Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EIS-0289: JEA Circulating Fluidized Bed Combustor Project | Department of  

Broader source: Energy.gov (indexed) [DOE]

289: JEA Circulating Fluidized Bed Combustor Project 289: JEA Circulating Fluidized Bed Combustor Project EIS-0289: JEA Circulating Fluidized Bed Combustor Project SUMMARY This EIS assesses environmental issues associated with constructing and demonstrating a project that would be cost-shared by DOE and JEA (formerly the Jacksonville Electric Authority) under the Clean Coal Technology Program. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 7, 2000 EIS-0289: Record of Decision JEA Circulating Fluidized Bed Combustor Project, Jacksonville, Duval County, FL June 1, 2000 EIS-0289: Final Environmental Impact Statement JEA Circulating Fluidized Bed Combustor Project August 1, 1999 EIS-0289: Draft Environmental Impact Statement JEA Circulating Fluidized Bed Combustor

2

DOE/EIS-0289, Final Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project (June 1, 2000)  

Broader source: Energy.gov (indexed) [DOE]

FINAL FINAL ENVIRONMENTAL IMPACT STATEMENT FOR THE JEA CIRCULATING FLUIDIZED BED COMBUSTOR PROJECT JACKSONVILLE, FLORIDA June 2000 U.S. DEPARTMENT OF ENERGY COVER SHEET June 2000 RESPONSIBLE AGENCY U.S. Department of Energy (DOE) TITLE Final Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project; Jacksonville, Duval County, Florida CONTACT Additional copies or information concerning this final environmental impact statement (EIS) can be obtained from Ms. Lisa K. Hollingsworth, National Environmental Policy Act (NEPA) Document Manager, U.S. Department of Energy, National Energy Technology Laboratory, 3610 Collins Ferry Road, P. O. Box 880, Morgantown, WV 26507-0880. Telephone: (304) 285-4992. Fax: (304) 285-4403. E-mail: lisa.hollingsworth@netl.doe.gov.

3

DOE/EIS-0289; Draft Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project, August 1999  

Broader source: Energy.gov (indexed) [DOE]

Draft Draft ENVIRONMENTAL IMPACT STATEMENT FOR THE JEA CIRCULATING FLUIDIZED BED COMBUSTOR PROJECT JACKSONVILLE, FLORIDA August 1999 U.S. DEPARTMENT OF ENERGY COVER SHEET August 1999 RESPONSIBLE AGENCY U.S. Department of Energy (DOE) TITLE Draft Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project; Jacksonville, Duval County, Florida CONTACT Additional copies or information concerning this draft environmental impact statement (EIS) can be obtained from Ms. Lisa K. Hollingsworth, National Environmental Policy Act (NEPA) Document Manager, U.S. Department of Energy, Federal Energy Technology Center, 3610 Collins Ferry Road, P. O. Box 880, Morgantown, WV 26507-0880. Telephone: (304) 285-4992. Fax: (304) 285-4403. E-mail: lisa.hollingsworth@fetc.doe.gov.

4

Final Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project  

SciTech Connect (OSTI)

This EIS assesses environmental issues associated with constructing and demonstrating a project that would be cost-shared by DOE and JEA (formerly the Jacksonville Electric Authority) under the Clean Coal Technology Program. The project would demonstrate circulating fluidized bed (CFB) combustion technology at JEA's existing Northside Generating Station in Jacksonville, Florida, about 9 miles northeast of the downtown area of Jacksonville. The new CFB combustor would use coal and petroleum coke to generate nearly 300 MW of electricity by repowering the existing Unit 2 steam turbine, a 297.5-MW unit that has been out of service since 1983. The proposed project is expected to demonstrate emission levels of sulfur dioxide (SO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter that would be lower than Clean Air Act limits while at the same time producing power more efficiently and at less cost than conventional coal utilization technologies. At their own risk, JEA has begun initial construction activities without DOE funding. Construction would take approximately two years and, consistent with the original JEA schedule, would be completed in December 2001. Demonstration of the proposed project would be conducted during a 2-year period from March 2002 until March 2004. In addition, JEA plans to repower the currently operating Unit 1 steam turbine about 6 to 12 months after the Unit 2 repowering without cost-shared funding from DOE. Although the proposed project consists of only the Unit 2 repowering, this EIS analyzes the Unit 1 repowering as a related action. The EIS also considers three reasonably foreseeable scenarios that could result from the no-action alternative in which DOE would not provide cost-shared funding for the proposed project. The proposed action, in which DOE would provide cost-shared finding for the proposed project, is DOE's preferred alternative. The EIS evaluates the principal environmental issues, including air quality, traffic, noise, and ecological resources, that could result from construction and operation of the proposed project. Key findings include that maximum modeled increases in ground-level concentrations of SO{sub 2} nitrogen dioxide (NO{sub 2}), and particulate matter (for the proposed project alone or in conjunction with the related action) would always be less than 10% of their corresponding standards for increases in pollutants. For potential cumulative air quality impacts, results of modeling regional sources and the proposed project indicate that the maximum 24-hour average SO{sub 2} concentration would closely approach (i.e., 97%) but not exceed the corresponding Florida standard. After the Unit 1 repowering, results indicate that the maximum 24-hour average SO{sub 2} concentration would be 91% of the Florida standard. Concentrations for other averaging periods and pollutants would be lower percentages of their standards. Regarding toxic air pollutants from the proposed project, the maximum annual cancer risk to a member of the public would be approximately 1 in 1 million; given the conservative assumptions in the estimate, the risk would probably be less. With regard to threatened and endangered species, impacts to manatees, gopher tortoises, and other species would be negligible or non-existent. Construction-induced traffic would result in noticeable congestion. In the unlikely event that all coal were transported by rail, up to 3 additional trains per week would exacerbate impacts associated with noise, vibration, and blocked roads at on-grade rail crossings. Additional train traffic could be minimized by relying more heavily on barges and ships for coal transport, which is likely to be a more economic fuel delivery mode. During construction of the proposed project, noise levels would increase from the current operational levels. Except possibly during steam blowouts and possibly during operation of equipment used to construct a nearby segment of a conveyor, construction noise should not appreciably affect the background noise of nearby residences or exceed local nois

N /A

2000-06-30T23:59:59.000Z

5

PSNH's Northern Wood power project repowers coal-fired plant with new fluidized-bed combustor  

SciTech Connect (OSTI)

The Northern Wood Power project permanently replaced a 50-MW coal-burning boiler (Unit 5) at Public Service of New Hampshire's Schiller station with a state-of-the-art circulating fluidized bed wood-burning boiler of the same capacity. The project, completed in December 2006, reduced emissions and expanded the local market for low-grade wood. For planning and executing the multiyear, $75 million project at no cost to its ratepayers, PSNH wins Power's 2007 Marmaduke Award for excellence in O & M. The award is named for Marmaduke Surfaceblow, the fictional marine engineer/plant troubleshoot par excellence. 7 figs., 1 tab.

Peltier, R.

2007-08-15T23:59:59.000Z

6

Synthetic Fuel from Biomass: The AVSA Dual Fluid Bed Combustor — Gasifier Project  

Science Journals Connector (OSTI)

The AVSA project covers completely the generation of synthesis gas from wood waste: feed collection, sizing, drying and transportation as well as gasifier design.

A. Bary; H. A. Masson; P. Debaud

1982-01-01T23:59:59.000Z

7

Combined fluidized bed retort and combustor  

DOE Patents [OSTI]

The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.

Shang, Jer-Yu (Fairfax, VA); Notestein, John E. (Morgantown, WV); Mei, Joseph S. (Morgantown, WV); Zeng, Li-Wen (Morgantown, WV)

1984-01-01T23:59:59.000Z

8

Pulsed atmospheric fluidized bed combustor apparatus  

DOE Patents [OSTI]

A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

Mansour, Momtaz N. (Columbia, MD)

1993-10-26T23:59:59.000Z

9

Tube construction for fluidized bed combustor  

DOE Patents [OSTI]

A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

De Feo, Angelo (Totowa, NJ); Hosek, William (Mt. Tabor, NJ)

1984-01-01T23:59:59.000Z

10

Fluidized bed combustor and tube construction therefor  

DOE Patents [OSTI]

A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

De Feo, Angelo (Passaic, NJ); Hosek, William (Morris, NJ)

1981-01-01T23:59:59.000Z

11

Development of a topping combustor for advanced concept pressurized fluidized-bed combustion systems  

SciTech Connect (OSTI)

A project team consisting of Foster Wheeler Development Corporation, Westinghouse Electric Corporation, Gilbert/Commonwealth and the Institute of Gas Technology, are developing a Second Generation Pressurized Fluidized Bed System. Foster Wheeler is developing a carbonizer (a partial gasifier) and a pressurized fluidized bed combustor. Both these units operate at a nominal 1600{degrees}F (870{degrees}C) for optimal sulfur capture. Since this temperature is well below the current combustion turbine combustor outlet operating temperature of 2350{degrees}F (1290{degrees}C), to reach commercialization, a topping combustor and hot gas cleanup (HGCU) equipment must be developed. Westinghouse`s efforts are focused on the development of the high temperature gas cleanup equipment and the topping combustor. This paper concentrates on the design and test of the topping combustor, which must use a low heating value syngas from the carbonizer at approximately 1600{degrees}F and 150 to 210 psi.

Domeracki, W.F.; Dowdy, T.E.; Bachovchin, D.

1995-11-01T23:59:59.000Z

12

NETL: Oxy-Fired Pressurized Fluidized Bed Combustor (Oxy-PFBC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxy-Fired Pressurized Fluidized Bed Combustor (Oxy-PFBC) Oxy-Fired Pressurized Fluidized Bed Combustor (Oxy-PFBC) Project No.: DE-FE0009448 Oxy-PFBC Layout. Oxy-PFBC Layout. Pratt and Whitney Rocketdyne (PWR) is developing an oxy-fired pressurized fluidized bed combustor (Oxy-PFBC). Pressurized combustion with oxygen enables high efficiency through staged combustion, which results in reduced oxygen use, as well as through recovery of high quality heat from exhaust water vapor. In addition, the process can result in reduced costs for utilization or storage of CO2 because the CO2 is available at increased pressure, reducing compression requirements. Overall, pressurized fluidized bed combustion can result in electricity production from coal with near-zero emissions. PWR will be testing a novel process for pressurized oxy-combustion in a

13

Fluidized bed combustor and coal gun-tube assembly therefor  

DOE Patents [OSTI]

A coal supply gun assembly for a fluidized bed combustor which includes heat exchange elements extending above the bed's distributor plate assembly and in which the gun's nozzles are disposed relative to the heat exchange elements to only discharge granular coal material between adjacent heat exchange elements and in a path which is substantially equidistant from adjacent heat exchange elements.

Hosek, William S. (Mt. Tabor, NJ); Garruto, Edward J. (Wayne, NJ)

1984-01-01T23:59:59.000Z

14

Pulsed atmospheric fluidized bed combustor apparatus and process  

DOE Patents [OSTI]

A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g. organic and medical waste, drying, calcining and the like.

Mansour, Momtaz N. (Columbia, MD)

1992-01-01T23:59:59.000Z

15

Refractory experience in circulating fluidized bed combustors, Task 7  

SciTech Connect (OSTI)

This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

Vincent, R.Q.

1989-11-01T23:59:59.000Z

16

Fluidized bed combustor and removable windbox and tube assembly therefor  

DOE Patents [OSTI]

A fluidized bed combustor comprises a housing having a chamber therein with a top having a discharge for the gases which are generated in the chamber and a bottom with a discharge for heated fluid. An assembly is arranged in the lower portion of the chamber and the assembly includes a lower plate which is mounted on a support flange of the housing so that it is spaced from the bottom of the chamber and defines a fluid plenum between it and the bottom of the chamber for the discharge of heated fluid. The assembly includes a heat exchanger inlet plenum having tubes therethrough for the passage of fluidizer air and a windbox above the heat exchanger plenum which has a distributor plate top wall. A portion of the chamber above the top wall defines a fluidized bed.

DeFeo, Angelo (Totowa, NJ); Hosek, William (Mt. Tabor, NJ)

1983-01-01T23:59:59.000Z

17

Fluidized bed combustor and removable windbox and tube assembly therefor  

DOE Patents [OSTI]

A fluidized bed combustor comprises a housing having a chamber therein with a top having a discharge for the gases which are generated in the chamber and a bottom with a discharge for heated fluid. An assembly is arranged in the lower portion of the chamber and the assembly includes a lower plate which is mounted on a support flange of the housing so that it is spaced from the bottom of the chamber and defines a fluid plenum between it and the bottom of the chamber for the discharge of heated fluid. The assembly includes a heat exchanger inlet plenum having tubes therethrough for the passage of fluidizer air and a windbox above the heat exchanger plenum which has a distributor plate top wall. A portion of the chamber above the top wall defines a fluidized bed.

DeFeo, Angelo (Totowa, NJ); Hosek, William S. (Mt. Tabor, NJ)

1981-01-01T23:59:59.000Z

18

In-bed tube bank for a fluidized-bed combustor  

DOE Patents [OSTI]

An in-bed tube bank (10) for a fluidized bed combustor. The tube bank (10) of the present invention comprises one or more fluid communicating boiler tubes (30) which define a plurality of selectively spaced boiler tube sections (32). The tube sections (32) are substantially parallel to one another and aligned in a common plane. The tube bank (10) further comprises support members (34) for joining adjacent tube sections (32), the support members (34) engaging and extending along a selected length of the tube sections (32) and spanning the preselected space therebetween.

Hemenway, Jr., Lloyd F. (Morgantown, WV)

1990-01-01T23:59:59.000Z

19

Cofiring Lignite with Hazelnut Shell and Cotton Residue in a Pilot-Scale Fluidized Bed Combustor  

Science Journals Connector (OSTI)

The absence of studies on cofiring of indigenous lignite with hazelnut shell/cotton residue blends in fluid bed combustors on one hand and the recent trend in utilization of biomass with local reserves in industry and utility boilers on the other necessitate investigation of combustion and emission characteristics of these fuel blends. ... However, the effect of recycle on gaseous emissions from combustion of Turkish lignites with high ash, volatile matter, and sulfur contents has not been investigated to date. ...

Zuhal Gogebakan; Nevin Selēuk

2008-03-26T23:59:59.000Z

20

Control of thermal processes in a fluidized bed combustor (FBC)  

SciTech Connect (OSTI)

Heat and mass balance equations for the transient process of a fluidized bed furnace are described. The equations involve heat release from char and volatiles combustion, heat consumption during moisture evaporation, and heating of char and circulating particles. Calculations and experimental data for steady-state and unsteady conditions are compared. The results show that the height of the dense bed, the excess-air ratio and kinetic features of the fuel affect the rate of the transient process. The time constant for a disturbance by a change of the air flow rate was found to be smaller than the one for a change of the fuel input.

Munts, V.A.; Filippovskij, N.F.; Baskakov, A.P.; Pavliok, E.J. [Ural State Technical Univ., Ekaterinburg (Russian Federation). Heat Power Dept.; Leckner, B. [Chalmers Univ. of Technology, Gothenburg (Sweden). Dept. of Energy Conversion

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Refractory experience in circulating fluidized bed combustors, Task 7. Final report  

SciTech Connect (OSTI)

This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE`s Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

Vincent, R.Q.

1989-11-01T23:59:59.000Z

22

Combustion of Cattle Manure in a Fluidized Bed Combustor  

E-Print Network [OSTI]

. Experiments were conducted with -20 to +20 percent excess air and at bed temperatures ranging from 600?C (1112?F) to 800?C (1472?F). Experimental data revealed that the gasification efficiencies ranged from 90 to 98 percent, while the combustion... of manure (A, B, C, 0, E, and F) were obtained. The gasification and partial oxidation results for manure A, B, and C (supplied by Hill Feed Yard and Biocon Division of Anderson Peat Company) were reported in references [6 and BJ. The thermochemical...

Annamalai, K.; Colaluca, M. A.; Ibrahim, M. Y.; Sweeten, J. M.

23

Heat exchanger materials for fluidized bed coal combustors  

SciTech Connect (OSTI)

The 4500-h test in the FluiDyne AFBC tells us three things: (1) ferritic and austenitic superheater alloys perform well to approximately 590/sup 0/C (1100/sup 0/F), (2) high-temperature alloys can perform well at approximately 870/sup 0/C (1600/sup 0/F), and (3) they also may fail miserably at approximately 870/sup 0/C (1600/sup 0/F). Additional studies are clearly needed to develop a fundamental understanding of corrosion mechanisms in AFBC and to determine the envelope of safe operating conditions, which will depend upon alloy sensitivity, the oxygen and sulfur activities, and the many parameters that affect mixing and homogeneity within an operating AFBC. Ultimately long-term tests for periods to 20,000 h will be needed to assure the operability of in-bed heat exchanger and structural materials for the anticipated lifetime of a plant. Good design and well-controlled operations will yield good material performance in AFBC. The key to reliable material usage is operation within the safe envelope. Results from the present experiment suggest that this envelope is large for utility steam systems but smaller for high-temperature tubes and uncooled components in AFBC.

Godfrey, T G; Copper, R H; DeVan, J H; Drake, K R

1980-01-01T23:59:59.000Z

24

Corrosion evaluation of weldments exposed in TVA and Rocketdyne AFB (Atmospheric Fluid-Bed) Combustors  

SciTech Connect (OSTI)

A number of experimental iron-, nickel-, and cobalt-based weldment materials were exposed in TVA 20MW and Rocketdyne Atmospheric Fluid-bed Combustors at 849{degree}C for 1261 h and 871{degree}C for 1000 h, respectively. The post-exposure analyses were conducted in Argonne National Laboratory. All specimens experienced different degrees of internal oxidation/sulfidation. Among eight filler materials, Marathon 25/35R and Haynes 188 showed the least corrosion attack, which was less than 0.5 mmpy. The high nickel content in the weldment turned out to be unfavorable for the corrosion resistance in AFBC environment. The differences in the coal/bed chemistry induced different corrosion behavior in materials exposed in TVA and Rocketdyne systems. Calcium sulfate deposit on the specimens showed significant effects on the internal oxidation/sulfidation of the alloys. The results of this study would supplement the material database, in particular weldment performance, and aid in materials selection for atmospheric fluidized bed combustor applications. 10 refs., 13 figs., 4 tabs.

Wang, D.Y.; Natesan, K.

1989-09-01T23:59:59.000Z

25

Simulation and modeling of atmospheric fluidized bed combustors for high sulfur coals  

SciTech Connect (OSTI)

The principal issues in modeling atmospheric fluidized bed combustors (AFBC) are described using the Oak Ridge National Laboratory (ORNL) - Tennessee Valley Authority (TVA) steady state AFBC model as an example. Comparisons are made between model predictions of boiler performance with experimental data from the TVA 20 MW(e) AFBC pilot plant data. Recent FBC models are briefly reviewed and compared with the ORNL-TVA model. The paper also describes the ongoing effort at TVA on transient modeling of AFBC and presents some preliminary results from the TVA AFBC transient model.

Krishnan, R.P.; Daw, C.S.; Byrd, J.; Zielke, R.; Wells, J.W.

1986-01-01T23:59:59.000Z

26

Dynamic Tests and Results in an Oxy-fuel Circulating Fluidized Bed Combustor with Warm Flue Gas Recycle  

Science Journals Connector (OSTI)

Dynamic Tests and Results in an Oxy-fuel Circulating Fluidized Bed Combustor with Warm Flue Gas Recycle ... Dynamic step change tests concerning the coal feed rate and coal type were conducted. ... In the dynamic tests, the oxygen concentration in the flue gas fluctuates in the form of a sinusoidal wave because of the fast volatile combustion and the delay in the char ignition. ...

Jian-xin Zhou; Zhuang Shao; Feng-qi Si; Zhi-gao Xu

2014-11-17T23:59:59.000Z

27

An innovative bed temperature-oriented modeling and robust control of a circulating fluidized bed combustor  

Science Journals Connector (OSTI)

Circulating fluidized bed (CFB) combustion systems are increasingly used as superior coal burning systems in power generation due to their higher efficiency and lower emissions. However, because of their non-linearity and complex behavior, it is difficult to build a comprehensive model that incorporates all the system dynamics. In this paper, a mathematical model of the circulating fluidized bed combustion system based on mass and energy conservation equations was successfully extracted. Using these correlations, a state space dynamical model oriented to bed temperature has been obtained based on subspace method. Bed temperature, which influences boiler overall efficiency and the rate of pollutants emission, is one of the most significant parameters in the operation of these types of systems. Having dynamic and parametric uncertainties in the model, a robust control algorithm based on linear matrix inequalities (LMI) have been applied to control the bed temperature by input parameters, i.e. coal feed rate and fluidization velocity. The controller proposed properly sets the temperature to our desired range with a minimum tracking error and minimizes the sensitivity of the closed-loop system to disturbances caused by uncertainties such as change in feeding coal, while the settling time of the system is significantly decreased.

Aboozar Hadavand; Ali Akbar Jalali; Parviz Famouri

2008-01-01T23:59:59.000Z

28

Process for generating electricity in a pressurized fluidized-bed combustor system  

DOE Patents [OSTI]

A process and apparatus for generating electricity using a gas turbine as part of a pressurized fluidized-bed combustor system wherein coal is fed as a fuel in a slurry in which other constituents, including a sulfur sorbent such as limestone, are added. The coal is combusted with air in a pressurized combustion chamber wherein most of the residual sulfur in the coal is captured by the sulfur sorbent. After particulates are removed from the flue gas, the gas expands in a turbine, thereby generating electric power. The spent flue gas is cooled by heat exchange with system combustion air and/or system liquid streams, and the condensate is returned to the feed slurry.

Kasper, Stanley (Pittsburgh, PA)

1991-01-01T23:59:59.000Z

29

Performance analysis of co-firing waste materials in an advanced pressurized fluidized-bed combustor  

SciTech Connect (OSTI)

The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal wastes. Leading this approach is the atmospheric fluidized-bed combustor (AFBC). It has demonstrated its commercial acceptance in the utility market as a reliable source of power by burning a variety of waste and alternative fuels. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economical feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts. Wastes considered for co-firing include municipal solid waste (MSW), sewage sludge, and industrial de-inking sludge. Conceptual designs of two power plants rated at 250 MWe and 150 MWe were developed. Heat and material balances were completed for each plant along with environmental issues. With the PFBC`s operation at high temperature and pressure, efforts were centered on defining feeding systems capable of operating at these conditions. Air emissions and solid wastes were characterized to assess the environmental performance comparing them to state and Federal regulations. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

Bonk, D.L.; McDaniel, H.M. [USDOE Morgantown Energy Technology Center, WV (United States); DeLallo, M.R. Jr.; Zaharchuk, R. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

1995-07-01T23:59:59.000Z

30

Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant  

DOE Patents [OSTI]

In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

Cole, Rossa W. (E. Rutherford, NJ); Zoll, August H. (Cedar Grove, NJ)

1982-01-01T23:59:59.000Z

31

Test study of salty paper mill waste in a bubbling fluidized bed combustor  

SciTech Connect (OSTI)

Foster Wheeler Pyropower Inc. has supplied a 73.7 kg/s bubbling fluidized bed boiler to MacMillan Bloedel's Powell River paper mill (now Pacifica Paper). The BFB boiler was designed to fire a fuel mixture of a mill effluent sludge and a hog fuel (bark) that is contaminated with seawater. Due to its very high alkali content and low ash content, the fuel is prone to cause problems such as agglomeration in the fluidized bed. Foster Wheeler and MacMillan Bloedel took a proactive approach to quantify likely problems and to identify solutions. A 200 hour-long test program was carried out at Foster Wheeler Development Corporation in Livingston, New Jersey with the Powell River feedstock. This paper provides the project background, an outline of the test facility, test matrix, fuel and bed material characteristics, followed by a test process overview. A summary of fuel alkali related agglomeration mechanism in fluidized bed is also included. The paper offers further observations on in-bed alkali accumulation as well as examinations of different types of bed material agglomerates found during the tests. A recommended boiler operating strategy for preventing agglomeration in the BFB boiler developed based on the test results is described. These recommendations have been successfully implemented during the start up of the boiler. The boiler has been in operation since November 1997. Boiler performance tests completed in April 1998 have demonstrated all guaranteed process conditions.

Wu, S.; Sellakumar, K.M.; Chelian, P.K.; Bleice, C.; Shaw, I.

1999-07-01T23:59:59.000Z

32

NETL: Oxy-Fired Pressurized Fluidized Bed Combustor (Oxy-PFBC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimization of Pressurized Oxy-Combustion with Flameless Reactor Optimization of Pressurized Oxy-Combustion with Flameless Reactor Project No.: DE-FE0009478 Unity Power Alliance (UPA), a joint venture between the Italian company ITEA and ThermoEnergy Corp, is investigating the optimization of pressurized oxy-combustion with a flameless reactor. They will develop a basis for modeling conditions in a flameless reactor and inlet conditions for a heat recovery steam generator. A range of cycles will be evaluated at varying operating pressures to assess the effectiveness of heat recovery by vapor condensation; the optimum size and design of the combustor and the pressure drop in the recirculation pipes; and various purities of oxygen to determine how the variations affect the operation and performance of the air separation unit, the CO2 separation system, and the oxy-combustion process.

33

Investigation of Heat Transfer and Combustion in the Advanced Fluidized Bed Combustor (FBC).  

SciTech Connect (OSTI)

This technical report summarizes the research conducted and progress achieved during the period from January 1, 1997 to March 30, 1997. The systematic tests were conducted to investigate the thermal performance and heat transfer effect on the exploratory hot model. Test results were analyzed to understand thermal performance, heat balance, and heat transfer effect on exploratory hot model. Temperature was measured at different locations of the combustor chamber. The temperature was decreased along the increase the distance from the bottom of the combustor chamber. The heat loss from the combustor wall to the environment is a great portion of the total heat transfer. The flame enthalpy and heat loss at the reactor center changed along the reactor height. The heat loss into the cooling water for case A is about two times lager than that of case B. The heat transfer coefficient from gas to the environment increased as the flame temperature increased.

Lee, S.W.

1997-04-01T23:59:59.000Z

34

Investigation of heat transfer and combustion in the advanced fluidized bed combustor (FBC). Technical progress report No. 1, [October 1, 1993--December 31, 1993  

SciTech Connect (OSTI)

This technical report summarizes the research work performed and progress achieved during the period of October 1, 1993 to December 31, 1993. The newly-concept of exploratory fluidized bed based on the integrating the advantages of fluidized bed combustion (FBC) and cyclonic combustor was designed to study the gas and particle flows and to develop control techniques for gas-particle flow in the FBC. The test chamber was made of transparent acrylic tube with 6in. I.D. to facilitate visual observation. Eight nozzles (s) were made at the freeboard in different levels to provide secondary air, which will generate strong swirling flow field. The progress of this project has been on schedule. Design and fabrication of the exploratory cold test model will be continued with an arrangement of the auxiliary system. After completion of the design/fabrication of the system, the system test will be conducted for the overall system. Instrumentations for the gas/particle flow will be arranged with the auxiliary system. The electrostatic impact probe and associated signal processing units will be designed and fabricated for measuring particle mass flux.

Lee, S.W.

1994-01-01T23:59:59.000Z

35

Investigation of Heat Transfer and Combustion in the Advanced Fluidized Bed Combustor (FBC).  

SciTech Connect (OSTI)

This technical report summarizes the research conducted and progress achieved during the period from April 1, 1997 to June 30, 1997. The exploratory hot model was modified to explore the operational limits, fuel flexibility, and the role of heat transfer in combustion control. Eight air injection nozzles were newly designed to set different angles. Three runs of independently controllable water-cooling tubes were arranged to study the local heat transfer characteristics along the flow direction of the combustor height. The fuel nozzle was carefully designed to improve the fuel atomization quality. The igniter system was designed to safe and dependable ignition. According to the established safety and health guideline, the auxiliary subsystems are inspected carefully. All instruments are checked and calibrated for the system test. The combustion test result was analyzed to understand thermal performance and heat transfer characteristics. The flame enthalpy decreased along the combustor height. The heat is removed by the cooling water at different zones during the combustion test. The axial variation of heat transfer coefficient was predicted. The heat transfer coefficient is generally lower in the top area than in the bottom of the combustor.

Lee, S.W.

1997-07-01T23:59:59.000Z

36

Metal wastage design guidelines for bubbling fluidized-bed combustors. Final report  

SciTech Connect (OSTI)

These metal wastage design guidelines identify relationships between metal wastage and (1) design parameters (such as tube size, tube spacing and pitch, tube bundle and fluidized-bed height to distributor, and heat exchanger tube material properties) and (2) operating parameters (such as fluidizing velocity, particle size, particle hardness, and angularity). The guidelines are of both a quantitative and qualitative nature. Simplified mechanistic models are described, which account for the essential hydrodynamics and metal wastage processes occurring in bubbling fluidized beds. The empirical correlational approach complements the use of these models in the development of these design guidelines. Data used for model and guideline validation are summarized and referenced. Sample calculations and recommended design procedures are included. The influences of dependent variables on metal wastage, such as solids velocity, bubble size, and in-bed pressure fluctuations, are discussed.

Lyczkowski, R.W.; Podolski, W.F.; Bouillard, J.X.; Folga, S.M. [Argonne National Lab., IL (United States)

1992-11-01T23:59:59.000Z

37

Reuse of Fly Ash from a Fluidized Bed Combustor for Sulfur Uptake:? The Role of Ettringite in Hydration-Induced Reactivation  

Science Journals Connector (OSTI)

Reuse of Fly Ash from a Fluidized Bed Combustor for Sulfur Uptake:? The Role of Ettringite in Hydration-Induced Reactivation ... It was found that ettringite was extensively produced during water hydration and that effective enhancement of the sulfur uptake ability of the fly ash was achieved. ... The very favorable performance of reactivated ash as a sulfur sorbent was mostly related to the large amount of free lime formed during thermal decomposition of ettringite. ...

Fabio Montagnaro; Piero Salatino; Graziella Bernardo; Antonio Telesca; Gian Lorenzo Valenti

2005-07-23T23:59:59.000Z

38

Fluidized bed combustor 50 MW thermal power plant, Krabi, Thailand. Feasibility study. Export trade information  

SciTech Connect (OSTI)

The report presents the results of a study prepared by Burns and Roe for the Electricity Generating Authority of Thailand to examine the technical feasibility and economic attractiveness for building a 50 MW Atmospheric Fluidized Bed Combustion lignite fired power plant at Krabi, southern Thailand. The study is divided into seven main sections, plus an executive summary and appendices: (1) Introduction; (2) Atmospheric Fluidized Bed Combustion Technology Overview; (3) Fuel and Limestone Tests; (4) Site Evaluation; (5) Station Design and Arrangements; (6) Environmental Considerations; (7) Economic Analysis.

Not Available

1993-01-01T23:59:59.000Z

39

Sorbent utilization prediction methodology: sulfur control in fluidized-bed combustors  

SciTech Connect (OSTI)

The United States Government has embarked on an ambitious program to develop and commercialize technologies to efficiently extract energy from coal in an environmentally acceptable manner. One of the more promising new technologies for steam and power generation is the fluidized-bed combustion of coal. In this process, coal is burned in a fluidized bed composed mainly of calcined limestone sorbent. The calcium oxide reacts chemically to capture the sulfur dioxide formed during the combustion and to maintain the stack gas sulfur emissions at acceptable levels. The spent sulfur sorbent, containing calcium sulfate, is a dry solid that can be disposed of along with coal ash or potentially used. Other major advantages of fluidized-bed combustion are the reduction in nitrogen oxide emissions because of the relatively low combustion temperatures, the capability of burning wide varieties of fuel, the high carbon combustion efficiencies, and the high heat-transfer coefficients. A key to the widespread commercialization of fluidized-bed technology is the ability to accurately predict the amount of sulfur that will be captured by a given sorbent. This handbook meets this need by providing a simple, yet reliable, user-oriented methodology (the ANL method) that allows performance of a sorbent to be predicted. The methodology is based on only three essential sorbent parameters, each of which can be readily obtained from standardized laboratory tests. These standard tests and the subsequent method of data reduction are described in detail.

Fee, D.C.; Wilson, W.I.; Shearer, J.A.; Smith, G.W.; Lenc, J.F.; Fan, L.S.; Myles, K.M.; Johnson, I.

1980-09-01T23:59:59.000Z

40

Mass balance for \\{POPs\\} in a real scale fluidized bed combustor co-incinerating automotive shredder residue  

Science Journals Connector (OSTI)

The European directive 2000/53/EC implies a “reuse and recovery” rate for end-of-life vehicles (ELVs) of 95% to be reached by the year 2015. One of the options to increase the actual average European “reuse and recovery” rate of approximately 78% (EU 15, 2008) is incineration of automotive shredder residue (ASR) with energy-recovery. The mass balance and the congener fingerprints for PCDD/Fs, dioxin-like PCBs, \\{PCBs\\} and \\{PAHs\\} in a real scale fluidized bed combustor (FBC) incinerating 25% ASR with 25% refuse derived fuel (RDF) and 50% waste water treatment sludge (WWT sludge) were investigated. The PCDD/F, dioxin-like PCB, PCB and PAH concentrations in this input waste mix were more than hundred times higher than in the usual waste feed of the incinerator (30% RFD and 70% WWT sludge). In the outputs of the FBC, however, the concentrations of these POP groups were comparable or only slightly higher than in the outputs generated during the incineration of the usual waste feed. The considered \\{POPs\\} in the waste were destroyed efficiently and the formation of new \\{POPs\\} during cooling of the flue gas appeared to a large extent independent of the POP concentrations in the incinerated waste.

J. Van Caneghem; C. Block; I. Vermeulen; A. Van Brecht; P. Van Royen; M. Jaspers; G. Wauters; C. Vandecasteele

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Effect of fuel properties on the bottom ash generation rate by a laboratory fluidized bed combustor  

SciTech Connect (OSTI)

The range of fuels that can be accommodated by an FBC boiler system is affected by the ability of the fuel, sorbent, and ash-handling equipment to move the required solids through the boiler. Of specific interest is the bottom ash handling equipment, which must have sufficient capacity to remove ash from the system in order to maintain a constant bed inventory level, and must have sufficient capability to cool the ash well below the bed temperature. Quantification of a fuel's bottom ash removal requirements can be useful for plant design. The effect of fuel properties on the rate of bottom ash production in a laboratory FBC test system was examined. The work used coal products ranging in ash content from 20 to 40+ wt. %. The system's classification of solids by particle size into flyash and bottom ash was characterized using a partition curve. Fuel fractions in the size range characteristic of bottom ash were further analyzed for distributions of ash content with respect to specific gravity, using float sink tests. The fuel fractions were then ashed in a fixed bed. In each case, the highest ash content fraction produced ash with the coarsest size consist (characteristic of bottom ash). The lower ash content fractions were found to produce ash in the size range characteristic of flyash, suggesting that the high ash content fractions were largely responsible for the production of bottom ash. The contributions of the specific gravity fractions to the composite ash in the fuels were quantified. The fuels were fired in the laboratory test system. Fuels with higher amounts of high specific gravity particles, in the size ranges characteristic of bottom ash, were found to produce more bottom ash, indicating the potential utility of float sink methods in the prediction of bottom ash removal requirements.

Rozelle, P.L.; Pisupati, S.V.; Scaroni, A.W. [Penn State University, University Park, PA (United States). Dept. of Energy & Geoenvironmental Engineering

2007-06-15T23:59:59.000Z

42

Cofiring lignite with hazelnut shell and cotton residue in a pilot-scale fluidized bed combustor  

SciTech Connect (OSTI)

In this study, cofiring of high ash and sulfur content lignite with hazelnut shell and cotton residue was investigated in 0.3 MWt METU Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig in terms of combustion and emission performance of different fuel blends. The results reveal that cofiring of hazelnut shell and cotton residue with lignite increases the combustion efficiency and freeboard temperatures compared to those of lignite firing with limestone addition only. CO{sub 2} emission is not found sensitive to increase in hazelnut shell and cotton residue share in fuel blend. Cofiring lowers SO{sub 2} emissions considerably. Cofiring of hazelnut shell reduces NO and N{sub 2}O emissions; on the contrary, cofiring cotton residue results in higher NO and N{sub 2}O emissions. Higher share of biomass in the fuel blend results in coarser cyclone ash particles. Hazelnut shell and cotton residue can be cofired with high ash and sulfur-containing lignite without operational problems. 32 refs., 12 figs., 11 tabs.

Zuhal Gogebakan; Nevin Selcuk [Middle East Technical University, Ankara (Turkey). Department of Chemical Engineering

2008-05-15T23:59:59.000Z

43

Effect of temperature on reduction reactivity of oxygen carrier particles in a fixed bed chemical-looping combustor  

Science Journals Connector (OSTI)

In a chemical-looping combustor (CLC), gaseous fuel is oxidized...2...is separated from the exhaust gases during the combustion. In this study, NiO/bentonite particle...x formation during oxidation. Reactivity da...

Ho-Jung Ryu; Dal-Hee Bae; Gyoung-Tae Jin

2003-09-01T23:59:59.000Z

44

MODULAR PEBBLE BED REACTOR PROJECT UNIVERSITY RESEARCH CONSORTIUM  

E-Print Network [OSTI]

Annual Report Page ii MODULAR PEBBLE BED REACTOR ABSTRACT This project is developing a fundamental. Publication of an archival journal article covering this work is being prepared. Ā· Detailed gas reactor Abstract

45

The development of a cyclonic combustor for high particulate, low caloric value gas produced by a fluidized bed  

E-Print Network [OSTI]

methods, utilizing a biomass source, are: combustion, pyrolysis, gasification, and bio-degradation processes. Direct combustion is envisioned as the most immediately available conversion technology. However, there is considerable interest... the combustion of a low caloric value (LCV) and high particulate gas. Performance tests were conducted to verify the cyclone combustor design flexibility by identifying satisfactory performance characteristics. The LCV gas was produced from the gasification...

Cardenas, Manuel Moises

1985-01-01T23:59:59.000Z

46

DMEC-1 Pressurized Circulating Fluidized-Bed Demonstration Project  

SciTech Connect (OSTI)

The DMEC-1 project will demonstrate the use of Pyropower`s PYROFLOW pressurized circulating fluidized bed technology to repower an existing coal fired generating station. This will be the first commercial application of this technology in the world. The project is now in budget period 1, the preliminary design phase.

Kruempel, G.E.; Ambrose, S.J. [Midwest Power, Des Moines, IA (United States); Provol, S.J. [Pyropower Corp., San Diego, CA (United States)

1992-12-01T23:59:59.000Z

47

Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor  

SciTech Connect (OSTI)

Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150{sup o}C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650{sup o}C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. 36 refs., 3 figs. 1 tab.

Yan Cao; Hongcang Zhou; Junjie Fan; Houyin Zhao; Tuo Zhou; Pauline Hack; Chia-Chun Chan; Jian-Chang Liou; Wei-ping Pan [Western Kentucky University (WKU), Bowling Green, KY (USA). Institute for Combustion Science and Environmental Technology (ICSET)

2008-12-15T23:59:59.000Z

48

DoD ESTCP Energy Test Bed Project  

Broader source: Energy.gov (indexed) [DOE]

ESTCP Energy Test Bed Project ESTCP Energy Test Bed Project EW-201016 "High Efficiency - Reduced Emissions Boiler Controls" 23 May 2012 Dr. Jim Galvin ESTCP Program Manager for Energy & Water ESTCP Energy Test Bed Project Location 2 3 Boiler Efficiency Improvement Demo Oxygen Sensor Servo Controls * 90% of boilers lack automated controls * State of the art automated controls sense only oxygen * Demonstrated prototype sensed oxygen and carbon monoxide Prototype CO Sensor Key Findings Boiler Before Demo 4 * Size: 25 MMBtu * Age: 30 years * Fuel: Natural Gas or Oil * Demo performed by United Technologies Research Center * Technology demonstrated: Fireye PPC4000 (Oxygen trim control) * Upgraded PPC4000 tested as a prototype 5 Three Phased Test ā— Test Phase 1: Existing Legacy System (baseline)

49

Bed material agglomeration during fluidized bed combustion  

SciTech Connect (OSTI)

The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

Brown, R.C.; Dawson, M.R.; Noble, S.

1993-02-01T23:59:59.000Z

50

A comparative study of iron-, nickel-, and cobalt-base weldments exposed in TVA 20-MW and Rocketdyne atmospheric fluidized bed combustors  

SciTech Connect (OSTI)

Experimental iron-, nickel-, and cobalt-base weldment materials were exposed in TVA 20-MW and Rocketdyne atmospheric fluidized bed combustors (AFBCs) at 849{degree}C for 1261 h and 871{degree}C for 1000 h, respectively. Postexposure analyses were conducted at Argonne National Laboratory. All specimens experienced different degrees of internal oxidation/sulfidation. Among eight filler materials, Marathon 25/35R and Haynes 188 showed the least corrosion attack, i.e., less than 0.5 mm/yr. A high nickel content in the weldment was unfavorable for corrosion resistance in the AFBC environment. Differences in the coal/bed chemistry of the TVA and Rocketdyne systems yielded different corrosion behavior in the materials. Calcium sulfate deposits on the specimens significantly affected the internal oxidation/sulfidation of the alloys. The results of this study supplement the material data base, in particular that of weldment performance, and aid in materials selection for AFBC applications. 10 refs., 22 figs., 4 tabs.

Wang, D.Y.; Natesan, K.

1990-06-01T23:59:59.000Z

51

FBC (fluidized-bed combustors) engineering correlations for estimating the combustion efficiency of a range of fuels  

SciTech Connect (OSTI)

Simplified engineering correlations are presented for estimating the combustion efficiency of a wide range of fuel types in fluidized bed boilers. The correlations are presented in such a way that they can be applied to various boiler designs, including both bubbling and circulating beds. Major emphasis is placed on minimizing the boiler design and operating details required, thereby enhancing the usefulness of these methods as screening tools. The impact of fuel type is addressed by making use of the fuel characterization parameters measured by the Babcock and Wilcox Company for the Electric Power Research Institute. It is demonstrated that the methods described give combustion efficiency estimates that agree well with typical observations from some well-documented fluidized bed combustion test facilities. 16 refs., 9 figs., 1 tab.

Daw, C.S.; Chandran, R.R.; Duqum, J.N.; Perna, M.A.; Petrill, E.M.

1989-01-01T23:59:59.000Z

52

Four Rivers second generation Pressurized Circulating Fluidized Bed Combustion Project  

SciTech Connect (OSTI)

Air Products has been selected in the DOE Clean Coal Technology Round V program to build, own, and operate the first commercial power plant using second generation Pressurized Circulating Fluidized Bed (PCFB) combustion technology. The four Rivers Energy Project (Four Rivers) will produce up to 400,000 lb/hr steam, or an equivalent gross capacity of 95 MWe. The unit will be used to repower an Air Products chemicals manufacturing facility in Calvert City, Kentucky.

Holley, E.P.; Lewnard, J.J. [Air Products and Chemicals, Inc. (United States); von Wedel, G. [LLB Lurgi Lentjes Babcock Energietechnik (GmbH); Richardson, K.W. [Foster Wheeler Energy Corp. (United States); Morehead, H.T. [Westinghouse Electric Corp. (United States)

1995-04-01T23:59:59.000Z

53

Study of the hydrothermal treatments of residues from fluidized bed combustors for the manufacture of ettringite-based building elements  

Science Journals Connector (OSTI)

Abstract Fluidized bed combustion (FBC) waste is generally unsuitable for making ordinary cements and concretes, and its alternative uses are therefore worthy of consideration. In the present work, FBC waste is investigated as a potentially suitable single raw material for the manufacture of building components based on ettringite, a compound characterized by low density, high fire resistance, significant mechanical strength and usefulness as the main component of preformed lightweight building materials. The hydration behaviour of two FBC waste samples (a fly and a bottom ash) was explored within curing periods comprised between 2 and 24 h at 55 °C, 70 °C and 85 °C. X-ray diffraction and differential thermal analysis were employed as main experimental techniques in order to evaluate the distribution of the hydration products. The role of the raw ash chemical and mineralogical composition, operating temperature and time in the ettringite formation was highlighted. The fly ash was more prone to generate ettringite which, after 2 h-curing time, tended to form and decompose earlier, as the curing temperature and time were further increased. The selectivity of the reactants toward ettringite can be enhanced by the addition of blending components.

Antonio Telesca; Daniela Calabrese; Milena Marroccoli; Gian Lorenzo Valenti; Fabio Montagnaro

2014-01-01T23:59:59.000Z

54

Scramjet combustor  

SciTech Connect (OSTI)

This patent describes a scramjet combustor having a longitudinal axis and two spaced-apart, generally opposing, and generally longitudinally extending walls, with at least one of the walls having an aft-facing step. The combustor also having a fuel injector disposed proximate the step at an acute positive angle with respect to the longitudinal axis, and wherein the improvement comprises means for varying the fuel injector angle during supersonic flight.

Harshman, D.L.

1991-12-17T23:59:59.000Z

55

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

SciTech Connect (OSTI)

The objective of the CERTS Microgrid Laboratory Test Bed project was to enhance the ease of integrating small energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of small generating sources. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation; 2) an approach to electrical protection within the microgrid that does not depend on high fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications. The techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers 1547 and power quality requirements. The electrical protections system was able to distinguish between normal and faulted operation. The controls were found to be robust and under all conditions, including difficult motor starts. The results from these test are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations involving microgrids that involve one or mroe of the CERTS Microgrid concepts.

Eto, Joseph H.; Eto, Joseph H.; Lasseter, Robert; Schenkman, Ben; Klapp, Dave; Linton, Ed; Hurtado, Hector; Roy, Jean; Lewis, Nancy Jo; Stevens, John; Volkommer, Harry

2008-07-25T23:59:59.000Z

56

Destruction and formation of PCDD/Fs in a fluidised bed combustor co-incinerating automotive shredder residue with refuse derived fuel and wastewater treatment sludge  

Science Journals Connector (OSTI)

During an eight day trial automotive shredder residue (ASR) was added to the usual waste feed of a Fluidized Bed Combustor (FBC) for waste-to-energy conversion; the input waste mix consisted of 25% ASR, 25% refuse-derived fuel (RDF) and 50% wastewater treatment (WWT) sludge. All inputs and outputs were sampled and the concentration of the 17 PCDD/Fs with TEF-values was determined in order to obtain “PCDD/F fingerprints”. The ASR contained approximately 9000 ng PCDD/Fs/kgDW, six times more than the RDF and 10 times more than the WWT sludge. The fingerprint of ASR and RDF was dominated by HpCDD and OCDD, which accounted for 90% of the total PDDD/F content, whereas the WWT sludge contained relatively more HpCDFs and OCDF (together 70%). The flue gas cleaning residue (FGCR) and fly and boiler ash contained approximately 30,000 and 2500 ng PCDD/Fs/kgDW, respectively. The fingerprints of these outputs were also dominated by HpCDFs and OCDF. The bottom ash contained only OCDD and OCDF, in total 8 ng PCDD/Fs/kgDW. From the comparison of the bottom ash fingerprints with the fingerprints of the other output fractions and of the inputs, it could be concluded that the PCDD/Fs in the waste were destroyed and new PCDD/Fs were formed in the post combustion process by de novo synthesis. During the ASR-co-incineration, the PCDD/F congener concentrations in the fly and boiler ash, FGCR and flue gas were 1.25–10 times higher compared to the same output fractions generated during incineration of the usual waste mix (70% RDF and 30% WWT sludge). The concentration of the higher chlorinated PCDD/Fs increased most. As these congeners have the lowest TEF-factors, the total PCDD/F output, expressed in kg TEQ/year, of the FBC did not increase significantly when ASR was co-incinerated. Due to the relatively high copper levels in the ASR, the copper concentrations in the \\{FBCs\\} outputs increased. As copper catalysis the de novo syntheses, this could explain the increase in PCDD/F concentrations in these outputs.

J. Van Caneghem; I. Vermeulen; C. Block; A. Van Brecht; P. Van Royen; M. Jaspers; G. Wauters; C. Vandecasteele

2012-01-01T23:59:59.000Z

57

Scramjet combustor  

SciTech Connect (OSTI)

This patent describes an improvement in a scramjet combustor having a longitudinal axis and two spaced-apart, generally opposing, and generally longitudinally extending walls, with each of the walls having an aft-facing step, the steps being a longitudinal distance apart, the combustor also having a fuel injector disposed proximate a the step at an acute positive angle with respect to the longitudinal axis. The improvement comprises: means for varying the longitudinal distance during supersonic flight; means for varying the fuel injector angle during supersonic flight; and means for varying the transverse distance between the walls during supersonic flight.

Harshman, D.L.

1991-12-17T23:59:59.000Z

58

Pulsed atmospheric fluidized bed combustion  

SciTech Connect (OSTI)

The general specifications for a Pulsed Atmospheric Fluidized Bed Combustor Design Report (PAFBC) plant are presented. The design tasks for the PAFBC are described in the following areas: Coal/Limestone preparation and feed system; pulse combustor; fluidized bed; boiler parts; and ash handling system.

Not Available

1992-08-01T23:59:59.000Z

59

Combustor with multistage internal vortices  

DOE Patents [OSTI]

A fluidized bed combustor is provided with a multistage arrangement of vortex generators in the freeboard area. The vortex generators are provided by nozzle means which extend into the interior of the freeboard for forming vortices within the freeboard area to enhance the combustion of particulate material entrained in product gases ascending into the freeboard from the fluidized bed. Each of the nozzles are radially inwardly spaced from the combustor walls defining the freeboard to provide for the formation of an essentially vortex-free, vertically extending annulus about the vortices whereby the particulate material centrifuged from the vortices against the inner walls of the combustor is returned through the annulus to the fluidized bed. By adjusting the vortex pattern within the freeboard, a significant portion of the full cross-sectional area of the freeboard except for the peripheral annulus can be contacted with the turbulent vortical flow for removing the particulate material from the gaseous products and also for enhancing the combustion thereof within the freeboard.

Shang, Jer Y. (4524 Andes Dr., Fairfax, VA 22030); Harrington, Richard E. (114 Beechwood St., Morgantown, WV 26505)

1989-01-01T23:59:59.000Z

60

TRW advanced slagging coal combustor utility demonstration  

SciTech Connect (OSTI)

The TRW Advanced Entrained Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O R) Utility Corporation's Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/oil unit to fire 2.5% sulfur coal. The slagging combustor process will provide NO{sub x} and SO{sub x} emissions that meet NSPS and New York State Environmental Standards. The TRW-Utility Demonstration Unit (UDU) is responsible for the implementation of program policies and overall direction of the project. The following projects will be carried out: process and design development of clean coal technology CCT-1 the development and operation of the entrained coal combustor will enable the boiler to burn low and medium sulfur coal while meeting all the Federal/State emission requirements; demonstrate sulfur dioxide emissions control by pulverized limestone injection into the entrained coal combustor system.

Not Available

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Bed drain cover assembly for a fluidized bed  

DOE Patents [OSTI]

A loose fitting movable cover plate (36), suitable for the severe service encountered in a fluidized bed combustor (10), restricts the flow of solids into the combustor drain lines (30) during shutdown of the bed. This cover makes it possible to empty spent solids from the bed drain lines which would otherwise plug the piping between the drain and the downstream metering device. This enables use of multiple drain lines each with a separate metering device for the control of solids flow rate.

Comparato, Joseph R. (Bloomfield, CT); Jacobs, Martin (Hartford, CT)

1982-01-01T23:59:59.000Z

62

Bed material agglomeration during fluidized bed combustion. Technical progress report, September 30, 1992--December 31, 1992  

SciTech Connect (OSTI)

The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

Brown, R.C.; Dawson, M.R.; Noble, S.

1993-02-01T23:59:59.000Z

63

Fluid Beds: At Last, Challenging Two Entrenched Practices  

Science Journals Connector (OSTI)

...FLUIDIZED-BED COMBUSTOR, JOURNAL...FLUIDIZED COAL COMBUSTOR, COMBUSTION...NONCATALYTIC GAS-SOLID REACTIONS...PARTICLES AT HIGH VELOCITIES...SATIJA, S, PRESSURE-FLUCTUATIONS...gasoline has a higher octane number...to convert natural gas to gasoline...

Arthur M. Squires; Mooson Kwauk; Amos A. Avidan

1985-12-20T23:59:59.000Z

64

Test results of a catalytic combustor for a gas turbine  

Science Journals Connector (OSTI)

A catalytically assisted low \\{NOx\\} combustor has been developed which has the advantage of catalyst durability. Combustion characteristics of catalysts at high pressure were investigated using a bench scale reactor and an improved catalyst was selected. A combustor for multi-can type gas turbine of 10 MW class was designed and tested at high-pressure conditions using liquefied natural gas (LNG) fuel. This combustor is composed of a burner system and a premixed combustion zone in a ceramic type liner. The burner system consists of catalytic combustor segments and premixing nozzles. Catalyst bed temperature is controlled under 1000°C, premixed gas is injected from the premixing nozzles to catalytic combustion gas and lean premixed combustion is carried out in the premixed combustion zone. As a result of the combustion tests, \\{NOx\\} emission was lower than 5 ppm converted at 16% O2 at a combustor outlet temperature of 1350°C and a combustor inlet pressure of 1.33 MPa.

Y Ozawa; T Fujii; Y Tochihara; T Kanazawa; K Sagimori

1998-01-01T23:59:59.000Z

65

Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels  

Broader source: Energy.gov [DOE]

Factsheet overview of how project will develop a unique, feul-flexible catalytic combustor for gas turbines

66

Modelling of Particle Pyrolysis in a Packed Bed Combustor A.R.C. Tuck and W.L.H. Hallett ,1 2*  

E-Print Network [OSTI]

Introduction Biomass combustion for renewable energy production has attracted increasing attention recently. Packed bed combustion is the most common mode of biomass combustion because of its tolerance of a wide range of fuel properties and particle sizes. As with most solid fuels, combustion occurs in three

Hallett, William L.H.

67

DOE/EIS-0289, Final Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project (June 1, 2000)  

Broader source: Energy.gov (indexed) [DOE]

33(1',;$ 33(1',;$ &2168/7$7,21/(77(5681'(56(&7,21 2)7+((1'$1*(5('63(&,(6$&7 )LQDO -XQH  $ -($ (,6 $ APPENDIX B CONSULTATION LETTERS UNDER SECTION 106 OF THE NATIONAL HISTORIC PRESERVATION ACT Final: June 2000 B-3 JEA EIS B-4 Final: June 2000 B-5 JEA EIS B-6 $33(1',;& &2168/7$7,21/(77(56$662&,$7(':,7+7+( )/25,'$67$7(&/($5,1*+286( )LQDO -XQH  & -($ (,6 & )LQDO -XQH  & -($ (,6 & )LQDO -XQH  & -($ (,6 & )LQDO -XQH  & -($ (,6 & )LQDO -XQH 

68

Gas turbine combustor transition  

DOE Patents [OSTI]

A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

Coslow, B.J.; Whidden, G.L.

1999-05-25T23:59:59.000Z

69

ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM  

SciTech Connect (OSTI)

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2004 through September 30, 2004. The following tasks have been completed. First, renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have started. Second, the design if the component parts of the CFBC system have been reviewed and finalized so that the drawings may be released to the manufacturers during the next quarter. Third, the experiments for solid waste (chicken litter) incineration have been conducted using a Thermogravimetric Analyzer (TGA). This is in preparation for testing in the simulated fluidized-bed combustor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

Wei-Ping Pan; Andy Wu; John T. Riley

2004-10-30T23:59:59.000Z

70

Materials for Advanced Turbine Engines (MATE). Project 3: design, fabrication and evaluation of an oxide dispersion strengthened sheet alloy combustor liner. Final Report  

SciTech Connect (OSTI)

The suitability of wrought oxide dispersion strengthened (ODS) superalloy sheet for gas turbine engine combustor applications was evaluated. Incoloy MA 956 (FeCrAl base) and Haynes Developmental Alloy (HDA) 8077 (NiCrAl base) were evaluated. Preliminary tests showed both alloys to be potentially viable combustor materials, with neither alloy exhibiting a significant advantage over the other. Both alloys demonstrated a +167C (300 F) advantage of creep and oxidation resistance with no improvement in thermal fatigue capability compared to a current generation combustor alloy (Hastelloy X). MA956 alloy was selected for further demonstration because it exhibited better manufacturing reproducibility than HDA8077. Additional property tests were conducted on MA956. To accommodate the limited thermal fatigue capability of ODS alloys, two segmented, mechanically attached, low strain ODS combustor design concepts having predicted fatigue lives or 10,000 engine cycles were identified. One of these was a relatively conventional louvered geometry, while the other involved a transpiration cooled configuration. A series of 10,000 cycle combustor rig tests on subscale MA956 and Hastelloy X combustor components showed no cracking, thereby confirming the beneficial effect of the segmented design on thermal fatigue capability. These tests also confirmed the superior oxidation and thermal distortion resistance of the ODS alloy. A hybrid PW2037 inner burner liner containing MA956 and Hastelloy X components was designed and constructed.

Henricks, R.J.; Sheffler, K.D.

1984-02-01T23:59:59.000Z

71

Analysis/control of in-bed tube erosion phenomena in the fluidized bed combustion system. Final technical report  

SciTech Connect (OSTI)

Research is presented on erosion and corrosion of fluidized bed combustor component materials. The characteristics of erosion of in-bed tubes was investigated. Anti-corrosion measures were also evaluated.

Lee, Seong W.

1996-11-01T23:59:59.000Z

72

Combustor liner cooling system  

DOE Patents [OSTI]

A combustor liner is disclosed. The combustor liner includes an upstream portion, a downstream end portion extending from the upstream portion along a generally longitudinal axis, and a cover layer associated with an inner surface of the downstream end portion. The downstream end portion includes the inner surface and an outer surface, the inner surface defining a plurality of microchannels. The downstream end portion further defines a plurality of passages extending between the inner surface and the outer surface. The plurality of microchannels are fluidly connected to the plurality of passages, and are configured to flow a cooling medium therethrough, cooling the combustor liner.

Lacy, Benjamin Paul; Berkman, Mert Enis

2013-08-06T23:59:59.000Z

73

Thermal Imaging Control of Furnaces and Combustors  

SciTech Connect (OSTI)

The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

David M. Rue; Serguei Zelepouga; Ishwar K. Puri

2003-02-28T23:59:59.000Z

74

Modular Pebble-Bed Reactor Project: Laboratory-Directed Research and Development Program FY 2002 Annual Report  

SciTech Connect (OSTI)

This report documents the results of our research in FY-02 on pebble-bed reactor technology under our Laboratory Directed Research and Development (LDRD) project entitled the Modular Pebble-Bed Reactor. The MPBR is an advanced reactor concept that can meet the energy and environmental needs of future generations under DOE’s Generation IV initiative. Our work is focused in three areas: neutronics, core design and fuel cycle; reactor safety and thermal hydraulics; and fuel performance.

Petti, David Andrew; Dolan, Thomas James; Miller, Gregory Kent; Moore, Richard Leroy; Terry, William Knox; Ougouag, Abderrafi Mohammed-El-Ami; Oh, Chang H; Gougar, Hans D

2002-11-01T23:59:59.000Z

75

Geothermal Heat Pump System for the New 500-bed 200,000 SF Student Housing Project at the University at Albanys Main Campus  

Broader source: Energy.gov [DOE]

This project proposes to heat and cool planned 500-bed apartment-style student housing with closed loop vertical bore geothermal heat pump system installation.

76

Gas turbine topping combustor  

DOE Patents [OSTI]

A combustor for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone.

Beer, Janos (Winchester, MA); Dowdy, Thomas E. (Orlando, FL); Bachovchin, Dennis M. (Delmont, PA)

1997-01-01T23:59:59.000Z

77

Bed material agglomeration during fluidized bed combustion. Final report  

SciTech Connect (OSTI)

The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion of coal and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed combustors (FBCs) indicate that at least five boilers were experiencing some form of bed material agglomeration. Deposit formation was reported at nine sites with deposits most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Three general types of mineralogic reactions were observed to occur in the agglomerates and deposits. Although alkalies may play a role with some {open_quotes}high alkali{close_quotes} lignites, we found agglomeration was initiated due to fluxing reactions between iron (II) from pyrites and aluminosilicates from clays. This is indicated by the high amounts of iron, silica, and alumina in the agglomerates and the mineralogy of the agglomerates. Agglomeration likely originated in the dense phase of the FBC bed within the volatile plume which forms when coal is introduced to the boiler. Secondary mineral reactions appear to occur after the agglomerates have formed and tend to strengthen the agglomerates. When calcium is present in high amounts, most of the minerals in the resulting deposits are in the melilite group (gehlenite, melilite, and akermanite) and pyroxene group (diopside and augite). During these solid-phase reactions, the temperature of formation of the melilite minerals can be lowered by a reduction of the partial pressure of CO{sub 2} (Diopside + Calcite {r_arrow}Akermanite).

Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

1996-01-01T23:59:59.000Z

78

MATE (Materials for Advanced Turbine Engines) Program, Project 3. Volume 2: Design, fabrication and evaluation of an oxide dispersion strengthened sheet alloy combustor liner. Final report  

SciTech Connect (OSTI)

The suitability of wrought oxide dispersion strengthened (ODS) superalloy sheet for gas turbine engine combustor applications was evaluated. Two yttria (Y2O3) dispersion strengthened alloys were evaluated; Incoloy MA956 and Haynes Development Alloy (HDA) 8077 (NiCrAl base). Preliminary tests showed both alloys to be potentially viable combustor materials, with neither alloy exhibiting a significant advantage over the other. MA956 was selected as the final alloy based on manufacturing reproducibility for evaluation as a burner liner. A hybrid PW2037 inner burner liner containing MA956 and Hastelloy X components and using a louvered configuration was designed and constructed. The louvered configuration was chosen because of field experience and compatibility with the bill of material PW2037 design. The simulated flight cycle for the ground based engine tests consisted of 4.5 min idle, 1.5 min takeoff and intermediate conditions in a PW2037 engine with average uncorrected combustor exit temperature of 1527 C. Post test evaluation consisting of visual observations and fluorescent penetrant inspections was conducted after 500 cycles of testing. No loss of integrity in the burner liner was shown.

Bose, S.; Sheffler, K.D.

1988-02-01T23:59:59.000Z

79

Proceedings of the 1987 international conference on fluidized bed combustion: FBC comes of age  

SciTech Connect (OSTI)

This book presents the papers given at a conference on fluidized-bed combustors. Topics considered at the conference included fluidized bed boilers for utility applications, coal-fired systems, boiler retrofit, demonstration programs, atmospheric fluidized bed applications at the Tennessee Valley Authority, pressurized fluidized bed applications, waste disposal, adsorbents, fluid mechanics in fluidized beds, hydrodynamics, desulfurization, environmental issues, and advanced concepts.

Mustonen, J.P.

1987-01-01T23:59:59.000Z

80

Pulsed atmospheric fluidized bed combustion. Technical progress report, April 1992--June 1992  

SciTech Connect (OSTI)

The general specifications for a Pulsed Atmospheric Fluidized Bed Combustor Design Report (PAFBC) plant are presented. The design tasks for the PAFBC are described in the following areas: Coal/Limestone preparation and feed system; pulse combustor; fluidized bed; boiler parts; and ash handling system.

Not Available

1992-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Gas turbine topping combustor  

DOE Patents [OSTI]

A combustor is described for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone. 14 figs.

Beer, J.; Dowdy, T.E.; Bachovchin, D.M.

1997-06-10T23:59:59.000Z

82

Ceramic combustor mounting  

DOE Patents [OSTI]

A combustor for a gas turbine engine includes a metal engine block including a wall portion defining a housing for a combustor having ceramic liner components. A ceramic outlet duct is supported by a compliant seal on the metal block and a reaction chamber liner is stacked thereon and partly closed at one end by a ceramic bypass swirl plate which is spring loaded by a plurality of circumferentially spaced, spring loaded guide rods and wherein each of the guide rods has one end thereof directed exteriorly of a metal cover plate on the engine block to react against externally located biasing springs cooled by ambient air and wherein the rod spring support arrangement maintains the stacked ceramic components together so that a normal force is maintained on the seal between the outlet duct and the engine block under all operating conditions. The support arrangement also is operative to accommodate a substantial difference in thermal expansion between the ceramic liner components of the combustor and the metal material of the engine block.

Hoffman, Melvin G. (Speedway, IN); Janneck, Frank W. (Danville, IN)

1982-01-01T23:59:59.000Z

83

Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP)  

Broader source: Energy.gov (indexed) [DOE]

LWO-SPT-2007-00249 LWO-SPT-2007-00249 Rev. 1 Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) For Tank 48H Treatment Project (TTP) November, 2007 Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) LWO-SPT-2007-00249 Rev. 1 DISCLAIMER This report was prepared by Washington Savannah River Company (WSRC) for the United States Department of Energy under Contract No. DEA-AC09-96SR18500 and is an account of work performed under that contract. Neither the United States Department of Energy, nor WSRC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, or product or process

84

Simulation of biomass gasification in a dual fluidized bed gasifier  

Science Journals Connector (OSTI)

Biomass gasification with steam in a dual-fluidized bed gasifier (DFBG) was simulated with ASPEN Plus. ... that the content of char transferred from the gasifier to the combustor decreases from 22.5...2 concentra...

Jie He; Kristina Göransson; Ulf Söderlind…

2012-03-01T23:59:59.000Z

85

Fluidized Bed Technology- An R&D Success Story  

Broader source: Energy.gov [DOE]

In the early 1990s, POWER magazine called the development of fluidized bed coal combustors "the commercial success story of the last decade in the power generation business." The success, perhaps...

86

Record of Decision; JEA Circulating Fluidized Bed Combustor Project, Jacksonville, Duval County, FL (DOE/EIS-0289) (12/7/00)  

Broader source: Energy.gov (indexed) [DOE]

614 614 Federal Register / Vol. 65, No. 236 / Thursday, December 7, 2000 / Notices Recordkeeping burden. OMB invites public comment. Dated: December 1, 2000. John Tressler, Leader Regulatory Information Management, Office of the Chief Information Officer. Office of Educational Research and Improvement Type of Review: New. Title: Education Longitudinal Study of 2002 (ELS 2002). Frequency: Annually. Affected Public: Not-for-profit institutions; State, Local, or Tribal Gov't, SEAs or LEAs. Reporting and Recordkeeping Hour Burden: Responses: 51,597. Burden Hours: 59,497. Abstract: Year 2001 field test of 50 schools in five states, students, parents, teachers, and librarians. The main study in Spring 2002 in all 50 states and District of Columbia will constitute the baseline of a longitudinal study of

87

Cogeneration using a thermionic combustor  

SciTech Connect (OSTI)

Thermionic energy conversion is well adapted to cogeneration with high temperature processes which require direct heating. Such processes are found in the metals, glass and petroleum industries. A case study has been made for applying thermionic energy converters to a walking beam steel slab reheat furnace. The objective is to replace the present burners with thermionic combustors which provide electricity while supplying direct heat at the same temperature and heat release conditions as the original burners. The combustor utilizes a thermionic converter design which has demonstrated stable output for long periods using a natural gas burner. Combustion air is used to cool the collectors. A computer program was formulated to facilitate the analysis of the thermionic combustor. The design of the thermionic combustor is described. The performance of the thermionic modules is calculated based on varying furnace production rates.

Miskolczy, G.; Lieb, D.

1982-08-01T23:59:59.000Z

88

Probabilistic aerothermal design of gas turbine combustors  

E-Print Network [OSTI]

This thesis presents a probability-based framework for assessing the impact of manufacturing variability on combustor liner durability. Simplified models are used to link combustor liner life, liner temperature variability, ...

Bradshaw, Sean D. (Sean Darien), 1978-

2006-01-01T23:59:59.000Z

89

Pulse combustor with controllable oscillations  

DOE Patents [OSTI]

A pulse combustor having thermally induced pulse combustion in a continuously flowing system is described. The pulse combustor is fitted with at lease one elongated ceramic body which significantly increases the heat transfer area in the combustion chamber of the combustor. The ceramic body or bodies possess sufficient mass and heat capacity to ignite the fuel-air charge once the ceramic body or bodies are heated by conventional spark plug initiated combustion so as to provide repetitive ignition and combustion of sequentially introduced fuel-air charges without the assistance of the spark plug and the rapid quenching of the flame after each ignition in a controlled manner so as to provide a selective control over the oscillation frequency and amplitude. Additional control over the heat transfer in the combustion chamber is provided by employing heat exchange mechanisms for selectively heating or cooling the elongated ceramic body or bodies and/or the walls of the combustion chamber.

Richards, George A. (Morgantown, WV); Welter, Michael J. (Columbiana, OH); Morris, Gary J. (Morgantown, WV)

1992-01-01T23:59:59.000Z

90

Methanol tailgas combustor control method  

DOE Patents [OSTI]

A method for controlling the power and temperature and fuel source of a combustor in a fuel cell apparatus to supply heat to a fuel processor where the combustor has dual fuel inlet streams including a first fuel stream, and a second fuel stream of anode effluent from the fuel cell and reformate from the fuel processor. In all operating modes, an enthalpy balance is determined by regulating the amount of the first and/or second fuel streams and the quantity of the first air flow stream to support fuel processor power requirements.

Hart-Predmore, David J. (Rochester, NY); Pettit, William H. (Rochester, NY)

2002-01-01T23:59:59.000Z

91

Microsoft Word - 41891_SWPC_Catalytic Combustor_Factsheet_Rev01_04-24.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

891_SWPC_CATALYTIC COMBUSTOR_FACTSHEET_REV01_04-24.DOC 891_SWPC_CATALYTIC COMBUSTOR_FACTSHEET_REV01_04-24.DOC Facts Sheet: Catalytic Combustor for Fuel Flexible Gas Turbine (DE-FC26-03NT41891) I. PROJECT PARTICIPANTS A. Siemens Westinghouse Power Corporation B. Caterpillar/Solar Turbine C. Penn State University D. Southern Company Services II. PROJECT DESCRIPTION A. Objective: To develop and demonstrate a cost effective, fuel flexible (syngas/natural gas) catalytic combustor that will achieve ultra low NOx emissions (2ppm) at the exit of the gas turbine and without the use of backend cleanup in Integrated Gasification Combined Cycle (IGCC) application. B. Background/Relevancy 1. Background: Catalytic combustion has been shown to achieve lowest emissions in conventional gas turbine application (natural gas only). Available technical data indicate that it can be effective

92

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

SciTech Connect (OSTI)

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2006 through March 31, 2006. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility were completed. The riser, primary cyclone and secondary cyclone of Circulating Fluidized Bed (CFB) Combustor have been erected. Second, the Mercury Control Workshop and the Grand Opening of Institute for Combustion Science and Environmental Technology (ICSET) were successfully held on February 22 and 23, 2006, respectively. Third, effects of hydrogen chlorine (HCl) and sulfur dioxide (SO{sub 2}) on mercury oxidation were studied in a drop tube reactor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

Wei-Ping Pan; Yan Cao; Songgeng Li

2006-04-01T23:59:59.000Z

93

Understanding and Control of Combustion Dynamics in Gas Turbine Combustors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Control of Combustion Understanding and Control of Combustion Control of Combustion Understanding and Control of Combustion Dynamics in Gas Turbine Combustors Dynamics in Gas Turbine Combustors Georgia Institute of Technology Georgia Institute of Technology Ben T. Zinn, Tim Lieuwen, Yedidia Neumeier, and Ben Bellows SCIES Project 02-01-SR095 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (05/01/2002, 36 Month Duration) $452,695 Total Contract Value CLEMSONPRES.PPT, 10/28/2003, B.T. ZINN, T. LIEUWEN, Y. NEUMEIER Gas Turbine Need Gas Turbine Need * Need: Gas turbine reliability and availability is important factor affecting power plant economics - Problem: Combustion driven oscillations severely reduce part life, requiring substantially more frequent outages

94

Mercury emissions from municipal solid waste combustors  

SciTech Connect (OSTI)

This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

Not Available

1993-05-01T23:59:59.000Z

95

Fluid-bed combustion of solid wastes  

SciTech Connect (OSTI)

For over ten years combustion Power Company has been conducting experimental programs and developing fluid bed systems for agencies of the federal government and for private industry and institutions. Many of these activities have involved systems for the combustion of solid waste materials. Discussed here will be three categories of programs, development of Municipal Solid Waste (MSW) fired fluid beds, development of wood waste fired fluid beds, and industrial installations. Research and development work on wood wastes has led to the design and construction of two large industrial fluid bed combustors. In one of these, a fluid bed is used for the generation of steam with a fuel that was previously suited only for landfill. Rocks and inerts are continuously removed from this combustor using a patented system. The second FBC is designed to use a variety of fuels as the source of energy to dry hog fuel for use in a high performance power boiler. Here the FBC burns green hog fuel, log yard debris, fly ash (char) from the boiler, and dried wood fines to produce a hot gas system for the wood dryer. A significant advantage of the fluidized bed reactor over conventional incinerators is its ability to reduce noxious gas emission and, finally, the fluidized bed is unique in its ability to efficiently consume low quality fuels. The relatively high inerts and moisture content of solid wastes pose no serious problem and require no associated additional devices for their removal.

Vander Molen, R.H.

1980-01-01T23:59:59.000Z

96

Nonequilibrium sulfur capture and retention in an air cooled slagging coal combustor. Quarterly technical progress report, 1996  

SciTech Connect (OSTI)

The objective of this 24 month project is to determine the degree of sulfur retention in slag in a full scale cyclone coal combustor with sulfur capture by calcium oxide sorbent injection into the combustor. This sulfur capture process consists of two steps: Capture of sulfur with calcined calcium oxide followed by impact of the reacted sulfur-calcium particles on the liquid slag lining the combustor. The sulfur bearing slag must be removed within several minutes from the combustor to prevent re-evolution of the sulfur from the slag. To accomplish this requires slag mass flow rates in the range of several 100 lb/hr. To study this two step process in the combustor, two groups of tests are being implemented. In the first group, calcium sulfate in the form of gypsum, or plaster of Paris, was injected in the combustor to determine sulfur evolution from slag. In the second group, the entire process is tested with limestone and/or calcium hydrate injected into the combustor. This entire effort consists of a series of up to 16 parametric tests in a 20 MMtu/hr slagging, air cooled, cyclone combustor. During the present quarterly reporting period ending September 30,1996, three tests in this project were implemented, bringing the total tests to 5. In addition, a total of 10 test days were completed during this quarter on the parallel project that utilizes the same 20 MMtu/hr combustor. The results of that project, especially those related to improved slagging performance, have a direct bearing on this project in assuring proper operation at the high slag flow rates that may be necessary to achieve high sulfur retention in slag.

Zauderer, B.

1996-11-01T23:59:59.000Z

97

Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels This fact sheet provides an overview of the...

98

CFB Combustion of Pre-processed Municipal Solid Waste: the Adjustment of the Proper Bed Particle Zize Distribution  

Science Journals Connector (OSTI)

The particle size distribution is influenced by ash formation mechanisms, classification and comminution processes and plays a key role in the operation of a circulating fluidized bed combustor. The impact of ...

Dipl.-Ing. Kai Redemann…

2007-01-01T23:59:59.000Z

99

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

SciTech Connect (OSTI)

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2005 through September 30, 2005. The following tasks have been completed. First, the construction of the Circulating Fluidized-Bed (CFB) Combustor Building was completed. The experimental facilities have been moved into the CFB Combustor Building. Second, the fabrication and manufacture of the CFBC Facility is in the final stage and is expected to be completed before November 30, 2005. Third, the drop tube reactor has been remodeled and installed to meet the specific requirements for the investigation of the effects of flue gas composition on mercury oxidation. This study will start in the next quarter. Fourth, the effect of sulfur dioxide on molecular chlorine via the Deacon reaction was investigated. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

Wei-Ping Pan; Songgeng Li; John T. Riley

2005-10-01T23:59:59.000Z

100

Robust techniques for developing empirical models of fluidized bed combustors  

E-Print Network [OSTI]

This report is designed to provide a review of those data analysis techniques that are most useful for fitting m-dimensional empirical surfaces to very large sets of data. One issue explored is the improvement

Gruhl, Jim

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Tenth annual fluidized bed conference  

SciTech Connect (OSTI)

The proceedings of the Tenth Annual Fluidized Bed Conference is presented. The Conference was held November 14-15, 1994 in Jacksonville, FL and covered such topics as: opportunity fuels, the fluid bed market, bubbling fluid bed retrofitting, waste fuel-based circulating fluidized-bed project, construction permits for major air pollution sources, fluidized bed residues, uses for fluidized bed combustion ash, ash pelletization, sorbents for FBC applications, refractory maintenance, and petroleum coke. A separate abstract and indexing have been prepared for each paper for inclusion in the Energy Science and Technology Database.

NONE

1994-12-31T23:59:59.000Z

102

5 - Combustors in gas turbine systems  

Science Journals Connector (OSTI)

Abstract: This chapter discusses combustion systems in gas turbines. It begins by reviewing basic design principles before discussing developments in technology such as advanced fuel staging and reheat combustion systems. The chapter also covers the impact of different natural gas types on combustor operations, including combustor design for low calorific gases and fuel oils.

P. Flohr; P. Stuttaford

2013-01-01T23:59:59.000Z

103

Combustor for fine particulate coal  

DOE Patents [OSTI]

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

Carlson, L.W.

1988-01-26T23:59:59.000Z

104

Combustor for fine particulate coal  

DOE Patents [OSTI]

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover.

Carlson, Larry W. (Oswego, IL)

1988-01-01T23:59:59.000Z

105

Wedge edge ceramic combustor tile  

DOE Patents [OSTI]

A multipiece combustor has a portion thereof being made of a plurality of ceramic segments. Each of the plurality of ceramic segments have an outer surface and an inner surface. Each of the plurality of ceramic segments have a generally cylindrical configuration and including a plurality of joints. The joints define joint portions, a first portion defining a surface being skewed to the outer surface and the inner surface. The joint portions have a second portion defining a surface being skewed to the outer surface and the inner surface. The joint portions further include a shoulder formed intermediate the first portion and the second portion. The joints provide a sealing interlocking joint between corresponding ones of the plurality of ceramic segments. Thus, the multipiece combustor having the plurality of ceramic segment with the plurality of joints reduces the physical size of the individual components and the degradation of the surface of the ceramic components in a tensile stress zone is generally eliminated reducing the possibility of catastrophic failures.

Shaffer, James E. (Maitland, FL); Holsapple, Allan C. (Poway, CA)

1997-01-01T23:59:59.000Z

106

Wedge edge ceramic combustor tile  

DOE Patents [OSTI]

A multipiece combustor has a portion thereof being made of a plurality of ceramic segments. Each of the plurality of ceramic segments have an outer surface and an inner surface. Each of the plurality of ceramic segments have a generally cylindrical configuration and including a plurality of joints. The joints define joint portions, a first portion defining a surface being skewed to the outer surface and the inner surface. The joint portions have a second portion defining a surface being skewed to the outer surface and the inner surface. The joint portions further include a shoulder formed intermediate the first portion and the second portion. The joints provide a sealing interlocking joint between corresponding ones of the plurality of ceramic segments. Thus, the multipiece combustor having the plurality of ceramic segment with the plurality of joints reduces the physical size of the individual components and the degradation of the surface of the ceramic components in a tensile stress zone is generally eliminated reducing the possibility of catastrophic failures. 7 figs.

Shaffer, J.E.; Holsapple, A.C.

1997-06-10T23:59:59.000Z

107

NONEQUILIBRIUM SULFUR CAPTURE AND RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR  

SciTech Connect (OSTI)

Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. They are deposited on the liquid slag layer on the combustor wall. Due to the low solubility of sulfur in slag, slag must be rapidly drained from the combustor to limit sulfur gas re-evolution. Analysis indicated that slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to perform a series of tests to determine the factors that control the retention of the sulfur in the slag. 36 days of testing on the combustor were completed prior to the end of this reporting period, 12/31/98. This compares with 16 tests required in the original project plan. Combustor tests in early 1997 with high (37%) ash, Indian coal confirmed that high slag mass flow rates of about 500 lb/hr resulted in retention in the slag of up to 20% of the injected sulfur content mineral matter. To further increase the slag flow rate, rice husks, which contain 20% ash, and rice husk char, which contain 70% ash, were co-fired with coal in the combustor. A series of 13 combustor tests were performed in fourth quarter of 1997 and a further 6 tests were performed in January 1998 and in the summer of 1998. The test objective was to achieve slag flow rates between 500 and 1,000 lb/hr. Due to the very low bulk density of rice husk, compared to pulverized coal, almost the entire test effort focused on developing methods for feeding the rice husks into combustor. In the last test of December 1997, a peak mineral matter, injection rate of 592 lb/hr was briefly achieved by injection of coal, rice husk char, gypsum, and limestone into the combustor. However, no significant sulfur concentration was measured in the slag removed from the combustor. The peak injection rate reached with biomass in the 1997 tests was 310 lb/hr with rice husk, and 584 lb/hr with rice husk char.

Dr. Bert Zauderer

1999-03-15T23:59:59.000Z

108

New gas turbine combustor supports emissions limits  

SciTech Connect (OSTI)

Gas Research Institute, in partnership with Allison Engine Co. of Indianapolis, has introduced a natural gas-fired, low-emissions combustor that it says will give customers of industrial gas turbines a least-cost approach for meeting US emissions regulations. The LE IV combustor uses dry, low-nitrogen oxides (DLN) technology to reduce emissions from the Allison 501K industrial gas turbine to 25 parts per million or less (corrected to 15 percent oxygen)--levels that are expected to meet pending federal emissions regulations. GRI is funding similar efforts with other manufacturers of turbines commonly used at pipeline compressor stations and industrial power generation sites. The Allison combustor features a dual operating mode. During the pilot mode of operation, fuel is directly injected into the combustor`s liner where it is consumed in a diffusion flame reaction. During higher power operation, the fuel and air are uniformly premixed in fuel-lean proportions to control NO{sub x} formation. In addition, optimum engine performance is maintained by the dry, lean-mixed combustion technology as it suppresses NO{sub x} formation in the turbine`s combustion section. An added advantage of the LE IV combustor is its ability to lower emissions without any adverse affect on engine performance and operations, according to GRI> The combustor is available as either a retrofit or as an option on a new engine.

NONE

1996-10-01T23:59:59.000Z

109

Fuel cell system with combustor-heated reformer  

DOE Patents [OSTI]

A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

Pettit, William Henry (Rochester, NY)

2000-01-01T23:59:59.000Z

110

Combustor oscillating pressure stabilization and method  

DOE Patents [OSTI]

High dynamic pressure oscillations in hydrocarbon-fueled combustors typically occur when the transport time of the fuel to the flame front is at some fraction of the acoustic period. These oscillations are reduced to acceptably lower levels by restructuring or repositioning the flame front in the combustor to increase the transport time. A pilot flame front located upstream of the oscillating flame and pulsed at a selected frequency and duration effectively restructures and repositions the oscillating flame in the combustor to alter the oscillation-causing transport time.

Gemmen, Randall S. (Morgantown, WV); Richards, George A. (Morgantown, WV); Yip, Mui-Tong Joseph (Morgantown, WV); Robey, Edward H. (Westover, WV); Cully, Scott R. (Morgantown, WV); Addis, Richard E. (Smithfield, PA)

1998-01-01T23:59:59.000Z

111

Scramjet including integrated inlet and combustor  

SciTech Connect (OSTI)

This patent describes a scramjet engine. It comprises: a first surface including an aft facing step; a cowl including: a leading edge and a trailing edge; an upper surface and a lower surface extending between the leading edge and the trailing edge; the cowl upper surface being spaced from and generally parallel to the first surface to define an integrated inlet-combustor therebetween having an inlet for receiving and channeling into the inlet-combustor supersonic inlet airflow; means for injecting fuel into the inlet-combustor at the step for mixing with the supersonic inlet airflow for generating supersonic combustion gases; and further including a spaced pari of sidewalls extending between the first surface to the cowl upper surface and wherein the integrated inlet-combustor is generally rectangular and defined by the sidewall pair, the first surface and the cowl upper surface.

Kutschenreuter, P.H. Jr.; Blanton, J.C.

1992-02-04T23:59:59.000Z

112

Project CRAFT: A Test Bed for Demonstrating the Real Time Acquisition and Archival of WSR-88D Base  

E-Print Network [OSTI]

the long-term needs for WSR-88D base data archival, and in light of the compelling need for real time. The initial test bed of six radars, located in and around Oklahoma, has been delivering real time base data to substantial improvements in the identification and short-term warning of hazardous local weather (e.g., Crum

Droegemeier, Kelvin K.

113

Development of a combustor liner composed of ceramic matrix composite (CMC)  

SciTech Connect (OSTI)

The Research Institute of Advanced Materials Gas-Generator (AMG), which is a joint effort by the Japan Key Technology Center and 14 firms in Japan, has, since fiscal year 1992, been conducting technological studies on an innovative gas generator that will use 20% less fuel, weight 50% less, and emit 70% less NO{sub x} than the conventional gas generator through the use of advanced materials. Within this project, there is an R and D program for applying ceramic matrix composite (CMC) liners to the combustor, which is a major component of the gas generator. In the course of R and D, continuous SiC fiber-reinforced SiC composite (SiC{sup F}/SiC) was selected as the most suitable CMD for the combustor liner because of its thermal stability and formability. An evaluation of the applicability of the SiC{sup F}/SiC composite to the combustor liner on the basis of an evaluation of its mechanical properties and stress analysis of a SiC{sup F}/SiC combustor liner was carried out, and trial SiC{sup F}/SiC combustor liners, the largest of which was 500-mm in diameter, were fabricated by the filament winding and PIP (polymer impregnation and pyrolysis) method. Using a SiC{sup F}/SiC liner built to the actual dimensions, a noncooling combustion test was carried out and even when the gas temperature was raised to 1873K at outlet of the liner, no damage was observed after the test. Through their studies, the authors have confirmed the applicability of the selected SiC{sup F}/SiC composite as a combustor liner. In this paper, the authors describe the present state of the R and D of a CMC combustor liner.

Nishio, K.; Igashira, K.I.; Take, K. [Research Inst. of Advanced Material Gas-Generator, Tokyo (Japan); Suemitsu, T. [Kawasaki Heavy Industries Limited, Hyogo (Japan)

1999-01-01T23:59:59.000Z

114

Rolling contact mounting arrangement for a ceramic combustor  

DOE Patents [OSTI]

A combustor assembly having a preestablished rate of thermal expansion is mounted within a gas turbine engine housing having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the combustor assembly. The combustor assembly is constructed of a inlet end portion, a outlet end portion and a plurality of combustor ring segments positioned between the end portions. A mounting assembly is positioned between the combustor assembly and the gas turbine engine housing to allow for the difference in the rate of thermal expansion while maintaining axially compressive force on the combustor assembly to maintain contact between the separate components. 3 figs.

Boyd, G.L.; Shaffer, J.E.

1995-10-17T23:59:59.000Z

115

Rolling contact mounting arrangement for a ceramic combustor  

DOE Patents [OSTI]

A combustor assembly having a preestablished rate of thermal expansion is mounted within a gas turbine engine housing having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the combustor assembly. The combustor assembly is constructed of a inlet end portion, a outlet end portion and a plurality of combustor ring segments positioned between the end portions. A mounting assembly is positioned between the combustor assembly and the gas turbine engine housing to allow for the difference in the rate of thermal expansion while maintaining axially compressive force on the combustor assembly to maintain contact between the separate components.

Boyd, Gary L. (328 Sneath Way, Alpine, CA 91901); Shaffer, James E. (1780 Geronimo Tr., Maitland, FL 32751)

1995-01-01T23:59:59.000Z

116

Advanced atmospheric fluidized-bed combustion design - spouted bed  

SciTech Connect (OSTI)

This report describes the Spouted-Fluidized Bed Boiler that is an advanced atmospheric fluidized bed combustor (FBC). The objective of this system design study is to develop an advanced AFBC with improved performance and reduced capital and operating costs compared to a conventional AFBC and an oil-fired system. The Spouted-Fluidized Bed (SFB) system is a special type of FBC with a distinctive jet of air in the bed to establish an identifiable solids circulation pattern. This feature is expected to provide: reduced NO/sub x/ emissions because of the fuel rich spout zone; high calcium utilization, calcium-to-sulfur ratio of 1.5, because of the spout attrition and mixing; high fuel utilization because of the solids circulation and spout attrition; improved thermal efficiency because of reduced solids heat loss; and improved fuel flexibility because of the spout phenomena. The SFB was compared to a conventional AFBC and an oil-fired package boiler for 15,000 pound per hour system. The evaluation showed that the operating cost advantages of the SFB resulted from savings in fuel, limestone, and waste disposal. The relative levelized cost for steam from the three systems in constant 1985 dollars is: SFB - $10 per thousand pounds; AFBC - $11 per thousand pounds; oil-fired - $14 per thousand pounds. 18 refs., 5 figs., 11 tabs.

Shirley, F.W.; Litt, R.D.

1985-11-27T23:59:59.000Z

117

Notice of Intent to Prepare an Environmental Impact Statement for the Proposed McIntosh Unit 4 Pressurized Circulating Fluidized Bed Demonstration Project, March 25, 1999  

Broader source: Energy.gov (indexed) [DOE]

10 10 Federal Register / Vol. 64, No. 58 / Friday, March 26, 1999 / Notices DEPARTMENT OF ENERGY Notice of Intent To Prepare an Environmental Impact Statement for the Proposed McIntosh Unit 4 Pressurized Circulating Fluidized Bed Demonstration Project AGENCY: U.S. Department of Energy. ACTION: Notice of intent to prepare an Environmental Impact Statement. SUMMARY: The U.S. Department of Energy (DOE) announces its intent to prepare an Environmental Impact Statement (EIS) pursuant to the National Environmental Policy Act (NEPA), the Council on Environmental Quality (CEQ) NEPA regulations (40 CFR Parts 1500-1508), and the DOE NEPA regulations (10 CFR Part 1021), to assess the potential environmental and human health impacts of a proposed project to expand the C. D. McIntosh, Jr. Power

118

NETL: Turbines - UTSR Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Combustion Dynamics in Multi-Nozzle Combustors Operating on High-Hydrogen Fuels Penn State University & Georgia Tech 4 Combustion Dynamics in Multi-Nozzle Combustors Operating on High-Hydrogen Fuels Penn State University & Georgia Tech Dom Santavicca (PSU) & Tim Lieuwen (Georgia Tech) Project Dates: 10/1/2008 - 9/30/2011 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: The objectives of this project are 1) to obtain fundamental understanding of the response of lean premixed multi-nozzle combustors operating on high hydrogen, coal derived fuels to both transverse and longitudinal fluctuations of the air flow rate and 2) to use this understanding to formulate and validate longitudinal and transverse flame response models that can be used to predict instability in multi-nozzle annular and can combustors. Such models are an essential tool

119

ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM  

SciTech Connect (OSTI)

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2005 through March 31, 2005. The following tasks have been completed. First, the renovation of the new Combustion Laboratory is nearly complete, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final stages. Second, the fabrication and manufacture of the CFBC Facility is being discussed with a potential contractor. Discussions with potential contactor regarding the availability of materials and current machining capabilities have resulted in the modification of the original designs. The selection of the fabrication contractor for the CFBC Facility is expected during the next quarter. Third, co-firing experiments conducted with coal and chicken waste have been initiated in the laboratory-scale simulated fluidized-bed facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

Wei-Ping Pan; Andy Wu; John T. Riley

2005-04-30T23:59:59.000Z

120

ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM  

SciTech Connect (OSTI)

This purpose of this report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period April 1, 2005 through June 30, 2005. The following tasks have been completed. First, the new Combustion Laboratory was occupied on June 15, 2005, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final painting stage. Second, the fabrication and manufacturing contract for the CFBC Facility was awarded to Sterling Boiler & Mechanical, Inc. of Evansville, Indiana. Sterling is manufacturing the assembly and component parts of the CFBC system. The erection of the CFBC system is expected to start September 1, 2005. Third, mercury emissions from the cofiring of coal and chicken waste was studied experimentally in the laboratory-scale simulated fluidized-bed combustion facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described.

Wei-Ping Pan; Andy Wu; John T. Riley

2005-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Laser diagnostics on a hypersonic combustor  

SciTech Connect (OSTI)

NASA-Langley has implemented a laser-based multipoint/multiparameter diagnostics system at its hypersonic direct-connect combustor, in order to measure both temperature and majority species densities in two dimensions, using spatially-scanned CARS; in addition, line-imaged measurements of radical densities are simultaneously generated by LIF at any of several planes downstream of the fuel injector. Initial experimental trials have demonstrated successful detection of one-dimensional images of OH density, as well as CARS N2-temperature measurements, in the turbulent reaction zone of the hypersonic combustor.

Taylor, D.J.; Oldenborg, R.C.; Tiee, J.J.; Northam, G.B.; Antcliff, R.R.; Cutler, A.D.; Jarrett, O.; Smith, M.W. (Los Alamos National Laboratory, NM (USA) NASA, Langley Research Center, Hampton, VA (USA))

1991-01-01T23:59:59.000Z

122

Low NO.sub.x combustor  

DOE Patents [OSTI]

A combustor having an annular first stage, a generally cylindrically-shaped second stage, and an annular conduit communicably connecting the first and second stages. The conduit has a relatively small annular height and a large number of quench holes in the walls thereof such that quench air injected into the conduit through the quench holes will mix rapidly with, or quench, the combustion gases flowing through the conduit. The rapid quenching reduces the amount of NO.sub.x produced in the combustor.

Taylor, Jack R. (Cincinnati, OH)

1987-01-01T23:59:59.000Z

123

System and method for controlling a combustor assembly  

DOE Patents [OSTI]

A system and method for controlling a combustor assembly are disclosed. The system includes a combustor assembly. The combustor assembly includes a combustor and a fuel nozzle assembly. The combustor includes a casing. The fuel nozzle assembly is positioned at least partially within the casing and includes a fuel nozzle. The fuel nozzle assembly further defines a head end. The system further includes a viewing device configured for capturing an image of at least a portion of the head end, and a processor communicatively coupled to the viewing device, the processor configured to compare the image to a standard image for the head end.

York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Stevenson, Christian Xavier

2013-03-05T23:59:59.000Z

124

Particle Receiver Integrated with Fludized Bed  

Broader source: Energy.gov (indexed) [DOE]

Bed CONTACTS Partnering Organizations: * Babcock & Wilcox Power Generation Group, Inc. * Massachusetts Institute of Technology For more information, visit the project page at:...

125

Comparison of the Wymark CO2 Reservoir with the Midale Beds at the Weyburn CO2 Injection Project  

SciTech Connect (OSTI)

The Devonian carbonates of the Duperow Formation on the western flank of the Williston Basin in southwest Saskatchewan contain natural accumulations of CO{sub 2}, and may have done so for as long as 50 m.y. in the views of some investigations. These carbonate sediments are characterized by a succession of carbonate cycles capped by anhydrite-rich evaporites that are thought to act as seals to fluid migration. The Weyburn CO{sub 2} injection site lies 400 km to the east in a series of Mississippian carbonates that were deposited in a similar depositional environment. That natural CO{sub 2} can be stored long-term within carbonate strata has motivated the investigation of the Duperow rocks as a potential natural analogue to storage of anthropogenic CO{sub 2} that may ultimately provide additional confidence for CO{sub 2} sequestration in carbonate lithologies. For the Duperow strata to represent a legitimate analog for Midale injection and storage, the similarity in lithofacies, whole rock compositions, mineral compositions and porosity with the Midale Beds must be established. Previous workers have demonstrated the similarity of the lithofacies at both sites. Here we compare the whole rock compositions, mineralogy and mineral compositions. The major mineral phases at both locales are calcite, dolomite and anhydrite. In addition, accessory pyrite, fluorite and celestine are also observed. The distribution of porosity in the Midale Vuggy units is virtually identical to that of the Duperow Formation, but the Marly units of the Midale have significantly higher porosity. The Duperow Formation is topped by the Dinesmore evaporite that is particularly rich in anhydrite, and often contains authigenic K-feldspar. The chemistry of dolomite and calcite from the two localities also overlaps. Silicate minerals are in low abundance within the analyzed Duperow samples, < 3 wt% on a normative basis, with quartz the only phase identifiable in x-ray diffraction patterns. The Midale Beds contain significantly higher silica/silicate concentrations, but the silicate minerals observed, K-feldspar and quartz, are unlikely to participate in carbonate mineral precipitation due to the absence of alkaline earths. Hence, physical and solution trapping are likely to be the primary trapping mechanisms at both sites. Given the similarity of mineral constituents, whole rock and mineral chemistry, reactive transport models developed for the Weyburn site should also be applicable to the Duperow lithologies.

Ryerson, F; Johnson, J

2010-11-22T23:59:59.000Z

126

Project 264  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HIGH TEMPERATURE SOLIDS VELOCITY PROBE HIGH TEMPERATURE SOLIDS VELOCITY PROBE Description The purpose of this research is to design and test a laser-based probe to measure solids velocity and direction in the riser section of a circulating fluidized bed at high temperatures. These measurements at high temperature will aid in the development of models to accurately predict the behavior of fluidized bed combustors and gasifiers. The improved models would advance the design of circulating fluidized bed reactors and in the control of the reaction process. The Solids Velocity Measurement Probe (SVMP) has been machined using high temperature materials (2200 Ā°F) and a sapphire lens to withstand corrosive high temperature environments. A HeNe laser energy source and beam forming optic system is used to generate four parallel beams that pass

127

Advanced atomization concept for CWF burning in small combustors  

SciTech Connect (OSTI)

The present project involves the second phase of research on a new concept in coal-water fuel (CWF) atomization that is applicable to burning in small combustors. It is intended to address the most important problem associated with CWF combustion; i.e., production of small spray droplets in an efficient manner by an atomization device. Phase 1 of this work was successfully completed with the development of an opposed-jet atomizer that met the goals of the first contract. Performance as a function of operating conditions was measured, and the technical feasibility of the device established in the Atlantic Research Atomization Test Facility employing a Malvern Particle Size Analyzer. Testing then proceeded to a combustion stage in a test furnace at a firing rate of 0.5 to 1.5 MMBtu/H.

Heaton, H.; McHale, E.

1991-01-01T23:59:59.000Z

128

Combustion Instability and Blowout Characteristics of Fuel Flexible Gas Turbine Combustors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion Instability and Blowout Combustion Instability and Blowout Characteristics of Fuel Flexible Gas Turbine Characteristics of Fuel Flexible Gas Turbine Combustors Combustors Georgia Institute of Technology Georgia Institute of Technology Tim Lieuwen, Ben Zinn Bobby Noble, Qingguo Zhang DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES SCIES Project 03-01-SR111 Project Awarded (07/01/03, 36 Month Duration) Total Contract Value $376,722 . CLEMSON presentation, T.L., B.Z., B.N., Q.Z. Gas Turbine Need Gas Turbine Need * Need: Gas turbines with sufficient flexibility to cleanly and efficiently combust a wide range of fuels, particularly coal-derived gases - Problem: Inherent variability in composition and heating

129

Advanced Sensor Approaches for Monitoring and Control of Gas Turbine Combustors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seitzman and T. Lieuwen Seitzman and T. Lieuwen SCIES Project 02- 01- SR102 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (5/1/2002, 36 Month Duration) $337,501 Total Contract Value ($327,501 DOE) Advanced Sensor Approaches For Monitoring and Control Of Gas Turbine Combustors Georgia Institute of Technology JS/TL 10/19/05 Advanced Sensors 10/19/05 2 Gas Turbine Need * Gas turbines must operate with ultra-low levels of pollutant emissions - Problem: lean, premixed operation causes minimal pollutant generation but introduces combustion problems, such as instabilities and blowoff * Combustor health and performance information needed to optimize engine across competing demands of emissions levels, power output, and

130

Effects of Combustion-Induced Vortex Breakdown on Flashback Limits of Syngas-Fueled Gas Turbine Combustors  

SciTech Connect (OSTI)

Turbine combustors of advanced power systems have goals to achieve very low pollutants emissions, fuel variability, and fuel flexibility. Future generation gas turbine combustors should tolerate fuel compositions ranging from natural gas to a broad range of syngas without sacrificing operational advantages and low emission characteristics. Additionally, current designs of advanced turbine combustors use various degrees of swirl and lean premixing for stabilizing flames and controlling high temperature NOx formation zones. However, issues of fuel variability and NOx control through premixing also bring a number of concerns, especially combustor flashback and flame blowout. Flashback is a combustion condition at which the flame propagates upstream against the gas stream into the burner tube. Flashback is a critical issue for premixed combustor designs, because it not only causes serious hardware damages but also increases pollutant emissions. In swirl stabilized lean premixed turbine combustors onset of flashback may occur due to (i) boundary layer flame propagation (critical velocity gradient), (ii) turbulent flame propagation in core flow, (iii) combustion instabilities, and (iv) upstream flame propagation induced by combustion induced vortex breakdown (CIVB). Flashback due to first two foregoing mechanisms is a topic of classical interest and has been studied extensively. Generally, analytical theories and experimental determinations of laminar and turbulent burning velocities model these mechanisms with sufficient precision for design usages. However, the swirling flow complicates the flashback processes in premixed combustions and the first two mechanisms inadequately describe the flashback propensity of most practical combustor designs. The presence of hydrogen in syngas significantly increases the potential for flashback. Due to high laminar burning velocity and low lean flammability limit, hydrogen tends to shift the combustor operating conditions towards flashback regime. Even a small amount of hydrogen in a fuel blend triggers the onset of flashback by altering the kinetics and thermophysical characteristics of the mixture. Additionally, the presence of hydrogen in the fuel mixture modifies the response of the flame to the global effects of stretch and preferential diffusion. Despite its immense importance in fuel flexible combustor design, little is known about the magnitude of fuel effects on CIVB induced flashback mechanism. Hence, this project investigates the effects of syngas compositions on flashback resulting from combustion induced vortex breakdown. The project uses controlled experiments and parametric modeling to understand the velocity field and flame interaction leading to CIVB driven flashback.

Ahsan Choudhuri

2011-03-31T23:59:59.000Z

131

Use of fluidized bed combustion by-products for liners and alkali substitutes. Technical report, December 1, 1994--February 28, 1995  

SciTech Connect (OSTI)

Fluidized Bed Combustion (FBC) of coal eliminates most emissions of sulfur and nitrogen oxides, but produces sizable volumes of a solid residue that EPA may require to be placed in capped and lined landfills. Fluidized Bed Combustors are one of the most promising growth markets for Illinois coal and imposing cap and liner requirements would render the technology economically inviable. Fluidized Bed residues are cement-like and when mixed with soil produce a material as impermeable as the clay liners used at landfills. This project will demonstrate that Fluidized Bed Combustion Residues can be mixed with soils by regular construction equipment and used in place of clays as a liner material. The demonstration cap will cover an area of seven acres, and will prevent water infiltration into acid producing material. Baseline studies of Briar Creek indicate that the water is now highly degraded by acid drainage. Construction delays have enhanced the data collected on Briar Creek by allowing monitoring to continue through major seasonal changes without any effects attributable to the FBC ash. The materials needed to place the wells and lysimeters as soon as the weather improves this spring have been purchased and delivered. Also experiments suggest that it may be possible to control dust by foam conditioning the FBC ash at the power station.

Paul, B.C.; Esling, S. [Southern Illinois Univ., Carbondale, IL (United States); Pisani, F. [Illinois Abandoned Mined Lands Reclamation Council, IL (United States); Wells, T. [Archer-Daniels-Midland Co., Minneapolis, MN (United States)

1996-03-01T23:59:59.000Z

132

Thermal and Economic Analyses of Energy Saving by Enclosing Gas Turbine Combustor Section  

E-Print Network [OSTI]

) thermography inspection indicated a high-temperature area (500~560°F) at the combustor section of the GE Frame 5 gas turbine of Dynegy Gas Processing Plant at Venice, Louisiana. To improve the thermal efficiency and reduce energy cost, thermal... within the natural gas industry, the Venice plant is seeking various means to reduce cost. As part of the project to improve the energy efficiency of the plant and thus reduce energy costs, Dynegy contracted the Energy Conversion & Conservation...

Li, X.; Wang, T.; Day, B.

2006-01-01T23:59:59.000Z

133

Pulse Combustor Design, A DOE Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pulse Combustor Design Pulse Combustor Design A DOE Assessment DOE/NETL-2003/1190 July 2003 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 West Third Street, Suite 1400 Tulsa, OK 74103-3519 website: www.netl.doe.gov 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

134

Use of fluidized bed combustion by-products for liners and alkali substitutes. Technical report, March 1--May 31, 1995  

SciTech Connect (OSTI)

Fluidized Bed Combustion of coal eliminates most emissions of S and N oxides but produces sizable volumes of a solid residue that EPA may require to be placed in capped and lined landfills. Fluidized Bed Combustors are one of the most promising growth markets for Illinois coal and imposing cap and liner requirements may make the technology uneconomic. Fluidized Bed residues are cementlike and when mixed with soil, produce a material as impermeable as the clay liners used at landfills. This project will demonstrate that the residues can be mixed with soils by regular construction equipment and used in place of clays as liner material. The demonstration cap will cover an area of 7 acres and will prevent water infiltration into acid producing material. Baseline studies of Briar Creek indicate that the water is now highly degraded by acid drainage. Construction delays have enhanced the data collected on Briar Creek by allowing monitoring to continue through major seasonal changes without any effects attributable to the FBC ash. Materials needed to place the wells and lysimeters have been obtained. A contractor will build and deliver a mobile foam generator and spray to the field to demonstrate fugitive dust control from FBC fly ash (dust problem is one key barrier to more widespread use of FBC ash).

Paul, B.C.; Esling, S. [Southern Illinois Univ., Carbondale, IL (United States); Pisani, F. [Illinois Abandoned Mined Lands reclamation Council (United States); Wells, T. [Archer-Daniels-Midland Co., Minneapolis, MN (United States)

1995-12-31T23:59:59.000Z

135

Low pressure combustor for generating steam downhole  

SciTech Connect (OSTI)

A compact catalytic combustor for generating steam downhole in an oil reservoir has steam generating tubes that are attached to a metal catalyst support. The metal support comprises sheets of metal that are spaced apart and transverse to the tubes. Heat from combustion is generated on the metal sheets and is conducted to the steam generating tubes. The steam is injected into the oil reservoir. The combustion gas is vented to ground level.

Retallick, W.B.

1983-03-22T23:59:59.000Z

136

Preliminary design and assessment of circulating-bed boilers. Final report  

SciTech Connect (OSTI)

The circulating bed boiler (CBB) represents an alternative, fluidized bed combustor (FBC) technology which offers distinct advantages over both the current FBC systems, and pulverized-coal boilers with scrubbers. This report describes the findings of a study undertaken to evaluate these advantages. The information obtained made it possible to identify potential CBB design and operating problems and to propose further plans for developing this technology. Several significant determinations resulted from the study. The circulating bed boiler capital costs should not exceed the cost for a conventional atmospheric fluid bed combustor, primarily due to the reduced combustor size; however, any cost advantage for a pressurized circulating bed boiler is questionable. Overall efficiency for an electric utility power plant using an atmospheric CBB should be increased by at least 1% over using a pulverized-coal boiler and the increase would be at least 3% using a pressurized CBB. The circulating bed boiler has several of the advantages of an FBC over pulverized coal, and in addition, it has turndown capabilities, greater throughput, and simplified feeding. Both the atmospheric and the pressurized CBB's can be designed with technology currently available in the process industry, but only after additional study and development has been completed for cyclones, pollution control, solids attrition, feed systems, and combustion reactions. Pilot plant studies are required for these investigations.

Fraley, L.D.; Hsiao, K.H.; Do, L.N.

1980-06-01T23:59:59.000Z

137

Catalytic Combustor for Fuel-Flexible Turbine  

SciTech Connect (OSTI)

Under the sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse is conducting a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1-Implementation Plan, Phase 2-Validation Testing and Phase 3-Field Testing. The Phase 1 program has been completed. Phase II was initiated in October 2004. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCL{trademark}) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to react part of the fuel, increasing the fuel/air mixture temperature. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the catalytic concept will be demonstrated through subscale testing. Phase III will consist of full-scale combustor basket testing on natural gas and syngas.

W. R. Laster; E. Anoshkina; P. Szedlacsek

2006-03-31T23:59:59.000Z

138

Catalytic Combustor for Fuel-Flexible Turbine  

SciTech Connect (OSTI)

Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

W. R. Laster; E. Anoshkina

2008-01-31T23:59:59.000Z

139

Catalytic Combustor for Fuel-Flexible Turbine  

SciTech Connect (OSTI)

Under the sponsorship of the U. S. Department of Energy’s National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 – Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

Laster, W. R.; Anoshkina, E.

2008-01-31T23:59:59.000Z

140

Testing and verification of granular-bed filters for the removal of particulate and alkalis. Eleventh quarterly project report, April 1, 1983-June 30, 1983  

SciTech Connect (OSTI)

The Westinghouse Electric Corporation with Ducon, Inc. and Burns and Roe, Inc. are conducting a test and evaluation program of a Granular-Bed Filter (GBF) for gas-cleaning applications in pressurized fluidized-bed combustion processes. This work is funded by DOE PRDA for Exploratory Research, Development, Testing and Evaluation of Systems or Devices for Hot Gas Clean-up. This report describes the status of the testing of the subpilot scale GBF unit under simulated Pressurized Fluidized-Bed Combustion (PFBC) conditions through Phase IV and the design of a bench-scale, single-bed cylindrical element that will be utilized in Test Phase V.

None

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Transient heat transfer properties in a pulse detonation combustor .  

E-Print Network [OSTI]

??The heat transfer along the axis of a pulse detonation combustor has been characterized for various frequencies and fill fractions at 2.5 atmospheres of pressure… (more)

Fontenot, Dion G.

2011-01-01T23:59:59.000Z

142

Apparatus and method for cooling a combustor cap  

DOE Patents [OSTI]

A combustor includes an end cap having a perforated downstream plate and a combustion chamber downstream of the downstream plate. A plenum is in fluid communication with the downstream plate and supplies a cooling medium to the combustion chamber through the perforations in the downstream plate. A method for cooling a combustor includes flowing a cooling medium into a combustor end cap and impinging the cooling medium on a downstream plate in the combustor end cap. The method further includes flowing the cooling medium into a combustion chamber through perforations in the downstream plate.

Zuo, Baifang; Washam, Roy Marshall; Wu, Chunyang

2014-04-29T23:59:59.000Z

143

INNOVATIVE TECHNIQUES TO IMPROVE MIXING AND PENETRATION IN SCRAMJET COMBUSTORS.  

E-Print Network [OSTI]

??Scramjet combustors are characterized by an extremely short residence time for the completion of fuel atomization, mixing and combustion. It is therefore desired to develop… (more)

MURUGAPPAN, SHANMUGAM

2005-01-01T23:59:59.000Z

144

Fluidized bed boiler having a segmented grate  

DOE Patents [OSTI]

A fluidized bed furnace (10) is provided having a perforate grate (9) within a housing which supports a bed of particulate material including some combustibles. The grate is divided into a plurality of segments (E2-E6, SH1-SH5, RH1-RH5), with the airflow to each segment being independently controlled. Some of the segments have evaporating surface imbedded in the particulate material above them, while other segments are below superheater surface or reheater surface. Some of the segments (E1, E7) have no surface above them, and there are ignitor combustors (32, 34) directed to fire into the segments, for fast startup of the furnace without causing damage to any heating surface.

Waryasz, Richard E. (Longmeadow, MA)

1984-01-01T23:59:59.000Z

145

Effects of the reacting flowfield on combustion processes in a stagnation point reverse flow combustor.  

E-Print Network [OSTI]

??The performance of dry, low NOx gas turbines, which employ lean premixed (or partially premixed) combustors, is often limited by combustor stability. To overcome this… (more)

Gopalakrishnan, Priya

2008-01-01T23:59:59.000Z

146

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect (OSTI)

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-01-01T23:59:59.000Z

147

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect (OSTI)

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-12-01T23:59:59.000Z

148

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUID BED BOILERS (Phase II--Evaluation of the Oxyfuel CFB Concept)  

SciTech Connect (OSTI)

The overall project goal is to determine if carbon dioxide can be captured and sequestered at a cost of about $10/ton of carbon avoided, using a newly constructed Circulating Fluidized Bed combustor while burning coal with a mixture of oxygen and recycled flue gas, instead of air. This project is structured in two Phases. Phase I was performed between September 28, 2001 and May 15, 2002. Results from Phase I were documented in a Topical Report issued on May 15, 2003 (Nsakala, et al., 2003), with the recommendation to evaluate, during Phase II, the Oxyfuel-fired CFB concept. DOE NETL accepted this recommendation, and, hence approved the project continuation into Phase II. Phase 2. The second phase of the project--which includes pilot-scale tests of an oxygen-fired circulating fluidized bed test facility with performance and economic analyses--is currently underway at ALSTOM's Power Plant Laboratories, located in Windsor, CT (US). The objective of the pilot-scale testing is to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in oxygen/carbon dioxide mixtures. Results will be used in the design of oxygen-fired CFB boilers--both retrofit and new Greenfield--as well as to provide a generic performance database for other researchers. At the conclusion of Phase 2, revised costs and performance will be estimated for both retrofit and new Greenfield design concepts with CO2 capture, purification, compression, and liquefaction.

John L. Marion; Nsakala ya Nsakala

2003-11-09T23:59:59.000Z

149

Development of a catalytically assisted combustor for a gas turbine  

Science Journals Connector (OSTI)

A catalytically assisted low \\{NOx\\} combustor has been developed which has the advantage of catalyst durability. This combustor is composed of a burner section and a premixed combustion section behind the burner section. The burner system consists of six catalytic combustor segments and six premixing nozzles, which are arranged alternately and in parallel. Fuel flow rate for the catalysts and the premixing nozzles are controlled independently. The catalytic combustion temperature is maintained under 1000°C, additional premixed gas is injected from the premixing nozzles into the catalytic combustion gas, and lean premixed combustion at 1300°C is carried out in the premixed combustion section. This system was designed to avoid catalytic deactivation at high temperature and thermal or mechanical shock fracture of the honeycomb monolith. In order to maintain the catalyst temperature under 1000°C, the combustion characteristics of catalysts at high pressure were investigated using a bench scale reactor and an improved catalyst was selected for the combustor test. A combustor for a 20 MW class multi-can type gas turbine was designed and tested under high pressure conditions using LNG fuel. Measurements of NOx, CO and unburned hydrocarbon were made and other measurements were made to evaluate combustor performance under various combustion temperatures and pressures. As a result of the tests, it was proved that \\{NOx\\} emission was lower than 10 ppm converted at 16% O2, combustion efficiency was almost 100% at 1300°C of combustor outlet temperature and 13.5 ata of combustor inlet pressure.

Yasushi Ozawa; Tomoharu Fujii; Mikio Sato; Takaaki Kanazawa; Hitoshi Inoue

1999-01-01T23:59:59.000Z

150

Ultra-Low NOx Advanced Vortex Combustor  

SciTech Connect (OSTI)

An ultra lean-premixed Advanced Vortex Combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory (USDOE NETL) test facility in Morgantown (WV). All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx/CO/UHC emissions of 4/4/0 ppmv (all emissions are at 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated tremendous acoustic dynamic stability over a wide range of operating conditions which potentially makes this approach significantly more attractive than other lean premixed combustion approaches. In addition, a pressure drop of 1.75% was measured which is significantly lower than conventional gas turbine combustors. Potentially, this lower pressure drop characteristic of the AVC concept translates into overall gas turbine cycle efficiency improvements of up to one full percentage point. The relatively high velocities and low pressure drops achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

Edmonds, R.G. (Ramgen Power Systems, Inc., Bellevue, WA); Steele, R.C. (Ramgen Power Systems, Inc., Bellevue, WA); Williams, J.T. (Ramgen Power Systems, Inc., Bellevue, WA); Straub, D.L.; Casleton, K.H.; Bining, Avtar (California Energy Commission, Sacramento, CA)

2006-05-01T23:59:59.000Z

151

ULTRA-LOW NOX ADVANCED VORTEX COMBUSTOR  

SciTech Connect (OSTI)

An ultra lean-premixed Advanced Vortex Combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory (USDOE NETL) test facility in Morgantown (WV). All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx/CO/UHC emissions of 4/4/0 ppmv (all emissions are at 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated tremendous acoustic dynamic stability over a wide range of operating conditions which potentially makes this approach significantly more attractive than other lean premixed combustion approaches. In addition, a pressure drop of 1.75% was measured which is significantly lower than conventional gas turbine combustors. Potentially, this lower pressure drop characteristic of the AVC concept translates into overall gas turbine cycle efficiency improvements of up to one full percentage point. The relatively high velocities and low pressure drops achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

Ryan G. Edmonds; Robert C. Steele; Joseph T. Williams; Douglas L. Straub; Kent H. Casleton; Avtar Bining

2006-05-01T23:59:59.000Z

152

Low NO.sub.x multistage combustor  

DOE Patents [OSTI]

A high efficiency, Vortex Inertial Staged Air (VIStA) combustor provides ultra-low NO.sub.X production of about 20 ppmvd or less with CO emissions of less than 50 ppmvd, both at 3% O.sub.2. Prompt NO.sub.X production is reduced by partially reforming the fuel in a first combustion stage to CO and H.sub.2. This is achieved in the first stage by operating with a fuel rich mixture, and by recirculating partially oxidized combustion products, with control over stoichiometry, recirculation rate and residence time. Thermal NO.sub.X production is reduced in the first stage by reducing the occurrence of high temperature combustion gas regions. This is achieved by providing the first stage burner with a thoroughly pre-mixed fuel/oxidant composition, and by recirculating part of the combustion products to further mix the gases and provide a more uniform temperature in the first stage. In a second stage combustor thermal NO.sub.X production is controlled by inducing a large flow of flue gas recirculation in the second stage combustion zone to minimize the ultimate temperature of the flame. One or both of the first and second stage burners can be cooled to further reduce the combustion temperature and to improve the recirculation efficiency. Both of these factors tend to reduce production of NO.sub.X.

Becker, Frederick E. (Reading, MA); Breault, Ronald W. (Newington, NH); Litka, Anthony F. (Hanover, MA); McClaine, Andrew W. (Lexington, MA); Shukla, Kailash (Boxborough, MA)

2000-01-01T23:59:59.000Z

153

Coal Bed Methane Primer  

SciTech Connect (OSTI)

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

154

The Effects of Fuel Distribution, Velocity Distribution, and Fuel Composition on Static and Dynamic Instabilities and NOx Emissions in Lean Premixed Combustors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distribution, and Fuel Composition on Static and Dynamic Instabilities and NO x Emissions in Lean Premixed Combustors Principal Investigator: Domenic A. Santavicca SCIES Project 03-01-SR109 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (7/01/03, 36 month duration) $403,777 Total Contract Value ($403,777 DOE) * Lower Emissions * Improved Static and Dynamic Stability * Fuel Versatility * Improved Design Methodology UTSR Workshop,10-18-05,DAS Gas Turbine Technology Needs * to determine the effect of combustor operating conditions on the static and dynamic stability characteristics of lean premixed combustors operating on natural gas and coal-derived syngas fuels * to develop a methodology for predicting the effect of

155

Sulfur removal in advanced two-staged pressurized fluidized-bed combustion; [Quarterly] report, September 1--November 1993  

SciTech Connect (OSTI)

The objective of this study is to obtain data on the rates of reaction between hydrogen sulfide (H{sub 2}S) and uncalcined calcium-based sorbents under operating conditions relevant to first stage (carbonizer) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure in the first stage generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, removal of sulfur compounds takes place through the reaction between H{sub 2}S and calcium carbonate. To achieve this objective, the rates of reaction between hydrogen sulfide and uncalcined calcium-based sorbents will be determined by conducting tests in pressurized thermogravimetric analyzer (TGA) and high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. A pressurized TGA unit has been purchased by IGT for use in this project.

Abbasian, J.; Hill, A.H.; Wangerow, J.R.; Rue, D.M.

1994-03-01T23:59:59.000Z

156

User converts gas boiler to fluidized bed to save $1. 5M  

SciTech Connect (OSTI)

Retrofitting a fluidized bed combustion (FBC) system may allow Clayton Foods Inc. to reduce its annual fuel bill by $1.5 million when the system comes on line in 1986. The system will burn low-grade, high-sulfur coal instead of natural gas, and should pay back the $4.1 million investment in under five years. The dual bed design separates the chemical processes of combustion and desulfurization into two chambers, which allows smaller-sized combustors that achieve high efficiencies in less time than conventional, single-bed fluidized bed boilers. Possible limitations prevent other manufacturers from making the dual-bed system. The Wormser unit is the only retrofit application of this technology in an industrial setting.

Springer, N.

1985-07-29T23:59:59.000Z

157

Characterization of supersonic mixing in a nonreacting Mach 2 combustor  

SciTech Connect (OSTI)

Planar measurements of the injection mole fraction distribution and the velocity field within a nonreacting model SCRAMJET combustor have been made using laser-induced iodine fluorescence. The combustor geometry investigated in this work is staged transverse injection of air into a Mach 2 freestream. A complete three-dimensional survey of the injectant mole fraction distribution has been generated and a single planar velocity measurement has been completed. The measurements reveal the dramatic effect of streamwise vortices on the mixing of the injectant in the near field of the injectors, as well as the rapid mixing generated by staging two field injectors. Analysis of the downstream decay of the maximum injectant mole fraction in this and other nonreacting combustor geometries indicates that the relative rate of injectant mixing well downstream of the injectors is independent of combustor geometry, combustor Mach number, and injectant molecular weight. Mixing within this region of the combustor is dominated by turbulent diffusion within the injectant plume. The transition of the dominant mixing mechanism, from vortex-driven mixing in the near field to turbulent diffusion in the far field, was found to occur in the region between 10 and 20 jet diameters downstream of the injectors. 22 refs.

Hollo, S.D.; Mcdaniel, J.C.; Hartfield, R.J., JR. (Virginia, University, Charlottesville (United States))

1992-01-01T23:59:59.000Z

158

Experimental study of fluidized bed combustion of feedlot manure  

E-Print Network [OSTI]

Characteristics 2. 2 Gasification 2. 3 Combustion CHAPTER III OBJECTIVES CHAPTER IV THE EXPERIMENTAL APPARATUS 4. 1 General Facility Layout 4. 2 Air Flow System 4. 3 Bed Chamber 4. 4 Fuel Feed System 1V V1 1X 12 14 19 21 21 23 25 25 TABLE... on the combustor performance. In the present research work, literature review is carried out on combustion and gasification of feedlot manure results (chapter II). Chapter III lists out the objectives and the tasks of this research work. The experimental setup...

Madan, Ajit M.

2012-06-07T23:59:59.000Z

159

Fate of Fuel Nitrogen in the Furnace of an Industrial Bubbling Fluidized Bed Boiler during Combustion of Biomass Fuel Mixtures  

Science Journals Connector (OSTI)

Co-firing biomass with challenging fuels, such as sludge, demolition wood, and solid recovered fuel (SRF), has become an attractive possibility to improve the economy of power production and to reduce the amount of landfill. ... Therefore, the fuel was extremely wet, with a dry solids content below 50 wt %. ... Thus, CS could reduce NOx effectively in devices where other techniques fails, e.g., in kraft recovery boilers, fluidized bed combustors, low-grade fuel combustors, small and domestic boilers, and fast engines. ...

Emil Vainio; Anders Brink; Mikko Hupa; Hannu Vesala; Tuula Kajolinna

2011-11-28T23:59:59.000Z

160

Flow conditioner for fuel injector for combustor and method for low-NO.sub.x combustor  

DOE Patents [OSTI]

An injector for a gas turbine combustor including a catalyst coated surface forming a passage for feed gas flow and a channel for oxidant gas flow establishing an axial gas flow through a flow conditioner disposed at least partially within an inner wall of the injector. The flow conditioner includes a length with an interior passage opening into upstream and downstream ends for passage of the axial gas flow. An interior diameter of the interior passage smoothly reduces and then increases from upstream to downstream ends.

Dutta, Partha; Smith, Kenneth O.; Ritz, Frank J.

2013-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants: ProMIS/Project No.: DE-NT0005343  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

seyed Dastgheib seyed Dastgheib Principal Investigator Illinois State Geological Survey 615 E. Peabody Drive Champaign, Illinois 61820-6235 217-265-6274 dastgheib@isgs.uius.edu Reuse of PRoduced WateR fRom co 2 enhanced oil RecoveRy, coal-Bed methane, and mine Pool WateR By coal-Based PoWeR Plants: PRomis /PRoject no. : de-nt0005343 Background Coal-fired power plants are the second largest users of freshwater in the United States. In Illinois, the thermoelectric power sector accounts for approximately 84 percent of the estimated 14 billion gallons per day of freshwater withdrawals and one-third of the state's 1 billion gallons per day of freshwater consumption. Illinois electric power generation capacity is projected to expand 30 percent by 2030, increasing water consumption by

162

Production of Middle Caloric Fuel Gas from Coal by Dual-Bed Gasification Technology  

Science Journals Connector (OSTI)

This work demonstrated the dual-bed gasification technology on a pilot plant (1000 tons of coal/a) mainly consisting of a fluidized-bed gasifier and a pneumatic combustor using the coal with a particle size of less than 20 mm. ... It can be seen in Table 1 that the mass fraction of the coal with sizes less than 2.0 mm was about 45 wt %. ... Coal was continuously fed in the gasifier, and meanwhile, air or gas mixture (air and steam) as the fluidizing medium and gasifying reagent was introduced from the bottom of the gasifier. ...

Yin Wang; Wen Dong; Li Dong; Junrong Yue; Shiqiu Gao; Toshiyuki Suda; Guangwen Xu

2010-04-23T23:59:59.000Z

163

CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE TREATMENT  

SciTech Connect (OSTI)

Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (both radioactive and hazardous according tohe Resource Conservation and Recovery Act) wastes. Depending on regulatory requirements, the mercury in the off-gas must be controlled with sometimes very high efficiencies. Compliance to the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards can require off-gas mercury removal efficiencies up to 99.999% for thermally treating some mixed waste streams. Several test programs have demonstrated this level of off-gas mercury control using fixed beds of granular sulfur-impregnated activated carbon. Other results of these tests include: (a) The depth of the mercury control mass transfer zone was less than 15-30 cm for the operating conditions of these tests, (b) MERSORB® carbon can sorb Hg up to 19 wt% of the carbon mass, and (c) the spent carbon retained almost all (98 – 99.99%) of the Hg; but when even a small fraction of the total Hg dissolves, the spent carbon can fail the TCLP test when the spent carbon contains high Hg concentrations. Localized areas in a carbon bed that become heated through heat of adsorption, to temperatures where oxidation occurs, are referred to as “bed hot spots.” Carbon bed hot spots must be avoided in processes that treat radioactive and mixed waste. Key to carbon bed hot spot mitigation are (a) designing for sufficient gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) monitoring and control of inlet gas flowrate, temperature, and composition, (c) monitoring and control of in-bed and bed outlet gas temperatures, and (d) most important, monitoring of bed outlet CO concentrations. An increase of CO levels in the off-gas downstream of the carbon bed to levels about 50-100 ppm higher than the inlet CO concentration indicate CO formation in the bed, caused by carbon bed hot spots. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from. Multiple high and high-high alarm levels should be used, with appropriate corrective actions for each level.

Nick Soelberg; Joe Enneking

2010-11-01T23:59:59.000Z

164

Rayleigh/Raman/LIF measurements in a turbulent lean premixed combustor  

SciTech Connect (OSTI)

Much of the industrial electrical generation capability being added worldwide is gas-turbine engine based and is fueled by natural gas. These gas-turbine engines use lean premixed (LP) combustion to meet the strict NO{sub x} emission standards, while maintaining acceptable levels of CO. In conventional, diffusion flame gas turbine combustors, large amount of NO{sub x} forms in the hot stoichiometric zones via the Zeldovich (thermal) mechanism. Hence, lean premixed combustors are rapidly becoming the norm, since they are specifically designed to avoid these hot stoichiometric zones and the associated thermal NO{sub x}. However, considerable research and development are still required to reduce the NO{sub x} levels (25-40 ppmvd adjusted to 15% O{sub 2} with the current technology), to the projected goal of under 10 ppmvd by the turn of the century. Achieving this objective would require extensive experiments in LP natural gas (or CH{sub 4}) flames for understanding the combustion phenomena underlying the formation of the exhaust pollutants. Although LP combustion is an effective way to control NO{sub x}, the downside is that it increases the CO emissions. The formation and destruction of the pollutants (NO{sub x} and CO) are strongly affected by the fluid mechanics, the finite-rate chemistry, and their (turbulence-chemistry) interactions. Hence, a thorough understanding of these interactions is vital for controlling and reducing the pollutant emissions. The present research is contributing to this goal by providing a detailed nonintrusive laser based data set with good spatial and temporal resolutions of the pollutants (NO and CO) along with the major species, temperature, and OH. The measurements reported in this work, along with the existing velocity data on a turbulent LP combustor burning CH{sub 4}, would provide insight into the turbulence-chemistry interactions and their effect on pollutant formation.

Nandula, S.P.; Pitz, R.W. [Vanderbilt Univ., Nashville, TN (United States). Dept. of Mechanical Engineering; Barlow, R.S.; Fiechtner, G.J. [Sandia National Labs., Albuquerque, NM (United States)

1995-12-31T23:59:59.000Z

165

Bed material agglomeration during fluidized bed combustion. Technical progress report, October 1, 1993--December 31, 1993  

SciTech Connect (OSTI)

During this quarter, agglomerates which formed in the FBC at Montana-Dakota Utilities (Heskett Station Unit 2 located in Bismarck, ND) were analyzed by x-ray diffraction analyses (XRD) for mineral determination; bulk chemical composition was determined by inductively coupled plasma spectroscopy; and polished sections were made for optical and scanning electron microscopy. Polarized-light microscopy was performed using a Zeiss research microscope. Individual mineral grains were analyzed using an ARL electron microprobe and a JOEL 840 scanning electron microscope. The agglomerate was found in the mechanical dust collector and was about ten centimeters in diameter with a dark-colored core and a greenish rim. The sample had voids up to ten millimeters in size; however, the agglomerate was hard to break apart. Bulk compositionally, the agglomerate consists primarily of calcium, silica, and alumina with relatively high abundances of iron (8 to 9 wt %), magnesium (5 to 9 wt %) and sodium (3 to 4 wt %). It is likely that the ``root`` cause of this agglomerate originated in the dense phase of the FBC bed. Because fluidized bed combustors work below the ash fusion temperature of coal ash, aluminosilicates (clays) in the ash probably became ``sticky`` due to fluxing reactions with pyrite (FeS{sub 2}) and perhaps alkalies (Na). This is indicated by the high amounts of iron, silica, and alumina in the agglomerate. Because of the size of the deposit, the bed particles probably agglomerated in the dust collector.

Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

1994-01-01T23:59:59.000Z

166

Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR)  

Broader source: Energy.gov (indexed) [DOE]

Maturation Plan (TMP) Fluidized Bed Steam Reforming Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Fluidized Bed Steam Reformer System. Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) More Documents & Publications Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) SRS Tank 48H Waste Treatment Project Technology Readiness Assessment

167

Method for operating a combustor in a fuel cell system  

DOE Patents [OSTI]

In one aspect, the invention provides a method of operating a combustor to heat a fuel processor to a desired temperature in a fuel cell system, wherein the fuel processor generates hydrogen (H.sub.2) from a hydrocarbon for reaction within a fuel cell to generate electricity. More particularly, the invention provides a method and select system design features which cooperate to provide a start up mode of operation and a smooth transition from start-up of the combustor and fuel processor to a running mode.

Clingerman, Bruce J. (Palmyra, NY); Mowery, Kenneth D. (Noblesville, IN)

2002-01-01T23:59:59.000Z

168

Turbine combustor with fuel nozzles having inner and outer fuel circuits  

DOE Patents [OSTI]

A combustor cap assembly for a turbine engine includes a combustor cap and a plurality of fuel nozzles mounted on the combustor cap. One or more of the fuel nozzles would include two separate fuel circuits which are individually controllable. The combustor cap assembly would be controlled so that individual fuel circuits of the fuel nozzles are operated or deliberately shut off to provide for physical separation between the flow of fuel delivered by adjacent fuel nozzles and/or so that adjacent fuel nozzles operate at different pressure differentials. Operating a combustor cap assembly in this fashion helps to reduce or eliminate the generation of undesirable and potentially harmful noise.

Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

2013-12-24T23:59:59.000Z

169

Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling.

Yanochko, Ronald M [Washington River Protection Solutions, Richland, WA (United States); Corcoran, Connie [AEM Consulting, LLC, Richland, WA (United States)

2012-11-15T23:59:59.000Z

170

Evaluation of cement production using a pressurized fluidized-bed combustor  

SciTech Connect (OSTI)

There are several primary conclusions which can be reached and used to define research required in establishing the feasibility of using PFBC-derived materials as cement feedstock. 1. With appropriate blending almost any material containing the required cement-making materials can be utilized to manufacture cement. However, extensive blending with multiple materials or the use of ash in relatively small quantities would compromise the worth of this concept. 2. The composition of a potential feedstock must be considered not only with respect to the presence of required materials, but just as significantly, with respect to the presence and concentration of known deleterious materials. 3. The processing costs for rendering the feedstock into an acceptable composition and the energy costs associated with both processing and burning must be considered. It should be noted that the cost of energy to produce cement, expressed as a percentage of the price of the product is higher than for any other major industrial product. Energy consumption is, therefore, a major issue. 4. The need for conformance to environmental regulations has a profound effect on the cement industry since waste materials can neither be discharged to the atmosphere or be shipped to a landfill. 5. Fifth, the need for achieving uniformity in the composition of the cement is critical to controlling its quality. Unfortunately, certain materials in very small concentrations have the capability to affect the rate and extent to which the cementitious compound in portland cement are able to form. Particularly critical are variations in the ash, the sulfur content of the coal or the amount and composition of the stack dust returned to the kiln.

DeLallo, M.; Eshbach, R.

1994-01-01T23:59:59.000Z

171

Economics of co-firing waste materials in an advanced pressurized fluidized-bed combustor  

SciTech Connect (OSTI)

A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts. Wastes considered for co-firing include municipal solid waste (MSW), tire derived fuel (TDF), sewage sludge and industrial de-inking sludge. Conceptual designs of three power plants rated at 250 MWe, 150 MWe and 4 MWe were developed. The 4 MWe facility was chosen to represent a distributed power source for a remote location and designated to co-fire coal with MSW, TDF and sewage sludge while producing electricity for a small town. Heat and material balances were completed for each plant and costs determined including capital costs, operating costs and cost of electricity. With the PFBCs operation at high temperature and pressure, efforts were centered on defining feeding systems capable of operating at these conditions. Since PFBCs have not been tested co-firing wastes, other critical performance factors were addressed and recommendations were provided for resolving potential technical issues. Air emissions and solid wastes were characterized to assess the environmental performance comparing them to state and federal regulations. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

Bonk, D.L.; McDaniel, H.M. [Dept. of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center; DeLallo, M.R. Jr.; Zaharchuk, R. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

1995-12-31T23:59:59.000Z

172

EA-0646: Pulsed Atmospheric Fluidized-Bed Combustor Development Thermochem, Inc.  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to develop a more economical, efficient, and environmentally acceptable coal-fired combustion technology in Baltimore, Maryland that can be...

173

Small-scale circulating fluidized bed combustor (CFBC) system for heat and power in remote areas  

SciTech Connect (OSTI)

Demand for heating and electric power has steadily increased in remote areas. The use of locally available fuel to achieve self sufficiency has become an important objective. Energy demands may require steam generation for district heating, power generation and process consumption. In addition, the steam generation unit can also be required to burn waste that includes MSW and sewage sludge. To meet these demands, new systems must be installed that use local fuel. This paper describes a lower cost CFBC for use in remote areas. With the support of DOE METC, in late summer 1994, DONLEE performed a test burn at its 10 MM btu/hr pilot CFBC using subbituminous coal from Wyoming. The Wyoming coal`s sulfur dioxide emissions were very low due to the low sulfur content of the Wyoming coal and the excellent efficiency at temperatures as low as 1,500 F thereby indicating no limestone addition was needed for sulfur capture. The CFBC testing indicated emissions met all of the environmental requirements, both Federal and state. These requirements include: particulates, SO{sub 2}, CO, NO{sub x}, opacity, chlorinated dioxins/furans, etc. The unit can be fabricated in modules, making the installation easier and less expensive for use in remote areas. The design is highly reliable and can be fully automated thereby requiring limited staffing.

Stuart, J.M.; Korenberg, J. [DONLEE Technologies Inc., York, PA (United States)

1995-12-31T23:59:59.000Z

174

Fuel characteristics and theoretical performance of a fluidized bed combustor with manure as a fuel  

E-Print Network [OSTI]

removal and the temperature of gasification and (c) the heat of pyrolysis. The results are shown in Figures 3a, 3b, 3c. Figure 3a shows the results of apparently a wet fresh manure at a heating rate of 80'C/min, while Figure 3b, 3c shows 24 00 2200... ( 'K) Time ( sec ) Temperature at any time Temperature of heat exchanger wall Initial temperature Bubble temperature Mix temperature Environmental temperature Xii NOMENCLATURE (Continued ) tm umin ubub Ve Time at the end of pyrolysis Time...

Park, Joon Hwa

1984-01-01T23:59:59.000Z

175

CFD modeling of a gas turbine combustor from compressor exit to turbine inlet  

SciTech Connect (OSTI)

Gas turbine combustor CFD modeling has become an important combustor design tool in the past few years, but CFD models are generally limited to the flow field inside the combustor liner at the diffuser/combustor annulus region. Although strongly coupled in reality, the two regions have rarely been coupled in CFD modeling. A CFD calculation for a full model combustor from compressor diffuser exit to turbine inlet is described. The coupled model accomplishes the following two main objectives: (1) implicit description of flow splits and flow conditions for openings into the combustor liner, and (2) prediction of liner wall temperatures. Conjugate heat transfer with nonluminous gas radiation (appropriate for lean, low emission combustors) is utilized to predict wall temperatures compared to the conventional approach of predicting only near wall gas temperatures. Remaining difficult issues such as generating the grid, modeling swirler vane passages, and modeling effusion cooling are also discussed.

Crocker, D.S.; Nickolaus, D.; Smith, C.E. [CFD Research Corp., Huntsville, AL (United States)

1999-01-01T23:59:59.000Z

176

Catalytic combustor for integrated gasification combined cycle power plant  

DOE Patents [OSTI]

A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

Bachovchin, Dennis M. (Mauldin, SC); Lippert, Thomas E. (Murrysville, PA)

2008-12-16T23:59:59.000Z

177

Flame Dynamics and Structure Within Sub-Millimeter Combustors  

E-Print Network [OSTI]

provided by combusting hydro- carbon fuels has stimulated interest in recent years toward the development of micro-and mesoscale portable heat and power sources, and systems for a myriad of applications,1 of micro- and mesoscale heat sources through development of micro- combustors, engines, heaters

178

Large-eddy simulation of multiphase flows in complex combustors  

E-Print Network [OSTI]

combustors and biomass gasifiers involv- ing swirling motions. The combustion chambers of propulsion systems of turbulent mixing and combustion dynamics. Our goal in the present work is to develop a computational tool combustion engines, liquid and solid propellant rocket motors, gas-turbine aircraft engines, cyclone

Mahesh, Krishnan

179

Biomass combustion with in situ CO2 capture by CaO in a 300 kWth circulating fluidized bed facility  

Science Journals Connector (OSTI)

Abstract This paper reports experimental results from a new 300 kWth calcium looping pilot plant designed to capture CO2 “in situ” during the combustion of biomass in a fluidized bed. This novel concept relies on the high reactivity of biomass as a fuel, which allows for effective combustion around 700 °C in air at atmospheric pressure. In these conditions, CaO particles fed into the fluidized bed combustor react with the CO2 generated during biomass combustion, allowing for an effective CO2 capture. A subsequent step of regeneration of CaCO3 in an oxy-fired calciner is also needed to release a concentrated stream of CO2. This regeneration step is assumed to be integrated in a large scale oxyfired power plant and/or a larger scale post-combustion calcium looping system. The combustor-carbonator is the key reactor in this novel concept, and this work presents experimental results from a 300 kWth pilot to test such a reactor. The pilot involves two 12 m height interconnected circulating fluidized bed reactors. Several series of experiments to investigate the combustor-carbonator reactor have been carried out achieving combustion efficiencies close to 100% and CO2 capture efficiencies between 70 and 95% in dynamic and stationary state conditions, using wood pellets as a fuel. Different superficial gas velocities, excess air ratios above stoichiometric requirements, and solid circulating rates between combustor-carbonator and combustor-calciner have been tested during the experiments. Closure of the carbon and oxygen balances during the combustion and carbonation trials has been successful. A simple reactor model for combustion and CO2 capture in the combustor-carbonator has been applied to aid in the interpretation of results, which should facilitate the future scaling up of this process concept.

M. Alonso; M.E. Diego; C. Pérez; J.R. Chamberlain; J.C. Abanades

2014-01-01T23:59:59.000Z

180

Combustion of high-sulfur coal and anthracite wastes in a rotary kiln combustor with an advanced internal air distributor  

SciTech Connect (OSTI)

Fluid bed combustors have received extensive testing with both high-sulfur coal and anthracite wastes. Rotary kilns are effective and popular devices for waste combustion. The Angelo Rotary Furnace{trademark} has been developed to improve the operation of rotary pyrolyzer/combustor systems through enhanced air distribution, which in this process is defined as staged, swirled combustion air injection. Fourteen of these new furnaces have been installed worldwide. Two units in Thailand, designed for rice hull feed with occasional lignite feed, have been recently started up. An older unit in Pennsylvania is being upgraded with a new, more advanced air distribution system for a series of tests this fall in which inexpensive high-sulfur coal and anthracite wastes will be fired with limestone. The purposes of these tests are to determine the burning characteristics of these two fuels in this system, to discover the Ca/S ratios necessary for operation of a rotary kiln combusting these fuels, and to observe the gas-borne emissions from the furnace. An extensive preliminary design study will be performed on a commercial installation for combustion of anthracite wastes. 14 refs., 5 figs., 1 tab.

Cobb, J.T. Jr. (Pittsburgh Univ., PA (USA)); Ahn, Y.K. (Gilbert/Commonwealth, Inc., Reading, PA (USA)); Angelo, J.F. (Universal Energy International, Inc., Little Rock, AR (USA))

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Header with Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5NT42646 Zero Emissions Coal Syngas-Oxygen Turbo Machinery 5NT42646 Zero Emissions Coal Syngas-Oxygen Turbo Machinery FACT SHEET (42646) Oct. 2006 I. PROJECT PARTICIPANTS A. Siemens Power Generation, Inc. B. Florida Turbine Technologies, Inc. C. Clean Energy Systems, Inc. II. PROJECT DESCRIPTION A. Objective(s) - To develop a cost effective and highly efficient turbo machinery system that will work with an oxy-fuel combustor that generates very high temperature CO2 and steam mixture as the working fluid. After expansion of the working fluid, the CO2 is captured allowing near-zero emissions of NOx and carbon. The project will complete conceptual designs of alternate steam cycles and select one cycle for detailed design based on cost and feasibility studies. B. Relevancy - 1. Background: CES, Inc. has an operational oxy-fuel combustor that generates

182

Erosion of heat exchanger tubes in fluidized beds  

SciTech Connect (OSTI)

This final report describes the activities of the 3-year project entitled Erosion of Heat Exchanger Tubes In Fluidized Beds.'' which was completed at the end of 1990. Project accomplishments include the collection of a substantial body of wear data In a 24in. [times] 24in. fluidized bed, comparative wear results In a 6in. [times] 6in. fluidized bed, the development of a dragometer and the collection of a comprehensive set of drag force data in the 24in. [times] 24in. bed, Fast Fourier Transform (FFT) analysis of bubble probe data to establish dominant bubble frequencies in the 24in. [times] 24in. bed, the use of a heat flux gauge for measurement of heat transfer coefficients in the 24in. [times] 24in. bed and the modeling of the tube wear in the 24in. [times] 24in. bed. Analysis of the wear data from the 24in. square bed indicates that tube wear increases with increase in superficial velocity, and with increase in tube height. The latter effect is a result of the tubes higher up in the bed seeing greater movement of dense phase than tubes lower down In the bed. In addition, tube wear was found to decrease with increase in particle size, for constant superficial velocity. Three models of tube wear were formulated and provided acceptable prediction of wear when compared with the experimental data.

Johnson, E.K.; Flemmer, R.L.C.

1991-01-01T23:59:59.000Z

183

Low emissions combustor development for an industrial gas turbine to utilize LCV fuel gas  

SciTech Connect (OSTI)

Advanced coal-based power generation systems such as the British Coal Topping Cycle offer the potential for high-efficiency electricity generation with minimum environmental impact. An important component of the Topping cycle program is the gas turbine, for which development of a combustion system to burn low calorific value coal derived fuel gas, at a turbine inlet temperature of 1,260 C (2,300 F), with minimum pollutant emissions, is a key R and D issue. A phased combustor development program is underway burning low calorific value fuel gas (3.6--4.1 MJ/m[sup 3]) with low emissions, particularly NO[sub x] derived from fuel-bound nitrogen. The first phase of the combustor development program has now been completed using a generic tubo-annular, prototype combustor design. Tests were carried out at combustor loading and Mach numbers considerably greater than the initial design values. Combustor performance at these conditions was encouraging. The second phase of the program is currently in progress. This will assess, initially, an improved variant of the prototype combustor operating at conditions selected to represent a particular medium sized industrial gas turbine. This combustor will also be capable of operating using natural gas as an auxiliary fuel, to suite the start-up procedure for the Topping Cycle. The paper presents the Phase 1 test program results for the prototype combustor. Design of the modified combustor for Phase 2 of the development program is discussed, together with preliminary combustor performance results.

Kelsall, G.J.; Smith, M.A. (British Coal Corp., Glos (United Kingdom). Coal Research Establishment); Cannon, M.F. (European Gas Turbines Ltd., Lincoln (United Kingdom). Aero and Technology Products)

1994-07-01T23:59:59.000Z

184

Lateral solids dispersion coefficient in large-scale fluidized beds  

SciTech Connect (OSTI)

The design of fuel feed ports in a large-scale fluidized bed combustor depends on the fuel characteristics and lateral solids mixing. However, the reported values of the effective lateral solids dispersion coefficient (D{sub sr}) are scattered in the broad range of 0.0001-0.1 m{sup 2}/s. With the aim of predicting D{sub sr} in wider fluidized beds which is difficult to measure directly or deduce from experimental results in lab-scale facilities, a computational method is proposed. It combines the Eulerian-Granular simulation and fictitious particle tracing technique. The value of D{sub sr} is calculated based on the movement of the tracers. The effect on D{sub sr} of bed width (W) ranging from 0.4 m up to 12.8 m at different levels of superficial gas velocity (U{sub 0}) is investigated. It is found that increasing W whilst maintaining U{sub 0}, D{sub sr} initially increases markedly, then its increase rate declines, and finally it stays around a constant value. The computed values of D{sub sr} are examined quantitatively and compared with a thorough list of the measured D{sub sr} in the literature since 1980s. Agreed with the measurements performed in the pilot-scale fluidized beds, the value of D{sub sr} in wider facilities at higher fluidizing velocities is predicted to be around the order of magnitude of 0.1 m{sup 2}/s, much higher than that in lab-scale beds. Finally, the effect of D{sub sr} on the distribution of fuel particles over the cross section in fluidized beds with the specified layout of feed ports is discussed. (author)

Liu, Daoyin; Chen, Xiaoping [School of Energy and Environment, Southeast University, Nanjing 210096 (China)

2010-11-15T23:59:59.000Z

185

Designing Turbine Endwalls for Deposition Resistance with 1,400 Ā°C Combustor Exit Temperatures and Syngas Water Vapor LevelsĀ„The Ohio State University  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Designing Turbine Endwalls for Designing Turbine Endwalls for Deposition Resistance with 1,400 Ā°C Combustor Exit Temperatures and Syngas Water Vapor Levels-The Ohio State University Background This University Turbine Systems Research (UTSR) project will explore a critical need for innovative turbine endwall designs that could increase turbine durability and mitigate the adverse effects of residue deposition from coal-derived synthesis gas (syngas). The Ohio State University (OSU), in cooperation with Brigham Young University (BYU),

186

Modeling scramjet combustor flowfields with a grid adaptation scheme  

SciTech Connect (OSTI)

The accurate description of flow features associated with the normal injection of fuel into supersonic primary flows is essential in the design of efficient engines for hypervelocity aerospace vehicles. The flow features in such injections are complex with multiple interactions between shocks and between shocks and boundary layers. Numerical studies of perpendicular sonic N2 injection and mixing in a Mach 3.8 scramjet combustor environment are discussed. A dynamic grid adaptation procedure based on the equilibration of spring-mass systems is employed to enhance the description of the complicated flow features. Numerical results are compared with experimental measurements and indicate that the adaptation procedure enhances the capability of the modeling procedure to describe the flow features associated with scramjet combustor components. 14 refs.

Ramakrishnan, R.; Singh, D.J. (Analytical Services and Materials, Inc., Hampton, VA (United States))

1994-05-01T23:59:59.000Z

187

Self-regulating fuel staging port for turbine combustor  

DOE Patents [OSTI]

A port (60) for axially staging fuel and air into a combustion gas flow path 28 of a turbine combustor (10A). A port enclosure (63) forms an air path through a combustor wall (30). Fuel injectors (64) in the enclosure provide convergent fuel streams (72) that oppose each other, thus converting velocity pressure to static pressure. This forms a flow stagnation zone (74) that acts as a valve on airflow (40, 41) through the port, in which the air outflow (41) is inversely proportion to the fuel flow (25). The fuel flow rate is controlled (65) in proportion to engine load. At high loads, more fuel and less air flow through the port, making more air available to the premixing assemblies (36).

Van Nieuwenhuizen, William F.; Fox, Timothy A.; Williams, Steven

2014-07-08T23:59:59.000Z

188

System and method for reducing combustion dynamics in a combustor  

DOE Patents [OSTI]

A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend through the end cap. A diluent supply in fluid communication with the end cap provides diluent flow to the end cap. Diluent distributors circumferentially arranged inside at least one tube bundle extend downstream from the downstream surface and provide fluid communication for the diluent flow through the end cap. A method for reducing combustion dynamics in a combustor includes flowing fuel through tube bundles that extend axially through an end cap, flowing a diluent through diluent distributors into a combustion chamber, wherein the diluent distributors are circumferentially arranged inside at least one tube bundle and each diluent distributor extends downstream from the end cap, and forming a diluent barrier in the combustion chamber between at least one pair of adjacent tube bundles.

Uhm, Jong Ho; Johnson, Thomas Edward; Zuo, Baifang; York, William David

2013-08-20T23:59:59.000Z

189

Fluidized Bed Technology - An R&D Success Story | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

An R&D Success Story An R&D Success Story Fluidized Bed Technology - An R&D Success Story In the early 1990s, POWER magazine called the development of fluidized bed coal combustors "the commercial success story of the last decade in the power generation business." The success, perhaps the most significant advance in coal-fired boiler technology in a half century, was achieved largely through the technology program of the U.S. Department of Energy's Office of Fossil Energy (and its predecessors). The Interior Department's Office of Coal Research, one of the forerunners of the Energy Department, began studying the fluidized bed combustion concept in the early 1960s. The original goal was to develop a compact "package" coal boiler that could be pre-assembled at the factory and shipped to a plant site (a lower cost

190

Combustion of paper deinking solids in a pilot-scale fluidized bed  

SciTech Connect (OSTI)

Pressed solids from two commercial deinking operations were incinerated in a pilot-scale fluidized-bed combustor. Test parameters included usage of support fuel (dry wood pellets or propane) and supply of overfire air. Stable combustion was achieved for a wide range of feedstock moisture contents (43% and 68%) and bed temperatures (700--1,000 C). Overfire air was varied from 0% to 60% of the total air, and the use of overfire air greatly improved burnout of CO in most cases. NO[sub x] emissions increased when overfire air was used and were in the range of 200 ppm to 275 ppm at 3% O[sub 2]. Ash from the deinking solids did not fuse at temperatures below 1,200 C, and no clinkers were formed in the bed during the trials. The ash consists mainly of kaolinite and contains insignificant quantities of heavy metals.

Douglas, M.A. (ABB Combustion Systems, Gloucester, Ontario (Canada)); Latva-Somppi, J.; Tran, H.N. (Univ. of Toronto, Ontario (Canada)); Razbin, V.V. (Canada Center for Mineral And Energy Technology, Ottawa, Ontario (Canada)); Friedrich, F.D.

1994-05-01T23:59:59.000Z

191

Co-combustion of biomass and gaseous fuel in a novel configuration of fluidized bed: Thermal characteristics  

Science Journals Connector (OSTI)

Abstract Experimental study on co-combustion of rice straw and natural gas has been performed in a fluidized bed. The used combustor allows the novel, jetting-fountain configuration and the conventional operation as well. In the jetting-fountain configuration, natural gas premixed with the air sufficient for combustion proceeds through the jet pipe to create a jetting-fountain zone. Whereas only the air required for rice straw combustion passes through the gas distributor. The experiments show that smooth combustion of natural gas with rice straw can be performed in the jetting-fountain fluidized bed avoiding acoustic effects and explosions of burning bubbles that occurs in conventional operation. The jetting-fountain fluidized bed is shown to dampen greatly the freeboard overheating at particularly lower bed temperatures. This is because the fountain-particles absorb a great part of heat released in the freeboard and recover it back to the bed. It is confirmed by measuring the in-bed cooling load that was found to increase considerably at lower bed temperatures. The natural gas contribution is found to play a major role when applying the jetting-fountain configuration. Increasing the natural gas contribution enlarges the fountain zone that causes greater reduction in the freeboard overheating and recovers more heat back to the bed. Measuring the in-bed cooling also approves the later conclusion.

F. Okasha; G. Zaater; S. El-Emam; M. Awad; E. Zeidan

2014-01-01T23:59:59.000Z

192

Co-combustion of biomass and gaseous fuel in a novel configuration of fluidized bed: Combustion characteristics  

Science Journals Connector (OSTI)

Abstract Experimental study on co-combustion of rice straw and natural gas has been performed in a bubbling fluidized bed. The used combustor allows a novel jetting-fountain configuration and the conventional operation as well. In the jetting-fountain configuration, natural gas premixed with the air sufficient for combustion proceeds through the jet pipe to create a jet-fountain zone. Whereas only the air required for rice straw combustion passes through the gas distributor. The findings of the experiments confirm that smooth combustion of natural gas with rice straw can be performed in the novel jetting-fountain fluidized bed. This avoids acoustic effects and explosions of burning bubbles that occurs in the conventional operation. Natural gas contribution had a major impact on combustion characteristics and the performance of the combustor has been found to be much better when applying the jetting-fountain configuration. There are considerable reductions (up to 64%, 28% and 34%) in CO, \\{NOx\\} and SO2 emissions, respectively. The fixed carbon loss reduces (up to 65%) as well. Combustion efficiency records generally higher values with the jetting-fountain configuration. Combustion efficiency steadily improves with increasing natural gas contribution (up to 99.8%). Increasing bed temperature (up to 900 °C) is beneficial for reducing CO, decreasing fixed carbon loss and improving combustion efficiency. The existence of an optimum bed temperature for sulfur retention has been confirmed. As normal, \\{NOx\\} increases with bed temperature.

F. Okasha; G. Zaater; S. El-Emam; M. Awad; E. Zeidan

2014-01-01T23:59:59.000Z

193

17 - Fluidized bed gasification  

Science Journals Connector (OSTI)

Abstract: The chapter describes the state-of-the-art of fluidized bed gasification of solid fuels, starting from the key role played by hydrodynamics, and its strong correlation with physical and chemical phenomena of the process and operating performance parameters of the reactor. The possible configurations of fluidized bed gasification plants are also assessed, and an analysis of the main methods for syngas cleaning is reported. Finally, the chapter describes some of the most interesting commercial experiences. The analysis indicates that the gasification of biomass and also of municipal and industrial solid wastes appear to be the most interesting sectors for the industrial development and utilization of fluidized bed gasifiers.

U. Arena

2013-01-01T23:59:59.000Z

194

Ash & Pulverized Coal Deposition in Combustors & Gasifiers  

SciTech Connect (OSTI)

Further progress in achieving the objectives of the project was made in the period of January I to March 31, 1998. The direct numerical simulation of particle removal process in turbulent gas flows was completed. Variations of particle trajectories are studied. It is shown that the near wall vortices profoundly affect the particle removal process in turbulent boundary layer flows. Experimental data for transport and deposition of fibrous particles in the aerosol wind tunnel was obtained. The measured deposition velocity for irregular fibrous particles is compared with the empirical correlation and the available data for glass fibers and discussed. Additional progress on the sublayer model for evaluating the particle deposition and resuspension in turbulent flows was made.

Goodarz Ahmadi

1998-12-02T23:59:59.000Z

195

Ash & Pulverized Coal Deposition in Combustors & Gasifiers  

SciTech Connect (OSTI)

Further progress in achieving the objectives of the project was made in the period of October 1 to December 31, 1996. In particular, the sublayer model for evaluating the particle deposition in turbulent flows was extended to include the effect of particle rebound. A new more advance flow model for the near wall vortices is also used in these analysis. The computational model for simulating particle transport in turbulent flows was used to analyze the dispersion and deposition of particles in a recirculating flow region. The predictions of the particle resuspension model is compared with the experimental data. It is shown that when the effects of the near wall flow structure, as we as the surface roughness are included the model agrees with the available experimental data. Considerable progress was also made in the direct numerical simulation of particle removal process in turbulent gas flows. Experimental data for transport and deposition of glass fiber in the aerosol wind tunnel was also obtained.

Goodarz Ahmadi

1998-12-02T23:59:59.000Z

196

Packed Bed Combustion: An Overview  

E-Print Network [OSTI]

;Packed Bed Combustion - University of Ottawa - CICS 2005 fuel fuel feed air products air fuel Retort) products Underfeed Combustion fuel feed air #12;Packed Bed Combustion - University of Ottawa - CICS 2005 required #12;Packed Bed Combustion - University of Ottawa - CICS 2005 Overfeed Bed fuel motion products air

Hallett, William L.H.

197

Large-eddy simulation of evaporating spray in a coaxial combustor  

E-Print Network [OSTI]

on unstructured grids at conditions representative of gas-turbine combustors. Ć? 2009 The Combustion Institute of engineering applications; e.g., inter- nal combustion engines, liquid and solid propel- lant rocket motors, gas-turbine aircraft engines, cyclone combustors, and biomass gasifiers. The physics of such flows

Apte, Sourabh V.

198

Large-Eddy Simulation of Evaporating Spray in a Coaxial Combustor  

E-Print Network [OSTI]

of engineering applications; e.g. internal combustion engines, liquid and solid propellant rocket motors, gas-turbine representative of gas-turbine combustors. Key words: Sprays, LES, unstructured grids, particle-laden flows complex. In gas turbine combustors, for example, the liquid fuel jet undergoes primary and secondary

Mahesh, Krishnan

199

Micro Catalytic Combustor with Pd/Nano-porous Alumina for High-Temperature Application  

E-Print Network [OSTI]

, the mixture temperature at the combustor inlet is set to 630 o C. Thermal conductivity of the ceramic wall Keywords: Catalytic combustion, Pd/nano-porous alumina, Ceramic tape casting, Thermophotovoltaic Abstract: A micro-scale catalytic combustor using high-precision ceramic tape-casting technology has been developed

Kasagi, Nobuhide

200

Test results of low NO[sub x] catalytic combustors for gas turbines  

SciTech Connect (OSTI)

Catalytic combustion is an ultralow NO[sub x] combustion method, so it is expected that this method will be applied to a gas turbine combustor, However, it is difficult to develop a catalytic combustor because catalytic reliability at high temperature is still insufficient. To overcome this difficulty, the authors designed a catalytic combustor in which premixed combustion was combined. By this device, it is possible to obtain combustion gas at a combustion temperature of 1,300 C while keeping the catalytic temperature below 1,000 C. After performing preliminary tests using LPG, the authors designed two types of combustor for natural gas with a capacity equivalent to one combustor used in a 20 MW class multican-type gas turbine. Combustion tests were conducted at atmospheric pressure using natural gas. As a result, it was confirmed that a combustor in which catalytic combustor segments were arranged alternately with premixing nozzles could achieve low NO[sub x] and high combustion efficiency in the range from 1,000 C to 1,300 C of the combustor exit gas temperature.

Ozawa, Y.; Hirano, J.; Sato, M. (Central Research Inst. of Electric Power Industry, Kanagawa (Japan)); Saiga, M.; Watanabe, S. (Kansai Electric Power Co., Inc., Hyogo (Japan))

1994-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Test results of a catalytically assisted combustor for a gas turbine  

Science Journals Connector (OSTI)

A catalytically assisted ceramic combustor for a gas turbine was designed and tested to achieve low \\{NOx\\} emissions. This combustor is composed of a burner and a ceramic liner. The burner consists of an annular preburner, six catalytic combustor segments and six premixing nozzles, which are arranged in parallel and alternately. In this combustor system, catalytic combustion temperature is controlled under 1000 °C, premixed gas is injected from the premixing nozzles to the catalytic combustion gas and lean premixed combustion over 1300 °C is carried out in the ceramic liner. This system was designed to avoid catalyst deactivation at high temperature and thermal shock fracture of the ceramic honeycomb monolith of the catalyst. A 1 MW class combustor was tested using LNG fuel. Firstly, \\{NOx\\} emissions from the preburner were investigated under various pressure conditions. Secondly, two sets of honeycomb cell density catalysts and one set of thermally pretreated catalysts ware applied to the combustor, and combustion tests were carried out under various pressure conditions. As a result, it was found that the main source of \\{NOx\\} was the preburner, and total \\{NOx\\} emissions from the combustor were approximately 4 ppm (at 16% O2) at an adiabatic combustion temperature of 1350 °C and combustor inlet pressure of 1.33 MPa.

Yasushi Ozawa; Yoshihisa Tochihara; Noriyuki Mori; Isao Yuri; Junichi Sato; Koji Kagawa

2003-01-01T23:59:59.000Z

202

LES-based Eulerian PDF approach for the simulation of scramjet combustors  

E-Print Network [OSTI]

LES-based Eulerian PDF approach for the simulation of scramjet combustors Heeseok Koo , Pratik simulation (LES) based simulation of scramjets is developed. To solve the high- dimensional joint of moments (SeQMOM); Probability density function; Scramjet combustor; Oscillatory reactive motion 1

Raman, Venkat

203

Fluidized bed combustion picks up steam  

SciTech Connect (OSTI)

Industrial interest in fluidized-bed combustion (FBC) continues, although the technology has been slow to enter the marketplace. Two FBC pilot plants funded by DOE and one commercial size project are in operation. FBC designs and commercial warranties are already available from the boiler industry, but 1981 was the first year to see significant numbers of privately-funded orders, now numbering 38 out of 50 boilers. Manufacturers are working on a universal boiler able to accept any fuel, but potential users are wary of new technology without a long-term demonstration of reliability and economics. There is interest in second generation designs, a new shallow-bed design suitable for retrofitting, and circulating bed types that decouple the combustion system from the heat removal system. (DCK)

Lawn, J.

1982-02-01T23:59:59.000Z

204

Ash & Pulverized Coal Deposition in Combustors & Gasifiers  

SciTech Connect (OSTI)

Further progress in achieving the objectives of the project was made in the period of October I to December 31, 1997. The direct numerical simulation of particle removal process in turbulent gas flows was continued. Variations of vorticity contours which are averaged over a short time duration are studied. It is shown that the near wall vortices profoundly affect the particle removal process in turbulent boundary layer flows. The sublayer model for evaluating the particle deposition in turbulent flows was extended to include the effect of particle rebound. A new more advance flow model for the near wall vortices is also used in these analysis. Sample particle trajectories are obtained and discussed. Experimental data for transport and deposition of fibrous particles in the aerosol wind tunnel was obtained. The measured deposition velocity is compared with the empirical correlation and the available data and discussed. Particle resuspension process in turbulent flows are studied. The model is compared with the experimental data. It is shown that when the effects of the near wall flow structure, as well as the surface roughness are included the model agrees with the available experimental data.

Goodarz Ahmadi

1998-12-02T23:59:59.000Z

205

Ash & Pulverized Coal Deposition in Combustors & Gasifiers  

SciTech Connect (OSTI)

Further progress in achieving the objectives of the project was made in the period of July 1 to September 30, 1997. The direct numerical simulation of particle removal process in turbulent gas flows was continued. Variations of vorticity contours which are averaged over a short time duration are studied. It is shown that the near wall vortices profoundly affect the particle removal process in turbulent boundary layer flows. The sublayer model for evaluating the particle deposition in turbulent flows was extended to include the effect of particle rebound. A new more advance flow model for the near wall vortices is also used in these analysis. Sample particle trajectories are obtained and discussed. Experimental data for transport and deposition of fibrous particles in the aerosol wind tunnel was obtained. The measured deposition velocity is compared with the empirical correlation and the available data and discussed. Particle resuspension process in turbulent flows are studied. The model is compared with the experimental data. It is shown that when the effects of the near wall flow structure, as well as the surface roughness are included the model agrees with the available experimental data.

Goodarz Ahmadi

1998-12-02T23:59:59.000Z

206

Spent Isopropanol Solution as Possible Liquid Fuel for Moving Bed Reactor in Chemical Looping Combustion  

Science Journals Connector (OSTI)

Spent Isopropanol Solution as Possible Liquid Fuel for Moving Bed Reactor in Chemical Looping Combustion ... The fuels, such as natural gas, coal, petroleum coke, and biomass combusted by CLC are frequently studied by various researchers(17, 26-31) and compared in the previous studies;(20, 33) however, only few studies on liquid fuel combustion are reported. ... Ishida, M.; Takeshita, K.; Susuki, K.; Ohba, T..Application of Fe2O3-Al2O3 composite particles as solid looping material of the chemical loop combustor Energy Fuels 2005, 19, 2514– 2518 ...

Ping-Chin Chiu; Young Ku; Hsuan-Chih Wu; Yu-Lin Kuo; Yao-Hsuan Tseng

2013-10-31T23:59:59.000Z

207

COMPUTATIONAL SIMULATION OF SCRAMJET COMBUSTORS - A COMPARISON BETWEEN QUASI-ONE DIMENSIONAL AND 2-D NUMERICAL SIMULATIONS  

E-Print Network [OSTI]

combustors. The combustor configurations at DLR and NASA's SCHOLAR Supersonic Combustor have been used as test cases for the 1-D and 2-D simulations. Comparisons between the published 3-D computational and experimental results and quasi-one-dimensional and 2...

Tourani, Chandraprakash Chandra

2011-01-26T23:59:59.000Z

208

Transportation Safeguards & Security Test Bed (TSSTB) | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Safeguards and Security Test Bed May 30, 2013 The Transportation Safeguards and Security Test Bed consists of a test-bed vehicle and a monitoringlaboratorytraining...

209

Staged fluidized bed  

DOE Patents [OSTI]

The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

Mallon, R.G.

1983-05-13T23:59:59.000Z

210

Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploring the Standard Model Exploring the Standard Model       You've heard a lot about the Standard Model and the pieces are hopefully beginning to fall into place. However, even a thorough understanding of the Standard Model is not the end of the story but the beginning. By exploring the structure and details of the Standard Model we encounter new questions. Why do the most fundamental particles have the particular masses we observe? Why aren't they all symmetric? How is the mass of a particle related to the masses of its constituents? Is there any other way of organizing the Standard Model? The activities in this project will elucidate but not answer our questions. The Standard Model tells us how particles behave but not necessarily why they do so. The conversation is only beginning. . . .

211

Circulating Fluidized Bed Combustion Boiler Project  

E-Print Network [OSTI]

or turndown so we delayed consideration of installation of a FBC boil r. CIRCULATING FBC In early 1980 we became aware of the work by the Ahlstrom Company of Helsinki, Finland in the development of the circulating FBC boiler design. The PYROFLOW... layer is a lightweight insulating refractory. In 1979, Ahlstrom started up a 45,000 pound per hour PYROFLOW unIt at Pihlava, Finland. In 1981, 200,000 pound per hour boiler was started up 1 Kauttua, Finland as le b se load steam supply for paper...

Farbstein, S. B.; Moreland, T.

1984-01-01T23:59:59.000Z

212

Project 261  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NOVEL CORROSION SENSOR FOR ADVANCED NOVEL CORROSION SENSOR FOR ADVANCED FOSSIL ENERGY POWER SYSTEMS Description The overall objective of this proposed project is to develop a new technology for on-line corrosion monitoring based on an innovative concept. The specific objectives and corresponding tasks are (1) develop the sensor and electronic measurement system; (2) evaluate and improve the system in a laboratory muffle furnace; and (3) evaluate and improve the system through tests conducted in a pilot-scale coal combustor (~1 MW). Fireside corrosion refers to the metal loss caused by chemical reactions on surfaces exposed to the combustion environment. Such corrosion is the leading mechanism for boiler tube failures and is a serious concern for current and future energy plants due to the introduction of technologies targeting emissions

213

High pressure test results of a catalytically assisted ceramic combustor for a gas turbine  

SciTech Connect (OSTI)

A catalytically assisted ceramic combustor for a gas turbine was designed to achieve low NOx emission under 5 ppm at a combustor outlet temperature over 1300 C. This combustor is composed of a burner system and a ceramic liner behind the burner system. The burner system consist of 6 catalytic combustor segments and 6 premixing nozzles, which are arranged in parallel and alternately. The ceramic liner is made up of the layer of outer metal wall, ceramic fiber, and inner ceramic tiles. Fuel flow rates for the catalysts and the premixing nozzles are controlled independently. Catalytic combustion temperature is controlled under 1000 C, premixed gas is injected from the premixing nozzles to the catalytic combustion gas and lean premixed combustion over 1300 C is carried out in the ceramic liner. This system was designed to avoid catalytic deactivation at high temperature and thermal and mechanical shock fracture of the honeycomb monolith of catalyst. A combustor for a 10 MW class, multican type gas turbine was tested under high pressure conditions using LNG fuel. Measurements of emission, temperature, etc. were made to evaluate combustor performance under various combustion temperatures and pressures. This paper presents the design features and the test results of this combustor.

Ozawa, Y.; Tochihara, Y.; Mori, N.; Yuri, I. [Central Research Inst. of Electric Power Industry, Yokosuka, Kanagawa (Japan); Kanazawa, T.; Sagimori, K. [Kansai Electric Power Co., Inc., Amagasaki, Hyogo (Japan)

1999-07-01T23:59:59.000Z

214

THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL FIRED PROCESSES  

SciTech Connect (OSTI)

Pressurized fluidization is a promising new technology for the clean and efficient combustion of coal. Its principle is to operate a coal combustor at high inlet gas velocity to increase the flow of reactants, at an elevated pressure to raise the overall efficiency of the process. Unfortunately, commercialization of large pressurized fluidized beds is inhibited by uncertainties in scaling up units from the current pilot plant levels. In this context, our objective is to conduct a study of the fluid dynamics and solid capture of a large pressurized coal-fired unit. The idea is to employ dimensional similitude to simulate in a cold laboratory model the flow in a Pressurized Circulating Fluid Bed ''Pyrolyzer,'' which is part of a High Performance Power System (HIPPS) developed by Foster Wheeler Development Corporation (FWDC) under the DOE's Combustion 2000 program.

Leon Glicksman; Hesham Younis; Richard Hing-Fung Tan; Michel Louge; Elizabeth Griffith; Vincent Bricout

1998-04-30T23:59:59.000Z

215

Fluidized bed combustion of a high-sulphur eastern Canadian coal  

SciTech Connect (OSTI)

A high-sulphur bituminous coal from Nova Scotia has been tested in a pilot scale FBC (Fluidized Bed Combustor) and an industrial FBC boiler. A comprehensive pilot plant program involved 28 tests at a nominal bed temperature of 850/sup 0/C (1560/sup 0/F) and fluidizing velocities of 1.2, 2.1 and 3 m/s (4,7 and 10 ft/sec) with and without fly ash recycle. Two different sizes of limestone were used for sulphur sorption. The industrial boiler trials involved two tests at 65% and 100% MCR (Maximum Continuous Rating). Pilot scaling results indicate that high combustion efficiencies are achievable. Sulphur capture of over 80% (meeting the SO/sub 2/ emission standard of 705 ng/J or 1.64 lbs/MBTU input) is possible with a Ca/S molar ratio <3 with fly ash recycle.

Desai, D.L.; Anthony, E.J.; Friedrich, F.D.; Razbin, V.V.

1986-01-01T23:59:59.000Z

216

Fluidized Bed Fuel Cell Electrodes  

Science Journals Connector (OSTI)

... smoothed the electrolyte flow through the bed. The mesh acted as bed support and electrical contactor to the beads. In the case of the hydrogen peroxide electrode the nickel mesh ... at the top 'of the bed for the hydrogen peroxide electrode and close to the contactor for the methanol electrode. In both cases polarization measurements were carried out at 20 ...

T. BERENT; I. FELLS; R. MASON

1969-09-06T23:59:59.000Z

217

SRS Tank 48H Waste Treatment Project Technology Readiness Assessment...  

Office of Environmental Management (EM)

Project More Documents & Publications Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) Technology Maturation...

218

DOE/EIA-0304 Survey of Large Combustors:  

U.S. Energy Information Administration (EIA) Indexed Site

304 304 Survey of Large Combustors: Report on Alternative- Fuel Burning Capabilities of Large Boilers in 1979 U.S. Department of Energy Energy information Administration Office of Energy Markets and End Use Energy End Use Division Introduction During recent years, total annual industrial energy consumption in the United States has been approximated at 25 to 26 quadrillion British thermal units (Btu).^- Manufacturin g is by far the largest components totaling 12.9 quadrillion Btu of purchased fuels and electricity for heat and power during 1979.2 QJ this amount, 10.5 quadrillion Btu was accounted for by purchased fuels alone (e.g., fuel oil, coal, natural gas, etc.). Other than fuel consumption by type and industrial classificati on, very little information existed on specific fuel consumption characterist

219

Control of air pollution emissions from municipal waste combustors  

SciTech Connect (OSTI)

The November 1990 Clear Air Act Amendments (CAAAs) directed EPA to establish municipal waste combustor (MWC) emissions limits for particulate matter, opacity, hydrogen chloride, sulfur dioxide, nitrogen oxides, carbon monoxide, dioxins, dibenzofurans, cadmium, lead, and mercury. Revised MWC air pollution regulations were subsequently proposed by EPA on September 20, 1994, and promulgated on December 19, 1995. The MWC emission limits were based on the application of maximum achievable control technology (MACT). This paper provides a brief overview of MWC technologies, a summary of EPA`s revised air pollution rules for MWCs, a review of current knowledge concerning formation and control of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, and a discussion of the behavior and control of mercury in MWC flue gases. 56 refs., 11 figs., 3 tabs.

Kolgroe, J.D. [Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Lab.; Licata, A. [Licata Energy and Environmental Consultants, Inc., Yonkers, NY (United States)

1996-09-01T23:59:59.000Z

220

Particle Receiver Integrated with Fludized Bed  

Broader source: Energy.gov [DOE]

This fact sheet describes a project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program to NREL which features a particle receiver with a fluidized bed. The research team is working to develop a technology that uses gas/solid, two-phase flow as a heat-transfer fluid and separated, stable, solid particles as a thermal energy storage medium. This project provides a pathway for CSP plants to increase their solar-to-electric conversion efficiency and reduce costs in the areas of solar collection from the solar field to the receiver, energy conversion systems, and thermal energy storage.

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

On mechanisms of formation of environmentally harmful compounds in homogeneous combustors  

Science Journals Connector (OSTI)

A kinetic model is developed for calculating the emission characteristics of homogeneous combustors using methane and synthesis gas (syngas) as a fuel. The model is ... OH in laminar flames and in the Bunsen burner

V. E. Kozlov; A. M. Starik; N. S. Titova…

2013-09-01T23:59:59.000Z

222

Hydrodynamic Model with Binary Particle Diameters to Predict Axial Voidage Profile in a CFB Combustor  

Science Journals Connector (OSTI)

A hydrodynamic model with binary particle diameters was developed to better predict axial voidage profile in a CFB combustor. In the model, the CFB is regarded as a superposition of two ... field data of voidage ...

J. J. Li; H. Zhang; H. R. Yang; Y. X. Wu…

2010-01-01T23:59:59.000Z

223

On-engine evaluation of emission characteristics of a variable geometry lean-premixed combustor  

SciTech Connect (OSTI)

The design and on-engine testing of a lean-premixed, low-NO{sub x} combustor for a simple-cycle, single-shaft, 250-kW gas turbine engine of a pressure ratio of eight are described. A variable-geometry system composed of butterfly air valves was used to control the combustor air split between combustion and dilution. Fuel was staged to a direct-injection pilot burner, and a lean-premixed main burner was fitted to the combustor liner. The NO{sub x} emissions with natural gas fueling were found to be less than 20 ppm (at 5% O{sub 2}) at and near full-load conditions with combustion efficiencies greater than 99.8%. Emissions data from early high-pressure rig tests of the combustor hardware are also presented.

Yamada, H.; Shimodaira, K.; Hayashi, S. [National Aerospace Lab., Tokyo (Japan). Thermofluid Dynamics Div.

1997-01-01T23:59:59.000Z

224

DUAL MODE SCRAMJET: A COMPUTATIONAL INVESTIGATION ON COMBUSTOR DESIGN AND OPERATION.  

E-Print Network [OSTI]

??Numerical analysis was performed on a Dual-Mode Scramjet isolator-combustor. Preliminary analysis was performed to form a baseline geometry. Another study validated the results of a… (more)

Milligan, Ryan Timothy

2009-01-01T23:59:59.000Z

225

Suppression of thermoacoustic instabilities in a swirl combustor through microjet air injection  

E-Print Network [OSTI]

Thermoacoustic or combustion instability, a positive feedback loop coupling heat release rate and acoustic oscillations in a combustor, is one of the greatest challenges currently facing the development of new gas turbine ...

LaBry, Zachary Alexander

2010-01-01T23:59:59.000Z

226

PSR-based microstructural modeling for turbulent combustion processes and pollutant formation in double swirler combustors  

Science Journals Connector (OSTI)

The present study numerically investigates the fuel-air mixing characteristics, flame structure, and pollutant emission inside a double-swirler combustor. A PSR (Perfectly Stirred Reactor) based microstructura...

Seong-Ku Kim; Sung-Mo Kang; Yong-Mo Kim; Jeong-Lak Sohn

2001-01-01T23:59:59.000Z

227

A feasibility study of oil shale fired pulse combustors with applications to oil shale retorting  

SciTech Connect (OSTI)

The results of the experimental investigation performed to determine the feasibility of using pulverized Colorado oil shale to fuel a bench scale pulse combustor reveal that oil shale cannot sustain pulsations when used alone as fuel. Trace amounts of propane mixed with the oil shale enabled the pulsations, however. Up to 80% of the organic material in the oil shale was consumed when it was mixed with propane in the combustor. Beyond the feasibility objectives, the operating conditions of the combustor fuel with propane and mixtures of oil shale and propane were characterized with respect to pulsation amplitude and frequency and the internal combustor wall temperature over fuel lean and fuel rich stoichiometries. Maximum pressure excursions of 12.5 kPa were experienced in the combustor. Pulsation frequencies ranged from 50 to nearly 80 Hz. Cycle resolved laser Doppler anemometry velocities were measured at the tail pipe exit plane. Injecting inert mineral matter (limestone) into the pulse combustor while using propane fuel had only a slight effect on the pulsation frequency for the feed rates tested.

Morris, G.J.; Johnson, E.K.; Zhang, G.Q.; Roach, R.A.

1992-07-01T23:59:59.000Z

228

Simulation of a High Efficiency Multi-bed Adsorption Heat Pump  

SciTech Connect (OSTI)

Attaining high energy efficiency with adsorption heat pumps is challenging due to thermodynamic losses that occur when the sorbent beds are thermally cycled without effective heat recuperation. The multi-bed concept described here effectively transfers heat from beds being cooled to beds being heated, which enables high efficiency in thermally driven heat pumps. A simplified lumped-parameter model and detailed finite element analysis are used to simulate the performance of an ammonia-carbon sorption compressor, which is used to project the overall heat pump coefficient of performance. The effects of bed geometry and number of beds on system performance are explored, and the majority of the performance benefit is obtained with four beds. Results indicate that a COP of 1.24 based on heat input is feasible at AHRI standard test conditions for residential HVAC equipment. When compared on a basis of primary energy input, performance equivalent to SEER 13 or 14 are theoretically attainable with this system.

TeGrotenhuis, Ward E.; Humble, Paul H.; Sweeney, J. B.

2012-05-01T23:59:59.000Z

229

Influence of solids hydrodynamics on local heat transfer from tube banks immersed in a gas fluidized bed  

SciTech Connect (OSTI)

Fluidized bed combustion (FBC) has generated considerable interest as an efficient low-cost and non-polluting means of burning a variety of fuels. Despite the research and developmental efforts focused on FBC for more than three decades, the current state-of-the-art remains at a distance from the point where the combustor/boiler performance can be predicted with confidence. The high heat transfer rates and small internal temperature gradients as perceived from efficient mixing have yet to be fully realized. This is due largely to the multiplicity of variables involved in a fluidized bed combustor and the complexity of its hydrodynamics. Many empirical correlations for predicting heat transfer between a gas fluidized bed and the immersed internals have been proposed. They are based mainly on gross experimental observations with minimal attention to the mechanism of heat transfer due, at least in part, to the lack of systematic data on solids motion. Much useful insight can be obtained from a simultaneous determination of the local heat transfer rates from immersed internal structures and the associated hydrodynamics of the solid particles. Accordingly, in this study, the local mean heat transfer coefficients of horizontal internals simulating tube banks were measured for several locations in the bed along with measurements of the mean solids velocity and density distributions for a range of superficial gas velocities. The experiments were conducted in a 184 mm (7.25 in.) ID air fluidized bed with a horizontal in-line internal rod bundle of 16 mm (0.625 in.) OD with pitch-to-diameter ratio of 4 over a wide range of gas velocities. The results showed that the local heat transfer rates depend strongly on the flow pattern of solids induced by the bubble motion. The data confirmed the expectation that particle convection plays a major role in the mechanisms of heat transfer from immersed internals. 15 refs., 12 figs., 2 tabs.

Moslemian, D.; Chen, M.M.; Chao, B.T.

1986-01-01T23:59:59.000Z

230

Microwave short-pulse bed-level detector. Annual report, January 1-December 31, 1981  

SciTech Connect (OSTI)

A short-pulse microwave system for measuring the bed-level within a fluidized-bed combustor, has been designed, built, and laboratory tested on static beds. The system is a short-pulse radar which operates in the frequency region of 6.75 to 10.95 GHz as a time-domain measurement system. Laboratory measurements of static bed-levels, for smooth and corrugated surfaces of metal plates and limestone sand, agree to an average of 2.0% of the actual heights. Additionally, the system was tested with a dielectric thermal protector, which did not compromise the accuracy of the measurements. Analytical models have been formulated to provide insight into the operation of the system on a wide range of simulated targets without the necessity of performing expensive and difficult laboratory experiments. Two formulations have been used to describe electromagnetic scattering by a rough surface as a function of frequency: the space harmonic model and the physical optics model. A reconstruction technique has been devised which uses the scattering models and the spectrum of the transmitted pulse to synthesize the reflected pulse. The data generated by the models compare well to previously published data and to experimental results.

Balanis, C.A.; Delauder, D.M.

1981-01-01T23:59:59.000Z

231

EFFECT OF COMBUSTOR INLET GEOMETRY ON ACOUSTIC SIGNATURE AND FLOW FIELD BEHAVIOUR OF THE LOW SWIRL INJECTOR  

E-Print Network [OSTI]

in this study is configured for NETL’s SimVal high pressureidentical to the combustor in NETL’s SimVal high-pressure

Therkelsen, Peter L.

2010-01-01T23:59:59.000Z

232

OPTIMIZATION OF FUEL-AIR MIXING FOR A SCRAMJET COMBUSTOR GEOMETRY USING CFD AND A GENETIC ALGORITHM .  

E-Print Network [OSTI]

??A new methodology for the optimization of fuel-air mixing in a scramjet combustor using integrated Genetic Algorithms and Computational Fluid Dynamics is presented. A typical… (more)

Ahuja, Vivek

2008-01-01T23:59:59.000Z

233

Fluidized bed boiler feed system  

DOE Patents [OSTI]

A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

Jones, Brian C. (Windsor, CT)

1981-01-01T23:59:59.000Z

234

Erosion of heat exchanger tubes in fluidized beds. Annual report, 1990  

SciTech Connect (OSTI)

This final report describes the activities of the 3-year project entitled ``Erosion of Heat Exchanger Tubes In Fluidized Beds.`` which was completed at the end of 1990. Project accomplishments include the collection of a substantial body of wear data In a 24in. {times} 24in. fluidized bed, comparative wear results In a 6in. {times} 6in. fluidized bed, the development of a dragometer and the collection of a comprehensive set of drag force data in the 24in. {times} 24in. bed, Fast Fourier Transform (FFT) analysis of bubble probe data to establish dominant bubble frequencies in the 24in. {times} 24in. bed, the use of a heat flux gauge for measurement of heat transfer coefficients in the 24in. {times} 24in. bed and the modeling of the tube wear in the 24in. {times} 24in. bed. Analysis of the wear data from the 24in. square bed indicates that tube wear increases with increase in superficial velocity, and with increase in tube height. The latter effect is a result of the tubes higher up in the bed seeing greater movement of dense phase than tubes lower down In the bed. In addition, tube wear was found to decrease with increase in particle size, for constant superficial velocity. Three models of tube wear were formulated and provided acceptable prediction of wear when compared with the experimental data.

Johnson, E.K.; Flemmer, R.L.C.

1991-01-01T23:59:59.000Z

235

Biparticle fluidized bed reactor  

DOE Patents [OSTI]

A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

Scott, C.D.; Marasco, J.A.

1995-04-25T23:59:59.000Z

236

Biparticle fluidized bed reactor  

DOE Patents [OSTI]

A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

Scott, C.D.; Marasco, J.A.

1996-02-27T23:59:59.000Z

237

Investigations of swirl flames in a gas turbine model combustor  

SciTech Connect (OSTI)

The thermochemical states of three swirling CH{sub 4}/air diffusion flames, stabilized in a gas turbine model combustor, were investigated using laser Raman scattering. The flames were operated at different thermal powers and air/fuel ratios and exhibited different flame behavior with respect to flame instabilities. They had previously been characterized with respect to their flame structures, velocity fields, and mean values of temperature, major species concentrations, and mixture fraction. The single-pulse multispecies measurements presented in this article revealed very rapid mixing of fuel and air, accompanied by strong effects of turbulence-chemistry interactions in the form of local flame extinction and ignition delay. Flame stabilization is accomplished mainly by hot and relatively fuel-rich combustion products, which are transported back to the flame root within an inner recirculation zone. The flames are not attached to the fuel nozzle, and are stabilized approximately 10 mm above the fuel nozzle, where fuel and air are partially premixed before ignition. The mixing and reaction progress in this area are discussed in detail. The flames are short (<50 mm), especially that exhibiting thermoacoustic oscillations, and reach a thermochemical state close to adiabatic equilibrium at the flame tip. The main goals of this article are to outline results that yield deeper insight into the combustion of gas turbine flames and to establish an experimental database for the validation of numerical models.

Meier, W.; Duan, X.R.; Weigand, P. [Institut fuer Verbrennungstechnik, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Pfaffenwaldring 38, D-70569 Stuttgart (Germany)

2006-01-01T23:59:59.000Z

238

Fuel burner and combustor assembly for a gas turbine engine  

DOE Patents [OSTI]

A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

Leto, Anthony (Franklin Lakes, NJ)

1983-01-01T23:59:59.000Z

239

Analysis/control of in-bed tube erosion phenomena in the fluidized bed combustion (FBC) system. Technical progress report No. 14, [January 1, 1996--March 31, 1996  

SciTech Connect (OSTI)

The material wastage tests were continued to analyze erosion phenomena under the simulated erosion conditions of in-bed tubes in fluidized bed combustors. AISI 1018 steel and three thermal sprayed coating specimens were tested at an elevated temperature (300{degrees}C) using nozzle type erosion tester. Bed ashes retrieved from the operating biomass-fired boiler were used for erodent particles at a particle loading of 375 g, at particle impact angle of 30{degrees}, at particle velocity 60 m/s for exposure periods of 4 hours. The specimens were water-cooled on the backside. The material wastage of specimens was determined by thickness measurements. Test results can be seen that the cooled specimen had greater material wastage than that of the uncooled specimens. In addition, all of thermal-sprayed coating specimens for both cooled and uncooled specimens could reduce the erosion wastage rates as compared with 1018 steel. Among the three thermal-sprayed coatings, a DS-105 specimen of high velocity oxygen fuel spraying exhibited the lowest erosion wastage rate. When tested a higher particle velocity (60 m/s), but at the same elevated temperature (300{degrees}C), the material wastage rate of all three coatings was about 6 to 18 times higher than that of the material wastage at a low particle velocity (2.5 m/s).

Lee, Seong W.

1996-04-01T23:59:59.000Z

240

Characterization of Combustion and Emission of Several Kinds of Herbaceous Biomass Pellets in a Circulating Fluidized Bed Combustor  

Science Journals Connector (OSTI)

Characterizations of combustion and emission of four kinds of herbaceous biomass pellets were investigated in a 0.15 ... and king grass, which are typical herbaceous biomass in China, were chosen for this study ....

S. Y. Li; H. P. Teng; W. H. Jiao…

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Determining average bed temperature of nonisothermal fixed-bed hydrotreater  

Science Journals Connector (OSTI)

Employing three catalysts in three parallel pilot-scale fixed-bed reactors, hydrotreating experiments were performed in both isothermal and ascending temperature modes to investigate kinetics and to determine a representative bed temperature. Assuming 1.5th-order for hydrodesulfurization (HDS) and 1st-order for both hydrodenitrogenation (HDN) and mild hydrocracking (MHC), kinetic parameters were obtained from the isothermal mode operation. With the activation energies from isothermal operations, equivalent isothermal temperatures (EITs) in the ascending mode operations were established for specific HDS, HDN and MHC. Employing 19 thermocouple readouts in the catalyst beds and applying an Arrhenius-type rate equation containing the same activation energy, the representative bed temperature was determined. The temperature so determined is called kinetic EIT. The kinetic EIT was found to be the best to represent the nonisothermal bed temperature. The kinetic EIT has been applied to monitoring the catalyst activity in commercial hydrotreating units.

Sok Yui; John Adjaye

2004-01-01T23:59:59.000Z

242

Heat loss reduction and hydrocarbon combustion in ultra-micro combustors for ultra-micro gas turbines  

Science Journals Connector (OSTI)

For the development of ultra-micro combustors for Ultra-Micro Gas Turbines (UMGT), heat loss reduction and hydrocarbon fuel use are the key issues. An approach for reducing the effect of heat loss in ultra-micro combustors was proposed. The heat loss ratio (HLR), which was defined as the ratio of heat loss rate from a combustor to heat release rate in the combustor, was related to the space heating rate (SHR), and experiments using some flat-flame ultra-micro combustors with hydrogen/air premixture exhibited the relation of HLR ? SHR?0.92/? (?, characteristic length of combustor). From the viewpoint of heat loss reduction, burning at high SHR in compact ultra-micro combustors is essential for a practical UMGT combustor. As for hydrocarbon combustion, the flat-flame burning method with and without catalyst was applied to propane fuel. The flat-flame combustor, having an inner diameter of 18.5 mm, a height of 3.5 mm, and a volume of 0.806 cm3, could form a propane flame successfully in the chamber without a catalyst and achieved an extremely high SHR of 3370 MW/(MPa m3). Flame stable region was wide enough, and the combustion efficiency achieved was more than 99.4% between the equivalence ratios of 0.5 and 0.7 at m ? a = 0.06 g / s . The flat-flame combustor using a Pt-impregnated porous plate showed catalytic combustion, but did not improve the combustion characteristic. On the other hand, the flat-flame combustor using a nozzle whose surface was covered with Pt showed a combination of catalytic and gas-phase combustion with improved combustion efficiency for a wider range of equivalence ratios, due to CO oxidation in the burned gas after gas-phase combustion in the chamber.

Takashi Sakurai; Saburo Yuasa; Taku Honda; Shoko Shimotori

2009-01-01T23:59:59.000Z

243

Investigation of swirling flow mixing for application in an MHD pulverized coal combustor using isothermal modeling  

SciTech Connect (OSTI)

The purpose of this study was to investigate combustor reactant mixing with swirling oxidizer flow. The combustor configuration that was considered was designed to simulate a 4 lbm/sec mas flow pulverized coal combustor being tested in The University of Tennessee Space Institute MHD Facility. A one-fourth dimensionally scaled combustor model was developed for isothermal flow testing. A comparison was made of cold flow tests using 3 swirler designs with a base case oxidizer injector design of perforated plated which demonstrated acceptable performance in the 4 lbm/sec MHD combustor. The three swirlers that were evaluated were designed to allow a wide range of swirl intensity to be investigated. The design criterion of the swirler was the swirl number which has been related to swirler geometry. The results of the study showed that the swirlers that were tested fell short of the mixing characteristics displayed with the perforated plate base case oxidizer injector. Test data obtained with the cold flow model established that the actual swirl numbers of two of the swirlers were much lower than the design swirl numbers. Recirculation zones were defined for all configurations that were tested, and a comparison of velocity profiles was made for the configurations.

Power, W. H.

1980-05-01T23:59:59.000Z

244

Combustion of syngas in a pressurized microturbine-like combustor: Experimental results  

Science Journals Connector (OSTI)

The different routes for power production from biomass often lead to an intermediary product such as a synthesis gas or syngas, which is typically rich in hydrogen and carbon monoxide. The simple design, fuel flexibility and size, which often matches the amount of waste energy available in industrial sites, makes microturbines an attractive solution for on-site, decentralized power generation using a limited range of alternative fuels such as synthetic gas. The properties of the synthetic fuel differ from properties of natural gas and a detailed experimental study with a separated microturbine-like pressurized combustor is therefore necessary. The present article reviews the experimental results obtained by gradually switching the fuel feed from natural gas to wet syngas in a pressurized, slightly modified lean premix microturbine combustor. Temperature profiles, pressure, emissions and flame imaging were closely monitored to detect possible problems in operability of the combustor caused by the strong difference in fuel characteristics. No problems regarding auto-ignition, dynamic or static instability were observed throughout the test-run. Temperature profiles stayed well within allowable limits and did not reveal any significant shift in flame anchoring position. The combustion of syngas during full or part load of the combustor produced remarkably low \\{NOx\\} and CO emissions. The microturbine combustor achieved stable full load combustion of syngas at the end of the test-run.

Frank Delattin; Giovanni Di Lorenzo; Sergio Rizzo; Svend Bram; Jacques De Ruyck

2010-01-01T23:59:59.000Z

245

A new bed elevation dataset for Greenland  

E-Print Network [OSTI]

A new bed elevation dataset for Greenland J. L. Bamber 1 ,al. : A new bed elevation dataset for Greenland Howat, I. M.al. : A new bed elevation dataset for Greenland Fig. 3. (a)

2013-01-01T23:59:59.000Z

246

Combustion of palm kernel shell in a fluidized bed: Optimization of biomass particle size and operating conditions  

Science Journals Connector (OSTI)

Abstract This work presents a study on the combustion of palm kernel shell (PKS) in a conical fluidized-bed combustor (FBC) using alumina sand as the bed material to prevent bed agglomeration. Prior to combustion experiments, a thermogravimetric analysis was performed in nitrogen and dry air to investigate the effects of biomass particle size on thermal and combustion reactivity of PKS. During the combustion tests, the biomass with different mean particle sizes (1.5 mm, 4.5 mm, 7.5 mm, and 10.5 mm) was burned at a 45 kg/h feed rate, while excess air was varied from 20% to 80%. Temperature and gas concentrations (O2, CO, CxHy as CH4, and NO) were recorded along the axial direction in the reactor as well as at stack. The experimental results indicated that the biomass particle size and excess air had substantial effects on the behavior of gaseous pollutants (CO, CxHy, and NO) in different regions inside the reactor, as well as on combustion efficiency and emissions of the conical FBC. The CO and CxHy emissions can be effectively controlled by decreasing the feedstock particle size and/or increasing excess air, whereas the NO emission can be mitigated using coarser biomass particles and/or lower excess air. A cost-based approach was applied to determine the optimal values of biomass particle size and excess air, ensuring minimum emission costs of burning the biomass in the proposed combustor. From the optimization analysis, the best combustion and emission performance of the conical FBC is achievable when burning PKS with a mean particle size of about 5 mm at excess air of 40–50%. Under these conditions, the combustor can be operated with high (99.4–99.7%) combustion efficiency, while controlling the gaseous emissions at acceptable levels. No evidence of bed agglomeration was found in this conical FBC using alumina as the bed material for the entire time period of experimental tests.

Pichet Ninduangdee; Vladimir I. Kuprianov

2014-01-01T23:59:59.000Z

247

On Flame-Wall Thermal-Coupling in Micro Combustors Yong Fan, Yuji Suzuki, and Nobuhide Kasagi  

E-Print Network [OSTI]

as a periodic process of ignition at the exit and quenching by heat loss to the wall. Hydrocarbon-fueled micro-roll' combustor which establish combustion with heat recirculation (Maruta et al., 2004). On the other hand, gas-phase combustion becomes problematic in micro combustors with a characteristic length comparable

Kasagi, Nobuhide

248

Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications  

SciTech Connect (OSTI)

Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

Eteman, Shahrokh

2013-06-30T23:59:59.000Z

249

Magnetohydrodynamic projects at the CDIF  

SciTech Connect (OSTI)

This quarterly technical progress report presents the tasks accomplished at the Component Development and Integration Facility during the second quarter of FY91. Areas of technical progress this quarter included: coal system development; seed system development; test train/A-Bay modifications; channel power dissipation and distribution system development; oxygen system storage upgrade; iron-core magnet thermal protection system checkout; TRW slag rejector/CDIF slag removal project; Data Acquisition System; stack gas/environmental compliance upgrade; coal-fired combustor support; 1A channels fabrication and assembly; support of Mississippi State University diagnostic testing; test operations and results; data analysis and modeling; technical papers; and projected activities. 2 figs., 2 tabs.

Not Available

1991-01-01T23:59:59.000Z

250

The development of an integrated multistaged fluid-bed retorting process. Final report, September 1990--August 1994  

SciTech Connect (OSTI)

This summarizes the development of the KENTORT II retorting process, which includes integral fluidized bed zones for pyrolysis, gasification, and combustion of oil shale. Purpose was to design and test the process at the 50-lb/hr scale. The program included bench- scale studies of coking and cracking reactions of shale oil vapors over processed shale particles to address issues of scaleup associated with solid-recycle retorting. The bench-scale studies showed that higher amounts of carbon coverage reduce the rate of subsequent carbon deposition by shale oil vapors onto processed shale particles; however carbon-covered materials were also active in terms of cracking and coking. Main focus was the 50-lb/hr KENTORT II PDU. Cold-flow modeling and shakedown were done before the PDU was made ready for operation. Seven mass-balanced, steady-state runs were completed within the window of design operating conditions. Goals were achieved: shale feedrate, run duration (10 hr), shale recirculation rates (4:1 to pyrolyzer and 10:1 to combustor), bed temperatures (pyrolyzer 530{degree}C, gasifier 750{degree}C, combustor 830{degree}C), and general operating stability. Highest oil yields (up to 109% of Fischer assay) were achieved for runs lasting {ge} 10 hours. High C content of the solids used for heat transfer to the pyrolysis zone contributed to the enhanced oil yield achieved.

Carter, S.D.; Taulbee, D.N.; Stehn, J.L.; Vego, A.; Robl, T.L.

1995-02-01T23:59:59.000Z

251

Improved Combustion of Asphaltite Coals in a Rotating Head Combustor with Various Air Supply Arrangements  

Science Journals Connector (OSTI)

A small amount of ash is drifted via combustion gas in fine particles while great deal of it flow into the ash pit in the form of clinker from the open side of combustion head. ... In this study, it was shown that the swelling coals that were difficult to burn in conventional stokers could be burned using a rotating head combustor in high efficiencies without any ash problem. ... In this work, a rotating head combustor, which has been designed for burning the coking coals effectively, was deployed to burn a range of coals available in Turkey under agitation conditions with secondary air delivery. ...

Cengiz Öner; ?ehmus Altun

2014-04-16T23:59:59.000Z

252

Combustion of textile residues in a packed bed  

SciTech Connect (OSTI)

Textile is one of the main components in the municipal waste which is to be diverted from landfill for material and energy recovery. As an initial investigation for energy recovery from textile residues, the combustion of cotton fabrics with a minor fraction of polyester was investigated in a packed bed combustor for air flow rates ranging from 117 to 1638 kg/m{sup 2} h (0.027-0.371 m/s). Tests were also carried out in order to evaluate the co-combustion of textile residues with two segregated waste materials: waste wood and cardboard. Textile residues showed different combustion characteristics when compared to typical waste materials at low air flow rates below 819 kg/m{sup 2} h (0.186 m/s). The ignition front propagated fast along the air channels randomly formed between packed textile particles while leaving a large amount of unignited material above. This resulted in irregular behaviour of the temperature profile, ignition rate and the percentage of weight loss in the ignition propagation stage. A slow smouldering burn-out stage followed the ignition propagation stage. At air flow rates of 1200-1600 kg/m{sup 2} h (0.272-0.363 m/s), the bed had a maximum burning rate of about 240 kg/m{sup 2} h consuming most of the combustibles in the ignition propagation stage. More uniform combustion with an increased burning rate was achieved when textile residues were co-burned with cardboard that had a similar bulk density. (author)

Ryu, Changkook; Phan, Anh N.; Sharifi, Vida N.; Swithenbank, Jim [Sheffield University Waste Incineration Centre (SUWIC), Department of Chemical and Process Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

2007-08-15T23:59:59.000Z

253

Investigations of swirl flames in a gas turbine model combustor  

SciTech Connect (OSTI)

A gas turbine model combustor for swirling CH{sub 4}/air diffusion flames at atmospheric pressure with good optical access for detailed laser measurements is discussed. Three flames with thermal powers between 7.6 and 34.9 kW and overall equivalence ratios between 0.55 and 0.75 were investigated. These behave differently with respect to combustion instabilities: Flame A burned stably, flame B exhibited pronounced thermoacoustic oscillations, and flame C, operated near the lean extinction limit, was subject to sudden liftoff with partial extinction and reanchoring. One aim of the studies was a detailed experimental characterization of flame behavior to better understand the underlying physical and chemical processes leading to instabilities. The second goal of the work was the establishment of a comprehensive database that can be used for validation and improvement of numerical combustion models. The flow field was measured by laser Doppler velocimetry, the flame structures were visualized by planar laser-induced fluorescence (PLIF) of OH and CH radicals, and the major species concentrations, temperature, and mixture fraction were determined by laser Raman scattering. The flow fields of the three flames were quite similar, with high velocities in the region of the injected gases, a pronounced inner recirculation zone, and an outer recirculation zone with low velocities. The flames were not attached to the fuel nozzle and thus were partially premixed before ignition. The near field of the flames was characterized by fast mixing and considerable finite-rate chemistry effects. CH PLIF images revealed that the reaction zones were thin (=<0.5 mm) and strongly corrugated and that the flame zones were short (h=<50 mm). Despite the similar flow fields of the three flames, the oscillating flame B was flatter and opened more widely than the others. In the current article, the flow field, structures, and mean and rms values of the temperature, mixture fraction, and species concentrations are discussed. Turbulence intensities, mixing, heat release, and reaction progress are addressed. In a second article, the turbulence-chemistry interactions in the three flames are treated.

Weigand, P.; Meier, W.; Duan, X.R.; Stricker, W.; Aigner, M. [Institut fuer Verbrennungstechnik, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Pfaffenwaldring 38, D-70569 Stuttgart (Germany)

2006-01-01T23:59:59.000Z

254

Twelfth annual fluidized bed conference  

SciTech Connect (OSTI)

The Proceedings of the Twelfth Annual Fluidized Bed Conference held November 11-13, 1996 in Pittsburgh, PA are presented. Information is given on: owner`s discussions; new aspects and field upgrades in fluidized bed boilers; manufacturer`s perspectives; fuel considerations; FBC ash reclassification; and beneficial uses of FBC ash. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

NONE

1996-12-31T23:59:59.000Z

255

Stream-bed scour, egg burial depths, and the influence of salmonid spawning on bed surface  

E-Print Network [OSTI]

Stream-bed scour, egg burial depths, and the influence of salmonid spawning on bed surface mobility-Hames, and Thomas P. Quinn Abstract: Bed scour, egg pocket depths, and alteration of stream-bed surfaces by spawning chum salmon (Onchorhynchus keta) were measured in two Pacific Northwest gravel-bedded streams. Close

Montgomery, David R.

256

Fluidized Bed Technology - An R&D Success Story | Department...  

Broader source: Energy.gov (indexed) [DOE]

2002 Powerplant Award to the Northside facility. Following start-up of the JEA CFB combustor, four demonstration tests were completed as part of the Department of...

257

Large-eddy simulation of swirling particle-laden flows in a coaxial-jet combustor  

E-Print Network [OSTI]

combustion engines, liquid and solid propellant rocket motors, gas-turbine aircraft engines, International. In gas turbine combustors, for example, the liquid fuel jet undergoes primary and secondary atomization on structured grids and do not lend themselves applicable to the complex geometries of engineering gas-turbine

Apte, Sourabh V.

258

==================== !"#$%&'()*+,-+./,0)12 Development of Micro Ejector for Butane Catalytic Combustor  

E-Print Network [OSTI]

combustion of the fuel then takes place in the ceramic chamber, and heat generated is used in various micro Combustor, Convergent-divergent Nozzle, Ejector, Back pressure. Fig. 1 Configuration of micro heat generation system. 1. Introduction In order to produce portable power generating devices from hydrocarbon

Kasagi, Nobuhide

259

Assessment of combustion noise in a premixed swirled combustor via Large-Eddy Simulation  

E-Print Network [OSTI]

Ā­5] as well as to more complex cases such as gas turbine combustors [6]. Computational techniques must be large enough to include the sources of noise as well as part of the acoustic near field [7 Acoustic analogy Direct computation Hybrid computation a b s t r a c t Today, much of the current effort

Nicoud, Franck

260

Assessment of combustion noise in a premixed swirled combustor via Large-eddy simulation  

E-Print Network [OSTI]

, 4, 5] as well as to more complex cases such as gas turbine combustors. [6] Corresponding author. Ph methods such as LES or DNS can directly provide the acoustic field radiated by noise sources. The sources are still calculated by DNS or LES codes whereas the radiated sound is evaluated by acoustic codes

Boyer, Edmond

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Thermionic combustor application to combined gas and steam turbine power plants  

SciTech Connect (OSTI)

The engineering and economic feasibility of a thermionic converter topped combustor for a gas turbine is evaluated in this paper. A combined gas and steam turbine system was chosen for this study with nominal outputs of the gas and steam turbines of 70 MW and 30 MW, respectively. 7 refs.

Miskolczy, G.; Wang, C.C.; Lieb, D.P.; Margulies, A.E.; Fusegni, L.J.; Lovell, B.J.

1981-01-01T23:59:59.000Z

262

High pressure test results of a catalytic combustor for gas turbine  

SciTech Connect (OSTI)

Recently, the use of gas turbine systems, such as combined cycle and cogeneration systems, has gradually increased in the world. But even when a clean fuel such as LNG (liquefied natural gas) is used, thermal NO{sub x} is generated in the high temperature gas turbine combustion process. The NO{sub x} emission from gas turbines is controlled through selective catalytic reduction processes (SCR) in the Japanese electric industry. If catalytic combustion could be applied to the combustor of the gas turbine, it is expected to lower NO{sub x} emission more economically. Under such high temperature and high pressure conditions, as in the gas turbine, however, the durability of the catalyst is still insufficient. So it prevents the realization of a high temperature catalytic combustor. To overcome this difficulty, a catalytic combustor combined with premixed combustion for a 1,300 C class gas turbine was developed. In this method, catalyst temperature is kept below 1,000 C, and a lean premixed gas is injected into the catalytic combustion gas. As a result, the load on the catalyst is reduced and it is possible to prevent the catalyst deactivation. After a preliminary atmospheric test, the design of the combustion was modified and a high pressure combustion test was conducted. As a result, it was confirmed that NO{sub x} emission was below 10 ppm (at 16 percent O{sub 2}) at a combustor outlet gas temperature of 1,300 C and that the combustion efficiency was almost 100%. This paper presents the design features and test results of the combustor.

Fujii, T.; Ozawa, Y.; Kikumoto, S.; Sato, M. [Central Research Inst. of Electric Power Industry, Yokosuka, Kanagawa (Japan); Yuasa, Y.; Inoue, H. [Kansai Electric Power Co., Inc., Amagasaki, Hyogo (Japan)

1998-07-01T23:59:59.000Z

263

Utilization of ash from fluidized bed boilers  

SciTech Connect (OSTI)

Combustion ash from a fluidized bed combustion (FBC) boiler contains not only carbon, but also silica alumina, quicklime as a sorbent, and a calcium sulfate by-product. These substances react chemically during fluidized bed combustion, and with the addition of water, they start an ettringite reaction and solidify. We determined the conditions necessary for producing hard solids through the study of the composition, curing methods, and characteristics of the solidified ash. We then used two types of road base material, crushed stone and solidified ash from an FBC boiler, to construct a test road at a site with a great deal of heavy traffic. Construction began in 1985, and since then, periodic tests have been performed to evaluate the performance of the road base materials. The testing of the manufacturing techniques centered on the amount and manner that water was added to the mixture and the curing methods of the mixture. Additional testing focused on the handling of the ash powder, the mixtures, and the solidified ash. Since 1991, under the sponsorship of MITI, the Center for Coal Utilization, in conjunction with Naruto Salt Mfg., Ltd., Nippon Hodo Co., Ltd., and Kawasaki Heavy Industries, Ltd., has used the referenced results to undertake a joint research and development project aimed at the eventual practical application of the technology. In 1993, a pilot facility to solidify ash with the fluidized bed boiler of 75 t/h capacity was completed. At present, all the discharged ash from the pilot facility is being solidified, and experiments on solidification and road base application techniques are underway. Actual road base tests are also in progress, and we are continuing research to meet the national certification requirements for road base materials.

Takada, Tomoaki [Kawasaki Heavy Industries Co., Ltd., Akashi (Japan)

1994-12-31T23:59:59.000Z

264

MHD Integrated Topping Cycle Project  

SciTech Connect (OSTI)

This eighteenth quarterly technical progress report of the MHD Integrated Topping cycle Project presents the accomplishments during the period November 1, 1991 to January 31, 1992. The precombustor is fully assembled. Manufacturing of all slagging stage components has been completed. All cooling panels were welded in place and the panel/shell gap was filled with RTV. Final combustor assembly is in progress. The low pressure cooling subsystem (LPCS) was delivered to the CDIF. Second stage brazing issues were resolved. The construction of the two anode power cabinets was completed.

Not Available

1992-07-01T23:59:59.000Z

265

Initiation mechanisms of low-loss swept-ramp obstacles for deflagration to detonation transition in pulse detonation combustors .  

E-Print Network [OSTI]

??In order to enhance the performance of pulse detonation combustors (PDCs), an efficient deflagration-to-detonation transition (DDT) process is critical to maintain the thermodynamic benefits of… (more)

Myers, Charles B.

2009-01-01T23:59:59.000Z

266

Thermal performance of a scramjet combustor operating at Mach 5.6 flight conditions. Final report, May 1996--May 1997  

SciTech Connect (OSTI)

This report describes the experimental data and the procedures used in acquiring and reducing the thermal loads data during tests of a hydrocarbon-fueled scramjet combustor at United Technologies Research Center (UTRC). This research effort is part of the UTRC effort to develop dual-mode scramjet combustor technology to support the development of Mach S missile technology. The objective of the thermal loads testing was to map the thermal and mechanical loads, including heat transfer, dynamic and static pressures, and skin friction in a scramjet combustor during direct-connect scramjet tests. The tests were conducted at the UTRC Ramject/Scramjet direct-connect combustor test facility in East Hartford, CT.

Stouffer, S.D.; Neumann, R.D.; Emmer, D.S.

1997-10-01T23:59:59.000Z

267

Low NO/sub x/ heavy fuel combustor concept program. Final report, 23 Oct 1979 - Jul 1981  

SciTech Connect (OSTI)

A gas turbine technology program to improve and optimize the staged rich lean low NOx combustor concept is described. Subscale combustor tests to develop the design information for optimization of the fuel preparation, rich burn, quick air quench, and lean burn steps of the combustion process were run. The program provides information for the design of high pressure full scale gas turbine combustors capable of providing environmentally clean combustion of minimally of minimally porcessed and synthetic fuels. It is concluded that liquid fuel atomization and mixing, rich zone stoichiometry, rich zone liner cooling, rich zone residence time, and quench zone stoichiometry are important considerations in the design and scale up of the rich lean combustor.

Russell, P.; Beal, G.; Hinton, B.

1981-10-01T23:59:59.000Z

268

CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT  

SciTech Connect (OSTI)

Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Power’s Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: • scale up of gas to solid heat transfer • high temperature finned surface design • the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas-to-solids heat transfer. A stress test rig was built and tested to provide validation data for a stress model needed to support high temperature finned surface design. Additional cold flow model tests and MTF tests were conducted to address mechanical and process design issues. This information was then used to design and cost a commercial CMB design concept. Finally, the MBHE was reconfigured into a slice arrangement and tested for an extended duration at a commercial CFB plant.

Jukkola, Glen

2010-06-30T23:59:59.000Z

269

Development of a coal fired pulse combustor for residential space heating. Technical progress report, July--September 1987  

SciTech Connect (OSTI)

The systematic development of the residential combustion system is divided into three phases. Only Phase I is detailed here. Phase I constitutes the design, fabrication, testing, and evaluation of a pulse combustor sized for residential space heating. Phase II is an optional phase to develop an integrated system including a heat exchanger. Phase III is projected as a field test of the integrated coal-fired residential space heater. The Phase I effort was nearing completion during this reporting period and a final report is in preparation. The configuration testing was completed early in the period and based upon results of the configuration tests, an optimized configuration for the experimental development testing was chosen. The refractory-lined chambers were fabricated and tested from mid-September through early October. The tandem unit was operated on dry micromized coal without support gas or excitation air for periods lasting from one to three hours. Performance was stable and turndown ratios of 3:1 were achieved during the first three-hour test. A early commercial residential heating system configuration has been identified on the basis of the development testing conducted throughout the first phase of this effort. The development effort indicates that the residential unit goals are achievable with some additional product improvement effort to increase carbon burn-out efficiency, reduce CO emissions and develop a reliable and compact dry, ultrafine coal feed system (not included in the present effort).

NONE

1987-12-31T23:59:59.000Z

270

Advanced atomization concept for CWF burning in small combustors. Phase 2, Quarterly technical progress report No. 3, 1 April 1991--30 June 1991  

SciTech Connect (OSTI)

The present project involves the second phase of research on a new concept in coal-water fuel (CWF) atomization that is applicable to burning in small combustors. It is intended to address the most important problem associated with CWF combustion; i.e., production of small spray droplets in an efficient manner by an atomization device. Phase 1 of this work was successfully completed with the development of an opposed-jet atomizer that met the goals of the first contract. Performance as a function of operating conditions was measured, and the technical feasibility of the device established in the Atlantic Research Atomization Test Facility employing a Malvern Particle Size Analyzer. Testing then proceeded to a combustion stage in a test furnace at a firing rate of 0.5 to 1.5 MMBtu/H.

Heaton, H.; McHale, E.

1991-12-31T23:59:59.000Z

271

A feasibility study of oil shale fired pulse combustors with applications to oil shale retorting. Final report  

SciTech Connect (OSTI)

The results of the experimental investigation performed to determine the feasibility of using pulverized Colorado oil shale to fuel a bench scale pulse combustor reveal that oil shale cannot sustain pulsations when used alone as fuel. Trace amounts of propane mixed with the oil shale enabled the pulsations, however. Up to 80% of the organic material in the oil shale was consumed when it was mixed with propane in the combustor. Beyond the feasibility objectives, the operating conditions of the combustor fuel with propane and mixtures of oil shale and propane were characterized with respect to pulsation amplitude and frequency and the internal combustor wall temperature over fuel lean and fuel rich stoichiometries. Maximum pressure excursions of 12.5 kPa were experienced in the combustor. Pulsation frequencies ranged from 50 to nearly 80 Hz. Cycle resolved laser Doppler anemometry velocities were measured at the tail pipe exit plane. Injecting inert mineral matter (limestone) into the pulse combustor while using propane fuel had only a slight effect on the pulsation frequency for the feed rates tested.

Morris, G.J.; Johnson, E.K.; Zhang, G.Q.; Roach, R.A.

1992-07-01T23:59:59.000Z

272

Mercury emissions from municipal solid waste combustors. An assessment of the current situation in the United States and forecast of future emissions  

SciTech Connect (OSTI)

This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

none,

1993-05-01T23:59:59.000Z

273

U.S. DOE/OE National SCADA Test Bed Supports | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

U.S. DOE/OE National SCADA Test Bed Supports U.S. DOE/OE National SCADA Test Bed Supports U.S. DOE/OE National SCADA Test Bed Supports To help advance the U.S. Department of Energy (DOE) National SCADA Test Bed's (NSTB) efforts to enhance control system security in the energy sector, DOE's Office of Electricity Delivery and Energy Reliability (OE) recently awarded a total of nearly $8 million to fund five industry-led projects: Hallmark Project. (PDF 789 KB) Will commercialize the Secure SCADA Communications Protocol (SSCP), which marks SCADA messages with a unique identifier that must be authenticated before the function is carried out, ensuring message integrity. (Lead: Schweitzer Engineering Laboratories; Partners: Pacific Northwest National Laboratories, CenterPoint Energy) Detection and Analysis of Threats to the Energy Sector (DATES) (PDF

274

Bed management in a Critical Care Unit  

Science Journals Connector (OSTI)

......can also be approach using a stochastic...150 BED MANAGEMENT IN A CRITICAL...of Decision Sciences and Information Management, Catholic University...bed-occupancy management and planning...Improving the Sipp approach for staffing......

J. D. Griffiths; V. Knight; I. Komenda

2013-04-01T23:59:59.000Z

275

Eleventh annual fluidized bed conference  

SciTech Connect (OSTI)

The Proceedings of the Eleventh Annual Fluidized Bed Conference are presented. The Conference was held November 14-15, 1995 in Allentown, Pennsylvania and discussed the following topics: third and fourth generation systems; fuel considerations; and FBC energy and environmntal regulatory issues. A separate abstract was entered into the Energy Science and Technology Database for each of the 19 papers presented at the conference.

NONE

1995-12-31T23:59:59.000Z

276

OXY-fuel Combustion at the CANMET Vertical Combustor Research Faciltiy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OXY-FUEL COMBUSTION OXY-FUEL COMBUSTION At the CANMET Vertical Combustor Research Facility M.A.Douglas 1 ( madougla@nrcan.gc.ca ; +001-613-996-2761) E. Chui ( echui@nrcan.gc.ca ; +001-613-943-1774) Y. Tan ( ytan@nrcan.gc.ca ; +001-613-992- 8150) G. K. Lee 2 ( gklee@magma.ca ; +001-613-829-3845) E. Croiset 3 ( ecroiset@uwaterloo.ca ; +001-519-888-4567-ext 6472) K. V. Thambimuthu 4 ( kelly.thambimuthu@nrcan.gc.ca ) CANMET Energy Technology Centre, Natural Resources Canada, 1 Haanel Dr., Ottawa, Ontario, Canada, K1A 1M1 ABSTRACT The CANMET Energy Technology Center is a division of Natural Resources Canada and undertakes primary research and technology development activities for the benefit of Canadians and a wide range of external clients. The Vertical Combustor Research Facility (VCRF) was built in 1994 and is CANMET's

277

Computational analysis of incompressible turbulent flow in an idealised swirl combustor  

Science Journals Connector (OSTI)

Isothermal turbulent swirling flow in a water test rig, representing an idealised swirl combustor, has been investigated experimentally and numerically. The Reynolds number based on combustor inlet diameter and mean axial velocity was 4600. Two cases were investigated at two different swirl intensities. Time-averaged velocities and RMS turbulence intensities were measured by Laser Doppler Anemometer (LDA), along radial traverses at different axial stations. In the three-dimensional, transient computations, Large Eddy Simulations (LES) and URANS Reynolds Stress Models (RSM) have basically been employed as modelling strategies for turbulence. To model subgrid-scale (SGS) turbulence for LES, the models owing to Smagorinsky and Voke were used. In one of the cases, Detached Eddy Simulations (DES) were also applied. The predictions have been compared with the measurements. It has been observed that LES provides the best overall accuracy, where no significant differences between the Smagorinsky and Voke models could be discerned.

A.C. Benim; M.P. Escudier; A. Nahavandi; A.K. Nickson; K.J. Syed; F. Joos

2011-01-01T23:59:59.000Z

278

Enhanced air/fuel mixing for automotive Stirling engine turbulator-type combustors  

SciTech Connect (OSTI)

This patent describes a combustor for use in a Stirling engine and the like. It comprises: a combustor chamber; a fuel inlet couple to the chamber to inject fuel therein; a turbulator means disposed in the chambers downstream of the fuel inlet means for injecting combustion air into the chamber, the turbulator means being so positioned to cause a mixing of the combustion air and fuel injected in the chamber; diverter means for dividing the combustion air and creating a primary mixing zone downstream fa the primary mixing zone; and wherein the primary mixing zone comprises a fuel rich zone where combustion initiates and the secondary mixing zone has sufficient combustion air to complete combustion of the fuel.

Riecke, G.T.; Stotts, R.E.

1992-02-25T23:59:59.000Z

279

Coal-derived syngas MILD combustion in parallel jet forward flow combustor  

Science Journals Connector (OSTI)

Abstract The effect of air-fuel momentum flux ratio on MILD (Moderate or Intense Low-oxygen Dilution) combustion of coal-derived syngas was examined in parallel jet forward flow combustor. The results were presented on flow field using non-reactive numerical simulations and on OH? radicals distribution and exhaust emissions using experiments. The predicted gas recirculation ratios in the combustor are high enough to establish the reaction condition of MILD scheme. Lower air-fuel momentum flux ratio associated with higher heat load benefits the drop of peak flame temperature and the increase of reaction zone volume. The critical air-fuel momentum flux ratios below which MILD combustion occurred were identified for three MILD configurations. The MILD configuration equipped with larger air nozzles and smaller fuel nozzles was observed to achieve MILD combustion at leaner condition. The MILD regime was established for syngas fuel with lean operational limit and ultra-low \\{NOx\\} and CO emissions.

Mingming Huang; Zhedian Zhang; Weiwei Shao; Yan Xiong; Yan Liu; Fulin Lei; Yunhan Xiao

2014-01-01T23:59:59.000Z

280

Fluid-bed studies of olefin production from methanol  

SciTech Connect (OSTI)

With newly developed technology, conversion of methanol to hydrocarbons represents the final link in the production of premium transportation fuels from coal or natural gas. The methanol-to-gasoline (MTG) process has been developed. The more readily scaled fixed-bed version is the heart of the New Zealand Gas-to-gasoline complex, which will produce 14,000 BPD high octane gasoline from 120 million SCFD gas. The fluid-bed version of the process, which is also available for commercial license, has a higher thermal efficiency and possesses substantial yield and octane advantages over the fixed-bed. Successful scale-up was completed in 1984 in a 100 BPD semi-works plant near Cologne, West Germany. The project funded jointly by the U.S. and German governments and an industrial consortium comprised of Mobil; Union Rheinsche Braunkohlen Kraftstoff, AG; and Uhde, GmbH. The 100 BPD MTG project was extended recently to demonstrate a related fluid bed process for selective conversion of methanol to light olefins (MTO). The products of the MTO reaction make an excellent feed to the commercially available Mobile-Olefins-to-Gasoline-and-Distillate process (MOGD) which selectively converts olefins to premium transportation fuels . A schematic of the combined processes is shown. Total liquid fuels production is typically greater than 90 wt% of hydrocarbon in the feed. Distillate/gasoline product ratios from the plant can be adjusted over a wide range to meet seasonal demands. This paper describes the initial scale-up of the MTO process from a micro-fluid-bed reactor (1-10 grams of catalyst) to a large pilot unit (10-25 kilograms of catalyst).

Socha, R.F.; Chang, C.D.; Gould, R.M.; Kane, S.E.; Avidan, A.A.

1986-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Topping of a combined gas- and steam-turbine powerplant using a TAM combustor  

SciTech Connect (OSTI)

The objective of this program is to evaluate the engineering and economic feasibility of a thermionic array module (TAM) topped combustor for a gas turbine. A combined gas- and steam-turbine system was chosen for this study. The nominal output of the gas and steam turbines were 70 MW and 30 MW, respectively. The gas-turbine fuel was a coal-derived medium-Btu gas assumed to be from an oxygen blown Texaco coal-gasification process which produces pressurized gas with an approximate composition of 52% CO and 36% H/sub 2/. Thermionic converters are assumed to line the walls of the gas-turbine combustor, so that the high-temperature gases heat the thermionic converter emitter. The thermionic converters produce electricity while the rejected heat is used to preheat the combustion air. To maximize the production of power from the thermionic converter, the highest practical flame temperature is obtained by preheating the combustor air with the thermionic collectors and rich combustion. A portion of the air, which bypassed the combustor, is reintroduced to complete the combustion at a lower temperature and the mixed gases flow to the turbine. The exhaust gases from the turbine flow to the heat recovery boilers to the bottoming steam cycle. The gas and steam turbine system performance calculation was based on data from Brown Boveri Turbomachinery, Inc. The performance of the thermionic converters (TAM) for the reference case was based on actual measurements of converters fired with a natural gas flame. These converters have been operated in a test furnace for approximately 15,000 device hours.

Miskolczy, G.; Wang, C.C.; Lovell, B.T.; McCrank, J.

1981-03-01T23:59:59.000Z

282

Fluidization quality analyzer for fluidized beds  

DOE Patents [OSTI]

A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence. 9 figs.

Daw, C.S.; Hawk, J.A.

1995-07-25T23:59:59.000Z

283

Development of a coal fired pulse combustor for residential space heating. Phase I, Final report  

SciTech Connect (OSTI)

This report presents the results of the first phase of a program for the development of a coal-fired residential combustion system. This phase consisted of the design, fabrication, testing, and evaluation of an advanced pulse combustor sized for residential space heating requirements. The objective was to develop an advanced pulse coal combustor at the {approximately} 100,000 Btu/hr scale that can be integrated into a packaged space heating system for small residential applications. The strategy for the development effort included the scale down of the feasibility unit from 1-2 MMBtu/hr to 100,000 Btu/hr to establish a baseline for isolating the effect of scale-down and new chamber configurations separately. Initial focus at the residential scale was concentrated on methods of fuel injection and atomization in a bare metal unit. This was followed by incorporating changes to the advanced chamber designs and testing of refractory-lined units. Multi-fuel capability for firing oil or gas as a secondary fuel was also established. Upon completion of the configuration and component testing, an optimum configuration would be selected for integrated testing of the pulse combustor unit. The strategy also defined the use of Dry Ultrafine Coal (DUC) for Phases 1 and 2 of the development program with CWM firing to be a product improvement activity for a later phase of the program.

NONE

1988-04-01T23:59:59.000Z

284

Uniform retorting of an anisotropic shale bed  

SciTech Connect (OSTI)

In situ oil shale retorts have typically been designed for the fracturing event to produce a rubble bed having uniform cross-sectional rubble properties. This uniform rubble bed approach strived to produce constant void fraction and particle size distribution within all regions of the rubble bed. Ideally, these isotropic rubble beds have uniform flow of oxidants, retorting and combustion products. However, edge effects during the blast event typically produce channeling at the retort walls during processing, reducing the rubble sweep and the local yield. Second generation in situ retorts are addressing uniform retorting within the rubble bed rather than the uniformity of rubble bed properties. Here, the blast design produces and anisotropic rubble bed with varying particle size distribution and void fraction normal to the direction of flow. This paper describes a laboratory experiment in which a highly-instrumented, 100 kg bed of shale with zones of differing particle size and void was retorted. Shale particle size and void were varied over the retort cross-section so that a retorting front would move at a constant velocity downward through the rubble bed. The bed was designed using data from numerous pressure drop measurements on uniform shale beds of varying shale particle size distribution and void. Retorting of the bed showed a uniform retorting front and a yield comparable with that achieved in isotropic shale beds. We present thermal data and offgas, oil and shale analyses (allowing material and energy balance closures) and compare these data to previous vertical retorting experiments on uniform and non-uniform beds of shale. This experiment verifies that uniform retorting fronts can be achieved in correctly designed anisotropic beds of shale and validates the concept of uniform retorting in order increase the oil recovery in second generation retorts. 20 refs., 17 figs., 4 tabs.

Bickel, T.C.; Cook, D.W.; Engler, B.P.

1986-01-01T23:59:59.000Z

285

RESEARCH ACTIVITIES (PI or Co-PI, career long) ON-GOING PROJECTS  

E-Print Network [OSTI]

such as internal combustion engines and gas turbine combustors. Experimental and numerical studies are conducted of life and property by fire. High Efficiency Thermal Storage of Solar Energy, HELSOLAR (DOE): The projects is part of a university/industry consortium to carry out a conceptual study of a solar energy

Mofrad, Mohammad R. K.

286

Effects of Combustor Geometry on the Flowfields and Flame Properties of A  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effects of Combustor Geometry on the Flowfields and Flame Properties of A Effects of Combustor Geometry on the Flowfields and Flame Properties of A Low-Swirl Injector Title Effects of Combustor Geometry on the Flowfields and Flame Properties of A Low-Swirl Injector Publication Type Journal Article Year of Publication 2008 Authors Cheng, Robert K., and David Littlejohn Journal Proceedings of the Combustion Institute Type of Article Conference Paper Abstract The Low-swirl injector (LSI) is a novel dry-low NOx combustion method that is being developed for gas turbines to burn a variety of gaseous fuels including natural gas, low-Btu fuels, syngases and hydrogen. Its basic principle is described by a top level analytical model that relates the flame position to the flowfield similarity parameters and the turbulent flame speed correlation. The model was based on experimental measurements in open laboratory flames. It has been useful for guiding hardware development. As the LSI is being adapted to different engine configurations, one open question is how the combustor geometry and size affect its basic operating principle. The objective of this paper is to investigate these effects by conducting Particle Image Velocimetry (PIV) measurements in open and enclosed flames produced by a 6.35 cm diameter LSI using two quartz cylinders of 15.5 and 20 cm diameter to simulate the combustor casing. Results from 18 methane-air flames show that the enclosures do not alter the flame properties or the nearfield flow structures. The differences occur mostly in the farfield where the tighter enclosure deters the formation of a weak recirculation zone. The enclosure effects on hydrogen and hydrogen-methane flames were studies using the 20 cm cylinder. The results show that the outer recirculation zone generated at the corner of the dump plane promotes the formation of attached flames. However, the properties and nearfield flow features of the attached flames are similar to those of the lifted flames. At higher stoichiometries, the attached flame collapses to form a compact disc shaped flame that has very different flowfield structures. These results show that the enclosure effects on the LSI are strongly coupled to the fuel type and dump plane geometry but are less dependent on the enclosure size. These observations will provide the basis for developing computational methods that can be used as design tools for LSI adaptation

287

CERTS Microgrid Laboratory Test Bed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CERTS Microgrid Laboratory Test Bed CERTS Microgrid Laboratory Test Bed Title CERTS Microgrid Laboratory Test Bed Publication Type Journal Article LBNL Report Number LBNL-3553E Year of Publication 2011 Authors Lasseter, Robert H., Joseph H. Eto, Ben Schenkman, John Stevens, Harry T. Volkommer, David Klapp, Ed Linton, Hector Hurtado, and Joyashree Roy Journal IEEE Transactions on Power Delivery Volume 26 Start Page 325 Issue 1 Date Published 01/2011 Keywords distributed energy resources (der) Abstract CERTS Microgrid concept captures the emerging potential of distributed generation using a system approach. CERTS views generation and associated loads as a subsystem or a "microgrid". The sources can operate in parallel to the grid or can operate in island, providing UPS services. The system can disconnect from the utility during large events (i.e. faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid falls below certain standards. CERTS Microgrid concepts were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resynchronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults. Keywords: CHP, UPS, distributed generation, intentional islanding, inverters, microgrid, CERTS, power vs. frequency droop, voltage droop.

288

The fluid bed market: Status, trends, & outlook  

SciTech Connect (OSTI)

Fluidized bed combustion (FBC) technology has become a major commercial competitor for conventional solid fuel combustion systems. Since the mid-1980s, independent power producers (IPPs) and cogenerators in particular, pursuing opportunities created by PURPA, have led the way in deploying FBC boilers for electric power and cogeneration plants in the United States. Circulating FBC (CFBC) boilers became the predominant FBC choice for coal-, coke-, and coal waste-fired projects with unit capacities typically in the range of 300,000-600,000 lb/hr (35-70 MW (nominal)). Utility-type reheat units in the 115-165 MW (net) range are now in operation in the United States and Europe. A 250 MW CFBC unit is under construction for 1995 startup in France, and another is scheduled for 1998 startup in Pennsylvania. A 350 MW bubbling FBC boiler is being commissioned now in Japan. Several other CFBC projects that would employ 150-250 MW CFBC units are in various stages of planning in the United States, Puerto Rico, Europe, and Asia.

Simbeck, D.R.; Johnson, H.E.; Wilhelm, D.J. [SFA Pacific, Inc., Mountain View, CA (United States)

1994-12-31T23:59:59.000Z

289

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending 31 December 1994  

SciTech Connect (OSTI)

The test plan is designed to demonstrate that oil shale co-combusted with municipal solid waste (MSW) can reduce gaseous pollutants (SO{sub 2}, CO) to acceptable levels (90%+ reduction) and produce a cementitious ash which will, at a minimum, be acceptable in normal land fills. The small-scale combustion testing will be accomplished in a 6-in. circulating fluid bed combustor (CFBC) at Hazen Research Laboratories. This work will be patterned after the study the authors conducted in 1988 when coal and oil shale were co-combusted in a program sponsored by the Electric Power Research Institute. The specific purpose of the test program will be to: determine the required ratio of oil shale to MSW by determining the ratio of absorbent to pollutant (A/P); determine the effect of temperature and resident time in the reactor; and determine if kinetic model developed for coal/oil shale mixture is applicable.

Not Available

1995-01-01T23:59:59.000Z

290

The atmospheric bubbling fluidized bed combustion of coal in the Netherlands, cleaner it can't be  

SciTech Connect (OSTI)

The use of coal in atmospheric bubbling fluidized bed combustors for the generation of process steam is still a viable option for industrial applications world wide but interest in this as and electricity generation technology has also grown. The general advantages of AB-FBC are environmental acceptability and great fuel flexibility. As will be shown in this paper, it has a great potential for meeting possible future, even more stringent, regulations. Since 1979, Stork Boilers, TNO and Twente University have been carrying out a joint national research programme aimed at the design of industrial installations operating to stringent emission standards. This has led to the demonstration of a 90 MWth industrial boiler at the AKZO Chemical Works. The work has been under the control of NOVEM, the Netherlands Agency of Energy and the Environment. This body provides the financial resources on behalf of the Dutch Ministry of Economic Affairs by awarding annual contracts.

van Gasselt, M.L.G. (TNO-Apeldoorn, P.O. Box 342,7300 AH Apeldoorn (NL))

1991-01-01T23:59:59.000Z

291

Assessment of Rich-Burn, Quick-Mix, Lean-Burn Trapped Vortex Combustor for Stationary Gas Turbines  

SciTech Connect (OSTI)

This paper describes the evaluation of an alternative combustion approach to achieve low emissions for a wide range of fuel types. This approach combines the potential advantages of a staged rich-burn, quick-mix, lean-burn (RQL) combustor with the revolutionary trapped vortex combustor (TVC) concept. Although RQL combustors have been proposed for low-Btu fuels, this paper considers the application of an RQL combustor for high-Btu natural gas applications. This paper will describe the RQL/TVC concept and experimental results conducted at 10 atm (1013 kPa or 147 psia) and an inlet-air temperature of 644 K (700°F). The results from a simple network reactor model using detailed kinetics are compared to the experimental observations. Neglecting mixing limitations, the simplified model suggests that NOx and CO performance below 10 parts per million could be achieved in an RQL approach. The CO levels predicted by the model are reasonably close to the experimental results over a wide range of operating conditions. The predicted NOx levels are reasonably close for some operating conditions; however, as the rich-stage equivalence ratio increases, the discrepancy between the experiment and the model increases. Mixing limitations are critical in any RQL combustor, and the mixing limitations for this RQL/TVC design are discussed.

Douglas L. Straub; Kent H. Casleton; Robie E. Lewis; Todd G. Sidwell; Daniel J. Maloney; George A. Richards

2005-01-01T23:59:59.000Z

292

Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume 1. Model evolution and development  

SciTech Connect (OSTI)

The Energy Laboratory of the Massachusetts Institute of Technology (M.I.T.), under Department of Energy (DOE) sponsorship, has been engaged in the development of a comprehensive mechanistic model of Fluidized Bed Combustors (FBC). The primary aims of this modeling effort are the generation and to the extent possible, validation of an analytical framework for the design and scale-up of fluidized bed combustors. In parallel with this modeling effort, M.I.T. also embarked upon the development of an FBC-Data Base Management System (FBC-DBMS) aimed at facilitating the coordination, interpretation and utilization of the experimental data that are or will become available from diverse sources, as well as in the identification of areas of large uncertainty or having a paucity of experimental results. The synergistic operation of the FBC-Model and FBC-Data Base promises to offer a powerful tool for the design and optimization of FBC's and represents the ultimate goal of the M.I.T. effort. The modeling effort was initially focused upon evaluation and application of state-of-the-art models. The initial system model was divided into five basic components: fluid dynamics, combustion, sulfur capture, heat transfer and emissions. Due to the technical complexity of modeling FBC operation and the initial primitive nature of models for these components, it was deemed necessary to be able to incorporate evolutionary improvements in understanding and correlating FBC phenomena: the M.I.T. system model is, therefore, modular in nature, i.e., each sub-model can be replaced by an updated or equivalent sub-model without necessitating reprogramming of the entire system model.

Louis, J.F.; Tung, S.E.

1980-10-01T23:59:59.000Z

293

Atmospheric fluidized-bed combustion. Technology status report  

SciTech Connect (OSTI)

The goal of DOE/METC's AFBC activities is to establish an engineering technology base by 1990, from which the industrial, commercial, and residential sectors can build and operate coal-fired AFBC systems. These systems will be capable of economically generating process steam, direct and indirect heat, and onsite electric power from coals of all ranks and sulfur contents in an environmentally acceptable manner. First-generation atmospheric fluidized-bed technology is considered commercial; a number of US boiler manufacturers are offering commercial units. However, many of these first units are products of empirical design and offer marginal gains in economics, performance, and reliability over conventional systems. In order to resolve the remaining technical issues and to broaden the market, DOE is pursuing advanced concepts. Development of this second-generation AFBC technology is directed toward small industrial, commercial, and residential applications. Penetration of these potential markets will require: (1) a 20 to 30% reduction in capital and operating costs over first-generation technology; (2) significant improvements in performance and reliability; and (3) compliance with existing and proposed New Source Performance Standards for environmental emissions. Current AFBC activities address: industrial operations, advanced concepts, and technology development. Four AFBC demonstration projects were active in FY 1984. The development of AFBC technology is directly supported by the evaluation of five advanced concepts by the M.W. Kellogg Company (circulating-bed FBC), Battelle Columbus Laboratories (spouted-bed FBC), Aerojet Energy Conversion Company (moving-bed FBC), Howard University (staged cascade FBC), and Arthur D. Little, Inc. (pulsed-bed FBC). These concepts may improve the economics and performance. 13 refs., 11 figs.

Not Available

1984-10-01T23:59:59.000Z

294

Ash pulverized coal deposition in combustors and gasifiers  

SciTech Connect (OSTI)

Further progress in achieving the objectives of the project was made in the period of April 1 to June 30, 1997. The computational modeling of particle transport, dispersion and deposition in a recirculating turbulent flows was completed. Considerable progress was also made in the direct numerical simulation of particle removal process in turbulent gas flows. It is shown that the near wall vortices profoundly affect the particle removal process in turbulent boundary layer flows. The predictions of the particle resuspension model is compared with the experimental data. It is shown that when the effects of the near wall flow structure, as well as the surface roughness are included the model agrees with the available experimental data. The sublayer model for evaluating the particle deposition in turbulent flows was extended to include the effect of particle rebound. A new more advanced flow model for the near wall vortices is also used in these analyses. Experimental data for transport and deposition of glass fibers in the aerosol wind tunnel was obtained. The measured deposition velocity is compared with the empirical correlation and the available data and discussed.

Ahmadi, G.

1997-12-31T23:59:59.000Z

295

Community-Based Energy Development (C-BED) Tariff | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Community-Based Energy Development (C-BED) Tariff Community-Based Energy Development (C-BED) Tariff Community-Based Energy Development (C-BED) Tariff < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Home Weatherization Water Wind Program Info State Minnesota Program Type Other Policy Provider Minnesota Department of Commerce Under the Community-Based Energy Development (C-BED) Tariff, each public utility in Minnesota is required to file with the state Public Utilities Commission (PUC) to create a 20-year power purchase agreement (PPA) for community-owned renewable energy projects. The original legislation was enacted in 2005 but has been amended several times subsequently. Utilities

296

Gas distributor for fluidized bed coal gasifier  

DOE Patents [OSTI]

A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

Worley, Arthur C. (Mt. Tabor, NJ); Zboray, James A. (Irvine, CA)

1980-01-01T23:59:59.000Z

297

Battery using a metal particle bed electrode  

DOE Patents [OSTI]

A zinc-air battery in a case including a zinc particle bed supported adjacent the current feeder and diaphragm on a porous support plate which holds the particles but passes electrolyte solution. Electrolyte is recycled through a conduit between the support plate and top of the bed by convective forces created by a density of differential caused by a higher concentration of high density discharge products in the interstices of the bed than in the electrolyte recycle conduit.

Evans, James V. (Piedmont, CA); Savaskan, Gultekin (Albany, CA)

1991-01-01T23:59:59.000Z

298

Turbine combustor configured for high-frequency dynamics mitigation and related method  

DOE Patents [OSTI]

A turbomachine combustor includes a combustion chamber; a plurality of micro-mixer nozzles mounted to an end cover of the combustion chamber, each including a fuel supply pipe affixed to a nozzle body located within the combustion chamber, wherein fuel from the supply pipe mixes with air in the nozzle body prior to discharge into the combustion chamber; and wherein at least some of the nozzle bodies of the plurality of micro-mixer nozzles have axial length dimensions that differ from axial length dimensions of other of the nozzle bodies.

Uhm, Jong Ho; Zuo, Baifang; York, William David; Srinivasan, Shivakumar

2014-11-04T23:59:59.000Z

299

Interference mechanisms of acoustic/convective disturbances in a swirl-stabilized lean-premixed combustor  

Science Journals Connector (OSTI)

Interference mechanisms of acoustic/convective disturbances were experimentally investigated in a swirl-stabilized lean-premixed gas turbine combustor operated with natural gas fuel and air at atmospheric pressure and elevated temperature. Interference between azimuthal and acoustic velocity disturbances at high-amplitude limit cycle oscillations is characterized in detail as a function of axial swirler location, oscillation frequency, and mean nozzle velocity. We show that both the frequency and the intensity of self-excited instabilities in a model gas turbine combustor are correlated with axial swirler position, which indicates that a vorticity wave generated at the swirl vanes is a primary source of convective disturbances in the absence of equivalence ratio nonuniformities. Flame transfer function measurements confirm that the linear/nonlinear heat release response is a strong function of axial swirler location, even when unforced flame structures remain unchanged. The key parameter controlling this phenomenon is the phase difference between the azimuthal and acoustic velocity perturbations at the combustor dump plane; the phase difference is affected by swirler location, frequency, mean velocity, and the speed of sound. It was found that out-of-phase interference between azimuthal and acoustic velocity disturbances at the combustor inlet yields large flame angle fluctuations in relation to swirl number fluctuations, and therefore the formation of a coherent structure is hindered due to high kinematic viscosity within the vortex formation region. In-phase interference mechanisms, on the other hand, lead to high-amplitude limit cycle oscillations. This interference mechanism is then explored in the presence of temporal equivalence ratio nonuniformities, in which two different sources of convective mechanisms should be considered simultaneously in connection with acoustic velocity perturbations and the vortex dynamics. Results reveal that equivalence ratio oscillation has a significant effect on the strength of combustion-acoustic interactions. Strong self-excited instabilities of partially premixed flames are produced by in-phase interactions between acoustic velocity and equivalence ratio oscillations, which are governed by fuel injection location, frequency, mean nozzle velocity, and fuel injector impedance. At this phase condition, unburned reactants with high equivalence ratio impinge on the flame front with high inlet velocity, potentially causing large fluctuations of heat release rate.

Kyu Tae Kim; Dom A. Santavicca

2013-01-01T23:59:59.000Z

300

Performance of Steam Production by Biomass Combustor for Agro-industry  

Science Journals Connector (OSTI)

Abstract This research paper aims to particularly raise the issue how optimization of steam production produced by a biomass combustor is regarded to agricultural industry, for the produced steam will consequently be applied to sterilization or even drying process. The most optimal level of steam production will be explored as to how to optimally achieve flow rate of air, rate of fuel input, the rate of steam production, and steam production in compliance with the given 100 kg/h capacity and the required temperature of between 90-100°C . Biomass steam production incorporates 3 major parts: 1) biomass combustor, 2) heat exchanger system (coiled tube), and 3) control system, administered the whole process, located at the School of Renewable Energy Technology, Naresuan University, Phitsanulok. A combustion system was tested through the implementation of eucalyptus charcoal as the main source of energy. The research finding revealed that the combustion system could generate steam at 100 kg/h which consumed eucalyptus charcoal at the temperature value of Heating value of fuel (HHV) was 30.0 MJ/kg. This was conducted within the biomass combustor, engaged with a coil tube, at the flow rate of 172.8 kg/h, the value of feed rate of fuel at 15 kg/h, and a steam production rate at 100 kg/h respectively. The efficiency of steam production was at 58.25%. When the taken result was brought to compare with a mathematical model with experiment result of steam production, it was found out that the error value was 0.9997 which could usefully be used to predict steam production in the system. With reference to the economical benefit, when compared to steam production produced by LPG fuel at 100 kg/h production rate, it was obvious that steam production generated by biomass could redeem the spent investing cost with less than one year. This would greatly be interesting and applicable to industry particularly agriculture that steam production by biomass combustor with helical coiled boiler technique will be used to energy backup for drying system. However steam production will be supported drying system after utilization in another thermal process the temperature not more than 100°C within industrial or industrial house hold.

B. Prasit; P. Maneechot

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Building a Raised Bed Garden  

E-Print Network [OSTI]

need, and are less likely to wet foliage. However, they do have some disadvantages. Emitters are prone to clogging unless the water used is very clean, and if emitters are installed under mulch it is difficult to spot problems. Emitters are also... this flexibility as your plantings mature. If you choose drip or trickle irrigation, determine the length of the hose and the number of emitters you will need. Drip tape with 12-inch emitter spacing is best for vegetables. Beds should be divided into watering zones...

Files, Priscilla J.; Dainello, Frank J.; Arnold, Michael A.; Welsh, Douglas F.

2009-03-26T23:59:59.000Z

302

Circulating fluidised-bed combustion  

SciTech Connect (OSTI)

Steam generators with circulating fluidized-bed combustion systems (CFBC) are characterized by a high degree of environmental comparability and a wide acceptance for FBC boiler plants involving a wide fuel spectrum which ranges from dried brown coal to high-ash coal and low-volatile bituminous coal as well as wood waste and bark. These plants incorporate a variety of CFBC systems. The choice in favor of different system options was not motivated by the inherent fuel properties but has evolved from the progressive advancement in power station FBC technology. The article elucidates several FBC system variants.

Rettemeier, W.; von der Kammer, G. (Steinmueller (L.u.C.) GmbH, Gummersbach (Germany, F.R.))

1990-01-01T23:59:59.000Z

303

Fluidized Bed Technology - Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fluidized-bed combustion evolved from efforts to find a combustion process able to control pollutant emissions without external emission controls (such as scrubbers). The...

304

Granular Dynamics in Pebble Bed Reactor Cores  

E-Print Network [OSTI]

pebble bed reactor,” Nuclear Engineering and Design, vol.the AVR reactor,” Nuclear Engineering and Design, vol. 121,Operating Experience,” Nuclear Engineering and Design, vol.

Laufer, Michael Robert

2013-01-01T23:59:59.000Z

305

Calculating bed load transport in steep boulder bed channels E. M. Yager,1,2  

E-Print Network [OSTI]

Calculating bed load transport in steep boulder bed channels E. M. Yager,1,2 J. W. Kirchner,1 and W: Yager, E. M., J. W. Kirchner, and W. E. Dietrich (2007), Calculating bed load transport in steep boulder, more mobile sediment and large, relatively immobile boulders that are often arranged into cascades

Kirchner, James W.

306

Method for control of NOx emission from combustors using fuel dilution  

DOE Patents [OSTI]

A method of controlling NOx emission from combustors. The method involves the controlled addition of a diluent such as nitrogen or water vapor, to a base fuel to reduce the flame temperature, thereby reducing NOx production. At the same time, a gas capable of enhancing flame stability and improving low temperature combustion characteristics, such as hydrogen, is added to the fuel mixture. The base fuel can be natural gas for use in industrial and power generation gas turbines and other burners. However, the method described herein is equally applicable to other common fuels such as coal gas, biomass-derived fuels and other common hydrocarbon fuels. The unique combustion characteristics associated with the use of hydrogen, particularly faster flame speed, higher reaction rates, and increased resistance to fluid-mechanical strain, alter the burner combustion characteristics sufficiently to allow operation at the desired lower temperature conditions resulting from diluent addition, without the onset of unstable combustion that can arise at lower combustor operating temperatures.

Schefer, Robert W. (Alamo, CA); Keller, Jay O (Oakland, CA)

2007-01-16T23:59:59.000Z

307

Development of gas turbine combustor fed with bio-fuel oil  

SciTech Connect (OSTI)

Considering the increasing interest in the utilization of biofuels derived from biomass pyrolysis, ENEL/CRT carried out some experimental investigations on feasibility of biofuels utilization in the electricity production systems. The paper considers the experimental activity for the development and the design optimization of a gas turbine combustor suitable to be fed with biofuel oil, on the basis of the pressurized combustion performance obtained in a small gas turbine combustor fed with bio-fuel oil and ethanol/bio-fuel oil mixtures. Combustion tests were performed using the combustion chamber of a 40 kWe gas turbine. A small pressurized rig has been constructed including a nozzle for pressurization and a heat recovering combustion air preheating system, together with a proper injection system consisting of two dual fuel atomizers. Compressed air allowed a good spray quality and a satisfactory flame instability, without the need of a pilot frame, also when firing crude bio-fuel only. A parametric investigation on the combustion performance has been performed in order to evaluate the effect of fuel properties, operating conditions and injection system geometry, especially as regards CO and NO{sub x} emissions and smoke index.

Ardy, P.L.; Barbucci, P.; Benelli, G. [ENEL SpA R& D Dept., Pisa (Italy)] [and others

1995-11-01T23:59:59.000Z

308

High-pressure reaction and emissions characteristics of catalytic reactors for gas turbine combustors  

Science Journals Connector (OSTI)

The reaction and emissions characteristics of catalytic reactors comprising noble metal catalysts were investigated using homogeneous mixtures of natural gas and vitiated air at pressures up to 2.9 MPa. The mixture temperatures at inlet ranged from 500 to 700°C and the fuel-air ratio was increased till the exit gas temperature reached about 1200°C. Values of combustion efficiency greater than 99.5% and nitrogen oxides emissions for all catalytic reactors tested were less than 0.2 g NO2/kg fuel (2 ppm (15% 02) ) for all reactors at reactor exit gas temperatures higher than about 1100°C. Combustion efficiency decreased with increasing pressure in the heterogeneous-reaction controlled region, though a pressure increase favored homogeneous, gas phase reactions. Appreciable reactivity deterioration by aging for 1000 h at 1000°C was observed at lower mixture temperatures. A two-stage combustor comprising a conventional flame combustion stage and a catalytic stage was fabricated and its NO,x emissions and performance were evaluated at conditions typical of stationary gas turbine combustor operations. About 80% reduction in NO,x emissions levels compared with flame combustion was attained at 1 \\{MPa\\} pressure and 1180°C exit gas temperature, together with complete hydrocarbon combustion.

S. Hayashi; H. Yamada; K. Shimodaira

1995-01-01T23:59:59.000Z

309

Pressure–heat release measurements during start-up conditions in a pulse combustor  

Science Journals Connector (OSTI)

An experimental study focusing on the temporal evolution of the global OH heat release (q?) and dynamic pressure (p?) from ignition to limit cycle conditions in an aerovalved pulse combustor has been carried out. The motivation of the work was to investigate how the thermo-acoustic relationships evolve, as very little is understood regarding how pressure and heat release couplings develop prior to establishing limit cycle conditions. The start-up experiments demonstrated that the total start-up sequences occurred within 100 ms and can be subdivided into three regimes: (i) ignition and decay; (ii) instability growth; and (iii) onset of limit cycle operation. The main results showed that upon ignition the high amplitude impulse pressure wave corresponded to the natural frequency of the pulse combustor at ambient gas temperature and was verified by an acoustic model. The pressure field over the growth period exhibited two main trends, either steady amplitude growth or a short delay interval followed by steady amplitude growth to limit cycle conditions. Overall, no reproducibility in frequency or phase during the growth period was observed pointing to the influence of strong non-linear interactions. When operating under limit cycle conditions, the heat release and pressure oscillations were in phase, possessed high levels of coherence, and exhibited narrow band frequency response at the operating frequency and several harmonics.

J.R. Dawson; V.M. Rodriguez-Martinez; A.J. Beale; T. O’Doherty

2005-01-01T23:59:59.000Z

310

Appalachian basin coal-bed methane: Elephant or flea  

SciTech Connect (OSTI)

Historically, interest in the Appalachian basin coal-bed methane resource extends at least over the last 50 years. The Northern and Central Appalachian basins are estimated to contain 61 tcf and 5 tcf of coal-bed methane gas, respectively. Development of this resource has not kept pace with that of other basins, such as the Black Warrior basin of Alabama of the San Juan basin of northern New Mexico and Colorado. Without the benefit of modern completion, stimulation, and production technology, some older Appalachian basin coal-bed methane wells were reported to have produced in excess of 150 used here to characterize some past projects and their results. This work is not intended to comprise a comprehensive survey of all Appalachian basin projects, but rather to provide background information from which to proceed for those who may be interested in doing so. Several constraints to the development of this resource have been identified, including conflicting legal rights of ownership of the gas produced from the coal seams when coal and conventional oil and gas rights are controlled by separate parties. In addition, large leaseholds have been difficult to acquire and finding costs have been high. However, the threshold of minimum economic production may be relatively low when compared with other areas, because low-pressures pipelines are available and gas prices are among the highest in the nation. Interest in the commercial development of the resource seems to be on the increase with several projects currently active and more reported to be planned for the near future.

Hunt, A.M. (Dames and Moore, Cincinnati, OH (United States))

1991-08-01T23:59:59.000Z

311

Bed management in a Critical Care Unit  

Science Journals Connector (OSTI)

......with the variability in demand for the services that...adequate facilities on demand can lead to serious consequences...how improvements in bed management may be achieved by distinguishing...task of ensuring that demand for hospital services...equipment at each bed-side is around 60,000......

J. D. Griffiths; V. Knight; I. Komenda

2013-04-01T23:59:59.000Z

312

Smart Grid: Network simulator for smart grid test-bed  

Science Journals Connector (OSTI)

Smart Grid become more popular, a smaller scale of smart grid test-bed is set up at UNITEN to investigate the performance and to find out future enhancement of smart grid in Malaysia. The fundamental requirement in this project is design a network with low delay, no packet drop and with high data rate. Different type of traffic has its own characteristic and is suitable for different type of network and requirement. However no one understands the natural of traffic in smart grid. This paper presents the comparison between different types of traffic to find out the most suitable traffic for the optimal network performance.

L C Lai; H S Ong; Y X Che; N Q Do; X J Ong

2013-01-01T23:59:59.000Z

313

Management and Development of the Western Resources Project  

SciTech Connect (OSTI)

The purpose of this project was to manage the Western Resources Project, which included a comprehensive, basin-wide set of experiments investigating the impacts of coal bed methane (CBM; a.k.a. coal bed natural gas, CBNG) production on surface and groundwater in the Powder River Basin in Wyoming. This project included a number of participants including Apache Corporation, Conoco Phillips, Marathon, the Ucross Foundation, Stanford University, the University of Wyoming, Montana Bureau of Mines and Geology, and Western Research Institute.

Terry Brown

2009-03-09T23:59:59.000Z

314

Tanning bed use, deviance regulation theory, and source factors  

E-Print Network [OSTI]

Tanning bed use, especially among young, white females, has become a serious health problem in the United States. Those who use tanning beds value a tanned appearance; thus, one possible way to get individuals to stop using tanning beds...

Head, Katharine J.

2009-05-15T23:59:59.000Z

315

Ordered bed modular reactor design proposal  

SciTech Connect (OSTI)

The Ordered Bed Modular Reactor (OBMR) is a design as an advanced modular HTGR in which the annular reactor core is filled with an ordered bed of fuel spheres. This arrangement allows fuel elements to be poured into the core cavity which is shaped so that an ordered bed is formed and to be discharged from the core through the opening holes in the reactor top. These operations can be performed in a shutdown shorter time. The OBMR has the most of advantages from both the pebble bed reactor and block type reactor. Its core has great structural flexibility and stability, which allow increasing reactor output power and outlet gas temperature as well as decreasing core pressure drop. This paper introduces ordered packing bed characteristics, unloading and loading technique of the fuel spheres and predicted design features of the OBMR. (authors)

Tian, J. [Inst. of Nuclear Energy Technology, Tsinghua Univ., Beijing 100084 (China)

2006-07-01T23:59:59.000Z

316

CERTS Microgrid Laboratory Test Bed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Submitted to IEEE Transactions on Power Delivery Submitted to IEEE Transactions on Power Delivery Abstract--. CERTS Microgrid concept captures the emerging potential of distributed generation using a system approach. CERTS views generation and associated loads as a subsystem or a "microgrid". The sources can operate in parallel to the grid or can operate in island, providing UPS services. The system can disconnect from the utility during large events (i.e. faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid falls below certain standards. CERTS Microgrid concepts were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations,

317

Fluidized bed heat treating system  

DOE Patents [OSTI]

Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

Ripley, Edward B; Pfennigwerth, Glenn L

2014-05-06T23:59:59.000Z

318

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network [OSTI]

break switch Back-to back SCR switch T51 CB52 T52 CB53 Relay28 SCR Switch OpeningIt is a 480V, 400A thyristor (SCR) switch with controller, a

Eto, Joseph H.

2008-01-01T23:59:59.000Z

319

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network [OSTI]

heat distribution system, such as steam and chilled water pipes, and the energy lossesheat distribution system, such as steam and chilled water pipes, and the energy lossesheat distribution system, such as steam and chilled water pipes, and the energy losses

Eto, Joseph H.

2008-01-01T23:59:59.000Z

320

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network [OSTI]

of AEPSC. DTC Registered Procedure CERTS Microgrid Test PlanTarget Group: Assigned Procedure Review Date: 23 Feb. 2008document is to establish procedures for testing of the CERTS

Eto, Joseph H.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network [OSTI]

In addition to generators, the distributed energy resourcesIn addition to generators, the distributed energy resourcesdistributed energy resources – small power generators

Eto, Joseph H.

2008-01-01T23:59:59.000Z

322

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network [OSTI]

gen-set A1, utility connected Test a single line-to-groundgen-set B1, utility connected Test a single line-to-groundsets (A1+B1), utility connected Test a single line-to-ground

Eto, Joseph H.

2008-01-01T23:59:59.000Z

323

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network [OSTI]

load banks, power and control circuitry, protective relaying, and data-load banks, power and control circuitry, protective relaying, and data-load banks, power and control circuitry, protective relaying, and data-

Eto, Joseph H.

2008-01-01T23:59:59.000Z

324

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network [OSTI]

an Inverter-Based Combined Heat and Power Module for Specialan Inverter-Based Combined Heat and Power Module for Specialan Inverter-Based Combined Heat and Power Module for Special

Eto, Joseph H.

2008-01-01T23:59:59.000Z

325

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network [OSTI]

and Ecological Services, San Ramon, California; 2. Southern California Edison (SCE) Electric Vehicleand Ecological Services, San Ramon, California; 2. Southern California Edison (SCE) Electric Vehicle

Eto, Joseph H.

2008-01-01T23:59:59.000Z

326

Numerical Modeling of Non-adiabatic Heat-Recirculating Combustors C. H. Kuo and P. D. Ronney  

E-Print Network [OSTI]

of temperature-dependent gas and solid properties, viscous flow, surface-to-surface radiative heat transfer, heat affect the performance of heat-recirculating combustors, but the relative importance of such effects, however, heat and friction losses become more significant, thus fuel-to-electricity conversion devices

327

Bed and bed-site reuse by western lowland gorillas (Gorilla g. gorilla) in Moukalaba-Doudou National Park, Gabon  

Science Journals Connector (OSTI)

In this paper we describe bed (nest) and bed-site reuse by western lowland gorillas (Gorilla g. gorilla...) in Moukalaba-Doudou National Park, south-eastern Gabon. During an eight-month study 44 bed...

Yuji Iwata; Chieko Ando

2007-01-01T23:59:59.000Z

328

National SCADA Test Bed - Enhancing control systems security...  

Broader source: Energy.gov (indexed) [DOE]

SCADA Test Bed - Enhancing control systems security in the energy sector (September 2009) National SCADA Test Bed - Enhancing control systems security in the energy sector...

329

Sulfur removal in advanced two-stage fluidized-bed combustion. [Quarterly] technical report, December 1, 1993--February 28, 1994  

SciTech Connect (OSTI)

The objective of this study is to obtain data on the rates of reaction between, hydrogen sulfide (H{sub 2}S) and uncalcined calcium-based sorbents under operating conditions relevant to first stage (carbonizer) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure in the first stage generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, removal of sulfur compounds takes place through the reaction between H{sub 2}S and calcium carbonate. To achieve this objective the rates of reaction between hydrogen sulfide and uncalcined calcium-based sorbents will be determined by conducting tests in pressurized thermogravimetric analyzer (TGA) and high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. During this quarter, the high-pressure thermogravimetric analyzer (HPTGA) unit was installed and the shakedown process was completed. Several tests were conducted in the HPTGA unit to establish the operating procedure and the repeatability of the experimental results. Sulfidation by conducting the baseline sulfidation tests. The results are currently being analyzed.

Abbasian, J.; Hill, A.H.; Wangerow, J.R.; Rue, D.M. [Inst. of Gas Technology, Chicago, IL (United States)

1994-06-01T23:59:59.000Z

330

Assessment of atmospheric fluidized-bed combustion recycle systems. Final report  

SciTech Connect (OSTI)

This report presents a technical and economic evaluation of AFBC power plants with recycle systems, and a comparison of these plants with AFBC power plants with carbon burnup beds (CBB) and with pulverized coal-fired (PCF) power plants with flue gas desulfurization (FGD) systems. The analysis considers 1000 MWe plants burning both eastern and western coals. The capital and operating cost estimates are based on boiler designs developed by Babcock and Wilcox, Inc., and on sorbent requirements estimated by Burns and Roe, Inc. The economic analyses are based on a plant located in the East Central region of the United States with a 30-year life and a 70 percent capacity factor. The eastern coal-fired plants are designed to burn Illinois bituminous coal with a higher heating value of 10,100 Btu/lb and a sulfur content of 4%. The required calcium to sulfur mole ratios for the eastern plants are 3.8:1 and 2.5:1 for the AFBC/CBB and AFBC/recycle plants, respectively. The western coal-fired plants are designed to burn Wyoming subbituminous coal with a higher heating value of 8,020 Btu/lb and a sulfur content of 0.48%. The required calcium to sulfur mole ratios for the western plants are 0.7:1 and 0.4:1 for the AFBC/CBB and AFBC/recycle plants, respectively. These Ca/S mole ratios allow for 30 percent utilization of the alkaline coal ash to reduce sorbent requirements to the fluidized bed combustor. The analyses indicate that the AFBC/recycle plants have an economic advantage over the AFBC/CBB plants and over the PCF/FGD plants for both eastern and western coal.

Rogali, R.; Wysocki, J.; Kursman, S.

1981-10-01T23:59:59.000Z

331

Fluidized bed catalytic coal gasification process  

DOE Patents [OSTI]

Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

Euker, Jr., Charles A. (15163 Dianna La., Houston, TX 77062); Wesselhoft, Robert D. (120 Caldwell, Baytown, TX 77520); Dunkleman, John J. (3704 Autumn La., Baytown, TX 77520); Aquino, Dolores C. (15142 McConn, Webster, TX 77598); Gouker, Toby R. (5413 Rocksprings Dr., LaPorte, TX 77571)

1984-01-01T23:59:59.000Z

332

Pneumatic conveying of coal and coal-limestone mixtures as applied to atmospheric fluidized-bed combustion. [Effects of moisture, velocity, particle size  

SciTech Connect (OSTI)

Pneumatic conveying experiments with coal and coal-limestone mixtures were performed on a conveying system designed to represent the feed lines in the Tennessee Valley Authority 20 MW atmospheric fluidized bed combustor. The experimental conditions were chosen to cover the anticipated combustor operating ranges. The results have led to a fundamental understanding of the operating limits associated with coal surface moisture, air velocity, coal and limestone fines, solids to air ratio, and limestone to coal ratio. Coal surface moisture was found to be the most important parameter affecting handling and transport. Specific upper limits for surface moisture were established. It was demonstrated that addition of dry limestone can reduce the conveying problems associated with wet coal. The air velocities causing saltation and surge flow were determined for a variety of conveying conditions. These velocities were related qualitatively to solids to air ratio, particle size, and surface moisture. Conveying pressure drop was also measured for a variety of conditions. In the absence of saltation, the horizontal, frictional pressure drop was only a function of the solids to air ratio and the air flow conditions. Comparison of the ORNL pressure drop data with the results of other investigators had led to the conclusion that there are two basic modes of flow in dilute-phase conveying; a primarily viscous mode and a primarily inertial mode. A general pressure drop model has been developed for the inertial mode.

Daw, C S; Thomas, J F

1982-01-01T23:59:59.000Z

333

Numerical simulation of the two-dimensional flow in high pressure catalytic combustor for gas turbine  

Science Journals Connector (OSTI)

The objective of this paper is modeling the mechanism of high pressure and high temperature catalytic oxidation of natural gas, or methane. The model is two-dimensional steady-state, and includes axial and radial convection and diffusion of mass, momentum and energy, as well as homogeneous (gas phase) and heterogeneous (gas surface) single step irreversible chemical reactions within a catalyst channel. Experimental investigations were also made of natural gas, or methane combustion in the presence of Mn-substituted hexaaluminate catalysts. Axial profiles of catalyst wall temperature, and gas temperature and gas composition for a range of gas turbine combustor operating conditions have been obtained for comparison with and development of a computer model of catalytic combustion. Numerical calculation results for atmospheric pressure agree well with experimental data. The calculations have been extended for high pressure (10 atm) operating conditions of gas turbine.

Y. Tsujikawa; S. Fujii; H. Sadamori; S. Ito; S. Katsura

1995-01-01T23:59:59.000Z

334

Project Year Project Title  

E-Print Network [OSTI]

the cost of the project to labor only. The efficacy of the examples will be assessed through their useProject Year 2012-2013 Project Title Sight-Reading at the Piano Project Team Ken Johansen, Peabody) Faculty Statement The goal of this project is to create a bank of practice exercises that student pianists

Gray, Jeffrey J.

335

Project Year Project Team  

E-Print Network [OSTI]

design goals for this project include low cost (less than $30 per paddle) and robustness. The projectProject Year 2001 Project Team Faculty: Allison Okamura, Mechanical Engineering, Whiting School Project Title Haptic Display of Dynamic Systems Audience 30 to 40 students per year, enrolled

Gray, Jeffrey J.

336

Project Year Project Team  

E-Print Network [OSTI]

-year section of the summer project will cost $1344.) This project will be measured by the CER surveys conductedProject Year 2005 Project Team Sean Greenberg, Faculty, Philosophy Department, Krieger School of Arts & Sciences; Kevin Clark, Student, Philosophy Department, Krieger School of Arts & Sciences Project

Gray, Jeffrey J.

337

Development of second-generation pressurized fluidized bed combustion process  

SciTech Connect (OSTI)

Under the sponsorship of the United States Department of Energy, Foster Wheeler Development Corporation, and its team members, Westinghouse, Gilbert/Commonwealth, and the Institute of Gas Technology are developing second-generation pressurized fluidized bed combustion technology capable of achieving net plant efficiency in excess of 45 percent based on the higher heating value of the coal. A three-phase program entails design and costing of a 500 MWe power plant and identification of developments needed to commercialize this technology (Phase 1), testing of individual components (Phase 2), and finally testing these components in an integrated mode (Phase 3). This paper briefly describes the results of the first two phases as well as the progress on the third phase. Since other projects which use the same technology are in construction or in negotiation stages -- namely, the Power System Development Facility and the Four Rivers Energy Modernization Projects -- brief descriptions of these are also included.

Wolowodiuk, W.; Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Bonk, D. [USDOE Morgantown Energy Technology Center, WV (United States)

1994-10-01T23:59:59.000Z

338

MHD Integrated Topping Cycle Project  

SciTech Connect (OSTI)

This seventeenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period August 1, 1991 to October 31, 1991. Manufacturing of the prototypical combustor pressure shell has been completed including leak, proof, and assembly fit checking. Manufacturing of forty-five cooling panels was also completed including leak, proof, and flow testing. All precombustor internal components (combustion can baffle and swirl box) were received and checked, and integration of the components was initiated. A decision was made regarding the primary and backup designs for the 1A4 channel. The assembly of the channel related prototypical hardware continued. The cathode wall electrical wiring is now complete. The mechanical design of the diffuser has been completed.

Not Available

1992-07-01T23:59:59.000Z

339

Magnetohydrodynamic projects at the CDIF (Component Development and Integration Facility)  

SciTech Connect (OSTI)

This quarterly technical progress report presents the tasks accomplished at the Component Development and Integration Facility during the fourth quarter of FY90. Areas of technical progress this quarter included: coal system development; seed system development; test bay modification; channel power dissipation and distribution system development; oxygen system storage upgrade; iron core magnet thermal protection system oxygen checkout; TRW slag rejector/CDIF slag removal project; stack gas/environmental compliance upgrade; coal-fired combustor support; 1A channels fabrication and assembly; support of Mississippi State University diagnostic testing; test operations and results; data enhancement; data analysis and modeling; technical papers; and projected activities. 2 tabs.

Not Available

1990-01-01T23:59:59.000Z

340

Chapter 14 - Coal bed methane  

Science Journals Connector (OSTI)

Publisher Summary Methane adsorbed to the surface of coal is a very old issue with some new commercial ramifications. This explosive gas has made underground coal mines dangerous both from the risk of explosion and the possibility of an oxygen-poor atmosphere that wouldn't support life. The miner's main concern with coal bed methane (CBM) has been how to get rid of it. Techniques to deal with CBM in mines have ranged from the classic canary in a cage to detect an oxygen-poor atmosphere to huge ventilation fans to force the replacement of a methane-rich environment with outside air, to drilling CBM wells in front of the coal face to try to degas the coal prior to exposing the mine to the CBM. All these techniques have met with some amount of success. None of the techniques to prevent CBM from fouling the air in an underground mine has been totally successful. With the CBM's unique method of gas storage, the preponderance of the gas is available only to very low coalface pressures. The coalface pressure is set by a combination of flowing wellhead pressure and the hydrostatic head exerted by standing liquid within the well bore. Effective compression strategies can lower the wellhead pressure to very low values. Effective deliquification techniques can reduce or remove the backpressure caused by accumulated liquid. CBM's economic impact is briefly explained in this chapter.

James F. Lea; Henry V. Nickens; Mike R. Wells

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Louise Pasternack, Chemistry Department, Krieger School, Krieger School of Arts & Sciences Project Title Introductory Chemistry Lab Demonstrations Audience an interactive virtual lab manual that will facilitate understanding of the procedures and techniques required

Gray, Jeffrey J.

342

Fluidized Bed Technology - Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Science & Innovation Ā» Clean Coal Ā» Advanced Combustion Science & Innovation Ā» Clean Coal Ā» Advanced Combustion Technologies Ā» Fluidized Bed Technology - Overview Fluidized Bed Technology - Overview Fluidized beds suspend solid fuels on upward-blowing jets of air during the combustion process. The result is a turbulent mixing of gas and solids. The tumbling action, much like a bubbling fluid, provides more effective chemical reactions and heat transfer. Fluidized-bed combustion evolved from efforts to find a combustion process able to control pollutant emissions without external emission controls (such as scrubbers). The technology burns fuel at temperatures of 1,400 to 1,700 degrees F, well below the threshold where nitrogen oxides form (at approximately 2,500 degrees F, the nitrogen and oxygen atoms in the

343

Biomass Gasification in Dual Fluidized Bed Gasifier  

Science Journals Connector (OSTI)

The dual fluidized bed gasification technology is prospective because it produces high...2...dilution even when air is used to generate the required endothermic heat via in situ combustion. This study is devoted ...

Toshiyuki Suda; Takahiro Murakami…

2007-01-01T23:59:59.000Z

344

Investigation of heat transfer and combustion in the advanced Fluidized Bed Combustor (FBC). Technical progress report No. 13, October 1996--December 1996  

SciTech Connect (OSTI)

This technical report summarizes the research conducted and progress achieved during the period from October 1, 1996 to December 31, 1996. Numerical simulation was acquired from the particle trajectories by means of the Reynolds Stress Model (REM) with general algebraic expressions. The typical particle trajectories for bunch particle injection were predicted by the top view, the side view, and the isolated 3-dimensional view. The simulation of particle trajectories showed top view, side view, and isolated 3-dimensional view. Numerical simulation for the bunch particle injection will be continued to understand the particle characteristics in the combustion chamber. The system test was conducted on the exploratory hot model. Thermal performance and combustion products of the test results were analyzed and predicted. The effect of cooling water on the combustion chamber was studied using the natural gas as a one of firing fuel. Without a providing of cooling water, overall combustion temperatures are increased. A computer-assisted data acquisition system was employed to measure the flue gas compositions/stack temperature. The measurement of combustion products was conducted by the gas analyzer.

Lee, Seong W.

1997-01-01T23:59:59.000Z

345

Distribution of bed material in a Horizontal Circulating Fluidised Bed boiler.  

E-Print Network [OSTI]

??A conventional circulating fluidised bed (CFB) boiler has a limitation due to the height of the furnace, when implemented in smaller industrial facilities. The design… (more)

Ekvall, Thomas

2011-01-01T23:59:59.000Z

346

Fluidized bed injection assembly for coal gasification  

DOE Patents [OSTI]

A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

1981-01-01T23:59:59.000Z

347

Fluid Bed Combustion Applied to Industrial Waste  

E-Print Network [OSTI]

of its relatively recent application to coal fired steam production, fluid beds have been uti lized in industry for over 60 years. Beginning in Germany in the twenties for coal gasification, the technology was applied to catalytic cracking of heavy... system cost), use of minimum excess air required, and maintaining the min"imum reactor temperature neces sary to sustain combustion. For superautogenous fuels, where incineration. only is desired, minimum capital cost is achieved by using direct bed...

Mullen, J. F.; Sneyd, R. J.

348

Project Year Project Team  

E-Print Network [OSTI]

(Karl) Zhang, Undergraduate Student, Biomedical Engineering, Whiting School of Engineering; Cheryl Kim Audio, Digital Video Project Abstract The goal of this project is to develop online modular units

Gray, Jeffrey J.

349

Line Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(PDCI) Upgrade Project Whistling Ridge Energy Project Line Rebuild, Relocation and Substation Projects Wind Projects Line Projects BPA identifies critical infrastructure and...

350

Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, 1 March--31 May 1994  

SciTech Connect (OSTI)

The objective of this study is to obtain data on the rates of reaction between hydrogen sulfide (H{sub 2}S) and uncalcined calcium-based sorbents under operating conditions relevant to first stage (carbonizer) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure in the first stage generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, removal of sulfur compounds takes place through the reaction between H{sub 2}S and calcium carbonate. To achieve this objective, the rates of reaction between hydrogen sulfide and uncalcined calcium-based sorbents will be determined by conducting tests in pressurized thermogravimetric analyzer (TGA) and high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. During this quarter a series of sulfidation tests were conducted in the high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. During this quarter a series of sulfidation tests were conducted in the high-pressure high-temperature thermogravimetric analyzer (HPTGA unit) using limestone and dolomite. The results suggest that half-calcined dolomite is much more reactive than uncalcined limestone. Also, temperature in the range of 800 to 950 C did not significantly affect the sulfidation reaction rates for both limestone and dolomite.

Abbasian, J.; Chowdiah, P.; Hill, A.H.; Rue, D.M. [Inst. of Gas Technology, Chicago, IL (United States)

1994-09-01T23:59:59.000Z

351

Effect of sediment pulse grain size on sediment transport rates and bed mobility in gravel bed rivers  

E-Print Network [OSTI]

Effect of sediment pulse grain size on sediment transport rates and bed mobility in gravel bed] Sediment supply to gravel bed river channels often takes the form of episodic sediment pulses, and there is considerable interest in introducing sediment pulses in stream restorations to alter bed surface grain size

Venditti, Jeremy G.

352

Tidd PFBC Demonstration Project. Final report, March 1, 1994--March 30, 1995  

SciTech Connect (OSTI)

The Tidd Pressurized Fluidized Bed Combustion (PFBC) Demonstration Plant was the first utility-scale pressurized fluidized bed combustor to operate in combined-cycle mode in the US. The 45-year old pulverized coal plant was repowered with PFBC components in order to demonstrate that PFBC combined-cycle technology is an economic, reliable, and environmentally superior alternative to conventional technology in using high-sulfur coal to generate electricity. The three-year demonstration period started on February 28, 1991 and terminated on February 28, 1994. The fourth year of testing started on March 1, 1994 and terminated on March 30, 1995. This report reviews the experience of the 70-MW(e), Tidd PFBC Demonstration Plant during the fourth year of operation.

Bauer, D.A.; Hoffman, J.D.; Marrocco, M.; Mudd, M.J.; Reinhart, W.P.; Stogran, H.K. [American Electric Power Service Corp., Columbus, OH (United States)

1995-08-01T23:59:59.000Z

353

Advanced Combustion Systems Project Information | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FC26-07NT43088 Recovery Act: Oxy-combustion: Oxygen Transport Membrane Development Praxair, Inc. Completed Projects FE0009686 High Efficiency Molten-Bed Oxy-Coal Combustion...

354

Project Year Project Title  

E-Print Network [OSTI]

that incorporate video taped procedures for student preview. Solution This project will create videos for more to study the procedure and techniques before coming to class. Our previous fellowship project addressedProject Year 2009 Project Title Enhancing Biology Laboratory Preparation through Video

Gray, Jeffrey J.

355

Project Year Project Team  

E-Print Network [OSTI]

, there is no resource available to view the procedure before class. Solution The purpose of this project is to capture available to view the procedure before class. The purpose #12;of this project is to capture variousProject Year 2007 Project Team Kristina Obom, Faculty, Advanced Academic Programs, Krieger School

Gray, Jeffrey J.

356

Project Year Project Title  

E-Print Network [OSTI]

Project Year 2013-2014 Project Title German Online Placement Exam Project Team Deborah Mifflin to increased cost. As well, it lacked listening comprehension, writing and speaking components providing support, we will use Blackboard for this project. The creation will require numerous steps

Gray, Jeffrey J.

357

Ash bed level control system for a fixed-bed coal gasifier  

DOE Patents [OSTI]

An ash level control system is provided which incorporates an ash level meter to automatically control the ash bed level of a coal gasifier at a selected level. The ash level signal from the ash level meter is updated during each cycle that a bed stirrer travels up and down through the extent of the ash bed level. The ash level signal is derived from temperature measurements made by thermocouples carried by the stirrer as it passes through the ash bed and into the fire zone immediately above the ash bed. The level signal is compared with selected threshold level signal to determine if the ash level is above or below the selected level once each stirrer cycle. A first counter is either incremented or decremented accordingly. The registered count of the first counter is preset in a down counter once each cycle and the preset count is counted down at a selected clock rate. A grate drive is activated to rotate a grate assembly supporting the ash bed for a period equal to the count down period to maintain the selected ash bed level. In order to avoid grate binding, the controller provides a short base operating duration time each stirrer cycle. If the ash bed level drops below a selected low level or exceeds a selected high level, means are provided to notify the operator.

Fasching, George E. (Morgantown, WV); Rotunda, John R. (Fairmont, WV)

1984-01-01T23:59:59.000Z

358

Treatment of septage in sludge drying reed beds: a case study on pilot-scale beds  

E-Print Network [OSTI]

Treatment of septage in sludge drying reed beds: a case study on pilot-scale beds S. Troesch***, A systems by local authorities. This will result in a large increase of the quantity of sludge from septic to treat this sludge because they may have reached their nominal load or they are not so numerous in rural

Paris-Sud XI, UniversitƩ de

359

Risk assessment of an oxygen-enhanced combustor using a structural model based on the FMEA and fuzzy fault tree  

Science Journals Connector (OSTI)

Abstract The oxygen-enhanced combustor has the advantages of high burning efficiency and low emissions. However, it should not be promoted for industrial use until its reliability and safety have been fully recognized. A new methodology is proposed to assess the risk of an oxygen-enhanced combustor using a structural model based on the FMEA and fuzzy fault tree. In addition, it is applied to a selected pilot semi-industrial combustor. To identify the hazard source comprehensively, the pilot is divided into four subsystems: the combustor subsystem, feed subsystem, ignition subsystem and exhaust subsystem. According to the operational parameters of flow (flow rate, temperature and pressure) and the component functions in different subsystems, the cause and effect matrix can be built using the structural model, and the relationship between the operational parameters and the effects of the change for the operational parameters on the system can be presented. Based on the results of cause and effect matrix, the FMEA can be built to describe the failed models and accident scenarios of the pilot. The main accident forms include leakage, injury, fire and explosion. Accordingly, with the severity and probability analysis of different accident forms, the fire and explosion accidents should be further accessed quantitatively using the fuzzy fault tree analysis. The fault trees can be obtained in accordance with the FMEA, and the qualitative assessments of the basic events can be collected by using expert scoring. A hybrid approach for the fuzzy set theory and weight analysis is investigated to quantify the occurrence probability of basic events. Then, the importance analysis of the fault trees, including the hazard importance of basic events and the cut set importance, is performed to help determine the weak links of the fire and explosion trees. Finally, some of the most effective measures are presented to improve the reliability and safety of the combustion system.

Zhen Chen; Xiaona Wu; Jianguo Qin

2014-01-01T23:59:59.000Z

360

Recent Development in Oxy-Combustion Technology and Its Applications to Gas Turbine Combustors and ITM Reactors  

Science Journals Connector (OSTI)

Recent Development in Oxy-Combustion Technology and Its Applications to Gas Turbine Combustors and ITM Reactors ... Also, the application of oxy-combustion technology into gas turbines is possible; however, the combustion temperature will be increased tremendously, which needs more control to make safe the turbine blades. ... technologies, a simplified model of a power plant with two forms of CO2 capture was developed. ...

Mohamed A. Habib; Medhat Nemitallah; Rached Ben-Mansour

2012-11-19T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Project Sponsors: UCI Combustion  

E-Print Network [OSTI]

to infer, to the extent possible, the physical and chemical processes taking place in the combustor that the presence of higher hydrocarbons in the fuel leads to higher NOx emissions under the MTG conditions

Mease, Kenneth D.

362

NETL: Clean Coal Demonstrations - Post-Project (DOE) Assessments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Assessments DOE Assessments Clean Coal Demonstrations DOE Post-Project Assessments DOE Assessment of the Clean Coal Diesel Demonstration Project [PDF-590KB] DOE Assessment of the JEA Large-Scale CFB Combustion Demonstration Project [PDF-177KB] DOE Assessment of the Advanced Coal Conversion Process Demonstration [PDF-649KB] DOE Assessment of the Tampa Electric Integrated Gasification Combined-Cycle Demonstration Project [PDF-550KB] 500-MW Demonstration of Advanced Wall-Fired Combustion Techniques for the Reduction of Nitrogen Oxide (NOx) Emissions from Coal- Fired Boilers: A DOE Assessment [PDF-921KB] Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOHĀ™) Process [PDF-382KB] Healy Clean Coal Project: A DOE Assessment [PDF-713KB] Pulse Combustor Design: A DOE Assessment [PDF-569KB]

363

DEVELOPMENT OF COAL BED METHANE UTILIZING GIS TECHNOLOGIES  

SciTech Connect (OSTI)

During the second half of the 1990's, Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period were the advancements in Geographical Information Systems (GIS) technologies generating terra-bytes of new data for the oil and gas industry. Coupled to these accelerating initiatives are many environmental concerns relating to production wastes and water table depletion of fresh water resources. It is these concerns that prompted a vital need within the industry for the development of Best Management Practices (BMPs) and mitigation strategies utilizing GIS technologies for efficient environmental protection in conjunction with effective production of CBM. This was accomplished by developing a framework to take advantage of a combination of investigative field research joined with leading edge GIS technologies for the creation of environmentally characterized regions of study. Once evaluated these regions had BMP's developed to address their unique situations for Coal Bed Methane production and environmental protection. Results of the project will be used to support the MBOGC's Programmatic Environmental Impact Statement as required by the Montana Environmental Policy Act (MEPA) and by the BLM for NEPA related issues for acreage having federally owned minerals.

J. Daniel Arthur

2003-04-01T23:59:59.000Z

364

National SCADA Test Bed | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cybersecurity Ā» Energy Delivery Systems Cybersecurity Cybersecurity Ā» Energy Delivery Systems Cybersecurity Ā» National SCADA Test Bed National SCADA Test Bed Created in 2003, the National SCADA Test Bed (NSTB) is a one-of-a-kind national resource that draws on the integrated expertise and capabilities of the Argonne, Idaho, Lawrence Berkeley, Los Alamos, Oak Ridge, Pacific Northwest, and Sandia National Laboratories to address the cybersecurity challenges of energy delivery systems. Core and Frontier Research The NSTB core capabilities combine a network of the national labs' state-of-the-art operational system testing facilities with expert research, development, analysis, and training to discover and address critical security vulnerabilities and threats the energy sector faces. NSTB offers testing and research facilities, encompassing field-scale control

365

Particle withdrawal from fluidized bed systems  

DOE Patents [OSTI]

Method and apparatus for removing ash formed within, and accumulated at the lower portion of, a fluidized bed coal gasification reactor vessel. A supplemental fluidizing gas, at a temperature substantially less than the average fluidized bed combustion operating temperature, is injected into the vessel and upwardly through the ash so as to form a discrete thermal interface region between the fluidized bed and the ash. The elevation of the interface region, which rises with ash accumulation, is monitored by a thermocouple and interrelated with a motor controlled outlet valve. When the interface rises above the temperature indicator, the valve opens to allow removal of some of the ash, and the valve is closed, or positioned at a minimum setting, when the interface drops to an elevation below that of the thermocouple.

Salvador, Louis A. (Greensburg, PA); Andermann, Ronald E. (Arlington Heights, IL); Rath, Lawrence K. (Mt. Pleasant, PA)

1982-01-01T23:59:59.000Z

366

Fluidized bed selective pyrolysis of coal  

DOE Patents [OSTI]

The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.

Shang, Jer Y. (McLean, VA); Cha, Chang Y. (Golden, CO); Merriam, Norman W. (Laramie, WY)

1992-01-01T23:59:59.000Z

367

E-Print Network 3.0 - atmospheric fluidized bed Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

conditions... in a fluidized bed coater. The bed relative humidity and the droplet size of the coating aerosol were predicted... Fluidized bed coating ... Source: Groningen,...

368

Projectivities and Projective Embeddings  

Science Journals Connector (OSTI)

In this chapter, we aim to prove some of the main achievements in the theory of generalized polygons. First, we want to show what the little projective group and the groups of projectivities of some Moufang po...

Hendrik van Maldeghem

1998-01-01T23:59:59.000Z

369

Model for attrition in fluidized beds  

SciTech Connect (OSTI)

A model developed to predict the particle-size distribution and amount of fines generated during the attrition of particles in fluidized beds agrees well with experimental data for siderite iron ore and lignite char. Certain parameters used in the model are independent of particle size, orifice size, system pressure, bed weight, and attrition time, thus making the model suitable for scale-up purposes. Although the analysis was limited to a single jet with the attrition occurring at room temperature, the model can be extended to multi-jet, high-temperature operations.

Chen, T.P.; Sishtla, C.I.; Punwani, D.V.; Arastoopour, H.

1980-01-01T23:59:59.000Z

370

Mathematical modeling of fluidized bed reactors  

E-Print Network [OSTI]

III-B. Bubbling Bed Model (BBM). 26 TABLE OF CONTENTS (continued) CHAPTER III-8-1. BBM with Constant Bubble Size III-B-2. BBM with Variable Bubble Size III-C. Countercurrent Backmixing Model (CCBM). Page 28 29 30 III-C-1. CCBM with Constant... IV NUMERICAL RESULTS AND DISCUSSION. IV-A. Langmuir-Hinshelwood Type of Kinetics. IV-B. First Order Kinetics . 57 IV-B-1. Davidson and Harrison Model (DHM) . . 57 IV-8-2. Bubbling Bed Model (BBM). IV-B-3. Countercurrent Backmixing Model (CCBM...

Nasif, Nilufer Havva

2012-06-07T23:59:59.000Z

371

Evaluating the fluidized bed combustion options  

SciTech Connect (OSTI)

The proceedings from a conference on fluidized bed combustion are now available. The book discusses the immediate availability of atmospheric fluidized bed combustion technology as a practical, environmentally sound option for burning all grades of coal, wood, wood wastes, and biomass. The economics and technical fundamentals of atmospheric FBC are explained for the benefit of owners and managers of industrial boilers, boiler operators, architects/engineers, boiler manufacturers, and fuel suppliers. More than 15 FBC experts have contributed their expertise and experiences to the book.

Sheahan, R.T. (ed.)

1984-01-01T23:59:59.000Z

372

Project Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Questions Keeler-Pennwalt Wood Pole Removal Line Projects Line Rebuild, Relocation and Substation Projects Spacer Damper Replacement Program Wind Projects Project Overview BPA...

373

Project Year Project Title  

E-Print Network [OSTI]

operators, matrix indexing, vector computations, loops, functions, and plotting graphs, among others basic arithmetic operators, matrix indexing, and vector computations in MATLAB. After creatingProject Year 2011-2012 Project Title Online Tutorial for MATLAB Project Team Eileen Haase, Whiting

Gray, Jeffrey J.

374

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2005 Project Team Krysia Hudson, Faculty, School of Nursing, Undergraduate Instruction for Educational Resources Project Title Enhanced Web-based Learning Environments for Beginning Nursing Students (e.g., demonstrations of procedures or tasks) into the WBL systems, it will be possible to increase

Gray, Jeffrey J.

375

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Michael McCloskey, Cognitive Science/Neuroscience, Krieger of Arts & Sciences Project Title Cognitive Neuropsychology Audience The initial audience to access. The current procedure calls for individual students or researchers to contact the faculty member

Gray, Jeffrey J.

376

Project Year Project Title  

E-Print Network [OSTI]

Project Year 2011-2012 Project Title Using M-Health and GIS Technology in the Field to Improve into teams and having each team use a different m-health data collection tool (e.g., cellular phones, smart health patterns. The Tech Fellow, Jacqueline Ferguson, will assist in creating an m-health project

Gray, Jeffrey J.

377

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Gregory Hager, Computer Science, Whiting School of Engineering Fellow: Alan Chen, Biomedical Engineering, Whiting School of Engineering Project Title Robotics is complicated, time-consuming, and costly, making a robot for an introductory-level class is not practical

Gray, Jeffrey J.

378

Project Proposal Project Logistics  

E-Print Network [OSTI]

Project Proposal Ā· Project Logistics: Ā­ 2-3 person teams Ā­ Significant implementation, worth 55 and anticipated cost of copying to/from host memory. IV. Intellectual Challenges - Generally, what makes this computation worthy of a project? - Point to any difficulties you anticipate at present in achieving high

Hall, Mary W.

379

Regeneratively cooled coal combustor/gasifier with integral dry ash removal  

DOE Patents [OSTI]

A coal combustor/gasifier is disclosed which produces a low or medium combustion gas for further combustion in modified oil or gas fired furnaces or boilers. Two concentric shells define a combustion volume within the inner shell and a plenum between them through which combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

Beaufrere, Albert H. (Huntington, NY)

1983-10-04T23:59:59.000Z

380

Effect of fuel injection velocity on MILD combustion of syngas in axially-staged combustor  

Science Journals Connector (OSTI)

Abstract The role of fuel injection velocity on MILD (Moderate or Intense Low-oxygen Dilution) combustion of coal-derived syngas was examined in an axially staged combustor, where the secondary air was mixed with the flue gases from the gas generation zone to produce hot and diluted oxidant prior to its mixing with the secondary fuel. The global flame signatures, OH? radicals distribution, and exhaust emissions were obtained through experimental measurements, while the mixing behavior between the secondary fuel and oxidant was numerically studied. Higher secondary fuel injection velocity within 199–299 m/s facilitated the earlier entrainment of oxidizer into the secondary fuel and increased the flame lift-off height, resulting in a lower flame temperature, a more distributed reaction zone and reduced \\{NOx\\} emissions, but higher pressure loss and CO formation. The MILD regime yields lower \\{NOx\\} emissions compared to the traditional diffusion combustion mode, and the N2O-intermediate mechanism dominates the NO production in the syngas MILD flame with adiabatic flame temperature lower than 1565 K according to the prediction of the chemical reactor network model.

Ming-ming Huang; Wei-wei Shao; Yan Xiong; Yan Liu; Zhe-dian Zhang; Fu-lin Lei; Yun-han Xiao

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Cyber Security Audit and Attack Detection Toolkit: National SCADA Test Bed  

Broader source: Energy.gov (indexed) [DOE]

Audit and Attack Detection Toolkit: National SCADA Audit and Attack Detection Toolkit: National SCADA Test Bed May 2008 Cyber Security Audit and Attack Detection Toolkit: National SCADA Test Bed May 2008 This project of the cyber security audit and attack detection toolkit is adding control system intelligence to widely deployed enterprise vulnerability scanners and security event managers While many energy utilities employ vulnerability scanners and security event managers (SEM) on their enterprise systems, these tools often lack the intelligence necessary to be effective in control systems. This two-year project aims to integrate control system intelligence into widely deployed vulnerability scanners and SEM, and to integrate security incident detection intelligence into control system historians. These upgrades will

382

Effects of operation parameters on NO emission in an oxy-fired CFB combustor  

Science Journals Connector (OSTI)

Oxy-fuel Circulating Fluidized Bed (CFB) combustion technology, a very promising technology for CO2 capture, combines many advantages of oxy-fuel and CFB technologies. Experiments were carried out in a 50 kWth CFB facility to investigate how operation parameters influence the NO emission in O2/CO2 atmospheres. The simulated O2/CO2 atmospheres were used without recycling the flue gas. Results show that NO emission in 21% O2/79% CO2 atmosphere is lower than that in air atmosphere because of lower temperature and higher char and CO concentrations in the dense bed. Elevating O2 concentration from 21% to 40% in O2/CO2 atmosphere enhances fuel-N conversion to NO. Increasing bed temperature or oxygen/fuel stoichiometric ratio brings higher NO emission in O2/CO2 atmosphere, which is consistent with the results in air-fired CFB combustion. As primary stream fraction increases, NO emission increases more rapidly in O2/CO2 atmosphere than that in air atmosphere. Stream staging is more efficient for controlling NO emission in oxy-CFB combustion than that in air combustion. Oxygen staging provides an efficient way to reduce NO emission in oxy-CFB combustion without influencing the hydrodynamic characteristic in the riser.

Lunbo Duan; Changsui Zhao; Wu Zhou; Chengrui Qu; Xiaoping Chen

2011-01-01T23:59:59.000Z

383

Bed load equation evaluation based on alluvial river data, India  

Science Journals Connector (OSTI)

The rate of bed load transport in weight per unit width for ... material has been computed by collecting the field data of Tapi River, in the monsoon season ... of this paper is to estimate the bed load carried b...

S. M. Yadav; B. K. Samtani

2008-11-01T23:59:59.000Z

384

Design of a Pilot Plant Fluidized Bed Gasifier  

Science Journals Connector (OSTI)

This article presents the design principles for a biomass fluidized bed gasifier pilot plant. The fluidized bed gasifier has a nominal capacity of 400 kg ... most important parameters for the performance of the gasifier

K. Maniatis; V. Vassilatos; S. Kyritsis

1993-01-01T23:59:59.000Z

385

Current Status and Challenges within Fluidized Bed Combustion  

Science Journals Connector (OSTI)

Fluidized-bed technology is rapidly expanding. Today, more than 600 large (20+ MWth) FBC boilers with a total installed thermal capacity of ... beds (BFBC). The size of the boilers has increased steeply; the larg...

Mikko Hupa

2007-01-01T23:59:59.000Z

386

Development of a dry low-NOx gas turbine combustor for a natural-gas fueled 2MW co-generation system  

SciTech Connect (OSTI)

A dry low-NOx gas turbine combustor has been developed for natural-gas fueled co-generation systems in the power range of 1--4MW. The combustor. called the Double Swirler Combustor, uses the lean premixed combustion to reduce NOx emission. The combustor is characterized by two staged lean premixed combustion with two coaxial annular burners and a simple fuel control system without the complex variable geometry. Substantially low NOx level has been achieved to meet the strict NOx regulation to co-generation systems in Japan. High combustion efficiency has been obtained for a wide operating range. In 1994, Tokyo Gas and Ishikawajima-Harima Heavy Industries initiated a collaborative program to develop a natural-gas fueled low NOx gas turbine engine for new 2MW class co-generation system, named IM270. The Double Swirler Combustor, originally developed by Tokyo Gas, was introduced into the natural gas fueled version of the IM270. Engine test of the first production unit was successfully conducted to confirm substantially low NOx level of less than 15 ppm (O{sub 2} = 16%) with the output power of more than 2MW. Test for the durability and the reliability of the system is being conducted at Tokyo Gas Negishi LNG Terminal in Kanagawa, Japan and successful results have been so far obtained.

Mori, Masaaki; Sato, Hiroshi

1998-07-01T23:59:59.000Z

387

Fluidized bed gasification of agricultural residue  

E-Print Network [OSTI]

studied to develop a process which can convert organic waste matter into fuel gas. Hammond et al. (1974) described a fixed bed gasifier which operated at 1800 F (1256 K) and atmos- pheric pressure. When woodchips were used as the feed material...

Groves, John David

1979-01-01T23:59:59.000Z

388

Fluidized bed retorting of eastern oil shale  

SciTech Connect (OSTI)

This topical report summarizes the conceptual design of an integrated oil shale processing plant based on fluidized bed retorting of eastern New Albany oil shale. This is the fourth design study conducted by Foster Wheeler; previous design cases employed the following technologies: Fluidized bed rotating/combustion of Colorado Mahogany zone shale. An FCC concept of fluidized bed retorting/combustion of Colorado Mahogany zone shale. Directly heated moving vertical-bed process using Colorado Mahogany zone shale. The conceptual design encompasses a grassroots facility which processes run-of-mine oil shale into a syncrude oil product and dispose of the spent shale solids. The plant has a nominal capacity of 50,000 barrels per day of syncrude product, produced from oil shale feed having a Fischer Assay of 15 gallons per ton. Design of the processing units was based on non-confidential published information and supplemental data from process licensors. Maximum use of process and cost information developed in the previous Foster Wheeler studies was employed. The integrated plant design is described in terms of the individual process units and plant support systems. The estimated total plant investment is detailed by plant section and estimates of the annual operating requirements and costs are provided. In addition, process design assumptions and uncertainties are documented and recommendations for process alternatives, which could improve the overall plant economics, are discussed. 12 refs., 17 figs., 52 tabs.

Gaire, R.J.; Mazzella, G.

1989-03-01T23:59:59.000Z

389

Bed Bugs: Clinical Relevance and Control Options  

Science Journals Connector (OSTI)

...the treatment of field infestations...95) and cedar oil. The modes of...Best Yet cedar oil can kill all bed...the control of field infestations...complexes, as the gas cannot be tightly...Insecticides The cost to develop and...insects during spray operations. In laboratory...

Stephen L. Doggett; Dominic E. Dwyer; Pablo F. Peńas; Richard C. Russell

2012-01-01T23:59:59.000Z

390

Bed Bugs: Clinical Relevance and Control Options  

Science Journals Connector (OSTI)

...assist those who cannot pay the high price of control, bed bugs are set to...antigen and bronchial asthma in Egypt. J. Egypt. Soc. Parasitol. 21 : 735-746...Doggett, SL . 2009. Identification natural history, p 13-22. InSL Doggett...

Stephen L. Doggett; Dominic E. Dwyer; Pablo F. Peńas; Richard C. Russell

2012-01-01T23:59:59.000Z

391

Reversed flow fluidized-bed combustion apparatus  

DOE Patents [OSTI]

The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

Shang, Jer-Yu (Fairfax, VA); Mei, Joseph S. (Morgantown, WV); Wilson, John S. (Morgantown, WV)

1984-01-01T23:59:59.000Z

392

Failure Analysis of Bed Coil Tube in an Atmospheric Fluidized Bed Combustion Boiler  

Science Journals Connector (OSTI)

The fluidized bed combustion (FBC) technology is being used in thermal power plants for steam generation. FBC plants are more flexible than conventional plants ... fuels may be used for firing. The FBC technology...

M. Venkateswara Rao; S. U. Pathak…

2014-06-01T23:59:59.000Z

393

Development of an advanced process for drying fine coal in an inclined fluidized bed  

SciTech Connect (OSTI)

The objective of this research project was to demonstrate a technically feasible and economically viable process for drying and stabilizing high-moisture subbituminous coal. Controlled thermal drying of coal fines was achieved using the inclined fluidized-bed drying and stabilization process developed by the Western Research Institute. The project scope of work required completion of five tasks: (1) project planning, (2) characterization of two feed coals, (3) bench-scale inclined fluidized-bed drying studies, (4) product characterization and testing, and (5) technical and economic evaluation of the process. High moisture subbituminous coals from AMAX Eagle Butte mine located in the Powder River Basin of Wyoming and from Usibelli Coal Mine, Inc. in Healy, Alaska were tested in a 10-lb/hr bench-scale inclined fluidized-bed. Experimental results show that the dried coal contains less than 1.5% moisture and has a heating value over 11,500 Btu/lb. The coal fines entrainment can be kept below 15 wt % of the feed. The equilibrium moisture of dried coal was less than 50% of feed coal equilibrium moisture. 7 refs., 60 figs., 47 tabs.

Boysen, J.E.; Cha, C.Y.; Barbour, F.A.; Turner, T.F.; Kang, T.W.; Berggren, M.H.; Hogsett, R.F.; Jha, M.C.

1990-02-01T23:59:59.000Z

394

Forecasting Hospital Bed Availability Using Simulation and Neural Networks  

E-Print Network [OSTI]

Forecasting Hospital Bed Availability Using Simulation and Neural Networks Matthew J. Daniels is a critical factor for decision-making in hospitals. Bed availability (or alternatively the bed occupancy in emergency departments, and many other important hospital decisions. To better enable a hospital to make

Kuhl, Michael E.

395

Heat exchanger support apparatus in a fluidized bed  

DOE Patents [OSTI]

A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.

Lawton, Carl W. (West Hartford, CT)

1982-01-01T23:59:59.000Z

396

Healy Clean Coal Project: A DOE Assessment  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) Program is to provide the energy marketplace with advanced, more efficient, and environmentally responsible coal utilization options by conducting demonstrations of new technologies. These demonstration projects are intended to establish the commercial feasibility of promising advanced coal technologies that have been developed to a level at which they are ready for demonstration testing under commercial conditions. This document serves as a DOE post-project assessment (PPA) of the Healy Clean Coal Project (HCCP), selected under Round III of the CCT Program, and described in a Report to Congress (U.S. Department of Energy, 1991). The desire to demonstrate an innovative power plant that integrates an advanced slagging combustor, a heat recovery system, and both high- and low-temperature emissions control processes prompted the Alaska Industrial Development and Export Authority (AIDEA) to submit a proposal for this project. In April 1991, AIDEA entered into a cooperative agreement with DOE to conduct this project. Other team members included Golden Valley Electric Association (GVEA), host and operator; Usibelli Coal Mine, Inc., coal supplier; TRW, Inc., Space & Technology Division, combustor technology provider; Stone & Webster Engineering Corp. (S&W), engineer; Babcock & Wilcox Company (which acquired the assets of Joy Environmental Technologies, Inc.), supplier of the spray dryer absorber technology; and Steigers Corporation, provider of environmental and permitting support. Foster Wheeler Energy Corporation supplied the boiler. GVEA provided oversight of the design and provided operators during demonstration testing. The project was sited adjacent to GVEA's Healy Unit No. 1 in Healy, Alaska. The objective of this CCT project was to demonstrate the ability of the TRW Clean Coal Combustion System to operate on a blend of run-of-mine (ROM) coal and waste coal, while meeting strict environmental requirements. DOE provided $117,327,000 of the total project cost of $282,300,000, or 41.6 percent. Construction for the demonstration project was started in May 1995, and completed in November 1997. Operations were initiated in January 1998, and completed in December 1999. The evaluation contained herein is based primarily on information from the AIDEA's Final Report (Alaska Industrial Development and Export Authority, 2001), as well as other references cited.

National Energy Technology Laboratory

2003-09-01T23:59:59.000Z

397

Acoustic characterization of a partially-premixed gas turbine model combustor: Syngas and hydrocarbon fuel comparisons  

Science Journals Connector (OSTI)

In this work, the acoustic behavior of a combustion instability in a gas turbine model combustor was investigated as fuel properties, air flow rates, and burner geometry were varied. The dual-swirl burner, developed at DLR Stuttgart by Meier, was operated using syngas (H2/CO), ethylene, propane, and methane. The frequency of the instability was found to vary significantly from 250 to 480 Hz. When the plenum volume and the exhaust pipe length and diameter were changed, the frequencies followed trends similar to a Helmholtz resonator. The variation of fuel type, flame speed, and air flow rate greatly altered the instability frequency and amplitude. These effects are not predicted by Helmholtz or organ tone acoustic theory. Higher frequencies were correlated with larger laminar burning velocities and higher air flow rates. The burner is a forced resonator, in which the flame oscillations couple with the flowfield to create convectively altered Helmholtz resonances. This suggests the need for an improved model of a forced Helmholtz resonator that includes flame properties. Alkane fuels displayed similar acoustic trends, but ethylene varied greatly from methane and propane. Syngas displayed different behavior than hydrocarbon fuels, even when the laminar flame speeds of the fuels were matched between ethylene and a syngas mixture. Flame characteristics such as anchoring, liftoff height, and shape appear to play a major role in the determination of instability strength and presence. With increasing hydrogen-content in the syngas-mixture, the flame transitions from a lifted to a fully anchored flame, resulting in a drastic decrease in the acoustic amplitude associated with non-resonating flames. Rayleigh indices show that flat flames create strong regions of thermo-acoustic coupling compared to axially extended V-shape flames. It is concluded that, in the current burner configuration, integrated-acoustics occur that involve a combination of Helmholtz and convective-mechanisms.

Patton M. Allison; James F. Driscoll; Matthias Ihme

2013-01-01T23:59:59.000Z

398

Effects of syngas composition on combustion induced vortex breakdown (CIVB) flashback in a swirl stabilized combustor  

Science Journals Connector (OSTI)

Flame flashback attributed to combustion induced vortex breakdown (CIVB) is a major design challenge for swirl stabilized burner combustors. This paper presents an experimental investigation of combustion induced vortex breakdown (CIVB) flashback propensity for flames yielded from Hydrogen (H2)–Carbon Monoxide (CO) fuel blends and actual synthesized gas (syngas) mixtures. A two-fold experimental approach, consisting of a high definition digital imaging system and a high speed PIV system, was employed. The main emphasis was on the effect of concentration of different constituents in fuel mixtures on flashback limit. In addition, the effect of Swirl Number on flashback propensity was discussed. The percentage of H2 in fuel mixtures played the dominant role when CIVB flashback occurred. For a given air mass flow rate, the mixture containing a higher percentage of H2 underwent flashback at much leaner conditions. Flashback maps for actual syngas fuel compositions showed a distinct behavior when various concentrations of diluents were introduced in the mixture. For the two major diluents tested, carbon dioxide (CO2) and nitrogen dioxide (NO2), CO2 was more dominant. The effect of Swirl Number on the flashback propensity was also tested and showed a decrease with an increase in Swirl Number. The final portion of this paper also provides an analysis of flow field of reacting flames which revealed complex vortex–chemistry interactions leading to vortex breakdown and flashback. Based on the experimental results a parametric model similar to Peclet Number approach was developed employing a flame quenching concept. A value of the quench parameter, Cquench was obtained from the correlation of flow Peclet Number and flame Peclet Number, which was observed to be dominated by the fuel composition rather than Swirl Number.

Bidhan Dam; Gilberto Corona; Mir Hayder; Ahsan Choudhuri

2011-01-01T23:59:59.000Z

399

Plasma assisted NO{sub x} reduction in existing coal combustors. Final report  

SciTech Connect (OSTI)

The feasibility of NO{sub x} reduction using plasma injection has been investigated. Both numerical and experimental methods were used in the development of this new NO{sub x}reduction technique. The numerical analysis was used to investigate various flow mechanisms in order to provide fundamental support in the development of this new NO{sub x} control technique. The calculations using this approach can give the information of the particle trajectories and distributions which are important for the design of the in-flame plasma injection configuration. The group model also established the necessary ground for further complete modeling of the whole process including the chemical kinetics. Numerical calculations were also performed for a turbulent gas flow field with variable properties. The results provided fundamental understanding of mixing effects encountered in the experiments at Pittsburgh Energy and Technology Center. A small scale experiment facility was designed and constructed at the heterogeneous combustion laboratory at Carnegie Mellon University. A series of tests were conducted in this setup to investigate the potential of the ammonia plasma injection for NO{sub x} reduction and parametric effects of this process. The experimental results are very promising. About 86% NO{sub x} reduction was achieved using ammonia radicals produced by argon plasma within the present test range. The total percentage of NO{sub x} reduction increases when ammonia flowrate, argon flow rate and initial NO concentration increase and when plasma power and the amount of excess air in the combustor decrease. A combined transport and reaction model was postulated for understanding the mechanism of NO{sub x} reduction using the plasma injection.

Yao, S.C.; Russell, T.

1991-12-31T23:59:59.000Z

400

PROJECT OVERVIEW Construction Completion, August 2014 Open to Patients, February 2015  

E-Print Network [OSTI]

and cancer patients. PROJECT COST The cost of the first phase of the Mission Bay Hospitals Project is $1PROJECT OVERVIEW Construction Completion, August 2014 Open to Patients, February 2015 www.missionbayhospitals.ucsf.edu PROJECT SUMMARY UCSF is building a 289-bed, integrated hospital complex to serve children, women

Klein, Ophir

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Evaluation of fluid bed heat exchanger optimization parameters. Final report  

SciTech Connect (OSTI)

Uncertainty in the relationship of specific bed material properties to gas-side heat transfer in fluidized beds has inhibited the search for optimum bed materials and has led to over-conservative assumptions in the design of fluid bed heat exchangers. An experimental program was carried out to isolate the effects of particle density, thermal conductivity, and heat capacitance upon fluid bed heat transfer. A total of 31 tests were run with 18 different bed material loads on 12 material types; particle size variations were tested on several material types. The conceptual design of a fluidized bed evaporator unit was completed for a diesel exhaust heat recovery system. The evaporator heat transfer surface area was substantially reduced while the physical dimensions of the unit increased. Despite the overall increase in unit size, the overall cost was reduced. A study of relative economics associated with bed material selection was conducted. For the fluidized bed evaporator, it was found that zircon sand was the best choice among materials tested in this program, and that the selection of bed material substantially influences the overall system costs. The optimized fluid bed heat exchanger has an estimated cost 19% below a fin augmented tubular heat exchanger; 31% below a commercial design fluid bed heat exchanger; and 50% below a conventional plain tube heat exchanger. The comparisons being made for a 9.6 x 10/sup 6/ Btu/h waste heat boiler. The fluidized bed approach potentially has other advantages such as resistance to fouling. It is recommended that a study be conducted to develop a systematic selection of bed materials for fluidized bed heat exchanger applications, based upon findings of the study reported herein.

Not Available

1980-03-01T23:59:59.000Z

402

Creating a coal bed Geographic Information System (GIS) for West Virginia  

SciTech Connect (OSTI)

The goal of the Coal Bed Mapping Project at the West Virginia Geological and Economic Survey is to produce an accurate Geographic Information System (GIS)-based inventory of the coal beds of West Virginia. GIS computer technology provides new and powerful ways to create, display, and analyze coal information. Geologists are creating maps depicting various aspects of West Virginia coal beds using a system of networked PCs and engineering layers or coverages, include: a structural model, the outcrop, the areas mined by surface, auger, and underground methods, coal isopach, and locations of samples taken for chemical analysis. Mapping is organized around the 7.5-minute quadrangles. Once significant numbers of contiguous quadrangles are mapped, GIS gives the users flexibility to view the information in different combinations of coverages, for any desired geographic window, at any scale. Coverages are designed to take advantage of the analytical capabilities inherent in GIS technology. The coal bed coverages will have significant value to West Virginia and its citizens. For example, potential uses include a compliance tool for the mineral lands tax program, coal resource estimates, subsidence risk assessment and amelioration, planning and development, and mine permitting and regulation.

Fedorko, N.; Blake, B.M.; McColloch, G.H.; Timberlake, K.J. [West Virginia Geological and Economic Survey, Morgantown, WV (United States)

1996-12-31T23:59:59.000Z

403

Cross spectra between temperature and pressure in a constant area duct downstream of a hydrogen fueled combustor  

Science Journals Connector (OSTI)

It was shown in a recent paper [J. H. Miles and E. A. Krejsa J. Acoust. Soc. Am. 72 2008–2019 (1982)] that knowledge of pressure?temperature auto spectra and cross spectra could be used in a model for sound propagation in a variable duct having acoustic and convected entropy fluctuations. The present exploratory study investigates the measurement of pressure?temperature cross spectra and coherence and temperature cross spectra and coherence at well separated points in a combustion rig. Data obtained near the inlet and the exit of a 6.44?m?long duct attached to a J?47 combustor fueled with hydrogen are presented.

J. H. Miles; C. A. Wasserbauer; E. A. Krejsa

1983-01-01T23:59:59.000Z

404

Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidised bed reactor  

Science Journals Connector (OSTI)

An experimental study was undertaken to compare the differences between municipal solid waste (MSW) derived solid recovered fuel (SRF) (complying with CEN standards) and refuse derived fuel (RDF). Both fuels were co-combusted with coal in a 50 kW fluidised bed combustor and the metal emissions were compared. Synthetic SRF was prepared in the laboratory by grinding major constituents of MSW such as paper, plastic, textile and wood. RDF was obtained from a local mechanical treatment plant. Heavy metal emissions in flue gas and ash samples from the (coal + 10% SRF) fuel mixture were found to be within the acceptable range and were generally lower than that obtained for coal + 10% RDF fuel mixture. The relative distribution of heavy metals in ash components and the flue gas stream shows the presence of a large fraction (up to 98%) of most of the metals in the ash (except Hg and As). Thermo-gravimetric (TG) analysis of SRF constituents was performed to understand the behaviour of fuel mixtures in the absence and presence of air. The results obtained from the experimental study will enhance the confidence of fuel users towards using MSW-derived SRF as an alternative fuel.

S.T. Wagland; P. Kilgallon; R. Coveney; A. Garg; R. Smith; P.J. Longhurst; S.J.T. Pollard; N. Simms

2011-01-01T23:59:59.000Z

405

Filter system cost comparison for integrated gasification combined cycle and pressurized fluidized-bed combustion power systems  

SciTech Connect (OSTI)

To assess the relative cost of components and sub-systems for a hot gas particulate cleanup system a cost comparison between the filter systems for two advanced coal-based power plants was conducted. Assessing component and sub-system costs permits the most beneficial areas for product improvement to be identified. The results from this study are presented. The filter system is based on a Westinghouse Advanced Particulate Filter Concept which is designed to operate with ceramic candle filters. The Foster Wheeler second Generation 453 MWe (net) Pressurized Fluidized-Bed Combustor (PFBC) and the KRW 458 MWe (net) Integrated Gasification Combined Cycle (IGCC) power plants are used for the comparison. The comparison presents the general differences of the two power plants and the process related filtration conditions for PFBC and IGCC systems. The results present the conceptual designs for the PFBC and IGCC filter systems as well as a cost summary comparison. The cost summary comparison includes the total plant cost, the fixed operating and maintenance cost, the variable operating and maintenance cost and the effect on the cost of electricity for the two filter systems. The most beneficial areas for product improvement are identified.

Dennis, R.A.; McDaniel, H.M. [Dept. of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center; Buchanan, T.; Chen, H.; Harbaugh, L.B.; Klett, M.; Zaharchuk, R. [Gilbert/Commonwealth, Reading, PA (United States)

1995-12-31T23:59:59.000Z

406

Simulation of the Fuel Reactor of a Coal?Fired Chemical Looping Combustor  

Science Journals Connector (OSTI)

Responsible carbon management (CM) will be required for the future utilization of coal for power generation. CO 2 separation is the more costly component of CM not sequestration. Most methods of capture require a costly process of gas separation to obtain a CO 2 ?rich gas stream. However recently a process termed Chemical Looping Combustion (CLC) has been proposed in which an oxygen?carrier is used to provide the oxygen for combustion. This process quite naturally generates a separate exhaust gas stream containing mainly H 2 O and CO 2 but requires two reaction vessels an Air Reactor (AR) and a Fuel Reactor (FR). The carrier (M for metal the usual carrier) is oxidized in the AR. This highly exothermic process provides heat for power generation. The oxidized carrier (MO) is separated from this hot vitiated air stream and transported to the FR where it oxidizes the hydrocarbon fuel yielding an exhaust gas stream of mainly H 2 O and CO 2 . This process is usually slightly endothermic so that the carrier must also transport the necessary heat of reaction. The reduced carrier (M) is then returned to the air reactor for regeneration hence the term “looping.” The net chemical reaction and energy release is identical to that of conventional combustion of the fuel. However CO 2 separation is easily achieved the only operational penalty being the slight pressure losses required to circulate the carrier. CLC requires many unit operations involving gas?solid or granular flow. To utilize coal in the fuel reactor in either a moving bed or bubbling fluidized bed the granular flow is especially critical. The solid coal fuel must be heated by the recycled metal oxide driving off moisture and volatile material. The remaining char must be gasified by H 2 O (or CO 2 ) which is recycled from the product stream. The gaseous product of these reactions must then contact the MO before leaving the bed to obtain complete conversion to H 2 O and CO 2 . Further the reduced M particles must be removed from the bed and returned to the air reactor without any accompanying unburned fuel. This paper presents a simulation of the gas?particle granular flow with heat transfer and chemical reactions in the FR. Accurate simulation of the segregation processes depending on particle density and size differences between the carrier and the fuel allows the design of a reactor with the desired behavior.

Kartikeya Mahalatkar; Thomas O’Brien; E. David Huckaby; John Kuhlman

2009-01-01T23:59:59.000Z

407

Coal Bed Methane Protection Act (Montana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Coal Bed Methane Protection Act (Montana) Coal Bed Methane Protection Act (Montana) Coal Bed Methane Protection Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Institutional Fuel Distributor Program Info State Montana Program Type Environmental Regulations Provider Montana Department of Natural Resources and Conservation The Coal Bed Methane Protection Act establishes a long-term coal bed methane protection account and a coal bed methane protection program for the purpose of compensating private landowners and water right holders for damage to land and to water quality and availability that is attributable to the development of coal bed methane wells. The Act aims to provide for

408

Coal Bed Sequestration of Carbon Dioxide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COAL BED SEQUESTRATION OF CARBON DIOXIDE COAL BED SEQUESTRATION OF CARBON DIOXIDE R. Stanton (rstanton@usgs.gov; 703-648-6462) U.S. Geological Survey MS 956 National Center Reston, VA 20192 R. Flores (rflores@usgs.gov; 303-236-7774) U.S. Geological Survey MS 939, Denver Federal Center Denver, CO 80225 P.D. Warwick (pwarwick@usgs.gov; 703-648-6469) H. Gluskoter (halg@usgs.gov; 703-648-6429) U.S. Geological Survey MS 956 National Center Reston, VA 20192 G.D. Stricker (303-236-7763) U.S. Geological Survey MS 939, Denver Federal Center Denver, CO 80225 Introduction Geologic sequestration of CO 2 generated from fossil fuel combustion may be an environmentally attractive method to reduce the amount of greenhouse gas emissions. Of the geologic options, sequestering CO

409

Fluidized bed gasification of extracted coal  

DOE Patents [OSTI]

Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

Aquino, Dolores C. (Houston, TX); DaPrato, Philip L. (Westfield, NJ); Gouker, Toby R. (Baton Rouge, LA); Knoer, Peter (Houston, TX)

1986-01-01T23:59:59.000Z

410

OH-PLIF Measurements of High-Pressure, Hydrogen Augmented Premixed Flames in the SimVal Combustor  

SciTech Connect (OSTI)

Planar Laser Induced Fluorescence (PLIF) measurements of the hydroxyl radical in lean, premixed natural gas flames augmented with hydrogen are presented. The experiments were conducted in the SimVal combustor at the National Energy Technology Laboratory (NETL) at operating pressures from 1 to 8 atmospheres. The data, which was collected in a combustor with well controlled boundary conditions, is intended to be used for validating Computational Fluid Dynamics (CFD) models under conditions directly relevant to land-based gas turbine engines. The images, which show significant effects of hydrogen on local flame quenching are discussed in terms of a turbulent premixed combustion regime and non-dimensional parameters such as Karlovitz number. Pressure was found to thin the OH region, but only had a secondary effect on overall flame shape compared to the effects of hydrogen addition which was found to decrease local quenching and shorten the turbulent flame brush. A method to process the individual images based on local gradients of fluorescence intensity is proposed and results are presented. Finally, the results of several Large Eddy Simulations (LES) are presented and compared to the experimental data in an effort to understand the issues related to model validation, especially for simulations that do not include OH as an intermediate species.

Strakey, P.A.; Woodruff, S.D.; Williams, T.C. (Sandia); Schefer, R.W. (Sandia)

2007-01-01T23:59:59.000Z

411

The effects and characteristics of hydrogen in SNG on gas turbine combustion using a diffusion type combustor  

Science Journals Connector (OSTI)

Abstract Converting coal to natural gas may be one of the alternative solutions for satisfying the demand for natural gas. However, synthetic natural gas (SNG) has not been proven effective in natural gas-fired power plants. In this research, several combustion tests using a diffusion type combustor were conducted to determine the effect of hydrogen content in SNG on gas turbine combustion. Three kinds of SNG with different H2 content up to 3%vol were used for the combustion tests. Even a small amount of hydrogen in SNG affects the flame structure: it shortened the flame length and enlarged the flame angle slightly. However, hydrogen content up to 3% in SNG did not affect the gas turbine combustion characteristics, which are emission performance and combustion efficiency. Due to a similarity with real gas turbine combustor conditions for power generation, a high pressure combustion test helped us verify the ambient pressure combustion tests conducted to determine the effect of hydrogen in SNG. In the high pressure combustion test, the pattern factors were identical even though the hydrogen content was varied from 0% to 3%.

Seik Park; Uisik Kim; Minchul Lee; Sungchul Kim; Dongjin Cha

2013-01-01T23:59:59.000Z

412

Analysis/control of in-bed tube erosion phenomena in the fluidized bed combustion (FBC) system. Technical progress report No. 2, [January 1, 1993--March 31, 1993  

SciTech Connect (OSTI)

This technical report summarizes the research work performed and the progress achieved during the period of January 1, 1993 to March 31, 1993. The prototype dust collector as a part of the exhaust system was designed and fabricated to perform the well-controlled test in the bench-scale FBC system. The instrumentation for flow-measuring has been conducted in the system, which includes the minimum fluidization velocity and bed-pressure drop, mean gas velocity, calculation of particle terminal velocity and its operating range, and static pressure distribution in the system. The bubble velocity was also predicted. The project has been progressing well. Future efforts will be concentrated on instrumentation for erosion-measuring. In addition to that, instrumentation for flow-measuring will be continued to support the erosion-measuring. Theoretical analysis and modeling on in-bed tube erosion will be initiated along with the experimental results. Experience and observation of in-bed tube erosion will be predicted.

Lee, Seong W.

1993-06-01T23:59:59.000Z

413

Project Year Project Team  

E-Print Network [OSTI]

; Ian Sims, Student, Electrical and Computer Engineering, Whiting School of Engineering Project Title and Jazz Theory/Keyboard I & II. Technologies Used Digital Audio, Digital Video, Graphic Design, HTML

Gray, Jeffrey J.

414

Task II: evaluation of heat-exchanger and turbine materials for use in a coal-fired fluidized-bed-combustion environment. Final report, July 1, 1976-July 31, 1980  

SciTech Connect (OSTI)

Specific alloys were tested as in-bed and above-bed heat exchanger materials in the fireside environment of a pressurized fluidized bed coal combustor (PFBCC). Corrosion conditions on the alloys exposed to normal and very low oxygen pressures in the presence of calcium sulfate deposits were simulated. Bayonet-type specimen probes of selected alloys were exposed in the Exxon Miniplant at probe control temperatures representative of conventional steam, advanced steam, helium and liquid metal energy conversion cycles. Corrosion/erosion testing of the air cooled, welded samples consisted of a 117-hour shakedown run followed by an incremental 1000-hour exposure. Metallurgical analyses were run on removed specimens. The test matrix for in-bed and above-bed exposure was: 1050/sup 0/F (566/sup 0/C): 2.25 Cr-1Mo and 9Cr-1Mo steels (in-bed only); 1200/sup 0/F (649/sup 0/C): 304 SS and Incoloy-800; 1400/sup 0/F (760/sup 0/C): Incoloy-800 and Hastelloy-X; and 1600/sup 0/F (871/sup 0/C); Hastelloy-X and Haynes-188. Subscale sulfides formed in most of the alloys. The most severe corrosion was noted in the ferritic 2.25Cr-1Mo and 9Cr-1Mo steels at a nominal control temperature of 1050/sup 0/F (566/sup 0/C) and in Hastelloy-X at 1400/sup 0/F (760/sup 0/C) exposed in-bed. The best overall behavior of in-bed alloys was observed for Incoloy-800, which had a maximum metal loss of about .007 in (.18 mm) in 1117 hours of exposure at both 1200/sup 0/F (649/sup 0/C) and 1400/sup 0/F (760/sup 0/C) but averaged more nearly .001 in (.025 mm) to .002 in (.051 mm) and in Haynes-188 which showed maximum wall thinning of less than .003 in (.076 mm) at 1600/sup 0/F (871/sup 0/C) in the longest time exposure.

Not Available

1981-09-30T23:59:59.000Z

415

Magnetohydrodynamic projects at the CDIF (Component Development and Integration Facility)  

SciTech Connect (OSTI)

This quarterly technical progress report presents the tasks accomplished at the Component Development and Integration Facility during the third quarter of FY90. Areas of technical progress this quarter included: coal system development; seed system development; test bay modification; channel power dissipation and distribution system development; integrated topping cycle/proof-of-concept current controls project; oxygen system storage upgrade; iron core magnet thermal protection system checkout; TRW slag rejector/CDIF slag removal project; stack gas/environmental compliance upgrade; coal-fired combustor support; 1A channels fabrication and assembly; support of Mississippi State University diagnostic testing; test operations and results; data enhancement; data analysis and modeling; technical papers; and projected activities. 2 tabs.

Not Available

1990-01-01T23:59:59.000Z

416

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: Construction Project Team: Project Facts & Figures: Budget: Ā£1.1M Funding Source: Departmental Construction Project Programme: Start on Site: November 2010 End Date : March 2011 Occupation Date: March 2011 For further information contact Project Manager as listed above

417

Project Fact Sheet Project Update  

E-Print Network [OSTI]

Project Fact Sheet Project Update: Project Brief: The works cover the refurbishment of floors 4, 5 operating theatre. The Bionanotechnology Centre is one of the projects funded from the UK Government's Ā£20.imperial.ac.uk/biomedeng Construction Project Team: Project Facts & Figures: Budget: Ā£13,095,963 Funding Source: SRIF II and Capital

418

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: This project refurbished half of the 5th and 7th floors on the Faculty of Medicine, please visit: http://www1.imperial.ac.uk/medicine/ Construction Project Team: Project Facts & Figures: Budget: Ā£3,500,000 Funding Source: SRIF III Construction Project Programme: Start

419

Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module  

Broader source: Energy.gov [DOE]

Acciona Solar, under the Thermal Storage FOA, plans to develop a prototype thermal energy storage (TES) module with high efficiency. This project is looking at a packed or structured bed TES tank with molten salt flowing through it.

420

Second-generation pressurized fluidized bed combustion  

SciTech Connect (OSTI)

Under the sponsorship of the United States Department of Energy, Foster Wheeler Corporation is developing second-generation pressurized fluidized bed combustion (PFBC) power plant technology that will enable this type of plant to operate with net plant efficiencies in the range of 43 to 46 percent (based on the higher heating value of the coal), with a reduction in the cost of electricity of at least 20 percent. A three-phase program is under way. Its scope encompasses the conceptual design of a commercial plant through the process of gathering needed experimental test data to obtain design parameters.

Wolowodiuk, W.; Robertson, A.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Second-generation pressurized fluidized bed combustion  

SciTech Connect (OSTI)

Under the sponsorship of the United States Department of Energy, Foster Wheeler Corporation is developing second-generation pressurized fluidized bed combustion (PFBC) power plant technology that will enable this type of plant to operate with net plant efficiencies in the range of 43 to 46 percent (based on the higher heating value of the coal), with a reduction in the cost of electricity of at least 20 percent. A three-phase program is under way. Its scope encompasses the conceptual design of a commercial plant through the process of gathering needed experimental test data to obtain design parameters.

Wolowodiuk, W.; Robertson, A.

1992-05-01T23:59:59.000Z

422

Methanol synthesis in a trickle bed reactor  

E-Print Network [OSTI]

kinetic models for methanol synthesis under the assumption that the rate limiting step was the reaction between an adsorbed CO molecule and two adsorbed H2 molecules. The experiment was conducted over a Cu/ZnO/Cr~03 catalyst in a fixed bed reactor... to account for the large degree of initial deactivation. However, Rozovskii (1980) claimed the opposite and stated that methanol is made from carbon dioxide and no methanol is produced from Hz/CO mixtures over the Cu/ZnO/Alz03 catalyst. Liu et al. (1984...

Tjandra, Sinoto

1992-01-01T23:59:59.000Z

423

Gas fluidized-bed stirred media mill  

DOE Patents [OSTI]

A gas fluidized-bed stirred media mill is provided for comminuting solid ticles. The mill includes a housing enclosing a porous fluidizing gas diffuser plate, a baffled rotor and stator, a hollow drive shaft with lateral vents, and baffled gas exhaust exit ports. In operation, fluidizing gas is forced through the mill, fluidizing the raw material and milling media. The rotating rotor, stator and milling media comminute the raw material to be ground. Small entrained particles may be carried from the mill by the gas through the exit ports when the particles reach a very fine size.

Sadler, III, Leon Y. (Tuscaloosa, AL)

1997-01-01T23:59:59.000Z

424

Integrated Gasification Combined Cycle Based on Pressurized Fluidized Bed Gasification  

Science Journals Connector (OSTI)

Enviropower Inc. has developed a modern power plant concept based on an integrated pressurized fluidized bed gasification and gas turbine combined cycle (IGCC)....

Kari Salo; J. G. Patel

1997-01-01T23:59:59.000Z

425

German Pebble Bed Research Reactor Highly Enriched Uranium (HEU...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Potential Acceptance and Disposition of German Pebble Bed Research Reactor Highly Enriched Uranium (HEU) Fuel Environmental Assessment Maxcine Maxted, DOE-SR Used Nuclear Fuel...

426

Growth and flowering of bedding plants grown in landscape bed amended with hydrophilic polymers  

E-Print Network [OSTI]

Field study one incorporated hydrophilic polymers into field plots of bedding plants including 25, 50, 75, or 1 00 lb/1 00oft2 . Data recorded during the growing season included flower number, visual rating, soil moisture and temperature, and plant...

Boatright, Jennifer Lynn

1994-01-01T23:59:59.000Z

427

Bed-inventory Overturn Mechanism for Pant-leg Circulating Fluidized Bed Boilers  

E-Print Network [OSTI]

A numerical model was established to investigate the lateral mass transfer as well as the mechanism of bed-inventory overturn inside a pant-leg circulating fluidized bed (CFB), which are of great importance to maintain safe and efficient operation of the CFB. Results show that the special flow structure in which the solid particle volume fraction along the central line of the pant-leg CFB is relative high enlarges the lateral mass transfer rate and make it more possible for bed inventory overturn. Although the lateral pressure difference generated from lateral mass transfer inhibits continuing lateral mass transfer, providing the pant-leg CFB with self-balancing ability to some extent, the primary flow rate change due to the outlet pressure change often disable the self-balancing ability by continually enhancing the flow rate difference. As the flow rate of the primary air fan is more sensitive to its outlet pressure, it is easier to lead to bed inventory overturn. While when the solid particle is easier to c...

Wang, Zhe; Yang, Zhiwei; West, Logan; Li, Zheng

2011-01-01T23:59:59.000Z

428

What is a bed bug? Bed bugs are small, oval, reddish brown, non-  

E-Print Network [OSTI]

zippers. Thus, experts recommend using hard luggage that closes tight. Ā·Protectyourclothes. Seal your clothes inside air-tight bags. Ā·Protectyourluggage. Never set your luggage on the bed or on a couch. Put. Ā·Treatyourluggagebeforeyoustoreit. After you have unpacked, vacuum your luggage thoroughly. Also, if it is hot outside, you can seal

Almor, Amit

429

Project Year Project Team  

E-Print Network [OSTI]

An Engineer's Guide to the Structures of Baltimore Audience Students from the Krieger School of Arts City, interfaced through a course website, the team will integrate descriptions of structural behavior format. Technologies Used HTML/Web Design, MySQL Project Abstract Structural analysis is typically taught

Gray, Jeffrey J.

430

Project Year Project Team  

E-Print Network [OSTI]

information systems (GIS) tools to design maps that integrate data for visualizing geographic concepts School of Engineering Project Title GIS & Introductory Geography Audience Undergraduate students on how to use the Internet for geographic research, and an interactive introduction to GIS through online

Gray, Jeffrey J.

431

Project Management Project Managment  

E-Print Network [OSTI]

Ā­ Inspired by agile methods #12;Background Ā· Large-scale software development & IT projects, plagued relations #12;One Agile Approach to Scheduling Ā· The creative nature of game development resist heavy up Problems Ā­incompatible platforms, 3rd party etc. #12;Is Games Development Similar? Ā· Yes & No

Stephenson, Ben

432

MHD Integrated Topping Cycle Project  

SciTech Connect (OSTI)

The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

Not Available

1992-01-01T23:59:59.000Z

433

An analysis of ilmenite particles used as bed material for combustion of biomass in a CFB boiler.  

E-Print Network [OSTI]

??Combustion of biomass in a fluidized bed boiler with silica sand as bed material is related to problems such as agglomeration of bed material and… (more)

Corcoran, Angelica

2013-01-01T23:59:59.000Z

434

Project Accounts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ā» Project Accounts Ā» Project Accounts Project Accounts Overview Project accounts are designed to facilitate collaborative computing by allowing multiple users to use the same account. All actions performed by the project account are traceable back to the individual who used the project account to perform those actions via gsisshd accounting logs. Requesting a Project Account PI's, PI proxies and project managers are allowed to request a project account. In NIM do "Actions->Request a Project Account" and fill in the form. Select the repository that the Project Account is to use from the drop-down menu, "Sponsoring Repository". Enter the name you want for the account (8 characters maximum) and a description of what you will use the account for and then click on the "Request Project Account" button. You

435

EFFECT OF COMBUSTOR INLET GEOMETRY ON ACOUSTIC SIGNATURE AND FLOW FIELD BEHAVIOUR OF THE LOW SWIRL INJECTOR  

SciTech Connect (OSTI)

Low Swirl Injector (LSI) technology is a lean premixed combustion method that is being developed for fuel-flexible gas turbines. The objective of this study is to characterize the fuel effects and influences of combustor geometry on the LSI's overall acoustic signatures and flowfields. The experiments consist of 24 flames at atmospheric condition with bulk flows ranging between 10 and 18 m/s. The flames burn CH{sub 4} (at {phi} = 0.6 & 0.7) and a blend of 90% H{sub 2} - 10% CH{sub 4} by volume (at {phi} = 0.35 & 0.4). Two combustor configurations are used, consisting of a cylindrical chamber with and without a divergent quarl at the dump plane. The data consist of pressure spectral distributions at five positions within the system and 2D flowfield information measured by Particle Imaging Velocimetry (PIV). The results show that acoustic oscillations increase with U{sub 0} and {phi}. However, the levels in the 90% H{sub 2} flames are significantly higher than in the CH{sub 4} flames. For both fuels, the use of the quarl reduces the fluctuating pressures in the combustion chamber by up to a factor of 7. The PIV results suggest this to be a consequence of the quarl restricting the formation of large vortices in the outer shear layer. A Generalized Instability Model (GIM) was applied to analyze the acoustic response of baseline flames for each of the two fuels. The measured frequencies and the stability trends for these two cases are predicted and the triggered acoustic mode shapes identified.

Therkelsen, Peter L.; Littlejohn, David; Cheng, Robert K.; Portillo, J. Enrique; Martin, Scott M.

2009-11-30T23:59:59.000Z

436

Project Fact Sheet Project Update  

E-Print Network [OSTI]

Project Fact Sheet Project Update: Project Brief: A state of the art facility, at Hammersmith information visit the Faculty of Medicine web pages http://www1.imperial.ac.uk/medicine/ Construction Project Team: Project Facts & Figures: Budget: Ā£60 000 000 Funding Source: SRIF II (Imperial College), GSK, MRC

437

Project Fact Sheet Project Update  

E-Print Network [OSTI]

Project Fact Sheet Project Update: Project Brief: The refurbishment of the instrumentation equipment. This project encompasses refurbishment work on over 1,150m2 of laboratory space across four, the completed project will allow researchers to expand their work in satellite instrumentation, the fabrication

438

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: In the first phase of the Union Building re.union.ic.ac.uk/marketing/building Construction Project Team: Project Facts & Figures: Budget: Ā£1,400,000 Funding Source: Capital Plan and Imperial College Union reserves Construction Project Programme: Start on Site: August 2006 End Date: March

439

Volume Project  

E-Print Network [OSTI]

Math 13900. Volume Project. For the following project, you may use any materials. This must be your own original creation. Construct a right pyramid with a base ...

rroames

2010-01-12T23:59:59.000Z

440

Neural Network Based Montioring and Control of Fluidized Bed.  

SciTech Connect (OSTI)

The goal of this project was to develop chaos analysis and neural network-based modeling techniques and apply them to the pressure-drop data obtained from the Fluid Bed Combustion (FBC) system (a small scale prototype model) located at the Federal Energy Technology Center (FETC)-Morgantown. The second goal was to develop neural network-based chaos control techniques and provide a suggestive prototype for possible real-time application to the FBC system. The experimental pressure data were collected from a cold FBC experimental set-up at the Morgantown Center. We have performed several analysis on these data in order to unveil their dynamical and chaotic characteristics. The phase-space attractors were constructed from the one dimensional time series data, using the time-delay embedding method, for both normal and abnormal conditions. Several identifying parameters were also computed from these attractors such as the correlation dimension, the Kolmogorov entropy, and the Lyapunov exponents. These chaotic attractor parameters can be used to discriminate between the normal and abnormal operating conditions of the FBC system. It was found that, the abnormal data has higher correlation dimension, larger Kolmogorov entropy and larger positive Lyapunov exponents as compared to the normal data. Chaotic system control using neural network based techniques were also investigated and compared to conventional chaotic system control techniques. Both types of chaotic system control techniques were applied to some typical chaotic systems such as the logistic, the Henon, and the Lorenz systems. A prototype model for real-time implementation of these techniques has been suggested to control the FBC system. These models can be implemented for real-time control in a next phase of the project after obtaining further measurements from the experimental model. After testing the control algorithms developed for the FBC model, the next step is to implement them on hardware and link them to the experimental system. In this report, the hardware implementation issues of the control algorithms are also discussed.

Bodruzzaman, M.; Essawy, M.A.

1996-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Resource Assessment & Production Testing for Coal Bed Methane in the Illinois Basin  

SciTech Connect (OSTI)

In order to assess the economic coal bed methane potential of the Illinois Basin, the geological surveys of Illinois, Indiana and Kentucky performed a geological assessment of their respective parts of the Illinois Basin. A considerable effort went into generating cumulative coal thickness and bed structure maps to identify target areas for exploratory drilling. Following this, the first project well was drilled in White County, Illinois in October 2003. Eight additional wells were subsequently drilled in Indiana (3) and Kentucky (5) during 2004 and 2005. In addition, a five spot pilot completion program was started with three wells being completed. Gas contents were found to be variable, but generally higher than indicated by historical data. Gas contents of more than 300 scf/ton were recovered from one of the bore holes in Kentucky. Collectively, our findings indicate that the Illinois Basin represents a potentially large source of economic coal bed methane. Additional exploration will be required to refine gas contents and the economics of potential production.

Cortland Eble; James Drahovzal; David Morse; Ilham Demir; John Rupp; Maria Mastalerz; Wilfrido Solano

2005-11-01T23:59:59.000Z

442

Theory of free surface flow over rough seeping beds  

Science Journals Connector (OSTI)

...horizontal bed is assumed to be rough consisting of sediment...the other hand, in the rough flow regime (Re *70...the introduction, the set of equations (3.2...turbulent flow over a rough planar sand bed. The...The flow conditions were set in such a way that sediment...

2007-01-01T23:59:59.000Z

443

Trickle - Bed reactor simulation using a process simulator  

Science Journals Connector (OSTI)

The present study deals with a multiple reaction system in both gas and liquid phases considering the effect of gas-liquid mass transfer limitations in a trickle-bed reactor where the catalytic hydrotreating of gas oil reaction is being carried out. ... Keywords: Trickle - bed reactor, hydrogenation, reactor model, user-added unit operation

E. Verruschi; J. Freitez; Y. Gonzalez; C. G. Dassori

2009-12-01T23:59:59.000Z

444

Update of waste fuel firing experience in Foster Wheeler circulating fluidized bed boilers  

SciTech Connect (OSTI)

As the costs and availability of more conventional fuels continue to escalate, more and more customers are investigating and choosing operation with lower cost waste or alternative fuels. Details of units firing waste or alternative fuels which have been in active service for many years are summarized, and the fuel analyses are given. This chapter gives a general overview of the projects that are or will be firing waste or alternative fuels, namely, the Mt. Carmel Manitowoc, NISCO and HUNOSA units. The experience of the four operating units has demonstrated that waste and alternative fuels can be successfully and economically burned in an atmosphere circulating fluidized bed unit while meeting permitted emission requirements.

Abdulally, I.F.; Reed, K.A.

1993-12-31T23:59:59.000Z

445

E-Print Network 3.0 - architecture test bed Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test bed Search Powered by Explorit Topic List Advanced Search Sample search results for: architecture test bed Page: << < 1 2 3 4 5 > >> 1 Web-Based Test Bed for Fingerprint Image...

446

Development of Catalytic Tar Decomposition in an Internally Circulating Fluidized-Bed Gasifier  

Science Journals Connector (OSTI)

Biomass gasification in an Internally Circulating Fluidized-bed Gasifier (ICFG) using Ni/Ah03 as tar ... as catalyst in a lab-scale fluidized bed gasifier with catalyst fixed bed. The new catalyst...

Xianbin Xiao; Due Dung Le; Kayoko Morishita…

2010-01-01T23:59:59.000Z

447

Methods of forming a fluidized bed of circulating particles  

DOE Patents [OSTI]

There is disclosed an apparatus for forming a fluidized bed of circulating particles. In an embodiment, the apparatus includes a bottom portion having a sidewall, the sidewall defining a curvilinear profile, and the bottom portion configured to contain a bed of particles; and a gas inlet configured to produce a column of gas to carry entrained particles therein. There is disclosed a method of forming a fluidized bed of circulating particles. In an embodiment, the method includes positioning particles within a bottom portion having a sidewall, the sidewall defining a curvilinear profile; producing a column of gas directed upwardly through a gas inlet; carrying entrained particles in the column of gas to produce a fountain of particles over the fluidized bed of circulating particles and subside in the particle bed until being directed inwardly into the column of gas within the curvilinear profile.

Marshall, Douglas W. (Blackfoot, ID)

2011-05-24T23:59:59.000Z

448

Settlement of footing on compacted ash bed  

SciTech Connect (OSTI)

Compacted coal ash fills exhibit capillary stress due to contact moisture and preconsolidation stress due to the compaction process. As such, the conventional methods of estimating settlement of footing on cohesionless soils based on penetration tests become inapplicable in the case of footings on coal ash fills, although coal ash is also a cohesionless material. Therefore, a method of estimating load-settlement behavior of footings resting on coal ash fills accounting for the effect of capillary and preconsolidation stresses is presented here. The proposed method has been validated by conducting plate load tests on laboratory prepared compacted ash beds and comparing the observed and predicted load-settlement behavior. Overestimation of settlement greater than 100% occurs when capillary and preconsolidation stresses are not accounted for, as is the case in conventional methods.

Ramasamy, G.; Pusadkar, S.S. [IIT Roorkee, Roorkee (India). Dept. of Civil Engineering

2007-11-15T23:59:59.000Z

449

Project Controls  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.

1997-03-28T23:59:59.000Z

450

Factorial tests on process operating conditions and bed fines on the circulating fluid bed performance  

SciTech Connect (OSTI)

A cold-flow circulating fluid bed (CFB) was operated using coke breeze with a packed-bed standpipe over a range of riser and standpipe air flows. The bed materials were selected to simulate solids flow in a CFB gasifier (carbonizer) but are generally relevant to most CFB processes. CFB tests were conducted primarily in the transport mode with sufficient gas velocity to achieve a uniform axial riser pressure profiles over most of the riser height. The independent variables tested included the riser gas velocity, aeration at the base of the standpipe, and concentration of fines (average particle size). The solids inventory and riser outlet pressure were maintained constant. Factorial tests were conducted in randomized order and in duplicate to provide and an unbiased estimate of the error. Fines were tested as a blocked variable. The gas velocity, standpipe aeration, and relative amount of fine particles were all found to be significant factors affecting both the riser solids holdup and solids flux. The riser pressure drop and mass circulation increased at the higher level of fines contrary to some earlier reports in the literature. The riser pressure drop was fitted using the general linear model (GLM), which explained more than 98% of the variation within the data, while a GLM for the mass circulation rate explained over 90%. The uncertainty of process operating variables was characterized independently through a series of duplicated flow proving experiments.

Shadle, L.J.; Spenik, James; Sarra, Angela; Ontko, J.S.

2004-07-21T23:59:59.000Z

451

E-Print Network 3.0 - abundance bed net Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

s00723-007-0002-7 Summary: Applied Magnetic Resonance Noninvasive Measurements of Gas Exchange in a Three- Dimensional Fluidized Bed... -fluidized bed of solid par- ticles....

452

E-Print Network 3.0 - agitated fluidized bed Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

testing of manure digestion system has been initiated. The new TAMU fluidized bed gasifier... of the fluidized bed gasifier. Activity this quarter: a. The assembly of the new...

453

E-Print Network 3.0 - agitation fluidized bed Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

testing of manure digestion system has been initiated. The new TAMU fluidized bed gasifier... of the fluidized bed gasifier. Activity this quarter: a. The assembly of the new...

454

E-Print Network 3.0 - assessing bed net Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: assessing bed net Page: << < 1 2 3 4 5 > >> 1 Modeling decadal bed material sediment flux based on stochastic Michael Bliss Singer and Thomas Dunne Summary: ; published...

455

E-Print Network 3.0 - annual fluidized bed Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University of Minnesota Collection: Engineering 16 POTENTIAL ADVANTAGES OF INCINERATION IN FLUIDIZED BEDS Summary: POTENTIAL ADVANTAGES OF INCINERATION IN FLUIDIZED BEDS...

456

Numerical Simulation of Enhanced Mixing in Scramjet Combustor Using Ramp, Tabs and Suction Collar  

E-Print Network [OSTI]

Projects Agency (DARPA), NASA, Pratt & Whitney Rocketdyne (PWR), and Boeing X-51A Scramjet Engine Demonstrator-WaveRider (SED) vehicle, has been developed and started to test in a series of 4 flight test beginning in August 2009. Developing scramjet...

Hwang, Seung-Jae

2011-06-09T23:59:59.000Z

457

The combustion of large particles of char in bubbling fluidized beds: The dependence of Sherwood number and the rate of burning on particle diameter  

SciTech Connect (OSTI)

Particles of char derived from a variety of fuels (e.g., biomass, sewage sludge, coal, or graphite), with diameters in excess of {approx}1.5mm, burn in fluidized bed combustors containing smaller particles of, e.g., sand, such that the rate is controlled by the diffusion both of O{sub 2} to the burning solid and of the products CO and CO{sub 2} away from it into the particulate phase. It is therefore important to characterize these mass transfer processes accurately. Measurements of the burning rate of char particles made from sewage sludge suggest that the Sherwood number, Sh, increases linearly with the diameter of the fuel particle, d{sub char} (for d{sub char}>{approx}1.5mm). This linear dependence of Sh on d{sub char} is expected from the basic equation Sh=2{epsilon}{sub mf}(1+d{sub char}/2{delta}{sub diff})/{tau}, provided the thickness of the boundary layer for mass transfer, {delta}{sub diff}, is constant in the region of interest (d{sub char}>{approx}1.5mm). Such a dependence is not seen in the empirical equations currently used and based on the Frossling expression. It is found here that for chars made from sewage sludge (for d{sub char}>{approx}1.5mm), the thickness of the boundary layer for mass transfer in a fluidized bed, {delta}{sub diff}, is less than that predicted by empirical correlations based on the Frossling expression. In fact, {delta}{sub diff} is not more than the diameter of the fluidized sand particles. Finally, the experiments in this study indicate that models based on surface renewal theory should be rejected for a fluidized bed, because they give unrealistically short contact times for packets of fluidized particles at the surface of a burning sphere. The result is the new correlation Sh = 2{epsilon}{sub mf}/{tau} + (A{sub cush}/A{sub char})(d{sub char}/ {delta}{sub diff}) for the dependence of Sh on d{sub char}, the diameter of a burning char particle. This equation is based on there being a gas-cushion of fluidizing gas underneath a burning char particle; the implication of this correlation is that a completely new picture emerges for the combustion of a char particle in a hot fluidized bed. (author)

Dennis, J.S.; Hayhurst, A.N.; Scott, S.A. [University of Cambridge, Department of Chemical Engineering, Pembroke Street, Cambridge CB2 3RA, England (United Kingdom)

2006-11-15T23:59:59.000Z

458

A cost-effective backward Lagrangian method for simulation of pollutant formation in gas turbine combustors by post-processing of complex 3D calculations  

Science Journals Connector (OSTI)

A backward Lagrangian Monte Carlo modelling is proposed to calculate by post-processing the PDF of the thermo-chemical parameters of complex turbulent reactive flows simulated with a simple turbulent combustion model. PDF's of minor species such as pollutant species (NOx, soot, unburnt hydrocarbons...) can be easily obtained as long as these species have no significant influence on the main features of the flow. A numerical validation and an example of application of the method to a real burner are presented. If the number of points where information is sought is limited the cost of the method in terms of CPU time is very low and the statistical error can be perfectly controlled. With a first application to a semi-technical scale combustor producing soot the method has been proved very promising for the prediction of pollutant in complex turbulent reactive flows of gas turbine combustors.

Francis Dupoirieux; Nicolas Bertier; Aymeric Boucher; Pascale Gilbank

2014-01-01T23:59:59.000Z

459

The study of flame dynamics and structures in an industrial-scale gas turbine combustor using digital data processing and computer vision techniques  

Science Journals Connector (OSTI)

In this paper, a combined effort has been made to study the flame dynamics and structures in a gas turbine combustor using a range of imaging and digital data processing techniques. The acoustic characteristics of the combustor have been investigated extensively. It is found that there is no straightforward way to alter the peak frequency of one of the peculiar combustion modes of the rig. High speed imaging is applied to investigate the flame dynamics and quantitative analysis of the image database has been demonstrated. The results show that the frequency spectrum of the mean pixel image intensity of seeded flame is in good agreement with the acoustic spectrum. To recover the loss in depth information present in conventional imaging technique, both the optical and digital stereo imaging techniques have been applied. The important flame position relative to the combustion chamber could be resolved.

W.B. Ng; K.J. Syed; Y. Zhang

2005-01-01T23:59:59.000Z

460

Chaotic behavior control in fluidized bed systems using artificial neural network. Quarterly progress report, October 1, 1996--December 31, 1996  

SciTech Connect (OSTI)

Pressurized fluidized-bed combustors (FBC) are becoming very popular, efficient, and environmentally acceptable replica for conventional boilers in Coal-fired and chemical plants. In this paper, we present neural network-based methods for chaotic behavior monitoring and control in FBC systems, in addition to chaos analysis of FBC data, in order to localize chaotic modes in them. Both of the normal and abnormal mixing processes in FBC systems are known to undergo chaotic behavior. Even though, this type of behavior is not always undesirable, it is a challenge to most types of conventional control methods, due to its unpredictable nature. The performance, reliability, availability and operating cost of an FBC system will be significantly improved, if an appropriate control method is available to control its abnormal operation and switch it to normal when exists. Since this abnormal operation develops only at certain times due to a sequence of transient behavior, then an appropriate abnormal behavior monitoring method is also necessary. Those methods has to be fast enough for on-line operation, such that the control methods would be applied before the system reaches a non-return point in its transients. It was found that both normal and abnormal behavior of FBC systems are chaotic. However, the abnormal behavior has a higher order chaos. Hence, the appropriate control system should be capable of switching the system behavior from its high order chaos condition to low order chaos. It is to mention that most conventional chaos control methods are designed to switch a chaotic behavior to a periodic orbit. Since this is not the goal for the FBC case, further developments are needed. We propose neural network-based control methods which are known for their flexibility and capability to control both non-linear and chaotic systems. A special type of recurrent neural network, known as Dynamic System Imitator (DSI), will be used for the monitoring and control purposes.

Bodruzzaman, M.; Essawy, M.A.

1996-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Dilution-based emissions sampling from stationary sources: part 2 - gas-fired combustors compared with other fuel-fired systems  

SciTech Connect (OSTI)

With the recent focus on fine particle matter (PM2.5), new, self- consistent data are needed to characterize emissions from combustion sources. Emissions data for gas-fired combustors are presented, using dilution sampling as the reference. The sampling and analysis of the collected particles in the presence of precursor gases, SO{sub 2}, nitrogen oxide, volatile organic compound, and NH{sub 3} is discussed; the results include data from eight gas fired units, including a dual- fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of {approximately}10{sup -4} lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with {approximately} 5 x 10{sup -3} lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of {approximately} 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas- fired combustor particles are low in concentration. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon is found on the particle collector and a backup filter. It is likely that measurement artifacts are positively biasing 'true' particulate carbon emissions results. 49 refs., 1 fig., 12 tabs.

England, G.C.; Watson, J.G.; Chow, J.C.; Zielinska, B.; Chang, M.C.O.; Loos, K.R.; Hidy. G.M. [GE Energy, Santa Ana, CA (United States)

2007-01-15T23:59:59.000Z

462

Thermionic-combustor combined-cycle system. Volume III. A thermionic converter design for gas-turbine combined-cycle systems  

SciTech Connect (OSTI)

Thermionic converter design is strongly influenced by the configuration of the heat source and heat sink. These two externally imposed conditions are of major importance in arriving at a viable converter design. In addition to these two factors, the economical and reliable transfer of energy internally within the converter is another major item in the design. The effects of the engineering trade-offs made in arriving at the design chosen for the Gas Turbine Combined Cycle combustor are reviewed.

Fitzpatrick, G.O.; Britt, E.J.; Dick, R.S. Jr.

1981-05-01T23:59:59.000Z

463

Moving granular-bed filter development program. Topical report  

SciTech Connect (OSTI)

Advanced, coal-based, power plants, such as IGCC and Advanced-PFBC, are currently nearing commercial demonstration. These power plant technologies require hot gas filtration as part of their gas cleaning trains. Ceramic barrier filters are the major filter candidates being developed for these hot gas cleaning applications. While ceramic barrier filters achieve high levels of particle removal, concerns exist for their reliability and operability in these applications. An alternative hot gas filtration technology is the moving granular bed filter. An advanced, moving granular bed filter has been conceived, and early development activities performed by the Westinghouse Electric Corporation, Science and Technology Center. This document reports on the Base Contract tasks performed to resolve the barrier technical issues for this technology. The concept, the Standleg Moving Granular Bed Filter (SMGBF) has a concurrent downward, gas and bed media flow configuration that results in simplified features and improved scaleup feasibility compared to alternative designs. Two modes of bed media operation were assessed in the program: once-through using pelletized power plant waste as bed media, and recycle of bed media via standleg and pneumatic transport techniques. Cold Model testing; high-temperature, high-pressure testing; and pelletization testing using advanced power plant wastes, have been conducted in the program. A commercial, economic assessment of the SMGBF technology was performed for IGCC and Advanced-PFBC applications. The evaluation shows that the barrier technical issues can be resolved, and that the technology is potentially competitive with ceramic barrier filters.

Newby, R.A.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1994-04-01T23:59:59.000Z

464

MHD Integrated Topping Cycle Project. Eighteenth quarterly technical progress report, November 1, 1991--January 31, 1992  

SciTech Connect (OSTI)

This eighteenth quarterly technical progress report of the MHD Integrated Topping cycle Project presents the accomplishments during the period November 1, 1991 to January 31, 1992. The precombustor is fully assembled. Manufacturing of all slagging stage components h