Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EIS-0289: JEA Circulating Fluidized Bed Combustor Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

289: JEA Circulating Fluidized Bed Combustor Project 289: JEA Circulating Fluidized Bed Combustor Project EIS-0289: JEA Circulating Fluidized Bed Combustor Project SUMMARY This EIS assesses environmental issues associated with constructing and demonstrating a project that would be cost-shared by DOE and JEA (formerly the Jacksonville Electric Authority) under the Clean Coal Technology Program. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 7, 2000 EIS-0289: Record of Decision JEA Circulating Fluidized Bed Combustor Project, Jacksonville, Duval County, FL June 1, 2000 EIS-0289: Final Environmental Impact Statement JEA Circulating Fluidized Bed Combustor Project August 1, 1999 EIS-0289: Draft Environmental Impact Statement JEA Circulating Fluidized Bed Combustor

2

Staged cascade fluidized bed combustor  

DOE Patents (OSTI)

A fluid bed combustor comprising a plurality of fluidized bed stages interconnected by downcomers providing controlled solids transfer from stage to stage. Each stage is formed from a number of heat transfer tubes carried by a multiapertured web which passes fluidizing air to upper stages. The combustor cross section is tapered inwardly from the middle towards the top and bottom ends. Sorbent materials, as well as non-volatile solid fuels, are added to the top stages of the combustor, and volatile solid fuels are added at an intermediate stage.

Cannon, Joseph N. (4103 Farragut St., Hyattsville, MD 20781); De Lucia, David E. (58 Beacon St., Apt. No. 2, Boston, MA 02108); Jackson, William M. (5300 McArthur Blvd., NW., Washington, DC 20016); Porter, James H. (P.O. Box 1131, Daggett Ave., Vineyard Haven, MA 02568)

1984-01-01T23:59:59.000Z

3

DOE/EIS-0289, Final Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project (June 1, 2000)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINAL FINAL ENVIRONMENTAL IMPACT STATEMENT FOR THE JEA CIRCULATING FLUIDIZED BED COMBUSTOR PROJECT JACKSONVILLE, FLORIDA June 2000 U.S. DEPARTMENT OF ENERGY COVER SHEET June 2000 RESPONSIBLE AGENCY U.S. Department of Energy (DOE) TITLE Final Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project; Jacksonville, Duval County, Florida CONTACT Additional copies or information concerning this final environmental impact statement (EIS) can be obtained from Ms. Lisa K. Hollingsworth, National Environmental Policy Act (NEPA) Document Manager, U.S. Department of Energy, National Energy Technology Laboratory, 3610 Collins Ferry Road, P. O. Box 880, Morgantown, WV 26507-0880. Telephone: (304) 285-4992. Fax: (304) 285-4403. E-mail: lisa.hollingsworth@netl.doe.gov.

4

DOE/EIS-0289; Draft Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project, August 1999  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Draft ENVIRONMENTAL IMPACT STATEMENT FOR THE JEA CIRCULATING FLUIDIZED BED COMBUSTOR PROJECT JACKSONVILLE, FLORIDA August 1999 U.S. DEPARTMENT OF ENERGY COVER SHEET August 1999 RESPONSIBLE AGENCY U.S. Department of Energy (DOE) TITLE Draft Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project; Jacksonville, Duval County, Florida CONTACT Additional copies or information concerning this draft environmental impact statement (EIS) can be obtained from Ms. Lisa K. Hollingsworth, National Environmental Policy Act (NEPA) Document Manager, U.S. Department of Energy, Federal Energy Technology Center, 3610 Collins Ferry Road, P. O. Box 880, Morgantown, WV 26507-0880. Telephone: (304) 285-4992. Fax: (304) 285-4403. E-mail: lisa.hollingsworth@fetc.doe.gov.

5

Final Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project  

SciTech Connect

This EIS assesses environmental issues associated with constructing and demonstrating a project that would be cost-shared by DOE and JEA (formerly the Jacksonville Electric Authority) under the Clean Coal Technology Program. The project would demonstrate circulating fluidized bed (CFB) combustion technology at JEA's existing Northside Generating Station in Jacksonville, Florida, about 9 miles northeast of the downtown area of Jacksonville. The new CFB combustor would use coal and petroleum coke to generate nearly 300 MW of electricity by repowering the existing Unit 2 steam turbine, a 297.5-MW unit that has been out of service since 1983. The proposed project is expected to demonstrate emission levels of sulfur dioxide (SO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter that would be lower than Clean Air Act limits while at the same time producing power more efficiently and at less cost than conventional coal utilization technologies. At their own risk, JEA has begun initial construction activities without DOE funding. Construction would take approximately two years and, consistent with the original JEA schedule, would be completed in December 2001. Demonstration of the proposed project would be conducted during a 2-year period from March 2002 until March 2004. In addition, JEA plans to repower the currently operating Unit 1 steam turbine about 6 to 12 months after the Unit 2 repowering without cost-shared funding from DOE. Although the proposed project consists of only the Unit 2 repowering, this EIS analyzes the Unit 1 repowering as a related action. The EIS also considers three reasonably foreseeable scenarios that could result from the no-action alternative in which DOE would not provide cost-shared funding for the proposed project. The proposed action, in which DOE would provide cost-shared finding for the proposed project, is DOE's preferred alternative. The EIS evaluates the principal environmental issues, including air quality, traffic, noise, and ecological resources, that could result from construction and operation of the proposed project. Key findings include that maximum modeled increases in ground-level concentrations of SO{sub 2} nitrogen dioxide (NO{sub 2}), and particulate matter (for the proposed project alone or in conjunction with the related action) would always be less than 10% of their corresponding standards for increases in pollutants. For potential cumulative air quality impacts, results of modeling regional sources and the proposed project indicate that the maximum 24-hour average SO{sub 2} concentration would closely approach (i.e., 97%) but not exceed the corresponding Florida standard. After the Unit 1 repowering, results indicate that the maximum 24-hour average SO{sub 2} concentration would be 91% of the Florida standard. Concentrations for other averaging periods and pollutants would be lower percentages of their standards. Regarding toxic air pollutants from the proposed project, the maximum annual cancer risk to a member of the public would be approximately 1 in 1 million; given the conservative assumptions in the estimate, the risk would probably be less. With regard to threatened and endangered species, impacts to manatees, gopher tortoises, and other species would be negligible or non-existent. Construction-induced traffic would result in noticeable congestion. In the unlikely event that all coal were transported by rail, up to 3 additional trains per week would exacerbate impacts associated with noise, vibration, and blocked roads at on-grade rail crossings. Additional train traffic could be minimized by relying more heavily on barges and ships for coal transport, which is likely to be a more economic fuel delivery mode. During construction of the proposed project, noise levels would increase from the current operational levels. Except possibly during steam blowouts and possibly during operation of equipment used to construct a nearby segment of a conveyor, construction noise should not appreciably affect the background noise of nearby residences or exceed local nois

N /A

2000-06-30T23:59:59.000Z

6

PSNH's Northern Wood power project repowers coal-fired plant with new fluidized-bed combustor  

SciTech Connect

The Northern Wood Power project permanently replaced a 50-MW coal-burning boiler (Unit 5) at Public Service of New Hampshire's Schiller station with a state-of-the-art circulating fluidized bed wood-burning boiler of the same capacity. The project, completed in December 2006, reduced emissions and expanded the local market for low-grade wood. For planning and executing the multiyear, $75 million project at no cost to its ratepayers, PSNH wins Power's 2007 Marmaduke Award for excellence in O & M. The award is named for Marmaduke Surfaceblow, the fictional marine engineer/plant troubleshoot par excellence. 7 figs., 1 tab.

Peltier, R.

2007-08-15T23:59:59.000Z

7

Combined fluidized bed retort and combustor  

DOE Patents (OSTI)

The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.

Shang, Jer-Yu (Fairfax, VA); Notestein, John E. (Morgantown, WV); Mei, Joseph S. (Morgantown, WV); Zeng, Li-Wen (Morgantown, WV)

1984-01-01T23:59:59.000Z

8

Pulsed atmospheric fluidized bed combustor apparatus  

DOE Patents (OSTI)

A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

Mansour, Momtaz N. (Columbia, MD)

1993-10-26T23:59:59.000Z

9

NETL: Oxy-Fired Pressurized Fluidized Bed Combustor (Oxy-PFBC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Fired Pressurized Fluidized Bed Combustor (Oxy-PFBC) Oxy-Fired Pressurized Fluidized Bed Combustor (Oxy-PFBC) Project No.: DE-FE0009448 Oxy-PFBC Layout. Oxy-PFBC Layout. Pratt and Whitney Rocketdyne (PWR) is developing an oxy-fired pressurized fluidized bed combustor (Oxy-PFBC). Pressurized combustion with oxygen enables high efficiency through staged combustion, which results in reduced oxygen use, as well as through recovery of high quality heat from exhaust water vapor. In addition, the process can result in reduced costs for utilization or storage of CO2 because the CO2 is available at increased pressure, reducing compression requirements. Overall, pressurized fluidized bed combustion can result in electricity production from coal with near-zero emissions. PWR will be testing a novel process for pressurized oxy-combustion in a

10

Fluidized bed combustor and coal gun-tube assembly therefor  

DOE Patents (OSTI)

A coal supply gun assembly for a fluidized bed combustor which includes heat exchange elements extending above the bed's distributor plate assembly and in which the gun's nozzles are disposed relative to the heat exchange elements to only discharge granular coal material between adjacent heat exchange elements and in a path which is substantially equidistant from adjacent heat exchange elements.

Hosek, William S. (Mt. Tabor, NJ); Garruto, Edward J. (Wayne, NJ)

1984-01-01T23:59:59.000Z

11

An in-bed tube bank for a fluidized-bed combustor  

DOE Patents (OSTI)

Fluidized-bed combustors have long been used to facilitate the combustion of low-quality fuels and more recently as a means for the clean burning of coal. In a fluidized-bed combustor fuel is fed into a bed of reactive or inert particulate material while air is injected into the bed and passed up through the bed, causing the bed material to act like a turbulent fluid. Where the combustor is utilized for steam generating one or more boiler tubes are positioned so as to span the bed while submerged in the bed, and as fuel is burned within the bed water is injected into the boiler tubes and heated, thereby generating steam. An in-bed tube bank is described for a fluidized bed combustor. The tube bank of the present invention comprises one or more fluid communicating boiler tubes which define a plurality of selectively spaced boiler tube sections. The tube sections are substantially parallel to one another and aligned in a common plane. The tube bank further comprises support members for joining adjacent tube sections, the support members engaging and extending along a selected length of the tube sections and spanning the preselected space there between 4 figs.

Hemenway, L.F. Jr.

1989-08-08T23:59:59.000Z

12

Pulsed atmospheric fluidized bed combustor apparatus and process  

DOE Patents (OSTI)

A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g. organic and medical waste, drying, calcining and the like.

Mansour, Momtaz N. (Columbia, MD)

1992-01-01T23:59:59.000Z

13

Refractory experience in circulating fluidized bed combustors, Task 7  

Science Conference Proceedings (OSTI)

This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

Vincent, R.Q.

1989-11-01T23:59:59.000Z

14

The fluidized bed combustor-heater equipped gas fired CCGT  

Science Conference Proceedings (OSTI)

The combustion of natural gas in an atmospheric fluidized bed combined with heat transfer from the bed to the working fluid is shown to be an attractive means for supplying heat to closed cycle gas turbines. It is demonstrated how this concept can yield high thermal efficiencies without the use of high temperature resistant materials and yield low levels of pollutant emissions. The features of the combustor-heater are established for a 9000 kW closed cycle gas turbine generator and comparisons are made with a conventional open cycle machine.

Fejer, A.

1984-06-01T23:59:59.000Z

15

Fluidized bed combustor-heater equipped gas fired CCGT  

Science Conference Proceedings (OSTI)

The combustion of natural gas in an atmospheric fluidized bed combined with heat transfer from the bed to the working fluid is shown to be an attractive means for supplying heat to closed cycle gas turbines. It is demonstrated how this concept can yield high thermal efficiencies without the use of high temperature resistant materials and yield low levels of pollutant emissions. The features of the combustor-heater are established for a 9000 kW closed cycle gas turbine generator and comparisons are made with a conventional open cycle machine.

Fejer, A.A.

1984-01-01T23:59:59.000Z

16

PEER-REVIEW Detection Of Lateral Non-Uniformities In Fluidized Bed Combustors  

E-Print Network (OSTI)

, greatly influences solid circulation patterns and gas phase mixing which inturn affects various in-bed by Dent etal!! in a Fludized bed combustor. For a vertically rising bubble midway through the two sensorsPEER-REVIEW Detection Of Lateral Non-Uniformities In Fluidized Bed Combustors .. A. Venkata Ramayya

Columbia University

17

100 Hour test of the pressurized woodchip-fired gravel bed combustor  

DOE Green Energy (OSTI)

Combustion of wood chips in a packed bed combustor for a gas turbine cogeneration system is described. A discussion on flue gas emissions and mass balances is included.

Ragland, K.W.; Aerts, D.J.

1994-08-01T23:59:59.000Z

18

NYU-DOE Pressurized Fluidized Bed Combustor Facility  

Science Conference Proceedings (OSTI)

New York University (NYU), under a Department of Energy (DOE) Contract, has designed and constructed a sub-pilot scale Pressurized Fluidized-Bed Combustor (PFBC) Facility at the Antonio Ferri Laboratories, Westbury, Long Island. The basic feature of this Experimental Research Facility is a well-instrumented, 30-inch diameter coal combustor capable of operating up to 10 atm and provided with a liberal number of ports, making it a versatile unit for study of fundamental in-bed phenomena. Additionally, the overall design features make it a flexible facility for solving a variety of industrial research problems. The main objectives of the facility are two-fold: (1) to perform research in important areas of Pressurized Fluidized-Bed Combustion like low-grade fuel combustion under pressure; and (2) to provide the PFBC community with a experimental research tool for basic and applied research in order to accelerate the commercialization of this technology. New York University will initially test the facility of burning low-grade fuels under pressure. During the test program, emphasis will be placed on burning North Dakota lignite under pressures up to 7 atm. The performance of lignite with regard to its feeding, combustion efficiency, sulfur adsorption and sorbent requirements will be investigated. This report describes the various systems of the PFBC facility and operating procedures, and presents an outline of the test program planned for the facility. Other details are provided in the Equipment and Maintenance Manual, Test Program and Data Acquisition Manual, and Training Manual.

Zakkay, V.; Kolar, A.; Sellakumar, K.; Srinivasaragavan, S.; Miller, G.; Panunzio, S.; Joseph, A.; Sundaresan, C.

1983-01-01T23:59:59.000Z

19

In-bed tube bank for a fluidized-bed combustor  

DOE Patents (OSTI)

An in-bed tube bank (10) for a fluidized bed combustor. The tube bank (10) of the present invention comprises one or more fluid communicating boiler tubes (30) which define a plurality of selectively spaced boiler tube sections (32). The tube sections (32) are substantially parallel to one another and aligned in a common plane. The tube bank (10) further comprises support members (34) for joining adjacent tube sections (32), the support members (34) engaging and extending along a selected length of the tube sections (32) and spanning the preselected space therebetween.

Hemenway, Jr., Lloyd F. (Morgantown, WV)

1990-01-01T23:59:59.000Z

20

Development of topping combustor for advanced concept pressurized fluidized-bed combustion  

SciTech Connect

The objective of this program is to develop a topping combustor to operate in a Second-Generation Pressurized Fluidized Bed (PFBC) Combined Cycle power generation system. The combustor must be able to: lightoff with a high heating value fuel and compressor discharge air to heat the fluidized bed(s) and provide power for PFBC and carbonizer off-line; operate with 1,600 F oxygen depleted air from the PFBC and high heating value fuel to handle carbonizer off-line conditions; ramp up to 100% carbonizer syngas firing (normal operation) by firing a blend of decreasing high heating value fuel and increasing low heating value syngas; utilize the vitiated air, at temperatures up to 1,600 F for as much cooling of the metal combustor as possible, thus minimizing the compressor bypass air needed for combustor cooling; provide an acceptance exit temperature pattern at the desired burner outlet temperature (BOT); minimize the conversion of fuel bound nitrogen (FBN) present in the syngas to NO{sub x}; and have acceptably high combustion efficiency, and low emissions of carbon monoxide, UHC, etc. This paper reports the results of tests of a 14 inch diameter topping combustor with a modified fuel-rich zone conducted in June 1993, design of an 18 inch diameter topping combustor to be tested in June 1994 and afterwards, and results of a 50% scale cold flow model which has been built and tested.

Domeracki, W.F.; Dowdy, T.E.; Bachovchin, D.

1994-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Refractory experience in circulating fluidized bed combustors, Task 7. Final report  

Science Conference Proceedings (OSTI)

This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE`s Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

Vincent, R.Q.

1989-11-01T23:59:59.000Z

22

Capacitance-level/density monitor for fluidized-bed combustor  

DOE Patents (OSTI)

A multiple segment three-terminal type capacitance probe with segment selection, capacitance detection and compensation circuitry and read-out control for level/density measurements in a fluidized-bed vessel is provided. The probe is driven at a high excitation frequency of up to 50 kHz to sense quadrature (capacitive) current related to probe/vessel capacitance while being relatively insensitive to the resistance current component. Compensation circuitry is provided for generating a negative current of equal magnitude to cancel out only the resistive component current. Clock-operated control circuitry separately selects the probe segments in a predetermined order for detecting and storing this capacitance measurement. The selected segment acts as a guarded electrode and is connected to the read-out circuitry while all unselected segments are connected to the probe body, which together form the probe guard electrode. The selected probe segment capacitance component signal is directed to a corresponding segment channel sample and hold circuit dedicated to that segment to store the signal derived from that segment. This provides parallel outputs for display, computer input, etc., for the detected capacitance values. The rate of segment sampling may be varied to either monitor the dynamic density profile of the bed (high sampling rate) or monitor average bed characteristics (slower sampling rate).

Fasching, George E. (Morgantown, WV); Utt, Carroll E. (Morgantown, WV)

1982-01-01T23:59:59.000Z

23

Characterization of waste tire incineration in a prototype vortexing fluidized bed combustor  

Science Conference Proceedings (OSTI)

To investigate the characteristics of incinerating waste tires in a prototype vortexing fluidized bed combustor, performance tests were conducted with two sizes of waste tire fragments. The results from the combustion experiments showed that increasing the tire particle size caused less of the volatiles to be burned in the freeboard and thus lowered freeboard temperature. Uniform bed temperature could also be achieved by increasing the size of the tire particles. Variations in the secondary and tertiary air rates simultaneously affected the swirling intensity and the axial gas velocity in the freeboard, and thus resulted in the variations in ash elutriation, combustion efficiency, and pollutant emissions for the combustion systems. 21 refs., 17 figs., 1 tab.

Teng, H.; Chyang, C.S.; Shang, S.H.; Ho, J.A. [Chung Yuan Christian Univ., Chung-Li (Taiwan, Province of China)

1997-01-01T23:59:59.000Z

24

Process for generating electricity in a pressurized fluidized-bed combustor system  

DOE Patents (OSTI)

A process and apparatus for generating electricity using a gas turbine as part of a pressurized fluidized-bed combustor system wherein coal is fed as a fuel in a slurry in which other constituents, including a sulfur sorbent such as limestone, are added. The coal is combusted with air in a pressurized combustion chamber wherein most of the residual sulfur in the coal is captured by the sulfur sorbent. After particulates are removed from the flue gas, the gas expands in a turbine, thereby generating electric power. The spent flue gas is cooled by heat exchange with system combustion air and/or system liquid streams, and the condensate is returned to the feed slurry.

Kasper, Stanley (Pittsburgh, PA)

1991-01-01T23:59:59.000Z

25

Process and apparatus for generating electricity in a pressurized fluidized-bed combustor system  

DOE Patents (OSTI)

A process and apparatus for generating electricity using a gas turbine as part of a pressurized fluidized-bed combustor system wherein coal is fed as a fuel in a slurry in which other constituents, including a sulfur sorbent such as limestone, are added. The coal is combusted with air in a pressurized combustion chamber wherein most of the residual sulfur in the coal is captured by the sulfur sorbent. After particulates are removed from the flue gas, the gas expands in a turbine, thereby generating electric power. The spent flue gas is cooled by heat exchange with system combustion air and/or system liquid streams, and the condensate is returned to the feed slurry. 1 fig.

Kasper, S.

1990-02-26T23:59:59.000Z

26

Performance analysis of co-firing waste materials in an advanced pressurized fluidized-bed combustor  

DOE Green Energy (OSTI)

The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal wastes. Leading this approach is the atmospheric fluidized-bed combustor (AFBC). It has demonstrated its commercial acceptance in the utility market as a reliable source of power by burning a variety of waste and alternative fuels. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economical feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts. Wastes considered for co-firing include municipal solid waste (MSW), sewage sludge, and industrial de-inking sludge. Conceptual designs of two power plants rated at 250 MWe and 150 MWe were developed. Heat and material balances were completed for each plant along with environmental issues. With the PFBC`s operation at high temperature and pressure, efforts were centered on defining feeding systems capable of operating at these conditions. Air emissions and solid wastes were characterized to assess the environmental performance comparing them to state and Federal regulations. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

Bonk, D.L.; McDaniel, H.M. [USDOE Morgantown Energy Technology Center, WV (United States); DeLallo, M.R. Jr.; Zaharchuk, R. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

1995-07-01T23:59:59.000Z

27

Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant  

DOE Patents (OSTI)

In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

Cole, Rossa W. (E. Rutherford, NJ); Zoll, August H. (Cedar Grove, NJ)

1982-01-01T23:59:59.000Z

28

NETL: Oxy-Fired Pressurized Fluidized Bed Combustor (Oxy-PFBC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimization of Pressurized Oxy-Combustion with Flameless Reactor Optimization of Pressurized Oxy-Combustion with Flameless Reactor Project No.: DE-FE0009478 Unity Power Alliance (UPA), a joint venture between the Italian company ITEA and ThermoEnergy Corp, is investigating the optimization of pressurized oxy-combustion with a flameless reactor. They will develop a basis for modeling conditions in a flameless reactor and inlet conditions for a heat recovery steam generator. A range of cycles will be evaluated at varying operating pressures to assess the effectiveness of heat recovery by vapor condensation; the optimum size and design of the combustor and the pressure drop in the recirculation pipes; and various purities of oxygen to determine how the variations affect the operation and performance of the air separation unit, the CO2 separation system, and the oxy-combustion process.

29

DOD ESTCP Energy Test Bed Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOD ESTCP Energy Test Bed Project DOD ESTCP Energy Test Bed Project Presentation covers the DOD ESTCP Energy Test Bed Project, given at the May, 23 2012 Federal Technology...

30

Ceramic candle filter performance at the Grimethorpe (UK) Pressurized Fluidized Bed Combustor  

SciTech Connect

A pilot hot-gas particulate removal system, based on positive porous ceramic filters, has been tested on the Grimethorpe Pressurized Fluidized Bed Combustor facility. The filters are in the form of closed-ended tubes, 1.5 m long: These are generally called candles. The dust accumulates on the outside of the cradles, and is periodically removed by a pulse of air into the candle interior, which then flows outward through the candle wall in the reverse direction to the normal flow of the combustion gas. The EPRI system contained a maximum of 130 candles, which is approximately equivalent to the requirement for 7 MW(e) capacity, depending on the filter-operating parameters. The filter unit operated for a total of 860 h under PFBC conditions, of which 790 h were at defined process conditions, typically 850{degrees}C and 10 bar. The amount of gas flowing through each filter element was varied, and the time between cleaning pulses also was varied. The pressure drop through each filter element rose as the dust accumulated on the outer wall, and recovered after the cleaning pulse.

Stringer, J. (Electric Power Research Inst., Palo Alto, CA (US)); Leitch, A.J. (Electric Power Research Inst., Cowdenbeath Office, Cowdenbeath (GB))

1992-04-01T23:59:59.000Z

31

Conceptual design of a fluidized bed combustor for volume reduction of waste  

SciTech Connect

A group of research engineers was assembled to investigate novel fluidized bed combustion systems for incinerating low-level radioactive wastes. The goal of this project was to significantly reduce the volume of these wastes in an efficient and environmentally safe manner. The process is to be limited by a maximum temperature of 600 {degrees}C and the waste product was to contain a minimum of waste material produced by the process itself (refractory, absorbents, catalysts, etc.). The approach presented in this study is to evaluate: (1) a modification of the existing system, (2) a hybrid reactor concept, and (3) a fast circulating reactor concept. Carbon dioxide and oxygen were to be the only gases introduced into the reactors. The results of this study indicate that the existing system may be more efficient with gas and solids recirculation; however, two beds are required. The hybrid reactor concept involves a bubbling bed and a fast bed in one reactor. Although a simple operation is envisioned for this system, there are several technical questions which must be addressed in order to optimize the system for a final analysis. The fast circulating reactor concept also appears to represent a simple system to operate; however, it also presents several technical questions which must be addressed before a thorough evaluation of this concept may be completed. In conclusion, this report represents a first evaluation of new concepts for significant volume reduction of low-level radioactive wastes. The technical issues required for a complete evaluation of these concepts are presented. A future research effort is outlined the result of which should significantly increase our knowledge of these issues.

Johnson, E.K.; Morris, G.J.; Atkinson, C.M.; Clark, N.N.; Gautam, M.; Loth, J.L.; Zhang, G.Q.; Zhang, L.M.; Kono, H.O.

1992-06-01T23:59:59.000Z

32

Fuel cell system combustor  

DOE Patents (OSTI)

A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.

Pettit, William Henry (Rochester, NY)

2001-01-01T23:59:59.000Z

33

NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project  

Science Conference Proceedings (OSTI)

The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

Not Available

1992-02-01T23:59:59.000Z

34

Steam reformer with catalytic combustor  

DOE Patents (OSTI)

A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

Voecks, Gerald E. (La Crescenta, CA)

1990-03-20T23:59:59.000Z

35

Demonstration of an advanced circulation fludized bed coal combustor phase 1: Cold model study. Final report  

Science Conference Proceedings (OSTI)

It was found that there was a strong dependence of the density profile on the secondary air injection location and that there was a pronounced solid separation from the conveying gas, due to the swirl motion. Furthermore, the swirl motion generated strong internal circulation patterns and higher slip velocities than in the case of nonswirl motion as in an ordinary circulating fluidized bed. Radial solids flux profiles were measured at different axial locations. The general radial profile in a swirling circulating fluidized bed indicated an increased downward flow of solids near the bed walls, and strong variations in radial profiles along the axial height. For swirl numbers less than 0.9, which is typical for swirling circulating fluidized beds, there is no significant increase in erosion due to swirl motion inside the bed. Pending further investigation of swirl motion with combustion, at least from our cold model studies, no disadvantages due to the introduction of swirl motion were discovered.

Govind, R. [Cincinnati Univ., OH (United States). Dept. of Chemical Engineering

1993-03-20T23:59:59.000Z

36

Circulating Fluidized Bed Combustion Boiler Project  

E-Print Network (OSTI)

The project to build a PYROFLOW circulating fluidized bed combustion (FBC) boiler at the BFGoodrich Chemical Plant at Henry, Illinois, is described. This project is being partially funded by Illinois to demonstrate the feasibility of utilizing high-sulfur Illinois coal. Design production is 125,000 pounds per hour of 400 psig saturated steam. An Illinois EPA construction permit has been received, engineering design is under way, major equipment is on order, ground breaking occurred in January 1984 and planned commissioning date is late 1985. This paper describes the planned installation and the factors and analyses used to evaluate the technology and justify the project. Design of the project is summarized, including the boiler performance requirements, the PYROFLOW boiler, the coal, limestone and residue handling systems and the pollutant emission limitations.

Farbstein, S. B.; Moreland, T.

1984-01-01T23:59:59.000Z

37

Metal wastage design guidelines for bubbling fluidized-bed combustors. Final report  

Science Conference Proceedings (OSTI)

These metal wastage design guidelines identify relationships between metal wastage and (1) design parameters (such as tube size, tube spacing and pitch, tube bundle and fluidized-bed height to distributor, and heat exchanger tube material properties) and (2) operating parameters (such as fluidizing velocity, particle size, particle hardness, and angularity). The guidelines are of both a quantitative and qualitative nature. Simplified mechanistic models are described, which account for the essential hydrodynamics and metal wastage processes occurring in bubbling fluidized beds. The empirical correlational approach complements the use of these models in the development of these design guidelines. Data used for model and guideline validation are summarized and referenced. Sample calculations and recommended design procedures are included. The influences of dependent variables on metal wastage, such as solids velocity, bubble size, and in-bed pressure fluctuations, are discussed.

Lyczkowski, R.W.; Podolski, W.F.; Bouillard, J.X.; Folga, S.M. [Argonne National Lab., IL (United States)

1992-11-01T23:59:59.000Z

38

Fluidized bed combustor 50 MW thermal power plant, Krabi, Thailand. Feasibility study. Export trade information  

SciTech Connect

The report presents the results of a study prepared by Burns and Roe for the Electricity Generating Authority of Thailand to examine the technical feasibility and economic attractiveness for building a 50 MW Atmospheric Fluidized Bed Combustion lignite fired power plant at Krabi, southern Thailand. The study is divided into seven main sections, plus an executive summary and appendices: (1) Introduction; (2) Atmospheric Fluidized Bed Combustion Technology Overview; (3) Fuel and Limestone Tests; (4) Site Evaluation; (5) Station Design and Arrangements; (6) Environmental Considerations; (7) Economic Analysis.

1993-01-01T23:59:59.000Z

39

Nucla circulating atmospheric fluidized bed demonstration project  

Science Conference Proceedings (OSTI)

Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute's decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

Not Available

1991-10-01T23:59:59.000Z

40

Gas Turbines for Advanced Pressurized Fluidized Bed Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

APFBC uses a circulating pressurized fluidized bed combustor (PFBC) with a fluid bed heat exchanger to develop hot vitiated air for the gas turbine' s topping combustor and...

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DMEC-1 Pressurized Circulating Fluidized-Bed Demonstration Project  

SciTech Connect

The DMEC-1 project will demonstrate the use of Pyropower`s PYROFLOW pressurized circulating fluidized bed technology to repower an existing coal fired generating station. This will be the first commercial application of this technology in the world. The project is now in budget period 1, the preliminary design phase.

Kruempel, G.E.; Ambrose, S.J. [Midwest Power, Des Moines, IA (United States); Provol, S.J. [Pyropower Corp., San Diego, CA (United States)

1992-12-01T23:59:59.000Z

42

Effects of acetic acid injection and operating conditions on NO emission in a vortexing fluidized bed combustor using response surface methodology  

Science Conference Proceedings (OSTI)

The effects of acetic acid injection and operating conditions on NO emission were investigated in a pilot scale vortexing fluidized bed combustor (VFBC), an integration of circular freeboard and a rectangular combustion chamber. Operating conditions, such as the stoichiometric oxygen in the combustion chamber, the bed temperature and the injecting location of acetic acid, were determined by means of response surface methodology (RSM), which enables the examination of parameters with a moderate number of experiments. In RSM, NO emission concentration after acetic acid injection and NO removal percentage at the exit of the VFBC are used as the objective function. The results show that the bed temperature has a more important effect on the NO emission than the injecting location of acetic acid and the stoichiometric oxygen in the combustion chamber. Meanwhile, the injecting location of acetic acid and the stoichiometric oxygen in the combustion chamber have a more important effect on the NO removal percentage than the bed temperature. NO emission can be decreased by injecting the acetic acid into the combustion chamber, and NO emission decreases with the height of the acetic acid injecting location above the distributor. On the other hand, NO removal percentage increases with the height of the acetic acid injecting location, and NO emission increases with the stoichiometric oxygen in the combustion chamber and the bed temperature. NO removal percentage increases with the stoichiometric oxygen, and increases first, then decreases with the bed temperature. Also, a higher NO removal percentage could be obtained at 850{sup o}C. 26 refs., 12 figs., 8 tabs.

Fuping Qian; Chiensong Chyang; Weishen Yen [Anhui University of Technology, Ma'anshan (China). School of Civil Engineering and Architecture

2009-07-15T23:59:59.000Z

43

Nucla circulating atmospheric fluidized bed demonstration project  

Science Conference Proceedings (OSTI)

During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

Not Available

1991-01-31T23:59:59.000Z

44

NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project  

Science Conference Proceedings (OSTI)

This Annual Report on Colorado-Ute Electric Association's NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

Not Available

1991-01-01T23:59:59.000Z

45

DoD ESTCP Energy Test Bed Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ESTCP Energy Test Bed Project ESTCP Energy Test Bed Project EW-201016 "High Efficiency - Reduced Emissions Boiler Controls" 23 May 2012 Dr. Jim Galvin ESTCP Program Manager for Energy & Water ESTCP Energy Test Bed Project Location 2 3 Boiler Efficiency Improvement Demo Oxygen Sensor Servo Controls * 90% of boilers lack automated controls * State of the art automated controls sense only oxygen * Demonstrated prototype sensed oxygen and carbon monoxide Prototype CO Sensor Key Findings Boiler Before Demo 4 * Size: 25 MMBtu * Age: 30 years * Fuel: Natural Gas or Oil * Demo performed by United Technologies Research Center * Technology demonstrated: Fireye PPC4000 (Oxygen trim control) * Upgraded PPC4000 tested as a prototype 5 Three Phased Test â—Ź Test Phase 1: Existing Legacy System (baseline)

46

Coal desulfurization in a rotary kiln combustor  

Science Conference Proceedings (OSTI)

The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

Cobb, J.T. Jr.

1992-09-11T23:59:59.000Z

47

NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. 1990 Annual report  

Science Conference Proceedings (OSTI)

The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

Not Available

1992-02-01T23:59:59.000Z

48

TITLE Final Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project;  

E-Print Network (OSTI)

CONTACT Additional copies or information concerning this final environmental impact statement (EIS) can be

unknown authors

2000-01-01T23:59:59.000Z

49

Development of a gravel bed combustor for a solid fueled gas turbine for the period February 1, 1989 to June 30, 1991  

SciTech Connect

Further work on a novel pressurized, downdraft combustor using aspen woodchips is reported for the period 2/89 to 6/91. The 42 cm i.d combustor was connected to a modified Allison 250-C20B gas turbine engine and operated for 250 hours. The performance of the combustor-turbine system is discussed. Deposits of ash on the turbine nozzles and rotors are identified and discussed. A dynamic simulation model for the combustor-turbine system is presented and used to investigate the control of the system. The highest net power output was 61 kW or 20% of full power; the highest turbine speed was 75% of the maximum speed; the highest mass flow was 50% of the full power flow. The stability of the combustor must be improved before higher output and longer runs can be achieved.

Ragland, K.W.; Aerts, D.J.; Palmer, C.A.

1992-06-01T23:59:59.000Z

50

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

Science Conference Proceedings (OSTI)

The objective of the CERTS Microgrid Laboratory Test Bed project was to enhance the ease of integrating small energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of small generating sources. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation; 2) an approach to electrical protection within the microgrid that does not depend on high fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications. The techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers 1547 and power quality requirements. The electrical protections system was able to distinguish between normal and faulted operation. The controls were found to be robust and under all conditions, including difficult motor starts. The results from these test are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations involving microgrids that involve one or mroe of the CERTS Microgrid concepts.

Eto, Joseph H.; Eto, Joseph H.; Lasseter, Robert; Schenkman, Ben; Klapp, Dave; Linton, Ed; Hurtado, Hector; Roy, Jean; Lewis, Nancy Jo; Stevens, John; Volkommer, Harry

2008-07-25T23:59:59.000Z

51

Nucla circulating atmospheric fluidized bed demonstration project. Final report  

Science Conference Proceedings (OSTI)

Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute`s decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

Not Available

1991-10-01T23:59:59.000Z

52

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

Laboratory Test Bed. California Energy Commission, PublicCERTS Microgrid”, California Energy Commission R&D Forum, 4CERTS Microgrid”, California Energy Commission R&D Forum, 4

Eto, Joseph H.

2008-01-01T23:59:59.000Z

53

Preliminary Economic and Engineering Evaluation of the Foster Wheeler Advanced Pressurized Fluidized-Bed Combustor (PFBC) Technology with Advanced Turbine System (ATS) Gas Turbines  

Science Conference Proceedings (OSTI)

For new coal-based power plants to be competitive, it is essential that their capital cost be reduced. Additionally, they must utilize coal in a highly efficient, cost-effective, environmentally superior manner. One of the most cost-competitive coal-based power plant technologies is believed to be an air-blown combined cycle that incorporates a partial gasifier and a pressurized char combustor. This report presents preliminary results from the evaluation of one such technology, the Advanced Pressurized F...

1998-12-30T23:59:59.000Z

54

Modular Pebble Bed Reactor Project, University Research Consortium Annual Report  

Science Conference Proceedings (OSTI)

This project is developing a fundamental conceptual design for a gas-cooled, modular, pebble bed reactor. Key technology areas associated with this design are being investigated which intend to address issues concerning fuel performance, safety, core neutronics and proliferation resistance, economics and waste disposal. Research has been initiated in the following areas: · Improved fuel particle performance · Reactor physics · Economics · Proliferation resistance · Power conversion system modeling · Safety analysis · Regulatory and licensing strategy Recent accomplishments include: · Developed four conceptual models for fuel particle failures that are currently being evaluated by a series of ABAQUS analyses. Analytical fits to the results are being performed over a range of important parameters using statistical/factorial tools. The fits will be used in a Monte Carlo fuel performance code, which is under development. · A fracture mechanics approach has been used to develop a failure probability model for the fuel particle, which has resulted in significant improvement over earlier models. · Investigation of fuel particle physio-chemical behavior has been initiated which includes the development of a fission gas release model, particle temperature distributions, internal particle pressure, migration of fission products, and chemical attack of fuel particle layers. · A balance of plant, steady-state thermal hydraulics model has been developed to represent all major components of a MPBR. Component models are being refined to accurately reflect transient performance. · A comparison between air and helium for use in the energy-conversion cycle of the MPBR has been completed and formed the basis of a master’s degree thesis. · Safety issues associated with air ingress are being evaluated. · Post shutdown, reactor heat removal characteristics are being evaluated by the Heating-7 code. · PEBBED, a fast deterministic neutronic code package suitable for numerous repetitive calculations has been developed. Use of the code has focused on scoping studies for MPBR design features and proliferation issues. Publication of an archival journal article covering this work is being prepared. · Detailed gas reactor physics calculations have also been performed with the MCNP and VSOP codes. Furthermore, studies on the proliferation resistance of the MPBR fuel cycle has been initiated using these code · Issues identified during the MPBR research has resulted in a NERI proposal dealing with turbo-machinery design being approved for funding beginning in FY01. Two other NERI proposals, dealing with the development of a burnup “meter” and modularization techniques, were also funded in which the MIT team will be a participant. · A South African MPBR fuel testing proposal is pending ($7.0M over nine years).

Petti, David Andrew

2000-07-01T23:59:59.000Z

55

Combustor with multistage internal vortices  

DOE Patents (OSTI)

A fluidized bed combustor is provided with a multistage arrangement of vortex generators in the freeboard area. The vortex generators are provided by nozzle means which extend into the interior of the freeboard for forming vortices within the freeboard areas to enhance the combustion of particulate material entrained in product gases ascending into the freeboard from the fluidized bed. Each of the nozzles are radially inwardly spaced from the combustor walls defining the freeboard to provide for the formation of an essentially vortex-free, vertically extending annulus about the vortices whereby the particulate material centrifuged from the vortices against the inner walls of the combustor is returned through the annulus to the fluidized bed. By adjusting the vortex pattern within the freeboard, a significant portion of the full cross-sectional area of the freeboard except for the peripheral annulus can be contacted with the turbulent vortical flow for removing the particulate material from the gaseous products and also for enhancing the combustion thereof within the freeboard. 2 figs.

Shang, Jer Yu; Harrington, R.E.

1987-05-01T23:59:59.000Z

56

Coal desulfurization in a rotary kiln combustor  

Science Conference Proceedings (OSTI)

BCR National Laboratory (BCRNL) has initiated a project aimed at evaluating the technical and economic feasibility of using a rotary kiln, suitably modified, to burn Pennsylvania anthracite wastes, co-fired with high-sulfur bituminous coal. Limestone will be injected into the kiln for sulfur control, to determine whether high sulfur capture levels can be achieved with high sorbent utilization. The principal objectives of this work are: (1) to prove the feasibility of burning anthracite refuse, with co-firing of high-sulfur bituminous coal and with limestone injection for sulfur emissions control, in a rotary kiln fitted with a Universal Energy International (UEI) air injector system; (2) to determine the emissions levels of SO{sub x} and NO{sub x} and specifically to identify the Ca/S ratios that are required to meet New Source Performance Standards; (3) to evaluate the technical and economic merits of a commercial rotary kiln combustor in comparison to fluidized bed combustors; and, (4) to ascertain the need for further work, including additional combustion tests, prior to commercial application, and to recommend accordingly a detailed program towards this end.

Cobb, J.T. Jr.

1990-08-15T23:59:59.000Z

57

Bed drain cover assembly for a fluidized bed  

DOE Patents (OSTI)

A loose fitting movable cover plate (36), suitable for the severe service encountered in a fluidized bed combustor (10), restricts the flow of solids into the combustor drain lines (30) during shutdown of the bed. This cover makes it possible to empty spent solids from the bed drain lines which would otherwise plug the piping between the drain and the downstream metering device. This enables use of multiple drain lines each with a separate metering device for the control of solids flow rate.

Comparato, Joseph R. (Bloomfield, CT); Jacobs, Martin (Hartford, CT)

1982-01-01T23:59:59.000Z

58

Pulsed atmospheric fluidized bed combustion. Quarterly technical progress report, October--December 1993  

Science Conference Proceedings (OSTI)

This quarterly report consist almost entirely of engineering drawings of the proposed pulse fluidized-bed combustor.

Not Available

1994-01-31T23:59:59.000Z

59

NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. Annual report, 1988  

Science Conference Proceedings (OSTI)

This Annual Report on Colorado-Ute Electric Association`s NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

Not Available

1991-01-01T23:59:59.000Z

60

The Midwest Power PCFB demonstration projects: AHLSTROM PYROFLOW[reg sign] first and second generation pressurized circulating fluidized bed (PCFB) technology  

SciTech Connect

Midwest Power, Dairyland Power Cooperative, Pyropower Corporation (a subsidiary of Ahlstrom Pyropower Inc.), and Black Veatch, have embarked on the demonstration of Clean Coal Technology (CCT) at Midwest Power's Des Moines Energy Center (DMEC), in Pleasant Hill, Iowa. The DMEC-1 PCFB Demonstration Project was selected by the US Department of Energy for the demonstration of the First Generation Pressurized Circulating Fluidized Bed (PCFB) Technology. During Round 5 of the CCT Program, Midwest Power submitted a proposal for a second unit, to be known as DMEC-2. If selected by the DOE, the DMEC-2 unit will demonstrate Ahlstrom Pyropower's Second Generation (Advanced) PCFB technology which will incorporate a topping combustor fired on coal derived gas generated in a PCFB carbonizer, to raise the firing temperature of the gas turbine and the total net plant efficiency. The First Generation PCFB technology has the capability to achieve 40--42% efficiency, the Second Generation technology can obtain an efficiency in the range of 44--47% net. This paper will provide a comparison of the commercial versions of the First and Second Generation PCFB systems, and the plans for demonstrating these systems for repowering and new plant installations during the late 1990's and into the next century. A discussion of the DMEC-1 and DMEC-2 projects and their key technical features will be provided together with a projection of the future markets for these advanced clean coal technologies.

Ambrose, S.; Green, C.L.; Dryden, R.; Provol, S.J.

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The Midwest Power PCFB demonstration projects: AHLSTROM PYROFLOW{reg_sign} first and second generation pressurized circulating fluidized bed (PCFB) technology  

SciTech Connect

Midwest Power, Dairyland Power Cooperative, Pyropower Corporation (a subsidiary of Ahlstrom Pyropower Inc.), and Black & Veatch, have embarked on the demonstration of Clean Coal Technology (CCT) at Midwest Power`s Des Moines Energy Center (DMEC), in Pleasant Hill, Iowa. The DMEC-1 PCFB Demonstration Project was selected by the US Department of Energy for the demonstration of the First Generation Pressurized Circulating Fluidized Bed (PCFB) Technology. During Round 5 of the CCT Program, Midwest Power submitted a proposal for a second unit, to be known as DMEC-2. If selected by the DOE, the DMEC-2 unit will demonstrate Ahlstrom Pyropower`s Second Generation (Advanced) PCFB technology which will incorporate a topping combustor fired on coal derived gas generated in a PCFB carbonizer, to raise the firing temperature of the gas turbine and the total net plant efficiency. The First Generation PCFB technology has the capability to achieve 40--42% efficiency, the Second Generation technology can obtain an efficiency in the range of 44--47% net. This paper will provide a comparison of the commercial versions of the First and Second Generation PCFB systems, and the plans for demonstrating these systems for repowering and new plant installations during the late 1990`s and into the next century. A discussion of the DMEC-1 and DMEC-2 projects and their key technical features will be provided together with a projection of the future markets for these advanced clean coal technologies.

Ambrose, S.; Green, C.L.; Dryden, R.; Provol, S.J.

1993-04-01T23:59:59.000Z

62

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 8, NO. 2, MARCH 2000 247 A Model of a Bubbling Fluidized Bed Combustor  

E-Print Network (OSTI)

and the capability of using low quality fuel, such as nonpulverized coal, mine residues and waste. Furthermore Prandoni Abstract--Fluidized bed techniques are employed in coal com- bustion power plants, because to produce gypsum). In conventional combustion chambers, the pulverized coal takes less than a second to burn

Campi, Marco

63

DOE/EIS-0289, Final Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project (June 1, 2000)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

33(1',;$ 33(1',;$ &2168/7$7,21/(77(5681'(56(&7,21 2)7+((1'$1*(5('63(&,(6$&7 )LQDO -XQH  $ -($ (,6 $ APPENDIX B CONSULTATION LETTERS UNDER SECTION 106 OF THE NATIONAL HISTORIC PRESERVATION ACT Final: June 2000 B-3 JEA EIS B-4 Final: June 2000 B-5 JEA EIS B-6 $33(1',;& &2168/7$7,21/(77(56$662&,$7(':,7+7+( )/25,'$67$7(&/($5,1*+286( )LQDO -XQH  & -($ (,6 & )LQDO -XQH  & -($ (,6 & )LQDO -XQH  & -($ (,6 & )LQDO -XQH  & -($ (,6 & )LQDO -XQH 

64

Coal desulfurization in a rotary kiln combustor. Final report, March 15, 1990--July 31, 1991  

Science Conference Proceedings (OSTI)

The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

Cobb, J.T. Jr.

1992-09-11T23:59:59.000Z

65

Circulating Moving Bed Combustion Proof-of-concept  

NLE Websites -- All DOE Office Websites (Extended Search)

combustor, the solids are fluidized and transferred through standpipes to a moving bed heat exchanger (MBHE). There, an energy cycle working fluid, such as steam or compressed...

66

The Nucla Circulating Fluidized-Bed Demonstration Project: A U.S. DOE post-project assessment  

Science Conference Proceedings (OSTI)

This report is a post-project assessment of the Nucla Circulating Fluidized-Bed (CFB) Demonstration Project, the second project to be completed in the DOE Clean Coal Technology Program. Nucla was the first successful utility repowering project in the US, increasing the capacity of the original power station from 36 MW(e) to 110 MW(e) and extending its life by 30 years. In the CFB boiler, combustion and desulfurization both take place in the fluidized bed. Calcium in the sorbent captures sulfur dioxide and the relatively low combustion temperatures limit NOx formation. Hot cyclones separate the larger particles from the gas and recirculates them to the lower zones of the combustion chambers. This continuous circulation of coal char and sorbent particles is the novel feature of CFB technology. This demonstration project significantly advanced the environmental, operational, and economic potential of atmospheric CFB technology, precipitating a large number of orders for atmospheric CFB equipment. By 1994, more than 200 atmospheric CFB boilers have been constructed worldwide. Although at least six CFB units have been operated, the Nucla project`s CFB database continues to be an important and unique resource for the design of yet larger atmospheric CFB systems. The post-project assessment report is an independent DOE appraisal of the success a completed project had in achieving its objectives and aiding in the commercialization of the demonstrated technology. The report also provides an assessment of the expected technical, environmental, and economic performance of the commercial version of the technology as well as an analysis of the commercial market.

NONE

1995-06-01T23:59:59.000Z

67

Supplemental Comprehensive Report to Congress - Clean Coal Technology Program. Tidd Pressurized Fluidized Bed Combustion (PFBC) Project  

SciTech Connect

The Department of Energy (DOE) in February 1987 submitted a Comprehensive Report to Congress for a Clean Coal Technology (CCT) project entitled {open_quotes}Tidd PFBC (Pressurized Fluidized Bed Combustion) Demonstration Project.{close_quotes} In that document, DOE reported to Congress that the Government share of project costs would be $60,200,000 and that the participant agreed to absorb any cost overruns, even though the public law contained provisions which would allow DOE to share in project cost growths up to 25 percent of the original financial assistance. This Supplemental Report is being submitted because DOE now intends to increase its contribution to the project by approximately 11 percent to facilitate extension of the original 3-year operating period by one additional year. DOE`s overall percentage cost share resulting from this extension will not exceed DOE`s overall percentage cost share in the original agreement.

Not Available

1994-03-01T23:59:59.000Z

68

Gas turbine combustor transition  

DOE Patents (OSTI)

A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

Coslow, B.J.; Whidden, G.L.

1999-05-25T23:59:59.000Z

69

Gas turbine combustor transition  

DOE Patents (OSTI)

A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

Coslow, Billy Joe (Winter Park, FL); Whidden, Graydon Lane (Great Blue, CT)

1999-01-01T23:59:59.000Z

70

Automated on-line determination of PPB levels of sodium and potassium in low-Btu coal gas and fluidized bed combustor exhaust by atomic emission spectrometry  

SciTech Connect

The Morgantown Energy Technology Center (METC), US Department of Energy, is involved in the development of processes and equipment for production of low-Btu gas from coal and for fluidized bed combustion of coal. The ultimate objective is large scale production of electricity using high temperature gas turbines. Such turbines, however, are susceptible to accelerated corrosion and self-destruction when relatively low concentrations of sodium and potassium are present in the driving gas streams. Knowledge and control of the concentrations of those elements, at part per billion levels, are critical to the success of both the gas cleanup procedures that are being investigated and the overall energy conversion processes. This presentation describes instrumentation and procedures developed at the Ames Laboratory for application to the problems outlined above and results that have been obtained so far at METC. The first Ames instruments, which feature an automated, dual channel flame atomic emission spectrometer, perform the sodium and potassium determinations simultaneously, repetitively, and automatically every two to three minutes by atomizing and exciting a fraction of the subject gas sample stream in either an oxyhydrogen flame or a nitrous oxide-acetylene flame. The analytical results are printed and can be transmitted simultaneously to a process control center.

Haas, W.J. Jr.; Eckels, D.E.; Kniseley, R.N.; Fassel, V.A.

1981-01-01T23:59:59.000Z

71

Investigation of heat transfer and combustion in the Advanced Fluidized Bed Combustor (FBC). Technical progress report No. 2, January 1, 1994--March 31, 1994  

SciTech Connect

This technical report summarizes the research performed and progress achieved during the period of January 1, 1994 to March 31, 1994. Design and fabrication of the exploratory cold test model was continued with an arrangement of the auxiliary systems. The auxiliary systems are consisted of air supply system, test chamber, air humidifying unit, and instrumentations for measuring air flow rate, particle size distribution, and particle collision frequency/mass flux. The electrostatic impact probe and associated signal processing unit were designed and fabricated to measure particle mass flux and particle-probe collision frequency in the exploratory cold model. The progress of this project has been on schedule.

Lee, S.W.

1994-04-01T23:59:59.000Z

72

ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM  

Science Conference Proceedings (OSTI)

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2004 through September 30, 2004. The following tasks have been completed. First, renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have started. Second, the design if the component parts of the CFBC system have been reviewed and finalized so that the drawings may be released to the manufacturers during the next quarter. Third, the experiments for solid waste (chicken litter) incineration have been conducted using a Thermogravimetric Analyzer (TGA). This is in preparation for testing in the simulated fluidized-bed combustor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

Wei-Ping Pan; Andy Wu; John T. Riley

2004-10-30T23:59:59.000Z

73

Analysis/control of in-bed tube erosion phenomena in the fluidized bed combustion system. Final technical report  

Science Conference Proceedings (OSTI)

Research is presented on erosion and corrosion of fluidized bed combustor component materials. The characteristics of erosion of in-bed tubes was investigated. Anti-corrosion measures were also evaluated.

Lee, Seong W.

1996-11-01T23:59:59.000Z

74

Modular Pebble-Bed Reactor Project: Laboratory-Directed Research and Development Program FY 2002 Annual Report  

Science Conference Proceedings (OSTI)

This report documents the results of our research in FY-02 on pebble-bed reactor technology under our Laboratory Directed Research and Development (LDRD) project entitled the Modular Pebble-Bed Reactor. The MPBR is an advanced reactor concept that can meet the energy and environmental needs of future generations under DOE’s Generation IV initiative. Our work is focused in three areas: neutronics, core design and fuel cycle; reactor safety and thermal hydraulics; and fuel performance.

Petti, David Andrew; Dolan, Thomas James; Miller, Gregory Kent; Moore, Richard Leroy; Terry, William Knox; Ougouag, Abderrafi Mohammed-El-Ami; Oh, Chang H; Gougar, Hans D

2002-11-01T23:59:59.000Z

75

Thermal Imaging Control of Furnaces and Combustors  

Science Conference Proceedings (OSTI)

The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

David M. Rue; Serguei Zelepouga; Ishwar K. Puri

2003-02-28T23:59:59.000Z

76

Gas turbine topping combustor  

DOE Patents (OSTI)

A combustor for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone.

Beer, Janos (Winchester, MA); Dowdy, Thomas E. (Orlando, FL); Bachovchin, Dennis M. (Delmont, PA)

1997-01-01T23:59:59.000Z

77

Combustor burner vanelets  

DOE Patents (OSTI)

The present application provides a burner for use with a combustor of a gas turbine engine. The burner may include a center hub, a shroud, a pair of fuel vanes extending from the center hub to the shroud, and a vanelet extending from the center hub and/or the shroud and positioned between the pair of fuel vanes.

Lacy, Benjamin (Greer, SC); Varatharajan, Balachandar (Loveland, OH); Kraemer, Gilbert Otto (Greer, SC); Yilmaz, Ertan (Albany, NY); Zuo, Baifang (Simpsonville, SC)

2012-02-14T23:59:59.000Z

78

CFCC Development Program: commercial plant stacked combustor/steam generator design evaluation (Task 2. 1)  

SciTech Connect

The Coal Fired Combined Cycle (CFCC) is the unique power plant concept developed under the leadership of the General Electric Company to provide a direct coal-burning gas turbine and steam turbine combined cycle power plant. The advantages of the combined cycle for higher efficiency and the potential of the pressurized fluidized bed (PFB) combustor for improvements in emissions could offer a new and attractive option to the electric utility industry after its successful development. The CFCC approach provides cooling of the fluid bed combustor through the use of steam tubes in the bed, which supply a steam turbine-generator. The partially cooled combustion gases exiting from the combustor drive a gas turbine-generator after passing through a hot-gas cleanup train. On the basis of previous studies and confirming work under this contract, General Electric continues to believe that the CFCC approach offers these important advantages over alternate approaches: higher power plant efficiency in the combustor temperature range of interest; reduced combustor/steam generator corrosion potential, due to low fluid-bed tube temperature (as contrasted to the air in tube cycle); reduced hot-gas cleanup flow rate (as contrasted with the uncooled combustor cycle); and increased gas turbine bucket life through use of corrosion resistant material protection systems.

1978-06-01T23:59:59.000Z

79

A staged fluidized-bed comubstion and filter system  

DOE Patents (OSTI)

A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized- bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gasses into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.

Mei, J.S.; Halow, J.S.

1993-12-31T23:59:59.000Z

80

Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LWO-SPT-2007-00249 LWO-SPT-2007-00249 Rev. 1 Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) For Tank 48H Treatment Project (TTP) November, 2007 Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) LWO-SPT-2007-00249 Rev. 1 DISCLAIMER This report was prepared by Washington Savannah River Company (WSRC) for the United States Department of Energy under Contract No. DEA-AC09-96SR18500 and is an account of work performed under that contract. Neither the United States Department of Energy, nor WSRC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, or product or process

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Gas turbine topping combustor  

DOE Patents (OSTI)

A combustor is described for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone. 14 figs.

Beer, J.; Dowdy, T.E.; Bachovchin, D.M.

1997-06-10T23:59:59.000Z

82

Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1993--March 31, 1993  

SciTech Connect

The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed boilers is in progress. Preliminary results indicate that at least five boilers were experiencing some form of bed material agglomeration. In these instances it was observed that large particles were forming within the bed which were larger that the feed. Four operators could confirm that the larger bed particles had formed due to bed particles sticking together or agglomerating. Deposit formation was reported at nine sites with these deposits being found most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Examples of these agglomerates and deposits have been received from five of the surveyed facilities. Also during this quarter, a bulk sample of Illinois No. 6 coal was obtained from the Fossil Energy Program at Ames Laboratory here at Iowa State University and prepared for combustion tests. This sample was first ground to a top-size of 3/8`` using a jaw crusher then a size fraction of 3/8`` {times} 8 (US mesh) was then obtained by sieving using a Gilson Test-Master. This size fraction was selected for the preliminary laboratory-scale experiments designed to simulate the dense bed conditions that exist in the bottom of CFB combustors. To ensure uniformity of fuel composition among combustion runs, the sized coal was riffled using, a cone and long row method and stored in bags for each experiment. During this quarter additional modifications were made to achieve better control of fluidization regimes and to aid in monitoring the hydrodynamic and chemical conditions within the reactor.

Brown, R.C.; Dawson, M.R.; Noble, S.D.

1993-04-01T23:59:59.000Z

83

LIF Applications for Practical Combustors  

Science Conference Proceedings (OSTI)

This study demonstrates the applicability of LIF in several practical combustors. Temperature and species concentration were measured inside industrial model burners, gas turbine combustors, diesel engines, and large scale industrial burners. This visualization ... Keywords: combustion, laser, laser induced fluorescence, nitrogen oxide, reaction mechanism

Y. Deguchi; H. Nakagawa; T. Ichinose; M. Inada

1999-12-01T23:59:59.000Z

84

Record of Decision; JEA Circulating Fluidized Bed Combustor Project, Jacksonville, Duval County, FL (DOE/EIS-0289) (12/7/00)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

614 614 Federal Register / Vol. 65, No. 236 / Thursday, December 7, 2000 / Notices Recordkeeping burden. OMB invites public comment. Dated: December 1, 2000. John Tressler, Leader Regulatory Information Management, Office of the Chief Information Officer. Office of Educational Research and Improvement Type of Review: New. Title: Education Longitudinal Study of 2002 (ELS 2002). Frequency: Annually. Affected Public: Not-for-profit institutions; State, Local, or Tribal Gov't, SEAs or LEAs. Reporting and Recordkeeping Hour Burden: Responses: 51,597. Burden Hours: 59,497. Abstract: Year 2001 field test of 50 schools in five states, students, parents, teachers, and librarians. The main study in Spring 2002 in all 50 states and District of Columbia will constitute the baseline of a longitudinal study of

85

NETL: Utilization Projects - Western Research Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Fill Applications Background Montana-Dakota Utilities operates fluidized bed combustor burning North Dakota lignite in a sand bed. The ash material can't be used in conventional...

86

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Diagram of CERTS Microgrid Test Bed Figure 3. Tecogen Prime2009 CERTS Microgrid Laboratory Test Bed J. ETO, Lawrenceof the CERTS Microgrid Test Bed project was to enhance the

Eto, Joe

2009-01-01T23:59:59.000Z

87

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Line Diagram of CERTS Microgrid Test Bed Figure 3. TecogenCALGARY 2009 CERTS Microgrid Laboratory Test Bed J. ETO,The objective of the CERTS Microgrid Test Bed project was to

Eto, Joe

2009-01-01T23:59:59.000Z

88

Concentric catalytic combustor  

DOE Patents (OSTI)

A catalytic combustor (28) includes a tubular pressure boundary element (90) having a longitudinal flow axis (e.g., 56) separating a first portion (94) of a first fluid flow (e.g., 24) from a second portion (95) of the first fluid flow. The pressure boundary element includes a wall (96) having a plurality of separate longitudinally oriented flow paths (98) annularly disposed within the wall and conducting respective portions (100, 101) of a second fluid flow (e.g., 26) therethrough. A catalytic material (32) is disposed on a surface (e.g., 102, 103) of the pressure boundary element exposed to at least one of the first and second portions of the first fluid flow.

Bruck, Gerald J. (Oviedo, FL); Laster, Walter R. (Oviedo, FL)

2009-03-24T23:59:59.000Z

89

Low emission combustor  

SciTech Connect

A low emission combustor assembly particularly suited for an automotive gas turbine engine has an inlet plenum supplied with regenerated compressor discharge, an exhaust plenum, a diffusion flame combustion chamber disposed between the inlet and exhaust plenums, and a catalytic combustion chamber also disposed between the inlet and exhaust plenums so that parallel flow paths are established between the inlet and exhaust plenums. During engine start-up, fuel is supplied only to the diffusion flame combustion chamber and regenerated compressor discharge simultaneously flowing through the catalytic combustion chamber heats the catalyst to operating temperature and cools and dilutes exhaust from the diffusion flame combustion chamber. When the catalyst reaches operating temperature fuel is directed only to the catalytic combustion chamber wherein an ultra lean air/fuel ratio mixture is catalytically oxidized, the exhaust from this reaction being cooled and diluted by regenerated compressor discharge simultaneously flowing through the diffusion flame combustion chamber.

Cornelius, W.; Klomp, E.D.; Kosek, T.P.

1984-02-28T23:59:59.000Z

90

Nucla circulating atmospheric fluidized bed demonstration project. Quarterly technical progress report, October--December 1990  

Science Conference Proceedings (OSTI)

During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

Not Available

1991-01-31T23:59:59.000Z

91

Microsoft Word - 41891_SWPC_Catalytic Combustor_Factsheet_Rev01...  

NLE Websites -- All DOE Office Websites (Extended Search)

COMBUSTORFACTSHEETREV0104-24.DOC Facts Sheet: Catalytic Combustor for Fuel Flexible Gas Turbine (DE-FC26-03NT41891) I. PROJECT PARTICIPANTS A. Siemens Westinghouse Power...

92

Probabilistic aerothermal design of gas turbine combustors  

E-Print Network (OSTI)

This thesis presents a probability-based framework for assessing the impact of manufacturing variability on combustor liner durability. Simplified models are used to link combustor liner life, liner temperature variability, ...

Bradshaw, Sean D. (Sean Darien), 1978-

2006-01-01T23:59:59.000Z

93

AFBC (atmospheric fluidized-bed combustion) conversion at Northern States Power Company: Volume 1, Project origins: Final report  

SciTech Connect

This is the first volume in a series of four reports detailing the conversion of Northern States Power Company's (NSP) Black Dog unit 2 from pulverized-coal firing to atmospheric fluidized-bed combustion (AFBC). This particular report describes the important events and decisions that led to NSP's selection of its Black Dog unit 2 for conversion to AFBC, and it provides an overview of AFBC technology and a discussion of the AFBC conversion market. The purpose of these reports is to disseminate the information gathered during the Black Dog AFBC Conversion Project to utilities evaluating the technical feasibility and cost effectiveness of converting units within their systems from pulverized-coal firing to AFBC. To this end, each volume in this series of reports presents material about a different aspect of the Black Dog project. Volume 2 - Unit Design describes the design of the new AFBC system and the important decisions that led to its final configuration; Volume 3 - Unit Demolition describes the major activities that occurred during the demolition and relocation phase; and Volume 4 - Unit Construction describes the major activities that occurred during the construction phase of the project. 17 refs., 9 figs., 12 tabs.

deBrun Duffy, J.; Hinrichsen, D.

1987-11-01T23:59:59.000Z

94

Pulse combustor with controllable oscillations  

DOE Patents (OSTI)

A pulse combustor having thermally induced pulse combustion in a continuously flowing system is described. The pulse combustor is fitted with at lease one elongated ceramic body which significantly increases the heat transfer area in the combustion chamber of the combustor. The ceramic body or bodies possess sufficient mass and heat capacity to ignite the fuel-air charge once the ceramic body or bodies are heated by conventional spark plug initiated combustion so as to provide repetitive ignition and combustion of sequentially introduced fuel-air charges without the assistance of the spark plug and the rapid quenching of the flame after each ignition in a controlled manner so as to provide a selective control over the oscillation frequency and amplitude. Additional control over the heat transfer in the combustion chamber is provided by employing heat exchange mechanisms for selectively heating or cooling the elongated ceramic body or bodies and/or the walls of the combustion chamber.

Richards, George A. (Morgantown, WV); Welter, Michael J. (Columbiana, OH); Morris, Gary J. (Morgantown, WV)

1992-01-01T23:59:59.000Z

95

Pulse combustor with controllable oscillations  

DOE Patents (OSTI)

A pulse combustor having thermally induced pulse combustion in a continuously flowing system is described. The pulse combustor is fitted with at lease one elongated ceramic body which significantly increases the heat transfer area in the combustion chamber of the combustor. The ceramic body or bodies possess sufficient mass and heat capacity to ignite the fuel-air charge once the ceramic body or bodies are heated by conventional spark plug initiated combustion so as to provide repetitive ignition and combustion of sequentially introduced fuel-air charges without the assistance of the spark plug and the rapid quenching of the flame after each ignition in a controlled manner so as to provide a selective control over the oscillation frequency and amplitude. Additional control over the heat transfer in the combustion chamber is provided by employing heat exchange mechanisms for selectively heating or cooling the elongated ceramic body or bodies and/or the walls of the combustion chamber.

Richards, G.A.; Morris, G.J.; Welter, M.J.

1991-12-31T23:59:59.000Z

96

Methanol tailgas combustor control method  

DOE Patents (OSTI)

A method for controlling the power and temperature and fuel source of a combustor in a fuel cell apparatus to supply heat to a fuel processor where the combustor has dual fuel inlet streams including a first fuel stream, and a second fuel stream of anode effluent from the fuel cell and reformate from the fuel processor. In all operating modes, an enthalpy balance is determined by regulating the amount of the first and/or second fuel streams and the quantity of the first air flow stream to support fuel processor power requirements.

Hart-Predmore, David J. (Rochester, NY); Pettit, William H. (Rochester, NY)

2002-01-01T23:59:59.000Z

97

Comprehensive report to Congress: Clean Coal Technology Program: Arvah B. Hopkins circulating fluidized-bed repowering project: A project proposed by: The City of Tallahassee  

Science Conference Proceedings (OSTI)

The project involves the repowering of a 250-megawatt electrical (MWe) natural gas- or oil-fired boiler with a coal-fired atmospheric circulating fluidized-bed (CFB) boiler to provide steam to an existing turbine generator. The boiler will be the largest of its type. After construction and shakedown, the City of Tallahassee (CoT) plant will be operated for 24 months with at least three different eastern coals. Final coal selection will be based on the Fuels Selection Study, which is part of Phase I-A of the project. Cost, financial, and technical data from the CoT CFB will be provided the utility industry for evaluation of a 250-MWe CFB as a commercially viable clean coal alternative. The objective of the Arvah B. Hopkins CFB Repowering Project is to demonstrate an efficient, economical, and environmentally superior method of generating electric power from coal. The work to be performed under the Cooperative Agreement includes the design, construction, and operation of the demonstration plant. 4 figs.

Not Available

1990-10-01T23:59:59.000Z

98

Coal desulfurization in a rotary kiln combustor. Quarterly report No. 1, April 16, 1990--July 15, 1990  

Science Conference Proceedings (OSTI)

BCR National Laboratory (BCRNL) has initiated a project aimed at evaluating the technical and economic feasibility of using a rotary kiln, suitably modified, to burn Pennsylvania anthracite wastes, co-fired with high-sulfur bituminous coal. Limestone will be injected into the kiln for sulfur control, to determine whether high sulfur capture levels can be achieved with high sorbent utilization. The principal objectives of this work are: (1) to prove the feasibility of burning anthracite refuse, with co-firing of high-sulfur bituminous coal and with limestone injection for sulfur emissions control, in a rotary kiln fitted with a Universal Energy International (UEI) air injector system; (2) to determine the emissions levels of SO{sub x} and NO{sub x} and specifically to identify the Ca/S ratios that are required to meet New Source Performance Standards; (3) to evaluate the technical and economic merits of a commercial rotary kiln combustor in comparison to fluidized bed combustors; and, (4) to ascertain the need for further work, including additional combustion tests, prior to commercial application, and to recommend accordingly a detailed program towards this end.

Cobb, J.T. Jr.

1990-08-15T23:59:59.000Z

99

Scaling of pressurized fluidized beds. First quarterly progress report, October 1, 1992--January 15, 1993  

Science Conference Proceedings (OSTI)

Some preliminary work has been done to develop potential cold scale model designs to simulate the bed hydrodynamics of the American Electric Power Tidd pressurized bubbling fluidized bed combustor. The first design is based on the full set of scaling parameters presented in Equation (1), the second design was developed using the simplified set of scaling parameters given in Equation (2). The first design is roughly a 1:1 representation of a section of the core of the Tidd bed combustor. The additional flexibility provided by the simplified set of scaling parameters is particularly useful for developing experimental models of pressurized fluidized bed combustors where the full set of scaling relationships does not provide any reduction in the size of the models. Both the full and the simplified set of scaling relationships have been verified for applications to circulating fluidized bed combustors operating at atmospheric pressure. Currently there is a interest in fluidized bed combustors which operate at elevated pressures ({approximately}12 atm) for combined-cycle applications. One of the primary goals of this stud r is to verify both the till set and the simplified set of scaling relationships for applications to pressurized bubbling fluidized bed combustors.

Glicksman, L.; Farrell, P.

1993-09-01T23:59:59.000Z

100

Pressurized Circulating Fluidized Bed (PCFB) Repowering Project. Annual report, August 1991--December 1992  

SciTech Connect

This report provides a summary of activities, by the DMEC-1 Limited Partnership on the PCFB Repowering Project from project initiation in August 1991 through December 1992. The DMEC-1 project will demonstrate ``First Generation`` PCFB technology and will result in an existing steam turbine being repowered with steam from a PCFB boiler. Exhaust gases from the PCFB boiler will be expanded through a gas turbine to provide additional power output. The preliminary design is progressing. As the design is refined and modified, cost and schedule baselines will be updated. Environmental information has been obtained and submitted to The Department of Energy (DOE) with no obvious problems or concerns identified. Testing analysis and evaluations of systems continue. A key feature of design verification testing has been and will continue to be the testing of ceramic barrier filtration technologies including the Asahi Advanced Ceramic Tube Filter (ACTF) and Westinghouse`s Candle Filter. At the time of this report testing has been completed on the Asahi ACTF and tests have been initiated on the Westinghouse filters. In general terms, the Asahi design was successful in reducing the outlet dust loading to required levels but certain problems were encountered which led to some premature ceramic tube failures.

1993-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Microsoft Word - 41891_SWPC_Catalytic Combustor_Factsheet_Rev01_04-24.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

891_SWPC_CATALYTIC COMBUSTOR_FACTSHEET_REV01_04-24.DOC 891_SWPC_CATALYTIC COMBUSTOR_FACTSHEET_REV01_04-24.DOC Facts Sheet: Catalytic Combustor for Fuel Flexible Gas Turbine (DE-FC26-03NT41891) I. PROJECT PARTICIPANTS A. Siemens Westinghouse Power Corporation B. Caterpillar/Solar Turbine C. Penn State University D. Southern Company Services II. PROJECT DESCRIPTION A. Objective: To develop and demonstrate a cost effective, fuel flexible (syngas/natural gas) catalytic combustor that will achieve ultra low NOx emissions (2ppm) at the exit of the gas turbine and without the use of backend cleanup in Integrated Gasification Combined Cycle (IGCC) application. B. Background/Relevancy 1. Background: Catalytic combustion has been shown to achieve lowest emissions in conventional gas turbine application (natural gas only). Available technical data indicate that it can be effective

102

Atmospheric Fluidized Bed Combustion for Power Production from Biomass  

Science Conference Proceedings (OSTI)

Atmospheric fluidized bed combustion (AFBC) technologyincluding smaller bubbling fluidized bed (BFB) as well as circulating fluidized bed (CFB) combustor unitsprovides robust combustion with high thermal inertia. This means that AFBC units can successfully respond to variations in ash content, calorific value, and moisture content commonly encountered in burning biomass fuels. This report describes AFBC technology and its deployment for generating steam for power plants using a wide variety of biomass fu...

2010-01-28T23:59:59.000Z

103

Pressurized Fluidized Bed Combustion Second-Generation System Research and Development  

SciTech Connect

Research is being conducted under United States Department of Energy (DOE) Contract DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant--called a Second-Generation or Advanced Pressurized Circulating Fluidized Bed Combustion (APCFB) plant--offers the promise of efficiencies greater than 45% (HHV), with both emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. The APCFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized bed boiler (PCFB), and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2300 F and higher. A conceptual design was previously prepared for this new type of plant and an economic analysis presented, all based on the use of a Siemens Westinghouse W501F gas turbine with projected carbonizer, PCFB, and topping combustor performance data. Having tested these components at the pilot plant stage, the referenced conceptual design is being updated to reflect more accurate performance predictions together with the use of the more advanced Siemens Westinghouse W501G gas turbine and a conventional 2400 psig/1050 F/1050 F/2-1/2 in. steam turbine. This report describes the updated plant which is projected to have an HHV efficiency of 48% and identifies work completed for the October 2001 through September 2002 time period.

A. Robertson; D. Horazak; R. Newby; H. Goldstein

2002-11-01T23:59:59.000Z

104

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

DOE Green Energy (OSTI)

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2006 through March 31, 2006. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility were completed. The riser, primary cyclone and secondary cyclone of Circulating Fluidized Bed (CFB) Combustor have been erected. Second, the Mercury Control Workshop and the Grand Opening of Institute for Combustion Science and Environmental Technology (ICSET) were successfully held on February 22 and 23, 2006, respectively. Third, effects of hydrogen chlorine (HCl) and sulfur dioxide (SO{sub 2}) on mercury oxidation were studied in a drop tube reactor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

Wei-Ping Pan; Yan Cao; Songgeng Li

2006-04-01T23:59:59.000Z

105

Understanding and Control of Combustion Dynamics in Gas Turbine Combustors  

NLE Websites -- All DOE Office Websites (Extended Search)

Control of Combustion Understanding and Control of Combustion Control of Combustion Understanding and Control of Combustion Dynamics in Gas Turbine Combustors Dynamics in Gas Turbine Combustors Georgia Institute of Technology Georgia Institute of Technology Ben T. Zinn, Tim Lieuwen, Yedidia Neumeier, and Ben Bellows SCIES Project 02-01-SR095 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (05/01/2002, 36 Month Duration) $452,695 Total Contract Value CLEMSONPRES.PPT, 10/28/2003, B.T. ZINN, T. LIEUWEN, Y. NEUMEIER Gas Turbine Need Gas Turbine Need * Need: Gas turbine reliability and availability is important factor affecting power plant economics - Problem: Combustion driven oscillations severely reduce part life, requiring substantially more frequent outages

106

Variable residence time vortex combustor  

DOE Patents (OSTI)

A variable residence time vortex combustor including a primary combustion chamber for containing a combustion vortex, and a plurality of louvres peripherally disposed about the primary combustion chamber and longitudinally distributed along its primary axis. The louvres are inclined to impel air about the primary combustion chamber to cool its interior surfaces and to impel air inwardly to assist in driving the combustion vortex in a first rotational direction and to feed combustion in the primary combustion chamber. The vortex combustor also includes a second combustion chamber having a secondary zone and a narrowed waist region in the primary combustion chamber interconnecting the output of the primary combustion chamber with the secondary zone for passing only lower density particles and trapping higher density particles in the combustion vortex in the primary combustion chamber for substantial combustion.

Melconian, Jerry O. (76 Beaver Rd., Reading, MA 01867)

1987-01-01T23:59:59.000Z

107

Catalytic Combustor for Fuel-Flexible Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

Lean (RCL TM ) technology, Figure 1, is being developed as an ultra low NOx gas turbine combustor for Integrated Gasification Combined Cycle (IGCC). In this concept, ultra...

108

Catalytic Combustor for Fuel-Flexible Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalytic Lean (RCL TM ) technology, Figure 1, is being developed as an ultra low NOx gas turbine combustor for Integrated Gasification Combined Cycle (IGCC). In this concept,...

109

Second-generation PFBC systems research and development, Phase 2 topping combustor development  

SciTech Connect

The use of a Circulating Pressurized Fluidized Bed Combustor (CPFBC) as the primary combustion system for a combustion turbine requires transporting compressor air to the CPFBC and vitiated air/fuel gas back to the turbine. In addition, the topping combustion system must be located in the returning vitiated airflow path. The conventional fuel system and turbine center section require major changes for the applications. The combustion zone of the Westinghouse 501F turbine currently in production cannot contain the topping combustion system within the main structural pressure shell. Although the pressure casing can be enlarged both radially and longitudinally to accommodate the topping combustor system, the integrity and rigidity of the main shell would be significantly affected and, it could introduce rotor dynamics problems and preclude shipping the unit assembled. The currently favored configuration, which utilizes two topping combustor assemblies, one on each side of the unit, is shown in Figure 1. Half of the vitiated air from the CPFBC enters each of the internal plenum chambers in which the topping combustors are mounted. Fuel gas enters the assembly via the fuel nozzles at the head end of the combustor. Combustion occurs, and the products of combustion are ducted into the main shell for distribution to the first-stage turbine vanes. Compressor discharge air leaves the main shell, flowing around the annular duct into adjacent combustion shells. The air flows around the vitiated air plenums and leaves each combustion assembly via nozzles and is ducted to the CPFBC and carbonizer.

Domeracki, W.F.; Dowdy, T.E.; Bachovchin, D.; Foote, J.; Pillsbury, P.W.; Bouvier, B.U.; Muller, K.F.

1993-09-01T23:59:59.000Z

110

Regeneration of lime from sulfates for fluidized-bed combustion  

DOE Patents (OSTI)

In a fluidized-bed combustor the evolving sulfur oxides are reacted with CaO to form calcium sulfate which is then decomposed in the presence of carbonaceous material, such as the fly ash recovered from the combustion, at temperatures of about 900.degree. to 1000.degree. C., to regenerate lime. The regenerated lime is then recycled to the fluidized bed combustor to further react with the evolving sulfur oxides. The lime regenerated in this manner is quite effective in removing the sulfur oxides.

Yang, Ralph T. (Middle Island, NY); Steinberg, Meyer (Huntington Station, NY)

1980-01-01T23:59:59.000Z

111

Robust techniques for developing empirical models of fluidized bed combustors  

E-Print Network (OSTI)

This report is designed to provide a review of those data analysis techniques that are most useful for fitting m-dimensional empirical surfaces to very large sets of data. One issue explored is the improvement

Gruhl, Jim

112

Geomechanical risks in coal bed carbon dioxide sequestration  

E-Print Network (OSTI)

its geomechanical impact. A coal bed methane production/CO 2should be applicable to coal bed methane CO 2 projects. Ifcompletion for a coal bed methane project involves

Myer, Larry R.

2003-01-01T23:59:59.000Z

113

Combustor for fine particulate coal  

DOE Patents (OSTI)

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover.

Carlson, Larry W. (Oswego, IL)

1988-01-01T23:59:59.000Z

114

Combustor for fine particulate coal  

DOE Patents (OSTI)

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

Carlson, L.W.

1988-11-08T23:59:59.000Z

115

Combustor for fine particulate coal  

DOE Patents (OSTI)

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

Carlson, L.W.

1988-01-26T23:59:59.000Z

116

Development and testing of low-Btu fuel gas turbine combustors  

SciTech Connect

The integrated gasification combined cycle (IGCC) concept represents a highly efficient and environmentally compatible advanced coal fueled power generation technology. When IGCC is coupled with high temperature desulfurization, or hot gas cleanup (HGCU), the efficiency and cost advantage of IGCC is further improved with respect to systems based on conventional low temperature gas cleanup. Commercialization of the IGCC/HGCU concept requires successful development of combustion systems for high temperature low Btu fuel in gas turbines. Toward this goal, a turbine combustion system simulator has been designed, constructed, and fired with high temperature low Btu fuel. Fuel is supplied by a pilot scale fixed bed gasifier and hot gas desulfurization system. The primary objectives of this project are: (1) demonstration of long term operability of the turbine simulator with high temperature low Btu fuel; (2) characterization of particulates and other contaminants in the fuel as well as deposits in the fuel nozzle, combustor, and first stage nozzle; and (3) measurement of NO{sub x}, CO, unburned hydrocarbons, trace element, and particulate emissions.

Bevan, S.; Abuaf, N.; Feitelberg, A.S.; Hung, S.L.; Samuels, M.S.; Tolpadi, A.K.

1994-10-01T23:59:59.000Z

117

Gas Turbine Combustor Performance on Synthetic Fuels, Volume 2  

Science Conference Proceedings (OSTI)

This volume presents a summary of a project to determine the effects of burning currently available coal-derived and shale-derived synthetic liquid fuels in state-of-the-art gas turbine combustors. It describes the fuels tested, the effects of NO emission and of smoke formation and reduction, and a comparison of surrogate and synthetic fuels. The project concluded that a number of selected coal and shale oil fuels can be used in current turbines as soon as these fuels become available.

1981-06-01T23:59:59.000Z

118

The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBTU/hour oil fired boiler to pulverized coal  

SciTech Connect

This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)

Zauderer, B.; Fleming, E.S.

1991-08-30T23:59:59.000Z

119

Wedge edge ceramic combustor tile  

DOE Patents (OSTI)

A multipiece combustor has a portion thereof being made of a plurality of ceramic segments. Each of the plurality of ceramic segments have an outer surface and an inner surface. Each of the plurality of ceramic segments have a generally cylindrical configuration and including a plurality of joints. The joints define joint portions, a first portion defining a surface being skewed to the outer surface and the inner surface. The joint portions have a second portion defining a surface being skewed to the outer surface and the inner surface. The joint portions further include a shoulder formed intermediate the first portion and the second portion. The joints provide a sealing interlocking joint between corresponding ones of the plurality of ceramic segments. Thus, the multipiece combustor having the plurality of ceramic segment with the plurality of joints reduces the physical size of the individual components and the degradation of the surface of the ceramic components in a tensile stress zone is generally eliminated reducing the possibility of catastrophic failures.

Shaffer, James E. (Maitland, FL); Holsapple, Allan C. (Poway, CA)

1997-01-01T23:59:59.000Z

120

Wedge edge ceramic combustor tile  

DOE Patents (OSTI)

A multipiece combustor has a portion thereof being made of a plurality of ceramic segments. Each of the plurality of ceramic segments have an outer surface and an inner surface. Each of the plurality of ceramic segments have a generally cylindrical configuration and including a plurality of joints. The joints define joint portions, a first portion defining a surface being skewed to the outer surface and the inner surface. The joint portions have a second portion defining a surface being skewed to the outer surface and the inner surface. The joint portions further include a shoulder formed intermediate the first portion and the second portion. The joints provide a sealing interlocking joint between corresponding ones of the plurality of ceramic segments. Thus, the multipiece combustor having the plurality of ceramic segment with the plurality of joints reduces the physical size of the individual components and the degradation of the surface of the ceramic components in a tensile stress zone is generally eliminated reducing the possibility of catastrophic failures. 7 figs.

Shaffer, J.E.; Holsapple, A.C.

1997-06-10T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Low NOx Advanced Vortex Combustor  

SciTech Connect

A lean-premixed advanced vortex combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory in Morgantown, WV. All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx /CO/unburned hydrocarbon (UHC) emissions of 4/4/0 ppmv (all emissions corrected to 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated marked acoustic dynamic stability over a wide range of operating conditions, which potentially makes this approach significantly more attractive than other lean-premixed combustion approaches. In addition, the measured 1.75% pressure drop is significantly lower than conventional gas turbine combustors, which could translate into an overall gas turbine cycle efficiency improvement. The relatively high velocities and low pressure drop achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

Edmonds, R.G. (Ramgen Power Systems, Inc., Bellevue, WA); Williams, J.T. (Ramgen Power Systems, Inc., Bellevue, WA); Steele, R.C. (EPRI); Straub, D.L.; Casleton, K.H.; Bining, Avtar (California Energy Commission, Sacramento, CA)

2008-05-01T23:59:59.000Z

122

TIDD PFBC Demonstration Project  

SciTech Connect

In fluidized bed combustion, coal and sorbent (dolomite or limestone) are fed into a boiler in which air, entering from the bottom, maintains the bed material in a highly turbulent suspended state called fluidization. This turbulence creates good contact between the air and fuel, allowing for high combustion efficiency and excellent adsorption of sulfur dioxide (SO{sub 2}) during the combustion process. In PFBC applications, pressurized air is supplied to the combustor. Pressurizing the air concentrates a larger quantity of oxygen per unit volume. This results in a lower velocity of air through the fuel bed. The lower velocity reduces the total height required for the bed and freeboard above the bed. Also, a smaller plan area is required for the bed area as compared to an atmospheric fluidized bed. This has the advantage of requiring a much smaller pressure vessel to contain the boiler enclosure. The mean bed temperature of a pressurized fluidized bed combustor is typically maintained in the range 1540 to 1580 F. This is well below the ash fusion temperature of coal, yet above the ignition temperature of the coal. Advantages of the low bed temperature are no slag formation and a reduction of NO{sub x} emissions to less than half that of a conventional boiler. The Tidd Plant is a combined cycle pressurized fluidized bed combustion system with a topping gas cycle and a bottoming steam cycle.

Not Available

1994-03-01T23:59:59.000Z

123

Fuel cell system with combustor-heated reformer  

DOE Patents (OSTI)

A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

Pettit, William Henry (Rochester, NY)

2000-01-01T23:59:59.000Z

124

Combustor oscillating pressure stabilization and method  

DOE Patents (OSTI)

High dynamic pressure oscillations in hydrocarbon-fueled combustors typically occur when the transport time of the fuel to the flame front is at some fraction of the acoustic period. These oscillations are reduced to acceptably lower levels by restructuring or repositioning the flame front in the combustor to increase the transport time. A pilot flame front located upstream of the oscillating flame and pulsed at a selected frequency and duration effectively restructures and repositions the oscillating flame in the combustor to alter the oscillation-causing transport time.

Gemmen, Randall S. (Morgantown, WV); Richards, George A. (Morgantown, WV); Yip, Mui-Tong Joseph (Morgantown, WV); Robey, Edward H. (Westover, WV); Cully, Scott R. (Morgantown, WV); Addis, Richard E. (Smithfield, PA)

1998-01-01T23:59:59.000Z

125

Combustor oscillating pressure stabilization and method  

DOE Patents (OSTI)

High dynamic pressure oscillations in hydrocarbon-fueled combustors typically occur when the transport time of the fuel to the flame front is at some fraction of the acoustic period. These oscillations are reduced to acceptably lower levels by restructuring or repositioning the flame front in the combustor to increase the transport time. A pilot flame front located upstream of the oscillating flame and pulsed at a selected frequency and duration effectively restructures and repositions the oscillating flame in the combustor to alter the oscillation-causing transport time. 7 figs.

Gemmen, R.S.; Richards, G.A.; Yip, M.T.J.; Robey, E.H.; Cully, S.R.; Addis, R.E.

1998-08-11T23:59:59.000Z

126

Geomechanical risks in coal bed carbon dioxide sequestration  

E-Print Network (OSTI)

SAF. 1958. The strength of coal in triaxial compression.Geomechanical Risks in Coal Bed Carbon Dioxide Sequestrationof leakage of CO 2 from coal bed sequestration projects. The

Myer, Larry R.

2003-01-01T23:59:59.000Z

127

Combustor assembly in a gas turbine engine  

Science Conference Proceedings (OSTI)

A combustor assembly in a gas turbine engine. The combustor assembly includes a combustor device coupled to a main engine casing, a first fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner disposed radially inwardly from the flow sleeve. The first fuel injection system provides fuel that is ignited with the pressurized air creating first working gases. The intermediate duct is disposed between the liner and the transition duct and defines a path for the first working gases to flow from the liner to the transition duct. An intermediate duct inlet portion is associated with a liner outlet and allows movement between the intermediate duct and the liner. An intermediate duct outlet portion is associated with a transition duct inlet section and allows movement between the intermediate duct and the transition duct.

Wiebe, David J; Fox, Timothy A

2013-02-19T23:59:59.000Z

128

Development of a combustor liner composed of ceramic matrix composite (CMC)  

Science Conference Proceedings (OSTI)

The Research Institute of Advanced Materials Gas-Generator (AMG), which is a joint effort by the Japan Key Technology Center and 14 firms in Japan, has, since fiscal year 1992, been conducting technological studies on an innovative gas generator that will use 20% less fuel, weight 50% less, and emit 70% less NO{sub x} than the conventional gas generator through the use of advanced materials. Within this project, there is an R and D program for applying ceramic matrix composite (CMC) liners to the combustor, which is a major component of the gas generator. In the course of R and D, continuous SiC fiber-reinforced SiC composite (SiC{sup F}/SiC) was selected as the most suitable CMD for the combustor liner because of its thermal stability and formability. An evaluation of the applicability of the SiC{sup F}/SiC composite to the combustor liner on the basis of an evaluation of its mechanical properties and stress analysis of a SiC{sup F}/SiC combustor liner was carried out, and trial SiC{sup F}/SiC combustor liners, the largest of which was 500-mm in diameter, were fabricated by the filament winding and PIP (polymer impregnation and pyrolysis) method. Using a SiC{sup F}/SiC liner built to the actual dimensions, a noncooling combustion test was carried out and even when the gas temperature was raised to 1873K at outlet of the liner, no damage was observed after the test. Through their studies, the authors have confirmed the applicability of the selected SiC{sup F}/SiC composite as a combustor liner. In this paper, the authors describe the present state of the R and D of a CMC combustor liner.

Nishio, K.; Igashira, K.I.; Take, K. [Research Inst. of Advanced Material Gas-Generator, Tokyo (Japan); Suemitsu, T. [Kawasaki Heavy Industries Limited, Hyogo (Japan)

1999-01-01T23:59:59.000Z

129

Notice of Intent to Prepare an Environmental Impact Statement for the Proposed McIntosh Unit 4 Pressurized Circulating Fluidized Bed Demonstration Project, March 25, 1999  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 10 Federal Register / Vol. 64, No. 58 / Friday, March 26, 1999 / Notices DEPARTMENT OF ENERGY Notice of Intent To Prepare an Environmental Impact Statement for the Proposed McIntosh Unit 4 Pressurized Circulating Fluidized Bed Demonstration Project AGENCY: U.S. Department of Energy. ACTION: Notice of intent to prepare an Environmental Impact Statement. SUMMARY: The U.S. Department of Energy (DOE) announces its intent to prepare an Environmental Impact Statement (EIS) pursuant to the National Environmental Policy Act (NEPA), the Council on Environmental Quality (CEQ) NEPA regulations (40 CFR Parts 1500-1508), and the DOE NEPA regulations (10 CFR Part 1021), to assess the potential environmental and human health impacts of a proposed project to expand the C. D. McIntosh, Jr. Power

130

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Combustion Dynamics in Multi-Nozzle Combustors Operating on High-Hydrogen Fuels Penn State University & Georgia Tech 4 Combustion Dynamics in Multi-Nozzle Combustors Operating on High-Hydrogen Fuels Penn State University & Georgia Tech Dom Santavicca (PSU) & Tim Lieuwen (Georgia Tech) Project Dates: 10/1/2008 - 9/30/2011 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: The objectives of this project are 1) to obtain fundamental understanding of the response of lean premixed multi-nozzle combustors operating on high hydrogen, coal derived fuels to both transverse and longitudinal fluctuations of the air flow rate and 2) to use this understanding to formulate and validate longitudinal and transverse flame response models that can be used to predict instability in multi-nozzle annular and can combustors. Such models are an essential tool

131

Rolling contact mounting arrangement for a ceramic combustor  

DOE Patents (OSTI)

A combustor assembly having a preestablished rate of thermal expansion is mounted within a gas turbine engine housing having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the combustor assembly. The combustor assembly is constructed of a inlet end portion, a outlet end portion and a plurality of combustor ring segments positioned between the end portions. A mounting assembly is positioned between the combustor assembly and the gas turbine engine housing to allow for the difference in the rate of thermal expansion while maintaining axially compressive force on the combustor assembly to maintain contact between the separate components.

Boyd, Gary L. (328 Sneath Way, Alpine, CA 91901); Shaffer, James E. (1780 Geronimo Tr., Maitland, FL 32751)

1995-01-01T23:59:59.000Z

132

Rolling contact mounting arrangement for a ceramic combustor  

DOE Patents (OSTI)

A combustor assembly having a preestablished rate of thermal expansion is mounted within a gas turbine engine housing having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the combustor assembly. The combustor assembly is constructed of a inlet end portion, a outlet end portion and a plurality of combustor ring segments positioned between the end portions. A mounting assembly is positioned between the combustor assembly and the gas turbine engine housing to allow for the difference in the rate of thermal expansion while maintaining axially compressive force on the combustor assembly to maintain contact between the separate components. 3 figs.

Boyd, G.L.; Shaffer, J.E.

1995-10-17T23:59:59.000Z

133

Lamar repowering project's creative modeling of old and new wins Marmaduke award  

Science Conference Proceedings (OSTI)

Lamar Light and Power is a municipal utility that has been generating the south eastern Colorado city's electricity since 1920. Rising natural gas and oil costs pushed LL & P to retire its steam plant five years ago and begin hunting for more economic power sources. The answer: repower the existing plant with a state-of-the-art coal-fired circulating fluidized-bed combustor and cross-connect old and new steam turbines. The 120 million dollar project will stabilize the region's electricity rates for many years to come. 10 figs. 1 tab.

Peltier, R.

2008-08-15T23:59:59.000Z

134

SunShot Initiative: CSP Tower Air Brayton Combustor  

NLE Websites -- All DOE Office Websites (Extended Search)

CSP Tower Air Brayton Combustor to someone by E-mail Share SunShot Initiative: CSP Tower Air Brayton Combustor on Facebook Tweet about SunShot Initiative: CSP Tower Air Brayton...

135

Micro-combustor for gas turbine engine  

SciTech Connect

An improved gas turbine combustor (20) including a basket (26) and a multiplicity of micro openings (29) arrayed across an inlet wall (27) for passage of a fuel/air mixture for ignition within the combustor. The openings preferably have a diameter on the order of the quenching diameter; i.e. the port diameter for which the flame is self-extinguishing, which is a function of the fuel mixture, temperature and pressure. The basket may have a curved rectangular shape that approximates the shape of the curved rectangular shape of the intake manifolds of the turbine.

Martin, Scott M. (Oviedo, FL)

2010-11-30T23:59:59.000Z

136

Project 264  

NLE Websites -- All DOE Office Websites (Extended Search)

HIGH TEMPERATURE SOLIDS VELOCITY PROBE HIGH TEMPERATURE SOLIDS VELOCITY PROBE Description The purpose of this research is to design and test a laser-based probe to measure solids velocity and direction in the riser section of a circulating fluidized bed at high temperatures. These measurements at high temperature will aid in the development of models to accurately predict the behavior of fluidized bed combustors and gasifiers. The improved models would advance the design of circulating fluidized bed reactors and in the control of the reaction process. The Solids Velocity Measurement Probe (SVMP) has been machined using high temperature materials (2200 °F) and a sapphire lens to withstand corrosive high temperature environments. A HeNe laser energy source and beam forming optic system is used to generate four parallel beams that pass

137

Near-zero emissions combustor system for syngas and biofuels  

SciTech Connect

A multi-institutional plasma combustion team was awarded a research project from the DOE/NNSA GIPP (Global Initiative for Prolifereation Prevention) office. The Institute of High Current Electronics (Tomsk, Russia); Leonardo Technologies, Inc. (an American-based industrial partner), in conjunction with the Los Alamos National Laboratory are participating in the project to develop novel plasma assisted combustion technologies. The purpose of this project is to develop prototypes of marketable systems for more stable and cleaner combustion of syngas/biofuels and to demonstrate that this technology can be used for a variety of combustion applications - with a major focus on contemporary gas turbines. In this paper, an overview of the project, along with descriptions of the plasma-based combustors and associated power supplies will be presented. Worldwide, it is recognized that a variety of combustion fuels will be required to meet the needs for supplying gas-turbine engines (electricity generation, propulsion), internal combustion engines (propulsion, transportation), and burners (heat and electricity generation) in the 21st Century. Biofuels and biofuel blends have already been applied to these needs, but experience difficulties in modifications to combustion processes and combustor design and the need for flame stabilization techniques to address current and future environmental and energy-efficiency challenges. In addition, municipal solid waste (MSW) has shown promise as a feedstock for heat and/or electricity-generating plants. However, current combustion techniques that use such fuels have problems with achieving environmentally-acceptable air/exhaust emissions and can also benefit from increased combustion efficiency. This project involves a novel technology (a form of plasma-assisted combustion) that can address the above issues. Plasma-assisted combustion (PAC) is a growing field that is receiving worldwide attention at present. The project is focused on research necessary to develop a novel, high-efficiency, low-emissions (near-zero, or as low as reasonably achievable), advanced combustion technology for electricity and heat production from biofuels and fuels derived from MSW. For any type of combustion technology, including the advanced technology of this project, two problems of special interest must be addressed: developing and optimizing the combustion chambers and the systems for igniting and sustaining the fuel-burning process. For MSW in particular, there are new challenges over gaseous or liquid fuels because solid fuels must be ground into fine particulates ({approx} 10 {micro}m diameter), fed into the advanced combustor, and combusted under plasma-assisted conditions that are quite different than gaseous or liquid fuels. The principal idea of the combustion chamber design is to use so-called reverse vortex gas flow, which allows efficient cooling of the chamber wall and flame stabilization in the central area of the combustor (Tornado chamber). Considerable progress has been made in design ing an advanced, reverse vortex flow combustion chamber for biofuels, although it was not tested on biofuels and a system that could be fully commercialized has never been completed.

Yongho, Kim [Los Alamos National Laboratory; Rosocha, Louis [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

138

Combustor for a low-emissions gas turbine engine  

DOE Patents (OSTI)

Many government entities regulated emission from gas turbine engines including CO. CO production is generally reduced when CO reacts with excess oxygen at elevated temperatures to form CO2. Many manufactures use film cooling of a combustor liner adjacent to a combustion zone to increase durability of the combustion liner. Film cooling quenches reactions of CO with excess oxygen to form CO2. Cooling the combustor liner on a cold side (backside) away from the combustion zone reduces quenching. Furthermore, placing a plurality of concavities on the cold side enhances the cooling of the combustor liner. Concavities result in very little pressure reduction such that air used to cool the combustor liner may also be used in the combustion zone. An expandable combustor housing maintains a predetermined distance between the combustor housing and combustor liner.

Glezer, Boris (Del Mar, CA); Greenwood, Stuart A. (San Diego, CA); Dutta, Partha (San Diego, CA); Moon, Hee-Koo (San Diego, CA)

2000-01-01T23:59:59.000Z

139

Stably operating pulse combustor and method  

DOE Patents (OSTI)

A pulse combustor apparatus is described which is adapted to burn either a liquid fuel or a pulverized solid fuel within a preselected volume of the combustion chamber. The combustion process is substantially restricted to an optimum combustion zone in order to attain effective pulse combustion operation. 4 figs.

Zinn, B.T.; Reiner, D.

1990-05-29T23:59:59.000Z

140

Stably operating pulse combustor and method  

DOE Patents (OSTI)

A pulse combustor apparatus adapted to burn either a liquid fuel or a pulverized solid fuel within a preselected volume of the combustion chamber. The combustion process is substantially restricted to an optimum combustion zone in order to attain effective pulse combustion operation.

Zinn, Ben T. (Atlanta, GA); Reiner, David (Haifa, IL)

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Status of granular bed filter development program  

SciTech Connect

The objective of this project was to design and develop moving bed granular filters and ceramic candle filters for particulate control from combined cycle systems. Results are described.

Wilson, K.B.; Haas, J.C.; Prudhomme, J.

1995-11-01T23:59:59.000Z

142

Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors  

Science Conference Proceedings (OSTI)

The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high-fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation, a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet tranformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

Heinz Pitsch

2010-05-31T23:59:59.000Z

143

NETL: Turbine Projects - Emissions Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Reduction Turbine Projects Emissions Reduction Pre-Mixer Design for High Hydrogen Fuels DataFact Sheets Low-NOX Emissions in a Fuel Flexible Gas Turbine Combustor Design...

144

Fluid-bed-augmented CAES systems  

DOE Green Energy (OSTI)

Compressed Air Energy Storage (CAES) systems are potentially attractive for future electric utility load leveling applications. A potential long-term weakness of the conventional CAES concept is its reliance on clean petroleum fuels during the power generation period. This consumption of petroleum could be completely eliminated by the use of coal-fired fluid bed combustors in second generation CAES plants. A large number of CAES power system configurations are possible using atmospheric fluid bed combustion (AFBC) and pressurized fluid bed combustion (PFBC). The fuel consumption rates for these systems are generally comparable to those for oil-fired CAES systems. The future prognosis for using PFBC in CAES systems looks good. Recent corrosion and erosion experiments in fluid bed systems suggest that gas turbines with acceptable lifetimes in fluid bed systems suggest that gas turbines with acceptable lifetimes are a distinct possibility. The commercial status of these systems depends on the outcome of extensive corrosion/erosion testing in static and rotating test rigs. CAES systems using AFBC may be an attractive alternative to using PFBC, although the materials problem would then be transferred from the turbine to the high temperature heat exchanger surface. A reasonable expectation for the date of commercialization of fluid bed augmented CAES system ranges from 10 to 15 years.

Giramonti, A. J.

1979-01-01T23:59:59.000Z

145

Combustion Instability and Blowout Characteristics of Fuel Flexible Gas Turbine Combustors  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Instability and Blowout Combustion Instability and Blowout Characteristics of Fuel Flexible Gas Turbine Characteristics of Fuel Flexible Gas Turbine Combustors Combustors Georgia Institute of Technology Georgia Institute of Technology Tim Lieuwen, Ben Zinn Bobby Noble, Qingguo Zhang DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES SCIES Project 03-01-SR111 Project Awarded (07/01/03, 36 Month Duration) Total Contract Value $376,722 . CLEMSON presentation, T.L., B.Z., B.N., Q.Z. Gas Turbine Need Gas Turbine Need * Need: Gas turbines with sufficient flexibility to cleanly and efficiently combust a wide range of fuels, particularly coal-derived gases - Problem: Inherent variability in composition and heating

146

Advanced Sensor Approaches for Monitoring and Control of Gas Turbine Combustors  

NLE Websites -- All DOE Office Websites (Extended Search)

Seitzman and T. Lieuwen Seitzman and T. Lieuwen SCIES Project 02- 01- SR102 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (5/1/2002, 36 Month Duration) $337,501 Total Contract Value ($327,501 DOE) Advanced Sensor Approaches For Monitoring and Control Of Gas Turbine Combustors Georgia Institute of Technology JS/TL 10/19/05 Advanced Sensors 10/19/05 2 Gas Turbine Need * Gas turbines must operate with ultra-low levels of pollutant emissions - Problem: lean, premixed operation causes minimal pollutant generation but introduces combustion problems, such as instabilities and blowoff * Combustor health and performance information needed to optimize engine across competing demands of emissions levels, power output, and

147

Effects of Combustion-Induced Vortex Breakdown on Flashback Limits of Syngas-Fueled Gas Turbine Combustors  

DOE Green Energy (OSTI)

Turbine combustors of advanced power systems have goals to achieve very low pollutants emissions, fuel variability, and fuel flexibility. Future generation gas turbine combustors should tolerate fuel compositions ranging from natural gas to a broad range of syngas without sacrificing operational advantages and low emission characteristics. Additionally, current designs of advanced turbine combustors use various degrees of swirl and lean premixing for stabilizing flames and controlling high temperature NOx formation zones. However, issues of fuel variability and NOx control through premixing also bring a number of concerns, especially combustor flashback and flame blowout. Flashback is a combustion condition at which the flame propagates upstream against the gas stream into the burner tube. Flashback is a critical issue for premixed combustor designs, because it not only causes serious hardware damages but also increases pollutant emissions. In swirl stabilized lean premixed turbine combustors onset of flashback may occur due to (i) boundary layer flame propagation (critical velocity gradient), (ii) turbulent flame propagation in core flow, (iii) combustion instabilities, and (iv) upstream flame propagation induced by combustion induced vortex breakdown (CIVB). Flashback due to first two foregoing mechanisms is a topic of classical interest and has been studied extensively. Generally, analytical theories and experimental determinations of laminar and turbulent burning velocities model these mechanisms with sufficient precision for design usages. However, the swirling flow complicates the flashback processes in premixed combustions and the first two mechanisms inadequately describe the flashback propensity of most practical combustor designs. The presence of hydrogen in syngas significantly increases the potential for flashback. Due to high laminar burning velocity and low lean flammability limit, hydrogen tends to shift the combustor operating conditions towards flashback regime. Even a small amount of hydrogen in a fuel blend triggers the onset of flashback by altering the kinetics and thermophysical characteristics of the mixture. Additionally, the presence of hydrogen in the fuel mixture modifies the response of the flame to the global effects of stretch and preferential diffusion. Despite its immense importance in fuel flexible combustor design, little is known about the magnitude of fuel effects on CIVB induced flashback mechanism. Hence, this project investigates the effects of syngas compositions on flashback resulting from combustion induced vortex breakdown. The project uses controlled experiments and parametric modeling to understand the velocity field and flame interaction leading to CIVB driven flashback.

Ahsan Choudhuri

2011-03-31T23:59:59.000Z

148

Pulse Combustor Design, A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Pulse Combustor Design Pulse Combustor Design A DOE Assessment DOE/NETL-2003/1190 July 2003 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 West Third Street, Suite 1400 Tulsa, OK 74103-3519 website: www.netl.doe.gov 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

149

Hybrid Molten Bed Gasifier for High Hydrogen Syngas Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Molten Bed Gasifier for High Hydrogen (H2) Syngas Production Gas Technology Institute (GTI) Project Number: FE0012122 Project Description The research team will evaluate and...

150

Rapid-quench axially staged combustor  

DOE Patents (OSTI)

A combustor cooperating with a compressor in driving a gas turbine includes a cylindrical outer combustor casing. A combustion liner, having an upstream rich section, a quench section and a downstream lean section, is disposed within the outer combustor casing defining a combustion chamber having at least a core quench region and an outer quench region. A first plurality of quench holes are disposed within the liner at the quench section having a first diameter to provide cooling jet penetration to the core region of the quench section of the combustion chamber. A second plurality of quench holes are disposed within the liner at the quench section having a second diameter to provide cooling jet penetration to the outer region of the quench section of the combustion chamber. In an alternative embodiment, the combustion chamber quench section further includes at least one middle region and at least a third plurality of quench holes disposed within the liner at the quench section having a third diameter to provide cooling jet penetration to at least one middle region of the quench section of the combustion chamber.

Feitelberg, Alan S. (Niskayuna, NY); Schmidt, Mark Christopher (Niskayuna, NY); Goebel, Steven George (Clifton Park, NY)

1999-01-01T23:59:59.000Z

151

Catalytic Combustor for Fuel-Flexible Turbine  

SciTech Connect

Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

W. R. Laster; E. Anoshkina

2008-01-31T23:59:59.000Z

152

Catalytic Combustor for Fuel-Flexible Turbine  

SciTech Connect

Under the sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse is conducting a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1-Implementation Plan, Phase 2-Validation Testing and Phase 3-Field Testing. The Phase 1 program has been completed. Phase II was initiated in October 2004. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCL{trademark}) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to react part of the fuel, increasing the fuel/air mixture temperature. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the catalytic concept will be demonstrated through subscale testing. Phase III will consist of full-scale combustor basket testing on natural gas and syngas.

W. R. Laster; E. Anoshkina; P. Szedlacsek

2006-03-31T23:59:59.000Z

153

Catalytic Combustor for Fuel-Flexible Turbine  

SciTech Connect

Under the sponsorship of the U. S. Department of Energy’s National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 – Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

Laster, W. R.; Anoshkina, E.

2008-01-31T23:59:59.000Z

154

Coal-feeding mechanism for a fluidized bed combustion chamber  

SciTech Connect

The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, e.g. coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.

Gall, Robert L. (Morgantown, WV)

1981-01-01T23:59:59.000Z

155

Pressurized fluidized-bed combustion technology exchange workshop  

SciTech Connect

The pressurized fluidized-bed combustion technology exchange workshop was held June 5 and 6, 1979, at The Meadowlands Hilton Hotel, Secaucus, New Jersey. Eleven papers have been entered individually into EDB and ERA. The papers include reviews of the US DOE and EPRI programs in this area and papers by Swedish, West German, British and American organizations. The British papers concern the joint program of the USA, UK and FRG at Leatherhead. The key factor in several papers is the use of fluidized bed combustors, gas turbines, and steam turbines in combined-cycle power plants. One paper examines several combined-cycle alternatives. (LTN)

,

1980-04-01T23:59:59.000Z

156

Oxycombustion In Transport Oxy-Combustor - Energy Innovation ...  

Substantially pure oxygen is fed to the transport oxy-combustor under pressure to combust fossil fuels, generating steam for power generation.

157

Moving Granular Bed Filter Development Program  

SciTech Connect

The granular bed filter was developed through low pressure, high temperature (1600{degrees}F) testing in the late 1970`s and early 1980`s`. Collection efficiencies over 99% were obtained. In 1988, high pressure, high temperature testing was completed at New York University, Westbury, N.Y., utilizing a coal-fired pressurized, fluidized bed combustor. High particulate removal efficiencies were confirmed as it was shown that both New Source Performance Standards and turbine tolerance limits could be met. The early scale-up work of the granular bed filter indicated potential limitations due to size, cost, and mechanical complexity. These limitations were addressed in the present program by utilizing the information gained from the filter development up through the NYU test program to reassess the commercial approach. Two studies were chosen for developing conceptual designs and cost estimates of the commercial sized filters. One is the economic study of the 250 MWe, second generation pressurized fluidized bed combustion plant defined by Foster Wheeler. This plant originally included cross-flow filters for hot gas cleanup. The other plant under study is a 100 MWe, airblown KRW gasifier. A cross-flow inter was utilized for gas stream cleanup in this study also. Granular bed and ceramic candle filters were substituted for the cross-flow filters in both these plants, and the resulting cost of electricity (COE) is compared.

Wilson, K.B.; Haas, J.C.; Eshelman, M.B.

1992-11-01T23:59:59.000Z

158

Moving Granular Bed Filter Development Program  

SciTech Connect

The granular bed filter was developed through low pressure, high temperature (1600[degrees]F) testing in the late 1970's and early 1980's'. Collection efficiencies over 99% were obtained. In 1988, high pressure, high temperature testing was completed at New York University, Westbury, N.Y., utilizing a coal-fired pressurized, fluidized bed combustor. High particulate removal efficiencies were confirmed as it was shown that both New Source Performance Standards and turbine tolerance limits could be met. The early scale-up work of the granular bed filter indicated potential limitations due to size, cost, and mechanical complexity. These limitations were addressed in the present program by utilizing the information gained from the filter development up through the NYU test program to reassess the commercial approach. Two studies were chosen for developing conceptual designs and cost estimates of the commercial sized filters. One is the economic study of the 250 MWe, second generation pressurized fluidized bed combustion plant defined by Foster Wheeler. This plant originally included cross-flow filters for hot gas cleanup. The other plant under study is a 100 MWe, airblown KRW gasifier. A cross-flow inter was utilized for gas stream cleanup in this study also. Granular bed and ceramic candle filters were substituted for the cross-flow filters in both these plants, and the resulting cost of electricity (COE) is compared.

Wilson, K.B.; Haas, J.C.; Eshelman, M.B.

1992-01-01T23:59:59.000Z

159

Fluidized bed boiler having a segmented grate  

DOE Patents (OSTI)

A fluidized bed furnace (10) is provided having a perforate grate (9) within a housing which supports a bed of particulate material including some combustibles. The grate is divided into a plurality of segments (E2-E6, SH1-SH5, RH1-RH5), with the airflow to each segment being independently controlled. Some of the segments have evaporating surface imbedded in the particulate material above them, while other segments are below superheater surface or reheater surface. Some of the segments (E1, E7) have no surface above them, and there are ignitor combustors (32, 34) directed to fire into the segments, for fast startup of the furnace without causing damage to any heating surface.

Waryasz, Richard E. (Longmeadow, MA)

1984-01-01T23:59:59.000Z

160

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-01-01T23:59:59.000Z

162

ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM  

DOE Green Energy (OSTI)

This report presents the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the quarter April 1--June 30, 2004. The following tasks have been completed. First, the final specifications for the renovation of the new Combustion Laboratory and the construction of the CFB Combustor Building have been delivered to the architect, and invitations for construction bids for the two tasks have been released. Second, the component parts of the CFBC system have been designed after the design work for assembly parts of the CFBC system was completed. Third, the literature pertaining to Polychlorinated Dibenzo-p-Dioxins (PCDD) and Polychlorinated Dibenzofurans (PCDF) released during the incineration of solid waste, including municipal solid waste (MSW) and refuse-derived fuel (RDF) have been reviewed, and an experimental plan for fundamental research of MSW incineration on a simulated fluidized-bed combustion (FBC) facility has been prepared. Finally, the proposed work for the next quarter has been outlined in this report.

Wei-Ping Pan, Kunlei Liu; John T. Riley

2004-07-30T23:59:59.000Z

163

Pressurized fluidized-bed combustion  

Science Conference Proceedings (OSTI)

The US DOE pressurized fluidized bed combustion (PFBC) research and development program is designed to develop the technology and data base required for the successful commercialization of the PFBC concept. A cooperative program with the US, West Germany, and the UK has resulted in the construction of the 25 MWe IEA-Grimethorpe combined-cycle pilot plant in England which will be tested in 1981. A 13 MWe coal-fired gas turbine (air cycle) at Curtis-Wright has been designed and construction scheduled. Start-up is planned to begin in early 1983. A 75 MWe pilot plant is planned for completion in 1986. Each of these PFBC combined-cycle programs is discussed. The current status of PFB technology may be summarized as follows: turbine erosion tolerance/hot gas cleanup issues have emerged as the barrier technology issues; promising turbine corrosion-resistant materials have been identified, but long-term exposure data is lacking; first-generation PFB combustor technology development is maturing at the PDU level; however, scale-up to larger size has not been demonstrated; and in-bed heat exchanger materials have been identified, but long-term exposure data is lacking. The DOE-PFB development plan is directed at the resolution of these key technical issues. (LCL)

Not Available

1980-10-01T23:59:59.000Z

164

Combustor nozzle for a fuel-flexible combustion system  

DOE Patents (OSTI)

A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

Haynes, Joel Meier (Niskayuna, NY); Mosbacher, David Matthew (Cohoes, NY); Janssen, Jonathan Sebastian (Troy, NY); Iyer, Venkatraman Ananthakrishnan (Mason, OH)

2011-03-22T23:59:59.000Z

165

Serial cooling of a combustor for a gas turbine engine  

DOE Patents (OSTI)

A combustor for a gas turbine engine uses compressed air to cool a combustor liner and uses at least a portion of the same compressed air for combustion air. A flow diverting mechanism regulates compressed air flow entering a combustion air plenum feeding combustion air to a plurality of fuel nozzles. The flow diverting mechanism adjusts combustion air according to engine loading.

Abreu, Mario E. (Poway, CA); Kielczyk, Janusz J. (Escondido, CA)

2001-01-01T23:59:59.000Z

166

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUID BED BOILERS (Phase II--Evaluation of the Oxyfuel CFB Concept)  

SciTech Connect

The overall project goal is to determine if carbon dioxide can be captured and sequestered at a cost of about $10/ton of carbon avoided, using a newly constructed Circulating Fluidized Bed combustor while burning coal with a mixture of oxygen and recycled flue gas, instead of air. This project is structured in two Phases. Phase I was performed between September 28, 2001 and May 15, 2002. Results from Phase I were documented in a Topical Report issued on May 15, 2003 (Nsakala, et al., 2003), with the recommendation to evaluate, during Phase II, the Oxyfuel-fired CFB concept. DOE NETL accepted this recommendation, and, hence approved the project continuation into Phase II. Phase 2. The second phase of the project--which includes pilot-scale tests of an oxygen-fired circulating fluidized bed test facility with performance and economic analyses--is currently underway at ALSTOM's Power Plant Laboratories, located in Windsor, CT (US). The objective of the pilot-scale testing is to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in oxygen/carbon dioxide mixtures. Results will be used in the design of oxygen-fired CFB boilers--both retrofit and new Greenfield--as well as to provide a generic performance database for other researchers. At the conclusion of Phase 2, revised costs and performance will be estimated for both retrofit and new Greenfield design concepts with CO2 capture, purification, compression, and liquefaction.

John L. Marion; Nsakala ya Nsakala

2003-11-09T23:59:59.000Z

167

COMPUTATIONAL FLUID DYNAMICS MODELING ANALYSIS OF COMBUSTORS  

DOE Green Energy (OSTI)

In the current fiscal year FY01, several CFD simulations were conducted to investigate the effects of moisture in biomass/coal, particle injection locations, and flow parameters on carbon burnout and NO{sub x} inside a 150 MW GEEZER industrial boiler. Various simulations were designed to predict the suitability of biomass cofiring in coal combustors, and to explore the possibility of using biomass as a reburning fuel to reduce NO{sub x}. Some additional CFD simulations were also conducted on CERF combustor to examine the combustion characteristics of pulverized coal in enriched O{sub 2}/CO{sub 2} environments. Most of the CFD models available in the literature treat particles to be point masses with uniform temperature inside the particles. This isothermal condition may not be suitable for larger biomass particles. To this end, a stand alone program was developed from the first principles to account for heat conduction from the surface of the particle to its center. It is envisaged that the recently developed non-isothermal stand alone module will be integrated with the Fluent solver during next fiscal year to accurately predict the carbon burnout from larger biomass particles. Anisotropy in heat transfer in radial and axial will be explored using different conductivities in radial and axial directions. The above models will be validated/tested on various fullscale industrial boilers. The current NO{sub x} modules will be modified to account for local CH, CH{sub 2}, and CH{sub 3} radicals chemistry, currently it is based on global chemistry. It may also be worth exploring the effect of enriched O{sub 2}/CO{sub 2} environment on carbon burnout and NO{sub x} concentration. The research objective of this study is to develop a 3-Dimensional Combustor Model for Biomass Co-firing and reburning applications using the Fluent Computational Fluid Dynamics Code.

Mathur, M.P.; Freeman, Mark (U.S. DOE National Energy Technology Laboratory); Gera, Dinesh (Fluent, Inc.)

2001-11-06T23:59:59.000Z

168

Radial inlet guide vanes for a combustor  

DOE Patents (OSTI)

A combustor may include an interior flow path therethrough, a number of fuel nozzles in communication with the interior flow path, and an inlet guide vane system positioned about the interior flow path to create a swirled flow therein. The inlet guide vane system may include a number of windows positioned circumferentially around the fuel nozzles. The inlet guide vane system may also include a number of inlet guide vanes positioned circumferentially around the fuel nozzles and adjacent to the windows to create a swirled flow within the interior flow path.

Zuo, Baifang; Simons, Derrick; York, William; Ziminsky, Willy S

2013-02-12T23:59:59.000Z

169

Numerical investigation of recirculation in the UTSI MHD combustor  

DOE Green Energy (OSTI)

Numerical studies were carried out to investigate the gross structure of flow in cylindrical combustors. The combustor configurations studied are variations of a working design used at the University of Tennessee Space Institute to burn pulverized coal at temperatures in excess of 3000K for generation of a plasma feeding a magnetohydrodynamic channel. The numerical studies were conducted for an isothermal fluid; the main objective of the calculations was to study the effect of the oxidant injection pattern on the gross structure of recirculating flows within the combustor. The calculations illustrate the basic features of the flow in combustors of this type and suggest implications for the injection of coal and oxidizer in this type of combustor.

Schulz, R.J.; Lee, J.J.; Giel, T.V. Jr.

1983-09-01T23:59:59.000Z

170

Preliminary gas turbine combustor design using a network approach  

SciTech Connect

The preliminary design process of a gas turbine combustor often involves the use of cumbersome, geometry restrictive semi-empirical models. The objective of this analysis is the development of a versatile design tool for gas turbine combustors, able to model all conceivable combustor types. A network approach is developed that divides the flow into a number of independent semi-empirical subflows. A pressure-correction methodology solves the continuity equation and a pressure-drop/flow rate relationship. The development of a full conjugate heat transfer model allows the calculation of flame tube heat loss in the presence of cooling films, annulus heat addition, and flame tube feature heat pick-up. A constrained equilibrium calculation, incorporating mixing and recirculation models, simulates combustion processes. Comparison of airflow results to a well-validated combustor design code showed close agreement. The versatility of the network solver is illustrated with comparisons to experimental data from a reverse flow combustor.

Stuttaford, P.J.; Rubini, P.A. [Cranfield Univ. (United Kingdom). School of Mechanical Engineering

1997-07-01T23:59:59.000Z

171

Low NO.sub.x multistage combustor  

DOE Patents (OSTI)

A high efficiency, Vortex Inertial Staged Air (VIStA) combustor provides ultra-low NO.sub.X production of about 20 ppmvd or less with CO emissions of less than 50 ppmvd, both at 3% O.sub.2. Prompt NO.sub.X production is reduced by partially reforming the fuel in a first combustion stage to CO and H.sub.2. This is achieved in the first stage by operating with a fuel rich mixture, and by recirculating partially oxidized combustion products, with control over stoichiometry, recirculation rate and residence time. Thermal NO.sub.X production is reduced in the first stage by reducing the occurrence of high temperature combustion gas regions. This is achieved by providing the first stage burner with a thoroughly pre-mixed fuel/oxidant composition, and by recirculating part of the combustion products to further mix the gases and provide a more uniform temperature in the first stage. In a second stage combustor thermal NO.sub.X production is controlled by inducing a large flow of flue gas recirculation in the second stage combustion zone to minimize the ultimate temperature of the flame. One or both of the first and second stage burners can be cooled to further reduce the combustion temperature and to improve the recirculation efficiency. Both of these factors tend to reduce production of NO.sub.X.

Becker, Frederick E. (Reading, MA); Breault, Ronald W. (Newington, NH); Litka, Anthony F. (Hanover, MA); McClaine, Andrew W. (Lexington, MA); Shukla, Kailash (Boxborough, MA)

2000-01-01T23:59:59.000Z

172

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

DOE Green Energy (OSTI)

This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2007 through March 31, 2007. The effort in this quarter has concentrated on installing the CFBC Facility and for conducting cold fluidization operations tests in the CFBC facility. The assembly of the ash recirculation pipe duct from the cyclones back to the bed area of the combustor, including the upper and lower loop seals was completed. The electric bed pre-heater was installed to heat the fluidizing air as it enters the wind box. The induced draft fan along with its machine base and power supply was received and installed. The flue gas duct from secondary cyclone outlet to induced draft fan inlet was received and installed, as well as the induced fan flue gas discharge duct. Pressure testing from the forced draft fan to the outlet of the induced fan was completed. In related research a pilot-scale halogen addition test was conducted in the empty slipstream reactor (without (Selective Catalytic Reduction) SCR catalyst loading) and the SCR slipstream reactor with two commercial SCR catalysts. The greatest benefits of conducting slipstream tests can be flexible control and isolation of specific factors. This facility is currently used in full-scale utility and will be combined into 0.6MW CFBC in the future. This work attempts to first investigate performance of the SCR catalyst in the flue gas atmosphere when burning Powder River Basin (PRB), including the impact of PRB coal flue gas composition on the reduction of nitrogen oxides (NOx) and the oxidation of elemental mercury (Hg(0)) under SCR conditions. Secondly, the impacts of hydrogen halogens (Hydrogen fluoride (HF), Hydrogen chloride (HCl), Hydrogen Bromide (HBr) and Hydrogen Iodine (HI)) on Hg(0) oxidation and their mechanisms can be explored.

Wei-Ping Pan; Yan Cao; John Smith

2007-03-31T23:59:59.000Z

173

The Effects of Fuel Distribution, Velocity Distribution, and Fuel Composition on Static and Dynamic Instabilities and NOx Emissions in Lean Premixed Combustors  

NLE Websites -- All DOE Office Websites (Extended Search)

Distribution, and Fuel Composition on Static and Dynamic Instabilities and NO x Emissions in Lean Premixed Combustors Principal Investigator: Domenic A. Santavicca SCIES Project 03-01-SR109 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (7/01/03, 36 month duration) $403,777 Total Contract Value ($403,777 DOE) * Lower Emissions * Improved Static and Dynamic Stability * Fuel Versatility * Improved Design Methodology UTSR Workshop,10-18-05,DAS Gas Turbine Technology Needs * to determine the effect of combustor operating conditions on the static and dynamic stability characteristics of lean premixed combustors operating on natural gas and coal-derived syngas fuels * to develop a methodology for predicting the effect of

174

Coal Bed Methane Primer  

SciTech Connect

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

175

Achieving improved cycle efficiency via pressure gain combustors  

SciTech Connect

As part of the Department of Energy`s Advanced Gas Turbine Systems Program, an investigation is being performed to evaluate ``pressure gain`` combustion systems for gas turbine applications. This paper presents experimental pressure gain and pollutant emission data from such combustion systems. Numerical predictions for certain combustor geometries are also presented. It is reported that for suitable aerovalved pulse combustor geometries studied experimentally, an overall combustor pressure gain of nearly 1 percent can be achieved. It is also shown that for one combustion system operating under typical gas turbine conditions, NO{sub x} and CO emmissions, are about 30 ppmv and 8 ppmv, respectively.

Gemmen, R.S.; Janus, M.C.; Richards, G.A.; Norton, T.S. [USDOE Morgantown Energy Technology Center, WV (United States); Rogers, W.A. [EG& G Technical Services of West Virginia, Morgantown, WV (United States)

1995-04-01T23:59:59.000Z

176

Environmental performance of air staged combustor with flue gas recirculation to burn coal/biomass  

DOE Green Energy (OSTI)

The environmental and thermal performance of a 1.07 m diameter, 440 kW atmospheric fluidized bed combustor operated at 700{degrees}C-920{degrees}C and burning coal was studied. Flue gas recirculation was incorporated to enhance the thermal performance and air staging was used to control emissions of SO{sub 2}, CO, NO{sub x} and N{sub 2}O. Studies focused on the effect of excess air, firing rate, and use of sorbent on system performance. The recirculation-staging mode with limestone had the highest thermal efficiency (0.67) using the firing equation. Emission data showed that flue gas recirculation (ratio of 0.7) significantly reduced NO{sub x} emissions; and that use of limestone sorbent at a Ca/S ratio of 3 reduced SO{sub 2} emissions by 64% to approximately 0.310 g/MJ.

Anuar, S.H.; Keener, H.M.

1995-12-31T23:59:59.000Z

177

Dual Fluidized Bed Biomass Gasification  

DOE Green Energy (OSTI)

The dual fluidized bed reactor is a recirculating system in which one half of the unit operates as a steam pyrolysis device for biomass. The pyrolysis occurs by introducing biomass and steam to a hot fluidized bed of inert material such as coarse sand. Syngas is produced during the pyrolysis and exits the top of the reactor with the steam. A crossover arm, fed by gravity, moves sand and char from the pyrolyzer to the second fluidized bed. This sand bed uses blown air to combust the char. The exit stream from this side of the reactor is carbon dioxide, water and ash. There is a second gravity fed crossover arm to return sand to the pyrolysis side. The recirculating action of the sand and the char is the key to the operation of the dual fluidized bed reactor. The objective of the project was to design and construct a dual fluidized bed prototype reactor from literature information and in discussion with established experts in the field. That would be appropriate in scale and operation to measure the relative performance of the gasification of biomass and low ranked coals to produce a high quality synthesis gas with no dilution from nitrogen or combustion products.

None

2005-09-30T23:59:59.000Z

178

Comparison of experimental and computed solids motion and bed dynamics for fluidized beds containing obstacles  

SciTech Connect

The ensemble- and time-averaged solids velocity field and bed dynamics in the form of pressure oscillations taken in the University of Illinois at Urbana-Champaign's (UIUC) atmospheric thin (3.81 by 40 cm) bubbling fluidized bed which contained a simulated triangular pitch tube array consisting of five round 5.08 cm diameter cylinders are analyzed in this paper using Argonne National Laboratory's hydrodynamic model FLUFIX implemented on its CRAY-XMP supercomputer. The bed material consisted of soda lime glass beads having a narrow size range averaging 460 {mu}m in diameter. The fluidizing air was introduced at 39 cm/s. Generally correct solids motion is predicted by the FLUFIX computer program. The uncertainties in the UIUC solids motion data vary greatly from location to location; hence, a sensitivity analysis was performed varying the inlet fluidizing gas velocity distribution. A convergence study was performed by varying (1) the size of the mesh used to approximate the obstacles, and (2) the accuracy of the numerical solution. The authors demonstrate essential grid independence for time-averaged axial solids velocities and porosities for the tubes modeled as 2 {times} 2 and 4 {times} 4 squares and a very tight convergence. Good agreement is obtained for the power spectra of the absolute pressure fluctuations using the Fast Fourier Transform (FFT) technique. The computed and experimental major frequencies lie in a relatively narrow range of 2-3 Hz. Computer animations of the computer simulations qualitatively visualize features of the bed dynamics including bubble formation from the tubes, bed expansion and collapse and side-to-side sloshing. Solids motion and the associated bed dynamics are the key to understanding the erosion processes in fluidized-bed combustors. 7 refs., 12 figs., 3 tabs.

Lyczkowski, R.W.; Gamwo, I.K.; Dobran, F. (Argonne National Lab., IL (USA)); Ai, Y.H.; Chao, B.T.; Chen, M.M. (Illinois Univ., Urbana, IL (USA). Dept. of Mechanical and Industrial Engineering)

1991-01-01T23:59:59.000Z

179

Method for operating a combustor in a fuel cell system  

DOE Patents (OSTI)

A method of operating a combustor to heat a fuel processor in a fuel cell system, in which the fuel processor generates a hydrogen-rich stream a portion of which is consumed in a fuel cell stack and a portion of which is discharged from the fuel cell stack and supplied to the combustor, and wherein first and second streams are supplied to the combustor, the first stream being a hydrocarbon fuel stream and the second stream consisting of said hydrogen-rich stream, the method comprising the steps of monitoring the temperature of the fuel processor; regulating the quantity of the first stream to the combustor according to the temperature of the fuel processor; and comparing said quantity of said first stream to a predetermined value or range of predetermined values.

Chalfant, Robert W. (West Henrietta, NY); Clingerman, Bruce J. (Palmyra, NY)

2002-01-01T23:59:59.000Z

180

Healy clean coal project  

Science Conference Proceedings (OSTI)

The objective of the Healy Clean Coal Project is to demonstrate the integration of an advanced combustor and heat recovery system with both high and low temperature emission control processes. The emission levels of SO{sub 2}, NO{sub x}, and particulates are expected to be significantly better then the federal New Source Performance Standards. (VC)

Not Available

1992-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Particle-jet interactions in an MHD second stage combustor  

DOE Green Energy (OSTI)

An Argonne two-phase combustion flow computer code is used to simulate reacting flows to aid in the development of an advanced combustor for magnetohydrodynamic power generation. The combustion code is a general hydrodynamics computer code for two-phase, two- dimensional, steady state, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for multiple gas species and particles. The combustion code includes turbulence, integral combustion, and particle evaporation submodels. A recently developed integral combustion submodel makes calculations more efficient and more stable while still preserving the major physical effects of the complex combustion processes. The combustor under investigation is a magnetohydrodynamic second stage combustor in which opposed jets of oxidizer are injected into a confined cross-stream of hot coal gas flow following a first stage swirl combustor. The simulation is intended to enhance the understanding the of seed particle evaporation in the combustor and evaluate the effects of combustor operating conditions on seed particle evaporation and vapor dispersion, which directly affect overall magnetohydrodynamic power generation. Computation results show that oxidizer jet angle and particle size may greatly affect particle evaporation and vapor dispersion. At a jet angle about 130 degrees, particle evaporation rate is the highest because of the highest average gas temperature. As particle size increases beyond 10 microns in diameter, the effects of particle size on wall deposition rate, evaporation delay, and downstream seed vapor dispersion become more pronounced. 16 refs., 10 figs.

Lottes, S.A.; Chang, S.L.

1992-01-01T23:59:59.000Z

182

Particle-jet interactions in an MHD second stage combustor  

DOE Green Energy (OSTI)

An Argonne two-phase combustion flow computer code is used to simulate reacting flows to aid in the development of an advanced combustor for magnetohydrodynamic power generation. The combustion code is a general hydrodynamics computer code for two-phase, two- dimensional, steady state, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for multiple gas species and particles. The combustion code includes turbulence, integral combustion, and particle evaporation submodels. A recently developed integral combustion submodel makes calculations more efficient and more stable while still preserving the major physical effects of the complex combustion processes. The combustor under investigation is a magnetohydrodynamic second stage combustor in which opposed jets of oxidizer are injected into a confined cross-stream of hot coal gas flow following a first stage swirl combustor. The simulation is intended to enhance the understanding the of seed particle evaporation in the combustor and evaluate the effects of combustor operating conditions on seed particle evaporation and vapor dispersion, which directly affect overall magnetohydrodynamic power generation. Computation results show that oxidizer jet angle and particle size may greatly affect particle evaporation and vapor dispersion. At a jet angle about 130 degrees, particle evaporation rate is the highest because of the highest average gas temperature. As particle size increases beyond 10 microns in diameter, the effects of particle size on wall deposition rate, evaporation delay, and downstream seed vapor dispersion become more pronounced. 16 refs., 10 figs.

Lottes, S.A.; Chang, S.L.

1992-07-01T23:59:59.000Z

183

Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants: ProMIS/Project No.: DE-NT0005343  

NLE Websites -- All DOE Office Websites (Extended Search)

seyed Dastgheib seyed Dastgheib Principal Investigator Illinois State Geological Survey 615 E. Peabody Drive Champaign, Illinois 61820-6235 217-265-6274 dastgheib@isgs.uius.edu Reuse of PRoduced WateR fRom co 2 enhanced oil RecoveRy, coal-Bed methane, and mine Pool WateR By coal-Based PoWeR Plants: PRomis /PRoject no. : de-nt0005343 Background Coal-fired power plants are the second largest users of freshwater in the United States. In Illinois, the thermoelectric power sector accounts for approximately 84 percent of the estimated 14 billion gallons per day of freshwater withdrawals and one-third of the state's 1 billion gallons per day of freshwater consumption. Illinois electric power generation capacity is projected to expand 30 percent by 2030, increasing water consumption by

184

Second-generation pressurized fluidized bed combustion cold flow model tests of Phase 2 carbonizer  

SciTech Connect

Under US Department of Energy Contract DE-AC21-86MC21023, Foster Wheeler Development Corporation (FWDC) is developing a second-generation pressurized fulidized bed (PFB) combustion system. The second-generation system is an improvement over first-generation pressurized systems because higher gas turbine inlet temperatures, and thus greater system efficiencies can be achieved. In first-generation systems, the gas turbine operates at temperatures lower than those in the PFB combusting bed, with the latter being limited to approximately 1600{degree}F to control alkali release/gas turbine hot corrosion. The second-generation system overcomes this temperature restriction by including a carbonizer and a topping combustor in the system. The carbonizer is a PFB combustion unit that converts coal to a low-Btu fuel gas and char. The char is transferred to a PFB combustor (PFBC), where it is burned. The flue gas from the PFBC and the fuel gas from the carbonizer go to the topping combustor, where the fuel gas is burned and gas turbine inlet temperatures in excess of 2100{degree}F are generated. The PFBC can be operated with or without coal fed along with the char. Steam is generated in the PFBC, and additional coal fed to the PFBC with the char will result in more steam generation. However, excess air must be kept at a level sufficient to support combustion of the fuel gas in the topping combustor.

Shenker, J.

1991-07-01T23:59:59.000Z

185

Flow conditioner for fuel injector for combustor and method for low-NO.sub.x combustor  

Science Conference Proceedings (OSTI)

An injector for a gas turbine combustor including a catalyst coated surface forming a passage for feed gas flow and a channel for oxidant gas flow establishing an axial gas flow through a flow conditioner disposed at least partially within an inner wall of the injector. The flow conditioner includes a length with an interior passage opening into upstream and downstream ends for passage of the axial gas flow. An interior diameter of the interior passage smoothly reduces and then increases from upstream to downstream ends.

Dutta, Partha; Smith, Kenneth O.; Ritz, Frank J.

2013-09-10T23:59:59.000Z

186

Particle pressures in fluidized beds. Final report  

SciTech Connect

This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction), they impart to the bed. So rather than directly measure the particle pressure, the authors inferred the values of the elasticity from measurements of instability growth in liquid beds; the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined) and then working backwards to determine the unknown coefficients, including the elasticity.

Campbell, C.S.; Rahman, K.; Jin, C.

1996-09-01T23:59:59.000Z

187

Particle Pressures in Fluidized Beds. Final report  

SciTech Connect

This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction): they impart to the bed. So rather than directly measure the particle pressure, we inferred the values of the elasticity from measurements of instability growth in liquid beds the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined)and then working backwards to determine the unknown coefficients, including the elasticity.

Campbell, C.S.; Rahman, K.; Jin, C.

1996-09-01T23:59:59.000Z

188

External combustor for gas turbine engine  

DOE Patents (OSTI)

An external combustor for a gas turbine engine has a cyclonic combustion chamber into which combustible gas with entrained solids is introduced through an inlet port in a primary spiral swirl. A metal draft sleeve for conducting a hot gas discharge stream from the cyclonic combustion chamber is mounted on a circular end wall of the latter adjacent the combustible gas inlet. The draft sleeve is mounted concentrically in a cylindrical passage and cooperates with the passage in defining an annulus around the draft sleeve which is open to the cyclonic combustion chamber and which is connected to a source of secondary air. Secondary air issues from the annulus into the cyclonic combustion chamber at a velocity of three to five times the velocity of the combustible gas at the inlet port. The secondary air defines a hollow cylindrical extension of the draft sleeve and persists in the cyclonic combustion chamber a distance of about three to five times the diameter of the draft sleeve. The hollow cylindrical extension shields the drive sleeve from the inlet port to prevent discharge of combustible gas through the draft sleeve.

Santanam, Chandran B. (Indianapolis, IN); Thomas, William H. (Indianapolis, IN); DeJulio, Emil R. (Columbus, IN)

1991-01-01T23:59:59.000Z

189

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Diagram of CERTS Microgrid Test Bed Figure 3. Tecogen PrimeCERTS Microgrid Laboratory Test Bed. (California EnergyFigure 1. CERTS Microgrid Test Bed at American Electric

ETO, J.

2010-01-01T23:59:59.000Z

190

WASTE TREATMENT AND IMMOBILIZATION PLANT U. S. DEPARTMENT OF ENERGY OFFICE OF RIVER PROTECTION SUBMERGED BED SCRUBBER CONDENSATE DISPOSITION PROJECT - ABSTRACT # 13460  

SciTech Connect

The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling.

YANOCHO RM; CORCORAN C

2012-11-15T23:59:59.000Z

191

Pressurized fluidized-bed combustion part-load behavior. Volume I. Summary report  

SciTech Connect

Tests performed during 1980 to determine the part-load characteristics of a pressurized fluidized-bed combustor for a combined-cycle power plant and to examine its behavior during load changing are discussed. Part-load operation was achieved by varying the bed temperature by amounts between 200 to 300/sup 0/F and the bed depth from between 9 and 10 ft at rates varying between 0.2 ft/min and 0.5 ft/min. The performance at part-load steady-state conditions and during transient conditions is reported with information on combustion efficiency (99% at full-load with 9 ft bed depth and 1650/sup 0/F bed temperature; 95% with 4 ft depth and 1390/sup 0/F); sulfur retention (95/sup 0/ at full load to 80% at low bed depth and low bed temperature); sulfur emissions (no definitive results); NO/sub x/ emissions (tendency for increase as bed temperature was reduced); alkali emissions (no bed temperature effect detected); and heat transfer. It was demonstrated that load can be altered in a rapid and controlled manner by changing combinations of bed depth temperature and pressure. The most important practical change was the reduction in O/sub 2/ concentration which occurred when the bed height was increased at a rapid rate. The extra energy required to reheat the incoming bed material resulted (in the most extreme case) in a temporary drop in excess air from 65% to 12%. In a full-scale plant the loss of heat from the stored bed material would be much lower and the excess air trough when increasing load would not be as pronounced. Nevertheless, it seems prudent to design full-scale plant for a full load excess air of not less than about 50% when using bed depth as a load control parameter.

Roberts, A. G.; Pillai, K. K.; Raven, P.; Wood, P.

1981-09-01T23:59:59.000Z

192

Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems  

Science Conference Proceedings (OSTI)

Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (radioactive and hazardous) wastes. Test programs performed in recent years have shown that mercury in off-gas streams from processes that treat radioactive wastes can be controlled using fixed beds of activated sulfur-impregnated carbon, to levels low enough to comply with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. Carbon bed hot spots or fires have occurred several times during these tests, and also during a remediation of tanks that contained mixed waste. Hot spots occur when localized areas in a carbon bed become heated to temperatures where oxidation occurs. This heating typically occurs due to heat of absoption of gas species onto the carbon, but it can also be caused through external means such as external heaters used to heat the carbon bed vessel. Hot spots, if not promptly mitigated, can grow into bed fires. Carbon bed hot spots and fires must be avoided in processes that treat radioactive and mixed waste. Hot spots are detected by (a) monitoring in-bed and bed outlet gas temperatures, and (b) more important, monitoring of bed outlet gas CO concentrations. Hot spots are mitigated by (a) designing for appropriate in-bed gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) appropriate monitoring and control of gas and bed temperatures and compositions, and (c) prompt implementation of corrective actions if bed hot spots are detected. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from.

Nick Soelberg; Joe Enneking

2011-05-01T23:59:59.000Z

193

Combustor with two stage primary fuel assembly  

DOE Patents (OSTI)

A combustor for a gas turbine having first and second passages for pre-mixing primary fuel and air supplied to a primary combustion zone. The flow of fuel to the first and second pre-mixing passages is separately regulated using a single annular fuel distribution ring having first and second row of fuel discharge ports. The interior portion of the fuel distribution ring is divided by a baffle into first and second fuel distribution manifolds and is located upstream of the inlets to the two pre-mixing passages. The annular fuel distribution ring is supplied with fuel by an annular fuel supply manifold, the interior portion of which is divided by a baffle into first and second fuel supply manifolds. A first flow of fuel is regulated by a first control valve and directed to the first fuel supply manifold, from which the fuel is distributed to first fuel supply tubes that direct it to the first fuel distribution manifold. From the first fuel distribution manifold, the first flow of fuel is distributed to the first row of fuel discharge ports, which direct it into the first pre-mixing passage. A second flow of fuel is regulated by a second control valve and directed to the second fuel supply manifold, from which the fuel is distributed to second fuel supply tubes that direct it to the second fuel distribution manifold. From the second fuel distribution manifold, the second flow of fuel is distributed to the second row of fuel discharge ports, which direct it into the second pre-mixing passage.

Sharifi, Mehran (Winter Springs, FL); Zolyomi, Wendel (Oviedo, FL); Whidden, Graydon Lane (Orlando, FL)

2000-01-01T23:59:59.000Z

194

Devolatilization and ash comminution of two different sewage sludges under fluidized bed combustion conditions  

Science Conference Proceedings (OSTI)

Two different wet sewage sludges have been characterized under fluidized bed combustion conditions with reference to their devolatilization behavior and ash comminution with the aid of different and complementary experimental protocols. Analysis of the devolatilization process allowed to determine the size of fuel particle able to achieve effective lateral spreading of the volatile matter across the cross-section of medium-scale combustors. Primary fragmentation and primary ash particle characterization pointed out the formation of a significant amount of relatively large fragments. The mechanical properties of these fragments have been characterized by means of elutriation/abrasion tests using both quartz and sludge ash beds. (author)

Solimene, R.; Urciuolo, M.; Cammarota, A.; Chirone, R. [Istituto di Ricerche sulla Combustione (IRC) - CNR, Napoli (Italy); Salatino, P. [Istituto di Ricerche sulla Combustione (IRC) - CNR, Napoli (Italy); Dipartimento di Ingegneria Chimica Universita degli Studi di Napoli Federico II, Napoli (Italy); Damonte, G.; Donati, C.; Puglisi, G. [ECODECO Gruppo A2A, Giussago (PV) (Italy)

2010-04-15T23:59:59.000Z

195

Lean Blow-Out Prediction in Gas Turbine Combustors Using Symbolic Time Series Analysis  

E-Print Network (OSTI)

Lean Blow-Out Prediction in Gas Turbine Combustors Using Symbolic Time Series Analysis Achintya of lean blowout in gas turbine combustors based on symbolic analysis of time series data from optical. For the purpose of detecting lean blowout in gas turbine combustors, the state probability vector obtained

Ray, Asok

196

CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE TREATMENT  

Science Conference Proceedings (OSTI)

Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (both radioactive and hazardous according tohe Resource Conservation and Recovery Act) wastes. Depending on regulatory requirements, the mercury in the off-gas must be controlled with sometimes very high efficiencies. Compliance to the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards can require off-gas mercury removal efficiencies up to 99.999% for thermally treating some mixed waste streams. Several test programs have demonstrated this level of off-gas mercury control using fixed beds of granular sulfur-impregnated activated carbon. Other results of these tests include: (a) The depth of the mercury control mass transfer zone was less than 15-30 cm for the operating conditions of these tests, (b) MERSORB® carbon can sorb Hg up to 19 wt% of the carbon mass, and (c) the spent carbon retained almost all (98 – 99.99%) of the Hg; but when even a small fraction of the total Hg dissolves, the spent carbon can fail the TCLP test when the spent carbon contains high Hg concentrations. Localized areas in a carbon bed that become heated through heat of adsorption, to temperatures where oxidation occurs, are referred to as “bed hot spots.” Carbon bed hot spots must be avoided in processes that treat radioactive and mixed waste. Key to carbon bed hot spot mitigation are (a) designing for sufficient gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) monitoring and control of inlet gas flowrate, temperature, and composition, (c) monitoring and control of in-bed and bed outlet gas temperatures, and (d) most important, monitoring of bed outlet CO concentrations. An increase of CO levels in the off-gas downstream of the carbon bed to levels about 50-100 ppm higher than the inlet CO concentration indicate CO formation in the bed, caused by carbon bed hot spots. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from. Multiple high and high-high alarm levels should be used, with appropriate corrective actions for each level.

Nick Soelberg; Joe Enneking

2010-11-01T23:59:59.000Z

197

Applications of moving granular-bed filters to advanced systems  

SciTech Connect

The contract is arranged as a base contract with three options. The objective of the base contract is to develop conceptual design(s) of moving granular bed filter and ceramic candle filter technology for control of particles from integrated gasification combined cycle (IGCC) systems, pressurized fluidized-bed combustors (PFBC), and direct coal fueled turbine (DCFT) environments. The conceptual design(s) of these filter technologies are compared, primarily from an economic perspective. The granular bed filter was developed through low pressure, high temperature (1600{degree}F) testing in the late 1970`s and early 1980`s. Collection efficiencies over 99% were obtained. In 1988, high pressure, high temperature testing was completed at New York University, Westbury, N.Y., utilizing a two advanced power generating plants were chosen for developing conceptual designs and cost estimates of the commercial sized filters. One is the 450 MWe, second generation pressurized fluidized bed combustion plant defined by Foster Wheeler. This plant originally included cross-flow filters for hot gas cleanup. The other plant under study is a 100 MWe, KRW air blown gasifier. A cross-flow filter was utilized for gas stream cleanup in this study also. Granular bed and ceramic candle filters were substituted for the cross-flow filters in both these plants, and the resulting costs were compared.

Wilson, K.W.; Haas, J.C.; Eshelman, M.B.

1993-09-01T23:59:59.000Z

198

Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maturation Plan (TMP) Fluidized Bed Steam Reforming Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Fluidized Bed Steam Reformer System. Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) More Documents & Publications Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) SRS Tank 48H Waste Treatment Project Technology Readiness Assessment

199

Method for operating a combustor in a fuel cell system  

DOE Patents (OSTI)

In one aspect, the invention provides a method of operating a combustor to heat a fuel processor to a desired temperature in a fuel cell system, wherein the fuel processor generates hydrogen (H.sub.2) from a hydrocarbon for reaction within a fuel cell to generate electricity. More particularly, the invention provides a method and select system design features which cooperate to provide a start up mode of operation and a smooth transition from start-up of the combustor and fuel processor to a running mode.

Clingerman, Bruce J. (Palmyra, NY); Mowery, Kenneth D. (Noblesville, IN)

2002-01-01T23:59:59.000Z

200

Nondestructive evaluation of ceramic matrix composite combustor components.  

SciTech Connect

Combustor liners fabricated from a SiC/SiC composite were nondestructively interrogated before and after combustion rig testing. The combustor liners were inspected by X-ray, ultrasonic and thermographic techniques. In addition, mechanical test results were obtained from witness coupons, representing the as-manufactured liners, and from coupons machined from the components after combustion exposure. Thermography indications were found to correlate with reduced material properties obtained after rig testing. Microstructural examination of the SiC/SiC liners revealed the thermography indications to be delaminations and damaged fiber tows.

Sun, J. G.; Verrilli, M. J.; Stephan, R.; Barnett, T. R.; Ojard, G.

2002-11-08T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Header with Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

5NT42646 Zero Emissions Coal Syngas-Oxygen Turbo Machinery 5NT42646 Zero Emissions Coal Syngas-Oxygen Turbo Machinery FACT SHEET (42646) Oct. 2006 I. PROJECT PARTICIPANTS A. Siemens Power Generation, Inc. B. Florida Turbine Technologies, Inc. C. Clean Energy Systems, Inc. II. PROJECT DESCRIPTION A. Objective(s) - To develop a cost effective and highly efficient turbo machinery system that will work with an oxy-fuel combustor that generates very high temperature CO2 and steam mixture as the working fluid. After expansion of the working fluid, the CO2 is captured allowing near-zero emissions of NOx and carbon. The project will complete conceptual designs of alternate steam cycles and select one cycle for detailed design based on cost and feasibility studies. B. Relevancy - 1. Background: CES, Inc. has an operational oxy-fuel combustor that generates

202

Coal desulfurization in a rotary kiln combustor  

Science Conference Proceedings (OSTI)

Several issues that could have an impact on the capability to burn anthracite culm in a rotary bed boiler were identified; specifically, questions were raised concerning the specifications of the anthracite culm itself and some relating to the equipment. The anthracite culm delivered was wet, (with more than 10 percent moisture), and coarser than feed material for fluidized boilers. It was felt that using finer fuel, ensuring that it is largely dry, would aid the combustion of anthracite culm. It also appeared that if provisions were made for more efficient internal and external recycle of ash, this would also enhance the combustion of this fuel. Accordingly, the decision was made to conduct an additional campaign of tests that would incorporate these changes. The tests, conducted on July 15 and 16, 1991, involved an anthracite culm that was, in fact, obtained from a fluidized bed a heating value of 3,000 Btu/lb and came with a top size of 1/4-inch. Despite these changes, sustained combustion could not be achieved without the use of large quantities of supplemental fuel. Based on these tests, we tend to conclude that the rotary kiln is ill suited for the combustion of hard-to-burn, low-grade solid fuels like anthracite culm.

Cobb, J.T. Jr.

1991-08-29T23:59:59.000Z

203

Design and fabrication of a meso-scale stirling engine and combustor.  

DOE Green Energy (OSTI)

Power sources capable of supplying tens of watts are needed for a wide variety of applications including portable electronics, sensors, micro aerial vehicles, and mini-robotics systems. The utility of these devices is often limited by the energy and power density capabilities of batteries. A small combustion engine using liquid hydrocarbon fuel could potentially increase both power and energy density by an order of magnitude or more. This report describes initial development work on a meso-scale external combustion engine based on the Stirling cycle. Although other engine designs perform better at macro-scales, we believe the Stirling engine cycle is better suited to small-scale applications. The ideal Stirling cycle requires efficient heat transfer. Consequently, unlike other thermodynamic cycles, the high heat transfer rates that are inherent with miniature devices are an advantage for the Stirling cycle. Furthermore, since the Stirling engine uses external combustion, the combustor and engine can be scaled and optimized semi-independently. Continuous combustion minimizes issues with flame initiation and propagation. It also allows consideration of a variety of techniques to promote combustion that would be difficult in a miniature internal combustion engine. The project included design and fabrication of both the engine and the combustor. Two engine designs were developed. The first used a cylindrical piston design fabricated with conventional machining processes. The second design, based on the Wankel rotor geometry, was fabricated by through-mold electroforming of nickel in SU8 and LIGA micromolds. These technologies provided the requisite precision and tight tolerances needed for efficient micro-engine operation. Electroformed nickel is ideal for micro-engine applications because of its high strength and ductility. A rotary geometry was chosen because its planar geometry was more compatible with the fabrication process. SU8 lithography provided rapid prototypes to verify the design. A final high precision engine was created via LIGA. The micro-combustor was based on an excess enthalpy concept. Development of a micro-combustor included both modeling and experiments. We developed a suite of simulation tools both in support of the design of the prototype combustors, and to investigate more fundamental aspects of combustion at small scales. Issues of heat management and integration with the micro-scale Stirling engine were pursued using CFD simulations. We found that by choice of the operating conditions and channel dimensions energy conversion occurs by catalysis-dominated or catalysis-then-homogeneous phase combustion. The purpose of the experimental effort in micro-combustion was to study the feasibility and explore the design parameters of excess enthalpy combustors. The efforts were guided by the necessity for a practical device that could be implemented in a miniature power generator, or as a stand-alone device used for heat generation. Several devices were fabricated and successfully tested using methane as the fuel.

Echekki, Tarek (Sandia National Laboratories, Livermore, CA); Haroldsen, Brent L. (Sandia National Laboratories, Livermore, CA); Krafcik, Karen L. (Sandia National Laboratories, Livermore, CA); Morales, Alfredo Martin (Sandia National Laboratories, Livermore, CA); Mills, Bernice E. (Sandia National Laboratories, Livermore, CA); Liu, Shiling (Sandia National Laboratories, Livermore, CA); Lee, Jeremiah C. (Sandia National Laboratories, Livermore, CA); Karpetis, Adionos N. (Sandia National Laboratories, Livermore, CA); Chen, Jacqueline H. (Sandia National Laboratories, Livermore, CA); Ceremuga, Joseph T. (Sandia National Laboratories, Livermore, CA); Raber, Thomas N. (Sandia National Laboratories, Livermore, CA); Hekmuuaty, Michelle A. (Sandia National Laboratories, Livermore, CA)

2005-05-01T23:59:59.000Z

204

EA-0646: Pulsed Atmospheric Fluidized-Bed Combustor Development Thermochem, Inc.  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts of a proposal to develop a more economical, efficient, and environmentally acceptable coal-fired combustion technology in Baltimore, Maryland that can be...

205

Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer  

DOE Green Energy (OSTI)

University of Utah's project entitled 'Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer' (DOE Cooperative Agreement DE-FC26-02NT41490) was developed in response to a solicitation released by the U.S. Department of Energy in December 2001, requesting proposals for projects targeted towards black liquor/biomass gasification technology support research and development. Specifically, the solicitation was seeking projects that would provide technical support for Department of Energy supported black liquor and biomass gasification demonstration projects under development at the time.

Kevin Whitty

2007-06-30T23:59:59.000Z

206

CFD modeling of a gas turbine combustor from compressor exit to turbine inlet  

SciTech Connect

Gas turbine combustor CFD modeling has become an important combustor design tool in the past few years, but CFD models are generally limited to the flow field inside the combustor liner at the diffuser/combustor annulus region. Although strongly coupled in reality, the two regions have rarely been coupled in CFD modeling. A CFD calculation for a full model combustor from compressor diffuser exit to turbine inlet is described. The coupled model accomplishes the following two main objectives: (1) implicit description of flow splits and flow conditions for openings into the combustor liner, and (2) prediction of liner wall temperatures. Conjugate heat transfer with nonluminous gas radiation (appropriate for lean, low emission combustors) is utilized to predict wall temperatures compared to the conventional approach of predicting only near wall gas temperatures. Remaining difficult issues such as generating the grid, modeling swirler vane passages, and modeling effusion cooling are also discussed.

Crocker, D.S.; Nickolaus, D.; Smith, C.E. [CFD Research Corp., Huntsville, AL (United States)

1999-01-01T23:59:59.000Z

207

Catalytic combustor for integrated gasification combined cycle power plant  

DOE Patents (OSTI)

A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

Bachovchin, Dennis M. (Mauldin, SC); Lippert, Thomas E. (Murrysville, PA)

2008-12-16T23:59:59.000Z

208

Coanda injection system for axially staged low emission combustors  

SciTech Connect

The low emission combustor includes a combustor housing defining a combustion chamber having a plurality of combustion zones. A liner sleeve is disposed in the combustion housing with a gap formed between the liner sleeve and the combustor housing. A secondary nozzle is disposed along a centerline of the combustion chamber and configured to inject a first fluid comprising air, at least one diluent, fuel, or combinations thereof to a downstream side of a first combustion zone among the plurality of combustion zones. A plurality of primary fuel nozzles is disposed proximate to an upstream side of the combustion chamber and located around the secondary nozzle and configured to inject a second fluid comprising air and fuel to an upstream side of the first combustion zone. The combustor also includes a plurality of tertiary coanda nozzles. Each tertiary coanda nozzle is coupled to a respective dilution hole. The tertiary coanda nozzles are configured to inject a third fluid comprising air, at least one other diluent, fuel, or combinations thereof to one or more remaining combustion zones among the plurality of combustion zones.

Evulet, Andrei Tristan (Clifton Park, NY); Varatharajan, Balachandar (Cincinnati, OH); Kraemer, Gilbert Otto (Greer, SC); ElKady, Ahmed Mostafa (Niskayuna, NY); Lacy, Benjamin Paul (Greer, SC)

2012-05-15T23:59:59.000Z

209

WASTE SEPARATION-DOES IT INFLUENCE MUNICIPAL WASTE COMBUSTOR EMISSIONS?  

E-Print Network (OSTI)

WASTE SEPARATION- DOES IT INFLUENCE MUNICIPAL WASTE COMBUSTOR EMISSIONS? A. John Chandler A a commendable job in proving that trace emissions from a modem waste to energy plant have little to do with the trace compounds in individual components of municipal solid waste. Ogden, the leader in designing

Columbia University

210

MHD coal combustor technology. Final report, phase II  

DOE Green Energy (OSTI)

The design, performance, and testing of a 20-MW coal combustor for scaleup to 50 MW for use in an MHD generator are described. The design incorporates the following key features: (1) a two-stage combustor with an intermediate slag separator to remove slag at a low temperture, thus minimizing enthalpy losses required for heating and vaporizing the slag; (2) a first-stage pentad (four air streams impinging on one coal stream) injector design with demonstrated efficient mixing, promoting high carbon burnout; (3) a two-section first-stage combustion chamber; the first stage using a thin slag-protected refractory layer and the second section using a thick refractory layer, both to minimize heat losses; (4) a refractory lining in the slag separator to minimize heat losses; (5) a second-stage combustor, which provided both de-swirl of the combustion products exiting from the slag separator and simple mixing of the vitiated secondary air and seed; (6) a dense-phase coal feed system to minimize cold carrier gas entering the first-stage combustors; (7) a dry seed injection system using pulverized K/sub 2/CO/sub 3/ with a 1% amorphous, fumed silicon dioxide additive to enhance flowability, resulting in rapid vaporization and ionization and ensuring maximum performance; and (8) a performance evaluation module (PEM) of rugged design based on an existing, successfully-fired unit. (WHK)

Not Available

1980-09-01T23:59:59.000Z

211

CSP Tower Air Brayton Combustor (Fact Sheet)  

SciTech Connect

Southwest Research Institute is one of the 2012 SunShot CSP R&D awardees for their advanced power cycles. This fact sheet explains the motivation, description, and impact of the project.

Not Available

2012-09-01T23:59:59.000Z

212

Demonstration Development Project: Oxy-Fired Circulating Fluidized Bed with Carbon Dioxide Capture and Storage at Holland Board of P ublic Works  

Science Conference Proceedings (OSTI)

Oxy-combustion of coal has been proposed as a way of reducing costs of capturing CO2 from coal-fired steam-electric power plants at a purity adequate for geological storage. To date only laboratory and test-stand studies have been conducted, primarily focusing on the combustion process. The next major development step is to field an integrated oxy-coal power plant. Such a project has been proposed and is being developed for deployment at the Holland (MI) Board of Public Works James De Young Power Station...

2009-12-11T23:59:59.000Z

213

Effect of pressure on second-generation pressurized fluidized bed combustion plants  

Science Conference Proceedings (OSTI)

In the search for a more efficient, less costly, and more environmentally responsible method for generating electrical power from coal, research and development has turned to advanced pressurized fluidized bed combustion (PFBC) and coal gasification technologies. A logical extension of this work is the second- generation PFBC plant, which incorporates key components of each of these technologies. In this new type of plant, coal devolatilized/carbonized before it is injected into the PFB combustor bed, and the low Btu fuel gas produced by this process is burned in a gas turbine topping combustor. By integrating coal carbonization with PFB coal/char combustion, gas turbine inlet temperatures higher than 1149{degrees}C (2100{degrees}F) can be achieved. The carbonizer, PFB combustor, and particulate-capturing hot gas cleanup systems operate at 871{degrees}C (1600{degrees}F), permitting sulfur capture by lime-based sorbents and minimizing the release of coal contaminants to the gases. This paper presents the performance and economics of this new type of plant and provides a brief overview of the pilot plant test programs being conducted to support its development.

Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Bonk, D.L. [USDOE Morgantown Energy Technology Center, WV (United States)

1993-06-01T23:59:59.000Z

214

Atmospheric fluidized bed combustion of municipal solid waste: test program results  

DOE Green Energy (OSTI)

Air classified municipal solid waste (MSW) was fired in an atmospheric fluidized bed combustor at low excess air to simulate boiler conditions. The 7 ft/sup 2/ combustor at Combustion Power Company's energy laboratory in Menlo Park, CA, incorporates water tubes for heat extraction and recycles elutriated particles to the bed. System operation was stable while firing processed MSW for the duration of a 300-h test. Low excess air, low exhaust gas emissions, and constant bed temperature demonstrated feasibility of steam generation from fluidized bed combustion of MSW. During the 300-h test, combustion efficiency averaged 99%. Excess air was typically 44% while an average bed temperature of 1400/sup 0/F and an average superficial gas velocity of 4.6 fps were maintained. Typical exhaust emission levels were 30 ppM SO/sub 2/, 160 ppM NO/sub x/, 200 ppM CO, and 25 ppM hydrocarbons. No agglomeration of bed material or detrimental change in fluidization properties was experienced. A conceptual design study of a full scale plant to be located at Stanford University was based on process conditions from the 300-h test. The plant would produce 250,000 lb/hr steam at the maximum firing rate of 1000 tons per day (TPD) processed MSW. The average 800 TPD firing rate would utilize approximately 1200 TPD raw MSW from surrounding communities. The Stanford Solid Waste energy Program was aimed at development of a MSW-fired fluidized bed boiler and cogeneration plant to supply most of the energy needs of Stanford University.

Preuit, L C; Wilson, K B

1980-05-01T23:59:59.000Z

215

System and method for reducing combustion dynamics in a combustor  

Science Conference Proceedings (OSTI)

A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend through the end cap. A diluent supply in fluid communication with the end cap provides diluent flow to the end cap. Diluent distributors circumferentially arranged inside at least one tube bundle extend downstream from the downstream surface and provide fluid communication for the diluent flow through the end cap. A method for reducing combustion dynamics in a combustor includes flowing fuel through tube bundles that extend axially through an end cap, flowing a diluent through diluent distributors into a combustion chamber, wherein the diluent distributors are circumferentially arranged inside at least one tube bundle and each diluent distributor extends downstream from the end cap, and forming a diluent barrier in the combustion chamber between at least one pair of adjacent tube bundles.

Uhm, Jong Ho; Johnson, Thomas Edward; Zuo, Baifang; York, William David

2013-08-20T23:59:59.000Z

216

Designing Turbine Endwalls for Deposition Resistance with 1,400 °C Combustor Exit Temperatures and Syngas Water Vapor Levels„The Ohio State University  

NLE Websites -- All DOE Office Websites (Extended Search)

Designing Turbine Endwalls for Designing Turbine Endwalls for Deposition Resistance with 1,400 °C Combustor Exit Temperatures and Syngas Water Vapor Levels-The Ohio State University Background This University Turbine Systems Research (UTSR) project will explore a critical need for innovative turbine endwall designs that could increase turbine durability and mitigate the adverse effects of residue deposition from coal-derived synthesis gas (syngas). The Ohio State University (OSU), in cooperation with Brigham Young University (BYU),

217

Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel  

Science Conference Proceedings (OSTI)

A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

2012-11-20T23:59:59.000Z

218

Vortex combustor for low NOx emissions when burning lean premixed high hydrogen content fuel  

DOE Patents (OSTI)

A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

Steele, Robert C. (Woodinville, WA); Edmonds, Ryan G. (Renton, WA); Williams, Joseph T. (Kirkland, WA); Baldwin, Stephen P. (Winchester, MA)

2009-10-20T23:59:59.000Z

219

Gas Turbine Combustor Performance on Synthetic Fuels, Volume 1  

Science Conference Proceedings (OSTI)

This volume presents complete data from a test program to determine the behavior of several coal-derived and shale-derived liquid fuels when burned in state-of-the-art combustion turbine engines. The methods used in analyzing the test results are described. The heat transfer effects on gas turbine combustors are discussed, as well as NOx and other emissions effects and predictions.

1980-11-01T23:59:59.000Z

220

Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring the Standard Model Exploring the Standard Model       You've heard a lot about the Standard Model and the pieces are hopefully beginning to fall into place. However, even a thorough understanding of the Standard Model is not the end of the story but the beginning. By exploring the structure and details of the Standard Model we encounter new questions. Why do the most fundamental particles have the particular masses we observe? Why aren't they all symmetric? How is the mass of a particle related to the masses of its constituents? Is there any other way of organizing the Standard Model? The activities in this project will elucidate but not answer our questions. The Standard Model tells us how particles behave but not necessarily why they do so. The conversation is only beginning. . . .

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fluidized bed calciner apparatus  

DOE Patents (OSTI)

An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

Owen, Thomas J. (West Richland, WA); Klem, Jr., Michael J. (Richland, WA); Cash, Robert J. (Richland, WA)

1988-01-01T23:59:59.000Z

222

Bed Surface Patchiness in Gravel-Bed Rivers  

E-Print Network (OSTI)

this case was a completely armored, immobile bed. Table 2.4that gravel beds are armored because equal mobil- ity

Nelson, Peter August

2010-01-01T23:59:59.000Z

223

Sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

Vogt, Robert L. (Schenectady, NY)

1980-01-01T23:59:59.000Z

224

Fluidized Bed Technology - An R&D Success Story | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An R&D Success Story An R&D Success Story Fluidized Bed Technology - An R&D Success Story In the early 1990s, POWER magazine called the development of fluidized bed coal combustors "the commercial success story of the last decade in the power generation business." The success, perhaps the most significant advance in coal-fired boiler technology in a half century, was achieved largely through the technology program of the U.S. Department of Energy's Office of Fossil Energy (and its predecessors). The Interior Department's Office of Coal Research, one of the forerunners of the Energy Department, began studying the fluidized bed combustion concept in the early 1960s. The original goal was to develop a compact "package" coal boiler that could be pre-assembled at the factory and shipped to a plant site (a lower cost

225

Combustion and direct energy conversion in a micro-combustor  

E-Print Network (OSTI)

The push toward the miniaturization of electromechanical devices and the resulting need for micro-power generation (milliwatts to watts) with low-weight, long-life devices has led to the recent development of the field of micro-scale combustion. Since batteries have low specific energy (~200 kJ/kg) and liquid hydrocarbon fuels have a very high specific energy (~50000 kJ/kg), a miniaturized power-generating device, even with a relatively inefficient conversion of hydrocarbon fuels to power, would result in increased lifetime and/or reduced weight of an electronic or mechanical system that currently requires batteries for power. Energy conversion from chemical energy to electrical energy without any moving parts can be achieved by a thermophotovoltaic (TPV) system. The TPV system requires a radiation source which is provided by a micro-combustor. Because of the high surface area to volume ratio for micro-combustor, there is high heat loss (proportional to area) compared to heat generation (proportional to volume). Thus the quenching and flammability problems are more critical in a micro-scale combustor. Hence innovative schemes are required to improve the performance of micro-combustion. In the current study, a micro-scale counter flow combustor with heat recirculation is adapted to improve the flame stability in combustion modeled for possible application to a TPV system. The micro-combustor consists of two annular tubes with an inner tube of diameter 3 mm and 30 mm long and an outer tube of 4.2 mm diameter and 30 mm long. The inner tube is supplied with a cold premixed combustible mixture, ignited and burnt. The hot produced gases are then allowed to flow through outer tube which supplies heat to inner tube via convection and conduction. The hot outer tube radiates heat to the TPV system. Methane is selected as the fuel. The model parameters include the following: diameter d , inlet velocity u , equivalence ratio Ï� and heat recirculation efficiency �· between the hot outer flow and cold inner flow. The predicted performance results are as followings: the lean flammability limit increased from 7.69% to 7.86% and the quenching diameter decreased from 1.3 mm to 0.9 mm when heat recirculation was employed. The overall energy conversion efficiency of current configuration is about 2.56.

Lei, Yafeng

2005-08-01T23:59:59.000Z

226

CERTS Microgrid Laboratory Test Bed  

NLE Websites -- All DOE Office Websites (Extended Search)

CERTS Microgrid Laboratory Test Bed Title CERTS Microgrid Laboratory Test Bed Publication Type Report Year of Publication 2010 Authors Lasseter, Robert H., Joseph H. Eto, Ben...

227

Technical and economic assessment of fluidized-bed-augmented compressed-air energy-storage system: system load following capability  

DOE Green Energy (OSTI)

The load-following capability of fluidized bed combustion-augmented compressed air energy storage systems was evaluated. The results are presented in two parts. The first part is an Executive Summary which provides a concise overview of all major elements of the study including the conclusions, and, second, a detailed technical report describing the part-load and load following capability of both the pressurized fluid bed combustor and the entire pressurized fluid bed combustor/compressed air energy storage system. The specific tasks in this investigation were to: define the steady-state, part-load operation of the CAES open-bed PFBC; estimate the steady-state, part-load performance of the PFBC/CAES system and evaluate any possible operational constraints; simulate the performance of the PFBC/CAES system during transient operation and assess the load following capability of the system; and establish a start-up procedure for the open-bed PFBC and evaluate the impact of this procedure. The conclusions are encouraging and indicate that the open-bed PFBC/CAES power plant should provide good part-load and transient performance, and should have no major equipment-related constraints, specifically, no major problems associated with the performance or design of either the open-end PFBC or the PFBC/CAES power plant in steady-state, part-load operation are envisioned. The open-bed PFBC/CAES power plant would have a load following capability which would be responsive to electric utility requirements for a peak-load power plant. The open-bed PFBC could be brought to full operating conditions within 15 min after routine shutdown, by employing a hot-start mode of operation. The PFBC/CAES system would be capable of rapid changes in output power (12% of design load per minute) over a wide output power range (25% to 100% of design output). (LCL)

Lessard, R.D.; Blecher, W.A.; Merrick, D.

1981-09-01T23:59:59.000Z

228

Project 261  

NLE Websites -- All DOE Office Websites (Extended Search)

NOVEL CORROSION SENSOR FOR ADVANCED NOVEL CORROSION SENSOR FOR ADVANCED FOSSIL ENERGY POWER SYSTEMS Description The overall objective of this proposed project is to develop a new technology for on-line corrosion monitoring based on an innovative concept. The specific objectives and corresponding tasks are (1) develop the sensor and electronic measurement system; (2) evaluate and improve the system in a laboratory muffle furnace; and (3) evaluate and improve the system through tests conducted in a pilot-scale coal combustor (~1 MW). Fireside corrosion refers to the metal loss caused by chemical reactions on surfaces exposed to the combustion environment. Such corrosion is the leading mechanism for boiler tube failures and is a serious concern for current and future energy plants due to the introduction of technologies targeting emissions

229

State of the art of pressurized fluidized bed combustion systems  

SciTech Connect

This report was prepared at the request of the Tennessee Valley Authority (TVA) to clarify the development status of the pressurized fluidized bed combustor (PFBC) and to place in perspective the problems which are yet to be solved before commercialization of the concept is practical. This report, in essence, supersedes the interim report published in 1979, Assessment of the State of the Art of Pressurized Fluidized Bed Combustion Systems. A brief overview of the PFBC concept is included citing potential advantages and disadvantages relative to atmospheric fluidized bed combustion (AFBC) and conventional pulverized coal plants. A survey of existing and developing PFBC experimental facilities is presented in some detail which includes the major accomplishments at the respective facilities. Recent data on plant emissions, turbine/gas cleanup systems, and overall efficiency are provided. Findings of several design studies are also discussed. The results of recent gas turbine and cascade tests have been encouraging although the full assessment of the accomplishments have not been made. The delay in construction of the Grimethorpe plant causes further delay in proof-testing full-size, rotating turbomachinery. Several parameters are recommended for further assessment in design studies including: (1) effect of turbine life on cost of power; and (2) effect of reduced gas turbine inlet temperature and pressure on cost of power.

Graves, R.L.

1980-09-01T23:59:59.000Z

230

Electron Beam Powder Bed Processes  

Science Conference Proceedings (OSTI)

Advanced Materials, Processes and Applications for Additive Manufacturing : Electron Beam Powder Bed Processes Program Organizers: Andrzej ...

231

Non-uniform Heat Generation in Micro Catalytic Combustor Takashi Okamasa*, Yuji Suzuki, and Nobuhide Kasagi  

E-Print Network (OSTI)

in ceramic packages are already used in industry, ignition heaters are easily integrated into the plates@thtlab.t.u-tokyo.ac.jp Abstract We developed a micro catalytic combustor using high-precision ceramic tape-casting technology and nano-porous alumina catalyst layer. It is found that failure of the ceramic combustor occurs due

Kasagi, Nobuhide

232

==================== !"#$%&'()*+,-+./,0)12 Development of Micro Ejector for Butane Catalytic Combustor  

E-Print Network (OSTI)

==================== !"#$%&'()*+,-+./,0)12 Development of Micro Ejector for Butane Catalytic Combustor ===== ==== !" = !" = = !" A micro ejector for butane catalytic combustor is investigated. Quasi-1 ejector that the volume flow rate of entrained air can reach 43 times the value of butane when the back

Kasagi, Nobuhide

233

DOE/PETC two-stage MHD pressurized coal combustor. Quarterly activity report, April 1-June 30, 1979  

DOE Green Energy (OSTI)

Efforts involved preparing for and conducting scroll combustor test run SC7905, followed by disassembly, inspection and refurbishment of the combustor internals after the run. Numerous design and operational improvements, described in this report, were made to the combustor and its support systems, based on previous run experience, in an effort to extend run duration to 24 hours of continuous operation, burning coal.

Not Available

1979-07-31T23:59:59.000Z

234

Piloted rich-catalytic lean-burn hybrid combustor  

DOE Patents (OSTI)

A catalytic combustor assembly which includes, an air source, a fuel delivery means, a catalytic reactor assembly, a mixing chamber, and a means for igniting a fuel/air mixture. The catalytic reactor assembly is in fluid communication with the air source and fuel delivery means and has a fuel/air plenum which is coated with a catalytic material. The fuel/air plenum has cooling air conduits passing therethrough which have an upstream end. The upstream end of the cooling conduits is in fluid communication with the air source but not the fuel delivery means.

Newburry, Donald Maurice (Orlando, FL)

2002-01-01T23:59:59.000Z

235

NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project  

SciTech Connect

The report summarizes unit operating experience and test program progress for 1989 on Colorado-Ute Electric Association's Nucla CFB Demonstration Program. During this period, the objectives of the Nucla Station operating group were to correct problems with refractory durability, resolve primary air fan capacity limitations, complete the high ash and high sulfur coal tests, switch to Salt Creek coal as the operating fuel, and make the unit available for testing without capacity restrictions. Each of these objectives was addressed and accomplished, to varying degrees, except for the completion of the high sulfur coal acceptance tests. (VC)

Not Available

1992-02-01T23:59:59.000Z

236

Vermont gasifier project. Final report, Phase I  

DOE Green Energy (OSTI)

This report presents an engineering status report for the Vermont gasifier project. Technical areas of concern are discussed with the cyclone performance, agglomeration problems in the combustor, particlate emissions, valve design, deflagration venting, gasifier and combustion blower surge control, and other related areas. Attachments pertaining to the drawing and specification register are included.

NONE

1995-07-01T23:59:59.000Z

237

Project 271  

NLE Websites -- All DOE Office Websites (Extended Search)

oxide and ammonia in coal combustor exhaust streams. The development of these diode-laser-based systems will significantly enhance the sensor capabilities for practical...

238

INVESTIGATION OF FUEL CHEMISTRY AND BED PERFORMANCE IN A FLUIDIZED BED BLACK LIQUOR STEAM REFORMER  

DOE Green Energy (OSTI)

The University of Utah project ''Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer'' (DOE award number DE-FC26-02NT41490) was developed in response to a solicitation for projects to provide technical support for black liquor and biomass gasification. The primary focus of the project is to provide support for a DOE-sponsored demonstration of MTCI's black liquor steam reforming technology at Georgia-Pacific's paper mill in Big Island, Virginia. A more overarching goal is to improve the understanding of phenomena that take place during low temperature black liquor gasification. This is achieved through five complementary technical tasks: (1) construction of a fluidized bed black liquor gasification test system, (2) investigation of bed performance, (3) evaluation of product gas quality, (4) black liquor conversion analysis and modeling and (5) computational modeling of the Big Island gasifier. Four experimental devices have been constructed under this project. The largest facility, which is the heart of the experimental effort, is a pressurized fluidized bed gasification test system. The system is designed to be able to reproduce conditions near the black liquor injectors in the Big Island steam reformer, so the behavior of black liquor pyrolysis and char gasification can be quantified in a representative environment. The gasification test system comprises five subsystems: steam generation and superheating, black liquor feed, fluidized bed reactor, afterburner for syngas combustion and a flue gas cooler/condenser. The three-story system is located at University of Utah's Industrial Combustion and Gasification Research Facility, and all resources there are available to support the research.

Kevin Whitty

2003-12-01T23:59:59.000Z

239

Lean premixed flames for low NO{sub x} combustors  

DOE Green Energy (OSTI)

The overall objectives of the research at Purdue are to: obtain a reduced mechanism description of high pressure NO formation chemistry using experiments and calculations for laminar lean premixed methane air flames, develop a statistical model of turbulence NO chemistry interactions using a Bunsen type jet flame, and utilize the high pressure chemistry and turbulence models in a commercial design code, then evaluate its predictions using data from an analog gas turbine combustor. Work to date has resulted in the following achievements: spatially resolved measurements of NO in high-pressure high-temperature flat flames, plus evaluation of the influence of flame radiation on the measured temperature profile; measurements of temperature and velocity PDFs for a turbulent methane/air flame were obtained for the first time, under operating conditions which allow their study in the distributed regimes, and the increase in EINO{sub x} with equivalence ratio predicted using a chemical kinetics model; and simulation of non-reacting combustor flow fields from ambient to elevated pressure and temperature conditions and comparison of those results with experimental velocity profiles.

Sojka, P.; Tseng, L.; Bryyjak, J. [Purdue Univ., Lafayette, IN (United States). Thermal Sciences and Propulsion Center] [and others

1995-12-31T23:59:59.000Z

240

Fluid bed material transfer method  

DOE Patents (OSTI)

A fluidized bed apparatus comprising a pair of separated fluid bed enclosures, each enclosing a fluid bed carried on an air distributor plate supplied with fluidizing air from below the plate. At least one equalizing duct extending through sidewalls of both fluid bed enclosures and flexibly engaged therewith to communicate the fluid beds with each other. The equalizing duct being surrounded by insulation which is in turn encased by an outer duct having expansion means and being fixed between the sidewalls of the fluid bed enclosures.

Pinske, Jr., Edward E. (Akron, OH)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Apparatus for controlling fluidized beds  

DOE Patents (OSTI)

An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

Rehmat, A.G.; Patel, J.G.

1987-05-12T23:59:59.000Z

242

Apparatus for controlling fluidized beds  

DOE Patents (OSTI)

An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

Rehmat, Amirali G. (Westmont, IL); Patel, Jitendra G. (Bolingbrook, IL)

1987-05-12T23:59:59.000Z

243

Transportation Safeguards & Security Test Bed (TSSTB) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Safeguards and Security Test Bed May 30, 2013 The Transportation Safeguards and Security Test Bed consists of a test-bed vehicle and a monitoringlaboratorytraining...

244

Staged fluidized bed  

DOE Patents (OSTI)

The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

Mallon, R.G.

1983-05-13T23:59:59.000Z

245

CERTS Microgrid Laboratory Test Bed  

Science Conference Proceedings (OSTI)

The objective of the CERTS Microgrid Test Bed project was to enhance the ease of integrating energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of generating sources less than 100kW. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation, islanding the microgrid's load from a disturbance, thereby maintaining a higher level of service, without impacting the integrity of the utility's electrical power grid; 2) an approach to electrical protection within a limited source microgrid that does not depend on high fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications between sources. These techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations,and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults. The results from these tests are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations involving microgrids that involve one or more of the CERTS Microgrid concepts. Future planned microgrid work involves unattended continuous operation of the microgrid for 30 to 60 days to determine how utility faults impact the operation of the microgrid and to gage the power quality and reliability improvements offered by microgrids.

Eto, Joe; Lasseter, Robert; Schenkman, Ben; Stevens, John; Klapp, Dave; Volkommer, Harry; Linton, Ed; Hurtado, Hector; Roy, Jean

2009-06-18T23:59:59.000Z

246

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Line Diagram of CERTS Microgrid Test Bed Figure 3. TecogenRoy, N. Lewis. 2008. CERTS Microgrid Laboratory Test Bed. (Energy Resources: The MicroGrid Concept. (Lawrence Berkeley

ETO, J.

2010-01-01T23:59:59.000Z

247

Bed expansion crucible tests  

SciTech Connect

The Am/Cm program will vitrify the americium and curium currently stored in F-canyon. A batch flowsheet has been developed (with non-radioactive surrogate feed in place of the F-canyon solution) and tested full-scale in the 5-inch Cylindrical Induction Melter (CIM) facility at TNX. During a normal process run, a small bed expansion occurs when oxygen released from reduction of cerium (IV) oxide to cerium (III) oxide is trapped in highly viscous glass. The bed expansion is characterized by a foamy layer of glass that slowly expands as the oxygen is trapped and then dissipates when the viscosity of the foam becomes low enough to allow the oxygen to escape. Severe bed expansions were noted in the 5-inch CIM when re-heating after an interlock during the calcination phase of the heat cycle, escaping the confines of the melter vessel. In order to better understand the cause of the larger than normal bed expansion and to develop mitigating techniques, a series of three crucible tests were conducted.

Stone, M.E.

2000-04-04T23:59:59.000Z

248

DOE/EIA-0304 Survey of Large Combustors:  

U.S. Energy Information Administration (EIA) Indexed Site

304 304 Survey of Large Combustors: Report on Alternative- Fuel Burning Capabilities of Large Boilers in 1979 U.S. Department of Energy Energy information Administration Office of Energy Markets and End Use Energy End Use Division Introduction During recent years, total annual industrial energy consumption in the United States has been approximated at 25 to 26 quadrillion British thermal units (Btu).^- Manufacturin g is by far the largest components totaling 12.9 quadrillion Btu of purchased fuels and electricity for heat and power during 1979.2 QJ this amount, 10.5 quadrillion Btu was accounted for by purchased fuels alone (e.g., fuel oil, coal, natural gas, etc.). Other than fuel consumption by type and industrial classificati on, very little information existed on specific fuel consumption characterist

249

Development of a pressure gain combustor for improved cycle efficiency  

SciTech Connect

This paper presents results from an experimental research program attempting to improve the thermodynamic efficiencies of gas-turbine combustors. An elementary thermodynamic analysis shows that the thermodynamic cycle efficiencies of gas turbines can be significantly improved by using unsteady combustion that achieves quasi-constant-volume combustion. The ability to produce the so-called pressure gain via this process has already been demonstrated by others for pressures less than 3 atmospheres. This paper presents experimental results for pressures up to 11 atmospheres, compares certain process parameters to a numerical simulation, and briefly examines the problem of scale-up. Results of pollutant measurements over the 2--11 atmospheric range of operation are also included.

Gemmen, R.S.; Richards, G.A.; Janus, M.C.

1994-09-01T23:59:59.000Z

250

Nondestructive evaluation of environmental barrier coatings in CFCC combustor liners.  

SciTech Connect

Advanced combustor liners fabricated of SiC/SiC continuous fiber-reinforced ceramic composite (CFCC) and covered with environmental barrier coatings (EBCs) have been successfully tested in Solar Turbines Inc. field engines. The primary goal for the CFCC/EBC liners is to reach a 30,000-h lifetime. Because the EBCs, when applied on the hot surfaces of liners, protect the underlying CFCC from oxidation damage, their performance is critical in achieving the lifetime goal. To determine CFCC/EBC liner condition and assess operating damage, the liners were subjected to nondestructive evaluation (NDE) during various processing stages, as well as before and after the engine test. The NDE techniques included pulsed infrared thermal imaging, air-coupled ultrasonic scanning, and X-ray computerized tomography. It was found that EBC damage and spallation depend on the condition of the CFCC material. The NDE results and correlations with destructive examination are discussed.

Sun, J. G.; Benz, J.; Ellingson, W. A.; Kimmel, J. B.; Price, J. R.; Energy Technology; Solar Turbines, Inc

2007-01-01T23:59:59.000Z

251

Packed Bed Combustion: An Overview  

E-Print Network (OSTI)

Packed Bed Combustion: An Overview William Hallett Dept. of Mechanical Engineering Université d'Ottawa - University of Ottawa #12;Packed Bed Combustion - University of Ottawa - CICS 2005 Introduction air fuel feedproducts xbed grate Packed Bed Combustion: fairly large particles of solid fuel on a grate, air supplied

Hallett, William L.H.

252

National SCADA Test Bed | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Cybersecurity Energy Delivery Systems Cybersecurity National SCADA Test Bed National SCADA Test Bed Electricity Advisory Committee Transmission Planning...

253

Atmospheric fluidized-bed combustion performance guidelines  

SciTech Connect

Performance specifications for conventional coal-fired boilers typically call for tests to be conducted in accordance with the ASME Performance Test Code for Steam Generating Units, PTC 4.1. The Code establishes procedures for conducting performance tests primarily to determine efficiency and capacity. The current edition of the PTC 4.1 is not entirely applicable to atmospheric fluidized-bed combustion boilers, however. AFBC boilers typically are equipped with integral sulfur capture through the addition of a sorbent material along with the fuel feed to the combustor, and this new technology introduces heat losses and credits that are not described in PTC 4.1. These heat losses and credits include combustion heat loss due to the calcination of the sorbent, heat credit due to sulfation, and the effects of calcination and sulfation on the dry flue gas flow, all of which significantly affect boiler efficiency calculations. The limitations of the current issue of the PTC 4.1 is recognized and the Code is now being reviewed to include heat losses and credits common to AFBC boilers. While this work will take some time, there is an immediate need for procedures for performance testing of AFBC boilers. These Guidelines are prepared to meet that need in the interim. The Guidelines detail procedures for boiler efficiency tests. They introduce technical and economic issues that may influence the test level of detail and accuracy. Methods of identifying required measurements, selection of measurement schemes, and assessment of measured versus estimated values are presented. A case study is used to illustrate the procedures and indicate which are the major credits and losses in the efficiency of a typical AFBC boiler. 6 figs., 8 tabs.

Sotelo, E. (Sotelo (Ernest), Berkeley, CA (USA))

1991-03-01T23:59:59.000Z

254

Suppression of thermoacoustic instabilities in a swirl combustor through microjet air injection  

E-Print Network (OSTI)

Thermoacoustic or combustion instability, a positive feedback loop coupling heat release rate and acoustic oscillations in a combustor, is one of the greatest challenges currently facing the development of new gas turbine ...

LaBry, Zachary Alexander

2010-01-01T23:59:59.000Z

255

A physics-based emissions model for aircraft gas turbine combustors  

E-Print Network (OSTI)

In this thesis, a physics-based model of an aircraft gas turbine combustor is developed for predicting NO. and CO emissions. The objective of the model is to predict the emissions of current and potential future gas turbine ...

Allaire, Douglas L

2006-01-01T23:59:59.000Z

256

An Experimental Study of Flame Response Mechanisms in a Lean-premixed Gas Turbine Combustor.  

E-Print Network (OSTI)

??The heat release rate response of a swirl-stabilized, turbulent, lean-premixed natural gas-air flame to velocity oscillations was investigated in an atmospheric variable length research combustor… (more)

Peluso, Stephen

2012-01-01T23:59:59.000Z

257

Flame transfer function measurements and mechanisms in a single-nozzle combustor.  

E-Print Network (OSTI)

??The response of a fully-premixed flame to velocity fluctuations was experimentally measured in a single-nozzle, swirl-stabilized, model gas turbine combustor. Flame response was quantified in… (more)

Bunce, Nicholas

2013-01-01T23:59:59.000Z

258

Exposure of Ceramics and Ceramic Matrix Composites in Simulated and Actual Combustor Environments  

DOE Green Energy (OSTI)

A high-temperature, high-pressure, tube furnace has been used to evaluate the long term stability of different monolithic ceramic and ceramic matrix composite materials in a simulated combustor environment. All of the tests have been run at 150 psia, 1204 degrees C, and 15% steam in incremental 500 h runs. The major advantage of this system is the high sample throughput; >20 samples can be exposed in each tube at the same time under similar exposure conditions. Microstructural evaluations of the samples were conducted after each 500 h exposure to characterize the extent of surface damage, to calculate surface recession rates, and to determine degradation mechanisms for the different materials. The validity of this exposure rig for simulating real combustor environments was established by comparing materials exposed in the test rig and combustor liner materials exposed for similar times in an actual gas turbine combustor under commercial operating conditions.

Brentnall, W.D.; Ferber, M.K.; Keiser, j.R.; Miriyala, N.; More, K.L.; Price, J.R.; Tortorelli, P.F.; Walker, L.R.

1999-06-07T23:59:59.000Z

259

Investigation and demonstration of a rich combustor cold-start device for alcohol-fueled engines  

DOE Green Energy (OSTI)

The authors have completed a study in which they investigated the use of a rich combustor to aid in cold starting spark-ignition engines fueled with either neat ethanol or neat methanol. The rich combustor burns the alcohol fuel outside the engine under fuel-rich conditions to produce a combustible product stream that is fed to the engine for cold starting. The rich combustor approach significantly extends the cold starting capability of alcohol-fueled engines. A design tool was developed that simulates the operation of the combustor and couples it to an engine/vehicle model. This tool allows the user to determine the fuel requirements of the rich combustor as the vehicle executes a given driving mission. The design tool was used to design and fabricate a rich combustor for use on a 2.8 L automotive engine. The system was tested using a unique cold room that allows the engine to be coupled to an electric dynamometer. The engine was fitted with an aftermarket engine control system that permitted the fuel flow to the rich combustor to be programmed as a function of engine speed and intake manifold pressure. Testing indicated that reliable cold starts were achieved on both neat methanol and neat ethanol at temperatures as low as {minus}20 C. Although starts were experienced at temperatures as low as {minus}30 C, these were erratic. They believe that an important factor at the very low temperatures is the balance between the high mechanical friction of the engine and the low energy density of the combustible mixture fed to the engine from the rich combustor.

Hodgson, J.W.; Irick, D.K. [Univ. of Tennessee, Knoxville, TN (United States)

1998-04-01T23:59:59.000Z

260

A feasibility study of oil shale fired pulse combustors with applications to oil shale retorting  

SciTech Connect

The results of the experimental investigation performed to determine the feasibility of using pulverized Colorado oil shale to fuel a bench scale pulse combustor reveal that oil shale cannot sustain pulsations when used alone as fuel. Trace amounts of propane mixed with the oil shale enabled the pulsations, however. Up to 80% of the organic material in the oil shale was consumed when it was mixed with propane in the combustor. Beyond the feasibility objectives, the operating conditions of the combustor fuel with propane and mixtures of oil shale and propane were characterized with respect to pulsation amplitude and frequency and the internal combustor wall temperature over fuel lean and fuel rich stoichiometries. Maximum pressure excursions of 12.5 kPa were experienced in the combustor. Pulsation frequencies ranged from 50 to nearly 80 Hz. Cycle resolved laser Doppler anemometry velocities were measured at the tail pipe exit plane. Injecting inert mineral matter (limestone) into the pulse combustor while using propane fuel had only a slight effect on the pulsation frequency for the feed rates tested.

Morris, G.J.; Johnson, E.K.; Zhang, G.Q.; Roach, R.A.

1992-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Staged fluidized bed  

DOE Patents (OSTI)

Method and apparatus for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

Mallon, Richard G. (Livermore, CA)

1984-01-01T23:59:59.000Z

262

Electrostatic granular bed filter development program. Final report  

SciTech Connect

The application of the electrostatically enhanced granular bed filter (EGB) in a pressurized fluidized bed (PFB) combined cycle power plant is explored in this study. In a PFB combustor power plant, dust particles entrained in the combustion gases must be removed at high temperature (1700/sup 0/F) and pressure (10 atm) in order to protect a gas turbine from erosion. The EFB filter provides a unique design adapted to avoid filter front face plugging which has been the limiting factor in the successful development of granular bed filters for this application. Under the present study, laboratory experiments and analyses were performed to provide the engineering data necessary to design a test module in the actual PFB environment. An analytical model for predicting the performance of an EGB was also developed. The test data and the model were then utilized to establish preferred geometries and operating parameters of the EGB filter system applied in a 663 MWe PFB power plant. Preliminary conceptual designs were established and an economic evaluations performed. The results of the system analysis and economic studies were analyzed to assess the applicability of the EGB filter to utility scale PFB power plants. New power plants must also meet New Source Performance Standards (.03 lb/10/sup 6/ Btu) which necessitates removal of dust in the respirable size range which would otherwise be harmless to the gas turbine. A key technical issue in the PFB application is whether the hot gas cleanup equipment can satisfy the NSPS. The potential of the EGB for achieving NSPS ahead of the gas turbine is demonstrated, and the conceptual design and economics of this application are presented. (LCL)

1981-11-01T23:59:59.000Z

263

Simulation of a High Efficiency Multi-bed Adsorption Heat Pump  

Science Conference Proceedings (OSTI)

Attaining high energy efficiency with adsorption heat pumps is challenging due to thermodynamic losses that occur when the sorbent beds are thermally cycled without effective heat recuperation. The multi-bed concept described here effectively transfers heat from beds being cooled to beds being heated, which enables high efficiency in thermally driven heat pumps. A simplified lumped-parameter model and detailed finite element analysis are used to simulate the performance of an ammonia-carbon sorption compressor, which is used to project the overall heat pump coefficient of performance. The effects of bed geometry and number of beds on system performance are explored, and the majority of the performance benefit is obtained with four beds. Results indicate that a COP of 1.24 based on heat input is feasible at AHRI standard test conditions for residential HVAC equipment. When compared on a basis of primary energy input, performance equivalent to SEER 13 or 14 are theoretically attainable with this system.

TeGrotenhuis, Ward E.; Humble, Paul H.; Sweeney, J. B.

2012-05-01T23:59:59.000Z

264

Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing  

SciTech Connect

PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOEâ??s goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar Turbines, Incorporated Saturn engine rig. High pressure single-injector rig and modified engine rig tests demonstrated NOx less than 2 ppm and CO less than 10 ppm over a wide flame temperature operating regime with low combustion noise (<0.15% peak-to-peak). Minimum NOx for the optimized engine retrofit Full RCL® designs was less than 1 ppm with CO emissions less than 10 ppm. Durability testing of the substrate and catalyst material was successfully demonstrated at pressure and temperature showing long term stable performance of the catalytic reactor element. Stable performance of the reactor element was achieved when subjected to durability tests (>5000 hours) at simulated engine conditions (P=15 atm, Tin=400C/750F.). Cyclic tests simulating engine trips was also demonstrated for catalyst reliability. In addition to catalyst tests, substrate oxidation testing was also performed for downselected substrate candidates for over 25,000 hours. At the end of the program, an RCL® catalytic pilot system has been developed and demonstrated to produce NOx emissions of less than 3 ppm (corrected to 15% O2) for 100% and 50% load operation in a production engine operating on natural gas. In addition, a Full RCL® combustor has been designed and demonstrated less than 2 ppm NOx (with potential to achieve 1 ppm) in single injector and modified engine testing. The catalyst/substrate combination has been shown to be stable up to 5500 hrs in simulated engine conditions.

Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

2009-09-30T23:59:59.000Z

265

Experimental development of a two-stage fluidized-bed/cyclonic agglomerating incinerator  

SciTech Connect

The Institute of Gas Technology (IGT) is conducting an experimental program to develop and test through pilot-plant scale of operation, IGT's two-stage fluidized-bed/cyclonic agglomerating incinerator (TSI). The TSI is based on combining the fluidized-bed agglomeration/gasification technology and the cyclonic combustion/incineration technology, which have been developed at IGT over many years. The TSI is a unique and extremely flexible combustor that can operate over a wide range of conditions in the fluidized-bed first stage from low temperature (desorption) to high temperature (agglomeration) including gasification of high-Btu wastes. The TSI can easily and efficiently destroy solid, liquid and gaseous organic wastes, while containing solid inorganic contaminants within an essentially non-leachable glassy matrix, suitable for disposal in an ordinary landfill. This paper presents the results of tests conducted in a batch, fluidized-bed bench-scale unit (BSU) with commercially available clean'' top soil and the same soil spiked with lead and chromium compounds. The objectives of these tests were to determine the operating conditions necessary to achieve soil agglomeration and to evaluate the leaching characteristics of the soil agglomerates formed. 7 refs., 7 figs., 6 tabs.

Mensinger, M.C.; Rehmat, A.; Bryan, B.G.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (United States)); Shearer, T.L. (Environmental Protection Agency, Cincinnati, OH (United States)); Duggan, P.A. (Gas Research Inst., Chicago, IL (United States))

1991-01-01T23:59:59.000Z

266

Fast fluidized bed steam generator  

DOE Patents (OSTI)

A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

Bryers, Richard W. (Flemington, NJ); Taylor, Thomas E. (Bergenfield, NJ)

1980-01-01T23:59:59.000Z

267

Magnetohydrodynamic projects at the CDIF  

DOE Green Energy (OSTI)

This quarterly technical progress report presents the tasks accomplished at the Component Development and Integration Facility (CDIF) during the second quarter of FY91. Areas of technical progress this quarter included: coal system development; seed system development; test bay modification; channel power dissipation and distribution system development; oxygen system storage upgrade; iron-core magnet thermal protection system checkout; TRW slag rejector/CDIF slag removal project; stack gas/environmental compliance upgrade; coal-fired combustor support; 1A channels fabrication and assembly; support of Mississippi State University diagnostic testing; test operations and results; data analysis and modeling; technical papers; and projected activities. 2 tabs.

Not Available

1991-01-01T23:59:59.000Z

268

Coal bed methane global market potential  

Science Conference Proceedings (OSTI)

Worldwide increases in energy prices, as well as the increased potential for project financing derived from emissions credits, have renewed focus on coal bed methane (CBM) and coal mine methane (CMM) projects in coal-producing countries around the world. Globally, CBM utilization projects (in the operational, development, or planning stages) capture and utilize methane from gassy underground coal mines in at least 13 countries. The total methane emission reductions that could be achieved by these projects are approximately 135 billion cubic feet per year (equal to 14.8 million tons of carbon equivalent per year). This global activity level reflects a growing awareness of the technological practicality and the economic attractiveness of coal mine methane recovery and use. This report outlines the potential of the global CBM market. Contents: An overview of CBM; Challenges and issues; Technologies to generate power from CAM; Global CBM/CMM utilization; Country highlights; Ranking of countries with the largest CMM development potential (Australia, Canada, China, Germany, Mexico, Poland, Russia, Ukraine, United Kingdom, USA, Bulgaria, Czech Republic, France, India, Japan, Kazakhstan, South Africa); Planning CBM/CMM projects; Pre-feasibility and feasibility studies; Demonstration projects; Development plan and application process; Equity and debt; Carbon financing; Government sponsors; Private sponsors; Project risk reduction support; Examples of integrated project financing; Glossary.

Drazga, B. (ed.)

2007-01-16T23:59:59.000Z

269

Flow interaction in the combustor-diffusor system of industrial gas turbines  

SciTech Connect

This paper presents an experimental/computational study of cold flow in the combustor-diffuser system of industrial gas turbines to address issues relating to flow interactions and pressure losses in the pre- and dump diffusers. The present configuration with can annular combustors differs substantially from the aircraft engines which typically use a 360 degree annular combustor. Experiments were conducted in a one-third scale, annular 360-degree model using several can combustors equispaced around the turbine axis. A 3-D computational fluid dynamics analysis employing the multidomain procedure was performed to supplement the flow measurements. The measured data correlated well with the computations. The airflow in the dump diffuser adversely affected the prediffuser flow by causing it to accelerate in the outer region at the prediffuser exit. This phenomenon referred to as the sink-effect also caused a large fraction of the flow to bypass much of the dump diffuser and go directly from the prediffuser exit to the bypass air holes on the combustor casing, thereby, rendering the dump diffuser ineffective in diffusing the flow. The dump diffuser was occupied by a large recirculation region which dissipated the flow kinetic energy. Approximately 1.2 dynamic head at the prediffuser inlet was lost in the combustor-diffuser system; much of it in the dump diffuser where the fluid passed through the narrow gaps and pathways. Strong flow interactions in the combustor-diffuser system indicate the need for design modifications which could not be addressed by empirical correlations based on simple flow configurations.

Agrawal, A.K. [Univ. of Oklahoma, Norman, OK (United States); Kapat, J.S.; Yang, T. [Clemson Univ., SC (United States). Dept. of Mechanical Engineering

1996-05-01T23:59:59.000Z

270

Fluidized bed boiler feed system  

SciTech Connect

A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

Jones, Brian C. (Windsor, CT)

1981-01-01T23:59:59.000Z

271

Biparticle fluidized bed reactor  

DOE Patents (OSTI)

A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

Scott, C.D.

1993-12-14T23:59:59.000Z

272

Biparticle fluidized bed reactor  

DOE Patents (OSTI)

A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

Scott, Charles D. (Oak Ridge, TN)

1993-01-01T23:59:59.000Z

273

Biparticle fluidized bed reactor  

DOE Patents (OSTI)

A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.

Scott, Charles D. (Oak Ridge, TN); Marasco, Joseph A. (Kingston, TN)

1996-01-01T23:59:59.000Z

274

Biparticle fluidized bed reactor  

DOE Patents (OSTI)

A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

Scott, Charles D. (Oak Ridge, TN); Marasco, Joseph A. (Kingston, TN)

1995-01-01T23:59:59.000Z

275

Simplified jet-A kinetic mechanism for combustor application  

SciTech Connect

Successful modeling of combustion and emissions in gas turbine engine combustors requires an adequate description of the reaction mechanism. For hydrocarbon oxidation, detailed mechanisms are only available for the simplest types of hydrocarbons such as methane, ethane, acetylene, and propane. These detailed mechanisms contain a large number of chemical species participating simultaneously in many elementary kinetic steps. Current computational fluid dynamic (CFD) models must include fuel vaporization, fuel-air mixing, chemical reactions, and complicated boundary geometries. To simulate these conditions a very sophisticated computer model is required, which requires large computer memory capacity and long run times. Therefore, gas turbine combustion modeling has frequently been simplified by using global reaction mechanisms, which can predict only the quantities of interest: heat release rates, flame temperature, and emissions. Jet fuels are wide-boiling-range hydrocarbons with ranges extending through those of gasoline and kerosene. These fuels are chemically complex, often containing more than 300 components. Jet fuel typically can be characterized as containing 70 vol pct paraffin compounds and 25 vol pct aromatic compounds. A five-step Jet-A fuel mechanism which involves pyrolysis and subsequent oxidation of paraffin and aromatic compounds is presented here. This mechanism is verified by comparing with Jet-A fuel ignition delay time experimental data, and species concentrations obtained from flametube experiments. This five-step mechanism appears to be better than the current one- and two-step mechanisms.

Lee, Chiming; Kundu, K.; Ghorashi, B.

1993-01-01T23:59:59.000Z

276

Fuel burner and combustor assembly for a gas turbine engine  

DOE Patents (OSTI)

A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

Leto, Anthony (Franklin Lakes, NJ)

1983-01-01T23:59:59.000Z

277

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

CERTS Microgrid Laboratory Test Bed R. H. Lasseter, Fellow,play functionality. The tests demonstrated stable behaviorin an autonomous manner. All tests performed as expected and

Lasseter, R. H.

2010-01-01T23:59:59.000Z

278

Mange-infested Dog Bedding  

NLE Websites -- All DOE Office Websites (Extended Search)

NEWTON About NEWTON About Ask A Scientist Education At Argonne Mange-infested Dog Bedding Name: Joan Status: other Grade: 12+ Location: NY Country: USA Date: Summer 2010...

279

Agglomerating combustor-gasifier method and apparatus for coal gasification  

DOE Patents (OSTI)

A method and apparatus for gasifying coal wherein the gasification takes place in a spout fluid bed at a pressure of about 10 to 30 atmospheres and a temperature of about 1800.degree. to 2200.degree.F and wherein the configuration of the apparatus and the manner of introduction of gases for combustion and fluidization is such that agglomerated ash can be withdrawn from the bottom of the apparatus and gas containing very low dust loading is produced. The gasification reaction is self-sustaining through the burning of a stoichiometric amount of coal with air in the lower part of the apparatus to form the spout within the fluid bed. The method and apparatus are particularly suitable for gasifying coarse coal particles.

Chen, Joseph L. P. (Murrysville, PA); Archer, David H. (Pittsburgh, PA)

1976-09-21T23:59:59.000Z

280

Pressurized fluidized bed reactor  

DOE Patents (OSTI)

A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

Isaksson, Juhani (Karhula, FI)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Pressurized fluidized bed reactor  

DOE Patents (OSTI)

A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

Isaksson, J.

1996-03-19T23:59:59.000Z

282

Massively-Parallel Spectral Element Large Eddy Simulation of a Ring-Type Gas Turbine Combustor  

E-Print Network (OSTI)

The average and fluctuating components in a model ring-type gas turbine combustor are characterized using a Large Eddy Simulation at a Reynolds number of 11,000, based on the bulk velocity and the mean channel height. A spatial filter is applied to the incompressible Navier-Stokes equations, and a high pass filtered Smagorinsky model is used to model the sub-grid scales. Two cases are studied: one with only the swirler inlet active, and one with a single row of dilution jets activated, operating at a momentum flux ratio J of 100. The goal of both of these studies is to validate the capabilities of the solver NEK5000 to resolve important flow features inherent to gas turbine combustors by comparing qualitatively to the work of Jakirlic. Both cases show strong evidence of the Precessing Vortex Core, an essential flow feature in gas turbine combustors. Each case captures other important flow characteristics, such as corner eddies, and in general predicts bulk flow movements well. However, the simulations performed quite poorly in terms of predicting turbulence shear stress quantities. Difficulties in properly emulating the turbulent velocity entering the combustor for the swirl, as well as mesh quality concerns, may have skewed the results. Overall, though small length scale quantities were not accurately captured, the large scale quantities were, and this stress test on the HPF LES model will be built upon in future work that looks at more complex combustors.

Camp, Joshua Lane

2011-05-01T23:59:59.000Z

283

Cold flow modeling of pulverized coal combustors for magnetohydrodynamic channel applications  

DOE Green Energy (OSTI)

This report describes an experimental program and techniques for studying the internal aerodynamics of pulverized coal combustors of the type used in magnetohydrodynamic test trains at The University of Tennessee Space Institute. The combustors are modeled with small scale, cold flow models that permit both flow visualization and velocity field surveys to be performed. Water was selected as the working fluid so that the model flow fields had the same Reynolds number as the actual reactive combustors, and also to facilitate flow visualization. The systems used for flow visualization and velocity field surveying are described in detail. The velocity field survey equipment is based on a vector-velocity, laser doppler velocimeter coupled to a controllable field scanning device and a microprocessor for on-line data reduction. Results are presented that were obtained from a laser velocimeter study of recirculating flows in a combustor model. The results show that, even for exceedingly simple geometrical arrangements of oxidant injector configurations, complex three dimensional highly turbulent flow fields exist in the combustor. A brief discussion of the impact of the results on fuel injector positioning is presented.

Schulz, R.J.; Giel, T.V.; Ghosh, A.; Morris, R.D.

1984-03-01T23:59:59.000Z

284

Granular Dynamics in Pebble Bed Reactor Cores  

E-Print Network (OSTI)

in a pebble-bed nuclear reactor,” Phys. Rev. E, vol. 74, no.cycles of the pebble bed reactor,” Nuclear Engineering andoptimization of pebble-bed reactors,” Annals of Nuclear

Laufer, Michael Robert

2013-01-01T23:59:59.000Z

285

DEVELOPMENT AND DEMONSTRATION OF AN ULTRA LOW NOx COMBUSTOR FOR GAS TURBINES  

SciTech Connect

Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this project was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using nanoSTAR technology. A mechanically simple single zone injector can be used in Solar Turbine's Taurus 60 engine. (3) Rig testing of single monolithic injectors demonstrated sub 3 ppmv NOX and sub 10 ppmv CO and UHC emissions (all corrected to 15% O2) at Taurus 60 full-load pressure and combustion air inlet temperature. (4) Testing of two nanoSTAR injectors in Solar Turbine's sector rig demonstrated the ability for injectors to survive when fired in close proximity at Taurus 60 full load pressure and combustion air inlet temperature. (5) Sector rig tests demonstrated emissions performance and range of operability consistent with single injector rig tests. Alzeta has committed to the commercialization of nanoSTAR injectors and has sufficient production capability to conclude development and meet initial demand.

NEIL K. MCDOUGALD

2005-04-30T23:59:59.000Z

286

DEVELOPMENT AND DEMONSTRATION OF AN ULTRA LOW NOx COMBUSTOR FOR GAS TURBINES  

SciTech Connect

Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this project was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using nanoSTAR technology. A mechanically simple single zone injector can be used in Solar Turbine's Taurus 60 engine. (3) Rig testing of single monolithic injectors demonstrated sub 3 ppmv NOX and sub 10 ppmv CO and UHC emissions (all corrected to 15% O2) at Taurus 60 full-load pressure and combustion air inlet temperature. (4) Testing of two nanoSTAR injectors in Solar Turbine's sector rig demonstrated the ability for injectors to survive when fired in close proximity at Taurus 60 full load pressure and combustion air inlet temperature. (5) Sector rig tests demonstrated emissions performance and range of operability consistent with single injector rig tests. Alzeta has committed to the commercialization of nanoSTAR injectors and has sufficient production capability to conclude development and meet initial demand.

NEIL K. MCDOUGALD

2005-04-30T23:59:59.000Z

287

Combustion Control and Diagnostics Sensor Testing in a Thermal Barrier Coated Combustor  

Science Conference Proceedings (OSTI)

The combustion control and diagnostics sensor (CCADS) continues to be developed as an in-situ combustion sensor, with immediate application to natural gas fired turbines. In-situ combustion monitoring is also expected to benefit advanced power plants of the future, fueled by coal-derived syngas, liquified natural gas (LNG), hydrogen, or hydrogen blend fuels. The in-situ monitoring that CCADS provides can enable the optimal operation of advanced, fuel-flexible turbines for minimal pollutant emissions and maximum efficiency over the full operating range of an advanced turbine. Previous work has demonstrated CCADS as a useful sensor for in-situ monitoring of natural gas combustion, including detection of important combustion events such as flashback and lean blowoff, in experimental combustors without thermal barrier coatings (TBC). Since typical TBC materials are electrical insulators at room temperature, and CCADS operation requires conduction of electrical current to the walls of the combustor, a TBC on the combustion liner was identified as a potential barrier to CCADS operation in commercial application. This paper reports on CCADS experiments in a turbulent lean premixed combustor with a yttria-stabilized zirconia (YSZ) thermal barrier coating on the combustor wall. The tests were conducted at 0.1 MPa (1 atm), with a 15V excitation voltage on the CCADS electrodes. The results confirm that for a typical thermal barrier coating, CCADS operates properly, and the total measured average resistance is close to that of an uncoated combustor. This result is consistent with previous materials studies that found the electrical resistance of typical TBC materials considerably decreases at combustor operating temperatures.

Chorpening, B.T.; Dukes, M.G.; Robey, E.H.; Thornton, J.D.

2007-05-01T23:59:59.000Z

288

Design and Performance of a Low Btu Fuel Rich-Quench-Lean Gas Turbine Combustor  

SciTech Connect

General Electric Company is developing gas turbines and a high temperature desulfurization system for use in integrated gasification combined cycle (IGCC) power plants. High temperature desulfurization, or hot gas cleanup (HGCU), offers many advantages over conventional low temperature desulfurization processes, but does not reduce the relatively high concentrations of fuel bound nitrogen (FBN) that are typically found in low Btu fuel. When fuels containing bound nitrogen are burned in conventional gas turbine combustors, a significant portion of the FBN is converted to NO{sub x}. Methods of reducing the NO{sub x} emissions from IGCC power plants equipped with HGCU are needed. Rich-quench-lean (RQL) combustion can decrease the conversion of FBN to NO{sub x} because a large fraction of the FBN is converted into non-reactive N{sub 2} in a fuel rich stage. Additional air, required for complete combustion, is added in a quench stage. A lean stage provides sufficient residence time for complete combustion. Objectives General Electric has developed and tested a rich-quench-lean gas turbine combustor for use with low Btu fuels containing FBN. The objective of this work has been to design an RQL combustor that has a lower conversion of FBN to N{sub x} than a conventional low Btu combustor and is suitable for use in a GE heavy duty gas turbine. Such a combustor must be of appropriate size and scale, configuration (can-annular), and capable of reaching ``F`` class firing conditions (combustor exit temperature = 2550{degrees}F).

Feitelberg, A.S.; Jackson, M.R.; Lacey, M.A.; Manning, K.S.; Ritter, A.M.

1996-12-31T23:59:59.000Z

289

National SCADA Test Bed | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home National SCADA Test Bed National SCADA Test Bed Supervisory Control and Data Acquisition (SCADA) systems...

290

Distribution plate for recirculating fluidized bed  

DOE Patents (OSTI)

A distribution plate for a recirculating fluidized bed has a centrally disposed opening and a plurality of apertures adjacent the periphery to eliminate dead spots within the bed.

Yang, Wen-ching (Export, PA); Vidt, Edward J. (Pittsburgh, PA); Keairns, Dale L. (Pittsburgh, PA)

1977-01-01T23:59:59.000Z

291

Development of an advanced high efficiency coal combustor for boiler retrofit. Summary report  

Science Conference Proceedings (OSTI)

The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

1990-04-01T23:59:59.000Z

292

Development of an advanced high efficiency coal combustor for boiler retrofit  

Science Conference Proceedings (OSTI)

The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

1990-04-01T23:59:59.000Z

293

Apparatus and filtering systems relating to combustors in combustion turbine engines  

DOE Patents (OSTI)

A combustor for a combustion turbine engine, the combustor that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; a screen; and a standoff comprising a raised area on an outer surface of the outer wall near the periphery of the windows; wherein the screen extends over the windows and is supported by the standoff in a raised position in relation to the outer surface of the outer wall and the windows.

Johnson, Thomas Edward (Greer, SC); Zuo, Baifang (Simpsonville, SC); Stevenson, Christian Xavier (Inman, SC)

2012-07-24T23:59:59.000Z

294

The development of an integrated multistaged fluid-bed retorting process. Final report, September 1990--August 1994  

SciTech Connect

This summarizes the development of the KENTORT II retorting process, which includes integral fluidized bed zones for pyrolysis, gasification, and combustion of oil shale. Purpose was to design and test the process at the 50-lb/hr scale. The program included bench- scale studies of coking and cracking reactions of shale oil vapors over processed shale particles to address issues of scaleup associated with solid-recycle retorting. The bench-scale studies showed that higher amounts of carbon coverage reduce the rate of subsequent carbon deposition by shale oil vapors onto processed shale particles; however carbon-covered materials were also active in terms of cracking and coking. Main focus was the 50-lb/hr KENTORT II PDU. Cold-flow modeling and shakedown were done before the PDU was made ready for operation. Seven mass-balanced, steady-state runs were completed within the window of design operating conditions. Goals were achieved: shale feedrate, run duration (10 hr), shale recirculation rates (4:1 to pyrolyzer and 10:1 to combustor), bed temperatures (pyrolyzer 530{degree}C, gasifier 750{degree}C, combustor 830{degree}C), and general operating stability. Highest oil yields (up to 109% of Fischer assay) were achieved for runs lasting {ge} 10 hours. High C content of the solids used for heat transfer to the pyrolysis zone contributed to the enhanced oil yield achieved.

Carter, S.D.; Taulbee, D.N.; Stehn, J.L.; Vego, A.; Robl, T.L.

1995-02-01T23:59:59.000Z

295

Performance and economics of co-firing a coal/waste slurry in advanced fluidized-bed combustion  

DOE Green Energy (OSTI)

This study`s objective was to investigate co-firing a pressurized fluidized-bed combustor with coal and refuse-derived fuel for the production of electricity and the efficient disposal of waste. Performance evaluation of the pressurized fluidized-bed combustor (PFBC) power plant co-fired with refuse-derived fuel showed only slightly lower overall thermal efficiency than similar sized plants without waste co-firing. Capital costs and costs of electricity are within 4.2 percent and 3.2 percent, respectively, of waste-free operation. The results also indicate that there are no technology barriers to the co-firing of waste materials with coal in a PFBC power plant. The potential to produce cost-competitive electrical power and support environmentally acceptable waste disposal exists with this approach. However, as part of technology development, there remain several design and operational areas requiring data and verification before this concept can realize commercial acceptance. 3 refs., 3 figs., 4 tabs.

DeLallo, M.R.; Zaharchuk, R. [Parsons Power Group, Inc., Reading, PA (United States); Reuther, R.B.; Bonk, D.L. [USDOE Morgantown Energy Technology Center, WV (United States)

1996-09-01T23:59:59.000Z

296

Tensile strength of ash cake beds at high-temperature conditions  

SciTech Connect

The Energy and Environmental Research Center (EERC) is working with Electric Power Research Institute (EPRI) and a consortium of companies in partnership with the US Department of Energy (DOE) to perform the research necessary to determine the factors that cause hot-gas cleanup filters to be blinded by ash or to develop deposits that can bridge the filters and cause them to fail. The primary deliverable will be a graphics-driven computer model that can be used as an engineering tool to help predict ash-related hot-gas filter problems based on analyses of coal and sorbent, as well as system operating parameters. This paper presents preliminary testing data on determining the tensile strengths of coal ash particles at elevated temperatures and simulated combustor gas conditions. The range in temperatures for tensile testing is ambient to 900 C. The simulated gas atmosphere includes carbon dioxide, water vapor, oxygen, sulfur dioxide, sodium chloride, hydrochloric acid, and nitrogen. At present, all testing has been performed using ash from the Westinghouse advanced particle filter (APF) at the American Electric Power Service Corporation (AEP) Tidd pressurized fluidized-bed combustor (PFBC) demonstration plant in Ohio. Other sources of filter ashes, including several from non-American PFBC systems, will also be evaluated.

Dockter, B.A.; Hurley, J.P.

1996-12-31T23:59:59.000Z

297

Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine induustrial plant study  

SciTech Connect

Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100[degrees]F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600[degrees]F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

1992-07-01T23:59:59.000Z

298

Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study  

SciTech Connect

Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

1992-07-01T23:59:59.000Z

299

The corrosive environment in the fluidized-bed heat-exchanger for CCGT service  

Science Conference Proceedings (OSTI)

Corrosion and combustion diagnostic data were gathered in Battelle's 0.6m diameter coal-fired atmospheric fluidized-bed combustor (AFBC). Corrosion probes, constructed from ring specimens of candidate heatexchanger alloys, were exposed to the fluidized-bed environment during three different combustion experiments (50%, 20% and 0% excess air). An in-situ oxygen probe was used to monitor the oxygen partial pressure at the exposure locations. Two different mechanisms of material degradation were identified, i.e., both corrosion and erosion. An adherent deposit of bed material formed on all areas of the corrosion probes. The corrosion behavior of the alloys beneath the deposit, and the corresponding corrosion product morphologies, appeared to correlate well with predictions based on the oxygen partial pressure measurements from the exposure location. The results suggest the oxygen probe may be a useful diagnostic tool for locating regions with high corrosive potentials. However, the upstream faces of the corrosion probes were subjected to enhanced mechanical damage, and this periodic removal of both the deposit and corrosion products resulted in significantly more metal degradation. Also, this corrosion/erosion process may locally deplete the alloy in chromium, leaving it susceptible to severe sulfidation and/or accelerated oxidation. It was suggested that these locations would be the first to experience heat-exchanger tube failure, and the coupled corrosion/erosion process would be the failure mechanism.

Rocazella, M.A.; Holt, C.F.; Wright, I.C.

1983-01-01T23:59:59.000Z

300

Co-firing a pressurized fluidized-bed combustion system with coal and refuse derived fuels and/or sludges. Task 16  

Science Conference Proceedings (OSTI)

The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal waste. Leading this approach, the atmospheric fluidized-bed combustor (AFBC) has demonstrated its commercial acceptance in the utility market as a reliable source of power burning a variety of waste and alternative fuels. The fluidized bed, with its stability of combustion, reduces the amount of thermochemical transients and provides for easier process control. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Wastes considered for co-firing include municipal solid waste (MSW), tire-derived fuel (TDF), sewage sludge, and industrial de-inking sludge. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

DeLallo, M.; Zaharchuk, R.

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

1. CERTS Microgrid Test Bed at American Electric Power PhotoCredit: American Electric Power Figure 2. One-Line DiagramVOLKOMMER, American Electric Power, USA E. LINTON AND HECTOR

Eto, Joe

2009-01-01T23:59:59.000Z

302

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Test Bed at American Electric Power Figure 2. One-LineH. VOLKOMMER, American Electric Power, USA E. LINTON AND H.and operated by American Electric Power. The testing fully

ETO, J.

2010-01-01T23:59:59.000Z

303

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

on Power Delivery CERTS Microgrid Laboratory Test Bed R. H.and J. Roy Abstract--. CERTS Microgrid concept captures theas a subsystem or a “microgrid”. The sources can operate in

Lasseter, R. H.

2010-01-01T23:59:59.000Z

304

MHD Integrated Topping Cycle Project  

DOE Green Energy (OSTI)

This eighteenth quarterly technical progress report of the MHD Integrated Topping cycle Project presents the accomplishments during the period November 1, 1991 to January 31, 1992. The precombustor is fully assembled. Manufacturing of all slagging stage components has been completed. All cooling panels were welded in place and the panel/shell gap was filled with RTV. Final combustor assembly is in progress. The low pressure cooling subsystem (LPCS) was delivered to the CDIF. Second stage brazing issues were resolved. The construction of the two anode power cabinets was completed.

Not Available

1992-07-01T23:59:59.000Z

305

Pulsed atmospheric fluidized bed combustion. Technical progress report, April--June 1995  

Science Conference Proceedings (OSTI)

Design activities for this report period included: (1) Mechanical. Stress analysis calculations were performed on the steam/water pressure piping. Pipe support design and drawings were completed by Duke Fluor Daniel. The fluid bed distributor bubble cap design was revisited and changes made for ease of maintenance. (2) Electrical and Instrumentation. Control and instrumentation scheme proposed earlier, was based on independent single loop controllers. After careful review, it is decided to go for state of art distributed control system (DCS) which uses programmable logic controllers (PLC). In addition, coal/limestone pickup hopper fabrication was completed during this period and shipped to the site. The coal/limestone floating caps have been made at MTCI and ready for shipping. All major equipment installation was completed. The pulse combustor steam/water jacket and air plenum were installed. Construction of control room building was just completed.

NONE

1995-07-31T23:59:59.000Z

306

Development of the GE Quiet Combustor and Other Design Changes to Benefit Air Quality  

E-Print Network (OSTI)

The attractiveness of gas turbines in cogeneration facilities and combined-cycle (Brayton-Rankine) power plants is linked to high specific work; power per unit mass flow. Manufacturers have, over the years, increased gas turbine firing temperature to increase specific work, hence combined-cycle efficiency. High firing temperatures, insofar as they are related to high adiabatic stoichiometric flame temperatures, have brought higher NOx emissions along with high efficiency. Furthermore, efforts to combat smoke have also driven flame temperatures higher. As combustors evolved to produce higher firing temperatures, and design matured in order to lower smoke emissions and control these NOx emissions, dynamic pressure oscillation activity within the combustor, noise, has increased; increasing wear and necessitating more frequent maintenance. Many different concepts were built and tested as described in this paper and others are in research. At this point, the staged combustor operates in the lean/lean and premixed modes and the multi-nozzle quiet combustor operating with diluent injection offer more immediate prospects for achieving the NOx levels demanded today with natural gas and distillate oils.

Miller, H. E.

1988-09-01T23:59:59.000Z

307

DEVELOPMENT OF A HYDROGEN COMBUSTOR FOR A MICROFABRICATED GAS TURBINE ENGINE  

E-Print Network (OSTI)

DEVELOPMENT OF A HYDROGEN COMBUSTOR FOR A MICROFABRICATED GAS TURBINE ENGINE A. Mehra, I. A. Waitz Gas Turbine Laboratory, Department of Aeronautics and Astronautics Massachusetts Institute, a program is underway to fabricate a gas turbine engine capable of producing 50W of electrical power

Waitz, Ian A.

308

Fuel injection staged sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

Vogt, Robert L. (Schenectady, NY)

1981-01-01T23:59:59.000Z

309

Fuel injection staged sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

Vogt, Robert L. (Schenectady, NY)

1985-02-12T23:59:59.000Z

310

A Testing and Controlling System for the Combustion Test Rig of Gas Turbine Combustor  

Science Conference Proceedings (OSTI)

In this paper, a testing and controlling system is designed for the test rig of gas turbine combustor by using VXi bus and PLC technology. The system is composed of two subsystems: the data acquisition subsystem and the control subsystem. The data acquisition ... Keywords: combustion test rig, VXi bus, PLC control, Modbus agreement, data acquisition

Nihui Xie; Hua Song; Hongzhuan Qiu

2011-10-01T23:59:59.000Z

311

Micro Catalytic Combustor with Pd/Nano-porous Alumina for High-Temperature Application  

E-Print Network (OSTI)

surface reaction of butane. In combustion experiments with a prototype combustor, the wall temperature is proportional to the butane concentration, is employed to characterize the activity of the catalyst layer for n-butane profile of butane-air mixture is assumed at the inlet. The volumetric flow rate QB is kept at 10 sccm

Kasagi, Nobuhide

312

Experimental and computational studies of soot emission in a gas fuelled swirl stabilized combustor  

Science Conference Proceedings (OSTI)

The present study is concerned with measuring and simulating soot and flame structure of a non-premixed gas fired swirl stabilized combustor incorporating a two-step soot model. Soot mass fractions have been measured by gravimetric method. Fluent CFD ... Keywords: finite rate model, flamelet model, soot formation

M. Moghiman; T. M. Gruenberger

2002-12-01T23:59:59.000Z

313

Rapid ignition of fluidized bed boiler  

DOE Patents (OSTI)

A fluidized bed boiler is started up by directing into the static bed of inert and carbonaceous granules a downwardly angled burner so that the hot gases cause spouting. Air is introduced into the bed at a rate insufficient to fluidize the entire bed. Three regions are now formed in the bed, a region of lowest gas resistance, a fluidized region and a static region with a mobile region at the interface of the fluidized and static regions. Particles are transferred by the spouting action to form a conical heap with the carbonaceous granules concentrated at the top. The hot burner gases ignite the carbonaceous matter on the top of the bed which becomes distributed in the bed by the spouting action and bed movement. Thereafter the rate of air introduction is increased to fluidize the entire bed, the spouter/burner is shut off, and the entire fluidized bed is ignited.

Osborn, Liman D. (Alexandria, VA)

1976-12-14T23:59:59.000Z

314

Design requirements for the supercritical water oxidation test bed  

SciTech Connect

This report describes the design requirements for the supercritical water oxidation (SCWO) test bed that will be located at the Idaho National Engineering Laboratory (INEL). The test bed will process a maximum of 50 gph of waste plus the required volume of cooling water. The test bed will evaluate the performance of a number of SCWO reactor designs. The goal of the project is to select a reactor that can be scaled up for use in a full-size waste treatment facility to process US Department of Energy mixed wastes. EG&G Idaho, Inc. will design and construct the SCWO test bed at the Water Reactor Research Test Facility (WRRTF), located in the northern region of the INEL. Private industry partners will develop and provide SCWO reactors to interface with the test bed. A number of reactor designs will be tested, including a transpiring wall, tube, and vessel-type reactor. The initial SCWO reactor evaluated will be a transpiring wall design. This design requirements report identifies parameters needed to proceed with preliminary and final design work for the SCWO test bed. A flow sheet and Process and Instrumentation Diagrams define the overall process and conditions of service and delineate equipment, piping, and instrumentation sizes and configuration Codes and standards that govern the safe engineering and design of systems and guidance that locates and interfaces test bed hardware are provided. Detailed technical requirements are addressed for design of piping, valves, instrumentation and control, vessels, tanks, pumps, electrical systems, and structural steel. The approach for conducting the preliminary and final designs and environmental and quality issues influencing the design are provided.

Svoboda, J.M.; Valentich, D.J.

1994-05-01T23:59:59.000Z

315

Fluidized bed combustion of pelletized biomass and waste-derived fuels  

SciTech Connect

The fluidized bed combustion of three pelletized biogenic fuels (sewage sludge, wood, and straw) has been investigated with a combination of experimental techniques. The fuels have been characterized from the standpoints of patterns and rates of fuel devolatilization and char burnout, extent of attrition and fragmentation, and their relevance to the fuel particle size distribution and the amount and size distribution of primary ash particles. Results highlight differences and similarities among the three fuels tested. The fuels were all characterized by limited primary fragmentation and relatively long devolatilization times, as compared with the time scale of particle dispersion away from the fuel feeding ports in practical FBC. Both features are favorable to effective lateral distribution of volatile matter across the combustor cross section. The three fuels exhibited distinctively different char conversion patterns. The high-ash pelletized sludge burned according to the shrinking core conversion pattern with negligible occurrence of secondary fragmentation. The low-ash pelletized wood burned according to the shrinking particle conversion pattern with extensive occurrence of secondary fragmentation. The medium-ash pelletized straw yielded char particles with a hollow structure, resembling big cenospheres, characterized by a coherent inorganic outer layer strong enough to prevent particle fragmentation. Inert bed particles were permanently attached to the hollow pellets as they were incorporated into ash melts. Carbon elutriation rates were very small for all the fuels tested. For pelletized sludge and straw, this was mostly due to the shielding effect of the coherent ash skeleton. For the wood pellet, carbon attrition was extensive, but was largely counterbalanced by effective afterburning due to the large intrinsic reactivity of attrited char fines. The impact of carbon attrition on combustion efficiency was negligible for all the fuels tested. The size distribution of primary ash particles liberated upon complete carbon burnoff largely reflected the combustion pattern of each fuel. Primary ash particles of size nearly equal to that of the parent fuel were generated upon complete burnoff of the pelletized sludge. Nonetheless, secondary attrition of primary ash from pelletized sludge is large, to the point where generation of fine ash would be extensive over the typical residence time of bed ash in fluidized bed combustors. Very few and relatively fine primary ash particles were released after complete burnoff of wood pellets. Primary ash particles remaining after complete burnoff of pelletized straw had sizes and shapes that were largely controlled by the occurrence of ash agglomeration phenomena. (author)

Chirone, R.; Scala, F.; Solimene, R. [Istituto di Ricerche sulla Combustione - C.N.R., Piazzale V. Tecchio 80, 80125 Naples (Italy); Salatino, P.; Urciuolo, M. [Dipartimento di Ingegneria Chimica - Universita degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Naples (Italy)

2008-10-15T23:59:59.000Z

316

Geomechanical risks in coal bed carbon dioxide sequestration  

Science Conference Proceedings (OSTI)

The purpose of this report is to summarize and evaluate geomechanical factors which should be taken into account in assessing the risk of leakage of CO{sub 2} from coal bed sequestration projects. The various steps in developing such a project will generate stresses and displacements in the coal seam and the adjacent overburden. The question is whether these stresses and displacements will generate new leakage pathways by failure of the rock or slip on pre-existing discontinuities such as fractures and faults. In order to evaluate the geomechanical issues in CO{sub 2} sequestration in coal beds, it is necessary to review each step in the process of development of such a project and evaluate its geomechanical impact. A coal bed methane production/CO{sub 2} sequestration project will be developed in four steps: (1) Formation dewatering and methane production; (2) CO{sub 2} injection with accompanying methane production; (3) Possible CO{sub 2} injection for sequestration only; and The approach taken in this study was to review each step: Identify the geomechanical processes associated with it, and assess the risks that leakage would result from these processes.

Myer, Larry R.

2003-07-01T23:59:59.000Z

317

Particle Bed Reactor scaling relationships  

DOE Green Energy (OSTI)

Scaling relationships for Particle Bed Reactors (PBRs) are discussed. The particular applications are short duration systems, i.e., for propulsion or burst power. Particle Bed Reactors can use a wide selection of different moderators and reflectors and be designed for such a wide range of power and bed power densities. Additional design considerations include the effect of varying the number of fuel elements, outlet Mach number in hot gas channel, etc. All of these variables and options result in a wide range of reactor weights and performance. Extremely light weight reactors (approximately 1 kg/MW) are possible with the appropriate choice of moderator/reflector and power density. Such systems are very attractive for propulsion systems where parasitic weight has to be minimized.

Slovik, G.; Araj, K.; Horn, F.L.; Ludewig, H.; Benenati, R.

1987-01-01T23:59:59.000Z

318

CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT  

Science Conference Proceedings (OSTI)

Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Power’s Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: • scale up of gas to solid heat transfer • high temperature finned surface design • the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas-to-solids heat transfer. A stress test rig was built and tested to provide validation data for a stress model needed to support high temperature finned surface design. Additional cold flow model tests and MTF tests were conducted to address mechanical and process design issues. This information was then used to design and cost a commercial CMB design concept. Finally, the MBHE was reconfigured into a slice arrangement and tested for an extended duration at a commercial CFB plant.

Jukkola, Glen

2010-06-30T23:59:59.000Z

319

Apparatus and process for controlling fluidized beds  

DOE Patents (OSTI)

An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

Rehmat, Amirali G. (Westmont, IL); Patel, Jitendra G. (Bolingbrook, IL)

1985-10-01T23:59:59.000Z

320

Fluidised Bed Technology for Gold Ore and Gold Concentrate  

Science Conference Proceedings (OSTI)

Presentation Title, Fluidised Bed Technology for Gold Ore and Gold Concentrate. Author(s) ... such as the circulating fluidised bed and the bubbling fluidized bed.

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A feasibility study of oil shale fired pulse combustors with applications to oil shale retorting. Final report  

Science Conference Proceedings (OSTI)

The results of the experimental investigation performed to determine the feasibility of using pulverized Colorado oil shale to fuel a bench scale pulse combustor reveal that oil shale cannot sustain pulsations when used alone as fuel. Trace amounts of propane mixed with the oil shale enabled the pulsations, however. Up to 80% of the organic material in the oil shale was consumed when it was mixed with propane in the combustor. Beyond the feasibility objectives, the operating conditions of the combustor fuel with propane and mixtures of oil shale and propane were characterized with respect to pulsation amplitude and frequency and the internal combustor wall temperature over fuel lean and fuel rich stoichiometries. Maximum pressure excursions of 12.5 kPa were experienced in the combustor. Pulsation frequencies ranged from 50 to nearly 80 Hz. Cycle resolved laser Doppler anemometry velocities were measured at the tail pipe exit plane. Injecting inert mineral matter (limestone) into the pulse combustor while using propane fuel had only a slight effect on the pulsation frequency for the feed rates tested.

Morris, G.J.; Johnson, E.K.; Zhang, G.Q.; Roach, R.A.

1992-07-01T23:59:59.000Z

322

Mercury emissions from municipal solid waste combustors. An assessment of the current situation in the United States and forecast of future emissions  

Science Conference Proceedings (OSTI)

This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

Not Available

1993-05-01T23:59:59.000Z

323

Novel Simulated moving bed technologies  

DOE Green Energy (OSTI)

Cellulose and hemicellulose from plants and other biomass can be hydrolyzed to produce sugars (i.e. glucose and xylose). Once these sugars are separated from other impurities, they can serve as feedstock in fermentation to produce ethanol (as fuels), lactic acid, or other valuable chemicals. The need for producing fuels and chemicals from renewable biomass has become abundantly clear over the last decade. However, the cost of producing fermentable sugars from biomass hydrolyzate using existing technology is relatively high and has been a major obstacle. The objective of this project is to develop an efficient and economical simulated moving bed (SMB) process to recover fermentable sugars from biomass hydrolyzate. Sulfuric acid can hydrolyze the cellulose and hemicellulose in biomass to sugars, but this process can generate byproducts such as acetic acid, and can lead to further degradation of the xylose to furfural and glucose to hydroxymethyl furfural (HMF). Also, lignin and other compounds in the biomass will degrade to various phenolic compounds. If the concentrations of these compounds exceed certain threshold levels, they will be toxic to the downstream fermentation, and will severely limit the usefulness of the derived sugars. Standard post-hydrolysis processing involves neutralization of sulfuric acid, usually with lime (calcium hydroxide). A study by Wooley et al.showed that the limed hydrolyzate gave a low ethanol yield in fermentation test (20% of theoretical yield compared to 77% of theoretical yield from fermentation of pure sugars). They showed that instead of adding lime, an ion exclusion chromatography process could be used to remove acids, as well as to isolate the sugars from the biomass hydrolyzate. In this project, we investigated the feasibility of developing an economical SMB process based on (1) a polymeric adsorbent, Dowex99, which was used by Wooley et al., (2) a second polymeric adsorbent, poly-4-vinyl pyridine (or PVP in short, Reilly Industries Inc., Indianapolis, IN), which has been used for organic acid separations, and (3) an activated carbon adsorbent. The adsorption isotherms and mass transfer parameters of the two polymeric adsorbents were estimated using single-component pulse tests and frontal tests. The parameters were then validated using batch elution chromatography test of a corn-stover hydrolyzate, which was provided gratis by NREL. The sugars recovered in batch chromatography were then fermented using yeast developed at Dr. Ho's LORRE laboratory. A standard mixture of pure sugars and an overlimed corn-stover hydrolyzate were fermented using the same procedure simultaneously. The fermentability of the overlimed hydrolyzate was the worst, and that of the sugars recovered using the PVP column was similar to that of the pure sugar mixture. The sugars recovered using the Dowex99 column had an intermediate fermentability. Since the sugars were the ''center cut'' in the Dowex99 column, a tandem SMB (two SMB's in series) design was needed to obtain sugars of high purity. By contrast, sugars were the fast-moving components in the PVP column, and only a single SMB was needed to recover sugars from the hydrolyzate. The impurities, such as sulfuric acid, acetic acid, HMF, and furfural, had higher affinities for PVP. Caustic regeneration was needed to efficiently remove these impurities from PVP. Therefore, a five-zone SMB, which includes a regeneration zone and a reequilibration zone, was developed. The isotherms and mass transfer parameters estimated from batch chromatography experiments were used in the design of SMB processes. A Standing Wave Design method was developed for the five-zone SMB and the tandem SMB. Cost analysis was carried out based on the resulting operating conditions. The analysis showed that the PVP five-zone SMB process was more economical than the Dowex99 tandem SMB process. The cost analysis also showed that elution and equipment costs are dominant for the Dowex99 SMB and the regeneration cost is dominant (60%) for the PVPSMB. Both the cost analysis and the fermentatio

Purdue University

2003-12-30T23:59:59.000Z

324

Healy clean coal project. Quarterly technical progress report No. 5, January--March 1992  

SciTech Connect

The objective of the Healy Clean Coal Project is to demonstrate the integration of an advanced combustor and heat recovery system with both high and low temperature emission control processes. The emission levels of SO{sub 2}, NO{sub x}, and particulates are expected to be significantly better then the federal New Source Performance Standards. (VC)

Not Available

1992-05-01T23:59:59.000Z

325

OXY-fuel Combustion at the CANMET Vertical Combustor Research Faciltiy  

NLE Websites -- All DOE Office Websites (Extended Search)

OXY-FUEL COMBUSTION OXY-FUEL COMBUSTION At the CANMET Vertical Combustor Research Facility M.A.Douglas 1 ( madougla@nrcan.gc.ca ; +001-613-996-2761) E. Chui ( echui@nrcan.gc.ca ; +001-613-943-1774) Y. Tan ( ytan@nrcan.gc.ca ; +001-613-992- 8150) G. K. Lee 2 ( gklee@magma.ca ; +001-613-829-3845) E. Croiset 3 ( ecroiset@uwaterloo.ca ; +001-519-888-4567-ext 6472) K. V. Thambimuthu 4 ( kelly.thambimuthu@nrcan.gc.ca ) CANMET Energy Technology Centre, Natural Resources Canada, 1 Haanel Dr., Ottawa, Ontario, Canada, K1A 1M1 ABSTRACT The CANMET Energy Technology Center is a division of Natural Resources Canada and undertakes primary research and technology development activities for the benefit of Canadians and a wide range of external clients. The Vertical Combustor Research Facility (VCRF) was built in 1994 and is CANMET's

326

Method and apparatus for the control of fluid dynamic mixing in pulse combustors  

DOE Patents (OSTI)

In a method and apparatus for controlling total ignition delay time in a pulse combustor, and thus controlling the mixing characteristics of the combustion reactants and the combustion products in the combustor, the total ignition delay time is controlled by adjusting the inlet geometry of the inlet to the combustion chamber. The inlet geometry may be fixed or variable for controlling the mixing characteristics. A feedback loop may be employed to sense actual combustion characteristics, and, in response to the sensed combustion characteristics, the inlet geometry may be varied to obtain the total ignition delay time necessary to achieve the desired combustion characteristics. Various embodiments relate to the varying of the mass flow rate of reactants while holding the radius/velocity ratio constant.

Bramlette, T. Tazwell (San Ramon, CA); Keller, Jay O. (Oakland, CA)

1992-06-02T23:59:59.000Z

327

Ultra low injection angle fuel holes in a combustor fuel nozzle  

Science Conference Proceedings (OSTI)

A fuel nozzle for a combustor includes a mixing passage through which fluid is directed toward a combustion area and a plurality of swirler vanes disposed in the mixing passage. Each swirler vane of the plurality of swirler vanes includes at least one fuel hole through which fuel enters the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes thereby decreasing a flameholding tendency of the fuel nozzle. A method of operating a fuel nozzle for a combustor includes flowing a fluid through a mixing passage past a plurality of swirler vanes and injecting a fuel into the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes.

York, William David

2012-10-23T23:59:59.000Z

328

Nondestructive characterization of ceramic composites used as combustor liners in advanced gas turbines  

SciTech Connect

Nondestructive characterization (NDC) methods, which can provide full-field information about components prior to and during use, are critical to the reliable application of continuous fiber ceramic matrix composites in high-firing-temperature (>1,350 C) gas turbines. [For combustor liners, although they are nonmechanical load-bearing components, both thermal characteristics and mechanical integrity are vitally important.] NDC methods being developed to provide necessary information include x-ray computed tomography (mainly for through-wall density and delamination detection), infrared-based thermal diffusivity imaging, and single-wall through-transmission x-ray imaging (mainly for fiber content and alignment detection). Correlation of the data obtained from NDC methods with subscale combustor liner tests have shown positive results at thermal cycling temperatures from 700 C to 1,177 C.

Ellingson, W.A.; Rothermel, S.A. [Argonne National Lab., IL (United States). Energy Technology Div.; Simpson, J.F. [Solar Turbines, Inc., San Diego, CA (United States)

1996-07-01T23:59:59.000Z

329

U.S. DOE/OE National SCADA Test Bed Supports | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. DOE/OE National SCADA Test Bed Supports U.S. DOE/OE National SCADA Test Bed Supports U.S. DOE/OE National SCADA Test Bed Supports To help advance the U.S. Department of Energy (DOE) National SCADA Test Bed's (NSTB) efforts to enhance control system security in the energy sector, DOE's Office of Electricity Delivery and Energy Reliability (OE) recently awarded a total of nearly $8 million to fund five industry-led projects: Hallmark Project. (PDF 789 KB) Will commercialize the Secure SCADA Communications Protocol (SSCP), which marks SCADA messages with a unique identifier that must be authenticated before the function is carried out, ensuring message integrity. (Lead: Schweitzer Engineering Laboratories; Partners: Pacific Northwest National Laboratories, CenterPoint Energy) Detection and Analysis of Threats to the Energy Sector (DATES) (PDF

330

Report covering examination of parts from downhole steam generators. [Combustor head and sleeve parts  

Science Conference Proceedings (OSTI)

Combustor head and sleeve parts were examined by using optical and scanning electron metallography after use in oxygen/diesel and air/diesel downhole steam generators. The degradation of the different alloy components is described in terms of reactions with oxygen, sulfur and carbon in the presence of cyclic stresses, all generated by the combustion process. Recommendations are presented for component materials (alloys and coatings) to extend component lives in the downhole steam generators. 9 references, 22 figures, 3 tables.

Pettit, F. S.; Meier, G. H.

1983-08-01T23:59:59.000Z

331

Char binder for fluidized beds  

SciTech Connect

An arrangement that utilizes agglomerating coal as a binder to bond coal fines and recycled char into an agglomerate mass that will have suitable retention time when introduced into a fluidized bed 14 for combustion. The simultaneous use of coal for a primary fuel and as a binder effects significant savings in the elimination of non-essential materials and processing steps.

Borio, Richard W. (Somers, CT); Accortt, Joseph I. (Simsbury, CT)

1981-01-01T23:59:59.000Z

332

Pressurized fluidized-bed combustion  

SciTech Connect

If pressurised fluidised-bed combustion is to be used in combined cycle electricity generation, gas turbines must be made reliable and flue gas emission standards must be met. This report examines the issues of particulate cleaning before the turbine and stack, as well as recent work on the development of advanced gas filters.

Yeager, K.

1983-06-01T23:59:59.000Z

333

Economic Evaluation of By-Product Power/Co-Generation Systems for Industrial Plants with Fluidized-Bed Coal Burning Facilities  

E-Print Network (OSTI)

Economic analysis of the construction and operation of by-product electric power and steam/power cogeneration systems in coal fired fluidized-bed steam cycles, located at individual industrial sites analyzed by the author, is being presented. The plants analyzed employ fluidized bed boilers for generation of steam for process and building/heating/cooling demands, in conjunction with electric power co-generation. Results of the analysis are presented, using life cycle costs and investment payback periods, pinpointing the areas, type and magnitude of costs which should be considered in the selection of combustors or systems. Capital and operating costs, and recognized technical and economic barriers are also presented and their effects indicated. Life cycle cost of each of the alternatives analyzed are compared and the expected payback periods for the different size FBC plants and for different annual average production levels are discussed.

Mesko, J. E.

1980-01-01T23:59:59.000Z

334

Attrition Resistant Catalyst Materials for Fluid Bed ...  

Biomass and Biofuels Attrition Resistant Catalyst Materials for Fluid Bed Applications National Renewable Energy Laboratory. Contact NREL About This ...

335

Accelerated Weathering of Fluidized Bed Steam Reformation ...  

Science Conference Proceedings (OSTI)

Sep 16, 2007 ... Accelerated Weathering of Fluidized Bed Steam Reformation Material Under Hydraulically Unsaturated Conditions by E.M. Pierce ...

336

Oxidation of Low Calorific Value Gases-Applying Optimization Techniques to Combustor Design  

DOE Green Energy (OSTI)

The design of an optimal air-staged combustor for the oxidation of a low calorific value gas mixture is presented. The focus is on the residual fuel emitted from the anode of a molten carbonate fuel cell. Both experimental and numerical results are presented. The simplified numerical model considers a series of plug-flow-reactor sections, with the possible addition of a perfectly-stirred reactor. The parameter used for optimization, Z, is the sum of fuel-component molar flow rates leaving a particular combustor section. An optimized air injection profile is one that minimizes Z for a given combustor length and inlet condition. Since a mathematical proof describing the significance of global interactions remains lacking; the numerical model employs both a ''Local'' optimization procedure and a ''Global'' optimization procedure. The sensitivity of Z to variations in the air injection profile and inlet temperature is also examined. The results show that oxidation of the anode exhaust gas is possible with low pollutant emissions.

Randall S. Gemmen

1999-11-01T23:59:59.000Z

337

Development of a coal fired pulse combustor for residential space heating. Phase I, Final report  

SciTech Connect

This report presents the results of the first phase of a program for the development of a coal-fired residential combustion system. This phase consisted of the design, fabrication, testing, and evaluation of an advanced pulse combustor sized for residential space heating requirements. The objective was to develop an advanced pulse coal combustor at the {approximately} 100,000 Btu/hr scale that can be integrated into a packaged space heating system for small residential applications. The strategy for the development effort included the scale down of the feasibility unit from 1-2 MMBtu/hr to 100,000 Btu/hr to establish a baseline for isolating the effect of scale-down and new chamber configurations separately. Initial focus at the residential scale was concentrated on methods of fuel injection and atomization in a bare metal unit. This was followed by incorporating changes to the advanced chamber designs and testing of refractory-lined units. Multi-fuel capability for firing oil or gas as a secondary fuel was also established. Upon completion of the configuration and component testing, an optimum configuration would be selected for integrated testing of the pulse combustor unit. The strategy also defined the use of Dry Ultrafine Coal (DUC) for Phases 1 and 2 of the development program with CWM firing to be a product improvement activity for a later phase of the program.

NONE

1988-04-01T23:59:59.000Z

338

Project information  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Information Amistad Project (Texas) Collbran Project (Colorado) Colorado River Storage Project Dolores Project (Colorado) Falcon Project (Texas) Provo River Project (Utah)...

339

Co-combustion of textile residues with cardboard and waste wood in a packed bed  

SciTech Connect

The combustible fraction of the municipal waste is mostly bio-derived. Energy recovery of the wastes that cannot be economically recycled is a key part of sustainable energy policy and waste management. Textile residues have high energy content. When burned alone in a packed bed system, however, their combustion efficiency is low due to the irregular propagation of the ignition front and the low burning rates. In order to achieve more efficient combustion of textile residues, a series of co-combustion tests were carried out for various mixture compositions and air flow rates in a packed bed combustor. The combustion performance of these materials was evaluated by using quantitative measures such as ignition rate, burning rate and equivalence ratio. Co-combustion of textile residues with cardboard for a textile fraction of up to 30% achieved satisfactorily high burning rate and low unburned carbon content in the bottom ash. The mixture was more resistant to convective cooling by air, which significantly expanded the range of air flow rate for combustion at high burning rates. In co-combustion with a material that has a very low ignition front speed such as waste wood, the propagation of the ignition front was governed by textile residues. Therefore, the co-combustion of textile residues can be better performed with a material having similar ignition front speeds, in which the two materials simultaneously burn at the ignition front. (author)

Ryu, Changkook; Phan, Anh N; Sharifi, Vida N; Swithenbank, Jim [Sheffield University Waste Incineration Centre (SUWIC), Department of Chemical and Process Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

2007-11-15T23:59:59.000Z

340

High-temperature-staged fluidized-bed combustion (HITS), bench scale experimental test program conducted during 1980. Final report  

Science Conference Proceedings (OSTI)

An experimental program was conducted to evaluate the process feasibility of the first stage of the HITS two-stage coal combustion system. Tests were run in a small (12-in. ID) fluidized bed facility at the Energy Engineering Laboratory, Aerojet Energy Conversion Company, Sacramento, California. The first stage reactor was run with low (0.70%) and high (4.06%) sulfur coals with ash fusion temperatures of 2450/sup 0/ and 2220/sup 0/F, respectively. Limestone was used to scavenge the sulfur. The produced low-Btu gas was burned in a combustor. Bed temperature and inlet gas percent oxygen were varied in the course of testing. Key results are summarized as follows: the process was stable and readily controllable, and generated a free-flowing char product using coals with low (2220/sup 0/F) and high (2450/sup 0/F) ash fusion temperatures at bed temperatures of at least 1700/sup 0/ and 1800/sup 0/F, respectively; the gaseous product was found to have a total heating value of about 120 Btu/SCF at 1350/sup 0/F, and the practicality of cleaning the hot product gas and delivering it to the combustor was demonstrated; sulfur capture efficiencies above 80% were demonstrated for both low and high sulfur coals with a calcium/sulfur mole ratio of approximately two; gasification rates of about 5,000 SCF/ft/sup 2/-hr were obtained for coal input rates ranging from 40 to 135 lbm/hr, as required to maintain the desired bed temperatures; and the gaseous product yielded combustion temperatures in excess of 3000/sup 0/F when burned with preheated (900/sup 0/F) air. The above test results support the promise of the HITS system to provide a practical means of converting high sulfur coal to a clean gas for industrial applications. Sulfur capture, gas heating value, and gas production rate are all in the range required for an effective system. Planning is underway for additional testing of the system in the 12-in. fluid bed facility, including demonstration of the second stage char burnup reactor.

Anderson, R E; Jassowski, D M; Newton, R A; Rudnicki, M L

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Effects of Combustor Geometry on the Flowfields and Flame Properties of A  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of Combustor Geometry on the Flowfields and Flame Properties of A Effects of Combustor Geometry on the Flowfields and Flame Properties of A Low-Swirl Injector Title Effects of Combustor Geometry on the Flowfields and Flame Properties of A Low-Swirl Injector Publication Type Journal Article Year of Publication 2008 Authors Cheng, Robert K., and David Littlejohn Journal Proceedings of the Combustion Institute Type of Article Conference Paper Abstract The Low-swirl injector (LSI) is a novel dry-low NOx combustion method that is being developed for gas turbines to burn a variety of gaseous fuels including natural gas, low-Btu fuels, syngases and hydrogen. Its basic principle is described by a top level analytical model that relates the flame position to the flowfield similarity parameters and the turbulent flame speed correlation. The model was based on experimental measurements in open laboratory flames. It has been useful for guiding hardware development. As the LSI is being adapted to different engine configurations, one open question is how the combustor geometry and size affect its basic operating principle. The objective of this paper is to investigate these effects by conducting Particle Image Velocimetry (PIV) measurements in open and enclosed flames produced by a 6.35 cm diameter LSI using two quartz cylinders of 15.5 and 20 cm diameter to simulate the combustor casing. Results from 18 methane-air flames show that the enclosures do not alter the flame properties or the nearfield flow structures. The differences occur mostly in the farfield where the tighter enclosure deters the formation of a weak recirculation zone. The enclosure effects on hydrogen and hydrogen-methane flames were studies using the 20 cm cylinder. The results show that the outer recirculation zone generated at the corner of the dump plane promotes the formation of attached flames. However, the properties and nearfield flow features of the attached flames are similar to those of the lifted flames. At higher stoichiometries, the attached flame collapses to form a compact disc shaped flame that has very different flowfield structures. These results show that the enclosure effects on the LSI are strongly coupled to the fuel type and dump plane geometry but are less dependent on the enclosure size. These observations will provide the basis for developing computational methods that can be used as design tools for LSI adaptation

342

CERTS Microgrid Laboratory Test Bed  

NLE Websites -- All DOE Office Websites (Extended Search)

CERTS Microgrid Laboratory Test Bed CERTS Microgrid Laboratory Test Bed Title CERTS Microgrid Laboratory Test Bed Publication Type Journal Article LBNL Report Number LBNL-3553E Year of Publication 2011 Authors Lasseter, Robert H., Joseph H. Eto, Ben Schenkman, John Stevens, Harry T. Volkommer, David Klapp, Ed Linton, Hector Hurtado, and Joyashree Roy Journal IEEE Transactions on Power Delivery Volume 26 Start Page 325 Issue 1 Date Published 01/2011 Keywords distributed energy resources (der) Abstract CERTS Microgrid concept captures the emerging potential of distributed generation using a system approach. CERTS views generation and associated loads as a subsystem or a "microgrid". The sources can operate in parallel to the grid or can operate in island, providing UPS services. The system can disconnect from the utility during large events (i.e. faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid falls below certain standards. CERTS Microgrid concepts were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resynchronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults. Keywords: CHP, UPS, distributed generation, intentional islanding, inverters, microgrid, CERTS, power vs. frequency droop, voltage droop.

343

Dynometer test bed (fact sheet)  

SciTech Connect

The National Renewable Energy Laboratory's (NREL's) Dynamometer Test Bed is one of a kind. It offers wind industry engineers a unique opportunity to conduct lifetime endurance tests on a wide range of wind turbine drivetrains and gearboxes at various speeds, using low or high torque. By testing full-scale wind turbines, engineers from NREL and industry hope to understand the impact of various wind conditions with the goal of improving hardware design.

O' Dell, K.

2000-04-24T23:59:59.000Z

344

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending 31 December 1994  

DOE Green Energy (OSTI)

The test plan is designed to demonstrate that oil shale co-combusted with municipal solid waste (MSW) can reduce gaseous pollutants (SO{sub 2}, CO) to acceptable levels (90%+ reduction) and produce a cementitious ash which will, at a minimum, be acceptable in normal land fills. The small-scale combustion testing will be accomplished in a 6-in. circulating fluid bed combustor (CFBC) at Hazen Research Laboratories. This work will be patterned after the study the authors conducted in 1988 when coal and oil shale were co-combusted in a program sponsored by the Electric Power Research Institute. The specific purpose of the test program will be to: determine the required ratio of oil shale to MSW by determining the ratio of absorbent to pollutant (A/P); determine the effect of temperature and resident time in the reactor; and determine if kinetic model developed for coal/oil shale mixture is applicable.

Not Available

1995-01-01T23:59:59.000Z

345

Nucla CFB Demonstration Project  

SciTech Connect

This report documents Colorado-Ute Electric Association's Nucla Circulating Atmospheric Fluidized-Bed Combustion (AFBC) demonstration project. It describes the plant equipment and system design for the first US utility-size circulating AFBC boiler and its support systems. Included are equipment and system descriptions, design/background information and appendices with an equipment list and selected information plus process flow and instrumentation drawings. The purpose of this report is to share the information gathered during the Nucla circulating AFBC demonstration project and present it so that the general public can evaluate the technical feasibility and cost effectiveness of replacing pulverized or stoker-fired boiler units with circulating fluidized-bed boiler units. (VC)

Not Available

1990-12-01T23:59:59.000Z

346

Integrated operation of a pressurized fixed-bed gasifier, hot gas desulfurization system, and turbine simulator  

Science Conference Proceedings (OSTI)

The overall objective of the General Electric Hot Gas Cleanup (HGCU) Program is to develop a commercially viable technology to remove sulfur, particulates, and halogens from a high-temperature fuel gas stream using a moving bed, regenerable mixed metal oxide sorbent based process. The HGCU Program is based on the design and demonstration of the HGCU system in a test facility made up of a pilot-scale fixed bed gasifier, a HGCU system, and a turbine simulator in Schenectady, NY, at the General Electric Research and Development Center. The objectives of the turbine simulator testing are (1) to demonstrate the suitability of fuel gas processed by the HGCU system for use in state-of-the-art gas turbines firing at 2,350 F rotor inlet temperature and (2) to quantify the combustion characteristics and emissions on low-Btu fuel gas. The turbine simulator program also includes the development and operation of experimental combustors based on the rich-quench-lean concept (RQL) to minimize the conversion of ammonia and other fuel-bound nitrogen species to NO{sub x} during combustion. The HGCU system and turbine simulator have been designed to process approximately 8,000 lb/hr of low heating value fuel gas produced by the GE fixed bed gasifier. The HGCU system has utilized several mixed metal oxide sorbents, including zinc ferrite, zinc titanate, and Z-Sorb, with the objective of demonstrating good sulfur removal and mechanical attrition resistance as well as economic cost characteristics. Demonstration of halogen removal and the characterization of alkali and trace metal concentrations in the fuel gas are subordinate objectives of the overall program. This report describes the results of several long-duration pilot tests.

Bevan, S.; Ayala, R.E.; Feitelberg, A.; Furman, A.

1995-11-01T23:59:59.000Z

347

Community-Based Energy Development (C-BED) Tariff | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community-Based Energy Development (C-BED) Tariff Community-Based Energy Development (C-BED) Tariff Community-Based Energy Development (C-BED) Tariff < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Home Weatherization Water Wind Program Info State Minnesota Program Type Other Policy Provider Minnesota Department of Commerce Under the Community-Based Energy Development (C-BED) Tariff, each public utility in Minnesota is required to file with the state Public Utilities Commission (PUC) to create a 20-year power purchase agreement (PPA) for community-owned renewable energy projects. The original legislation was enacted in 2005 but has been amended several times subsequently. Utilities

348

Management and Development of the Western Resources Project  

Science Conference Proceedings (OSTI)

The purpose of this project was to manage the Western Resources Project, which included a comprehensive, basin-wide set of experiments investigating the impacts of coal bed methane (CBM; a.k.a. coal bed natural gas, CBNG) production on surface and groundwater in the Powder River Basin in Wyoming. This project included a number of participants including Apache Corporation, Conoco Phillips, Marathon, the Ucross Foundation, Stanford University, the University of Wyoming, Montana Bureau of Mines and Geology, and Western Research Institute.

Terry Brown

2009-03-09T23:59:59.000Z

349

Gas distributor for fluidized bed coal gasifier  

DOE Patents (OSTI)

A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

Worley, Arthur C. (Mt. Tabor, NJ); Zboray, James A. (Irvine, CA)

1980-01-01T23:59:59.000Z

350

Battery using a metal particle bed electrode  

DOE Patents (OSTI)

A zinc-air battery in a case is described including a zinc particle bed supported adjacent the current feeder and diaphragm on a porous support plate which holds the particles but passes electrolyte solution. Electrolyte is recycled through a conduit between the support plate and top of the bed by convective forces created by a density of differential caused by a higher concentration of high density discharge products in the interstices of the bed than in the electrolyte recycle conduit. 7 figures.

Evans, J.V.; Savaskan, G.

1991-04-09T23:59:59.000Z

351

Battery using a metal particle bed electrode  

DOE Patents (OSTI)

A zinc-air battery in a case including a zinc particle bed supported adjacent the current feeder and diaphragm on a porous support plate which holds the particles but passes electrolyte solution. Electrolyte is recycled through a conduit between the support plate and top of the bed by convective forces created by a density of differential caused by a higher concentration of high density discharge products in the interstices of the bed than in the electrolyte recycle conduit.

Evans, James V. (Piedmont, CA); Savaskan, Gultekin (Albany, CA)

1991-01-01T23:59:59.000Z

352

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

and Utility Connected .. 92 CONCLUSION.. 99 II ListUtility Connected mode for Test 10.4.17 .. 215 XV Listutility grid. .. 25 II List

Eto, Joseph H.

2008-01-01T23:59:59.000Z

353

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

phase power flow at the remote Current transformer (CT12)current transformers CT12) are: Remote Reverse Power (perpower is likely due to the delta winding of the inverter transformer,

Eto, Joseph H.

2008-01-01T23:59:59.000Z

354

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

Program Area Lead ENERGY SYSTEMS INTEGRATION Mike GravelyResearch Energy Systems Integration Environmentallyto PIER’s Energy Systems Integration Program. For more

Eto, Joseph H.

2008-01-01T23:59:59.000Z

355

DoD ESTCP Energy Test Bed Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Location 2 3 Boiler Efficiency Improvement Demo Oxygen Sensor Servo Controls * 90% of boilers lack automated controls * State of the art automated controls sense only oxygen *...

356

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

complex heat distribution system, such as steam and chilledcomplex heat distribution system, such as steam and chilledcomplex heat distribution system, such as steam and chilled

Eto, Joseph H.

2008-01-01T23:59:59.000Z

357

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

Microgrids and Distributed Generation. ” Journal of EnergyMicrogrids and Distributed Generation. ” Journal of EnergyMicrogrids and Distributed Generation. ” Journal of Energy

Eto, Joseph H.

2008-01-01T23:59:59.000Z

358

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

3 pages. Lasseter, R.H. 2007. “Microgrids and Distributed3 pages. Lasseter, R.H. 2007. “Microgrids and Distributed2006. Autonomous Control of Microgrids. IEEE PES Meeting,

Eto, Joseph H.

2008-01-01T23:59:59.000Z

359

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

Distribution using (DER) Distributed Energy Resources. 2006.Paper on Integration of Distributed Energy Resources: TheDistribution using (DER) Distributed Energy Resources. 2006.

Eto, Joseph H.

2008-01-01T23:59:59.000Z

360

MODULAR PEBBLE BED REACTOR PROJECT UNIVERSITY RESEARCH CONSORTIUM  

E-Print Network (OSTI)

of plant, steady-state thermal hydraulics model has been developed to represent all major components.1.1 Plant Description ..................................................................... 48 4.1.2 Power is to be adequately represented. Table 2-5. Results from Thermal Model Calculations Pebble Power! Axial Location! Loc

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

power direct current distributed energy resources Department of Energy energy management system (a control system that optimizes operation

Eto, Joseph H.

2008-01-01T23:59:59.000Z

362

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

of Energy energy management system (a control system thatapproach, and energy management system (EMS); 3. Personnel;System) and EMS (Energy Management System) equipment,

Eto, Joseph H.

2008-01-01T23:59:59.000Z

363

MIT PEBBLE BED REACTOR PROJECT ANDREW C. KADAK  

E-Print Network (OSTI)

power industry a new, innovative approach was needed, not only in reactor design but also than ~200,000lb. Finally, the modules must be contained in a steel space frame to support

364

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

Generation,” ASCE Journal Energy Engineering, Volume 133,Generation,” ASCE Journal Energy Engineering, Volume 133,Generation. ” Journal of Energy Engineering, Volume 133,

Eto, Joseph H.

2008-01-01T23:59:59.000Z

365

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

SYMMETRICAL COMPONENTS ..4. Protection Based on Symmetrical Components An SLG or LLthe concept of symmetrical components is usually employed [

Eto, Joseph H.

2008-01-01T23:59:59.000Z

366

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

Control and Design of Microgrid Components. January. 257R.H. 2007. “CERTS Microgrid. ” International Conference onValidation of the CERTS Microgrid Concept: The CEC/CERTS

Eto, Joseph H.

2008-01-01T23:59:59.000Z

367

Coal bed methane reservoir simulation studies.  

E-Print Network (OSTI)

??The purpose of this study is to perform simulation studies for a specific coal bed methane reservoir. First, the theory and reservoir engineering aspects of… (more)

Karimi, Kaveh

2005-01-01T23:59:59.000Z

368

Packed fluidized bed blanket for fusion reactor  

DOE Patents (OSTI)

A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

Chi, John W. H. (Mt. Lebanon, PA)

1984-01-01T23:59:59.000Z

369

Liquid flow through a reactive packed bed.  

E-Print Network (OSTI)

??The flow phenomena of liquid iron and slag in the lower zone of an iron making blast furnace influences the permeability of the coke bed,… (more)

George, Hazem Labib

2013-01-01T23:59:59.000Z

370

Method for control of NOx emission from combustors using fuel dilution  

SciTech Connect

A method of controlling NOx emission from combustors. The method involves the controlled addition of a diluent such as nitrogen or water vapor, to a base fuel to reduce the flame temperature, thereby reducing NOx production. At the same time, a gas capable of enhancing flame stability and improving low temperature combustion characteristics, such as hydrogen, is added to the fuel mixture. The base fuel can be natural gas for use in industrial and power generation gas turbines and other burners. However, the method described herein is equally applicable to other common fuels such as coal gas, biomass-derived fuels and other common hydrocarbon fuels. The unique combustion characteristics associated with the use of hydrogen, particularly faster flame speed, higher reaction rates, and increased resistance to fluid-mechanical strain, alter the burner combustion characteristics sufficiently to allow operation at the desired lower temperature conditions resulting from diluent addition, without the onset of unstable combustion that can arise at lower combustor operating temperatures.

Schefer, Robert W. (Alamo, CA); Keller, Jay O (Oakland, CA)

2007-01-16T23:59:59.000Z

371

Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines  

DOE Green Energy (OSTI)

This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

2011-01-07T23:59:59.000Z

372

OH-Planar Fluorescence Measurements of Pressurized, Hydrogen Premixed Flames in the SimVal Combustor  

DOE Green Energy (OSTI)

Planar laser-induced fluorescence measurements of the hydroxyl radical in lean, premixed natural gas flames augmented with hydrogen are presented. The experiments were conducted in the Simulation Validation combustor at the National Energy Technology Laboratory at operating pressures from 1 to 8 atmospheres. The data, which were collected in a combustor with well-controlled boundary conditions, are intended to be used for validating computational fluid dynamics models under conditions directly relevant to land-based gas turbine engines. The images, which show significant effects of hydrogen on local flame quenching, are discussed in terms of a turbulent premixed combustion regime and nondimensional parameters such as Karlovitz number. Pressure was found to thin the OH region, but only had a secondary effect on overall flame shape compared with the effects of hydrogen addition, which was found to decrease local quenching and shorten the turbulent flame brush. A method to process the individual images based on local gradients of fluorescence intensity is proposed, and results are presented. Finally, the results of several large eddy simulations are presented and compared with the experimental data in an effort to understand the issues related to model validation, especially for simulations that do not include OH as an intermediate species.

Strakey, P.A.; Woodruff, S.D.; Williams, T.C. (Sandia); Schefer, R.W. (Sandia)

2008-07-01T23:59:59.000Z

373

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Stratigraphic Summary Cretaceous Continental Intracalaire * Pan-Saharan aquifer * Loose sand with inter-bedded mudstone * Muddier towards base with some coals and anhydrite...

374

CERTS Microgrid Laboratory Test Bed  

NLE Websites -- All DOE Office Websites (Extended Search)

projects, and currently performs design and testing of power converters and direct-drive permanent magnet generator technology for wind power products. Jean Roy has a Masters...

375

MHD Integrated Topping Cycle Project  

DOE Green Energy (OSTI)

This seventeenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period August 1, 1991 to October 31, 1991. Manufacturing of the prototypical combustor pressure shell has been completed including leak, proof, and assembly fit checking. Manufacturing of forty-five cooling panels was also completed including leak, proof, and flow testing. All precombustor internal components (combustion can baffle and swirl box) were received and checked, and integration of the components was initiated. A decision was made regarding the primary and backup designs for the 1A4 channel. The assembly of the channel related prototypical hardware continued. The cathode wall electrical wiring is now complete. The mechanical design of the diffuser has been completed.

Not Available

1992-07-01T23:59:59.000Z

376

METC fluid-bed hot-gas desulfurization PDU  

SciTech Connect

METC is constructing an on-site, hot-gas desulfurization (HGD) process development unit (PDU) to support the US Department of Energy`s (DOE`s) Integrated Gasification Combined Cycle (IGCC) power systems program. With industrial participation, this PDU will be used for the further development of fluid-bed and transport reactor HGD configurations. The fluid-bed absorber and regenerator in the PDU were designed to operate in a turbulent as well as a bubbling regime. In addition, when encouraging results from a small-scale transport reactor unit became known, the decision was made to incorporate transport reactor provisions on both the sulfidation and regeneration sides of the PDU. With completion of National Environmental Policy Act (NEPA) documentation requirements, the preliminary process and equipment design, and the April groundbreaking to prepare the project site, the project is now proceeding at a faster, more visible pace. Equipment installation should be completed in about 2 years. This report describes the project.

Bissett, L.A.

1994-10-01T23:59:59.000Z

377

Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds  

Science Conference Proceedings (OSTI)

The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O'Hern; Paul Tortora

2008-02-29T23:59:59.000Z

378

CERTS Microgrid Laboratory Test Bed  

NLE Websites -- All DOE Office Websites (Extended Search)

Submitted to IEEE Transactions on Power Delivery Submitted to IEEE Transactions on Power Delivery Abstract--. CERTS Microgrid concept captures the emerging potential of distributed generation using a system approach. CERTS views generation and associated loads as a subsystem or a "microgrid". The sources can operate in parallel to the grid or can operate in island, providing UPS services. The system can disconnect from the utility during large events (i.e. faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid falls below certain standards. CERTS Microgrid concepts were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations,

379

Changes related to "Coal Bed Methane Protection Act (Montana...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Coal Bed Methane Protection Act (Montana)" Coal Bed Methane Protection Act (Montana)...

380

Pages that link to "Coal Bed Methane Protection Act (Montana...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Coal Bed Methane Protection Act (Montana)" Coal Bed Methane Protection Act (Montana)...

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

National SCADA Test Bed Consequence Modeling Tool | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National SCADA Test Bed Consequence Modeling Tool National SCADA Test Bed Consequence Modeling Tool This document presents a consequence modeling tool that provides, for asset...

382

National SCADA Test Bed Enhancing control systems security in...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SCADA Test Bed Enhancing control systems security in the energy sector National SCADA Test Bed Enhancing control systems security in the energy sector Improving the security of...

383

Technical and economic assessment of fluidized bed augmented compressed air energy-storage system. Volume II. Introduction and technology assessment  

DOE Green Energy (OSTI)

The results are described of a study subcontracted by PNL to the United Technologies Research Center on the engineering feasibility and economics of a CAES concept which uses a coal fired, fluidized bed combustor (FBC) to heat the air being returned from storage during the power production cycle. By burning coal instead of fuel oil, the CAES/FBC concept can completely eliminate the dependence of compressed air energy storage on petroleum fuels. The results of this assessment effort are presented in three volumes. Volume II presents a discussion of program background and an in-depth coverage of both fluid bed combustion and turbomachinery technology pertinent to their application in a CAES power plant system. The CAES/FBC concept appears technically feasible and economically competitive with conventional CAES. However, significant advancement is required in FBC technology before serious commercial commitment to CAES/FBC can be realized. At present, other elements of DOE, industrial groups, and other countries are performing the required R and D for advancement of FBC technology. The CAES/FBC will be reevaluated at a later date when FBC technology has matured and many of the concerns now plaguing FBC are resolved. (LCL)

Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

1981-09-01T23:59:59.000Z

384

State of Fluidized Bed Combustion Technology  

E-Print Network (OSTI)

A new combustion technology has been developed in the last decade that permits the burning of low quality coal, lignite and other fuels, while maintaining stack emissions within State and Federal EPA limits. Low quality fuels can be burned directly in fluidized beds while taking advantage of low furnace temperatures and chemical activity within the bed to limit SO2 and NOx emissions, thereby eliminating the need for stack gas scrubbing equipment. The excellent heat transfer characteristics of the fluidized beds also result in a reduction of total heat transfer surface requirements, thus reducing the size and cost of steam generators. Tests on beds operating at pressures of one to ten atmospheres, at temperatures as high as 1600oF, and with gas velocities in the vicinity of four to twelve feet per second, have proven the concept. Early history of this technology is traced, and the progress that has been made in the development of fluidized bed combustion boilers, as well as work currently underway, in the United States and overseas, is reviewed. Details on the fluidized bed boiler installations at Alexandria, Virginia (5,000 lbs/hr), Georgetown University (100,000 lbs/hr), and Rivesville, West Virginia (300,000 Ibs/hr) are presented, and test results are discussed. Potential application of fluidized bed boilers in industrial plants using lignite and lignite refuse is examined. The impact of proposed new DOE and EPA regulations on solid fuels burning is also examined.

Pope, M.

1979-01-01T23:59:59.000Z

385

The CASA Integrated Project 1 Networked Radar System  

Science Conference Proceedings (OSTI)

This paper describes the Collaborative Adaptive Sensing of the Atmosphere (CASA) Integrated Project 1 (IP1) weather radar network, the first distributed collaborative adaptive sensing test bed of the Engineering Research Center for Collaborative ...

Francesc Junyent; V. Chandrasekar; D. McLaughlin; E. Insanic; N. Bharadwaj

2010-01-01T23:59:59.000Z

386

Method and apparatus for the control of fluid dynamic mixing in pulse combustors  

DOE Patents (OSTI)

Described in this report is a method and apparatus for controlling combustion characteristics in a pulse combustor whereby the mixing characteristics of the combustion reactants and the combustion products are controlled as a function of the inlet geometry of the inlet to the combustion chamber. The inlet geometry may be fixed or variable for controlling the mixing characteristics. A feedback loop may be employed to sense actual combustion characteristics, and then vary the inlet geometry to obtain the desired mixing characteristics necessary to achieve the desired combustion characteristics. In a preferred embodiment, the mixing time of the combustion reactants and products scales with the ratio of the inlet orifice radius to the injection velocity. Various embodiments relate to the varying of the mass flow rate of reactants while holding the radius/velocity ratio constant. 9 figs.

Bramlette, T.T.; Keller, J.O.

1989-03-17T23:59:59.000Z

387

Regeneratively cooled coal combustor/gasifier with integral dry ash removal  

DOE Patents (OSTI)

A coal combustor/gasifier is disclosed which produces a low or medium combustion gas fired furnances or boilers. Two concentric shells define a combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

Beaufrere, A.H.

1982-04-30T23:59:59.000Z

388

Fluidized bed catalytic coal gasification process  

DOE Patents (OSTI)

Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

Euker, Jr., Charles A. (15163 Dianna La., Houston, TX 77062); Wesselhoft, Robert D. (120 Caldwell, Baytown, TX 77520); Dunkleman, John J. (3704 Autumn La., Baytown, TX 77520); Aquino, Dolores C. (15142 McConn, Webster, TX 77598); Gouker, Toby R. (5413 Rocksprings Dr., LaPorte, TX 77571)

1984-01-01T23:59:59.000Z

389

Engineering systems analysis of pressurized fluidized-bed-combustion power systems  

SciTech Connect

This effort was conducted to provde supporting data for the research and development program on pressurized fluidized bed combustor (PFBC) systems being continued under the auspices of the Office of Coal Utilization of DOE. This report deals with the first phase of the effort, designated Task 1, which was scoped to be a somewhat broad review of PFBC technology and an analysis to determine its potential and sensitivity to key development needs. Background information pertaining to the application of PFBC to the market for coal-fired technology is included. The status of development is reviewed and the deficiencies in data are identified. Responses to a survey of PFBC developers are reviewed with emphasis on the high risk areas of the PFBC concept. Some of these problems are: uncertainty of life of gas turbine components; lack of demonstration of load following; and hot solids handling. Some high risk areas, such as the gas cleanup or gas turbine systems, can be relieved by reducing the severity of design conditions such as the turbine inlet temperature. Alternate turbine designs or plant configurations are also possible solutions. Analyses were performed to determine whether the advantages held by PFBC systems in cost, efficiency, and emissions would be nullified by measures taken to reduce risk. In general, the results showed that the attractive features of the PFBC could be preserved.

Graves, R.L.; Griffin, F.P.; Lackey, M.E.

1982-04-01T23:59:59.000Z

390

The role of reactant unmixedness, strain rate, and length scale on premixed combustor performance  

DOE Green Energy (OSTI)

Lean premixed combustion provides a means to reduce pollutant formation and increase combustion efficiency. However, fuel-air mixing is rarely uniform in space and time. This nonuniformity in concentration will lead to relative increases in pollutant formation and decreases in combustion efficiency. The nonuniformity of the concentration at the exit of the premixer has been defined by Lyons (1981) as the ``unmixedness.`` Although turbulence properties such as length scales and strain rate are known to effect unmixedness, the exact relationship is unknown. Evaluating this relationship and the effect of unmixedness in premixed combustion on pollutant formation and combustion efficiency are an important part of the overall goal of US Department of Energy`s Advanced Turbine System (ATS) program and are among the goals of the program described herein. The information obtained from ATS is intended to help to develop and commercialize gas turbines. The contributions to the program which the University of California (Irvine) Combustion Lab (UCICL) will provide are: (1) establish the relationship of inlet unmixedness, length scales, and mean strain rate to performance, (2) determine the optimal levels of inlet unmixedness, length scales, and mean strain rates to maximize combustor performance, and (3) identify efficient premixing methods for achieving the necessary inlet conditions. The program during this reporting period is focused on developing a means to measure and qualify different degrees of temporal and spatial unmixedness. Laser diagnostic methods for planer unmixedness measurements are being developed and preliminary results are presented herein. These results will be used to (1), aid in the design of experimental premixers, and (2), determine the unmixedness which will be correlated with the emissions of the combustor. This measure of unmixedness coupled with length scale, strain rate and intensity information is required to attain the UCI goals.

Samuelsen, S.; LaRue, J.; Vilayanur, S.; Guillaume, D.

1995-12-31T23:59:59.000Z

391

Pressurized fluidized-bed hydroretorting of eastern oil shales  

SciTech Connect

The overall objective of this project is to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program is divided into the following tasks: Testing of Process Improvement Concepts; Beneficiation Research; Operation of PFH on Beneficiated Shale; Environmental Data and Mitigation Analyses; Sample Procurement, Preparation, and Characterization; and Project Management and Reporting. Accomplishments for this period for these tasks are presented.

Lau, F.S.; Mensinger, M.C.; Roberts, M.J.; Rue, D.M.

1991-12-01T23:59:59.000Z

392

Development of second-generation pressurized fluidized bed combustion process  

Science Conference Proceedings (OSTI)

Under the sponsorship of the United States Department of Energy, Foster Wheeler Development Corporation, and its team members, Westinghouse, Gilbert/Commonwealth, and the Institute of Gas Technology are developing second-generation pressurized fluidized bed combustion technology capable of achieving net plant efficiency in excess of 45 percent based on the higher heating value of the coal. A three-phase program entails design and costing of a 500 MWe power plant and identification of developments needed to commercialize this technology (Phase 1), testing of individual components (Phase 2), and finally testing these components in an integrated mode (Phase 3). This paper briefly describes the results of the first two phases as well as the progress on the third phase. Since other projects which use the same technology are in construction or in negotiation stages -- namely, the Power System Development Facility and the Four Rivers Energy Modernization Projects -- brief descriptions of these are also included.

Wolowodiuk, W.; Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Bonk, D. [USDOE Morgantown Energy Technology Center, WV (United States)

1994-10-01T23:59:59.000Z

393

Tidd PFBC Demonstration Project. Final report, March 1, 1994--March 30, 1995  

Science Conference Proceedings (OSTI)

The Tidd Pressurized Fluidized Bed Combustion (PFBC) Demonstration Plant was the first utility-scale pressurized fluidized bed combustor to operate in combined-cycle mode in the US. The 45-year old pulverized coal plant was repowered with PFBC components in order to demonstrate that PFBC combined-cycle technology is an economic, reliable, and environmentally superior alternative to conventional technology in using high-sulfur coal to generate electricity. The three-year demonstration period started on February 28, 1991 and terminated on February 28, 1994. The fourth year of testing started on March 1, 1994 and terminated on March 30, 1995. This report reviews the experience of the 70-MW(e), Tidd PFBC Demonstration Plant during the fourth year of operation.

Bauer, D.A.; Hoffman, J.D.; Marrocco, M.; Mudd, M.J.; Reinhart, W.P.; Stogran, H.K. [American Electric Power Service Corp., Columbus, OH (United States)

1995-08-01T23:59:59.000Z

394

Modelling of Particle Pyrolysis in a Packed Bed Combustor A.R.C. Tuck and W.L.H. Hallett ,1 2*  

E-Print Network (OSTI)

"Pyrolysis." In Biomass Handbook; C. W. Hall, ed. Gordon and Breach: New York, 1989; pp. 379-385. (with Pyrolysis of Biomass Derived Volatile Matter." In Fundamentals of Thermochemical Biomass Conversion; R. P. "Biomass Pyrolysis. A Review of the Literature - Part 1: Carbohydrate Pyrolysis." In Advances in Solar

Hallett, William L.H.

395

An Experimental Study of the Velocity-Forced Flame Response of Lean-Fremixed Multi-Nozzle Can Combustor for Gas Turbines.  

E-Print Network (OSTI)

??The velocity forced flame response of a multi-nozzle, lean-premixed, swirl-stabilized, turbulent combustor was investigated at atmospheric pressure. The purpose of this study was to analyze… (more)

Szedlmayer, Michael

2013-01-01T23:59:59.000Z

396

Fluidized Bed Technology - Overview | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Clean Coal » Advanced Combustion Science & Innovation » Clean Coal » Advanced Combustion Technologies » Fluidized Bed Technology - Overview Fluidized Bed Technology - Overview Fluidized beds suspend solid fuels on upward-blowing jets of air during the combustion process. The result is a turbulent mixing of gas and solids. The tumbling action, much like a bubbling fluid, provides more effective chemical reactions and heat transfer. Fluidized-bed combustion evolved from efforts to find a combustion process able to control pollutant emissions without external emission controls (such as scrubbers). The technology burns fuel at temperatures of 1,400 to 1,700 degrees F, well below the threshold where nitrogen oxides form (at approximately 2,500 degrees F, the nitrogen and oxygen atoms in the

397

Granular Dynamics in Pebble Bed Reactor Cores  

E-Print Network (OSTI)

flow in a pebble-bed nuclear reactor,” Phys. Rev. E, vol.from the current fleet of nuclear reactors far outweigh thethrough the core of a nuclear reactor. This regime includes

Laufer, Michael Robert

2013-01-01T23:59:59.000Z

398

Preliminary study of NO{sub x}, CO, and lean blowoff in a piloted-lean premixed combustor. Part 2: Modeling  

DOE Green Energy (OSTI)

The characteristic time model (CTM) is a semi-empirical model for gas turbine emissions and performance. The CTM represents the essence of the dominant physical subprocesses related to combustor performance in terms of characteristic times. Properly formulated, these characteristic times account for variations in combustor geometry, fuel characteristics, and operating conditions. In this work, the capability of the CTM to correlate the piloted-LP NO{sub x}, CO and blowoff data described in part 1 of this paper is assessed.

Barnes, J.C.; Mello, J.P.; Mellor, A.M. [Vanderbilt Univ., Nashville, TN (United States). Combustion and Propulsion Group; Malte, P.C. [Univ. of Washington, Seattle, WA (United States). Dept. of Mechanical Engineering

1996-05-01T23:59:59.000Z

399

Distribution of bed material in a Horizontal Circulating Fluidised Bed boiler.  

E-Print Network (OSTI)

??A conventional circulating fluidised bed (CFB) boiler has a limitation due to the height of the furnace, when implemented in smaller industrial facilities. The design… (more)

Ekvall, Thomas

2011-01-01T23:59:59.000Z

400

Fluidized bed injection assembly for coal gasification  

DOE Patents (OSTI)

A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NETL: Clean Coal Demonstrations - Post-Project (DOE) Assessments  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Assessments DOE Assessments Clean Coal Demonstrations DOE Post-Project Assessments DOE Assessment of the Clean Coal Diesel Demonstration Project [PDF-590KB] DOE Assessment of the JEA Large-Scale CFB Combustion Demonstration Project [PDF-177KB] DOE Assessment of the Advanced Coal Conversion Process Demonstration [PDF-649KB] DOE Assessment of the Tampa Electric Integrated Gasification Combined-Cycle Demonstration Project [PDF-550KB] 500-MW Demonstration of Advanced Wall-Fired Combustion Techniques for the Reduction of Nitrogen Oxide (NOx) Emissions from Coal- Fired Boilers: A DOE Assessment [PDF-921KB] Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH™) Process [PDF-382KB] Healy Clean Coal Project: A DOE Assessment [PDF-713KB] Pulse Combustor Design: A DOE Assessment [PDF-569KB]

402

NETL: High Efficiency Molten-Bed Oxy-Coal Combustion With Low...  

NLE Websites -- All DOE Office Websites (Extended Search)

and heat transfer design employs a smaller less expensive combustor and reduced gas phase heat exchanger surface area. Decreased FGR results in reduced capital and maintenance...

403

Operating Experience of a Coal Fired Fluidized Bed at Georgetown University  

E-Print Network (OSTI)

Operation of the 100,000 lb/hr capacity, coal fired fluidized bed steam generator at Georgetown University began in July 1979. This project, which was co-funded by Georgetown University and the U. S. Department of Energy, involved expansion of the heating and cooling plant with this new coal fired facility. Previously existing units at the University heating and cooling plant normally fire natural gas. The fluidized bed steam generating facility at Georgetown University is the only new coal fired facility to be built in the Washington D. C. area in many years. The purpose of this program is to demonstrate industrial and institutional application of fluidized bed combustion using high sulfur coal in an environmentally acceptable manner in a populated area. The unit has been successfully operated for over 1400 hours and in compliance with the strict emission regulations of Washington, D.C. Operation on automatic control has been achieved and only minor operating difficulties have been experienced.

Lutes, I. G.; Gamble, R. L.

1980-01-01T23:59:59.000Z

404

Characterization of melt-infiltrated SiC/SiC composite combustor liners using meso- and micro-NDE techniques  

Science Conference Proceedings (OSTI)

Melt-infiltrated ceramic matrix composite SiC/SiC material systems are under development for use in combustor liners for low-emission advanced gas turbines. Uncertainty in repeatability of processing methods for these large components (33--76 cm diameter), and hence possible reduced reliability for the end user. This requires that appropriate test methods, at both meso- and micro-scale, be used to ensure that the liners are acceptable for use. Nondestructive evaluation (NDE) methods, if demonstrated to reliably detect changes caused by processing, would be of significant benefit to both manufacturer and end user. This paper describes the NDE methods and their applications in detecting a process upset in a melt-infiltrated 33 cm combustor liner and how high-resolution scanning electron microscopy was used to verify the NDE data.

Ellingson, W. A.; Sun, J. G.; More, K. L.; Hines, R.

2000-01-26T23:59:59.000Z

405

Program on Technology Innovation: Effect of Hydrogen Addition on Part Load Operation of Dry, Low NOx Combustors  

Science Conference Proceedings (OSTI)

Emissions and operability of Dry, Low NOx gas turbines at part load can be an issue for operators. One potential remedy for this problem is the addition of hydrogen to natural gas supplies when operating at part load. This report examines the effect of hydrogen addition on part load emissions and operating envelope. Chemical Reactor Modeling is used to simulate the fluid mechanics of the gas turbine combustor, while allowing for accurate consideration of the chemical kinetics which control emission produ...

2006-09-11T23:59:59.000Z

406

Toms Creek IGCC Demonstration Project  

SciTech Connect

The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020{degree}F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

Virr, M.J.

1992-11-01T23:59:59.000Z

407

Toms Creek IGCC Demonstration Project  

SciTech Connect

The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020[degree]F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

Virr, M.J.

1992-01-01T23:59:59.000Z

408

Coal fired fluid bed module for a single elevation style fluid bed power plant  

DOE Patents (OSTI)

A fluidized bed for the burning of pulverized fuel having a specific waterwall arrangement that comprises a structurally reinforced framework of wall tubes. The wall tubes are reversely bent from opposite sides and then bonded together to form tie rods that extend across the bed to support the lateral walls thereof.

Waryasz, Richard E. (Chicopee, MA)

1979-01-01T23:59:59.000Z

409

Ash bed level control system for a fixed-bed coal gasifier  

DOE Patents (OSTI)

An ash level control system is provided which incorporates an ash level meter to automatically control the ash bed level of a coal gasifier at a selected level. The ash level signal from the ash level meter is updated during each cycle that a bed stirrer travels up and down through the extent of the ash bed level. The ash level signal is derived from temperature measurements made by thermocouples carried by the stirrer as it passes through the ash bed and into the fire zone immediately above the ash bed. The level signal is compared with selected threshold level signal to determine if the ash level is above or below the selected level once each stirrer cycle. A first counter is either incremented or decremented accordingly. The registered count of the first counter is preset in a down counter once each cycle and the preset count is counted down at a selected clock rate. A grate drive is activated to rotate a grate assembly supporting the ash bed for a period equal to the count down period to maintain the selected ash bed level. In order to avoid grate binding, the controller provides a short base operating duration time each stirrer cycle. If the ash bed level drops below a selected low level or exceeds a selected high level, means are provided to notify the operator.

Fasching, George E. (Morgantown, WV); Rotunda, John R. (Fairmont, WV)

1984-01-01T23:59:59.000Z

410

Development and testing of a high efficiency advanced coal combustor: Phase 3, industrial boiler retrofit. Quarterly technical progress report number 12, July 1, 1994--September 30, 1994  

SciTech Connect

The objective of this project is to retrofit the previously developed High Efficiency Advanced Coal Combustor (HEACC) to a standard gas/oil designed industrial boiler to assess the technical and economic viability of displacing premium fuels with microfine coal. During this reporting period, data reduction/evaluation and interpretation from the long term four hundred hours Proof-of-Concept System Test under Task 3 were completed. Cumulatively, a total of approximately 563 hours of coal testing was performed with 160 hrs on 100% coal and over 400 hours with co-firing coal and gas. The primary objectives of this testing were to: (1) obtain steady state operation consistently on 100% coal; (2) increase carbon conversion efficiency from 95% to the project goal of 98%; and (3) maintain NOx emissions at or below 0.6 lbs/MBtu. The following specific conclusions are based on results of coal-fired testing at Penn State and the initial economic evaluation of the HEACC system: a coal handling/preparation system can be designed to meet the technical requirements for retrofitting microfine coal combustion to a gas/oil-designed boiler; the boiler thermal performance requirements were met; the NOx emission target of was met; combustion efficiencies of 95% could be met on a daily average basis, somewhat below the target of 98%; the economic playback is very sensitive to fuel differential cost, unit size, and annual operating hours; continuous long term demonstration is needed to quantify ash effects and how to best handle ashes. The following modifications are recommended prior to the 1,000 hour demonstration phase testing: (1) coal feeding improvements--improved raw coal/storage and transport, installation of gravimetric feeder, and redesign/installation of surge bin bottom; (2) burner modification--minor modification to the tip of the existing HEACC burner to prevent change of flame shapes for no apparent reason.

Patel, R.L.; Borio, R. [ABB/Combustion Engineering, Windsor, CT (United States). Power Plant Labs.; Scaroni, A.W.; Miller, B.G. [Pennsylvania State Univ., University Park, PA (United States); McGowan, J.G. [Univ. of Massachusetts, Amherst, MA (United States)

1994-11-18T23:59:59.000Z

411

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Chart: project timeline - Project Milestones - Budget - Bibliography * Thank you 29 30 Organization Chart * Project team: Purdue University - Dr. Brenda B. Bowen: PI, student...

412

State of Industrial Fluidized Bed Combustion  

E-Print Network (OSTI)

A new combustion technique has been developed in the last decade that permits the burning of low quality coal, lignite and other fuels, while maintaining stack emissions within State and Federal limits. Low quality fuels can be burned directly in fluidized beds while taking advantage of low furnace temperatures am chemical activity within the bed to limit S02 am NOx emissions, thereby eliminating the need for stack gas scrubbing equipment. The excellent heat transfer characteristics of the fluidized beds also result in a reduction of total heat transfer surface requirements, thus reducing the size and cost of steam generators. Recent tests on commercial units have proven the concept. This paper reviews the progress that has been trade in the development of fluidized bed combustion boilers, as well as work currently under way in the United States and overseas. Details on the installation at Georgetown University in Washington, D.C., am at other locations are presented, am operational results are discussed. Potential application of fluidized bed boilers in industrial plants using lignite and lignite refuse is also examined.

Mesko, J. E.

1982-01-01T23:59:59.000Z

413

DEVELOPMENT OF COAL BED METHANE UTILIZING GIS TECHNOLOGIES  

Science Conference Proceedings (OSTI)

During the second half of the 1990's, Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period were the advancements in Geographical Information Systems (GIS) technologies generating terra-bytes of new data for the oil and gas industry. Coupled to these accelerating initiatives are many environmental concerns relating to production wastes and water table depletion of fresh water resources. It is these concerns that prompted a vital need within the industry for the development of Best Management Practices (BMPs) and mitigation strategies utilizing GIS technologies for efficient environmental protection in conjunction with effective production of CBM. This was accomplished by developing a framework to take advantage of a combination of investigative field research joined with leading edge GIS technologies for the creation of environmentally characterized regions of study. Once evaluated these regions had BMP's developed to address their unique situations for Coal Bed Methane production and environmental protection. Results of the project will be used to support the MBOGC's Programmatic Environmental Impact Statement as required by the Montana Environmental Policy Act (MEPA) and by the BLM for NEPA related issues for acreage having federally owned minerals.

J. Daniel Arthur

2003-04-01T23:59:59.000Z

414

National SCADA Test Bed | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Cybersecurity » Energy Delivery Systems Cybersecurity Cybersecurity » Energy Delivery Systems Cybersecurity » National SCADA Test Bed National SCADA Test Bed Created in 2003, the National SCADA Test Bed (NSTB) is a one-of-a-kind national resource that draws on the integrated expertise and capabilities of the Argonne, Idaho, Lawrence Berkeley, Los Alamos, Oak Ridge, Pacific Northwest, and Sandia National Laboratories to address the cybersecurity challenges of energy delivery systems. Core and Frontier Research The NSTB core capabilities combine a network of the national labs' state-of-the-art operational system testing facilities with expert research, development, analysis, and training to discover and address critical security vulnerabilities and threats the energy sector faces. NSTB offers testing and research facilities, encompassing field-scale control

415

Rock bed heat accumulators. Final report  

DOE Green Energy (OSTI)

The principal objectives of the research program on rock bed heat accumulators (or RBHA) are: (1) to investigate the technical and economic feasibility of storing large amounts of thermal energy (in the tens of MWt range) at high temperature (up to 500/sup 0/C) over extended periods of time (up to 6 months) using native earth or rock materials; (2) to conduct studies to establish the performance characteristics of large rock bed heat accumulators at various power and temperature levels compatible with thermal conversion systems; and (3) to assess the materials and environmental problems associated with the operation of such large heat accumulators. Results of the study indicate that rock bed heat accumulators for seasonal storage are both technically and economically feasible, and hence could be exploited in various applications in which storage plays an essential role such as solar power and total energy systems, district and cogeneration heating systems.

Riaz, M.

1977-12-01T23:59:59.000Z

416

Fluidized bed selective pyrolysis of coal  

DOE Patents (OSTI)

The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.

Shang, J.Y.; Cha, C.Y.; Merriam, N.W.

1992-12-15T23:59:59.000Z

417

Fluidized bed selective pyrolysis of coal  

SciTech Connect

The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.

Shang, Jer Y. (McLean, VA); Cha, Chang Y. (Golden, CO); Merriam, Norman W. (Laramie, WY)

1992-01-01T23:59:59.000Z

418

Particle withdrawal from fluidized bed systems  

DOE Patents (OSTI)

Method and apparatus for removing ash formed within, and accumulated at the lower portion of, a fluidized bed coal gasification reactor vessel. A supplemental fluidizing gas, at a temperature substantially less than the average fluidized bed combustion operating temperature, is injected into the vessel and upwardly through the ash so as to form a discrete thermal interface region between the fluidized bed and the ash. The elevation of the interface region, which rises with ash accumulation, is monitored by a thermocouple and interrelated with a motor controlled outlet valve. When the interface rises above the temperature indicator, the valve opens to allow removal of some of the ash, and the valve is closed, or positioned at a minimum setting, when the interface drops to an elevation below that of the thermocouple.

Salvador, Louis A. (Greensburg, PA); Andermann, Ronald E. (Arlington Heights, IL); Rath, Lawrence K. (Mt. Pleasant, PA)

1982-01-01T23:59:59.000Z

419

Regeneratively cooled coal combustor/gasifier with integral dry ash removal  

DOE Patents (OSTI)

A coal combustor/gasifier is disclosed which produces a low or medium combustion gas for further combustion in modified oil or gas fired furnaces or boilers. Two concentric shells define a combustion volume within the inner shell and a plenum between them through which combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

Beaufrere, Albert H. (Huntington, NY)

1983-10-04T23:59:59.000Z

420

Apparatus and filtering systems relating to combustors in combustion turbine engines  

DOE Patents (OSTI)

A combustor for a combustion turbine engine that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; and a multilayer screen filter comprising at least two layers of screen over at least a portion of the windows and at least one layer of screen over the remaining portion of the windows. The windows include a forward end and a forward portion, and an aft end and an aft portion. The multilayer screen filter is positioned over the windows such that, in operation, a supply of compressed air entering the chamber through the windows passes through at least one layer of screen. The multilayer screen filter is configured such that the aft portion of the windows include at least two layers of screen, and the forward portion of the windows includes one less layer of screen than the aft portion of the windows.

Johnson, Thomas Edward (Greer, SC); Zuo, Baifang (Simpsonville, SC); Stevenson, Christian Xavier (Inman, SC)

2012-03-27T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustor project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Potential markets for small coal-fired combustors in OECD countries: Country screening  

SciTech Connect

This report examines potential for use of US-developed advanced coal technology (ACT) for small combustor applications in foreign markets, in particular, the member countries of the Organization of Economic Co-operation and Development (OECD). After screening out OECD countries were evaluated on eight important factors favoring use of US ACT, including: the energy plan and/or situation; oil/gas import dependency; coal experience; residential/commercial energy demand; industrial energy demand; trade relations with the United States; lack of domestic competition in the country to US ACT manufacturers; and environmental pressure for use of advanced technology. Statistical and other information was gathered to support each country's rating---high, medium-high, low-medium, or low---for each factor. The country/factor ratings were then used to group the countries into categories indicating their relative potential as markets were found to exist in Spain, Italy, Turkey, Greece, and Canada. It was recommended that Spain, Italy, and Turkey be the subject of future studies, in which more detailed analysis will be made. 23 refs., 1 fig., 2 tabs.

1988-08-01T23:59:59.000Z

422

Solid fuel feed system for a fluidized bed  

SciTech Connect

A fluidized bed for the combustion of coal, with limestone, is replenished with crushed coal from a system discharging the coal laterally from a station below the surface level of the bed. A compartment, or feed box, is mounted at one side of the bed and its interior separated from the bed by a weir plate beneath which the coal flows laterally into the bed while bed material is received into the compartment above the plate to maintain a predetermined minimum level of material in the compartment.

Jones, Brian C. (Windsor, CT)

1982-01-01T23:59:59.000Z

423

Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes  

DOE Patents (OSTI)

A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.

Talmud, Fred M. (Berkeley Heights, NJ); Garcia-Mallol, Juan-Antonio (Morristown, NJ)

1980-01-01T23:59:59.000Z

424

Internal dust recirculation system for a fluidized bed heat exchanger  

DOE Patents (OSTI)

A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided in a heat exchange relation to the bed and includes a steam drum disposed adjacent the bed and a tube bank extending between the steam drum and a water drum. The tube bank is located in the path of the effluent gases exiting from the bed and a baffle system is provided to separate the solid particulate matter from the effluent gases. The particulate matter is collected and injected back into the fluidized bed.

Gamble, Robert L. (Wayne, NJ); Garcia-Mallol, Juan A. (Morristown, NJ)

1981-01-01T23:59:59.000Z

425

3-D capacitance density imaging of fluidized bed  

DOE Patents (OSTI)

A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved.

Fasching, George E. (653 Vista Pl., Morgantown, WV 26505)

1990-01-01T23:59:59.000Z

426

Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed  

E-Print Network (OSTI)

the Building Controls Virtual Test Bed. Proceedings of 12 thand the Building Controls Test Bed Xiufeng Pang, PrajeshBUILDING CONTROLS VIRTUAL TEST BED Xiufeng Pang 1 , Prajesh

Pang, Xiufeng

2013-01-01T23:59:59.000Z

427

Cyber Security Audit and Attack Detection Toolkit: National SCADA Test Bed  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Audit and Attack Detection Toolkit: National SCADA Audit and Attack Detection Toolkit: National SCADA Test Bed May 2008 Cyber Security Audit and Attack Detection Toolkit: National SCADA Test Bed May 2008 This project of the cyber security audit and attack detection toolkit is adding control system intelligence to widely deployed enterprise vulnerability scanners and security event managers While many energy utilities employ vulnerability scanners and security event managers (SEM) on their enterprise systems, these tools often lack the intelligence necessary to be effective in control systems. This two-year project aims to integrate control system intelligence into widely deployed vulnerability scanners and SEM, and to integrate security incident detection intelligence into control system historians. These upgrades will

428

Bed inventory overturn in a circulating fluid bed riser with pant-leg structure  

Science Conference Proceedings (OSTI)

The special phenomenon, nominated as bed inventory overturn, in circulating fluid bed (CFB) riser with pant-leg structure was studied with model calculation and experimental work. A compounded pressure drop mathematic model was developed and validated with the experimental data in a cold experimental test rig. The model calculation results agree well with the measured data. In addition, the intensity of bed inventory overturn is directly proportional to the fluidizing velocity and is inversely proportional to the branch point height. The results in the present study provide significant information for the design and operation of a CFB boiler with pant-leg structure. 15 refs., 10 figs., 1 tab.

Jinjing Li; Wei Wang; Hairui Yang; Junfu Lv; Guangxi Yue [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education

2009-05-15T23:59:59.000Z

429

Arrayed microfluidic actuation for active sorting of fluid bed particulates  

E-Print Network (OSTI)

Fluidic actuation offers a facile method to move large quantities of small solids, often referred to as fluid-bed movement. Applications for fluid bed processing are integral to many fields including petrochemical, petroleum, ...

Gerhardt, Antimony L

2004-01-01T23:59:59.000Z

430

Biogeochemistry of Microbial Coal-Bed Methane  

E-Print Network (OSTI)

Biogeochemistry of Microbial Coal-Bed Methane Dariusz Strapo´c,1, Maria Mastalerz,2 Katherine, biodegradation Abstract Microbial methane accumulations have been discovered in multiple coal- bearing basins low-maturity coals with predominantly microbial methane gas or uplifted coals containing older

Macalady, Jenn

431

Fluidized bed retorting of eastern oil shale  

SciTech Connect

This topical report summarizes the conceptual design of an integrated oil shale processing plant based on fluidized bed retorting of eastern New Albany oil shale. This is the fourth design study conducted by Foster Wheeler; previous design cases employed the following technologies: Fluidized bed rotating/combustion of Colorado Mahogany zone shale. An FCC concept of fluidized bed retorting/combustion of Colorado Mahogany zone shale. Directly heated moving vertical-bed process using Colorado Mahogany zone shale. The conceptual design encompasses a grassroots facility which processes run-of-mine oil shale into a syncrude oil product and dispose of the spent shale solids. The plant has a nominal capacity of 50,000 barrels per day of syncrude product, produced from oil shale feed having a Fischer Assay of 15 gallons per ton. Design of the processing units was based on non-confidential published information and supplemental data from process licensors. Maximum use of process and cost information developed in the previous Foster Wheeler studies was employed. The integrated plant design is described in terms of the individual process units and plant support systems. The estimated total plant investment is detailed by plant section and estimates of the annual operating requirements and costs are provided. In addition, process design assumptions and uncertainties are documented and recommendations for process alternatives, which could improve the overall plant economics, are discussed. 12 refs., 17 figs., 52 tabs.

Gaire, R.J.; Mazzella, G.

1989-03-01T23:59:59.000Z

432

Reversed flow fluidized-bed combustion apparatus  

DOE Patents (OSTI)

The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

Shang, Jer-Yu (Fairfax, VA); Mei, Joseph S. (Morgantown, WV); Wilson, John S. (Morgantown, WV)

1984-01-01T23:59:59.000Z

433

Modularity Approach Modular Pebble Bed Reactor (MPBR)  

E-Print Network (OSTI)

· On--line Refueling #12;4/23/03 MIT NED MPBR Reference Plant Modular Pebble Bed Reactor Thermal Power ­ Reduces Location Requirements #12;4/23/03 MIT NED MPBR · Plant "Farm": ~10 MPBR Systems per "Power Plant modularity principles to the design, construction and operation of advanced nuclear energy plants · To employ

434

138 Chemical Engineering Education FLUIDIZED BED  

E-Print Network (OSTI)

gasification · Thermal cracking of naphtha petroleum fractions to produce ethylene and propylene · Fluid coking filled manometer. · Estimate the thickness of a polymer coating from know- ing the surface area and fluidized bed using a liquid filled manometer. Students also do some problem solving by estimating

Hesketh, Robert

435

Pebble Flow Experiments For Pebble Bed Reactors  

E-Print Network (OSTI)

Pebble Flow Experiments For Pebble Bed Reactors Andrew C. Kadak1 Department of Nuclear Engineering of Technology 2nd International Topical Meeting on High Temperature Reactor Technology Institute of Nuclear in such a reactor would conform to granular flow theory which suggested rapid mixing as opposed to linear flow lines

Bazant, Martin Z.

436

The Joint Hurricane Test Bed: Its First Decade of Tropical Cyclone Research-To-Operations Activities Reviewed  

Science Conference Proceedings (OSTI)

The Joint Hurricane Testbed (JHT) is reviewed at the completion of its first decade. Views of the program by hurricane forecasters at the National Hurricane Center, the test bed's impact on forecast accuracy, and highlights of the top-rated projects are ...

Edward N. Rappaport; Jiann-Gwo Jiing; Christopher W. Landsea; Shirley T. Murillo; James L. Franklin

2012-03-01T23:59:59.000Z

437

Development of an advanced process for drying fine coal in an inclined fluidized bed  

SciTech Connect

The objective of this research project was to demonstrate a technically feasible and economically viable process for drying and stabilizing high-moisture subbituminous coal. Controlled thermal drying of coal fines was achieved using the inclined fluidized-bed drying and stabilization process developed by the Western Research Institute. The project scope of work required completion of five tasks: (1) project planning, (2) characterization of two feed coals, (3) bench-scale inclined fluidized-bed drying studies, (4) product characterization and testing, and (5) technical and economic evaluation of the process. High moisture subbituminous coals from AMAX Eagle Butte mine located in the Powder River Basin of Wyoming and from Usibelli Coal Mine, Inc. in Healy, Alaska were tested in a 10-lb/hr bench-scale inclined fluidized-bed. Experimental results show that the dried coal contains less than 1.5% moisture and has a heating value over 11,500 Btu/lb. The coal fines entrainment can be kept below 15 wt % of the feed. The equilibrium moisture of dried coal was less than 50% of feed coal equilibrium moisture. 7 refs., 60 figs., 47 tabs.

Boysen, J.E.; Cha, C.Y.; Barbour, F.A.; Turner, T.F.; Kang, T.W.; Berggren, M.H.; Hogsett, R.F.; Jha, M.C.

1990-02-01T23:59:59.000Z

438

Heat exchanger support apparatus in a fluidized bed  

DOE Patents (OSTI)

A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.

Lawton, Carl W. (West Hartford, CT)

1982-01-01T23:59:59.000Z

439

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report ending March 31, 1996  

SciTech Connect

This document contains a progress report for the Project Description of Grant No. DE-FG01-94CE15612, {open_quotes}Develop a Combustion of Municipal Solid Waste with Oil Shale in Circulating Fluidized Bed{close_quotes}, dated September 2, 1994. The Project Description lists and describes six tasks, four of which are complete, and two others nearing completion. A summary of progress on each task is presented in this report.

1996-04-01T23:59:59.000Z

440

Evaluation of selected chemical processes for production of low-cost silicon (Phase II). Silicon Material Task Low-Cost Silicon Solar Array Project. Eighth quarterly progress report, July 1, 1977--September 30, 1977. [Zinc vapor reduction of silicon tetrachloride in fluidized bed of seed particles  

DOE Green Energy (OSTI)

Progress is reported in the design of a large experimental facility for the preparation of high-purity silicon by the zinc vapor reduction of silicon tetrachloride in a fluidized bed of seed particles to form a free-flowing granular product. As of July 25, 1977, the capacity goal for the experimental facility was raised from 25 to 50 MT Si/year. Process flow diagrams and materials/energy flow sheets have been revised to conform to the higher capacity and a plant layout has been developed for locating the facility within an available structure. A unit-by-unit review of instrumentation and other requirements has been made, with the inclusion of those items in the flow diagrams and flow sheets. Alternative designs are presented for a silicon carbide-coated carbon-lined fluidized-bed reactor contained in hot-wall stainless steel, including alternative designs for zinc vaporizers based on detailed heat-transfer calculations. Conditions and equipment for the conversion of by-product chlorine to hypochlorite for use in the treatment of sewage effluent locally were defined. The logistics of 19 percent NaOH delivery and pick-up of 14 percent NaOCL was worked out and equipment suppliers were identified. Heat dissipation requirements for the fluidized bed, Zn/ZnCl/sub 2/ condenser, and SiCl/sub 4/ waste disposal sections were established. Resistivity and purity data were obtained for DuPont's silicon prepared by batchwise zinc reduction of SiCl/sub 4/. A preliminary safety review was made of the experimental facility. During the report period, the miniplant was operated to (1) provide 2.2 kg of product for JPL evaluation, (2) evaluate methods of product withdrawal, and (3) test three zinc vaporizer concepts. Results of the zinc vaporizer tests were consistent with concurrent heat-transfer calculations. An average value of approximately 450 Btu hr/sup -1/ ft/sup -2/ F/sup -1/ for heat transfer from graphite to boiling zinc (1 atm) was determined.

Blocher, J.M. Jr.; Browning, M.F.; Wilson, W.J.; Carmichael, D.C.

1977-10-20T23:59:59.000Z