater Plant. (2) To demonstrate that Coolside is a viable technology for improving precipitator performance and reducing sulfur dioxide emissions while acceptance operability is maintained. During the past quarter, activities for phase I, design and permitting, and phase II, construction, shakedown and start-up were completed for phase III, operation, data collection, reporting and disposition, activities continued with consol completing the revisions to the Coolside Topical report, the completion of LIMB Extension testing, and the start of demobilization and restoration.

Not Available

1991-12-16T23:59:59.000Z

265

MHK Projects/Evopod E35 35kW grid connected demonstrator | Open Energy  

Open Energy Info (EERE)

E35 35kW grid connected demonstrator E35 35kW grid connected demonstrator < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.3028,"lon":-5.59772,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

266

MHK Projects/Minas Basin Bay of Fundy Commercial Scale Demonstration | Open  

Open Energy Info (EERE)

Minas Basin Bay of Fundy Commercial Scale Demonstration Minas Basin Bay of Fundy Commercial Scale Demonstration < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3658,"lon":-64.4294,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

267

Western Greenbrier Co-Production Demonstration Project Draft Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Figure S-1. Figure S-1. General Location Map U.S. Department of Energy National Energy Technology Lab Western Greenbrier Co-Production Demonstration Project DEIS November 2006 WV 20 S 12 S 63 WV 39 Proposed Co- Production Facility Anjean and Joe Knob Coal Refuse Piles U S 6 0 U S 6 0 US 219 WV 20 WV 39 AN1 AN2 AN3 DN1 DN2 GV W V 2 0 U S 6 0 C R 1 Figure 1-1. General Location Map U.S. Department of Energy National Energy Technology Lab Western Greenbrier Co-Production Demonstration Project DEIS November 2006 WV 20 S 12 S 63 WV 39 Proposed Co- Production Facility Anjean and Joe Knob Coal Refuse Piles U S 6 0 U S 6 0 US 219 WV 20 WV 39 AN1 AN2 AN3 DN1 DN2 GV W V 2 0 U S 6 0 C R 1 S 63 Rainelle Anjean Quinwood Charmco Lewisburg Savannah Quarry Greystone Quarry Boxley Quarry Anjean and Joe Knob Coal Refuse Piles Green Valley Coal Refuse Pile

268

Solar hot water demonstration project at Red Star Industrial Laundry, Fresno, California  

SciTech Connect

The Final Report of the Solar Hot Water System located at the Red Star Industrial Laundry, 3333 Sabre Avenue, Fresno, California, is presented. The system was designed as an integrated wastewater heat recovery and solar preheating system to supply a part of the hot water requirements. It was estimated that the natural gas demand for hot water heating could be reduced by 56 percent (44 percent heat reclamation and 12 percent solar). The system consists of a 16,500 gallon tube-and-shell wastewater heat recovery subsystem combined with a pass-through 6,528 square foot flat plate Ying Manufacturing Company Model SP4120 solar collector subsystem, a 12,500 gallon fiber glass water storage tank subsystem, pumps, heat exchangers, controls, and associated plumbing. The design output of the solar subsystem is approximately 2.6 x 10/sup 9/ Btu/year. Auxiliary energy is provided by a gas fired low pressure boiler servicing a 4,000 gallon service tank. This project is part of the US Department of Energy's Solar Demonstration Program with DOE sharing $184,841 of the $260,693 construction cost. The system was turned on in July 1977, and acceptance tests completed in September 1977. The demonstration period for this project ends September 2, 1982.

None

1980-07-01T23:59:59.000Z

269

Documentation of the Range 8C rehabilitation demonstration project at Hohenfels Training Area, West Germany  

SciTech Connect

Continued and intensive tactical training for the last 35 years at the Hohenfels Training Area (HTA), Federal Republic of Germany, has resulted in extensive environmental damage and reduced training realism. The US Corps of Engineers Construction Engineering Research Laboratory is developing an Integrated Training Area Management (ITAM) Program for the Seventh Army Training Command for use at HTA. Argonne National Laboratory was asked to assist in one element of the ITAM program, a training range rehabilitation demonstration project. The rehabilitation project was begun in 1986 on a 62-ha watershed that included about 16 ha of meadow with training damage typical of HTA. On the basis of amount of plant ground cover, type and degree of erosion, and soil properties, 10 rehabilitation prescriptions were developed to reestablish plant cover, control erosion, and improve training realism. Prescriptions were installed by a local contractor in September 1986. A monitoring program is under way to determine the effectiveness of this effort. Results and experience gained from this project will be used in the ITAM program and for rehabilitation training courses conducted at HTA.

Zellmer, S.D.; Hinchman, R.R.; Carter, R.P.; Severinghaus, W.D.; Lacey, R.M.; Brent, J.J.

1987-03-01T23:59:59.000Z

270

WEST VALLEY DEMONSTRATION PROJECT ANNUAL SITE ENVIRONMENTAL REPORT CALENDAR YEAR 2002  

SciTech Connect

This annual environmental monitoring report for the West Valley Demonstration Project (WVDP or Project) is published to inform those with interest about environmental conditions at the WVDP. In accordance with U.S. Department of Energy (DOE) Order 231.1, Environment, Safety, and Health Reporting, the report summarizes calendar year (CY) 2002 environmental monitoring data so as to describe the performance of the WVDP's environmental management system, confirm compliance with standards and regulations, and highlight important programs. In 2002, the West Valley Demonstration Project, the site of a DOE environmental cleanup activity operated by West Valley Nuclear Services Co. (WVNSCO), was in the final stages of stabilizing high-level radioactive waste (HLW) that remained at the site after commercial nuclear fuel reprocessing had been discontinued in the early 1970s. The Project is located in western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). The WVDP is being conducted in cooperation with the New York State Energy Research and Development Authority (NYSERDA). Ongoing work activities at the WVDP during 2002 included: (1) completing HLW solidification and melter shutdown; (2) shipping low-level radioactive waste off-site for disposal; (3) constructing a facility where large high-activity components can be safely packaged for disposal; (4) packaging and removing spent materials from the vitrification facility; (5) preparing environmental impact statements for future activities; (6) removing as much of the waste left behind in waste tanks 8D-1 and 8D-2 as was reasonably possible; (7) removing storage racks, canisters, and debris from the fuel receiving and storage pool, decontaminating pool walls, and beginning shipment of debris for disposal; (8) ongoing decontamination in the general purpose cell and the process mechanical cell (also referred to as the head end cells); (9) planning for cleanup of waste in the plutonium purification cell (south) and extraction cell number 2 in the main plant; (10) ongoing characterization of facilities such as the waste tank farm and process cells; (11) monitoring the environment and managing contaminated areas within the Project facility premises; and (12) flushing and rinsing HLW solidification facilities.

NONE

2003-09-12T23:59:59.000Z

271

Ultra-clean Fischer-Tropsch (F-T) Fuels Production and Demonstration Project  

SciTech Connect

The objective of the DOE-NETL Fischer-Tropsch (F-T) Production and Demonstration Program was to produce and evaluate F-T fuel derived from domestic natural gas. The project had two primary phases: (1) fuel production of ultra-clean diesel transportation fuels from domestic fossil resources; and (2) demonstration and performance testing of these fuels in engines. The project also included a well-to-wheels economic analysis and a feasibility study of small-footprint F-T plants (SFPs) for remote locations such as rural Alaska. During the fuel production phase, ICRC partnered and cost-shared with Syntroleum Corporation to complete the mechanical design, construction, and operation of a modular SFP that converts natural gas, via F-T and hydro-processing reactions, into hydrogensaturated diesel fuel. Construction of the Tulsa, Oklahoma plant started in August 2002 and culminated in the production of over 100,000 gallons of F-T diesel fuel (S-2) through 2004, specifically for this project. That fuel formed the basis of extensive demonstrations and evaluations that followed. The ultra-clean F-T fuels produced had virtually no sulfur (less than 1 ppm) and were of the highest quality in terms of ignition quality, saturation content, backend volatility, etc. Lubricity concerns were investigated to verify that commercially available lubricity additive treatment would be adequate to protect fuel injection system components. In the fuel demonstration and testing phase, two separate bus fleets were utilized. The Washington DC Metropolitan Area Transit Authority (WMATA) and Denali National Park bus fleets were used because they represented nearly opposite ends of several spectra, including: climate, topography, engine load factor, mean distance between stops, and composition of normally used conventional diesel fuel. Fuel evaluations in addition to bus fleet demonstrations included: bus fleet emission measurements; F-T fuel cold weather performance; controlled engine dynamometer lab evaluation; cold-start test-cell evaluations; overall feasibility, economics, and efficiency of SFP fuel production; and an economic analysis. Two unexpected issues that arose during the project were further studied and resolved: variations in NOx emissions were accounted for and fuel-injection nozzle fouling issues were traced to the non-combustible (ash) content of the engine oil, not the F-T fuel. The F-T fuel domestically produced and evaluated in this effort appears to be a good replacement candidate for petroleum-based transportation fuels. However, in order for domestic F-T fuels to become a viable cost-comparable alternative to petroleum fuels, the F-T fuels will need to be produced from abundant U.S. domestic resources such as coal and biomass, rather than stranded natural gas.

Stephen P. Bergin

2006-06-30T23:59:59.000Z

272

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

S-1 S-1 SUMMARY The U.S. Department of Energy (DOE) prepared this environmental impact statement (EIS) on the proposed Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project in compliance with the National Environmental Policy Act (NEPA). The National Environmental Policy Act Process NEPA is a federal law that serves as the basic national charter for protection of the environment. For major federal actions that may significantly affect the quality of the environment, NEPA requires federal agencies to prepare a detailed statement that includes the potential environmental impacts of the Proposed Action and reasonable alternatives. A fundamental objective of NEPA is to foster better decisionmaking by ensuring that high quality environmental information is available to public officials and members of the

273

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comments Comments Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement Clark County Public Library Winchester, KY Page 1 of 5 D-1 Comment No. 1 Issue Code: 11 Gasification is different from incineration. It is a better, more environmentally responsible approach to generating energy from the use of fossil fuels and refuse derived fuel (RDF). Incineration produces criteria pollutants, semi-volatile and volatile organic compounds and dioxin/furan compounds. Ash from hazardous waste incinerators is considered a hazardous waste under the Resource Conservation and Recovery Act (RCRA). In contrast, gasification, which occurs at high temperatures and pressures, produces no air emissions, only small amounts of wastewater containing salts. Synthesis gas (syngas)

274

Solar heating and cooling demonstration project at the Florida Solar Energy Center  

SciTech Connect

The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. Information is provided on the system's test, operation, controls, hardware and installation, including detailed drawings. The Center's office building, approximately 5000 square feet of space, with solar air conditioning and heating as a demonstration of the technical feasibility is located just north of Port Canaveral, Florida. The system was designed to supply approximately 70% of the annual cooling and 100% of the heating load. The project provides unique high-temperature, non-imaging, non-tracking, evacuated-tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection.

Hankins, J.D.

1980-02-01T23:59:59.000Z

275

Blast Furnace Granulated Coal Injection System Demonstration Project: A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Blast Furnace Granulated Coal Injection System Demonstration Project: A DOE Assessment June 2000 U. S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein

276

West Valley Demonstration Project site environmental report for calendar year 1996  

SciTech Connect

The West Valley Demonstration Project (WVDP), the site of a US Department of Energy environmental cleanup activity operated by West Valley Nuclear Services Co., Inc., (WVNS), is in the process of solidifying liquid high-level radioactive waste remaining at the site after commercial nuclear fuel reprocessing was discontinued. The Project is located in Western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1996 by environmental monitoring personnel. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. Appendix A is a summary of the site environmental monitoring schedule. Appendix B lists the environmental permits and regulations pertaining to the WVDP. Appendices C through F contain summaries of data obtained during 1996 and are intended for those interested in more detail than is provided in the main body of the report.

NONE

1997-06-01T23:59:59.000Z

277

ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT  

SciTech Connect

The Syntroleum plant is mechanically complete and currently undergoing start-up. The fuel production and demonstration plan is near completion. The study on the impact of small footprint plant (SFP) fuel on engine performance is about half-completed. Cold start testing has been completed. Preparations have been completed for testing the fuel in diesel electric generators in Alaska. Preparations are in progress for testing the fuel in bus fleets at Denali National Park and the Washington Metropolitan Transit Authority. The experiments and analyses conducted during this project show that Fischer-Tropsch (FT) gas-to-liquid diesel fuel can easily be used in a diesel engine with little to no modifications. Additionally, based on the results and discussion presented, further improvements in performance and emissions can be realized by configuring the engine to take advantage of FT diesel fuel's properties. The FT fuel also shows excellent cold start properties and enabled the engine tested to start at more the ten degrees than traditional fuels would allow. This plant produced through this project will produce large amounts of FT fuel. This will allow the fuel to be tested extensively, in current, prototype, and advanced diesel engines. The fuel may also contribute to the nation's energy security. The military has expressed interest in testing the fuel in aircraft and ground vehicles.

Steve Bergin

2003-10-17T23:59:59.000Z

278

Environmental Assessment for the Decontamination, Demolition, and Removal of Certain Facilities at the West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

52 52 Environmental Assessment for the Decontamination, Demolition, and Removal of Certain Facilities at the West Valley Demonstration Project Final U.S. Department of Energy West Valley Demonstration Project West Valley, New York September 14, 2006 Final EA - Decontamination, Demolition, and Removal of Certain Facilities at WVDP i Table of Contents CHAPTER 1 INTRODUCTION AND PURPOSE AND NEED FOR AGENCY ACTION................ 1 1.1 Overview....................................................................................................................... 1 1.2 West Valley Demonstration Project.............................................................................. 2 1.3 Purpose and Need for Agency Action ..........................................................................

279

Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration  

SciTech Connect

The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

Gohar, Yousry; /Argonne; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

2011-04-01T23:59:59.000Z

280

E-Print Network 3.0 - administration demonstration project Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

and SPA internal sponsored projects policies... as internal operating policies and procedures to improve sponsored project ... Source: Janssen, Michel - Program in the...

Note: This page contains sample records for the topic "bed demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Bed material agglomeration during fluidized bed combustion  

SciTech Connect

The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

Brown, R.C.; Dawson, M.R.; Noble, S.

1993-02-01T23:59:59.000Z

282

Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000  

SciTech Connect

The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric power marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical--can continue in its role as a key component in the U.S. and world energy markets. The CCT Program also has global importance in providing clean, efficient coal-based technology to a burgeoning energy market in developing countries largely dependent on coal. Based on 1997 data, world energy consumption is expected to increase 60 percent by 2020, with almost half of the energy increment occurring in developing Asia (including China and India). By 2020, energy consumption in developing Asia is projected to surpass consumption in North America. The energy form contributing most to the growth is electricity, as developing Asia establishes its energy infrastructure. Coal, the predominant indigenous fuel, in that region will be the fuel of choice in electricity production. The CCTs offer a means to mitigate potential environmental problems associated with unprecedented energy growth, and to enhance the U.S. economy through foreign equipment sales and engineering services.

NONE

2000-09-01T23:59:59.000Z

283

Tenth annual fluidized bed conference  

SciTech Connect

The proceedings of the Tenth Annual Fluidized Bed Conference is presented. The Conference was held November 14-15, 1994 in Jacksonville, FL and covered such topics as: opportunity fuels, the fluid bed market, bubbling fluid bed retrofitting, waste fuel-based circulating fluidized-bed project, construction permits for major air pollution sources, fluidized bed residues, uses for fluidized bed combustion ash, ash pelletization, sorbents for FBC applications, refractory maintenance, and petroleum coke. A separate abstract and indexing have been prepared for each paper for inclusion in the Energy Science and Technology Database.

NONE

1994-12-31T23:59:59.000Z

284

High-Level Waste Tank Cleaning and Field Characterization at the West Valley Demonstration Project  

SciTech Connect

The West Valley Demonstration Project (WVDP) is nearing completion of radioactive high-level waste (HLW) retrieval from its storage tanks and subsequent vitrification of the HLW into borosilicate glass. Currently, 99.5% of the sludge radioactivity has been recovered from the storage tanks and vitrified. Waste recovery of cesium-137 (Cs-137) adsorbed on a zeolite media during waste pretreatment has resulted in 97% of this radioactivity being vitrified. Approximately 84% of the original 1.1 x 1018 becquerels (30 million curies) of radioactivity was efficiently vitrified from July 1996 to June 1998 during Phase I processing. The recovery of the last 16% of the waste has been challenging due to a number of factors, primarily the complex internal structural support system within the main 2.8 million liter (750,000 gallon) HLW tank designated 8D-2. Recovery of this last waste has become exponentially more challenging as less and less HLW is available to mobilize and transfer to the Vitrification Facility. This paper describes the progressively more complex techniques being utilized to remove the final small percentage of radioactivity from the HLW tanks, and the multiple characterization technologies deployed to determine the quantity of Cs-137, strontium-90 (Sr-90), and alpha-transuranic (alpha-TRU) radioactivity remaining in the tanks.

Drake, J. L.; McMahon, C. L.; Meess, D. C.

2002-02-26T23:59:59.000Z

285

Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project  

SciTech Connect

ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

O. P. Mendiratta; D. K. Ploetz

2000-02-29T23:59:59.000Z

286

Comparison of the Wymark CO2 Reservoir with the Midale Beds at the Weyburn CO2 Injection Project  

SciTech Connect

The Devonian carbonates of the Duperow Formation on the western flank of the Williston Basin in southwest Saskatchewan contain natural accumulations of CO{sub 2}, and may have done so for as long as 50 m.y. in the views of some investigations. These carbonate sediments are characterized by a succession of carbonate cycles capped by anhydrite-rich evaporites that are thought to act as seals to fluid migration. The Weyburn CO{sub 2} injection site lies 400 km to the east in a series of Mississippian carbonates that were deposited in a similar depositional environment. That natural CO{sub 2} can be stored long-term within carbonate strata has motivated the investigation of the Duperow rocks as a potential natural analogue to storage of anthropogenic CO{sub 2} that may ultimately provide additional confidence for CO{sub 2} sequestration in carbonate lithologies. For the Duperow strata to represent a legitimate analog for Midale injection and storage, the similarity in lithofacies, whole rock compositions, mineral compositions and porosity with the Midale Beds must be established. Previous workers have demonstrated the similarity of the lithofacies at both sites. Here we compare the whole rock compositions, mineralogy and mineral compositions. The major mineral phases at both locales are calcite, dolomite and anhydrite. In addition, accessory pyrite, fluorite and celestine are also observed. The distribution of porosity in the Midale Vuggy units is virtually identical to that of the Duperow Formation, but the Marly units of the Midale have significantly higher porosity. The Duperow Formation is topped by the Dinesmore evaporite that is particularly rich in anhydrite, and often contains authigenic K-feldspar. The chemistry of dolomite and calcite from the two localities also overlaps. Silicate minerals are in low abundance within the analyzed Duperow samples, < 3 wt% on a normative basis, with quartz the only phase identifiable in x-ray diffraction patterns. The Midale Beds contain significantly higher silica/silicate concentrations, but the silicate minerals observed, K-feldspar and quartz, are unlikely to participate in carbonate mineral precipitation due to the absence of alkaline earths. Hence, physical and solution trapping are likely to be the primary trapping mechanisms at both sites. Given the similarity of mineral constituents, whole rock and mineral chemistry, reactive transport models developed for the Weyburn site should also be applicable to the Duperow lithologies.

Ryerson, F; Johnson, J

2010-11-22T23:59:59.000Z

287

Phase 1 Final status survey plan for the West Valley demonstration project.  

SciTech Connect

This plan provides the technical basis and associated protocols to support Phase 1 final status survey (FSS) data collection and interpretation as part of the West Valley Demonstration Project Phase 1 Decommissioning Plan process. This plan is consistent with the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). The Phase 1 Decommissioning Plan provides the relevant derived concentration guideline levels (DCGLs) for the Phase 1 radionuclides of interest. This plan includes protocols that will be applied to the deep excavations planned for Waste Management Area (WMA) 1 and WMA 2, for surface soils outside the WMA 1 and WMA 2 excavations that do not have contamination impacts at depths greater than one meter, and for areas that are used for Phase 1 contaminated soil lay-down purposes. All excavated and lay-down areas will be classified as MARSSIM Class 1 areas. Surface soils that have not been excavated, are not expected to exceed DCGLs, and do not have contamination impacts at depths greater than one meter will be divided into either Class 1 or Class 2 areas depending on the expected potential for surface soil contamination in those areas. The plan uses gamma scans combined with biased soil samples to address DCGLemc concerns. The plan uses systematic soil sampling combined with area factors to address DCGLw and DCGLemc concerns. The Sign test will be used to statistically evaluate DCGLw compliance. If the results from the characterization sampling and analysis plan (CSAP) data collection indicate that background may be a significant issue for Sign test implementation, the Wilcoxon rank sum (WRS) test will be used instead to demonstrate DCGLw compliance. A reference area will be selected on the basis of CSAP data results if the WRS test becomes a necessity. The WMA 1 excavation footprint includes approximately 476 foundation pilings that will be trimmed and left in place. Piling-specific systematic and biased sampling will be conducted to address concerns that these pilings may have served as preferential flow pathways into the underlying Lavery till. Phase 1 FSS data collection results will be summarized, presented, and interpreted in one or more FSS reports.

Johnson, R. L. (Environmental Science Division)

2011-05-31T23:59:59.000Z

288

Phase 1 Characterization sampling and analysis plan West Valley demonstration project.  

SciTech Connect

The Phase 1 Characterization Sampling and Analysis Plan (CSAP) provides details about environmental data collection that will be taking place to support Phase 1 decommissioning activities described in the Phase 1 Decommissioning Plan for the West Valley Demonstration Project, Revision 2 (Phase I DP; DOE 2009). The four primary purposes of CSAP data collection are: (1) pre-design data collection, (2) remedial support, (3) post-remediation status documentation, and (4) Phase 2 decision-making support. Data collection to support these four main objectives is organized into two distinct data collection efforts. The first is data collection that will take place prior to the initiation of significant Phase 1 decommissioning activities (e.g., the Waste Management Area [WMA] 1 and WMA 2 excavations). The second is data collection that will occur during and immediately after environmental remediation in support of remediation activities. Both data collection efforts have a set of well-defined objectives that encompass the data needs of the four main CSAP data collection purposes detailed in the CSAP. The main body of the CSAP describes the overall data collection strategies that will be used to satisfy data collection objectives. The details of pre-remediation data collection are organized by WMA. The CSAP contains an appendix for each WMA that describes the details of WMA-specific pre-remediation data collection activities. The CSAP is intended to expand upon the data collection requirements identified in the Phase 1 Decommissioning Plan. The CSAP is intended to tightly integrate with the Phase 1 Final Status Survey Plan (FSSP). Data collection described by the CSAP is consistent with the FSSP where appropriate and to the extent possible.

Johnson, R. L. (Environmental Science Division)

2011-06-30T23:59:59.000Z

289

E-Print Network 3.0 - assistance demonstration project Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

managing and completing a project exploring an issue in African ... Source: Messersmith, Phillip B.- Department of Materials Science and Engineering, Northwestern University...

290

EA-1992: Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon  

Energy.gov (U.S. Department of Energy (DOE))

Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

291

GNEP Coupled End-to-End Demonstration Project Head-End Processing and Tritium Removal Using Voloxidation  

E-Print Network (OSTI)

of operating parameters on removal of volatile fission and activation products. In addition, data fromGNEP Coupled End-to-End Demonstration Project Head-End Processing and Tritium Removal Using fuel per year). The head-end processing segment includes single-pin shearing, voloxidation to remove

Pennycook, Steve

292

2012 SG Peer Review - Recovery Act: AEP Ohio gridSMART Demonstration Project - Karen Sloneker, Columbus Southern Power (AEP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program Peer Review Meeting AEP Ohio gridSMART ® Demonstration Project Karen Sloneker AEP Ohio gridSMART Project Director ® December 2008 AEP Ohio gridSMART ® Demonstration Project Objectives * To build an integrated secure smart grid infrastructure. * Attract, educate, enlist and retain consumers using innovative business models that provide tools to reduce costs, consumption and peak demand. * Gather data on technology and smart grid business models to forecast national impact. Life-cycle Funding 2010 - 2013 $73,660,317 Technical Scope (Insert graphic here) * 110,000 AMI meters and associated infrastructure * Consumer Managed Energy Technology (experimental tariffs, consumer programs, web portal; smart appliances, and plug-in electric vehicles) * Innovative Demand Management * Distribution Automation and Reliability

293

2012 SG Peer Review - Recovery Act: Pacific Northwest Smart Grid Demonstration Project - Ron Melton, Battelle Memorial Institute  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview Overview Ron Melton, Ph.D., Project Director Don Hammerstrom, Ph.D., Principal Investigator Battelle, Pacific Northwest Division Presented at DOE-OE Smart Grid R&D Peer Review June 8, 2012 PNWD-SA-9876 Pacific Northwest Demonstration Project What: * $178M, ARRA-funded, 5-year demonstration * 60,000 metered customers in 5 states Why: * Quantify costs and benefits * Develop communications protocol * Develop standards * Facilitate integration of wind and other renewables Who: Led by Battelle and partners including BPA, 11 utilities, 2 universities, and 5 vendors 2 Project Basics 3 Transactive Control Operational objectives Manage peak demand Facilitate renewable resources Address constrained resources Improve system reliability and efficiency Select economical

294

Fluidized bed combustion picks up steam  

SciTech Connect

Industrial interest in fluidized-bed combustion (FBC) continues, although the technology has been slow to enter the marketplace. Two FBC pilot plants funded by DOE and one commercial size project are in operation. FBC designs and commercial warranties are already available from the boiler industry, but 1981 was the first year to see significant numbers of privately-funded orders, now numbering 38 out of 50 boilers. Manufacturers are working on a universal boiler able to accept any fuel, but potential users are wary of new technology without a long-term demonstration of reliability and economics. There is interest in second generation designs, a new shallow-bed design suitable for retrofitting, and circulating bed types that decouple the combustion system from the heat removal system. (DCK)

Lawn, J.

1982-02-01T23:59:59.000Z

295

Environmental monitoring for the DOE coolside and LIMB demonstration extension projects. Final report, May--August 1991  

SciTech Connect

The purpose of this document is to present environmental monitoring data collected during the US Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. The DOE project is an extension of the US Environmental Protection Agency`s (EPA`s) original LIMB Demonstration. The program is operated nuclear DOE`s Clean Coal Technology Program of ``emerging clean coal technologies`` under the categories of ``in boiler control of oxides of sulfur and nitrogen`` as well as ``post-combustion clean-up.`` The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators (ESPs).

White, T.; Contos, L.; Adams, L. [Radian Corp., Research Triangle Park, NC (United States)

1992-03-01T23:59:59.000Z

296

D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demonstration Demonstration D&D Toolbox - FIU Tech Demo FIU Technology Demonstration - Selected technology platform(s) was demonstrated at the hot cell mockup facility at the FIU's Applied Research Center tech demo site in Miami, FL. Page 1 of 2 Oak Ridge National Laboratory Tennessee Florida New York D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms Challenge Many facilities slated for D&D across the DOE complex pose hazards (radiological, chemical, and structural) which prevent the use of traditional manual techniques. Efficient and safe D&D of the facilities will require the use of remotely operated technologies. In addition, the D&D of a hot cell facility requires that each of the hot cells be

297

Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding  

Energy.gov (U.S. Department of Energy (DOE))

Dominion Virginia Power, Fishermens Energy of New Jersey, and Principle Power, Inc. will each receive up to $46.7 million over the next four years to advance their projects in the second phase of the funding opportunity. The second phase will include follow-on design, fabrication, and deployment in order to achieve commercial operation by 2017.

298

NREL/SCE High-Penetration PV Integration Project: Report on Field Demonstration of Advanced Inverter Functionality in Fontana, CA  

SciTech Connect

The National Renewable Energy Laboratory/Southern California Edison High-Penetration PV Integration Project is (1) researching the distribution system level impacts of high-penetration photovoltaic (PV) integration, (2) determining mitigation methods to reduce or eliminate those impacts, and (3) seeking to demonstrate these mitigation methods on actual high-penetration PV distribution circuits. This report describes a field demonstration completed during the fall of 2013 on the Fontana, California, study circuit, which includes a total of 4.5 MW of interconnected utility-scale rooftop PV systems. The demonstration included operating a 2-MW PV system at an off-unity power factor that had been determined during previously completed distribution system modeling and PV impact assessment analyses. Data on the distribution circuit and PV system operations were collected during the 2-week demonstration period. This demonstration reinforces the findings of previous laboratory testing that showed that utility-scale PV inverters are capable of operating at off-unity power factor to mitigate PV impacts; however, because of difficulties setting and retaining PV inverter power factor set points during the field demonstration, it was not possible to demonstrate the effectiveness of off-unity power factor operation to mitigate the voltage impacts of high-penetration PV integration. Lessons learned from this field demonstration are presented to inform future field demonstration efforts.

Mather, B.

2014-08-01T23:59:59.000Z

299

Cummins Engine Company B5.9 Propane Engine Development, Certification, and Demonstration Project  

SciTech Connect

The objective of this project was to successfuly develop and certify an LPG-dedicated medium-duty original equipment manufacturer (OEM) engine that could be put into production. The engine was launched into production in 1994, and more than 800 B5.9G engines are now in service in the United States and abroad. This engine is now offered by more than 30 bus and truck OEMs.

The ADEPT Group, Inc. (Los Angeles, California)

1998-12-18T23:59:59.000Z

300

2012 SG Peer Review - Recovery Act: Irvine Smart Grid Demonstration Project - Ardalan Kemiab, Southern California Edison  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peer Peer Review Meeting Peer Review Meeting Irvine Smart Grid Demonstration (ISGD) ( ) Ed Kamiab Southern California Edison (SCE) 6/8/2012 ISGD Objective SCE' I i S t G id D t ti (ISGD) ill (Insert graphic here) SCE's Irvine Smart Grid Demonstration (ISGD) will demonstrate an integrated, scalable Smart Grid system that includes many of the interlocking pieces of an end- to-end Smart Grid system, from the transmission and distrib tion s stems to cons mer applications s ch as distribution systems to consumer applications such as smart appliances and plug-in electric vehicles. Life-cycle Funding ($K) FY2010 FY2015 1. Energy Smart Customer Devices 2 Year 2020 Distribution System Technical Scope FY2010 - FY2015 $39,612 2. Year 2020 Distribution System 3. Interoperability & Cyber Security 4. Workforce of the Future

Note: This page contains sample records for the topic "bed demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

New.M exicoS tat~University Renewable Energy Demonstration Projects  

E-Print Network (OSTI)

,. ". . ..' :.-:..... , .. '. .' New.M exicoS tat~University Renewable Energy Demonstration agriculture in south central and southwestern New Mexico. This facility has more than 200 acres of varying of Solar PV for pumping water and distribution in the agricultural setting including solar power drip

Johnson, Eric E.

302

Large-scale Demonstration and Deployment Project for D&D of Fuel Storage Canals and Associated Facilities at INEEL  

SciTech Connect

The Department of Energy (DOE) Office of Science and Technology (OST), Deactivation and Decommissioning Focus Area (DDFA), sponsored a Large Scale Demonstration and Deployment Project (LSDDP) at the Idaho National Engineering and Environmental Laboratory (INEEL) under management of the DOE National Energy Technology Laboratory (NETL). The INEEL LSDDP is one of several LSDDPs sponsored by DOE. The LSDDP process integrates field demonstrations into actual decontamination and decommissioning (D&D) operations by comparing new or improved technologies against existing baseline technologies using a side-by-side comparison. The goals are (a) to identify technologies that are cheaper, safer, faster, and cleaner (produce less waste), and (b) to incorporate those technologies into D&D baseline operations. The INEEL LSDDP reviewed more than 300 technologies, screened 141, and demonstrated 17. These 17 technologies have been deployed a total of 70 times at facilities other than those where the technology was demonstrated, and 10 have become baseline at the INEEL. Fifteen INEEL D&D needs have been modified or removed from the Needs Management System as a direct result of using these new technologies. Conservatively, the ten-year projected cost savings at the INEEL resulting from use of the technologies demonstrated in this INEEL LSDDP exceeds $39 million dollars.

Whitmill, Larry Joseph

2001-12-01T23:59:59.000Z

303

LIMB Demonstration Project Extension. Quarterly report no. 8, February, March, and April, 1989  

SciTech Connect

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1989-06-15T23:59:59.000Z

304

LIMB Demonstration Project Extension. Quarterly report no. 10, August, September, and October, 1989  

SciTech Connect

The basic goal of the Limestone Injection Mitigation Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1989-11-15T23:59:59.000Z

305

LIMB Demonstration Project Extension. Quarterly report No. 6, August--October, 1988  

SciTech Connect

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1988-12-15T23:59:59.000Z

306

LIMB Demonstration Project Extension. Quarterly report No. 7, November and December, 1988, and January, 1989  

SciTech Connect

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1989-03-15T23:59:59.000Z

307

LIMB Demonstration Project Extension. Quarterly report no. 5, May, June and July 1988  

SciTech Connect

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full-scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO and NO emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1988-09-15T23:59:59.000Z

308

LIMB Demonstration Project Extension. Quarterly report no. 3, November, December 1987--January 1988  

SciTech Connect

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full-scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1988-03-15T23:59:59.000Z

309

Demonstration projects for coalbed methane and Devonian shale gas: Final report. [None  

SciTech Connect

In 1979, the US Department of Energy provided the American Public Gas Association (APGA) with a grant to demonstrate the feasibility of bringing unconventional gas such as methane produced from coalbeds or Devonian Shale directly into publicly owned utility system distribution lines. In conjunction with this grant, a seven-year program was initiated where a total of sixteen wells were drilled for the purpose of providing this untapped resource to communities who distribute natural gas. While coalbed degasification ahead of coal mining was already a reality in several parts of the country, the APGA demonstration program was aimed at actual consumer use of the gas. Emphasis was therefore placed on degasification of coals with high methane gas content and on utilization of conventional oil field techniques. 13 figs.

Verrips, A.M.; Gustavson, J.B.

1987-04-01T23:59:59.000Z

310

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Advanced Electric Power Generation - Fluidized Bed Combustion JEA Large-Scale CFB Combustion Demonstration Project - Project Brief [PDF-169KB] JEA, Jacksonville, FL PROGRAM PUBLICATIONS Final Reports Final Technical Report for the JEA Large-Scale CFB Combustion Demonstration Project [PDF-438KB](July 2005) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports JEA Large-Scale CFB Combustion Demonstration Project: A DOE Assessment [PDF-177KB] (Nov 2005) The JEA Large-Scale CFB Combustion Demonstration Project, Topical Report No.22 [PDF-2.1MB] (Mar 2003) Design Reports Detailed Public Design Report for the JEA Large-Scale CFB Combustion Demonstration Project [PDF-2.5MB] (June 2003) Appendices 4, 5, and 6: Major Equipment List,

311

Green River Formation Water Flood Demonstration Project: Final report. [October 21, 1992-April, 30, 1996  

SciTech Connect

The objectives were to understand the oil production mechanisms in the Monument Butte unit via reservoir characterization and reservoir simulations and to transfer the water flooding technology to similar units in the vicinity, particularly the Travis and the Boundary units. Comprehensive reservoir characterization and reservoir simulations of the Monument Butte, Travis and Boundary units were presented in the two published project yearly reports. The primary and the secondary production from the Monument Butte unit were typical of oil production from an undersaturated oil reservoir close to its bubble point. The water flood in the smaller Travis unit appeared affected by natural and possibly by large interconnecting hydraulic fractures. Water flooding the boundary unit was considered more complicated due to the presence of an oil water contact in one of the wells. The reservoir characterization activity in the project basically consisted of extraction and analysis of a full diameter c ore, Formation Micro Imaging logs from several wells and Magnetic Resonance Imaging logs from two wells. In addition, several side-wall cores were drilled and analyzed, oil samples from a number of wells were physically and chemically characterized (using gas chromatography), oil-water relative permeabilities were measured and pour points and cloud points of a few oil samples were determined. The reservoir modeling activity comprised of reservoir simulation of all the three units at different scales and near well-bore modeling of the wax precipitation effects. The reservoir characterization efforts identified new reservoirs in the Travis and the Boundary units. The reservoir simulation activities established the extent of pressurization of the sections of the reservoirs in the immediate vicinity of the Monument Butte unit. This resulted in a major expansion of the unit and the production from this expanded unit increased from about 300 barrels per day to about 2000 barrels per day.

Deo, M.D. [Dept. of Chemical and Fuels Engineering, University of Utah, Salt Lake City (US); Dyer, J.E.; Lomax, J.D. [Inland Resources, Inc., Lomax Exploration Co., Salt Lake City, UT (US); Nielson, D.L.; Lutz, S.J. [Energy and Geoscience Institute at the University of Utah, Salt Lake City (US)

1996-11-01T23:59:59.000Z

312

Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105 And AN-103) By Fluidized Bed Steam Reformation  

SciTech Connect

One of the immobilization technologies under consideration as a Supplemental Treatment for Hanfords Low Activity Waste (LAW) is Fluidized Bed Steam Reforming (FBSR). The FBSR technology forms a mineral waste form at moderate processing temperatures thus retaining and atomically bonding the halides, sulfates, and technetium in the mineral phases (nepheline, sodalite, nosean, carnegieite). Additions of kaolin clay are used instead of glass formers and the minerals formed by the FBSR technology offers (1) atomic bonding of the radionuclides and constituents of concern (COC) comparable to glass, (2) short and long term durability comparable to glass, (3) disposal volumes comparable to glass, and (4) higher Na2O and SO{sub 4} waste loadings than glass. The higher FBSR Na{sub 2}O and SO{sub 4} waste loadings contribute to the low disposal volumes but also provide for more rapid processing of the LAW. Recent FBSR processing and testing of Hanford radioactive LAW (Tank SX-105 and AN-103) waste is reported and compared to previous radioactive and non-radioactive LAW processing and testing.

Jantzen, Carol; Herman, Connie; Crawford, Charles; Bannochie, Christopher; Burket, Paul; Daniel, Gene; Cozzi, Alex; Nash, Charles; Miller, Donald; Missimer, David

2014-01-10T23:59:59.000Z

313

Western Greenbrier Co-Production Demonstration Project Draft Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT ENVIRONMENTAL IMPACT STATEMENT SUMMARY S-1 SUMMARY This environmental impact statement (EIS) has been prepared by the United States Department of Energy (DOE), in compliance with the National Environmental Policy Act of 1969 (NEPA) as amended (42 USC 4321 et seq.), to evaluate the potential environmental impacts associated with the construction and demonstration of a 98-megawatt (MWe) net power plant and cement manufacturing facility (the "Co- Production Facility"). The responsible organization for the federal action is the National Energy Technology Laboratory (NETL), a multi-purpose laboratory owned and operated by DOE. Proposed Action The Proposed Action is for DOE to decide whether to provide financial assistance to Western

314

Results From The Salt Disposition Project Next Generation Solvent Demonstration Plan  

SciTech Connect

Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Solvent Hold Tank (SHT) samples were taken throughout the Next Generation Solvent (NGS) Demonstration Plan. These samples were analyzed and the results are reported. SHT: The solvent behaved as expected, with no bulk changes in the composition over time, with the exception of the TOA and TiDG. The TiDG depletion is higher than expected, and consideration must be taken on the required rate of replenishment. Monthly sampling of the SHT is warranted. If possible, additional SHT samples for TiDG analysis (only) would help SRNL refine the TiDG degradation model. CWT: The CWT samples show the expected behavior in terms of bulk chemistry. The 137Cs deposited into the CWT varies somewhat, but generally appears to be lower than during operations with the BOBCalix solvent. While a few minor organic components were noted to be present in the Preliminary sample, at this time these are thought to be artifacts of the sample preparation or may be due to the preceding solvent superwash. DSSHT: The DSSHT samples show the predicted bulk chemistry, although they point towards significant dilution at the front end of the Demonstration. The 137Cs levels in the DSSHT are much lower than during the BOBCalix operations, which is the expected observation. SEHT: The SEHT samples represent the most different output of all four of the outputs from MCU. While the bulk chemistry is as expected, something is causing the pH of the SEHT to be higher than what would be predicted from a pure stream of 0.01 M boric acid. There are several possible different reasons for this, and SRNL is in the process of investigating. Other than the pH issue, the SEHT is as predicted. In summary, the NGS Demonstration Plan samples indicate that the MCU system, with the Blend Solvent, is operating as expected. The only issue of concern regards the pH of the SEHT, and SRNL is in the process of investigating this. SRNL results support the transition to routine operations.

Peters, T. B.; Fondeur, F. F.; Taylor-Pashow, K. M.L.

2014-04-02T23:59:59.000Z

315

Soil remediation demonstration project: Biodegradation of heavy fuel oils. Special report  

SciTech Connect

Treatment of oil-contaminated soils is necessary to protect water supplies, human health, and environmental quality; but because of limited funds, cleanup costs are often prohibitive. High costs are exacerbated in cold regions such as Alaska, where spills are often in areas inaccessible to heavy equipment and where there is limited infrastructure. Owing to the lack of infrastructure, widespread fuel distribution systems, and the need for heating in the cold climate, there are numerous small-scale oil spills. Low-cost treatments applicable to small-scale spills are needed. The object of this CPAR project was to examine using cost-effective, on-site bioremediation techniques for heavy-oil-contaminated soil in cold regions. Both heavy-oil and diesel-contaminated soils were used to compare landfarming, a low-intensity treatment, to pile bioventing, a costlier treatment. For each soil-contaminant combination, we compared nutrient additions to a control with no nutrient additions. Under the conditions of this study, landfarming with nutrient additions was as effective for treating diesel-contaminated soil as was bioventing with nutrient additions. For heavy oils, landfarming with nutrients resulted in lower soil concentrations after one year, but differences among treatments were not statistically significant. Because landfarming does not require pumps, electricity, or plumbing, all costs are less than for bioventing. The minimal requirements for infrastructure also make landfarming attractive in remote sites typical of cold regions.

Reynolds, C.M.; Bhunia, P.; Koenen, B.A.

1997-08-01T23:59:59.000Z

316

Integrated flue gas treatment for simulataneous emission control and heat rate improvement - demonstration project at Ravenswood  

SciTech Connect

Results are presented for electric-utility, residual-oil fired, field demonstration testing of advanced-design, heat-recovery type, flue gas sub-coolers that incorporate sulfite-alkali-based wet scrubbing for efficient removal of volatile and semi-volatile trace elements, sub-micron solid particulate matter, SO{sub 2} and SO{sub 3}. By innovative adaptation of wet collector system operation with methanol injection into the rear boiler cavity to convert flue-gas NO to No{sub 2}, simultaneous removal of NO{sub x} is also achieved. The focus of this integrated flue gas treatment (IFGT) technology development and demonstration-scale, continuous performance testing is an upward-gas-flow, indirectly water-cooled, condensing heat exchanger fitted with acid-proof, teflon-covered tubes and tubesheets and that provides a unique condensing (non-evaporative) wet-scrubbing mode to address air toxics control objectives of new Clean Air Act, Title III. Advantageous trace-metal condensation/nucleation/agglomeration along with substantially enhanced boiler efficiency is accomplished in the IFGT system by use of boiler makeup water as a heat sink in indirectly cooling boiler flue gas to a near-ambient-temperature, low-absolute-humidity, water-saturated state. Moreover, unique, innocuous, stack systems design encountered with conventional high-humidity, wet-scrubber operations. The mechanical design of this advanced flue-gas cooling/scrubbing equipment is based on more than ten years of commercial application of such units is downward-gas-flow design/operation for energy recovery, e.g. in preheating of makeup water, in residual-oil and natural-gas fired boiler operations.

Heaphy, J.; Carbonara, J.; Cressner, A. [Consolidated Edison Company, New York, NY (United States)] [and others

1995-06-01T23:59:59.000Z

317

An overview of the Low Energy Demonstration Accelerator (LEDA) project RF (radio frequency) systems  

SciTech Connect

Successful operation of the Accelerator Production of Tritium (APT) plant will require that accelerator downtime be kept to an absolute minimum. Over 230 separate 1 MW RF systems are expected to be used in the APT plant, making the efficiency and reliability of these systems two of the most critical factors in plant operation. The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for APT. The design of the RF systems used in LEDA has been driven by the need for high efficiency and extremely high system reliability. The authors present details of the high voltage power supply and transmitter systems as well as detailed descriptions of the waveguide layout between the klystrons and the accelerating cavities. The first stage of LEDA operations will use four 1.2 MW klystrons to test the RFQ and supply power to one test stand. The RFQ will serve as a power combiner for multiple RF systems. They present some of the unique challenges expected in the use of this concept.

Bradley, J. III; Cummings, K.; Lynch, M.; Rees, D.; Roybal, W.; Tallerico, P. [Los Alamos National Lab., NM (United States); Toole, L. [Savannah River Site, SC (United States)

1997-05-12T23:59:59.000Z

318

Final Technical Report: Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

SciTech Connect

This report summarizes the work conducted under U.S. Department of Energy (DOE) under contract DE-FC36-04GO14285 by Mercedes-Benz & Research Development, North America (MBRDNA), Chrysler, Daimler, Mercedes Benz USA (MBUSA), BP, DTE Energy and NextEnergy to validate fuel cell technologies for infrastructure, transportation as well as assess technology and commercial readiness for the market. The Mercedes Team, together with its partners, tested the technology by operating and fueling hydrogen fuel cell vehicles under real world conditions in varying climate, terrain and driving conditions. Vehicle and infrastructure data was collected to monitor the progress toward the hydrogen vehicle and infrastructure performance targets of $2.00 to 3.00/gge hydrogen production cost and 2,000-hour fuel cell durability. Finally, to prepare the public for a hydrogen economy, outreach activities were designed to promote awareness and acceptance of hydrogen technology. DTE, BP and NextEnergy established hydrogen filling stations using multiple technologies for on-site hydrogen generation, storage and dispensing. DTE established a hydrogen station in Southfield, Michigan while NextEnergy and BP worked together to construct one hydrogen station in Detroit. BP constructed another fueling station in Burbank, California and provided a full-time hydrogen trailer at San Francisco, California and a hydrogen station located at Los Angeles International Airport in Southern, California. Stations were operated between 2005 and 2011. The Team deployed 30 Gen I Fuel Cell Vehicles (FCVs) in the beginning of the project. While 28 Gen I F-CELLs used the A-Class platform, the remaining 2 were Sprinter delivery vans. Fuel cell vehicles were operated by external customers for real-world operations in various regions (ecosystems) to capture various driving patterns and climate conditions (hot, moderate and cold). External operators consisted of F-CELL partner organizations in California and Michigan ranging from governmental organizations, for-profit to and non-profit entities. All vehicles were equipped with a data acquisition system that automatically collected statistically relevant data for submission to National Renewable Energy Laboratory (NREL), which monitored the progress of the fuel cell vehicles against the DOE technology validation milestones. The Mercedes Team also provided data from Gen-II vehicles under the similar operations as Gen I vehicles to compare technology maturity during program duration.

Ronald Grasman

2011-12-31T23:59:59.000Z

319

Predicting the spatial extent of injection-induced zones of enhanced permeability at the Northwest Geysers EGS Demonstration Project  

SciTech Connect

We present the results of coupled thermal, hydraulic, and mechanical (THM) modeling of a proposed stimulation injection associated with an Enhanced Geothermal System (EGS) demonstration project at the northwest part of The Geysers geothermal field, California. The project aims at creating an EGS by directly and systematically injecting cool water at relatively low pressure into a known High Temperature (about 280 to 350 C) Zone (HTZ) located under the conventional (240 C) steam reservoir at depths below 3 km. Accurate micro-earthquake monitoring from the start of the injection will be used as a tool for tracking the development of the EGS. We first analyzed historic injection and micro-earthquake data from an injection well (Aidlin 11), located about 3 miles to the west of the new EGS demonstration area. Thereafter, we used the same modeling approach to predict the likely extent of the zone of enhanced permeability for a proposed initial injection in two wells (Prati State 31 and Prati 32) at the new EGS demonstration area. Our modeling indicates that the proposed injection scheme will provide additional steam production in the area by creating a zone of permeability enhancement extending about 0.5 km from each injection well which will connect to the overlying conventional steam reservoir.

Rutqvist, J.; Oldenburg, C.M.; Dobson, P.F.

2010-02-01T23:59:59.000Z

320

Particle Receiver Integrated with Fludized Bed  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bed CONTACTS Partnering Organizations: * Babcock & Wilcox Power Generation Group, Inc. * Massachusetts Institute of Technology For more information, visit the project page at:...

Note: This page contains sample records for the topic "bed demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

2012 SG Peer Review - Recovery Act: LADWP Smart Grid Regional Demonstration Project - Mukhlesur Bhuiyan, City of Los Angeles Dept. of Water & Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peer Review Meeting Peer Review Meeting San Diego, CA Los Angeles Department of Water and Power - Smart Grid Regional Demonstration Program Mukhles Bhuiyan Program Director June 8, 2012 December 2008 Smart Grid Regional Demonstration Program Objective Life-cycle Funding ($K) FY10/11 - FY15/16 $60,280K Match Grant Technical Scope *Integrate Electric Vehicles into the LADWP grid *Demonstrate integrated Demand Response operation and technology. *Develop a comprehensive portfolio of Customer Behavior studies *Demonstrate next generation of Cyber Security *Using test bed sites to deploy and demonstrate an integrated communication, demand response, and electric vehicle infrastructure, protected by the next generation cyber security. *All this will be done in conjunction with consumer behavior studies identifying methods to

322

JEA successfully completes world's largest CFB demonstration  

SciTech Connect

JEA (formerly the Jacksonville Electric Authority) has successfully completed an eighth year landmark demonstration project that continues in baseload commercial operation. It scales up atmospheric fluidized-bed technology demonstration to the near-300-MW size, providing important data on a technology that can achieve > 90% SO{sub 2} removal and 60% NOx reduction at relatively high efficiencies and at costs comparable to those of conventional pulverized coal plants. The article recounts the history of the project. Performance tests showed a blend of coal and petcoke were most efficient as a feedstock. 3 figs.

NONE

2005-09-30T23:59:59.000Z

323

The Northwest Geysers EGS Demonstration Project Phase 1: Pre-stimulation coupled geomechanical modeling to guide stimulation and monitoring plans  

SciTech Connect

This paper presents activities and results associated with Phase 1 (pre-stimulation phase) of an Enhanced Geothermal System (EGS) demonstration project at the northwest part of The Geysers geothermal field, California. The paper presents development of a 3-D geological model, coupled thermal-hydraulic-mechanical (THM) modeling of proposed stimulation injection as well as current plans for stimulation and monitoring of the site. The project aims at creating an EGS by directly and systematically injecting cool water at relatively low pressure into a known High Temperature (about 280 to 350 C) Zone (HTZ) located under the conventional (240 C) steam reservoir at depths of {approx}3 km. Accurate micro-earthquake monitoring initiated before the start of the injection will be used as a tool for tracking the development of the EGS and monitoring changes in microseismicity. We first analyzed historic injection and micro-earthquake data from an injection well (Aidlin 11) located about 3 miles to the west of the new EGS demonstration area. Thereafter, we used the same modeling approach to predict the likely extent of the zone of enhanced permeability for a proposed initial injection in two wells (Prati State 31 and Prati 32) at the new EGS demonstration area. Our modeling indicates that the proposed injection scheme will provide additional steam production in the area by creating a zone of permeability enhancement extending about 0.5 km from each injection well which will connect to the overlying conventional steam reservoir, in agreement with the conclusions of Nielson and Moore (2000).

Rutqvist, J.; Dobson, P.F.; Oldenburg, C.M.; Garcia, J.; Walters, M.

2010-10-20T23:59:59.000Z

324

The DOE Wide Area Measurement System (WAMS) Project: Demonstration of dynamic information technology for the future power system  

SciTech Connect

In 1989 the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) joined the US Department of Energy (DOE) in an assessment of longer-term research and development needs for future electric power system operation. The effort produced a progressively sharper vision of a future power system in which enhanced control and operation are the primary means for serving new customer demands, in an environment where increased competition, a wider range of services and vendors, and much narrower operating margins all contribute to increased system efficiencies and capacity. Technology and infrastructure for real time access to wide area dynamic information were identified as critical path elements in realizing that vision. In 1995 the DOE accordingly launched the Wide Area Measurement System (WAMS) Project jointly with the two Power Marketing Administrations (PMAs) to address these issues in a practical operating environment--the western North America power system. The Project draws upon many years of PMA effort and related collaboration among the western utilities, plus an expanding infrastructure that includes regionally involved contractors, universities, and National Laboratories plus linkages to the Electric Power Research Institute (EPRI). The WAMS project also brings added focus and resources to the evolving Western System Dynamic Information Network, or WesDINet. This is a collective response of the Western Systems Coordinating Council (WSCC) member utilities to their shared needs for direct information about power system characteristics, model fidelity, and operational performance. The WAMS project is a key source of the technology and backbone communications needed to make WesDINet a well integrated, cost effective enterprise network demonstrating the role of dynamic information technology in the emerging utility environment.

Mittelstadt, W.A. [USDOE Bonneville Power Administration, Portland, OR (United States); Krause, P.E.; Wilson, R.E. [USDOE Western Area Power Administration, Golden, CO (United States); Overholt, P.N. [USDOE, Washington, DC (United States); Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States); Hauer, J.F. [Pacific Northwest National Lab., Richland, WA (United States); Rizy, D.T. [Oak Ridge National Lab., TN (United States)

1996-07-01T23:59:59.000Z

325

Technology summary of the in situ bioremediation demonstration (methane biostimulation) via horizontal wells at the Savannah River Site Integrated Demonstration Project  

SciTech Connect

The US Department of Energy, Office of Technology Development, has been sponsoring full-scale environmental restoration technology demonstrations for the past 4 years. The Savannah River Site Integrated Demonstration focuses on ``Clean-up of Soils ad Groundwater Contaminated with Chlorinated VOCs.`` Several laboratories including our own had demonstrated the ability of methanotrophic bacteria to completely degrade or mineralize chlorinated solvents, and these bacteria were naturally found in soil and aquifer material. Thus the test consisted of injection of methane mixed with air into the contaminated aquifer via a horizontal well and extraction from the vadose zone via a parallel horizontal well.

Hazen, T.C.; Looney, B.B.; Fliermans, C.B.; Eddy-Dilek, C.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Lombard, K.H. [Bechtel Savannah River, Inc., Aiken, SC (United States); Enzien, M.V. [Argonne National Lab., IL (United States); Dougherty, J.M. [US Environmental Protection Agency, Irving, TX (United States); Wear, J. [Catawba State Coll., Salisbury, NC (United States)

1994-06-01T23:59:59.000Z

326

EC MoDeRn Project: In-situ Demonstration of Innovative Monitoring Technologies for Geological Disposal - 12053  

SciTech Connect

Monitoring to provide information on the evolution of geological disposal presents several challenges. The 4-year, euros M 5, EC MoDeRn Project (http://www.modern-fp7.eu/), which commenced in 2009, addresses monitoring processes, state-of-the-art technology and innovative research and development of monitoring techniques. This paper discusses some of the key drivers for the development of innovative monitoring techniques and provides outlines of the demonstration programmes being conducted within MoDeRn. The aim is to develop these innovative monitoring techniques and to demonstrate them under realistic conditions present in underground laboratories. These demonstration projects, applying a range of different monitoring techniques, are being carried out at underground research facilities in different geological environments at HADES URL in Belgium (plastic clay), Bure in France (indurated clay) and at Grimsel Test Site (granite) in Switzerland. These are either built upon existing infrastructure (EC ESDRED Low pH shotcrete and TEM experiments at Grimsel; and PRACLAY experiment and underground galleries in HADES) or will be attached to infrastructure that is being developed and financed by resources outside of this project (mock-up disposal cell in Bure). At Grimsel Test Site, cross-hole and hole-to-tunnel seismic methods are being employed as a means to monitor induced changes in an artificially saturated bentonite wall confined behind a shotcrete plug. Recognising the limitations for travel-time tomography for monitoring a disposal cell, full waveform inversion techniques are being employed to enhance the capacity to monitor remote from the excavation. At the same Grimsel location, an investigation will be conducted of the potential for using a high frequency wireless (HFW) sensor network embedded within the barrier system; this will include the possibility of providing energy remotely to isolated sensors. At the HADES URL, the monitoring programme will utilise the PRACLAY gallery equipped to simulate a disposal gallery for heat-generating high-level waste evaluating fibre-optic based sensing techniques, including distributed sensing for thermal distribution and long-term reliability in harsh conditions. It also includes the potential to improve the treatment of signals from micro-seismic monitoring to enable enhanced understanding of the evolution around the gallery following its excavation due to ventilation, saturation and heating, and to image a water-bearing concretion layer. HADES URL will also be used to test wireless techniques to transmit monitoring data from the underground to the surface. The main focus of this contribution is to evaluate magneto-inductive data transmission; and to optimise energy usage. At the Bure underground facility in France, monitoring systems have been developed and will be embedded into the steel liner for the mock-up high-level waste disposal tunnel. The aim of this programme is to establish the capacity to conduct integrated monitoring activities inside the disposal cell, on the cell liner and in the near-field and to assess the capability of the monitoring to withstand construction and liner emplacement procedures. These projects, which are supported by focused development and testing of the monitoring systems, will allow the testing of both the effectiveness of these techniques applied to disposal situations and to understand the limits of these monitoring technologies. This approach should also enhance the confidence of key stakeholders in the ability to understand/confirm the changes occurring within a disposal cell. In addition, remote or 'non-intrusive' monitoring technologies are evaluated to provide a means of enhancing understanding of what is occurring in an isolated disposal cell. The projects also test solutions for embedded monitoring systems in challenging (risk of damage) situations. The outputs from this work will lead to improved understanding of these state-of-the-art techniques and allow focused development of those techniques beneficial to future monitoring progr

Breen, B.J. [NDA, Herdus House, Westlakes Science and Technology Park, Moor Row, Cumbria, CA24 3HU (United Kingdom); Garcia-Sineriz, J.L. [AITEMIN, c/Margarita Salas 14-Parque Leganes Tecnologico-Leganes, ES-28918, Madrid (Spain); Maurer, H. [ETH Zurich, ETH Honggerberg, CH-8093, Zurich (Switzerland); Mayer, S. [ANDRA, 1-7 rue Jean-Monnet, F-92298 Chatenay-Malabry cedex (France); Schroeder, T.J. [NRG, P.O. Box 25, NL-1755 ZG Petten (Netherlands); Verstricht, J. [EURIDICE EIG, c/o SCK.CEN, Boeretang 200, BE-2400 Mol (Belgium)

2012-07-01T23:59:59.000Z

327

Proof of Concept of ITS as An Alternative Data Resource: A Demonstration Project of florida and New York Data  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Proof of Concept of ITS as An Alternative Data Resource: A Demonstration Project of Florida and New York Data Final Report September 31, 2001 Prepared for Federal Highway Administration U.S. Department of Transportation Washington, DC 20590 P. Hu R. Goeltz R. Schmoyer Center for Transportation Analysis Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6073 managed by UT-Battelle, LIC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P. O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd.,

328

Nuclear Power 2010 Program Lessons Learned Report on the Combined Construction and Operating License/Design Certification Demonstration Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Power 2010 Program Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report August 30, 2012 Prepared by Longenecker and Associates DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not

329

Prototypical Rod Consolidation Demonstration Project. Phase 3, Final report: Volume 4, Operations and maintenance manual, Book 5  

SciTech Connect

The objective of Phase III of the Prototypical Rod Consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod Consolidation System as described in the NUS Phase II Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase III effort the system was tested on a component, subsystem, and system level. Volume IV provides the Operating and Maintenance Manual for the Prototypical Rod Consolidation System that was installed at the Cold Test Facility. This document, Book 5 of Volume IV, discusses: Corrective maintenance procedures; Calibration procedures; Surveillance procedures; Equipment changeover procedures; Decontamination procedures; Recovery procedures; and Cable schedule.

Not Available

1993-05-01T23:59:59.000Z

330

Prototypical Rod Consolidation Demonstration Project. Phase 3, Final report: Volume 4, Operations and maintenance manual, Book 4  

SciTech Connect

The objective of Phase III of the Prototypical Rod Consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod Consolidation System as described in the NUS Phase II Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase III effort the system was tested on a component, subsystem, and system level. Volume IV provides the Operating and Maintenance Manual for the Prototypical Rod Consolidation System that was installed at the Cold Test Facility. This document, Book 4 of Volume IV, discusses: Off-normal operating and recovery procedures; Emergency response procedures; Troubleshooting procedures; and Preventive maintenance procedures.

Not Available

1993-05-01T23:59:59.000Z

331

Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994  

SciTech Connect

This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

NONE

1995-05-01T23:59:59.000Z

332

Initial test results of the limestone injection multistage burner (LIMB) demonstration project. Report for September 1984-April 1988  

SciTech Connect

This paper discusses SO/sub 2/ removal efficiency and low-NOx burner performance obtained during short term tests, as well as the impact of LIMB ash on electrostatic precipitator (ESP) performance at Ohio Edison's Edgewater Station. Project goals are to demonstrate 50% or more SO/sub 2/ removal at a Ca/S molar stoichiometry of 2.0 and NOx emissions of less than 0.5 lb/million Btu while maintaining boiler operability and reliability. The tests, conducted before September 1987, indicated that 55-60% SO/sub 2/ removal and NOx emissions on the order of 0.48 lb/million Btu are achievable. The increased dust loading of a high-resistivity ash typically limited continuous operation to 2-6 hr. The paper discusses how the LIMB ash gave rise to back corona which, in turn, increased stack opacity to regulated levels. The extension of the project to include humidification of the flue gas is also described as a way to minimize these effects.

Nolan, P.S.; Hendriks, R.V.

1988-05-01T23:59:59.000Z

333

RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE (WTP-SW) BY FLUIDIZED BED STEAM REFORMING (FBSR) USING THE BENCH SCALE REFORMER PLATFORM  

SciTech Connect

The U.S. Department of Energys Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanfords tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanfords WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing. The granular products (both simulant and radioactive) were tested and a subset of the granular material (both simulant and radioactive) were stabilized in a geopolymer matrix. Extensive testing and characterization of the granular and monolith material were made including the following: ? ASTM C1285 (Product Consistency Test) testing of granular and monolith; ? ASTM C1308 accelerated leach testing of the radioactive monolith; ? ASTM C192 compression testing of monoliths; and ? EPA Method 1311 Toxicity Characteristic Leaching Procedure (TCLP) testing. The significant findings of the testing completed on simulant and radioactive WTP-SW are given below: ? Data indicates {sup 99}Tc, Re, Cs, and I

Crawford, C.; Burket, P.; Cozzi, A.; Daniel, G.; Jantzen, C.; Missimer, D.

2014-08-21T23:59:59.000Z

334

Testing and verification of granular-bed filters for the removal of particulate and alkalis. Eleventh quarterly project report, April 1, 1983-June 30, 1983  

SciTech Connect

The Westinghouse Electric Corporation with Ducon, Inc. and Burns and Roe, Inc. are conducting a test and evaluation program of a Granular-Bed Filter (GBF) for gas-cleaning applications in pressurized fluidized-bed combustion processes. This work is funded by DOE PRDA for Exploratory Research, Development, Testing and Evaluation of Systems or Devices for Hot Gas Clean-up. This report describes the status of the testing of the subpilot scale GBF unit under simulated Pressurized Fluidized-Bed Combustion (PFBC) conditions through Phase IV and the design of a bench-scale, single-bed cylindrical element that will be utilized in Test Phase V.

None

1983-01-01T23:59:59.000Z

335

Summary report of the drilling technologies tested at the Integrated Demonstration Project for cleanup of organic contaminants in soils and groundwater at non-arid sites  

SciTech Connect

The Department of Energy`s Office of Technology Development initiated an integrated demonstration of innovative technologies and systems for cleanup of volatile organic compounds in soil and groundwater at SRS. The overall goal of the program is the demonstration of multiple technologies and systems in the fields of drilling, characterization, monitoring, and remediation at a single test bed. Horizontal environmental well installation technology was one of the remediation technologies that was demonstrated at SRS. Four distinctly different systems of directional drilling and horizontal well installations were successfully demonstrated and evaluated. The four systems were developed in the petroleum industry, the river crossing industry, and the utility industry. The transfer of information concerning the horizontal environmental well installations has been facilitated by publishing a series of reports describing each individual demonstration. This is the final report in the series and provides a comprehensive evaluation of all four systems. The objectives of this report are to summarize the strengths and weaknesses of each drilling technology, describe and compare the problems encountered by each drilling technology, compare the compatibility of each technology with varying logistical and geological conditions, and discuss the expense of using each technology. This report is designed to be a horizontal environmental well reference document for the environmental remediation industry. An environmental problem holder may use this report to evaluate a directional drilling technology for use at his/her site.

Not Available

1993-11-01T23:59:59.000Z

336

Revised Draft Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Impact Statement for Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center A Summary and Guide for Stakeholders DOE/EIS-0226-D (Revised) November 2008 The West Valley Site Availability of the Revised Draft EIS for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center For further information on this Draft EIS, or to request a copy please contact: Cathern Bohan, EIS Document Manager West Valley Demonstration Project U.S. Department of Energy Ashford Office Complex 9030 Route 219 West Valley, NY 14171 Telephone: 716-942-4159 Fax: 716-942-4703 E-mail: catherine.m.bohan@wv.doe.gov Printed with soy ink on recycled paper

337

Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Orientation Visit to the West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WVDP-2011-11-07 WVDP-2011-11-07 Site: West Valley Demonstration Project Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Orientation Visit to the West Valley Demonstration Project Dates of Activity : 11/07/2011 Report Preparer: Joseph P. Drago Activity Description/Purpose: The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit to the DOE West Valley Demonstration Project (WVDP) Office and the nuclear facility at West Valley, NY, on November 7, 2011. The purpose of the visit was to discuss the nuclear safety oversight strategy, describe the site lead program, increase HSS personnel's operational awareness of the site's activities, and

338

Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Orientation Visit to the West Valley Demonstration Project  

NLE Websites -- All DOE Office Websites (Extended Search)

WVDP-2011-11-07 WVDP-2011-11-07 Site: West Valley Demonstration Project Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Orientation Visit to the West Valley Demonstration Project Dates of Activity : 11/07/2011 Report Preparer: Joseph P. Drago Activity Description/Purpose: The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit to the DOE West Valley Demonstration Project (WVDP) Office and the nuclear facility at West Valley, NY, on November 7, 2011. The purpose of the visit was to discuss the nuclear safety oversight strategy, describe the site lead program, increase HSS personnel's operational awareness of the site's activities, and

339

Williams Holding Lease Steamflood Demonstration Project: Cat Canyon Oil Field. Third progress report, July 1978-November 1979  

SciTech Connect

This report discusses pilot operations and results during this period. The performance of the displacement steam generator, the status of the sulfur dioxide scrubbing system, well workovers and the results of drilling four thermal observation wells are examined. Additional computer thermal simulation studies are discussed in detail and a new production performance projection is made. Finally, project economics and future operations are summarized.

Ditmore, T.L.

1980-06-01T23:59:59.000Z

340

Environmental monitoring for the DOE coolside and LIMB demonstration extension projects. Quarterly report for the period of February, March and April 1991  

SciTech Connect

The purpose of this document is to present environmental monitoring data collected during the US DOE Limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators. (VC)

White, T.; Contos, L.; Adams, L. [Radian Corp., Research Triangle Park, NC (United States). Progress Center

1992-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Coal Bed Methane Primer  

SciTech Connect

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

342

The MAJORANA DEMONSTRATOR: An R&D project towards a tonne-scale germanium neutrinoless double-beta decay search  

E-Print Network (OSTI)

The MAJORANA collaboration is pursuing the development of the so-called MAJORANA DEMONSTRATOR. The DEMONSTRATOR is intended to perform research and development towards a tonne-scale germanium-based experiment to search for the neutrinoless double-beta decay of Ge-76. The DEMONSTRATOR can also perform a competitive direct dark matter search for light WIMPs in the 1-10 GeV/c^2 mass range. It will consist of approximately 60-kg of germanium detectors in an ultra-low background shield located deep underground at the Sanford Underground Laboratory in Lead, SD. The DEMONSTRATOR will also perform background and technology studies, and half of the detector mass will be enriched germanium. This talk will review the motivation, design, technology and status of the DEMONSTRATOR.

Reyco Henning; for the MAJORANA Collaboration

2009-07-09T23:59:59.000Z

343

Proceedings of the 1987 international conference on fluidized bed combustion: FBC comes of age  

SciTech Connect

This book presents the papers given at a conference on fluidized-bed combustors. Topics considered at the conference included fluidized bed boilers for utility applications, coal-fired systems, boiler retrofit, demonstration programs, atmospheric fluidized bed applications at the Tennessee Valley Authority, pressurized fluidized bed applications, waste disposal, adsorbents, fluid mechanics in fluidized beds, hydrodynamics, desulfurization, environmental issues, and advanced concepts.

Mustonen, J.P.

1987-01-01T23:59:59.000Z

344

SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet.  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet describes the ThunderPower hydrogen fuel cell bus that was demonstrated at SunLine Transit Agency from November 2002 to February 2003. The bus was evaluated by DOEs Advanced Vehicle Testing Activity.

345

Decentralized coordination through digital technology, dynamic pricing, and Customer-Driven control: the GridWise testbed demonstration project  

SciTech Connect

The project highlights the idea that technology-enabled decentralized coordination can achieve the same, or better, economic and reliability benefits when compared to utility-focused centralized physical and economic control. Among the design's unique features was a retail double auction with five-minute market-clearing intervals that included residential customers as direct, active market participants. (author)

Chassin, David P.; Kiesling, Lynne

2008-10-15T23:59:59.000Z

346

Small-scale hydroelectric power demonstration project: Broad River Electric Cooperative, Inc. , Cherokee Falls Hydroelectric Project: Final technical and construction cost report  

SciTech Connect

The purpose of this report is to fulfill part of the requirement of the US Department of Energy (DOE) Cooperative Agreement Number FC07-80ID12125 of the Small Scale Hydropower Program and is submitted on behalf of the Broad River Electric Cooperative, Inc. of Gaffney, South Carolina. The project was initially studied in 1978 with construction commencing in January, 1984. The primary work elements of the project consisted of the renovation of an existing dam and a new powerhouse. The dam was rehabilitated and flashboards were installed along the top of the structure. The powerhouse was supplied with a single open pit turbine and a new substation was constructed. The project generated power in December of 1985 but has been plagued with numerous problems compounded by a flood in March, 1987 causing extensive damages. The flood of March, 1987 resulted in filing of litigative action by the developers against their project managers and engineers which has yet to reach settlement and will possibly culminate in court sometime during the fall of 1988.

Not Available

1988-06-01T23:59:59.000Z

347

Geologic Sequestration of CO2 in Deep, Unmineable Coalbeds: An Integrated Researdh and Commercial-Scale Field Demonstration Project  

SciTech Connect

The Coal-Seq consortium is a government-industry collaborative consortium with the objective of advancing industry's understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. This will allow primary recovery, enhanced recovery and CO{sub 2} sequestration operations to be commercially enhanced and/or economically deployed. The project was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO{sub 2} sequestration in deep, unmineable coalseams. The initial project accomplished a number of important objectives, which mainly revolved around performing baseline experimental studies, documenting and analyzing existing field projects, and establishing a global network for technology exchange. The results from that Phase have been documented in a series of reports which are publicly available. An important outcome of the initial phase was that serious limitations were uncovered in our knowledge of reservoir behavior when CO{sub 2} is injected into coal. To address these limitations, the project was extended in 2005 as a government-industry collaborative consortium. Selected accomplishments from this phase have included the identification and/or development of new models for multi-component sorption and diffusion, laboratory studies of coal geomechanical and permeability behavior with CO{sub 2} injection, additional field validation studies, and continued global technology exchange. Further continuation of the consortium is currently being considered. Some of the topics that have been identified for investigation include further model development/refinement related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins, the extension of the work to gas shale reservoirs, and continued global technology exchange.

Scott Reeves; George Koperna

2008-09-30T23:59:59.000Z

348

DOE Funds 21 Research, Development and Demonstration Projects for up to $78 Million to Promote Enhanced Geothermal Systems  

Energy.gov (U.S. Department of Energy (DOE))

Today at the National Geothermal Conference in Reno, Nev., Deputy Assistant Secretary for Renewable Energy Steve Chalk announced the U.S. Department of Energy's (DOE) awards under a Funding Opportunity Announcement (FOA) for research, development and demonstration of Enhanced Geothermal Systems (EGS) for next-generation geothermal energy technologies.

349

The DOE Wide Area Measurement System (WAMS) Project -- Demonstration of dynamic information technology for the future power system  

SciTech Connect

In 1989 the Bonneville Power Administration (BPA) and the Western Power Administration (WAPA) joined the US Department of Energy (DOE) in an assessment of longer-term research and development needs for future electric power system operation. The effort produced a progressively sharper vision of a future power system in which enhanced control and operation are the primary means for serving new customer demands in an environment characterized by increased competition, a wider range of services and vendors, and much narrower operating margins. Technology and infrastructure for real time access to wide area dynamic information were identified as critical path elements in realizing that vision. In 1995 the DOE accordingly launched the Wide Area Measurement System (WAMS) Project jointly with the two Power Marketing Administrations (PMAs) to address these issues in a practical operating environment the western North America power system. The Project draws upon many years of PMA effort and related collaboration among the western utilities, plus an expanding infrastructure that includes regionally involved contractors, universities, and National Laboratories plus linkages to the Electric Power Research Institute (EPRI).

Mittelstadt, W.A. [Bonneville Power Administration (United States); Hauer, J.F. [Pacific Northwest Lab., Richland, WA (United States); Krause, P.E.; Wilson, R.E. [Western Power Administration (United States); Overholt, P.N. [USDOE (United States); Rizy, D.T. [Oak Ridge National Lab., TN (United States)

1995-12-31T23:59:59.000Z

350

Record of Decision and Floodplain Statement of Findings: Western Greenbrier Co-Production Demonstration Project, Rainelle, Greenbrier County, WV (DOE/EIS-0361) (04/29/08)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

14 Federal Register 14 Federal Register / Vol. 73, No. 83 / Tuesday, April 29, 2008 / Notices DEPARTMENT OF ENERGY Record of Decision and Floodplain Statement of Findings: Western Greenbrier Co-Production Demonstration Project, Rainelle, Greenbrier County, WV AGENCY: Office of Fossil Energy, U.S. Department of Energy (DOE). ACTION: Record of Decision (ROD) and Floodplain Statement of Findings. SUMMARY: DOE has decided to implement the Proposed Action alternative, identified as the preferred alternative, in the Western Greenbrier Co-Production Demonstration Project, Final Environmental Impact Statement (DOE/EIS-0361; November 2007) (FEIS). That alternative is to provide approximately $107.5 million (up to 50% of the development costs) to Western Greenbrier Co-Generation, LLC

351

Fluid-bed studies of olefin production from methanol  

SciTech Connect

With newly developed technology, conversion of methanol to hydrocarbons represents the final link in the production of premium transportation fuels from coal or natural gas. The methanol-to-gasoline (MTG) process has been developed. The more readily scaled fixed-bed version is the heart of the New Zealand Gas-to-gasoline complex, which will produce 14,000 BPD high octane gasoline from 120 million SCFD gas. The fluid-bed version of the process, which is also available for commercial license, has a higher thermal efficiency and possesses substantial yield and octane advantages over the fixed-bed. Successful scale-up was completed in 1984 in a 100 BPD semi-works plant near Cologne, West Germany. The project funded jointly by the U.S. and German governments and an industrial consortium comprised of Mobil; Union Rheinsche Braunkohlen Kraftstoff, AG; and Uhde, GmbH. The 100 BPD MTG project was extended recently to demonstrate a related fluid bed process for selective conversion of methanol to light olefins (MTO). The products of the MTO reaction make an excellent feed to the commercially available Mobile-Olefins-to-Gasoline-and-Distillate process (MOGD) which selectively converts olefins to premium transportation fuels . A schematic of the combined processes is shown. Total liquid fuels production is typically greater than 90 wt% of hydrocarbon in the feed. Distillate/gasoline product ratios from the plant can be adjusted over a wide range to meet seasonal demands. This paper describes the initial scale-up of the MTO process from a micro-fluid-bed reactor (1-10 grams of catalyst) to a large pilot unit (10-25 kilograms of catalyst).

Socha, R.F.; Chang, C.D.; Gould, R.M.; Kane, S.E.; Avidan, A.A.

1986-03-01T23:59:59.000Z

352

Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants: ProMIS/Project No.: DE-NT0005343  

NLE Websites -- All DOE Office Websites (Extended Search)

seyed Dastgheib seyed Dastgheib Principal Investigator Illinois State Geological Survey 615 E. Peabody Drive Champaign, Illinois 61820-6235 217-265-6274 dastgheib@isgs.uius.edu Reuse of PRoduced WateR fRom co 2 enhanced oil RecoveRy, coal-Bed methane, and mine Pool WateR By coal-Based PoWeR Plants: PRomis /PRoject no. : de-nt0005343 Background Coal-fired power plants are the second largest users of freshwater in the United States. In Illinois, the thermoelectric power sector accounts for approximately 84 percent of the estimated 14 billion gallons per day of freshwater withdrawals and one-third of the state's 1 billion gallons per day of freshwater consumption. Illinois electric power generation capacity is projected to expand 30 percent by 2030, increasing water consumption by

353

Test study of salty paper mill waste in a bubbling fluidized bed combustor  

SciTech Connect

Foster Wheeler Pyropower Inc. has supplied a 73.7 kg/s bubbling fluidized bed boiler to MacMillan Bloedel's Powell River paper mill (now Pacifica Paper). The BFB boiler was designed to fire a fuel mixture of a mill effluent sludge and a hog fuel (bark) that is contaminated with seawater. Due to its very high alkali content and low ash content, the fuel is prone to cause problems such as agglomeration in the fluidized bed. Foster Wheeler and MacMillan Bloedel took a proactive approach to quantify likely problems and to identify solutions. A 200 hour-long test program was carried out at Foster Wheeler Development Corporation in Livingston, New Jersey with the Powell River feedstock. This paper provides the project background, an outline of the test facility, test matrix, fuel and bed material characteristics, followed by a test process overview. A summary of fuel alkali related agglomeration mechanism in fluidized bed is also included. The paper offers further observations on in-bed alkali accumulation as well as examinations of different types of bed material agglomerates found during the tests. A recommended boiler operating strategy for preventing agglomeration in the BFB boiler developed based on the test results is described. These recommendations have been successfully implemented during the start up of the boiler. The boiler has been in operation since November 1997. Boiler performance tests completed in April 1998 have demonstrated all guaranteed process conditions.

Wu, S.; Sellakumar, K.M.; Chelian, P.K.; Bleice, C.; Shaw, I.

1999-07-01T23:59:59.000Z

354

Small-scale hydroelectric power demonstration project: Broad River Electric Cooperative, Inc. , Cherokee Falls, South Carolina: Final operations and maintenance report  

SciTech Connect

The purpose of this report is to give a final accounting of the costs and benefits derived from the first two years of operation of the Cherokee Falls, Broad River Hydroelectric Demonstration Project which was built at Cherokee Falls, South Carolina. Prior to construction, Broad River Electric Cooperative, Inc. (BREC) executed a Cooperative Agreement with the US Department of Energy (DOE) Number FC07-80ID12125 which provided $1,052,664 toward the construction of the facility. This agreement requires that BREC document for DOE a summary of the complete operating statistics, operating and maintenance cost, and revenues from power sales for a two-year operating period. A complete reporting covering the design, technical, construction, legal, institutional, environmental and other related aspects of the total project was furnished to DOE previously for publication as the ''Final Technical and Construction Cost Report''. For this reason these elements will not be addressed in detail in this report. In order to make this account a more meaningful discussion of the initial two-year and four month production period, it is necessary to detail several unique events concerning the project which set Cherokee Falls apart from other projects developed under similar Cooperative Agreements with DOE. Accordingly, this report will discuss certain major problems experienced with the design, operation and maintenance, energy production, as well as the operation and maintenance cost and value of the power produced for the first 28 months of operation. 3 figs.

Not Available

1988-08-01T23:59:59.000Z

355

CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT  

SciTech Connect

Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Powers Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: scale up of gas to solid heat transfer high temperature finned surface design the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas-to-solids heat transfer. A stress test rig was built and tested to provide validation data for a stress model needed to support high temperature finned surface design. Additional cold flow model tests and MTF tests were conducted to address mechanical and process design issues. This information was then used to design and cost a commercial CMB design concept. Finally, the MBHE was reconfigured into a slice arrangement and tested for an extended duration at a commercial CFB plant.

Jukkola, Glen

2010-06-30T23:59:59.000Z

356

Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maturation Plan (TMP) Fluidized Bed Steam Reforming Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Fluidized Bed Steam Reformer System. Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) More Documents & Publications Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) SRS Tank 48H Waste Treatment Project Technology Readiness Assessment

357

Atmospheric fluidized-bed combustion. Technology status report  

SciTech Connect

The goal of DOE/METC's AFBC activities is to establish an engineering technology base by 1990, from which the industrial, commercial, and residential sectors can build and operate coal-fired AFBC systems. These systems will be capable of economically generating process steam, direct and indirect heat, and onsite electric power from coals of all ranks and sulfur contents in an environmentally acceptable manner. First-generation atmospheric fluidized-bed technology is considered commercial; a number of US boiler manufacturers are offering commercial units. However, many of these first units are products of empirical design and offer marginal gains in economics, performance, and reliability over conventional systems. In order to resolve the remaining technical issues and to broaden the market, DOE is pursuing advanced concepts. Development of this second-generation AFBC technology is directed toward small industrial, commercial, and residential applications. Penetration of these potential markets will require: (1) a 20 to 30% reduction in capital and operating costs over first-generation technology; (2) significant improvements in performance and reliability; and (3) compliance with existing and proposed New Source Performance Standards for environmental emissions. Current AFBC activities address: industrial operations, advanced concepts, and technology development. Four AFBC demonstration projects were active in FY 1984. The development of AFBC technology is directly supported by the evaluation of five advanced concepts by the M.W. Kellogg Company (circulating-bed FBC), Battelle Columbus Laboratories (spouted-bed FBC), Aerojet Energy Conversion Company (moving-bed FBC), Howard University (staged cascade FBC), and Arthur D. Little, Inc. (pulsed-bed FBC). These concepts may improve the economics and performance. 13 refs., 11 figs.

Not Available

1984-10-01T23:59:59.000Z

358

West Valley Demonstration Project Waste Management Environmental Impact Statement Supplement Analysis (DOE/EIS-0337-SA-01) (06/07/06)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 7-SA-O1 West Valley Demonstration Project Waste Management Environmental Impact Statement Supplement Analysis Revised Final U.S. Department of Energy West Valley Demonstration Project West Valley, New York June 7, 2006 WVDP Waste Management US - Supplement Analysis Table of Contents 1.0 PURPOSE AND NEED FOR AGENCY ACTION 1 2.0 PROPOSED ACTIONS 1 3.0 WASTE TYPE DEFINITIONS 2 4.0 EXISTING NEPA ANALYSIS 3 5.0 NEW INFORMATION 3 6.0 IS A SUPPLEMENTAL EIS NEEDED~ 5 6.1 Glass Melter, CFMT, and MFHT 5 6.2 Increased LLW Volumes 11 7.0 CONCLUSION 17 8.0 DETERMINATION 177 9.0 REFERENCES 17 List of Tables Table 1. Radiation Doses for Involved and Noninvolved Workers Under Alternative A, Including the Glass Melter, CFMT, and MFHT 8 Table 2. Radiological Consequences of Accidents Using 50-Percent Atmospheric Conditions ...9 Table 3. Radiological Consequences of Accidents Using 95-Percent

359

Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460  

SciTech Connect

The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling.

Yanochko, Ronald M [Washington River Protection Solutions, Richland, WA (United States); Corcoran, Connie [AEM Consulting, LLC, Richland, WA (United States)

2012-11-15T23:59:59.000Z

360

Selection Criteria for Demonstration Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Selection Criteria: Selection Criteria: Energy Savings: * If a building were to apply this technology, how much energy could it save compared to a "typical" existing building? How much energy could it save compared to a typical "new" building built to the latest (IECC 2007) code? Provide references, calculations, and documentation. * If the technology is a drop-in replacement, how much energy could it save compared to "typical" new equipment? Provide references, calculations, and documentation. Market & Job Creation Potential: * What is the market potential for this technology? * What types of buildings is this technology best suited for? What types of buildings is this technology ill-suited for? * How many US buildings that could potentially benefit from/utilize this technology? What % of U.S.

Note: This page contains sample records for the topic "bed demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Emerging Technology Retrofit Demonstration Projects  

Energy.gov (U.S. Department of Energy (DOE))

Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

362

Shallow Carbon Sequestration Demonstration Project  

SciTech Connect

The potential for carbon sequestration at relatively shallow depths was investigated at four power plant sites in Missouri. Exploratory boreholes were cored through the Davis Shale confining layer into the St. Francois aquifer (Lamotte Sandstone and Bonneterre Formation). Precambrian basement contact ranged from 654.4 meters at the John Twitty Energy Center in Southwest Missouri to over 1100 meters near the Sioux Power Plant in St. Charles County. Investigations at the John Twitty Energy Center included 3D seismic reflection surveys, downhole geophysical logging and pressure testing, and laboratory analysis of rock core and water samples. Plans to perform injectivity tests at the John Twitty Energy Center, using food grade CO{sub 2}, had to be abandoned when the isolated aquifer was found to have very low dissolved solids content. Investigations at the Sioux Plant and Thomas Hill Energy Center in Randolph County found suitably saline conditions in the St. Francois. A fourth borehole in Platte County was discontinued before reaching the aquifer. Laboratory analyses of rock core and water samples indicate that the St. Charles and Randolph County sites could have storage potentials worthy of further study. The report suggests additional Missouri areas for further investigation as well.

Pendergrass, Gary; Fraley, David; Alter, William; Bodenhamer, Steven

2013-09-30T23:59:59.000Z

363

Bed material agglomeration during fluidized bed combustion. Final report  

SciTech Connect

The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion of coal and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed combustors (FBCs) indicate that at least five boilers were experiencing some form of bed material agglomeration. Deposit formation was reported at nine sites with deposits most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Three general types of mineralogic reactions were observed to occur in the agglomerates and deposits. Although alkalies may play a role with some {open_quotes}high alkali{close_quotes} lignites, we found agglomeration was initiated due to fluxing reactions between iron (II) from pyrites and aluminosilicates from clays. This is indicated by the high amounts of iron, silica, and alumina in the agglomerates and the mineralogy of the agglomerates. Agglomeration likely originated in the dense phase of the FBC bed within the volatile plume which forms when coal is introduced to the boiler. Secondary mineral reactions appear to occur after the agglomerates have formed and tend to strengthen the agglomerates. When calcium is present in high amounts, most of the minerals in the resulting deposits are in the melilite group (gehlenite, melilite, and akermanite) and pyroxene group (diopside and augite). During these solid-phase reactions, the temperature of formation of the melilite minerals can be lowered by a reduction of the partial pressure of CO{sub 2} (Diopside + Calcite {r_arrow}Akermanite).

Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

1996-01-01T23:59:59.000Z

364

Project Year Project Team  

E-Print Network (OSTI)

Project Year 2002 Project Team Faculty: Louise Pasternack, Chemistry Department, Krieger School, Krieger School of Arts & Sciences Project Title Introductory Chemistry Lab Demonstrations Audience an interactive virtual lab manual that will facilitate understanding of the procedures and techniques required

Gray, Jeffrey J.

365

Bed material agglomeration during fluidized bed combustion. Technical progress report, September 30, 1992--December 31, 1992  

SciTech Connect

The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

Brown, R.C.; Dawson, M.R.; Noble, S.

1993-02-01T23:59:59.000Z

366

The Advanced Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NOx) Emissions From Coal-Fired Boilers Demonstration Project: A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 The Advanced Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NO ) Emissions From Coal-Fired Boilers X Demonstration Project: A DOE Assessment March 2000 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

367

Operational strategy for soil concentration predictions of strontium/yttrium-90 and cesium-137 in surface soil at the West Valley Demonstration Project site  

SciTech Connect

There are difficulties associated with the assessment of the interpretation of field measurements, determination of guideline protocols and control and disposal of low level radioactive contaminated soil in the environmental health physics field. Questions are raised among scientists and in public forums concerning the necessity and high costs of large area soil remediation versus the risks of low-dose radiation health effects. As a result, accurate soil activity assessments become imperative in decontamination situations. The West Valley Demonstration Project (WVDP), a US Department of Energy facility located in West Valley, New York is managed and operated by West Valley Nuclear Services Co., Inc. (WVNS). WVNS has identified contaminated on-site soil areas with a mixed variety of radionuclides (primarily fission product). Through the use of data obtained from a previous project performed during the summer of 1994 entitled ``Field Survey Correlation and Instrumentation Response for an In Situ Soil Measurement Program`` (Myers), the WVDP offers a unique research opportunity to investigate the possibility of soil concentration predictions based on exposure or count rate responses returned from a survey detector probe. In this study, correlations are developed between laboratory measured soil beta activity and survey probe response for the purposes of determining the optimal detector for field use and using these correlations to establish predictability of soil activity levels.

Myers, J.A.

1995-06-05T23:59:59.000Z

368

Erosion of heat exchanger tubes in fluidized beds  

SciTech Connect

This final report describes the activities of the 3-year project entitled Erosion of Heat Exchanger Tubes In Fluidized Beds.'' which was completed at the end of 1990. Project accomplishments include the collection of a substantial body of wear data In a 24in. [times] 24in. fluidized bed, comparative wear results In a 6in. [times] 6in. fluidized bed, the development of a dragometer and the collection of a comprehensive set of drag force data in the 24in. [times] 24in. bed, Fast Fourier Transform (FFT) analysis of bubble probe data to establish dominant bubble frequencies in the 24in. [times] 24in. bed, the use of a heat flux gauge for measurement of heat transfer coefficients in the 24in. [times] 24in. bed and the modeling of the tube wear in the 24in. [times] 24in. bed. Analysis of the wear data from the 24in. square bed indicates that tube wear increases with increase in superficial velocity, and with increase in tube height. The latter effect is a result of the tubes higher up in the bed seeing greater movement of dense phase than tubes lower down In the bed. In addition, tube wear was found to decrease with increase in particle size, for constant superficial velocity. Three models of tube wear were formulated and provided acceptable prediction of wear when compared with the experimental data.

Johnson, E.K.; Flemmer, R.L.C.

1991-01-01T23:59:59.000Z

369

GROWDERS Demonstration of Grid Connected Electricity Systems...  

Open Energy Info (EERE)

GROWDERS Demonstration of Grid Connected Electricity Systems (Smart Grid Project) (Spain) Jump to: navigation, search Project Name GROWDERS Demonstration of Grid Connected...

370

Geothermal power plant R and D: an analysis of cost-performance tradeoffs and the Heber Binary-Cycle Demonstration Project  

SciTech Connect

A study of advancements in power plant designs for use at geothermal resources in the low to moderate (300 to 400F) temperature range is reported. In 3 case studies, the benefits of R and D to achieve these advancements are evaluated in terms of expected increases in installed geothermal generating capacity over the next 2 decades. A parametric sensitivity study is discussed which analyzes differential power development for combinations of power plant efficiency and capitol cost. Affordable tradeoffs between plant performance and capital costs are illustrated. The independent review and analysis of the expected costs of construction, operation and maintenance of the Heber Binary Cycle Geothermal Power Demonstration Plant are described. Included in this assessment is an analysis of each of the major cost components of the project, including (1) construction cost, (2) well field development costs, (3) fluid purchase costs, and (4) well field and power plant operation and maintenance costs. The total cost of power generated from the Heber Plant (in terms of mills per kWh) is then compared to the cost of power from alternative fossil-fueled base load units. Also evaluated are the provisions of both: (a) the Cooperative Agreement between the federal government and San Diego Gas and Electric (SDG and E); and (b) the Geothermal Heat Sales Contract with Union Oil Company.

Cassel, T.A.V.; Amundsen, C.B.; Blair, P.D.

1983-06-30T23:59:59.000Z

371

Use of Optical and Imaging Techniques for Inspection of Off-Line Joule-Heated Melter at the West Valley Demonstration Project  

SciTech Connect

The West Valley melter has been taken out of service. Its design is the direct ancestor of the current melter design for the Hanford Waste Treatment Plant. Over its eight years of service, the West Valley melter has endured many of the same challenges that the Hanford melter will encounter with feeds that are similar to many of the Hanford double shell tank wastes. Thus, inspection of the West Valley melter prior to its disposal could provide valuable--even crucial--information to the designers of the melters to be used at the Hanford Site, particularly if quantitative information can be obtained. The objective of Mississippi State University's Diagnostic Instrumentation and Analysis Laboratory's (DIAL) efforts is to develop, fabricate, and deploy inspection tools for the West Valley melter that will (i) be remotely operable in the West Valley process cell; (ii) provide quantitative information on melter refractory wear and deposits on the refractory; and (iii) indicate areas of heterogeneity (e.g., deposits) requiring more detailed characterization. A collaborative arrangement has been established with the West Valley Demonstration Project (WVDP) to inspect their melter.

Plodinec, M. J.; Jang, P-R; Long, Z.; Monts, D. L.; Philip, T.; Su, Y.

2003-02-25T23:59:59.000Z

372

CERTS Microgrid Laboratory Test Bed  

NLE Websites -- All DOE Office Websites (Extended Search)

CERTS Microgrid Laboratory Test Bed CERTS Microgrid Laboratory Test Bed Title CERTS Microgrid Laboratory Test Bed Publication Type Journal Article LBNL Report Number LBNL-3553E Year of Publication 2011 Authors Lasseter, Robert H., Joseph H. Eto, Ben Schenkman, John Stevens, Harry T. Volkommer, David Klapp, Ed Linton, Hector Hurtado, and Joyashree Roy Journal IEEE Transactions on Power Delivery Volume 26 Start Page 325 Issue 1 Date Published 01/2011 Keywords distributed energy resources (der) Abstract CERTS Microgrid concept captures the emerging potential of distributed generation using a system approach. CERTS views generation and associated loads as a subsystem or a "microgrid". The sources can operate in parallel to the grid or can operate in island, providing UPS services. The system can disconnect from the utility during large events (i.e. faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid falls below certain standards. CERTS Microgrid concepts were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resynchronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults. Keywords: CHP, UPS, distributed generation, intentional islanding, inverters, microgrid, CERTS, power vs. frequency droop, voltage droop.

373

17 - Fluidized bed gasification  

Science Journals Connector (OSTI)

Abstract: The chapter describes the state-of-the-art of fluidized bed gasification of solid fuels, starting from the key role played by hydrodynamics, and its strong correlation with physical and chemical phenomena of the process and operating performance parameters of the reactor. The possible configurations of fluidized bed gasification plants are also assessed, and an analysis of the main methods for syngas cleaning is reported. Finally, the chapter describes some of the most interesting commercial experiences. The analysis indicates that the gasification of biomass and also of municipal and industrial solid wastes appear to be the most interesting sectors for the industrial development and utilization of fluidized bed gasifiers.

U. Arena

2013-01-01T23:59:59.000Z

374

Development of an advanced process for drying fine coal in an inclined fluidized bed  

SciTech Connect

The objective of this research project was to demonstrate a technically feasible and economically viable process for drying and stabilizing high-moisture subbituminous coal. Controlled thermal drying of coal fines was achieved using the inclined fluidized-bed drying and stabilization process developed by the Western Research Institute. The project scope of work required completion of five tasks: (1) project planning, (2) characterization of two feed coals, (3) bench-scale inclined fluidized-bed drying studies, (4) product characterization and testing, and (5) technical and economic evaluation of the process. High moisture subbituminous coals from AMAX Eagle Butte mine located in the Powder River Basin of Wyoming and from Usibelli Coal Mine, Inc. in Healy, Alaska were tested in a 10-lb/hr bench-scale inclined fluidized-bed. Experimental results show that the dried coal contains less than 1.5% moisture and has a heating value over 11,500 Btu/lb. The coal fines entrainment can be kept below 15 wt % of the feed. The equilibrium moisture of dried coal was less than 50% of feed coal equilibrium moisture. 7 refs., 60 figs., 47 tabs.

Boysen, J.E.; Cha, C.Y.; Barbour, F.A.; Turner, T.F.; Kang, T.W.; Berggren, M.H.; Hogsett, R.F.; Jha, M.C.

1990-02-01T23:59:59.000Z

375

Packed Bed Combustion: An Overview  

E-Print Network (OSTI)

;Packed Bed Combustion - University of Ottawa - CICS 2005 fuel fuel feed air products air fuel Retort) products Underfeed Combustion fuel feed air #12;Packed Bed Combustion - University of Ottawa - CICS 2005 required #12;Packed Bed Combustion - University of Ottawa - CICS 2005 Overfeed Bed fuel motion products air

Hallett, William L.H.

376

GATEWAY Demonstrations  

Energy.gov (U.S. Department of Energy (DOE))

DOE GATEWAY demonstrations showcase high-performance LED products for general illumination in a variety of commercial and residential applications. Demonstration results provide real-world experience and data on state-of-the-art solid-state lighting (SSL) product performance and cost effectiveness. These results connect DOE technology procurement efforts with large-volume purchasers and provide buyers with reliable data on product performance.

377

Transportation Safeguards & Security Test Bed (TSSTB) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Safeguards and Security Test Bed May 30, 2013 The Transportation Safeguards and Security Test Bed consists of a test-bed vehicle and a monitoringlaboratorytraining...

378

CO2 Sequestration in Unmineable Coal with Enhanced Coal Bed Methane Recovery DE-FC26-01NT41148  

NLE Websites -- All DOE Office Websites (Extended Search)

1, 2013 1, 2013 James E. Locke & Richard A. Winschel CONSOL Energy Inc. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS Presentation Outline  Benefit to the program  Project overview  Technical status  Accomplishments  Summary  Appendix 2 Benefit to the Program This project will demonstrate the effectiveness and the economics of carbon sequestration in an unmineable coal seam with enhanced coal bed methane (ECBM) production. 3 Project Overview: Goals and Objectives  Demonstrate horizontal drilling in underground coal seams,  Devise economical drilling strategies to maximize both CO 2 sequestration potential and CBM recovery,

379

A Demonstration System for Capturing Geothermal Energy from Mine...  

Open Energy Info (EERE)

MT Project Type Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type Topic 2 Topic Area 1: Technology Demonstration Projects Project...

380

Staged fluidized bed  

DOE Patents (OSTI)

The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

Mallon, R.G.

1983-05-13T23:59:59.000Z

Note: This page contains sample records for the topic "bed demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring the Standard Model Exploring the Standard Model       You've heard a lot about the Standard Model and the pieces are hopefully beginning to fall into place. However, even a thorough understanding of the Standard Model is not the end of the story but the beginning. By exploring the structure and details of the Standard Model we encounter new questions. Why do the most fundamental particles have the particular masses we observe? Why aren't they all symmetric? How is the mass of a particle related to the masses of its constituents? Is there any other way of organizing the Standard Model? The activities in this project will elucidate but not answer our questions. The Standard Model tells us how particles behave but not necessarily why they do so. The conversation is only beginning. . . .

382

Circulating Fluidized Bed Combustion Boiler Project  

E-Print Network (OSTI)

or turndown so we delayed consideration of installation of a FBC boil r. CIRCULATING FBC In early 1980 we became aware of the work by the Ahlstrom Company of Helsinki, Finland in the development of the circulating FBC boiler design. The PYROFLOW... layer is a lightweight insulating refractory. In 1979, Ahlstrom started up a 45,000 pound per hour PYROFLOW unIt at Pihlava, Finland. In 1981, 200,000 pound per hour boiler was started up 1 Kauttua, Finland as le b se load steam supply for paper...

Farbstein, S. B.; Moreland, T.

1984-01-01T23:59:59.000Z

383

Project Year Project Team  

E-Print Network (OSTI)

Project Year 2005 Project Team Krysia Hudson, Faculty, School of Nursing, Undergraduate Instruction for Educational Resources Project Title Enhanced Web-based Learning Environments for Beginning Nursing Students (e.g., demonstrations of procedures or tasks) into the WBL systems, it will be possible to increase

Gray, Jeffrey J.

384

successfully demonstrated the separation  

NLE Websites -- All DOE Office Websites (Extended Search)

successfully demonstrated the separation and capture of 90 percent successfully demonstrated the separation and capture of 90 percent of the c arbon dioxide (CO 2 ) from a pulve rized coal plant. In t he ARRA-funded project, Membrane Technology and Research Inc. (MTR) and its partners tested the Polaris(tm) membrane system, which uses a CO 2 -selective polymeric membrane material and module to capture CO 2 from a plant's flue gas. Since the Polaris(tm) membranes

385

Update of waste fuel firing experience in Foster Wheeler circulating fluidized bed boilers  

SciTech Connect

As the costs and availability of more conventional fuels continue to escalate, more and more customers are investigating and choosing operation with lower cost waste or alternative fuels. Details of units firing waste or alternative fuels which have been in active service for many years are summarized, and the fuel analyses are given. This chapter gives a general overview of the projects that are or will be firing waste or alternative fuels, namely, the Mt. Carmel Manitowoc, NISCO and HUNOSA units. The experience of the four operating units has demonstrated that waste and alternative fuels can be successfully and economically burned in an atmosphere circulating fluidized bed unit while meeting permitted emission requirements.

Abdulally, I.F.; Reed, K.A.

1993-12-31T23:59:59.000Z

386

LED Lamp Project Lights the Way to Flicker-Free Replacement Jade Sky Technologies and UC Davis's California Lighting Technology Center demonstrate the  

E-Print Network (OSTI)

, 2014 ­ Jade Sky Technologies ("JST"), a clean-tech start-up manufacturer of LED Technologies and UC Davis's California Lighting Technology Center demonstrate the lighting Specification. JST collaborated with UC Davis's California Lighting Technology Center

California at Davis, University of

387

First-Ever Demonstration of Quantum Cryptography to Improve Security of the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First-Ever Demonstration of Quantum Cryptography to Improve First-Ever Demonstration of Quantum Cryptography to Improve Security of the Electric Grid First-Ever Demonstration of Quantum Cryptography to Improve Security of the Electric Grid March 19, 2013 - 4:21pm Addthis A Los Alamos National Laboratory (LANL) team has successfully completed the first-ever demonstration of securing control data for electric grids using quantum cryptography. The demonstration was conducted in the test bed that is part of the OE-funded Trustworthy Cyber Infrastructure for the Power Grid (TCIPG) project at the University of Illinois Urbana-Champaign. For more information about the demonstration, read the complete press release on the LANL website. To learn more about how OE is supporting the research and development of numerous advanced technologies uniquely designed to protect the electric

388

First-Ever Demonstration of Quantum Cryptography to Improve Security of the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First-Ever Demonstration of Quantum Cryptography to Improve First-Ever Demonstration of Quantum Cryptography to Improve Security of the Electric Grid First-Ever Demonstration of Quantum Cryptography to Improve Security of the Electric Grid March 19, 2013 - 4:21pm Addthis A Los Alamos National Laboratory (LANL) team has successfully completed the first-ever demonstration of securing control data for electric grids using quantum cryptography. The demonstration was conducted in the test bed that is part of the OE-funded Trustworthy Cyber Infrastructure for the Power Grid (TCIPG) project at the University of Illinois Urbana-Champaign. For more information about the demonstration, read the complete press release on the LANL website. To learn more about how OE is supporting the research and development of numerous advanced technologies uniquely designed to protect the electric

389

Fluidized Bed Fuel Cell Electrodes  

Science Journals Connector (OSTI)

... smoothed the electrolyte flow through the bed. The mesh acted as bed support and electrical contactor to the beads. In the case of the hydrogen peroxide electrode the nickel mesh ... at the top 'of the bed for the hydrogen peroxide electrode and close to the contactor for the methanol electrode. In both cases polarization measurements were carried out at 20 ...

T. BERENT; I. FELLS; R. MASON

1969-09-06T23:59:59.000Z

390

IDAHO BIODIESEL INFRASTRUCTURE PROJECT DOE'S INITIATIVE ON COOPERATIVE PROGRAMS WITH STATES FOR RESEARCH, DEVELOPMENT AND DEMONSTRATION GRANT NO. DE-FC36-02GO12021  

SciTech Connect

The Idaho Energy Division issued a Request for Proposal (RFP) on March 14, 2006, inviting qualified licensed fuel wholesalers, fuel retailers, and vehicle fleet operators to provide proposals to construct and/or install infrastructure for biodiesel utilization in Idaho. The intent was to improve the ability of private and/or non-Federal public entities in Idaho to store, transport, or offer for sale biodiesel within the state. The RFP provided up $100,000 for co-funding the projects with a minimum 50% cash cost match. Four contracts were subsequetnly awarded that resulted in three new bidodiesel storage facilities immediately serving about 45 fueling stations from Sandpoint to Boise. The project also attracted considerable media attention and Idaho became more knowledgeable about biodiesel.

JOHN CROCKETT

2006-12-31T23:59:59.000Z

391

SRS Tank 48H Waste Treatment Project Technology Readiness Assessment...  

Office of Environmental Management (EM)

Project More Documents & Publications Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) Technology Maturation...

392

CERTS Microgrid Laboratory Test Bed  

NLE Websites -- All DOE Office Websites (Extended Search)

Submitted to IEEE Transactions on Power Delivery Submitted to IEEE Transactions on Power Delivery Abstract--. CERTS Microgrid concept captures the emerging potential of distributed generation using a system approach. CERTS views generation and associated loads as a subsystem or a "microgrid". The sources can operate in parallel to the grid or can operate in island, providing UPS services. The system can disconnect from the utility during large events (i.e. faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid falls below certain standards. CERTS Microgrid concepts were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations,

393

Particle Receiver Integrated with Fludized Bed  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheet describes a project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program to NREL which features a particle receiver with a fluidized bed. The research team is working to develop a technology that uses gas/solid, two-phase flow as a heat-transfer fluid and separated, stable, solid particles as a thermal energy storage medium. This project provides a pathway for CSP plants to increase their solar-to-electric conversion efficiency and reduce costs in the areas of solar collection from the solar field to the receiver, energy conversion systems, and thermal energy storage.

394

CCUS Demonstrations Making Progress  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, First Quarter, 2013 9, First Quarter, 2013 www.fossil.energy.gov/news/energytoday.html HigHligHts inside 2 CCUS Demonstrations Making Progress A Column from the Director of Clean Energy Sys- tems, Office of Clean Coal 4 LNG Exports DOE Releases Third Party Study on Impact of Natural Gas Exports 5 Providing Emergency Relief Petroleum Reservers Helps Out with Hurricane Relief Efforts 7 Game-Changing Membranes FE-Funded Project Develops Novel Membranes for CCUS 8 Shale Gas Projects Selected 15 Projects Will Research Technical Challenges of Shale Gas Development A project important to demonstrat- ing the commercial viability of carbon capture, utilization and storage (CCUS) technology has completed the first year of inject-

395

Notice of Intent to Prepare an Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center (3/13/03)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Federal Register / Vol. 68, No. 49 / Thursday, March 13, 2003 / Notices Dated: March 6, 2003. Gerald A. Reynolds, Assistant Secretary for Civil Rights. [FR Doc. 03-5999 Filed 3-12-03; 8:45 am] BILLING CODE 4000-01-M DEPARTMENT OF ENERGY Notice of Intent to Prepare an Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center AGENCY: Department of Energy. ACTION: Notice of Intent. SUMMARY: The U.S. Department of Energy (DOE) and the New York State Energy Research and Development Authority (NYSERDA) are announcing their intent to prepare an Environmental Impact Statement (EIS) for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project (WVDP) and

396

Daemen Alternative Energy/Geothermal Technologies Demonstration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Project...

397

Notice of Availability for the Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project Final Environmental Impact Statement (12/13/02)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

740 740 Federal Register / Vol. 67, No. 240 / Friday, December 13, 2002 / Notices [FR Doc. 02-31431 Filed 12-12-02; 8:45 am] BILLING CODE 6450-01-C ENVIRONMENTAL PROTECTION AGENCY [ER-FRL-6635-7] Environmental Impact Statments; Notice of Availability Responsible Agency: Office of Federal Activities, General Information (202) 564-7167 or http://www.epa.gov/ compliance/nepa/. Weekly receipt of Environmental Impact Statements filed December 2, 2002, through December 6, 2002. Pursuant to 40 CFR 1506.9. EIS No. 020498, Draft EIS, SFW, WA, Daybreak Mine Expansion and Habitat Enhancement Project, Habitat Conservation Plan, Issuance of a Multiple Species Permit for Incidental Take, Implementation, Clark County, WA , Comment Period Ends: February 21, 2003. Contact: Tim Romanski

398

Simulation of a High Efficiency Multi-bed Adsorption Heat Pump  

SciTech Connect

Attaining high energy efficiency with adsorption heat pumps is challenging due to thermodynamic losses that occur when the sorbent beds are thermally cycled without effective heat recuperation. The multi-bed concept described here effectively transfers heat from beds being cooled to beds being heated, which enables high efficiency in thermally driven heat pumps. A simplified lumped-parameter model and detailed finite element analysis are used to simulate the performance of an ammonia-carbon sorption compressor, which is used to project the overall heat pump coefficient of performance. The effects of bed geometry and number of beds on system performance are explored, and the majority of the performance benefit is obtained with four beds. Results indicate that a COP of 1.24 based on heat input is feasible at AHRI standard test conditions for residential HVAC equipment. When compared on a basis of primary energy input, performance equivalent to SEER 13 or 14 are theoretically attainable with this system.

TeGrotenhuis, Ward E.; Humble, Paul H.; Sweeney, J. B.

2012-05-01T23:59:59.000Z

399

Current status of MHI CO2 capture plant technology, large scale demonstration project and road map to commercialization for coal fired flue gas application  

Science Journals Connector (OSTI)

(1) It is becoming increasingly evident that the prolonged utilization of fossil fuels for primary energy production, especially coal which is relatively cheap and abundant, is inevitable and that Carbon Capture and Storage (CCS) technology can significantly reduce CO2 emissions from this sector thus allowing the continued environmentally sustainable use of this important energy commodity on a global basis. (2) MHI has co-developed the Kansai Mitsubishi Carbon Dioxide Recovery Process (KM-CDR Process) and KS-1 absorbent, which has been deployed in seven CO2 capture plants, now under commercial operation operating at a CO2 capture capacity of 450 metric tons per day (tpd). In addition, a further two commercial plants are now under construction all of which capture CO2 from natural gas fired flue gas boilers and steam reformers. Accordingly this technology is now available for commercial scale CO2 capture for gas boiler and gas turbine application. (3) However before offering commercial CO2 capture plants for coal fired flue gas application, it is necessary to verify the influence of, and develop countermeasures for, related impurities contained in coal fired flue gas. This includes the influence on both the absorbent and the entire system of the CO2 capture plant to achieve high operational reliability and minimize maintenance requirements. (4) Preventing the accumulation of impurities, especially the build up of dust, is very important when treating coal fired flue gas and MHI has undertaken significant work to understand the impact of impurities in order to achieve reliable and stable operating conditions and to efficiently optimize integration between the CO2 capture plant, the coal fired power plant and the flue gas clean up equipment. (5) To achieve this purpose, MHI constructed a 10 tpd CO2 capture demonstration plant at the Matsushima 1000MW Power Station and confirmed successful, long term demonstration following ?5000hours of operation in 200607 with 50% financial support by RITE, as a joint program to promote technological development with the private sector, and cooperation from J-POWER. (6) Following successful demonstration testing at Matsushima, additional testing was undertaken in 2008 to examine the impact of entrainment of higher levels of flue gas impurities (primarily \\{SOx\\} and dust by bypassing the existing FGD) and to determine which components of the CO2 recovery process are responsible for the removal of these impurities. Following an additional 1000 demonstration hours, results indicated stable operational performance in relation to the following impurities; (1) SO2: Even at higher SO2 concentrations were almost completely removed from the flue gas before entering the CO2 absorber. (2) Dust: The accumulation of dust in the absorbent was higher, leading to an advanced understanding of the behavior of dust in the CO2 capture plant and the dust removal efficiency of each component within the CO2 recovery system. The data obtained is useful for the design of large-scale units and confirms the operating robustness of the CO2 capture plant accounting for wide fluctuations in impurity concentrations. (7) This important coal fired flue gas testing showed categorically that minimizing the accumulation of large concentrations of impurities, and to suppress dust concentrations below a prescribed level, is important to achieve long-term stable operation and to minimize maintenance work for the CO2 capture plant. To comply with the above requirement, various countermeasures have been developed which include the optimization of the impurity removal technology, flue gas pre treatment and improved optimization with the flue gas desulfurization facility. (8) In case of a commercial scale CO2 capture plant applied for coal fired flue gas, its respective size will be several thousand tpd which represents a considerable scale-up from the 10 tpd demonstration plant. In order to ensure the operational reliability and to accurately confirm the influence and the behavior of the impurities in coal fired fl

Takahiko Endo; Yoshinori Kajiya; Hiromitsu Nagayasu; Masaki Iijima; Tsuyoshi Ohishi; Hiroshi Tanaka; Ronald Mitchell

2011-01-01T23:59:59.000Z

400

Bed drain cover assembly for a fluidized bed  

DOE Patents (OSTI)

A loose fitting movable cover plate (36), suitable for the severe service encountered in a fluidized bed combustor (10), restricts the flow of solids into the combustor drain lines (30) during shutdown of the bed. This cover makes it possible to empty spent solids from the bed drain lines which would otherwise plug the piping between the drain and the downstream metering device. This enables use of multiple drain lines each with a separate metering device for the control of solids flow rate.

Comparato, Joseph R. (Bloomfield, CT); Jacobs, Martin (Hartford, CT)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Use of fluidized bed combustion by-products for liners and alkali substitutes. Technical report, March 1--May 31, 1995  

SciTech Connect

Fluidized Bed Combustion of coal eliminates most emissions of S and N oxides but produces sizable volumes of a solid residue that EPA may require to be placed in capped and lined landfills. Fluidized Bed Combustors are one of the most promising growth markets for Illinois coal and imposing cap and liner requirements may make the technology uneconomic. Fluidized Bed residues are cementlike and when mixed with soil, produce a material as impermeable as the clay liners used at landfills. This project will demonstrate that the residues can be mixed with soils by regular construction equipment and used in place of clays as liner material. The demonstration cap will cover an area of 7 acres and will prevent water infiltration into acid producing material. Baseline studies of Briar Creek indicate that the water is now highly degraded by acid drainage. Construction delays have enhanced the data collected on Briar Creek by allowing monitoring to continue through major seasonal changes without any effects attributable to the FBC ash. Materials needed to place the wells and lysimeters have been obtained. A contractor will build and deliver a mobile foam generator and spray to the field to demonstrate fugitive dust control from FBC fly ash (dust problem is one key barrier to more widespread use of FBC ash).

Paul, B.C.; Esling, S. [Southern Illinois Univ., Carbondale, IL (United States); Pisani, F. [Illinois Abandoned Mined Lands reclamation Council (United States); Wells, T. [Archer-Daniels-Midland Co., Minneapolis, MN (United States)

1995-12-31T23:59:59.000Z

402

Greenidge Multi-Pollutant Control Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plant Improvement Power Plant Improvement Initiative (PPII) CONTACTS Brad Tomer Director Offi ce of Major Demonstrations National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4692 brad.tomer@netl.doe.gov Wolfe Huber National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-5747 wolfe.huber@netl.doe.gov PARTNER CONSOL Energy Inc. Pittsburgh, PA ADDITIONAL TEAM MEMBERS AES Greenidge, LLC Babcock Power Environmental, Inc. GREENIDGE MULTI-POLLUTANT CONTROL PROJECT Project Description This project demonstrated a selective non-catalytic reduction (SNCR)/in-duct selective catalytic reduction (SCR) hybrid in combination with low-NO X burners (LNBs) and a circulating fl uidized bed dry scrubber (CFBDS) system using recycled

403

Fluidized bed boiler feed system  

DOE Patents (OSTI)

A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

Jones, Brian C. (Windsor, CT)

1981-01-01T23:59:59.000Z

404

Erosion of heat exchanger tubes in fluidized beds. Annual report, 1990  

SciTech Connect

This final report describes the activities of the 3-year project entitled ``Erosion of Heat Exchanger Tubes In Fluidized Beds.`` which was completed at the end of 1990. Project accomplishments include the collection of a substantial body of wear data In a 24in. {times} 24in. fluidized bed, comparative wear results In a 6in. {times} 6in. fluidized bed, the development of a dragometer and the collection of a comprehensive set of drag force data in the 24in. {times} 24in. bed, Fast Fourier Transform (FFT) analysis of bubble probe data to establish dominant bubble frequencies in the 24in. {times} 24in. bed, the use of a heat flux gauge for measurement of heat transfer coefficients in the 24in. {times} 24in. bed and the modeling of the tube wear in the 24in. {times} 24in. bed. Analysis of the wear data from the 24in. square bed indicates that tube wear increases with increase in superficial velocity, and with increase in tube height. The latter effect is a result of the tubes higher up in the bed seeing greater movement of dense phase than tubes lower down In the bed. In addition, tube wear was found to decrease with increase in particle size, for constant superficial velocity. Three models of tube wear were formulated and provided acceptable prediction of wear when compared with the experimental data.

Johnson, E.K.; Flemmer, R.L.C.

1991-01-01T23:59:59.000Z

405

Biparticle fluidized bed reactor  

DOE Patents (OSTI)

A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

Scott, C.D.; Marasco, J.A.

1995-04-25T23:59:59.000Z

406

Biparticle fluidized bed reactor  

DOE Patents (OSTI)

A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

Scott, C.D.; Marasco, J.A.

1996-02-27T23:59:59.000Z

407

Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste  

SciTech Connect

Some of Hanford`s underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford`s organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes` future storage. This work focused on the equilibrium water content and did not investigate the various factors such as @ ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures.

Scheele, R.D.; Bredt, P.R.; Sell, R.L.

1996-09-01T23:59:59.000Z

408

Operation experience from the 71 MW Wakamatsu PFBC Demonstration Plant  

SciTech Connect

In Japan, research and development of the fluidized bed combustion boiler (FBC boiler) for utility and industrial application has been initiated since 1978. At present, for the atmospheric FBC boiler, a unit of 350 MWe output is under construction at Takehara power station, and for the pressurized FBC boiler, a demonstration plant of 71 MWe output has already been installed at Wakamatsu Coal Utilization Research Center. Coal fired operation started in September 1993. Plant shakedown test is now underway. Wakamatsu PFBC Demonstration Plant is fundamentally based on the technology developed by ABB Carbon AB, a Swedish firm. However, various supplemental technologies of Japanese origin have been introduced in this project to improve environmental characteristics, plant heat rate and load controllability. For instances an ultra supercritical (USC) steam turbine and ceramic tube filters are featured in the Wakamatsu plant. The paper describes the outline of Wakamatsu PFBC Project and some major troubles which have been resolved. In addition, the report will provide an update on the operating experience of the Wakamatsu Project.

Goto, Hideki

1995-12-31T23:59:59.000Z

409

FOA for the Demonstration of an Integrated Biorefinery System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

POET Project Liberty, LLC FOA for the Demonstration of an Integrated Biorefinery System: POET Project Liberty, LLC FOA for the Demonstration of an Integrated Biorefinery System:...

410

DOE - Office of Legacy Management -- West Valley Demonstration...  

Office of Legacy Management (LM)

Valley Demonstration Project - NY 23 FUSRAP Considered Sites Site: West Valley Demonstration Project (NY.23) Designated Name: Alternate Name: Location: Evaluation Year: Site...

411

Moving granular-bed filter development program. Topical report  

SciTech Connect

Advanced, coal-based, power plants, such as IGCC and Advanced-PFBC, are currently nearing commercial demonstration. These power plant technologies require hot gas filtration as part of their gas cleaning trains. Ceramic barrier filters are the major filter candidates being developed for these hot gas cleaning applications. While ceramic barrier filters achieve high levels of particle removal, concerns exist for their reliability and operability in these applications. An alternative hot gas filtration technology is the moving granular bed filter. An advanced, moving granular bed filter has been conceived, and early development activities performed by the Westinghouse Electric Corporation, Science and Technology Center. This document reports on the Base Contract tasks performed to resolve the barrier technical issues for this technology. The concept, the Standleg Moving Granular Bed Filter (SMGBF) has a concurrent downward, gas and bed media flow configuration that results in simplified features and improved scaleup feasibility compared to alternative designs. Two modes of bed media operation were assessed in the program: once-through using pelletized power plant waste as bed media, and recycle of bed media via standleg and pneumatic transport techniques. Cold Model testing; high-temperature, high-pressure testing; and pelletization testing using advanced power plant wastes, have been conducted in the program. A commercial, economic assessment of the SMGBF technology was performed for IGCC and Advanced-PFBC applications. The evaluation shows that the barrier technical issues can be resolved, and that the technology is potentially competitive with ceramic barrier filters.

Newby, R.A.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1994-04-01T23:59:59.000Z

412

Integrated gasification fuel cell (IGFC) demonstration test  

SciTech Connect

As concern about the environment generates interest in ultra-clean energy plants, fuel cell power plants can respond to the challenge. Fuel cells convert hydrocarbon fuels to electricity at efficiencies exceeding conventional heat engine technologies while generating extremely low emissions. Emissions of SOx and NOx are expected to be well below current and anticipated future standards. Nitrogen oxides, a product of combustion, will be extremely low in this power plant because power is produced electrochemically rather than by combustion. Due to its higher efficiencies, a fuel cell power plant also produces less carbon dioxide. Fuel cells in combination with coal gasification, are an efficient and environmentally acceptable means to utilize the abundant coal reserves both in the US and around the world. To demonstrate this technology, FuelCell Energy, Inc. (FCE), is planning to build and test a 2-MW Fuel Cell Power Plant for operation on coal derived gas. This power plant is based on Direct Fuel Cell (DFC{trademark}) technology and will be part of a Clean Coal V IGCC project supported by the US DOE. A British Gas Lurgi (BGL) slagging fixed-bed gasification system with cold gas clean up is planned as part of a 400 MW IGCC power plant to provide a fuel gas slip stream to the fuel cell. The IGFC power plant will be built by Kentucky Pioneer Energy, A subsidiary of Global Energy, in Clark County, KY. This demonstration will result in the world's largest fuel cell power plant operating on coal derived gas. The objective of this test is to demonstrate fuel cell operation on coal derived gas at a commercial scale and to verify the efficiency and environmental benefits.

Steinfeld, G.; Ghezel-Ayagh, H.; Sanderson, R.; Abens, S.

2000-07-01T23:59:59.000Z

413

Syngas methanation for substitute natural gas over NiMg/Al2O3 catalyst in fixed and fluidized bed reactors  

Science Journals Connector (OSTI)

Abstract A comparative study was conducted for laboratory syngas methanation over a self-made NiMg/Al2O3 catalyst to demonstrate the technical advantages of fluidized bed over fixed bed reactor. At different reaction temperatures, gas velocities and pressures, the CO conversion and selectivity to CH4 in fluidized bed were shown to be higher than in fixed bed, and much closer to the thermodynamic equilibriums. The spent catalysts from fluidized bed methanation had distinctively low and easy-oxidizing deposited carbon in comparison with that from fixed bed. The results were attributed to the bigger effective catalytic surface, better heat and mass transfer in fluidized bed reactor.

Jiao Liu; Wenlong Shen; Dianmiao Cui; Jian Yu; Fabing Su; Guangwen Xu

2013-01-01T23:59:59.000Z

414

Propane Vehicle Demonstration Grant Program  

SciTech Connect

Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

Jack Mallinger

2004-08-27T23:59:59.000Z

415

CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE TREATMENT  

SciTech Connect

Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (both radioactive and hazardous according tohe Resource Conservation and Recovery Act) wastes. Depending on regulatory requirements, the mercury in the off-gas must be controlled with sometimes very high efficiencies. Compliance to the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards can require off-gas mercury removal efficiencies up to 99.999% for thermally treating some mixed waste streams. Several test programs have demonstrated this level of off-gas mercury control using fixed beds of granular sulfur-impregnated activated carbon. Other results of these tests include: (a) The depth of the mercury control mass transfer zone was less than 15-30 cm for the operating conditions of these tests, (b) MERSORB carbon can sorb Hg up to 19 wt% of the carbon mass, and (c) the spent carbon retained almost all (98 99.99%) of the Hg; but when even a small fraction of the total Hg dissolves, the spent carbon can fail the TCLP test when the spent carbon contains high Hg concentrations. Localized areas in a carbon bed that become heated through heat of adsorption, to temperatures where oxidation occurs, are referred to as bed hot spots. Carbon bed hot spots must be avoided in processes that treat radioactive and mixed waste. Key to carbon bed hot spot mitigation are (a) designing for sufficient gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) monitoring and control of inlet gas flowrate, temperature, and composition, (c) monitoring and control of in-bed and bed outlet gas temperatures, and (d) most important, monitoring of bed outlet CO concentrations. An increase of CO levels in the off-gas downstream of the carbon bed to levels about 50-100 ppm higher than the inlet CO concentration indicate CO formation in the bed, caused by carbon bed hot spots. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from. Multiple high and high-high alarm levels should be used, with appropriate corrective actions for each level.

Nick Soelberg; Joe Enneking

2010-11-01T23:59:59.000Z

416

Determining average bed temperature of nonisothermal fixed-bed hydrotreater  

Science Journals Connector (OSTI)

Employing three catalysts in three parallel pilot-scale fixed-bed reactors, hydrotreating experiments were performed in both isothermal and ascending temperature modes to investigate kinetics and to determine a representative bed temperature. Assuming 1.5th-order for hydrodesulfurization (HDS) and 1st-order for both hydrodenitrogenation (HDN) and mild hydrocracking (MHC), kinetic parameters were obtained from the isothermal mode operation. With the activation energies from isothermal operations, equivalent isothermal temperatures (EITs) in the ascending mode operations were established for specific HDS, HDN and MHC. Employing 19 thermocouple readouts in the catalyst beds and applying an Arrhenius-type rate equation containing the same activation energy, the representative bed temperature was determined. The temperature so determined is called kinetic EIT. The kinetic EIT was found to be the best to represent the nonisothermal bed temperature. The kinetic EIT has been applied to monitoring the catalyst activity in commercial hydrotreating units.

Sok Yui; John Adjaye

2004-01-01T23:59:59.000Z

417

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-01-01T23:59:59.000Z

418

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-12-01T23:59:59.000Z

419

Technology Demonstrations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demonstrations Demonstrations Technology Demonstrations Efficient new building technologies can help meet our country's energy goals, stimulate U.S. manufacturing, create jobs, and improve the environment. However, many high-performing technologies are not readily adopted in the marketplace due to lack of information about their real-world performance. To address this gap in information, the DOE frequently supports demonstrations to assess technologies' energy performance, installation procedures, operations, and maintenance characteristics. The information from these demonstrations helps consumers make more informed decisions and helps U.S. manufacturers validate the performance of their products. Frequently Asked Questions How does DOE prioritize demonstration projects?

420

Pulsed atmospheric fluidized bed combustion  

SciTech Connect

The general specifications for a Pulsed Atmospheric Fluidized Bed Combustor Design Report (PAFBC) plant are presented. The design tasks for the PAFBC are described in the following areas: Coal/Limestone preparation and feed system; pulse combustor; fluidized bed; boiler parts; and ash handling system.

Not Available

1992-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A new bed elevation dataset for Greenland  

E-Print Network (OSTI)

A new bed elevation dataset for Greenland J. L. Bamber 1 ,al. : A new bed elevation dataset for Greenland Howat, I. M.al. : A new bed elevation dataset for Greenland Fig. 3. (a)

2013-01-01T23:59:59.000Z

422

Use of fluidized bed combustion by-products for liners and alkali substitutes. Technical report, December 1, 1994--February 28, 1995  

SciTech Connect

Fluidized Bed Combustion (FBC) of coal eliminates most emissions of sulfur and nitrogen oxides, but produces sizable volumes of a solid residue that EPA may require to be placed in capped and lined landfills. Fluidized Bed Combustors are one of the most promising growth markets for Illinois coal and imposing cap and liner requirements would render the technology economically inviable. Fluidized Bed residues are cement-like and when mixed with soil produce a material as impermeable as the clay liners used at landfills. This project will demonstrate that Fluidized Bed Combustion Residues can be mixed with soils by regular construction equipment and used in place of clays as a liner material. The demonstration cap will cover an area of seven acres, and will prevent water infiltration into acid producing material. Baseline studies of Briar Creek indicate that the water is now highly degraded by acid drainage. Construction delays have enhanced the data collected on Briar Creek by allowing monitoring to continue through major seasonal changes without any effects attributable to the FBC ash. The materials needed to place the wells and lysimeters as soon as the weather improves this spring have been purchased and delivered. Also experiments suggest that it may be possible to control dust by foam conditioning the FBC ash at the power station.

Paul, B.C.; Esling, S. [Southern Illinois Univ., Carbondale, IL (United States); Pisani, F. [Illinois Abandoned Mined Lands Reclamation Council, IL (United States); Wells, T. [Archer-Daniels-Midland Co., Minneapolis, MN (United States)

1996-03-01T23:59:59.000Z

423

Pinon Pine Power Project. Annual report, August 1992--December 1993  

SciTech Connect

This annual report has been prepared to present the status of the Pinon Pine Power Project, a nominal 104 MWe (gross) integrated gasification combined-cycle (IGCC) power plant addition to Sierra Pacific Power Company`s (SPPCo) system. This project will also serve as a demonstration project cost-shared by the US Department of Energy (DOE) and SPPCo under DOE`s Clean Coal Technology (CCT) Program. The goal of the CCT Program is to demonstrate advanced coal utilization technologies that are energy efficient and reliable and that are able to achieve substantial reductions in emissions as compared with existing coal technologies. The Pinon Pine Power Project will demonstrate an IGCC system utilizing the Kellogg-Rust-Westinghouse (KRW) fluidized-bed gasification process operating in an air-blown mode with in-bed desulfurization and hot gas clean-up with a western bituminous coal. The Pinon Pine Power Project will be constructed and operated at SPPCo`s Tracy Power Station, an existing power generation facility located on a rural 724-acre plot approximately 17 miles east of Reno, NV.

NONE

1994-11-01T23:59:59.000Z

424

Pacific Northwest Smart Grid Demonstration Project  

NLE Websites -- All DOE Office Websites (Extended Search)

2014 Benton PUD B O N N E V I L L E P O W E R A D M I N I S T R A T I O N Stepping into smart grid Flanking the Columbia River in Washington are three sunny cities - Richland,...

425

3M's Motor Challenge Showcase Demonstration Project  

E-Print Network (OSTI)

buildings, the team continued with documentation, analysis and development of technical options on the remaining buildings. Cost control procedures were put into place and the team began creating the specifications and drawings needed to physically...Wd Recommendations VI Presentation and Follow-up Present Feasible Proposals to Management for Funding Approval Follow-up Obtain Authority For Expenditure VII Implementation Cost Control Procedures Engineer Specifications, Design Schedule Downtime Procure...

Schultz, S. C.

426

Offshore Wind Advanced Technology Demonstration Projects | Department...  

Office of Environmental Management (EM)

will help address key challenges associated with installing full-scale offshore wind turbines, connecting offshore turbines to the power grid, and navigating new permitting and...

427

Three Offshore Wind Advanced Technology Demonstration Projects...  

Office of Environmental Management (EM)

commercial operation by 2017. Dominion Power will install two 6-MW direct-drive wind turbines off the coast of Virginia Beach on twisted jacket foundations designed by Keystone...

428

Pacific Northwest Smart Grid Demonstration Project  

NLE Websites -- All DOE Office Websites (Extended Search)

of the first of its kind in the nation. "Residents were invited to purchase a (solar) panel, which ranged from 250 and up," said Beth Leader of Ellensburg's Energy Services...

429

Grid Connectivity Research, Development & Demonstration Projects  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

430

Water Electrolysis and Solar Hydrogen Demonstration Projects  

Science Journals Connector (OSTI)

In this chapter, nearly all conventional and newly developed processes for water electrolysis will be considered, and an overview of ... After a brief historical description of hydrogen, water electrolysis, and s...

Gerd Sandstede; Reinhold Wurster

1995-01-01T23:59:59.000Z

431

Enhanced Geothermal Systems Demonstration Projects | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

innovative technology development and deployment could facilitate access to 100+ GW of energy, exponentially more than today's current geothermal capacity. With EGS, we can tap...

432

West Valley Demonstration Project Transportation Emergency Management...  

Office of Environmental Management (EM)

and verifying the effectiveness of those actions. The second purpose of this review was to observe and evaluate the effectiveness of TCEAP as an evaluation assistance...

433

Independent Oversight Review, West Valley Demonstration Project...  

Office of Environmental Management (EM)

3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report Independent Oversight Review, Rocky Flats Environmental Technology Site - March 2000...

434

Quidi Vidi Lake Hydro Power Demonstration Project  

E-Print Network (OSTI)

walking trail Comprised of a micro hydro generator a wind turbine and a solar array, metered and interpreted This presentation describes the preliminary work on the micro hydro component of the installation interests in using existing infrastructure for low impact micro hydro generation. Insurmountable Roadblocks

Bruneau, Steve

435

Demonstration and Deployment Successes: Sapphire Integrated Algal Biorefinery  

Energy.gov (U.S. Department of Energy (DOE))

Demonstration and Deployment Successes Jaime Moreno, Vice President of Projects, Sapphire Energy, Inc.

436

Advanced Turbine Technology Applications Project (ATTAP). Annual report 1992  

SciTech Connect

This report summarizes work performed by Garrett Auxiliary Power Division (GAPD), a unit of Allied-Signal Aerospace Company, during calendar year 1992, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the US Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATTAP). GAPD utilized the AGT101 regenerated gas turbine engine developed under the previous DOE/NASA Advanced Gas Turbine (AGT) program as the ATTAP test bed for ceramic engine technology demonstration. ATTAP focussed on improving AGT101 test bed reliability, development of ceramic design methodologies, and improvement of fabrication and materials processing technology by domestic US ceramics fabricators. A series of durability tests was conducted to verify technology advancements. This is the fifth in a series of technical summary reports published annually over the course of the five-year contract.

Not Available

1993-03-01T23:59:59.000Z

437

Twelfth annual fluidized bed conference  

SciTech Connect

The Proceedings of the Twelfth Annual Fluidized Bed Conference held November 11-13, 1996 in Pittsburgh, PA are presented. Information is given on: owner`s discussions; new aspects and field upgrades in fluidized bed boilers; manufacturer`s perspectives; fuel considerations; FBC ash reclassification; and beneficial uses of FBC ash. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

NONE

1996-12-31T23:59:59.000Z

438

Effect of bed medium moisture on {alpha}-pinene removal by biofilters  

SciTech Connect

In this study, laboratory scale continuous flow bioifilters were used to determine the effect of bed medium moisture on biofilter performance when treating off-gases containing {alpha}-pinene. Biofilters were packed using a proprietary wood waste bed medium and were operated at a flow rate of 700 ml of air per min, yielding an empty bed residence time of 2 minutes. For the bed medium moisture levels tested, a biofilter bed held at 100% moisture on a dry weight basis demonstrated the best overall {alpha}-pinene removal results. Volumetric productivity and percent removal were higher, while the time to reach maximum removal efficiency was decreased compared to biofilters operated at 40, 60 and 80% bed medium moisture. Results indicate that control of moisture in a biofilter is important for maximum removal of {alpha}-pinene.

Lee, B.D.; Apel, W.A.; Cook, L.L. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Nichols, K.M. [Weyerhaeuser, Federal Way, WA (United States)

1996-12-31T23:59:59.000Z

439

Notice of Cancellation of the Environmental Impact Statement for the Clean Power From Integrated Coal/Ore Reduction (CPICOR) Project (DOE/EIS-0280) (10/26/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 0 Federal Register / Vol. 69, No. 206 / Tuesday, October 26, 2004 / Notices DEPARTMENT OF ENERGY Notice of Cancellation of Environmental Impact Statement for the McIntosh Unit 4 Pressurized Circulating Fluidized Bed Demonstration Project AGENCY: Department of Energy. ACTION: Notice of cancellation of Environmental Impact Statement Process. SUMMARY: The Department of Energy (DOE) is canceling the preparation of an Environmental Impact Statement (EIS) for a proposal by the City of Lakeland to design, construct, and operate a project known as the McIntosh Unit 4 Pressurized Circulating Fluidized Bed Demonstration Project in Lakeland, Florida. DOE selected the City of Lakeland's proposal for further consideration under DOE's Clean Coal Technology Demonstration Program

440

Notice of Intent to prepare an Environmental Impact Statement for the Western Greenbrier Co-Production Demonstration Project, Rainelle, WV and Notice of Floodplain/Wetlands Involvement (6/3/03)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11 11 Federal Register / Vol. 68, No. 106 / Tuesday, June 3, 2003 / Notices Dated: May 27, 2003. Judge Eric Andell, Deputy Under Secretary for Safe and Drug- Free Schools. [FR Doc. 03-13836 Filed 6-2-03; 8:45 am] BILLING CODE 4000-01-P DEPARTMENT OF ENERGY Notice of Intent To Prepare an Environmental Impact Statement for the Western Greenbrier Co-Production Demonstration Project, Rainelle, WV and Notice of Floodplain/Wetlands Involvement AGENCY: Department of Energy. ACTION: Notice of Intent to prepare an Environmental Impact Statement and Notice of Floodplain/Wetlands Involvement. SUMMARY: The U.S. Department of Energy (DOE) announces its intent to prepare an Environmental Impact Statement (EIS) pursuant to the National Environmental Policy Act (NEPA), the

Note: This page contains sample records for the topic "bed demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Stream-bed scour, egg burial depths, and the influence of salmonid spawning on bed surface  

E-Print Network (OSTI)

Stream-bed scour, egg burial depths, and the influence of salmonid spawning on bed surface mobility-Hames, and Thomas P. Quinn Abstract: Bed scour, egg pocket depths, and alteration of stream-bed surfaces by spawning chum salmon (Onchorhynchus keta) were measured in two Pacific Northwest gravel-bedded streams. Close

Montgomery, David R.

442

Learning Demonstration Progress Report -- Spring 2008  

SciTech Connect

This report documents key results from DOE's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project based on data through December 2007.

Wipke, K.; Sprik, S.; Kurtz, J.

2008-04-01T23:59:59.000Z

443

Fuel Cell Demonstration Program  

SciTech Connect

In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance, installation, and decommissioning the total project budget was approximately $3.7 million.

Gerald Brun

2006-09-15T23:59:59.000Z

444

Pinon pine project. Annual report, January 1995--December 1995  

SciTech Connect

This annual report has been prepared to present the status of the Pinon Pine Project, a nominal 107 MWe (gross) coal-fired integrated gasification combined-cycle (IGCC) power plant addition to Sierra Pacific Power Company`s (SPPCo) system. This project will also serve as a demonstration project cost-shared by the U.S. Department of Energy (DOE) and SPPCo under DOE`s Clean Coal Technology (CCT) Program. The goal of the CCT Program is to demonstrate advanced coal utilization technologies that are energy efficient, reliable and able to achieve substantial reductions in emissions as compared with existing coal technologies. The Pinon Pine Project will demonstrate an IGCC system utilizing the Kellogg-Rust-Westinghouse (KRW) fluidized-bed gasification process operating in an air-blown mode with in-bed desulfurization and hot gas clean-up with a western bituminous coal as the design fuel. Testing will also be performed on a high-sulfur eastern coal. The Pinon Pine Project will be constructed and operated at SPPCo`s Tracy Power Station, an existing power generation facility located on a rural 724-acre plot approximately 17 miles east of Reno, NV. This new unit will be designated as Tracy Unit No. 4. SPPCo, the project participant, has contracted with the Foster Wheeler USA Corporation (FW USA) for the overall project management, engineering, procurement and construction of the project. FW USA in turn has subcontracted with The M.W. Kellogg Company (MWK) for the engineering and procurement of key components for the Gasifier Island.

NONE

1996-04-01T23:59:59.000Z

445

Environmental assessment of the atlas bio-energy waste wood fluidized bed gasification power plant. Final report  

SciTech Connect

The Atlas Bio-Energy Corporation is proposing to develop and operate a 3 MW power plant in Brooklyn, New York that will produce electricity by gasification of waste wood and combustion of the produced low-Btu gas in a conventional package steam boiler coupled to a steam-electric generator. The objectives of this project were to assist Atlas in addressing the environmental permit requirements for the proposed power plant and to evaluate the environmental and economic impacts of the project compared to more conventional small power plants. The project`s goal was to help promote the commercialization of biomass gasification as an environmentally acceptable and economically attractive alternative to conventional wood combustion. The specific components of this research included: (1) Development of a permitting strategy plan; (2) Characterization of New York City waste wood; (3) Characterization of fluidized bed gasifier/boiler emissions; (4) Performance of an environmental impact analysis; (5) Preparation of an economic evaluation; and (6) Discussion of operational and maintenance concerns. The project is being performed in two phases. Phase I, which is the subject of this report, involves the environmental permitting and environmental/economic assessment of the project. Pending NYSERDA participation, Phase II will include development and implementation of a demonstration program to evaluate the environmental and economic impacts of the full-scale gasification project.

Holzman, M.I.

1995-08-01T23:59:59.000Z

446

Utilization of ash from fluidized bed boilers  

SciTech Connect

Combustion ash from a fluidized bed combustion (FBC) boiler contains not only carbon, but also silica alumina, quicklime as a sorbent, and a calcium sulfate by-product. These substances react chemically during fluidized bed combustion, and with the addition of water, they start an ettringite reaction and solidify. We determined the conditions necessary for producing hard solids through the study of the composition, curing methods, and characteristics of the solidified ash. We then used two types of road base material, crushed stone and solidified ash from an FBC boiler, to construct a test road at a site with a great deal of heavy traffic. Construction began in 1985, and since then, periodic tests have been performed to evaluate the performance of the road base materials. The testing of the manufacturing techniques centered on the amount and manner that water was added to the mixture and the curing methods of the mixture. Additional testing focused on the handling of the ash powder, the mixtures, and the solidified ash. Since 1991, under the sponsorship of MITI, the Center for Coal Utilization, in conjunction with Naruto Salt Mfg., Ltd., Nippon Hodo Co., Ltd., and Kawasaki Heavy Industries, Ltd., has used the referenced results to undertake a joint research and development project aimed at the eventual practical application of the technology. In 1993, a pilot facility to solidify ash with the fluidized bed boiler of 75 t/h capacity was completed. At present, all the discharged ash from the pilot facility is being solidified, and experiments on solidification and road base application techniques are underway. Actual road base tests are also in progress, and we are continuing research to meet the national certification requirements for road base materials.

Takada, Tomoaki [Kawasaki Heavy Industries Co., Ltd., Akashi (Japan)

1994-12-31T23:59:59.000Z

447

Jennings Demonstration PLant  

SciTech Connect

Verenium operated a demonstration plant with a capacity to produce 1.4 million gallons of cellulosic ethanol from agricultural resiues for about two years. During this time, the plant was able to evaluate the technical issues in producing ethanol from three different cellulosic feedstocks, sugar cane bagasse, energy cane, and sorghum. The project was intended to develop a better understanding of the operating parameters that would inform a commercial sized operation. Issues related to feedstock variability, use of hydrolytic enzymes, and the viability of fermentative organisms were evaluated. Considerable success was achieved with pretreatment processes and use of enzymes but challenges were encountered with feedstock variability and fermentation systems. Limited amounts of cellulosic ethanol were produced.

Russ Heissner

2010-08-31T23:59:59.000Z

448

Project Project HQ City HQ State ARRA Funding Total Value Additional  

Open Energy Info (EERE)

Beacon Power Beacon Power Corporation Smart Grid Demonstration Project Tyngsboro Massachusetts City of Painesville Smart Grid Demonstration Project City of Painesville Smart Grid Demonstration Project Painesville Ohio Duke Energy Business Services LLC Smart Grid Demonstration Project Duke Energy Business Services LLC Smart Grid Demonstration Project Charlotte North Carolina East Penn Manufacturing Co Smart Grid Demonstration Project East Penn Manufacturing Co Smart Grid Demonstration Project Lyon Station Pennsylvania Ktech Corporation Smart Grid Demonstration Project Ktech Corporation Smart Grid Demonstration Project Albuquerque New Mexico New York State Electric Gas Corporation Smart Grid Demonstration Project New York State Electric Gas Corporation Smart Grid Demonstration Project

449

EGS Demonstration | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » EGS Demonstration Jump to: navigation, search Geothermal ARRA Funded Projects for EGS Demonstration Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

450