Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bed combustion fbc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fluidized Bed Combustion of Solid Fuels: Design Practices and Field Experience  

Science Conference Proceedings (OSTI)

Although pulverized coal (PC) combustion generally continues to be the technology of choice for utility-scale steam-electric plants, fluidized-bed combustion (FBC) offers a number of advantages to power producers, most notably the ability to burn fuels not suited for PC combustion. This report updates experience with current FBC designs, focusing on circulating fluidized bed (CFB) steam generators.

2012-07-11T23:59:59.000Z

2

1 Copyright 2003 by ASME 17th International Conference on Fluidised Bed Combustion  

E-Print Network (OSTI)

1 Copyright © 2003 by ASME 17th FBC 17th International Conference on Fluidised Bed Combustion May COMBUSTION OF HIGH-PVC SOLID WASTE WITH HCl RECOVERY Loay Saeed, Antti Tohka, Ron Zevenhoven* Helsinki.zevenhoven@hut.fi * Corresponding author ABSTRACT A process for two-stage combustion of high-PVC solid waste with HCl recovery

Zevenhoven, Ron

3

Packed Bed Combustion: An Overview  

E-Print Network (OSTI)

Packed Bed Combustion: An Overview William Hallett Dept. of Mechanical Engineering Université d'Ottawa - University of Ottawa #12;Packed Bed Combustion - University of Ottawa - CICS 2005 Introduction air fuel feedproducts xbed grate Packed Bed Combustion: fairly large particles of solid fuel on a grate, air supplied

Hallett, William L.H.

4

Circulating Fluidized Bed Combustion Boiler Project  

E-Print Network (OSTI)

The project to build a PYROFLOW circulating fluidized bed combustion (FBC) boiler at the BFGoodrich Chemical Plant at Henry, Illinois, is described. This project is being partially funded by Illinois to demonstrate the feasibility of utilizing high-sulfur Illinois coal. Design production is 125,000 pounds per hour of 400 psig saturated steam. An Illinois EPA construction permit has been received, engineering design is under way, major equipment is on order, ground breaking occurred in January 1984 and planned commissioning date is late 1985. This paper describes the planned installation and the factors and analyses used to evaluate the technology and justify the project. Design of the project is summarized, including the boiler performance requirements, the PYROFLOW boiler, the coal, limestone and residue handling systems and the pollutant emission limitations.

Farbstein, S. B.; Moreland, T.

1984-01-01T23:59:59.000Z

5

Heat transfer characteristics of a fluidized bed : stirling engine system.  

E-Print Network (OSTI)

??A fluidized bed combustion (FBC) system was designed to provide heat energy to the head of a Stirling cycle engine. Preliminary testing with a simulated (more)

Anzalone, Thomas M.

1989-01-01T23:59:59.000Z

6

CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT  

Science Conference Proceedings (OSTI)

Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Powers Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: scale up of gas to solid heat transfer high temperature finned surface design the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas-to-solids heat transfer. A stress test rig was built and tested to provide validation data for a stress model needed to support high temperature finned surface design. Additional cold flow model tests and MTF tests were conducted to address mechanical and process design issues. This information was then used to design and cost a commercial CMB design concept. Finally, the MBHE was reconfigured into a slice arrangement and tested for an extended duration at a commercial CFB plant.

Jukkola, Glen

2010-06-30T23:59:59.000Z

7

Pressurized fluidized-bed combustion  

SciTech Connect

If pressurised fluidised-bed combustion is to be used in combined cycle electricity generation, gas turbines must be made reliable and flue gas emission standards must be met. This report examines the issues of particulate cleaning before the turbine and stack, as well as recent work on the development of advanced gas filters.

Yeager, K.

1983-06-01T23:59:59.000Z

8

Reversed flow fluidized-bed combustion apparatus  

DOE Patents (OSTI)

The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

Shang, Jer-Yu (Fairfax, VA); Mei, Joseph S. (Morgantown, WV); Wilson, John S. (Morgantown, WV)

1984-01-01T23:59:59.000Z

9

The use of FBC wastes in the reclamation of coal slurry solids  

SciTech Connect

Fluidized bed combustion (FBC) is a relatively new technology that is used commercially for the combustion of coal. In Illinois, this technology is valuable because it allows the combustion of Illinois high sulfur coal without pollution of the atmosphere with vast quantities of sulfur oxides. In FBC, coal is mixed with limestone or dolomite either before injection into the combustion chamber or in the combustion chamber. As the coal burns, sulfur in the coal is oxidized to SO{sub 2} and this is trapped by reaction with the limestone or dolomite to form gypsum (CaSO{sub 4}{center dot}2H{sub 2}O). Solid by-products from FBC are generally a mixture of calcium oxide, gypsum, coal ash, and unburned coal. The present research project is designed to provide initial data on one possible use of FBC waste. FBC wastes from five different locations in the Illinois are mixed with coal slurry solids from two different coal preparation plants at Illinois coal mines. In mixtures of FBC waste and coal slurry solids, the alkaline components of the FBC waste are expected to react with acid produced by the oxidation of pyrite in the coal slurry solid. An objective of this research is to determine the chemical composition of aqueous leachates from mixtures of FBC wastes, generated under various operating conditions, and the coal slurry solids. These data will be used in future research into the ability of such mixtures to support seed germination and plant growth. The ultimate of this and future research is to determine whether mixed FBC waste and coal slurry solids can be slurry pond reclamation.

Dreher, G.B.

1991-01-01T23:59:59.000Z

10

Reducing mode circulating fluid bed combustion  

DOE Patents (OSTI)

A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.

Lin, Yung-Yi (Katy, TX); Sadhukhan, Pasupati (Katy, TX); Fraley, Lowell D. (Sugarland, TX); Hsiao, Keh-Hsien (Houston, TX)

1986-01-01T23:59:59.000Z

11

Pressurized fluidized-bed combustion  

Science Conference Proceedings (OSTI)

The US DOE pressurized fluidized bed combustion (PFBC) research and development program is designed to develop the technology and data base required for the successful commercialization of the PFBC concept. A cooperative program with the US, West Germany, and the UK has resulted in the construction of the 25 MWe IEA-Grimethorpe combined-cycle pilot plant in England which will be tested in 1981. A 13 MWe coal-fired gas turbine (air cycle) at Curtis-Wright has been designed and construction scheduled. Start-up is planned to begin in early 1983. A 75 MWe pilot plant is planned for completion in 1986. Each of these PFBC combined-cycle programs is discussed. The current status of PFB technology may be summarized as follows: turbine erosion tolerance/hot gas cleanup issues have emerged as the barrier technology issues; promising turbine corrosion-resistant materials have been identified, but long-term exposure data is lacking; first-generation PFB combustor technology development is maturing at the PDU level; however, scale-up to larger size has not been demonstrated; and in-bed heat exchanger materials have been identified, but long-term exposure data is lacking. The DOE-PFB development plan is directed at the resolution of these key technical issues. (LCL)

Not Available

1980-10-01T23:59:59.000Z

12

The use of FBC wastes in the reclamation of coal slurry solids. Technical report, September 1--November 30, 1991  

SciTech Connect

Fluidized bed combustion (FBC) is a relatively new technology that is used commercially for the combustion of coal. In Illinois, this technology is valuable because it allows the combustion of Illinois high sulfur coal without pollution of the atmosphere with vast quantities of sulfur oxides. In FBC, coal is mixed with limestone or dolomite either before injection into the combustion chamber or in the combustion chamber. As the coal burns, sulfur in the coal is oxidized to SO{sub 2} and this is trapped by reaction with the limestone or dolomite to form gypsum (CaSO{sub 4}{center_dot}2H{sub 2}O). Solid by-products from FBC are generally a mixture of calcium oxide, gypsum, coal ash, and unburned coal. The present research project is designed to provide initial data on one possible use of FBC waste. FBC wastes from five different locations in the Illinois are mixed with coal slurry solids from two different coal preparation plants at Illinois coal mines. In mixtures of FBC waste and coal slurry solids, the alkaline components of the FBC waste are expected to react with acid produced by the oxidation of pyrite in the coal slurry solid. An objective of this research is to determine the chemical composition of aqueous leachates from mixtures of FBC wastes, generated under various operating conditions, and the coal slurry solids. These data will be used in future research into the ability of such mixtures to support seed germination and plant growth. The ultimate of this and future research is to determine whether mixed FBC waste and coal slurry solids can be slurry pond reclamation.

Dreher, G.B.

1991-12-31T23:59:59.000Z

13

Pyrolysis reactor and fluidized bed combustion chamber  

DOE Patents (OSTI)

A solid carbonaceous material is pyrolyzed in a descending flow pyrolysis reactor in the presence of a particulate source of heat to yield a particulate carbon containing solid residue. The particulate source of heat is obtained by educting with a gaseous source of oxygen the particulate carbon containing solid residue from a fluidized bed into a first combustion zone coupled to a second combustion zone. A source of oxygen is introduced into the second combustion zone to oxidize carbon monoxide formed in the first combustion zone to heat the solid residue to the temperature of the particulate source of heat.

Green, Norman W. (Upland, CA)

1981-01-06T23:59:59.000Z

14

State of Fluidized Bed Combustion Technology  

E-Print Network (OSTI)

A new combustion technology has been developed in the last decade that permits the burning of low quality coal, lignite and other fuels, while maintaining stack emissions within State and Federal EPA limits. Low quality fuels can be burned directly in fluidized beds while taking advantage of low furnace temperatures and chemical activity within the bed to limit SO2 and NOx emissions, thereby eliminating the need for stack gas scrubbing equipment. The excellent heat transfer characteristics of the fluidized beds also result in a reduction of total heat transfer surface requirements, thus reducing the size and cost of steam generators. Tests on beds operating at pressures of one to ten atmospheres, at temperatures as high as 1600oF, and with gas velocities in the vicinity of four to twelve feet per second, have proven the concept. Early history of this technology is traced, and the progress that has been made in the development of fluidized bed combustion boilers, as well as work currently underway, in the United States and overseas, is reviewed. Details on the fluidized bed boiler installations at Alexandria, Virginia (5,000 lbs/hr), Georgetown University (100,000 lbs/hr), and Rivesville, West Virginia (300,000 Ibs/hr) are presented, and test results are discussed. Potential application of fluidized bed boilers in industrial plants using lignite and lignite refuse is examined. The impact of proposed new DOE and EPA regulations on solid fuels burning is also examined.

Pope, M.

1979-01-01T23:59:59.000Z

15

State of Industrial Fluidized Bed Combustion  

E-Print Network (OSTI)

A new combustion technique has been developed in the last decade that permits the burning of low quality coal, lignite and other fuels, while maintaining stack emissions within State and Federal limits. Low quality fuels can be burned directly in fluidized beds while taking advantage of low furnace temperatures am chemical activity within the bed to limit S02 am NOx emissions, thereby eliminating the need for stack gas scrubbing equipment. The excellent heat transfer characteristics of the fluidized beds also result in a reduction of total heat transfer surface requirements, thus reducing the size and cost of steam generators. Recent tests on commercial units have proven the concept. This paper reviews the progress that has been trade in the development of fluidized bed combustion boilers, as well as work currently under way in the United States and overseas. Details on the installation at Georgetown University in Washington, D.C., am at other locations are presented, am operational results are discussed. Potential application of fluidized bed boilers in industrial plants using lignite and lignite refuse is also examined.

Mesko, J. E.

1982-01-01T23:59:59.000Z

16

ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM  

DOE Green Energy (OSTI)

This report presents the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the quarter April 1--June 30, 2004. The following tasks have been completed. First, the final specifications for the renovation of the new Combustion Laboratory and the construction of the CFB Combustor Building have been delivered to the architect, and invitations for construction bids for the two tasks have been released. Second, the component parts of the CFBC system have been designed after the design work for assembly parts of the CFBC system was completed. Third, the literature pertaining to Polychlorinated Dibenzo-p-Dioxins (PCDD) and Polychlorinated Dibenzofurans (PCDF) released during the incineration of solid waste, including municipal solid waste (MSW) and refuse-derived fuel (RDF) have been reviewed, and an experimental plan for fundamental research of MSW incineration on a simulated fluidized-bed combustion (FBC) facility has been prepared. Finally, the proposed work for the next quarter has been outlined in this report.

Wei-Ping Pan, Kunlei Liu; John T. Riley

2004-07-30T23:59:59.000Z

17

Laboratory studies on corrosion of materials for fluidized bed combustion applications  

Science Conference Proceedings (OSTI)

An extensive corrosion test program was conducted at Argonne National Laboratory to evaluate the corrosion performance of metallic structural materials in environments that simulate both steady-state and off-normal exposure conditions anticipated in fluidized bed combustion (FBC) systems. This report discusses the possible roles of key parameters, such as sorbent and gas chemistries, metal temperature, gas cycling conditions, and alloy pretreatment, in the corrosion process. Data on scale thickness and intergranular penetration depth are presented for several alloys as a function of the chemistry of the exposure environment, deposit chemistry, and exposure time. Test results were obtained to compare the corrosion behavior of materials in the presence of reagent grade sorbent compounds and spent-bed materials from bubbling- and circulating-fluid-bed systems. Finally, the laboratory test results were compared with metal wastage information developed over the years in several fluidized bed test facilities. Metallic alloys chosen for the tests were carbon steel, Fe-2 1/4Cr-1Mo and Fe-9Cr-1Mo ferritic steels. Types 304 and 310 stainless steel, and Incoloy 800. 26 refs., 61 figs., 8 tabs.

Natesan, K.

1990-10-01T23:59:59.000Z

18

Atmospheric Fluidized Bed Combustion for Power Production from Biomass  

Science Conference Proceedings (OSTI)

Atmospheric fluidized bed combustion (AFBC) technologyincluding smaller bubbling fluidized bed (BFB) as well as circulating fluidized bed (CFB) combustor unitsprovides robust combustion with high thermal inertia. This means that AFBC units can successfully respond to variations in ash content, calorific value, and moisture content commonly encountered in burning biomass fuels. This report describes AFBC technology and its deployment for generating steam for power plants using a wide variety of biomass fu...

2010-01-28T23:59:59.000Z

19

Fluidized-bed calciner with combustion nozzle and shroud  

DOE Patents (OSTI)

A nozzle employed as a burner within a fluidized bed is coaxially enclosed within a tubular shroud that extends beyond the nozzle length into the fluidized bed. The open-ended shroud portion beyond the nozzle end provides an antechamber for mixture and combustion of atomized fuel with an oxygen-containing gas. The arrangement provides improved combustion efficiency and excludes bed particles from the high-velocity, high-temperature portions of the flame to reduce particle attrition.

Wielang, Joseph A. (Idaho Falls, ID); Palmer, William B. (Shelley, ID); Kerr, William B. (Idaho Falls, ID)

1977-01-01T23:59:59.000Z

20

Coal-Fired Fluidized Bed Combustion Cogeneration  

E-Print Network (OSTI)

The availability of an environmentally acceptable multifuel technology, such as fluidized bed combustion, has encouraged many steam producers/ users to investigate switching from oil or gas to coal. Changes in federal regulations encouraging cogeneration have further enhanced the economic incentives for primary fuel switching. However, this addition of cogeneration to the fuel conversion analysis considerably complicates the investigation. A system design for cogeneration of steam and electricity at a nominal 40,000 pound per hour capacity utilizing fluidized bed combustion is described. The basic system incorporates silo storage of coal, ash, and limestone with dense phase conveying. The system generates power utilizing either a backpressure turbine or a condensing turbine with steam extraction. Three case studies performed for specific end users are presented. The interaction among plant steam requirements, rate purchase structure, and electrical energy buy back rate is discussed. How these factors interact determine the final design and the choice of fuels is illustrated. Because the decision to switch fuel, as well as to cogenerate, is usually economically motivated, an in-depth understanding of the steam/electrical needs and interactions is critical. How these considerations are integrated in the system and the effect they have on the monetary returns are discussed. Electric rate agreements vary significantly from one state to another. Therefore, the examples selected are intended to provide, insight into this variability. For example, one rate structure encourages solid fuel cogeneration. The second is a block structure with low sell back rates making cogeneration difficult to justify. How these rate schedules affected the recommended design illustrates that the system selection is very important.

Thunem, C.; Smith, N.

1985-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustion fbc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

DOE Green Energy (OSTI)

On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new particulate filtration technologies. Major tasks during this period of the funded project's timeframe included: (1) Conducting pretests on a laboratory-scale simulated FBC system; (2) Completing detailed design of the bench-scale CFBC system; (3) Contracting potential bidders to fabricate of the component parts of CFBC system; (4) Assembling CFBC parts and integrating system; (5) Resolving problems identified during pretests; (6) Testing with available Powder River Basin (PRB) coal and co-firing of PRB coal with first wood pallet and then chicken wastes; and (7) Tuning of CFBC load. Following construction system and start-up of this 0.6 MW CFBC system, a variety of combustion tests using a wide range of fuels (high-sulfur coals, low-rank coals, MSW, agricultural waste, and RDF) under varying conditions were performed to analyze and monitor air pollutant emissions. Data for atmospheric pollutants and the methodologies required to reduce pollutant emissions were provided. Integration with a selective catalytic reduction (SCR) slipstream unit did mimic the effect of flue gas composition, including trace metals, on the performance of the SCR catalyst to be investigated. In addition, the following activities were also conducted: (1) Developed advanced mercury oxidant and adsorption additives; (2) Performed laboratory-scale tests on oxygen-fuel combustion and chemical looping combustion; and (3) Conducted statistical analysis of mercury emissions in a full-scale CFBC system.

Wei-Ping Pan; Yan Cao; John Smith

2008-05-31T23:59:59.000Z

22

Atmospheric fluidized-bed combustion performance guidelines  

SciTech Connect

Performance specifications for conventional coal-fired boilers typically call for tests to be conducted in accordance with the ASME Performance Test Code for Steam Generating Units, PTC 4.1. The Code establishes procedures for conducting performance tests primarily to determine efficiency and capacity. The current edition of the PTC 4.1 is not entirely applicable to atmospheric fluidized-bed combustion boilers, however. AFBC boilers typically are equipped with integral sulfur capture through the addition of a sorbent material along with the fuel feed to the combustor, and this new technology introduces heat losses and credits that are not described in PTC 4.1. These heat losses and credits include combustion heat loss due to the calcination of the sorbent, heat credit due to sulfation, and the effects of calcination and sulfation on the dry flue gas flow, all of which significantly affect boiler efficiency calculations. The limitations of the current issue of the PTC 4.1 is recognized and the Code is now being reviewed to include heat losses and credits common to AFBC boilers. While this work will take some time, there is an immediate need for procedures for performance testing of AFBC boilers. These Guidelines are prepared to meet that need in the interim. The Guidelines detail procedures for boiler efficiency tests. They introduce technical and economic issues that may influence the test level of detail and accuracy. Methods of identifying required measurements, selection of measurement schemes, and assessment of measured versus estimated values are presented. A case study is used to illustrate the procedures and indicate which are the major credits and losses in the efficiency of a typical AFBC boiler. 6 figs., 8 tabs.

Sotelo, E. (Sotelo (Ernest), Berkeley, CA (USA))

1991-03-01T23:59:59.000Z

23

Technical and economic assessment of fluidized bed augmented compressed air energy-storage system. Volume II. Introduction and technology assessment  

DOE Green Energy (OSTI)

The results are described of a study subcontracted by PNL to the United Technologies Research Center on the engineering feasibility and economics of a CAES concept which uses a coal fired, fluidized bed combustor (FBC) to heat the air being returned from storage during the power production cycle. By burning coal instead of fuel oil, the CAES/FBC concept can completely eliminate the dependence of compressed air energy storage on petroleum fuels. The results of this assessment effort are presented in three volumes. Volume II presents a discussion of program background and an in-depth coverage of both fluid bed combustion and turbomachinery technology pertinent to their application in a CAES power plant system. The CAES/FBC concept appears technically feasible and economically competitive with conventional CAES. However, significant advancement is required in FBC technology before serious commercial commitment to CAES/FBC can be realized. At present, other elements of DOE, industrial groups, and other countries are performing the required R and D for advancement of FBC technology. The CAES/FBC will be reevaluated at a later date when FBC technology has matured and many of the concerns now plaguing FBC are resolved. (LCL)

Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

1981-09-01T23:59:59.000Z

24

Fluidized bed combustion of pelletized biomass and waste-derived fuels  

SciTech Connect

The fluidized bed combustion of three pelletized biogenic fuels (sewage sludge, wood, and straw) has been investigated with a combination of experimental techniques. The fuels have been characterized from the standpoints of patterns and rates of fuel devolatilization and char burnout, extent of attrition and fragmentation, and their relevance to the fuel particle size distribution and the amount and size distribution of primary ash particles. Results highlight differences and similarities among the three fuels tested. The fuels were all characterized by limited primary fragmentation and relatively long devolatilization times, as compared with the time scale of particle dispersion away from the fuel feeding ports in practical FBC. Both features are favorable to effective lateral distribution of volatile matter across the combustor cross section. The three fuels exhibited distinctively different char conversion patterns. The high-ash pelletized sludge burned according to the shrinking core conversion pattern with negligible occurrence of secondary fragmentation. The low-ash pelletized wood burned according to the shrinking particle conversion pattern with extensive occurrence of secondary fragmentation. The medium-ash pelletized straw yielded char particles with a hollow structure, resembling big cenospheres, characterized by a coherent inorganic outer layer strong enough to prevent particle fragmentation. Inert bed particles were permanently attached to the hollow pellets as they were incorporated into ash melts. Carbon elutriation rates were very small for all the fuels tested. For pelletized sludge and straw, this was mostly due to the shielding effect of the coherent ash skeleton. For the wood pellet, carbon attrition was extensive, but was largely counterbalanced by effective afterburning due to the large intrinsic reactivity of attrited char fines. The impact of carbon attrition on combustion efficiency was negligible for all the fuels tested. The size distribution of primary ash particles liberated upon complete carbon burnoff largely reflected the combustion pattern of each fuel. Primary ash particles of size nearly equal to that of the parent fuel were generated upon complete burnoff of the pelletized sludge. Nonetheless, secondary attrition of primary ash from pelletized sludge is large, to the point where generation of fine ash would be extensive over the typical residence time of bed ash in fluidized bed combustors. Very few and relatively fine primary ash particles were released after complete burnoff of wood pellets. Primary ash particles remaining after complete burnoff of pelletized straw had sizes and shapes that were largely controlled by the occurrence of ash agglomeration phenomena. (author)

Chirone, R.; Scala, F.; Solimene, R. [Istituto di Ricerche sulla Combustione - C.N.R., Piazzale V. Tecchio 80, 80125 Naples (Italy); Salatino, P.; Urciuolo, M. [Dipartimento di Ingegneria Chimica - Universita degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Naples (Italy)

2008-10-15T23:59:59.000Z

25

Advanced Circulating Pressurized Fluidized Bed Combustion (APFBC) Repowering Considerations  

NLE Websites -- All DOE Office Websites (Extended Search)

Weinstein & Travers: APFBC Repowering Considerations Weinstein & Travers: APFBC Repowering Considerations paper 970563 Page 1 of 35 Advanced Circulating Pressurized Fluidized Bed Combustion (APFBC) Repowering Considerations Richard E. Weinstein, P.E. Parsons Power Group Inc. Reading, Pennsylvania eMail: Richard_E_Weinstein@Parsons.COM / phone: 610 / 855-2699 Robert W. Travers, P.E. U.S. Department of Energy Office of Fossil Energy Germantown, Maryland eMail: Robert.Travers@HQ.DOE.GOV / phone: 301 / 903-6166 Weinstein & Travers: APFBC Repowering Considerations paper 970563 Page 2 of 35 Advanced Circulating Pressurized Fluidized Bed Combustion Repowering Considerations ABSTRACT ..............................................................................................................................................................................

26

CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT ?¢???? PHASE II  

SciTech Connect

Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Power's Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: (1) scale up of gas to solid heat transfer; (2) high temperature finned surface design and (3) the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas-to-solids heat transfer. A stress test rig was built and tested to provide validation data for a stress model needed to support high temperature finned surface design. Additional cold flow model tests and MTF tests were conducted to address mechanical and process design issues. This information was then used to design and cost a commercial CMB design concept. Finally, the MBHE was reconfigured into a slice arrangement and tested for an extended duration at a commercial CFB plant.

Glen D. Jukkola

2010-06-30T23:59:59.000Z

27

Atmospheric Fluidized-Bed Combustion Guidebook -- 2002 Update  

Science Conference Proceedings (OSTI)

Current operating experience shows that atmospheric fluidized-bed combustion (AFBC) boilers meet high environmental standards and are commercially viable and economically attractive. To make the best business decision, power producers need to fully evaluate the technology as a power generation option. The content of this AFBC Guidebook allows readers to become quickly informed about all aspects of the technology.

2002-12-05T23:59:59.000Z

28

Coal-feeding mechanism for a fluidized bed combustion chamber  

SciTech Connect

The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, e.g. coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.

Gall, Robert L. (Morgantown, WV)

1981-01-01T23:59:59.000Z

29

Regeneration of lime from sulfates for fluidized-bed combustion  

DOE Patents (OSTI)

In a fluidized-bed combustor the evolving sulfur oxides are reacted with CaO to form calcium sulfate which is then decomposed in the presence of carbonaceous material, such as the fly ash recovered from the combustion, at temperatures of about 900.degree. to 1000.degree. C., to regenerate lime. The regenerated lime is then recycled to the fluidized bed combustor to further react with the evolving sulfur oxides. The lime regenerated in this manner is quite effective in removing the sulfur oxides.

Yang, Ralph T. (Middle Island, NY); Steinberg, Meyer (Huntington Station, NY)

1980-01-01T23:59:59.000Z

30

Pressurized fluidized-bed combustion technology exchange workshop  

SciTech Connect

The pressurized fluidized-bed combustion technology exchange workshop was held June 5 and 6, 1979, at The Meadowlands Hilton Hotel, Secaucus, New Jersey. Eleven papers have been entered individually into EDB and ERA. The papers include reviews of the US DOE and EPRI programs in this area and papers by Swedish, West German, British and American organizations. The British papers concern the joint program of the USA, UK and FRG at Leatherhead. The key factor in several papers is the use of fluidized bed combustors, gas turbines, and steam turbines in combined-cycle power plants. One paper examines several combined-cycle alternatives. (LTN)

,

1980-04-01T23:59:59.000Z

31

Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1993--March 31, 1993  

SciTech Connect

The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed boilers is in progress. Preliminary results indicate that at least five boilers were experiencing some form of bed material agglomeration. In these instances it was observed that large particles were forming within the bed which were larger that the feed. Four operators could confirm that the larger bed particles had formed due to bed particles sticking together or agglomerating. Deposit formation was reported at nine sites with these deposits being found most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Examples of these agglomerates and deposits have been received from five of the surveyed facilities. Also during this quarter, a bulk sample of Illinois No. 6 coal was obtained from the Fossil Energy Program at Ames Laboratory here at Iowa State University and prepared for combustion tests. This sample was first ground to a top-size of 3/8`` using a jaw crusher then a size fraction of 3/8`` {times} 8 (US mesh) was then obtained by sieving using a Gilson Test-Master. This size fraction was selected for the preliminary laboratory-scale experiments designed to simulate the dense bed conditions that exist in the bottom of CFB combustors. To ensure uniformity of fuel composition among combustion runs, the sized coal was riffled using, a cone and long row method and stored in bags for each experiment. During this quarter additional modifications were made to achieve better control of fluidization regimes and to aid in monitoring the hydrodynamic and chemical conditions within the reactor.

Brown, R.C.; Dawson, M.R.; Noble, S.D.

1993-04-01T23:59:59.000Z

32

Task 3.8 - pressurized fluidized-bed combustion  

DOE Green Energy (OSTI)

The focus of this work on pressurized fluidized-bed combustion (PFBC) is the development of sorbents for in-bed alkali control. The goal is to generate fundamental process information for development of a second-generation PFBC. Immediate objectives focus on the performance of sulfur sorbents, fate of alkali, and the Resource Conservation and Recovery Act (RCRA) heavy metals. The studies reported here focus on emission control strategies applied in the bed. Data from shakedown testing, alkali sampling, sulfur sorbent performance tests, and refuse-derived fuel (RDF) and lignite combustion tests are presented in detail. Initial results from the characterization of alkali gettering indicate that in-bed getters can remove a significant amount of alkali from the bed. Using kaolin as a sorbent, sodium levels in the flue gas were reduced from 3.6 ppm to less than 0.22 ppm. Sulfur was also reduced by 60% using the kaolin sorbent. Preliminary sulfur sorbent testing, which was designed to develop a reliable technique to predice sorbent performance, indicate that although the total sulfur capture is significantly lower than that observed in a full-scale PFBC, the emission trends are similar. RDF and RDF-lignite fuels had combustion efficiencies exceeding 99.0% in all test cases. Sulfur dioxide emission was significantly lower for the RDF fuels than for lignite fuel alone. Nitrogen oxide emission was also lower for the RDF-based fuels than for the lignite fuel. Both emission gases were well below current regulatory limits. Carbon monoxide and hydrocarbon emissions appeared to be slightly higher for the fuels containing RDF, but were below 9 ppm for the worst case. Analysis of volatile organic compound emission does not indicate an emission problem for these fuels. Chromium appears to be the only RCRA metal that might present some disposal problem; however, processing of the RDF with the wet resource recovery method should reduce chromium levels. 2 refs., 13 figs., 15 tabs.

NONE

1995-03-01T23:59:59.000Z

33

Combustion chamber for gas turbines and the like having a fluidized burner bed  

SciTech Connect

A combustion chamber with a fluidized burner bed preferably for gas turbines is described. It contains means for controlling the supply of fuel, combustion air and a cooling medium for the fluidized bed to maintain a predetermined proportional relationship between combustion air and cooling air under varying load conditions.

Harboe, H.

1975-12-09T23:59:59.000Z

34

State of the art of pressurized fluidized bed combustion systems  

SciTech Connect

This report was prepared at the request of the Tennessee Valley Authority (TVA) to clarify the development status of the pressurized fluidized bed combustor (PFBC) and to place in perspective the problems which are yet to be solved before commercialization of the concept is practical. This report, in essence, supersedes the interim report published in 1979, Assessment of the State of the Art of Pressurized Fluidized Bed Combustion Systems. A brief overview of the PFBC concept is included citing potential advantages and disadvantages relative to atmospheric fluidized bed combustion (AFBC) and conventional pulverized coal plants. A survey of existing and developing PFBC experimental facilities is presented in some detail which includes the major accomplishments at the respective facilities. Recent data on plant emissions, turbine/gas cleanup systems, and overall efficiency are provided. Findings of several design studies are also discussed. The results of recent gas turbine and cascade tests have been encouraging although the full assessment of the accomplishments have not been made. The delay in construction of the Grimethorpe plant causes further delay in proof-testing full-size, rotating turbomachinery. Several parameters are recommended for further assessment in design studies including: (1) effect of turbine life on cost of power; and (2) effect of reduced gas turbine inlet temperature and pressure on cost of power.

Graves, R.L.

1980-09-01T23:59:59.000Z

35

Element associations in ash from waste combustion in fluidized bed  

SciTech Connect

The incineration of MSW in fluidized beds is a commonly applied waste management practice. The composition of the ashes produced in a fluidized bed boiler has important environmental implications as potentially toxic trace elements may be associated with ash particles and it is therefore essential to determine the mechanisms controlling the association of trace elements to ash particles, including the role of major element composition. The research presented here uses micro-analytical techniques to study the distribution of major and trace elements and determine the importance of affinity-based binding mechanisms in separate cyclone ash particles from MSW combustion. Particle size and the occurrence of Ca and Fe were found to be important factors for the binding of trace elements to ash particles, but the binding largely depends on random associations based on the presence of a particle when trace elements condensate in the flue gas.

Karlfeldt Fedje, K., E-mail: karinka@chalmers.s [Department of Chemical and Biological Engineering, Division of Environmental Inorganic Chemistry, Chalmers University of Technology, Kemivaegen 10, 412 96 Goeteborg (Sweden); Rauch, S. [Department of Civil and Environmental Engineering, Division of Water Environment Technology, Chalmers University of Technology, Sven Hultins Gata 8, 412 96 Goeteborg (Sweden); Cho, P.; Steenari, B.-M. [Department of Chemical and Biological Engineering, Division of Environmental Inorganic Chemistry, Chalmers University of Technology, Kemivaegen 10, 412 96 Goeteborg (Sweden)

2010-07-15T23:59:59.000Z

36

Pressurized circulating fluidized-bed combustion for power generation  

SciTech Connect

Second-generation Pressurized Circulating Fluidized Bed Combustion (PCFBC) is the culmination of years of effort in the development of a new generation of power plants which can operate on lower-quality fuels with substantially improved efficiencies, meet environmental requirements, and provide a lower cost of electricity. Air Products was selected in the DOE Clean Coal Technology Round V program to build, own, and operate the first commercial power plant using second-generation PCFBC technology, to be located at an Air Products chemicals manufacturing facility in Calvert City, Kentucky. This paper describes the second-generation PCFBC concept and its critical technology components.

Weimer, R.F.

1995-08-01T23:59:59.000Z

37

NETL: Combustion Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Nebraska Public Power District's Sheldon Station with APFBC Technology Nebraska Public Power District's Sheldon Station with APFBC Technology FBC Repower APFBC AES Greenidge APFBC Dan River FBC, APFBC Four Corners CHIPPS H.F. Lee Products Summary Sheldon Summary APFBC Sheldon GFBCC Sheldon APFBC L.V. Sutton Contents: APFBC Repowering Project Summary Key Features Site Layout Performance Environmental Characteristics Cost Other Combustion Systems Repowering Study Links: A related study is underway that would repower Sheldon Unit 1 and Unit 2 with gasification fluidized-bed combined cycle technology (GFBCC). CLICK HERE to find out more about repowering the Sheldon station with GFBCC instead. APFBC Repowering Project Summary Click on picture to enlarge Advanced circulating pressurized fluidized-bed combustion combined cycle systems (APFBC) are systems with jetting-bed pressurized fluidized-bed (PFB) carbonizer/gasifier and circulating PFBC combustor. The PFB carbonizer and PFBC both operate at elevated pressures (10 to 30 times atmospheric pressure) to provide syngas for operating a gas turbine topping combustor giving high cycle energy efficiency. The remaining char from the PFB carbonizer is burned in the pressurized PFBC. The combustion gas from the PFB also feeds thermal energy to the gas turbine topping combustor. This provides combined cycle plant efficiency on coal by providing the opportunity to generate electricity using both high efficiency gas turbines and steam.

38

Synthetic aggregate compositions derived from spent bed materials from fluidized bed combustion and fly ash  

DOE Patents (OSTI)

Cementitious compositions useful as lightweight aggregates are formed from a blend of spent bed material from fluidized bed combustion and fly ash. The proportions of the blend are chosen so that ensuing reactions eliminate undesirable constituents. The blend is then mixed with water and formed into a shaped article. The shaped article is preferably either a pellet or a "brick" shape that is later crushed. The shaped articles are cured at ambient temperature while saturated with water. It has been found that if used sufficiently, the resulting aggregate will exhibit minimal dimensional change over time. The aggregate can be certified by also forming standardized test shapes, e.g., cylinders while forming the shaped articles and measuring the properties of the test shapes using standardized techniques including X-ray diffraction.

Boyle, Michael J. (Aston, PA)

1994-01-01T23:59:59.000Z

39

Development of second-generation pressurized fluidized bed combustion process  

Science Conference Proceedings (OSTI)

Under the sponsorship of the United States Department of Energy, Foster Wheeler Development Corporation, and its team members, Westinghouse, Gilbert/Commonwealth, and the Institute of Gas Technology are developing second-generation pressurized fluidized bed combustion technology capable of achieving net plant efficiency in excess of 45 percent based on the higher heating value of the coal. A three-phase program entails design and costing of a 500 MWe power plant and identification of developments needed to commercialize this technology (Phase 1), testing of individual components (Phase 2), and finally testing these components in an integrated mode (Phase 3). This paper briefly describes the results of the first two phases as well as the progress on the third phase. Since other projects which use the same technology are in construction or in negotiation stages -- namely, the Power System Development Facility and the Four Rivers Energy Modernization Projects -- brief descriptions of these are also included.

Wolowodiuk, W.; Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Bonk, D. [USDOE Morgantown Energy Technology Center, WV (United States)

1994-10-01T23:59:59.000Z

40

METAL FILTERS FOR PRESSURIZED FLUID BED COMBUSTION (PFBC) APPLICATIONS  

SciTech Connect

Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at the Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. As part of the demonstration effort, SWPC has been actively involved in the development of advanced filter materials and component configuration, has participated in numerous surveillance programs characterizing the material properties and microstructure of field-tested filter elements, and has undertaken extended, accelerated filter life testing programs. This report reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous commercial metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion (PFBC) conditions.

M.A. Alvin

2004-01-02T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustion fbc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Gas Turbines for Advanced Pressurized Fluidized Bed Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

APFBC uses a circulating pressurized fluidized bed combustor (PFBC) with a fluid bed heat exchanger to develop hot vitiated air for the gas turbine' s topping combustor and...

42

Rotary bed reactor for chemical-looping combustion with carbon capture  

E-Print Network (OSTI)

Chemical-looping combustion (CLC) is a novel and promising technology for power generation with inherent CO2 capture. Currently almost all the research has been focused on developing CLC based inter-connected fluidized bed ...

Zhao, Zhenlong

2012-01-01T23:59:59.000Z

43

Circulating Moving Bed Combustion Proof-of-concept  

NLE Websites -- All DOE Office Websites (Extended Search)

combustor, the solids are fluidized and transferred through standpipes to a moving bed heat exchanger (MBHE). There, an energy cycle working fluid, such as steam or compressed...

44

Co-combustion of textile residues with cardboard and waste wood in a packed bed  

SciTech Connect

The combustible fraction of the municipal waste is mostly bio-derived. Energy recovery of the wastes that cannot be economically recycled is a key part of sustainable energy policy and waste management. Textile residues have high energy content. When burned alone in a packed bed system, however, their combustion efficiency is low due to the irregular propagation of the ignition front and the low burning rates. In order to achieve more efficient combustion of textile residues, a series of co-combustion tests were carried out for various mixture compositions and air flow rates in a packed bed combustor. The combustion performance of these materials was evaluated by using quantitative measures such as ignition rate, burning rate and equivalence ratio. Co-combustion of textile residues with cardboard for a textile fraction of up to 30% achieved satisfactorily high burning rate and low unburned carbon content in the bottom ash. The mixture was more resistant to convective cooling by air, which significantly expanded the range of air flow rate for combustion at high burning rates. In co-combustion with a material that has a very low ignition front speed such as waste wood, the propagation of the ignition front was governed by textile residues. Therefore, the co-combustion of textile residues can be better performed with a material having similar ignition front speeds, in which the two materials simultaneously burn at the ignition front. (author)

Ryu, Changkook; Phan, Anh N; Sharifi, Vida N; Swithenbank, Jim [Sheffield University Waste Incineration Centre (SUWIC), Department of Chemical and Process Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

2007-11-15T23:59:59.000Z

45

Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler  

Science Conference Proceedings (OSTI)

Ventilation air methane (VAM) accounts for 60-80% of the total emissions from underground coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible. 17 refs., 3 figs., 1 tab.

Changfu You; Xuchang Xu [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education

2008-04-01T23:59:59.000Z

46

A fixed granular-bed sorber for measurement and control of alkali vapors in PFBC (pressurized fluidized-bed combustion)  

SciTech Connect

Alkali vapors (Na and K) in the hot flue gas from the pressurized fluidized-bed combustion (PFBC) of coal could cause corrosion problems with the gas turbine blades. In a laboratory-scale PFBC test with Beulah lignite, a fixed granular bed of activated bauxite sorbent was used to demonstrate its capability for measuring and controlling alkali vapors in the PFBC flue gas. The Beulah lignite was combusted in a bed of Tymochtee dolomite at bed temperatures ranging from 850 to 875{degrees}C and a system pressure of 9.2 atm absolute. The time-averaged concentration of sodium vapor in the PFBC flue gas was determined from the analysis of two identical beds of activated bauxite and found to be 1.42 and 1.50 ppmW. The potassium vapor concentration was determined to be 0.10 ppmW. The sodium material balance showed that only 0.24% of the total sodium in the lignite was released as vapor species in the PFBC flue gas. This results in an average of 1.56 ppmW alkali vapors in the PFBC flue gas. This average is more than 1.5 orders of magnitude greater than the currently suggested alkali specification limit of 0.024 ppm for an industrial gas turbine. The adsorption data obtained with the activated bauxite beds were also analyzed mathematically by use of a LUB (length of unused bed)/equilibrium section concept. Analytical results showed that the length of the bed, L{sub o} in centimeters, relates to the break through time, {theta}{sub b} in hours, for the alkali vapor to break through the bed as follows: L{sub o} = 33.02 + 1.99 {theta}{sub b}. This formula provides useful information for the engineering design of fixed-bed activated bauxite sorbers for the measurement and control of alkali vapors in PFBC flue gas. 26 refs., 4 figs., 4 tabs.

Lee, S.H.D.; Swift, W.M.

1990-01-01T23:59:59.000Z

47

Pressurized fluidized-bed combustion part-load behavior. Volume I. Summary report  

SciTech Connect

Tests performed during 1980 to determine the part-load characteristics of a pressurized fluidized-bed combustor for a combined-cycle power plant and to examine its behavior during load changing are discussed. Part-load operation was achieved by varying the bed temperature by amounts between 200 to 300/sup 0/F and the bed depth from between 9 and 10 ft at rates varying between 0.2 ft/min and 0.5 ft/min. The performance at part-load steady-state conditions and during transient conditions is reported with information on combustion efficiency (99% at full-load with 9 ft bed depth and 1650/sup 0/F bed temperature; 95% with 4 ft depth and 1390/sup 0/F); sulfur retention (95/sup 0/ at full load to 80% at low bed depth and low bed temperature); sulfur emissions (no definitive results); NO/sub x/ emissions (tendency for increase as bed temperature was reduced); alkali emissions (no bed temperature effect detected); and heat transfer. It was demonstrated that load can be altered in a rapid and controlled manner by changing combinations of bed depth temperature and pressure. The most important practical change was the reduction in O/sub 2/ concentration which occurred when the bed height was increased at a rapid rate. The extra energy required to reheat the incoming bed material resulted (in the most extreme case) in a temporary drop in excess air from 65% to 12%. In a full-scale plant the loss of heat from the stored bed material would be much lower and the excess air trough when increasing load would not be as pronounced. Nevertheless, it seems prudent to design full-scale plant for a full load excess air of not less than about 50% when using bed depth as a load control parameter.

Roberts, A. G.; Pillai, K. K.; Raven, P.; Wood, P.

1981-09-01T23:59:59.000Z

48

Atmospheric fluidized bed combustion advanced system concepts applicable to small industrial and commercial markets. Topical report, Level 2  

Science Conference Proceedings (OSTI)

As part of an overall strategy to promote FBC coal combustion and to improve the marketability of the eastern coals, the US Department of Energy`s Morgantown Energy Research Center awarded a three level contract to Riley Stoker Corporation to develop advanced Multi Solids Fluidized Bed (MSFB) boiler designs. The first level of this contract targeted the small package boiler (10,000--50,000 lb/hr steam) and industrial size boiler (75,000--150,000 lb/hr steam) markets. Two representative sizes, 30,000 lb/hr and 110,000 lb/hr of steam, were selected for the two categories for a detailed technical and economic evaluation. Technically, both the designs showed promise, however, the advanced industrial design was favored on economic considerations. It was thus selected for further study in the second level of the contract. Results of this Level-2 effort, presented in this report, consisted of testing the design concept in Riley`s 4.4 MBtu/hr pilot MSFB facility located at Riley Research Center in Worcester, Mass. The design and economics of the proof of concept facility developed in Level-1 of the contract were then revised in accordance with the findings of the pilot test program. A host site for commercial demonstration in Level-3 of the contract was also secured. It was determined that co-firing coal in combination with paper de-inking sludge will broaden the applicability of the design beyond conventional markets. International Paper (IP), the largest paper company in the world, is willing to participate in this part of the program. IP has offered its Hammermill operation at Lockhaven, Pa, site of a future paper de-inking plant, for the proof of concept installation. This plant will go in operation in 1994. It is recommended that METC proceed to the commercial demonstration of the design developed. The approach necessary to satisfy the needs of the customer while meeting the objectives of this program is presented along with a recommended plan of action.

Ake, T.R.; Dixit, V.B.; Mongeon, R.K.

1992-09-01T23:59:59.000Z

49

Materials performance in coal-fired fluidized-bed combustion environments  

SciTech Connect

Development of cogeneration systems that involve combustion of coal in a fluidized bed for the generation of electricity and process heat has been in progress for a number of years. This paper addresses some of the key components in these systems, materials requirements/performance, and areas where additional effort is needed to improve the viability of these concepts for electric power generation.

Natesan, K.

1993-07-01T23:59:59.000Z

50

ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM  

Science Conference Proceedings (OSTI)

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2004 through September 30, 2004. The following tasks have been completed. First, renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have started. Second, the design if the component parts of the CFBC system have been reviewed and finalized so that the drawings may be released to the manufacturers during the next quarter. Third, the experiments for solid waste (chicken litter) incineration have been conducted using a Thermogravimetric Analyzer (TGA). This is in preparation for testing in the simulated fluidized-bed combustor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

Wei-Ping Pan; Andy Wu; John T. Riley

2004-10-30T23:59:59.000Z

51

Proceedings of the sixth international conference on fluidized bed combustion. Volume II. Technical sessions  

SciTech Connect

The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. The papers covered recent developments in atmospheric and pressurized fluidized-bed combustion, especially the design, operation and control of pilot and demonstration plants. The cleanup of combustion products and the erosion, corrosion and fouling of gas turbines was emphasized also. Fifty-five papers from Volume 2 of the proceedings have been entered individually into EDB and ERA; five papers had been entered previously from other sources. (LTN)

none,

1980-08-01T23:59:59.000Z

52

Atmospheric fluidized bed combustion of municipal solid waste: test program results  

DOE Green Energy (OSTI)

Air classified municipal solid waste (MSW) was fired in an atmospheric fluidized bed combustor at low excess air to simulate boiler conditions. The 7 ft/sup 2/ combustor at Combustion Power Company's energy laboratory in Menlo Park, CA, incorporates water tubes for heat extraction and recycles elutriated particles to the bed. System operation was stable while firing processed MSW for the duration of a 300-h test. Low excess air, low exhaust gas emissions, and constant bed temperature demonstrated feasibility of steam generation from fluidized bed combustion of MSW. During the 300-h test, combustion efficiency averaged 99%. Excess air was typically 44% while an average bed temperature of 1400/sup 0/F and an average superficial gas velocity of 4.6 fps were maintained. Typical exhaust emission levels were 30 ppM SO/sub 2/, 160 ppM NO/sub x/, 200 ppM CO, and 25 ppM hydrocarbons. No agglomeration of bed material or detrimental change in fluidization properties was experienced. A conceptual design study of a full scale plant to be located at Stanford University was based on process conditions from the 300-h test. The plant would produce 250,000 lb/hr steam at the maximum firing rate of 1000 tons per day (TPD) processed MSW. The average 800 TPD firing rate would utilize approximately 1200 TPD raw MSW from surrounding communities. The Stanford Solid Waste energy Program was aimed at development of a MSW-fired fluidized bed boiler and cogeneration plant to supply most of the energy needs of Stanford University.

Preuit, L C; Wilson, K B

1980-05-01T23:59:59.000Z

53

Development of seal legs for atmospheric fluidized-bed combustion (AFBC) applications  

SciTech Connect

The use of fly ash recycle systems with bubbling atmospheric fluidized-bed combustion systems (AFBC) requires feed systems able to meter erosive, high temperature ash at up to 15-psi back pressure. Mechanical systems providing such pressure seals are complex, space consuming, and require significant maintenance to keep them operating. This report summarizes the research and development efforts leading to the successful demonstration of a seal leg system for recycling fly ash in fluidized-bed boilers. Results of this work include correlations for designing a seal leg recycle system and the application of this feed system to the TVA 160-MW AFBC demonstration plant. 27 figs., 5 tabs.

McKinsey, R.R.

1990-05-01T23:59:59.000Z

54

Devolatilization and ash comminution of two different sewage sludges under fluidized bed combustion conditions  

Science Conference Proceedings (OSTI)

Two different wet sewage sludges have been characterized under fluidized bed combustion conditions with reference to their devolatilization behavior and ash comminution with the aid of different and complementary experimental protocols. Analysis of the devolatilization process allowed to determine the size of fuel particle able to achieve effective lateral spreading of the volatile matter across the cross-section of medium-scale combustors. Primary fragmentation and primary ash particle characterization pointed out the formation of a significant amount of relatively large fragments. The mechanical properties of these fragments have been characterized by means of elutriation/abrasion tests using both quartz and sludge ash beds. (author)

Solimene, R.; Urciuolo, M.; Cammarota, A.; Chirone, R. [Istituto di Ricerche sulla Combustione (IRC) - CNR, Napoli (Italy); Salatino, P. [Istituto di Ricerche sulla Combustione (IRC) - CNR, Napoli (Italy); Dipartimento di Ingegneria Chimica Universita degli Studi di Napoli Federico II, Napoli (Italy); Damonte, G.; Donati, C.; Puglisi, G. [ECODECO Gruppo A2A, Giussago (PV) (Italy)

2010-04-15T23:59:59.000Z

55

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

DOE Green Energy (OSTI)

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2006 through March 31, 2006. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility were completed. The riser, primary cyclone and secondary cyclone of Circulating Fluidized Bed (CFB) Combustor have been erected. Second, the Mercury Control Workshop and the Grand Opening of Institute for Combustion Science and Environmental Technology (ICSET) were successfully held on February 22 and 23, 2006, respectively. Third, effects of hydrogen chlorine (HCl) and sulfur dioxide (SO{sub 2}) on mercury oxidation were studied in a drop tube reactor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

Wei-Ping Pan; Yan Cao; Songgeng Li

2006-04-01T23:59:59.000Z

56

Proceedings of the Sixth International Conference on Fluidized Bed Combustion. Volume 1. Plenary sessions  

Science Conference Proceedings (OSTI)

The Sixth International Conference on Fluidized Bed Combustion was held at the Atlanta Hilton, Atlanta, Georgia, April 9-11, 1980. The papers in this volume involved presentation of the research and development programs of the US (US DOE, TVA, EPRI and US EPA), United Kingdom, Federal Republic of Germany and the People's Republic of China. Eight papers from Vol. 1 (Plenary Sessions) of the proceedings have been entered individually into EDB and ERA. (LTN)

none,

1980-08-01T23:59:59.000Z

57

Second-generation pressurized fluidized bed combustion cold flow model tests of Phase 2 carbonizer  

SciTech Connect

Under US Department of Energy Contract DE-AC21-86MC21023, Foster Wheeler Development Corporation (FWDC) is developing a second-generation pressurized fulidized bed (PFB) combustion system. The second-generation system is an improvement over first-generation pressurized systems because higher gas turbine inlet temperatures, and thus greater system efficiencies can be achieved. In first-generation systems, the gas turbine operates at temperatures lower than those in the PFB combusting bed, with the latter being limited to approximately 1600{degree}F to control alkali release/gas turbine hot corrosion. The second-generation system overcomes this temperature restriction by including a carbonizer and a topping combustor in the system. The carbonizer is a PFB combustion unit that converts coal to a low-Btu fuel gas and char. The char is transferred to a PFB combustor (PFBC), where it is burned. The flue gas from the PFBC and the fuel gas from the carbonizer go to the topping combustor, where the fuel gas is burned and gas turbine inlet temperatures in excess of 2100{degree}F are generated. The PFBC can be operated with or without coal fed along with the char. Steam is generated in the PFBC, and additional coal fed to the PFBC with the char will result in more steam generation. However, excess air must be kept at a level sufficient to support combustion of the fuel gas in the topping combustor.

Shenker, J.

1991-07-01T23:59:59.000Z

58

Investigation of heat transfer and combustion in the Advanced Fluidized Bed Combustor (FBC). Technical progress report No. 2, January 1, 1994--March 31, 1994  

SciTech Connect

This technical report summarizes the research performed and progress achieved during the period of January 1, 1994 to March 31, 1994. Design and fabrication of the exploratory cold test model was continued with an arrangement of the auxiliary systems. The auxiliary systems are consisted of air supply system, test chamber, air humidifying unit, and instrumentations for measuring air flow rate, particle size distribution, and particle collision frequency/mass flux. The electrostatic impact probe and associated signal processing unit were designed and fabricated to measure particle mass flux and particle-probe collision frequency in the exploratory cold model. The progress of this project has been on schedule.

Lee, S.W.

1994-04-01T23:59:59.000Z

59

NETL: Combustion Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Turbines for APFBC Gas Turbines for APFBC FBC Repower Simple Description Detailed Description APFBC Specs GTs for APFBC Suited for Repowering Existing Power Plants with Advanced Pressurized Fluidized-Bed Combined Cycles APFBC combined cycles have high energy efficiency levels because they use modern, high-temperature, high-efficiency gas turbines as the core of a combined power cycle. This web page discusses a current U.S. Department of Energy project that is evaluating combustion turbines suited for repowering existing steam plants. The natural-gas-fueled version of the Siemens Westinghouse Power Corporation W501F. Modified versions of this gas turbine core are suited for operating in APFBC power plants. Contents: Introduction APFBC Repowering Considerations

60

Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine induustrial plant study  

SciTech Connect

Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100[degrees]F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600[degrees]F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

1992-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustion fbc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study  

SciTech Connect

Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

1992-07-01T23:59:59.000Z

62

Pressurized Fluidized Bed Combustion Second-Generation System Research and Development  

SciTech Connect

Research is being conducted under United States Department of Energy (DOE) Contract DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant--called a Second-Generation or Advanced Pressurized Circulating Fluidized Bed Combustion (APCFB) plant--offers the promise of efficiencies greater than 45% (HHV), with both emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. The APCFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized bed boiler (PCFB), and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2300 F and higher. A conceptual design was previously prepared for this new type of plant and an economic analysis presented, all based on the use of a Siemens Westinghouse W501F gas turbine with projected carbonizer, PCFB, and topping combustor performance data. Having tested these components at the pilot plant stage, the referenced conceptual design is being updated to reflect more accurate performance predictions together with the use of the more advanced Siemens Westinghouse W501G gas turbine and a conventional 2400 psig/1050 F/1050 F/2-1/2 in. steam turbine. This report describes the updated plant which is projected to have an HHV efficiency of 48% and identifies work completed for the October 2001 through September 2002 time period.

A. Robertson; D. Horazak; R. Newby; H. Goldstein

2002-11-01T23:59:59.000Z

63

DURABILITY EVALUATION AND PRODUCTION OF MANUFACTURED AGGREGATES FROM COAL COMBUSTION BY-PRODUCTS  

SciTech Connect

Under the cooperative agreement with DOE, the Research and Development Department of CONSOL Energy (CONSOL R&D), teamed with Universal Aggregates, LLC, to conduct a systematic study of the durability of aggregates manufactured using a variety of flue gas desulfurization (FGD), fluidized-bed combustion (FBC) and fly ash specimens with different chemical and physical properties and under different freeze/thaw, wet/dry and long-term natural weathering conditions. The objectives of the study are to establish the relationships among the durability and characteristics of FGD material, FBC ash and fly ash, and to identify the causes of durability problems, and, ultimately, to increase the utilization of FGD material, FBC ash and fly ash as a construction material. Manufactured aggregates made from FGD material, FBC ash and fly ash, and products made from those manufactured aggregates were used in the study. The project is divided into the following activities: sample collection and characterization; characterization and preparation of manufactured aggregates; determination of durability characteristics of manufactured aggregates; preparation and determination of durability characteristics of manufactured aggregate products; and data evaluation and reporting.

M. M. Wu

2005-02-01T23:59:59.000Z

64

Effect of pressure on second-generation pressurized fluidized bed combustion plants  

Science Conference Proceedings (OSTI)

In the search for a more efficient, less costly, and more environmentally responsible method for generating electrical power from coal, research and development has turned to advanced pressurized fluidized bed combustion (PFBC) and coal gasification technologies. A logical extension of this work is the second- generation PFBC plant, which incorporates key components of each of these technologies. In this new type of plant, coal devolatilized/carbonized before it is injected into the PFB combustor bed, and the low Btu fuel gas produced by this process is burned in a gas turbine topping combustor. By integrating coal carbonization with PFB coal/char combustion, gas turbine inlet temperatures higher than 1149{degrees}C (2100{degrees}F) can be achieved. The carbonizer, PFB combustor, and particulate-capturing hot gas cleanup systems operate at 871{degrees}C (1600{degrees}F), permitting sulfur capture by lime-based sorbents and minimizing the release of coal contaminants to the gases. This paper presents the performance and economics of this new type of plant and provides a brief overview of the pilot plant test programs being conducted to support its development.

Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Bonk, D.L. [USDOE Morgantown Energy Technology Center, WV (United States)

1993-06-01T23:59:59.000Z

65

Technical and economic assessment of fluidized-bed-augmented compressed-air energy-storage system. Volume I. Executive summary  

DOE Green Energy (OSTI)

An energy storage system which could be attractive for future electric utility peak-load applications is a modified gas turbine power system utilizing underground storage of very high pressure air. The compressed air energy storage (CAES) concept involves using off-peak electricity generated from indigenous coal or nuclear sources to compress air, storing the air in large underground facilities, and withdrawing the air during peak-load periods when it would be heated by combustion and expanded through gas turbines to generate power. The attractiveness of the CAES concept is based upon its potential to supply competitively priced peaking energy, to reduce peak-load power plant dependence on petroleum-based fuels, and to provide a means for leveling the utility system load demand. Therefore, a technical and economic assessment of coal-fired fluidized bed (FBC) combustor/compressed air energy storage (FBC/CAES) systems was performed and is described. The conclusions drawn from the FBC/CAES study program are encouraging. They indicate that pressurized FBC/CAES power plants should be technologically feasible, provide good performance, and be economically competitive. Specifically, it is concluded that: coal-fired FBC/CAES systems should be technically feasible in the near future and potentially attractive for peak-load power generation; and an open-bed PFBC/CAES configuration would provide the best candidate for early commercialization. It has relatively low risk combined with moderate cost and reasonable round-trip heat rate. It also has the potential for future growth options which tend to reduce costs and lower fuel consumption.

Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

1981-09-01T23:59:59.000Z

66

Development of topping combustor for advanced concept pressurized fluidized-bed combustion  

SciTech Connect

The objective of this program is to develop a topping combustor to operate in a Second-Generation Pressurized Fluidized Bed (PFBC) Combined Cycle power generation system. The combustor must be able to: lightoff with a high heating value fuel and compressor discharge air to heat the fluidized bed(s) and provide power for PFBC and carbonizer off-line; operate with 1,600 F oxygen depleted air from the PFBC and high heating value fuel to handle carbonizer off-line conditions; ramp up to 100% carbonizer syngas firing (normal operation) by firing a blend of decreasing high heating value fuel and increasing low heating value syngas; utilize the vitiated air, at temperatures up to 1,600 F for as much cooling of the metal combustor as possible, thus minimizing the compressor bypass air needed for combustor cooling; provide an acceptance exit temperature pattern at the desired burner outlet temperature (BOT); minimize the conversion of fuel bound nitrogen (FBN) present in the syngas to NO{sub x}; and have acceptably high combustion efficiency, and low emissions of carbon monoxide, UHC, etc. This paper reports the results of tests of a 14 inch diameter topping combustor with a modified fuel-rich zone conducted in June 1993, design of an 18 inch diameter topping combustor to be tested in June 1994 and afterwards, and results of a 50% scale cold flow model which has been built and tested.

Domeracki, W.F.; Dowdy, T.E.; Bachovchin, D.

1994-10-01T23:59:59.000Z

67

Analysis/control of in-bed tube erosion phenomena in the fluidized bed combustion system. Final technical report  

Science Conference Proceedings (OSTI)

Research is presented on erosion and corrosion of fluidized bed combustor component materials. The characteristics of erosion of in-bed tubes was investigated. Anti-corrosion measures were also evaluated.

Lee, Seong W.

1996-11-01T23:59:59.000Z

68

Advanced Circulating Pressurized Fluidized Bed Combustion (APFBC) Repowering Concept Assessment at Duke Energy's Dan River Station  

NLE Websites -- All DOE Office Websites (Extended Search)

Wolfmeyer et al. APFBC Repowering Assessment at Duke Energy's Dan River Station Wolfmeyer et al. APFBC Repowering Assessment at Duke Energy's Dan River Station paper 970561 Page 1 of 36 Advanced Circulating Pressurized Fluidized Bed Combustion (APFBC) Repowering Concept Assessment at Duke Energy's Dan River Station John C. Wolfmeyer, P.E., and Cal Jowers, P.E. Duke Energy / Charlotte, North Carolina Richard E. Weinstein, P.E., Harvey N. Goldstein, P.E., and Jay S. White Parsons Power Group Inc. / Reading, Pennsylvania Robert W. Travers, P.E. U.S. Department of Energy Office of Fossil Energy / Germantown, Maryland electronic mail addresses/phone no. electronic mail addresses/phone no. Wolfmeyer { JCWolfme@Duke-Energy.COM 704 / 382-4017 Goldstein { Harvey_N_Goldstein@Parsons.COM 610 / 855-3281 Jowers { -- 704 / 382-9577 White { Jay_S_White@Parsons.COM

69

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

SciTech Connect

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period October 1, 2005 through December 31, 2005. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility is nearly completed. The erection of the CFBC facility is expected to start in the second week of February, 2006. Second, effect of flue gas components on mercury oxidation was investigated in a drop tube reactor. As a first step, experiment for mercury oxidation by chlorine was investigated. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

Wei-Ping Pan; Songgeng Li

2006-01-01T23:59:59.000Z

70

Supplemental Comprehensive Report to Congress - Clean Coal Technology Program. Tidd Pressurized Fluidized Bed Combustion (PFBC) Project  

SciTech Connect

The Department of Energy (DOE) in February 1987 submitted a Comprehensive Report to Congress for a Clean Coal Technology (CCT) project entitled {open_quotes}Tidd PFBC (Pressurized Fluidized Bed Combustion) Demonstration Project.{close_quotes} In that document, DOE reported to Congress that the Government share of project costs would be $60,200,000 and that the participant agreed to absorb any cost overruns, even though the public law contained provisions which would allow DOE to share in project cost growths up to 25 percent of the original financial assistance. This Supplemental Report is being submitted because DOE now intends to increase its contribution to the project by approximately 11 percent to facilitate extension of the original 3-year operating period by one additional year. DOE`s overall percentage cost share resulting from this extension will not exceed DOE`s overall percentage cost share in the original agreement.

Not Available

1994-03-01T23:59:59.000Z

71

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Final report  

DOE Green Energy (OSTI)

The problem addressed by our invention is that of municipal solid waste utilization. The dimensions of the problem can be visualized by the common comparison that the average individual in America creates in five years time an amount of solid waste equivalent in weight to the Statue of Liberty. The combustible portion of the more than 11 billion tons of solid waste (including municipal solid waste) produced in the United States each year, if converted into useful energy, could provide 32 quads per year of badly needed domestic energy, or more than one-third of our annual energy consumption. Conversion efficiency and many other factors make such a production level unrealistic, but it is clear that we are dealing with a very significant potential resource. This report describes research pertaining to the co-combustion of oil shale with solid municipal wastes in a circulating fluidized bed. The oil shale adds significant fuel content and also constituents that can possible produce a useful cementitious ash.

NONE

1996-06-30T23:59:59.000Z

72

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

DOE Green Energy (OSTI)

This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2007 through March 31, 2007. The effort in this quarter has concentrated on installing the CFBC Facility and for conducting cold fluidization operations tests in the CFBC facility. The assembly of the ash recirculation pipe duct from the cyclones back to the bed area of the combustor, including the upper and lower loop seals was completed. The electric bed pre-heater was installed to heat the fluidizing air as it enters the wind box. The induced draft fan along with its machine base and power supply was received and installed. The flue gas duct from secondary cyclone outlet to induced draft fan inlet was received and installed, as well as the induced fan flue gas discharge duct. Pressure testing from the forced draft fan to the outlet of the induced fan was completed. In related research a pilot-scale halogen addition test was conducted in the empty slipstream reactor (without (Selective Catalytic Reduction) SCR catalyst loading) and the SCR slipstream reactor with two commercial SCR catalysts. The greatest benefits of conducting slipstream tests can be flexible control and isolation of specific factors. This facility is currently used in full-scale utility and will be combined into 0.6MW CFBC in the future. This work attempts to first investigate performance of the SCR catalyst in the flue gas atmosphere when burning Powder River Basin (PRB), including the impact of PRB coal flue gas composition on the reduction of nitrogen oxides (NOx) and the oxidation of elemental mercury (Hg(0)) under SCR conditions. Secondly, the impacts of hydrogen halogens (Hydrogen fluoride (HF), Hydrogen chloride (HCl), Hydrogen Bromide (HBr) and Hydrogen Iodine (HI)) on Hg(0) oxidation and their mechanisms can be explored.

Wei-Ping Pan; Yan Cao; John Smith

2007-03-31T23:59:59.000Z

73

Dynamic behavior and control requirements of an atmospheric fluidized-bed coal combustion power plant: A conceptual study  

Science Conference Proceedings (OSTI)

A first-principles model of a nominal 20-MW atmospheric-pressure fluidized-bed coal combustion (AFBC) power plant was developed to provide insight into fundamental dynamic behavior of fluidized-bed systems. The control system included major loops for firing rate, steam pressure and temperature, forced and induced draft air flow, SO/sub 2/ emission, drum water level, evaporator recirculation, and bed level. The model was used to investigate system sensitivity to design features such as the distribution of heat transfer surface among the bed boiler and superheater and the out-of-bed superheater. Also calculated were the sensitivities of temperatures, pressures, and flow rates to changes in throttle, attemperator, and feedwater valve settings and forced and induced draft damper settings. The large bed mass, accounting for approx.40% of the active heat capacity, may vary under load change and could impact controller tuning. Model analysis indicated, however, that for the design studied, the change in bed mass does not appear to significantly affect controller tuning even if the bed mass varies appreciably under load-following conditions. Several bed designs are being considered for AFBC plants, some with partitions between bed sections and some without, and these differences may significantly affect the load-following capability of the plant. The results indicated that the slumping mode of operation can cause distortion of the heat source/sink distribution in the bed such that the load-following capability (rate of load change) of the plant may be reduced by as much as a factor of 5 compared with the mode in which tube surface is exposed. 9 refs., 13 figs., 6 tabs.

Smith, O.L.

1987-06-01T23:59:59.000Z

74

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report ending March 31, 1996  

SciTech Connect

This document contains a progress report for the Project Description of Grant No. DE-FG01-94CE15612, {open_quotes}Develop a Combustion of Municipal Solid Waste with Oil Shale in Circulating Fluidized Bed{close_quotes}, dated September 2, 1994. The Project Description lists and describes six tasks, four of which are complete, and two others nearing completion. A summary of progress on each task is presented in this report.

1996-04-01T23:59:59.000Z

75

Copyright 1999 by ASMEGas Turbines for Advanced Pressurized Fluidized Bed Combustion Combined Cycles (APFBC)  

E-Print Network (OSTI)

This paper describes gas turbines from several manufacturers that, with modification, have potential for repowering existing steam plants with high efficiency advanced circulating pressurized fluidized bed combustion combined cycle (APFBC) technology. The paper discusses the issues that must be addressed by these manufacturers if they are to have units suited for entry into the APFBC market. APFBC repowering retains the continued use of existing coal-fired capacity with acceptable economy. APFBC repowering significantly improves the energy efficiency of an existing plant, the plants environmental performance, and reduces operating costs. Coal-fired APFBC is now under test in large scale demonstrations, and will be ready for commercial repowering installations around year 2005, so it is prudent to begin evaluating the types of APFBC-modified units that might be offered from different manufacturers. APFBC repowering has some important advantages for the power generating company owner. For example, repowering the 106 MWe output Carolina Power & Light Companys (CP&L) L.V. Sutton steam station Unit 2 with APFBC would boost output and improve the energy efficiency.

John M. Rockey; Richard E. Weinstein

1999-01-01T23:59:59.000Z

76

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending 31 December 1994  

DOE Green Energy (OSTI)

The test plan is designed to demonstrate that oil shale co-combusted with municipal solid waste (MSW) can reduce gaseous pollutants (SO{sub 2}, CO) to acceptable levels (90%+ reduction) and produce a cementitious ash which will, at a minimum, be acceptable in normal land fills. The small-scale combustion testing will be accomplished in a 6-in. circulating fluid bed combustor (CFBC) at Hazen Research Laboratories. This work will be patterned after the study the authors conducted in 1988 when coal and oil shale were co-combusted in a program sponsored by the Electric Power Research Institute. The specific purpose of the test program will be to: determine the required ratio of oil shale to MSW by determining the ratio of absorbent to pollutant (A/P); determine the effect of temperature and resident time in the reactor; and determine if kinetic model developed for coal/oil shale mixture is applicable.

Not Available

1995-01-01T23:59:59.000Z

77

Modeling of the fluidized bed combustion process and NOx emissions using self-organizing maps: An application to the diagnosis of process states  

Science Conference Proceedings (OSTI)

Efforts to reduce harmful emissions and the increasing demands for combustion efficiency have generated a number of challenges for power plants. Changes in the operation of a combustion process, for example, can induce fluctuations that have unexpected ... Keywords: Artificial neural network, Energy production, Fluidized bed, K-means, Nitrogen oxide, Self-organizing map

M. Liukkonen; T. Hiltunen; E. Hlikk; Y. Hiltunen

2011-05-01T23:59:59.000Z

78

Pulsed atmospheric fluidized bed combustion. Quarterly technical progress report, October--December 1993  

Science Conference Proceedings (OSTI)

This quarterly report consist almost entirely of engineering drawings of the proposed pulse fluidized-bed combustor.

Not Available

1994-01-31T23:59:59.000Z

79

Characterization of a fluidized-bed combustion ash to determine potential for environmental impact. Final report  

SciTech Connect

A 440-megawatt, circulating fluidized-bed combustion (CFBC), lignite-fired power plant is planned for construction in Choctaw County north of Ackerman, Mississippi. This power plant will utilize Mississippi lignite from the first lignite mine in that state. Malcolm Pirnie, Inc., is working with the power plant developer in the current planning and permitting efforts for this proposed construction project. In order to accommodate Mississippi state regulatory agencies and meet appropriate permit requirements, Malcolm Pirnie needed to provide an indication of the characteristics of the by-products anticipated to be produced at the proposed plant. Since the Mississippi lignite is from a newly tapped mine and the CFBC technology is relatively new, Malcolm Pirnie contacted with the Energy and Environmental Research Center (EERC) to develop and perform a test plan for the production and characterization of ash similar to ash that will be eventually produced at the proposed power plant. The work performed at the EERC included two primary phases: production of by-products in a bench-scale CFBC unit using lignite provided by Malcolm Pirnie with test conditions delineated by Malcolm Pirnie to represent expected operating conditions for the full-scale plant; and an extensive characterization of the by-products produced, focusing on Mississippi regulatory requirements for leachability, with the understanding that return of the by-product to the mine site was an anticipated by-product management plan. The overall focus of this project was the environmental assessment of the by-product expected to be produced at the proposed power plant. Emphasis was placed on the leachability of potentially problematic trace elements in the by-products. The leaching research documented in this report was performed to determine trends of leachability of trace elements under leaching conditions appropriate for evaluating land disposal in monofills, such as returning the by-products to the mine site.

Hassett, D.J.; Henderson, A.K.; Pflughoeft-Hassett, D.F.; Mann, M.D.; Eylands, K.E.

1997-10-01T23:59:59.000Z

80

Energy and environmental research emphasizing low-rank coal -- Task 3.8, Pressurized fluidized-bed combustion  

DOE Green Energy (OSTI)

The goal of the PFBC activity is to generate fundamental process information that will further the development of an economical and environmentally acceptable second-generation PFBC. The immediate objectives focus on generic issues, including the performance of sulfur sorbents, fate of alkali, and the Resource Conservation and Recovery Act (RCRA) heavy metals in PFBC. A great deal of PFBC performance relates to the chemistry of the bed and the contact between gas and solids that occurs during combustion. These factors can be studied in a suitably designed bench-scale reactor. The present studies are focusing on the emission control strategies applied in the bed, rather than in hot-gas cleaning. Emission components include alkali and heavy metals in addition to SO{sub 2}, NO{sub x}, N{sub 2}O, and CO. The report presents: a description of the pressurized fluidized-bed reactor (PFBR); a description of the alkali sampling probe; shakedown testing of the bench-scale PFBR; results from alkali sampling; results from sulfur sorbent performance tests; and results from refuse-derived fuel and lignite combustion tests.

Mann, M.D.; Henderson, A.K.; Swanson, M.L.

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustion fbc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A Summary of EPRI's Pulverized Coal (PC) and Circulating Fluidized Bed (CFB) Post Combustion CO2 Capture Retrofit Studies: The Five North American Retrofit Cases  

Science Conference Proceedings (OSTI)

This report examines the feasibility of retrofitting post-combustion capture (PCC) technology to existing pulverized coal (PC) and/or circulating fluidized bed (CFB) power plants, for five different host participant sites. The knowledge gained from previous CoalFleet ultra-supercritical PCC design studiesdescribed in the Electric Power Research Institute (EPRI) report An Engineering and Economic Assessment of Post-Combustion CO2 Capture for 1100 F Ultra-Supercritical Pulverized ...

2012-12-31T23:59:59.000Z

82

High-temperature-staged fluidized-bed combustion (HITS), bench scale experimental test program conducted during 1980. Final report  

Science Conference Proceedings (OSTI)

An experimental program was conducted to evaluate the process feasibility of the first stage of the HITS two-stage coal combustion system. Tests were run in a small (12-in. ID) fluidized bed facility at the Energy Engineering Laboratory, Aerojet Energy Conversion Company, Sacramento, California. The first stage reactor was run with low (0.70%) and high (4.06%) sulfur coals with ash fusion temperatures of 2450/sup 0/ and 2220/sup 0/F, respectively. Limestone was used to scavenge the sulfur. The produced low-Btu gas was burned in a combustor. Bed temperature and inlet gas percent oxygen were varied in the course of testing. Key results are summarized as follows: the process was stable and readily controllable, and generated a free-flowing char product using coals with low (2220/sup 0/F) and high (2450/sup 0/F) ash fusion temperatures at bed temperatures of at least 1700/sup 0/ and 1800/sup 0/F, respectively; the gaseous product was found to have a total heating value of about 120 Btu/SCF at 1350/sup 0/F, and the practicality of cleaning the hot product gas and delivering it to the combustor was demonstrated; sulfur capture efficiencies above 80% were demonstrated for both low and high sulfur coals with a calcium/sulfur mole ratio of approximately two; gasification rates of about 5,000 SCF/ft/sup 2/-hr were obtained for coal input rates ranging from 40 to 135 lbm/hr, as required to maintain the desired bed temperatures; and the gaseous product yielded combustion temperatures in excess of 3000/sup 0/F when burned with preheated (900/sup 0/F) air. The above test results support the promise of the HITS system to provide a practical means of converting high sulfur coal to a clean gas for industrial applications. Sulfur capture, gas heating value, and gas production rate are all in the range required for an effective system. Planning is underway for additional testing of the system in the 12-in. fluid bed facility, including demonstration of the second stage char burnup reactor.

Anderson, R E; Jassowski, D M; Newton, R A; Rudnicki, M L

1981-04-01T23:59:59.000Z

83

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

NLE Websites -- All DOE Office Websites (Extended Search)

EstablishmEnt EstablishmEnt of an EnvironmEntal Control tEChnology laboratory with a CirCulating fluidizEd-bEd Combustion systEm Description In response to President Bush's Clear Skies Initiative in 2002-a legislative proposal to control the emissions of nitrogen oxides (NO x ), sulfur dioxide (SO 2 ), and mercury (Hg) from power plants-the National Energy Technology Laboratory (NETL) organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified four high- priority research needs for controlling emissions from fossil-fueled power plants: multipollutant control, improved sorbents and catalysts, mercury monitoring and capture, and an improved understanding of the underlying combustion chemistry.

84

COMBUSTION  

E-Print Network (OSTI)

This document presents an overview of combustion as a waste management strategy in relation to the development of material-specific emission factors for EPAs Waste Reduction Model (WARM). Included are estimates of the net greenhouse gas (GHG) emissions from combustion of most of the materials considered in WARM and several categories of mixed waste. 1. A SUMMARY OF THE GHG IMPLICATIONS OF COMBUSTION Combustion of municipal solid waste (MSW) results in emissions of CO 2 and N2O. Note that CO2 from combustion of biomass (such as paper products and yard trimmings) is not counted because it is biogenic (as explained in the Introduction & Overview chapter). WARM estimates emissions from combustion of MSW in waste-to-energy (WTE) facilities. WARM does not consider any recovery of materials from the MSW stream that may occur before MSW is delivered to the combustor. WTE facilities can be divided into three categories: (1) mass burn, (2) modular and (3) refusederived fuel (RDF). A mass burn facility generates electricity and/or steam from the combustion of

unknown authors

2012-01-01T23:59:59.000Z

85

Characterizing and modeling combustion of mild-gasification chars in pressurized fluidized beds  

Science Conference Proceedings (OSTI)

Performance estimates for the UCC2, IGTP1, and IGTP2 chars were made for a typical utility PFBC boiler having nominal characteristics similar to those of the American Electric Power 75 MW(e) Tidd PFBC demonstration facility. Table 2 summarizes the assumed boiler operating conditions input to the PFBC simulation code. Input fuel parameters for the chars and reference fuels were determined from their standard ASTM analyses (Table 1) and the results of the bench-scale characterization tests at B&W`s Alliance Research Center. The required characterization information for the reference fuels was available from the B&W data base, and the combustion reactivity information for the mild-gasification chars was generated in the pressurized bench-scale reactor as described earlier. Note that the combustion reactivity parameters for Beulah lignite are those previously measured at low-pressure conditions. It was necessary to use the previous values as the new parameters could not be accurately measured in the pressurized bench-scale facility. Based on very limited measurements of particle size attrition in paste-type feed systems, it was assumed that all of the fuels (including the chars) would have a very small (essentially negligible) degree of attrition in the feed system. Char devolatilization parameters were assumed to be equal to those of anthracite because of the very low levels of volatiles present in UCC2, IGTP1, and IGTP2. Major fuel input parameters and higher heating values are summarized in Table 3.

Daw, C.S.

1993-03-01T23:59:59.000Z

86

Pulsed atmospheric fluidized bed combustion. Technical progress report, April--June 1995  

Science Conference Proceedings (OSTI)

Design activities for this report period included: (1) Mechanical. Stress analysis calculations were performed on the steam/water pressure piping. Pipe support design and drawings were completed by Duke Fluor Daniel. The fluid bed distributor bubble cap design was revisited and changes made for ease of maintenance. (2) Electrical and Instrumentation. Control and instrumentation scheme proposed earlier, was based on independent single loop controllers. After careful review, it is decided to go for state of art distributed control system (DCS) which uses programmable logic controllers (PLC). In addition, coal/limestone pickup hopper fabrication was completed during this period and shipped to the site. The coal/limestone floating caps have been made at MTCI and ready for shipping. All major equipment installation was completed. The pulse combustor steam/water jacket and air plenum were installed. Construction of control room building was just completed.

NONE

1995-07-31T23:59:59.000Z

87

AFBC (atmospheric fluidized-bed combustion) conversion at Northern States Power Company: Volume 1, Project origins: Final report  

SciTech Connect

This is the first volume in a series of four reports detailing the conversion of Northern States Power Company's (NSP) Black Dog unit 2 from pulverized-coal firing to atmospheric fluidized-bed combustion (AFBC). This particular report describes the important events and decisions that led to NSP's selection of its Black Dog unit 2 for conversion to AFBC, and it provides an overview of AFBC technology and a discussion of the AFBC conversion market. The purpose of these reports is to disseminate the information gathered during the Black Dog AFBC Conversion Project to utilities evaluating the technical feasibility and cost effectiveness of converting units within their systems from pulverized-coal firing to AFBC. To this end, each volume in this series of reports presents material about a different aspect of the Black Dog project. Volume 2 - Unit Design describes the design of the new AFBC system and the important decisions that led to its final configuration; Volume 3 - Unit Demolition describes the major activities that occurred during the demolition and relocation phase; and Volume 4 - Unit Construction describes the major activities that occurred during the construction phase of the project. 17 refs., 9 figs., 12 tabs.

deBrun Duffy, J.; Hinrichsen, D.

1987-11-01T23:59:59.000Z

88

Engineering systems analysis of pressurized fluidized-bed-combustion power systems  

SciTech Connect

This effort was conducted to provde supporting data for the research and development program on pressurized fluidized bed combustor (PFBC) systems being continued under the auspices of the Office of Coal Utilization of DOE. This report deals with the first phase of the effort, designated Task 1, which was scoped to be a somewhat broad review of PFBC technology and an analysis to determine its potential and sensitivity to key development needs. Background information pertaining to the application of PFBC to the market for coal-fired technology is included. The status of development is reviewed and the deficiencies in data are identified. Responses to a survey of PFBC developers are reviewed with emphasis on the high risk areas of the PFBC concept. Some of these problems are: uncertainty of life of gas turbine components; lack of demonstration of load following; and hot solids handling. Some high risk areas, such as the gas cleanup or gas turbine systems, can be relieved by reducing the severity of design conditions such as the turbine inlet temperature. Alternate turbine designs or plant configurations are also possible solutions. Analyses were performed to determine whether the advantages held by PFBC systems in cost, efficiency, and emissions would be nullified by measures taken to reduce risk. In general, the results showed that the attractive features of the PFBC could be preserved.

Graves, R.L.; Griffin, F.P.; Lackey, M.E.

1982-04-01T23:59:59.000Z

89

Comparing the greenhouse gas emissions from three alternative waste combustion concepts  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Tsupari, Eemeli; Sipilae, Kai [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Hupa, Mikko [Aabo Akademi Process Chemistry Centre, Piispankatu 8, FIN 20500 Turku (Finland)

2012-03-15T23:59:59.000Z

90

Co-firing a pressurized fluidized-bed combustion system with coal and refuse derived fuels and/or sludges. Task 16  

Science Conference Proceedings (OSTI)

The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal waste. Leading this approach, the atmospheric fluidized-bed combustor (AFBC) has demonstrated its commercial acceptance in the utility market as a reliable source of power burning a variety of waste and alternative fuels. The fluidized bed, with its stability of combustion, reduces the amount of thermochemical transients and provides for easier process control. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Wastes considered for co-firing include municipal solid waste (MSW), tire-derived fuel (TDF), sewage sludge, and industrial de-inking sludge. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

DeLallo, M.; Zaharchuk, R.

1994-01-01T23:59:59.000Z

91

The structure of a combustion front propagating in a fixed bed of crushed oil shale : co-current configuration.  

E-Print Network (OSTI)

??La propagation d'un front de combustion au sein d'un milieu poreux ractif met en uvre des mcanismes thermiques, chimiques et de transfert, avec de forts (more)

Ferreira Martins, Marcio

2008-01-01T23:59:59.000Z

92

Site Considerations for Repowering With Advanced Circulating Pressurized Fluidized Bed Combustion (APFBC) from the L.V. Sutton Station Concept Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Tonnemacher et al., Site Considerations for Repowering With APFBC from the L.V. Sutton Station Concept Assessment Tonnemacher et al., Site Considerations for Repowering With APFBC from the L.V. Sutton Station Concept Assessment paper 970562 Page 1 of 36 Site Considerations for Repowering with Advanced Circulating Pressurized Fluidized Bed Combustion (APFBC) from the L.V. Sutton Station Concept Assessment Gary C. Tonnemacher, P.E., and David C. Killen, P.E. Carolina Power & Light Company Raleigh, North Carolina Richard E. Weinstein, P.E., Harvey N. Goldstein, P.E., and Jay S. White Parsons Power Group Inc. Reading, Pennsylvania Robert W. Travers, P.E. U.S. Department of Energy Office of Fossil Energy / Germantown, Maryland electronic mail addresses/phone no. electronic mail addresses/phone no. Tonnemacher{ Gary.Tonnemacher@CPLC.COM 919 / 546-6091 Goldstein { Harvey_N_Goldstein@Parsons.COM

93

A review of the efficacy of silicon carbide hot-gas filters in coal gasification and pressurized fluidized bed combustion environments  

SciTech Connect

Reviews of relevant literature and interviews with individuals cognizant of the state of the art in ceramic filters for hot-gas cleaning were conducted. Thermodynamic calculations of the stability of various ceramic phases were also made. Based on these calculations, reviews, and interviews, conclusions were reached regarding the use of silicon carbide-based ceramics at hot-gas filter media. Arguments are presented that provide the basis for the conclusion that high-purity silicon carbide is a viable material in the integrated coal gasification combined cycle (IGCC) and pressurized fluidized-bed combustion (PFBC) environments which were examined. Clay-bonded materials are, the authors concluded, suspect for these applications, their extensive use notwithstanding. Operations data reviewed focused primarily on clay-bonded filters, for which a great deal of experience exists. The authors used the clay-bonded filter experience as a point of reference for their review and analysis.

Judkins, R.R.; Stinton, D.P.; DeVan, J.H. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

1996-07-01T23:59:59.000Z

94

Lightweight combustion residues-based structural materials for use in mines. Quarterly report, 1 March 1995--31 May 1995  

SciTech Connect

The overall goal of this PrOject is to develop, design, and test artificial supports (post and crib members), for use in mines, which will be manufactured from coal combustion by-products (CCB) based lightweight structural materials. During the last quarter (Dec. 1, 1994--Feb. 28, 1995), it was reported that low LOI ({approx}5%) F-fly ash-based lightweight materials with density ranging from 70-1 110 pcf and compressive strength ranging from about 1,500 psi to 5,000 psi had been developed. During this quarter, 1) similar materials were developed using higher LOI ({approx}1O%) F-fly ash, 2) performance of materials using nylon fibers rather than polypropylene fibers was examined, 3) effect of addition of small amounts of FBC spent bed material on strength-deformation properties was evaluated, 4) flexural strength tests were performed on 2 in. X 2 in. X 12 in. cast beams, 5) compressive strength tests were performed on cast hollow cylinders (6 in. outer diameter, 2.762 in. inner diameter and 12 in. long) and 6) limited number of tests were conducted to determine the effect of mixing speed on strength of developed materials. The results of these studies indicate that 1) suitable lightweight materials using 60--65% higher LOI F-fly ash can be developed for fabrication of artificial supports, 2) nylon fibers perform significantly better than Polypropylene fibers, 3) loss of strength and deformability due to the use of higher LOI fly ash can be offset to some extent by adding 5--10% FBC spent bed material, 4) relationship between flexural strength and compressive strength, similar to that in concrete exists, 5) strength-deformation properties of hollow cylinders are similar to 3 in. X 6 in. solid cylinders, and 6) strength and deformation modulus increase with mixing speed. Two mixes for final development of lightweight materials have been identified and final test` will begin June 1, 1995.

Chugh, Y.P.; Zhang, Yuzhuo; Ghosh, A.K.; Palmer, S.R.; Peng, Suping; Xiao, Y

1995-12-31T23:59:59.000Z

95

Finial Scientific/Technical Report: Application of a Circulating Fluidized Bed Process for the Chemical Looping Combustion of Solid Fuel  

DOE Green Energy (OSTI)

Chemical Looping Combustion is a novel combustion technology for the inherent separation of the greenhouse gas, CO{sub 2}. In 1983, Richter and Knoche proposed reversible combustion, which utilized both the oxidation and reduction of metal. Metal associated with its oxidized form as an oxygen carrier was circulated between two reactors--oxidizer and reducer. In the reducer, the solid oxygen carrier reacts with the fuel to produce CO{sub 2}, H{sub 2}O and elemental metal only. Pure CO{sub 2} will be obtained in the exit gas stream from the reducer after H{sub 2}O is condensed. The pure CO{sub 2} is ready for subsequent sequestration. In the oxidizer, the elemental metal reacts with air to form metal oxide and separate oxygen from nitrogen. Only nitrogen and some unused oxygen are emitted from the oxidizer. The advantage of CLC compared to normal combustion is that CO{sub 2} is not diluted with nitrogen but obtained in a relatively pure form without any energy needed for separation. In addition to the energy-free purification of CO{sub 2}, the CLC process also provides two other benefits. First, NO{sub x} formation can be largely eliminated. Secondly, the thermal efficiency of a CLC system is very high. Presently, the CLC process has only been used with natural gas. An oxygen carrier based on an energy balance analysis and thermodynamics analysis was selected. Copper (Cu) seems to be the best choice for the CLC system for solid fuels. From this project, the mechanisms of CuO reduction by solid fuels may be as follows: (1) If pyrolysis products of solid fuels are available, reduction of CuO could start at about 400 C or less. (2) If pyrolysis products of solid fuels are unavailable and the reduction temperature is lower, reduction of CuO could occur at an onset temperature of about 500 C, char gasification reactivity in CO{sub 2} was lower at lower temperatures. (3) If pyrolysis products of solid fuels are unavailable and the reduction temperature is higher than 750 C, all reaction reactivities were improved, especially the CO{sub 2} gasification reactivity of char. Thus, the reduction of CuO by the gasification product CO could proceed quickly. Based on the results obtained, the following coal characteristics would be desirable for the Chemical Looping Combustion process: high volatile matter with a high reactivity of the char produced. PRB coal meets these criteria while being comparatively less expensive and also very abundant. The high moisture content present in PRB coal might also increase the reactivity for char gasification through the development of pore structure and specific surface area in the char during pyrolysis. Biomass materials are also suitable, considering the reaction mechanism of CLC system of solid fuels. The feasibility of the chemical looping combustion process of solid fuels was verified by focusing on PRB coal and biomass. Based on PRB coal as the preferred solid fuel in the development of the CLC system, the mass, energy and system in a dual reactor recirculation system has been determined. In the Cu oxidation tests, it was confirmed that the heating rate is the most important effect on the Cu oxidation process. Lower heating rates and lower operational temperatures would result in incomplete conversion of Cu to CuO. Cu{sub 2}O may be the intermediate product. The operating temperature did not affect the reaction rate of the oxidation process. Under any operating conditions, the exothermic properties are clearly shown.

Dr. Wei-Ping Pan; Dr. John T. Riley

2005-10-10T23:59:59.000Z

96

Performance and economics of co-firing a coal/waste slurry in advanced fluidized-bed combustion  

DOE Green Energy (OSTI)

This study`s objective was to investigate co-firing a pressurized fluidized-bed combustor with coal and refuse-derived fuel for the production of electricity and the efficient disposal of waste. Performance evaluation of the pressurized fluidized-bed combustor (PFBC) power plant co-fired with refuse-derived fuel showed only slightly lower overall thermal efficiency than similar sized plants without waste co-firing. Capital costs and costs of electricity are within 4.2 percent and 3.2 percent, respectively, of waste-free operation. The results also indicate that there are no technology barriers to the co-firing of waste materials with coal in a PFBC power plant. The potential to produce cost-competitive electrical power and support environmentally acceptable waste disposal exists with this approach. However, as part of technology development, there remain several design and operational areas requiring data and verification before this concept can realize commercial acceptance. 3 refs., 3 figs., 4 tabs.

DeLallo, M.R.; Zaharchuk, R. [Parsons Power Group, Inc., Reading, PA (United States); Reuther, R.B.; Bonk, D.L. [USDOE Morgantown Energy Technology Center, WV (United States)

1996-09-01T23:59:59.000Z

97

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Second quarterly report ending March 31, 1995  

DOE Green Energy (OSTI)

The Project Description lists and describes six tasks, three of which are virtually complete, with three others underway. A summary of progress on each task follows. Task 1: Development of a Detailed Test Plan. This task is complete. Task 2: Preparation of Test Equipment. This task is complete. Two test units (a six-inch internal diameter and a fifteen-inch internal diameter unit) were prepared and used as described under Task 4. Task 3: Obtain test materials. The required amounts of oil shale and pelletized municipal solid waste have been obtained, tested, and found to be suitable. We have obtained an adequate quantity of a pelletized ``standard`` MSW from BEPR/BFI, Eden Prairie, MN. For test purposes, we synthesized the desired ``worst probable case`` of MSW by the addition of sulfur and chlorine to reach the sulfur and chlorine levels characteristic of such waste. Task 4: Execute Feasibility Demonstration Program. The fluidized bed tests associated with the program have been completed. Analysis of the results is continuing. Testing of the waste stream material generated from these runs will begin about 6 April to evaluate its possible use as cement for specific applications. Information on the technical feasibility of the invention as indicated by the fluid bed test program is included as Attachment A. The results demonstrate that the process is technically feasible. Task 5: Data Analysis. This task is beginning. Task 6: Project Management, Reporting, and Necessary Liaison Activities. Those portions of this task associated with work done on Tasks 1 through 4 have been completed. This task will continue throughout the period of the study. In summary, work is proceeding within budget. No serious problems in the next scheduled tasks are foreseen.

NONE

1995-04-01T23:59:59.000Z

98

Fluidized bed injection assembly for coal gasification  

DOE Patents (OSTI)

A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

1981-01-01T23:59:59.000Z

99

Coal combustion products 2007 production and use report  

Science Conference Proceedings (OSTI)

The American Coal Ash Association's 2007 Annual Coal Combustion Products (CCP) are derived from data from more than 170 power plants. The amount of CCPs used was 40.55%, a decrease of 2.88% from 2006, attributed to reduced fuel burn and a decrease in demand in the building industry. Figures are given for the production of fly ash, flue gas desulfurization gypsum, bottom ash, FBC ash and boiler slag. The article summarises results of the survey. 1 ref., 1 tab.

NONE

2009-07-01T23:59:59.000Z

100

Experimental study of oxy-fuel combustion and sulfur capture in a mini-CFBC  

SciTech Connect

Oxy-fuel technology uses effectively pure oxygen for fossil fuel combustion in order to obtain a highly concentrated CO{sub 2} stream, suitable for direct compression and sequestration. It is an effective technology to reduce greenhouse gas emissions to the atmosphere from large point sources such as power generation plants. Oxy-fuel FBC technology has the combined advantage of producing high CO{sub 2} concentration flue gas and allowing excellent fuel flexibility. In addition, with external cooling of the recirculated solids, the flue gas recirculation ratio can be reduced. CETC-Ottawa has carried out oxy-fuel fluidized bed combustion with flue gas recirculation on its modified mini-CFBC. The mini-CFBC has an internal diameter of 100 mm and internal height of 5000 mm. Both bituminous and sub-bituminous coals were fired. Limestone was premixed with coal and fed to the mini-CFBC. Recirculated solids were cooled in the return leg of the mini-CFBC. The bed temperature was controlled at about 850{sup o}C, while the oxygen concentration in the primary gas was about 25% and in the secondary gas was about 50%. With flue gas recycle, the CO{sub 2} concentration in the flue gas reached 82-90%. Sulfur capture efficiency and CO and NOx concentrations were also measured and were all at acceptable levels. The transition from air firing to oxy-fuel firing was a fast and relatively smooth process, and operation of the mini-CFBC under oxy-fuel firing conditions was similar to that of air firing. 15 refs., 4 figs., 3 tabs.

L. Jia; Y. Tan; C. Wang; E.J. Anthony [Natural Resources Canada, Ottawa, ON (Canada)

2007-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustion fbc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Post Combustion Test Bed Development  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory (PNNL) assessment methodology and slip-stream testing platform enables the comprehensive early-stage evaluation of carbon capture solvents and sorbents utilizing a breadth of laboratory experimental capability as well as a testing platform at a nearby 600 MW pulverized coal-fired power plant.

Cabe, James E.; King, Dale A.; Freeman, Charles J.

2011-12-30T23:59:59.000Z

102

Co-firing of olive residue with lignite in bubbling FBC  

SciTech Connect

The effect of biomass share on gaseous pollutant emissions from fluidized bed co-firing of various biomass fuels with high calorific value coals have extensively been investigated to date. However, effect of co-firing of olive residues with low calorific value lignites having high ash and sulfur contents has not been studied in bubbling fluidized bed combustors. In this study, experimental results of various runs pertaining to gaseous emissions (O{sub 2}, CO{sub 2}, CO, SO{sub 2}, NO, N{sub 2}O) from METU 0.3 MWt Atmospheric Bubbling Fluidized Bed Combustor (ABFBC) test rig co-firing olive residue with indigenous lignite at different biomass shares are presented. The results reveal that co-firing increases combustion efficiency irrespective of the biomass share and that increase in biomass share reduces N{sub 2}O and SO{sub 2} emissions considerably while increasing CO emission. O{sub 2}, CO{sub 2} and NO emissions are not found sensitive to increase in biomass share. Olive residues are co-fired with high ash and sulfur containing lignite without any operational problems.

Gogebakan, Z.; Gogebakan, Y.; Selcuk, N. [Middle East Technical University, Ankara (Turkey). Dept. of Chemical Engineering

2008-07-01T23:59:59.000Z

103

Advanced clean combustion technology in Shanxi province  

Science Conference Proceedings (OSTI)

Biomass energy resources in China are first described, along with biomass gasification R & D now underway. In Shanxi province biomass and other regenerative energy is relatively little used but coal resources are large. Hence Shanxi is mainly developing clean coal technology to meet its economic and environmental protection requirements. Clean combustion research at Taiyuan University of Technology includes cofiring of coal and RDF in FBC, gas purification and adsorption, fundamentals of plasma-aided coal pyrolysis and gasification and coal derived liquid fuels from synthesis gas. 5 refs.

Xie, K.-C. [Taiyuan University of Technology, Taiyuan (China)

2004-07-01T23:59:59.000Z

104

Fast fluidized bed steam generator  

DOE Patents (OSTI)

A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

Bryers, Richard W. (Flemington, NJ); Taylor, Thomas E. (Bergenfield, NJ)

1980-01-01T23:59:59.000Z

105

Fluidized bed boiler feed system  

SciTech Connect

A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

Jones, Brian C. (Windsor, CT)

1981-01-01T23:59:59.000Z

106

Fluidized Bed Technology - Overview | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Clean Coal » Advanced Combustion Science & Innovation » Clean Coal » Advanced Combustion Technologies » Fluidized Bed Technology - Overview Fluidized Bed Technology - Overview Fluidized beds suspend solid fuels on upward-blowing jets of air during the combustion process. The result is a turbulent mixing of gas and solids. The tumbling action, much like a bubbling fluid, provides more effective chemical reactions and heat transfer. Fluidized-bed combustion evolved from efforts to find a combustion process able to control pollutant emissions without external emission controls (such as scrubbers). The technology burns fuel at temperatures of 1,400 to 1,700 degrees F, well below the threshold where nitrogen oxides form (at approximately 2,500 degrees F, the nitrogen and oxygen atoms in the

107

Combustibles Alternativos  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustibles Alternativos Dispensador de Combustible Alternativo Los combustibles alternativos estn derivados de otras fuentes adems del petrleo. Unos son producidos en el...

108

Particulate waste product combustion system  

SciTech Connect

An apparatus is described for incinerating combustion material within a fluidized bed, including the steps of: feeding the material into a fluidizing zone within which the bed is formed; introducing combustion supporting gas to the fluidizing zone in a plurality of inflow streams of different velocities insufficient to fluidize the material; continuously agitating the material to mechanically fluidize the same within the fluidizing zone during combustion and cause displacement of residual ash from the zone; and withdrawing the residual ash from a discharge location in the apparatus outside of the fluidizing zone.

Chastain, C.E.; King, D.R.

1986-05-20T23:59:59.000Z

109

NETL: Combustion Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Detailed Description of APFBC Repowering Detailed Description of APFBC Repowering FBC Repower Simple Description Detailed Description APFBC Specs GTs for APFBC Click on picture to enlarge Repowering Existing Power Plants with Advanced Pressurized Fluidized-Bed Combined Cycles Contents: Please send me to the NON-TECHNICAL DISCUSSION about APFBC instead! Click on the technical discussion areas below, or simply browse down in this page: APFBC Repowering Considerations Process Sketch APFBC Components High Energy Efficiency Excellent Environmental Performance Cost Comparable to a Pulverized Coal Plant APFBC Repowering Considerations Click on picture to enlarge Process Sketch While all elements of the APFBC plant have been tested, APFBC technology is still under development. Test programs are in place that will soon show commercial operations for all parts. The most important of these are the DOE Power Systems Development Facility in Wilsonville, Alabama, and two DOE Clean Coal Technology projects: Piñon Pines, testing ceramic filters, and the APFBC CCT project. DOE views the following as the development status of the various elements for application in a year 2002 repowering plant installation:

110

http://www.genie.uottawa.ca/~hallett/hallett.htm Combustion Research  

E-Print Network (OSTI)

http://www.genie.uottawa.ca/~hallett/hallett.htm Combustion Research W. Hallett, Mechanical Engineering Main themes: - solid fuel combustion/packed beds - liquid droplet combustion - biofuels (biomass, pyrolysis oil, biodiesel, alcohol blends,etc.) #12;Solid Fuel Combustion/Packed Beds - solid fuel particles

Hallett, William L.H.

111

Second generation pressurized fluidized-bed combustion (PFBC) research and development, Phase 2 --- Task 4, carbonizer testing. Volume 2, Data reconciliation  

SciTech Connect

During the period beginning November 1991 and ending September 1992, a series of tests were conducted at Foster Wheeler Development Corporation in a fluidized-bed coal carbonizer to determine its performance characteristics. The carbonizer was operated for 533 hours in a jetting fluidized-bed configuration during which 36 set points (steady-state periods) were achieved. Extensive data were collected on the feed and product stream compositions, heating values, temperatures, and flow rates. With these data, elemental and energy balances were computed to evaluate and confirm accuracy of the data. The carbonizer data were not as self-consistent as could be desired (balance closure imperfection). A software package developed by Science Ventures, Inc., of California, called BALAID, was used to reconcile the carbonizer data; the details of the reconciliation have been given in Volume 1 of this report. The reconciled data for the carbonizer were rigorously analyzed, correlations were developed, and the model was updated accordingly. The model was then used in simulating each of the 36 steady-state periods achieved in the pilot plant. The details are given in this Volume one. This Volume 2 provides details of the carbonizer data reconciliation.

Froehlich, R.; Robertson, A.; Vanhook, J.; Goyal, A.; Rehmat, A.; Newby, R.

1994-11-01T23:59:59.000Z

112

Second generation pressurized fluidized-bed combustion (PFBC) research and development, Phase 2 -- Task 4, carbonizer testing. Volume 1, Test results  

SciTech Connect

During the period beginning November 1991 and ending September 1992, a series of tests were conducted at Foster Wheeler Development Corporation in a fluidized-bed coal carbonizer to determine its performance characteristics. The carbonizer was operated for 533 hours in a jetting fluidized-bed configuration during which 36 set points (steady-state periods) were achieved. Extensive data were collected on the feed and product stream compositions, heating values, temperatures, and flow rates. With these data, elemental and energy balances were computed to evaluate and confirm accuracy of the data. The carbonizer data were not as self-consistent as could be desired (balance closure imperfection). A software package developed by Science Ventures, Inc., of California, called BALAID, was used to reconcile the carbonizer data; the details of the reconciliation have been given in Volume 1 of this report. The reconciled data for the carbonizer were rigorously analyzed, correlations were developed, and the model was updated accordingly. The model was then used in simulating each of the 36 steady-state periods achieved in the pilot plant. The details are given in this Volume of the report.

Froehlich, R.; Robertson, A.; Vanhook, J.; Goyal, A.; Rehmat, A.; Newby, R.

1994-11-01T23:59:59.000Z

113

METC Combustion Research Facility  

SciTech Connect

The objective of the Morgantown Energy Technology Center (METC) high pressure combustion facility is to provide a mid-scale facility for combustion and cleanup research to support DOE`s advanced gas turbine, pressurized, fluidized-bed combustion, and hot gas cleanup programs. The facility is intended to fill a gap between lab scale facilities typical of universities and large scale combustion/turbine test facilities typical of turbine manufacturers. The facility is now available to industry and university partners through cooperative programs with METC. High pressure combustion research is also important to other DOE programs. Integrated gasification combined cycle (IGCC) systems and second-generation, pressurized, fluidized-bed combustion (PFBC) systems use gas turbines/electric generators as primary power generators. The turbine combustors play an important role in achieving high efficiency and low emissions in these novel systems. These systems use a coal-derived fuel gas as fuel for the turbine combustor. The METC facility is designed to support coal fuel gas-fired combustors as well as the natural gas fired combustor used in the advanced turbine program.

Halow, J.S.; Maloney, D.J.; Richards, G.A.

1993-11-01T23:59:59.000Z

114

Validation of a FBC model for co-firing of hazelnut shell with lignite against experimental data  

SciTech Connect

Performance of a comprehensive system model extended for modelling of co-firing of lignite and biomass was assessed by applying it to METU 0.3 MW{sub t} Atmospheric Bubbling Fluidized Bed Combustor co-firing lignite with hazelnut shell and validating its predictions against on-line temperature and concentration measurements of O{sub 2}, CO{sub 2}, CO, SO{sub 2} and NO along the same test rig fired with lignite only, lignite with limestone addition and lignite with biomass and limestone addition. The system model accounts for hydrodynamics; volatiles release and combustion, char combustion, particle size distribution for lignite and biomass; entrainment; elutriation; sulfur retention and NO formation and reduction, and is based on conservation equations for energy and chemical species. Special attention was paid to different devolatilization characteristics of lignite and biomass. A volatiles release model based on a particle movement model and a devolatilization kinetic model were incorporated into the system model separately for both fuels. Kinetic parameters for devolatilization were determined via thermogravimetric analysis. Predicted and measured temperatures and concentrations of gaseous species along the combustor were found to be in good agreement. Introduction of biomass to lignite was found to decrease SO{sub 2} emissions but did not affect NO emissions significantly. The system model proposed in this study proves to be a useful tool in qualitatively and quantitatively simulating the processes taking place in a bubbling fluidized bed combustor burning lignite with biomass. (author)

Kulah, Gorkem [Middle East Technical University, Department of Chemical Engineering, 06531 Ankara (Turkey)

2010-07-15T23:59:59.000Z

115

Char binder for fluidized beds  

SciTech Connect

An arrangement that utilizes agglomerating coal as a binder to bond coal fines and recycled char into an agglomerate mass that will have suitable retention time when introduced into a fluidized bed 14 for combustion. The simultaneous use of coal for a primary fuel and as a binder effects significant savings in the elimination of non-essential materials and processing steps.

Borio, Richard W. (Somers, CT); Accortt, Joseph I. (Simsbury, CT)

1981-01-01T23:59:59.000Z

116

Heat exchanger support apparatus in a fluidized bed  

DOE Patents (OSTI)

A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.

Lawton, Carl W. (West Hartford, CT)

1982-01-01T23:59:59.000Z

117

Data:465098ce-2295-4fc1-a046-590a59d61fbc | Open Energy Information  

Open Energy Info (EERE)

ce-2295-4fc1-a046-590a59d61fbc ce-2295-4fc1-a046-590a59d61fbc No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of North Little Rock, Arkansas (Utility Company) Effective date: 2012/09/01 End date if known: Rate name: MV- 400 Watt Sector: Lighting Description: Source or reference: http://nlrelectric.com/assets/ratetariffs/AllNightOutdoorLightingL4Rates.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring:

118

Data:0b3a8580-1126-449f-bc0d-387759487c08 | Open Energy Information  

Open Energy Info (EERE)

a8580-1126-449f-bc0d-387759487c08 a8580-1126-449f-bc0d-387759487c08 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Miami-Cass County Rural E M C Effective date: 2011/10/01 End date if known: Rate name: RATE SCHEDULE GSD- GENERAL SERVICE DEMAND ELECTRIC SERVICE RATE SCHEDULE Sector: Commercial Description: The Miami-Cass County Rural Electric Membership Corporation (REMC) shall charge and collect for general service demand electric service on the following bases of availability, application, character of service, monthly rate, minimum charge, purchased power cost adjustment clause, and tax adjustment.

119

Data:60178ebf-7324-4601-992c-b7fbc4eef51e | Open Energy Information  

Open Energy Info (EERE)

178ebf-7324-4601-992c-b7fbc4eef51e 178ebf-7324-4601-992c-b7fbc4eef51e No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Navajo Tribal Utility Authority Effective date: End date if known: Rate name: Life Support/Senior Citizens Discount Program - Private Area Lighting Sector: Residential Description: Available to all qualified customers located in Navajo Country along existing lines of the Authority, where facilities of adequate capacity and suitable voltage are adjacent to the premises to be served. Source or reference: www.ntua.com/utility_rates/seniordiscount_res001.html Source Parent: Comments

120

Data:Fbc11b35-ae3f-4340-bbaa-236272810d7f | Open Energy Information  

Open Energy Info (EERE)

Fbc11b35-ae3f-4340-bbaa-236272810d7f Fbc11b35-ae3f-4340-bbaa-236272810d7f No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Borough of Pitcairn, Pennsylvania (Utility Company) Effective date: End date if known: Rate name: General Service All-Electric Sector: Commercial Description: Available to any customer who desires total electric service and will be furnished subject to approval of the Utility provided the customer obtains all energy needs from the Utility. Source or reference: http://pitcairnborough.us/ordinances/Chapter%2022%20Electric%20Power%20Service.pdf Source Parent: Comments Applicability

Note: This page contains sample records for the topic "bed combustion fbc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Data:812dcf6d-a935-4931-9743-9fbc6078aa06 | Open Energy Information  

Open Energy Info (EERE)

812dcf6d-a935-4931-9743-9fbc6078aa06 812dcf6d-a935-4931-9743-9fbc6078aa06 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Sumter Electric Coop, Inc Effective date: 2009/10/01 End date if known: Rate name: Residential Sector: Residential Description: Source or reference: ISU documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous 1 2 3 Next >> Seasonal/Monthly Demand Charge Structures

122

Data:5ee48e90-e6da-4fbc-9286-6e6875170fef | Open Energy Information  

Open Energy Info (EERE)

e90-e6da-4fbc-9286-6e6875170fef e90-e6da-4fbc-9286-6e6875170fef No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Dakota Valley Elec Coop Inc Effective date: 2013/04/01 End date if known: Rate name: Controlled Irrigation Service Sector: Commercial Description: Applicable for pump irrigation service to accounts meeting Cooperative requirements and policies. Annual Charge: $14.79 per highest peak kW or $500 whichever is greatest Source or reference: www.dakotavalley.com Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh):

123

Dual Fluidized Bed Biomass Gasification  

DOE Green Energy (OSTI)

The dual fluidized bed reactor is a recirculating system in which one half of the unit operates as a steam pyrolysis device for biomass. The pyrolysis occurs by introducing biomass and steam to a hot fluidized bed of inert material such as coarse sand. Syngas is produced during the pyrolysis and exits the top of the reactor with the steam. A crossover arm, fed by gravity, moves sand and char from the pyrolyzer to the second fluidized bed. This sand bed uses blown air to combust the char. The exit stream from this side of the reactor is carbon dioxide, water and ash. There is a second gravity fed crossover arm to return sand to the pyrolysis side. The recirculating action of the sand and the char is the key to the operation of the dual fluidized bed reactor. The objective of the project was to design and construct a dual fluidized bed prototype reactor from literature information and in discussion with established experts in the field. That would be appropriate in scale and operation to measure the relative performance of the gasification of biomass and low ranked coals to produce a high quality synthesis gas with no dilution from nitrogen or combustion products.

None

2005-09-30T23:59:59.000Z

124

Combustion engineering issues for solid fuel systems  

SciTech Connect

The book combines modeling, policy/regulation and fuel properties with cutting edge breakthroughs in solid fuel combustion for electricity generation and industrial applications. This book provides real-life experiences and tips for addressing the various technical, operational and regulatory issues that are associated with the use of fuels. Contents are: Introduction; Coal Characteristics; Characteristics of Alternative Fuels; Characteristics and Behavior of Inorganic Constituents; Fuel Blending for Combustion Management; Fuel Preparation; Conventional Firing Systems; Fluidized-Bed Firing Systems; Post-Combustion Emissions Control; Some Computer Applications for Combustion Engineering with Solid Fuels; Gasification; Policy Considerations for Combustion Engineering.

Bruce Miller; David Tillman [Pennsylvania State University, University Park, PA (United States). Energy Institute

2008-05-15T23:59:59.000Z

125

Combined fluidized bed retort and combustor  

DOE Patents (OSTI)

The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.

Shang, Jer-Yu (Fairfax, VA); Notestein, John E. (Morgantown, WV); Mei, Joseph S. (Morgantown, WV); Zeng, Li-Wen (Morgantown, WV)

1984-01-01T23:59:59.000Z

126

100 Hour test of the pressurized woodchip-fired gravel bed combustor  

DOE Green Energy (OSTI)

Combustion of wood chips in a packed bed combustor for a gas turbine cogeneration system is described. A discussion on flue gas emissions and mass balances is included.

Ragland, K.W.; Aerts, D.J.

1994-08-01T23:59:59.000Z

127

Solid fuel feed system for a fluidized bed  

SciTech Connect

A fluidized bed for the combustion of coal, with limestone, is replenished with crushed coal from a system discharging the coal laterally from a station below the surface level of the bed. A compartment, or feed box, is mounted at one side of the bed and its interior separated from the bed by a weir plate beneath which the coal flows laterally into the bed while bed material is received into the compartment above the plate to maintain a predetermined minimum level of material in the compartment.

Jones, Brian C. (Windsor, CT)

1982-01-01T23:59:59.000Z

128

Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes  

DOE Patents (OSTI)

A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.

Talmud, Fred M. (Berkeley Heights, NJ); Garcia-Mallol, Juan-Antonio (Morristown, NJ)

1980-01-01T23:59:59.000Z

129

Method for in situ combustion  

DOE Patents (OSTI)

This invention relates to an improved in situ combustion method for the recovery of hydrocarbons from subterranean earth formations containing carbonaceous material. The method is practiced by penetrating the subterranean earth formation with a borehole projecting into the coal bed along a horizontal plane and extending along a plane disposed perpendicular to the plane of maximum permeability. The subterranean earth formation is also penetrated with a plurality of spaced-apart vertical boreholes disposed along a plane spaced from and generally parallel to that of the horizontal borehole. Fractures are then induced at each of the vertical boreholes which project from the vertical boreholes along the plane of maximum permeability and intersect the horizontal borehole. The combustion is initiated at the horizontal borehole and the products of combustion and fluids displaced from the earth formation by the combustion are removed from the subterranean earth formation via the vertical boreholes. Each of the vertical boreholes are, in turn, provided with suitable flow controls for regulating the flow of fluid from the combustion zone and the earth formation so as to control the configuration and rate of propagation of the combustion zone. The fractures provide a positive communication with the combustion zone so as to facilitate the removal of the products resulting from the combustion of the carbonaceous material.

Pasini, III, Joseph (Morgantown, WV); Shuck, Lowell Z. (Morgantown, WV); Overbey, Jr., William K. (Morgantown, WV)

1977-01-01T23:59:59.000Z

130

Sintering and reactivity of CaCO{sub 3}-based sorbents for in situ CO{sub 2} capture in fluidized beds under realistic calcination conditions  

SciTech Connect

Sintering during calcination/carbonation may introduce substantial economic penalties for a CO{sub 2} looping cycle using limestone/dolomite-derived sorbents. Cyclic carbonation and calcination reactions were investigated for CO{sub 2} capture under fluidized bed combustion (FBC) conditions. The cyclic carbonation characteristics of CaCO{sub 3}-derived sorbents were compared at various calcination temperatures (700-925{sup o} C) and different gas stream compositions: pure -2 and a realistic calciner environment where high concentrations of CO{sub 2}>80-90% are expected. The conditions during carbonation were 700 {sup o}C and 15% CO{sub 2} in N{sub 2} and 0.18% or 0.50% SO{sub 2} in selected tests. Up to 20 calcination/carbonation cycles were conducted using a thermogravimetric analyzer (TGA) apparatus. Three Canadian limestones were tested: Kelly Rock, Havelock, and Cadomin, using a prescreened particle size range of 400-650 {mu} m. Calcined Kelly Rock and Cadomin samples were hydrated by steam and examined. Sorbent reactivity was reduced whenever SO{sub 2} was introduced to either the calcining or carbonation streams. The multicyclic capture capacity of CaO for CO{sub 2} was substantially reduced at high concentrations of CO{sub 2} during the sorbent regeneration process and carbonation conversion of the Kelly Rock sample obtained after 20 cycles was only 10.5%. Hydrated sorbents performed better for CO{sub 2} capture but showed deterioration following calcination in high CO{sub 2} gas streams indicating that high CO{sub 2} and SO{sub 2} levels in the gas stream lead to lower CaO conversion because of enhanced sintering and irreversible formation of CaSO{sub 4}.

Lu, D.Y.; Hughes, R.W.; Anthony, E.J.; Manovic, V. [Natural Resources Canada, Ottawa, ON (Canada)

2009-06-15T23:59:59.000Z

131

Pulsed atmospheric fluidized bed combustor apparatus  

DOE Patents (OSTI)

A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

Mansour, Momtaz N. (Columbia, MD)

1993-10-26T23:59:59.000Z

132

Method for increasing the calorific value of gas produced by the in situ combustion of coal  

DOE Patents (OSTI)

The present invention relates to the production of relatively high Btu gas by the in situ combustion of subterranean coal. The coal bed is penetrated with a horizontally-extending borehole and combustion is initiated in the coal bed contiguous to the borehole. The absolute pressure within the resulting combustion zone is then regulated at a desired value near the pore pressure within the coal bed so that selected quantities of water naturally present in the coal will flow into the combustion zone to effect a hydrogen and carbon monoxide-producing steam-carbon reaction with the hot carbon in the combustion zone for increasing the calorific value of the product gas.

Shuck, Lowell Z. (Morgantown, WV)

1978-01-01T23:59:59.000Z

133

Oil shale combustion/retorting  

SciTech Connect

The Morgantown Energy Technology Center (METC) conducted a number of feasibility studies on the combustion and retorting of five oil shales: Celina (Tennessee), Colorado, Israeli, Moroccan, and Sunbury (Kentucky). These studies generated technical data primarily on (1) the effects of retorting conditions, (2) the combustion characteristics applicable to developing an optimum process design technology, and (3) establishing a data base applicable to oil shales worldwide. During the research program, METC applied the versatile fluidized-bed process to combustion and retorting of various low-grade oil shales. Based on METC's research findings and other published information, fluidized-bed processes were found to offer highly attractive methods to maximize the heat recovery and yield of quality oil from oil shale. The principal reasons are the fluidized-bed's capacity for (1) high in-bed heat transfer rates, (2) large solid throughput, and (3) selectivity in aromatic-hydrocarbon formation. The METC research program showed that shale-oil yields were affected by the process parameters of retorting temperature, residence time, shale particle size, fluidization gas velocity, and gas composition. (Preferred values of yields, of course, may differ among major oil shales.) 12 references, 15 figures, 8 tables.

Not Available

1983-05-01T23:59:59.000Z

134

Data:5fbc2839-003b-46bf-980d-150565dc25f8 | Open Energy Information  

Open Energy Info (EERE)

fbc2839-003b-46bf-980d-150565dc25f8 fbc2839-003b-46bf-980d-150565dc25f8 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Central Maine Power Co Effective date: 2012/07/01 End date if known: Rate name: AL Discontinued Lighting-Prismasphere Simple H. P. Sodium 70 watts Sector: Lighting Description: This rate is available for area lighting service furnished on a dusk-to-dawn basis. The Company will furnish, install and maintain area lights in new locations as may be requested in writing for area lighting service, subject to the TERM OF SERVICE specified below. TERM OF SERVICE The term of service under this schedule shall be by service agreement for a period of fifteen (15) years and on a continuing basis thereafter. Requests for additions, changes or removals for area lighting service may require 90 days' advance written notice.

135

Method for in situ gasification of a subterranean coal bed  

DOE Patents (OSTI)

The method of the present invention relates to providing controlled directional bores in subterranean earth formations, especially coal beds for facilitating in situ gasification operations. Boreholes penetrating the coal beds are interconnected by laser-drilled bores disposed in various arrays at selected angles to the major permeability direction in the coal bed. These laser-drilled bores are enlarged by fracturing prior to the gasification of the coal bed to facilitate the establishing of combustion zones of selected configurations in the coal bed for maximizing the efficiency of the gasification operation.

Shuck, Lowell Z. (Morgantown, WV)

1977-05-31T23:59:59.000Z

136

Computational Combustion  

DOE Green Energy (OSTI)

Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surface and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.

Westbrook, C K; Mizobuchi, Y; Poinsot, T J; Smith, P J; Warnatz, J

2004-08-26T23:59:59.000Z

137

An in-bed tube bank for a fluidized-bed combustor  

DOE Patents (OSTI)

Fluidized-bed combustors have long been used to facilitate the combustion of low-quality fuels and more recently as a means for the clean burning of coal. In a fluidized-bed combustor fuel is fed into a bed of reactive or inert particulate material while air is injected into the bed and passed up through the bed, causing the bed material to act like a turbulent fluid. Where the combustor is utilized for steam generating one or more boiler tubes are positioned so as to span the bed while submerged in the bed, and as fuel is burned within the bed water is injected into the boiler tubes and heated, thereby generating steam. An in-bed tube bank is described for a fluidized bed combustor. The tube bank of the present invention comprises one or more fluid communicating boiler tubes which define a plurality of selectively spaced boiler tube sections. The tube sections are substantially parallel to one another and aligned in a common plane. The tube bank further comprises support members for joining adjacent tube sections, the support members engaging and extending along a selected length of the tube sections and spanning the preselected space there between 4 figs.

Hemenway, L.F. Jr.

1989-08-08T23:59:59.000Z

138

Advanced Combustion  

Science Conference Proceedings (OSTI)

Topics covered in this presentation include: the continued importance of coal; related materials challenges; combining oxy-combustion & A-USC steam; and casting large superalloy turbine components.

Holcomb, Gordon R. [NETL

2013-03-05T23:59:59.000Z

139

A staged fluidized-bed comubstion and filter system  

DOE Patents (OSTI)

A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized- bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gasses into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.

Mei, J.S.; Halow, J.S.

1993-12-31T23:59:59.000Z

140

Fluid-bed-augmented CAES systems  

DOE Green Energy (OSTI)

Compressed Air Energy Storage (CAES) systems are potentially attractive for future electric utility load leveling applications. A potential long-term weakness of the conventional CAES concept is its reliance on clean petroleum fuels during the power generation period. This consumption of petroleum could be completely eliminated by the use of coal-fired fluid bed combustors in second generation CAES plants. A large number of CAES power system configurations are possible using atmospheric fluid bed combustion (AFBC) and pressurized fluid bed combustion (PFBC). The fuel consumption rates for these systems are generally comparable to those for oil-fired CAES systems. The future prognosis for using PFBC in CAES systems looks good. Recent corrosion and erosion experiments in fluid bed systems suggest that gas turbines with acceptable lifetimes in fluid bed systems suggest that gas turbines with acceptable lifetimes are a distinct possibility. The commercial status of these systems depends on the outcome of extensive corrosion/erosion testing in static and rotating test rigs. CAES systems using AFBC may be an attractive alternative to using PFBC, although the materials problem would then be transferred from the turbine to the high temperature heat exchanger surface. A reasonable expectation for the date of commercialization of fluid bed augmented CAES system ranges from 10 to 15 years.

Giramonti, A. J.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustion fbc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Data:3fea5419-ef94-4fbc-8368-b13b41761ee4 | Open Energy Information  

Open Energy Info (EERE)

fea5419-ef94-4fbc-8368-b13b41761ee4 fea5419-ef94-4fbc-8368-b13b41761ee4 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Connecticut Light & Power Co Effective date: 2013/07/01 End date if known: Rate name: Rate 30 - Small General Electric Service (Bundled Service Primary Discount) Sector: Commercial Description: AVAILABLE for the entire electrical requirements at a single service location measured through one metering installation where the customer's maximum demand is less than 200 kW. Where the Company deems it impractical to deliver electricity through one service, or where more than one meter has been installed for billing under a withdrawn rate, then the measurement of electricity may be by two or more meters. Notwithstanding the applicability provisions of other rates, this rate is also available to full requirements customers that (i) prior to March 1, 1992, had a maximum monthly 30-minute demand in excess of 350 kW; (ii) had a maximum monthly 30-minute demand in the twelve billing periods prior to March 1, 1992, that equaled or exceeded twice the average of the customer's maximum monthly 30-minute demands during the same billing periods; (iii) as of March 1, 1992, had established, and had a reasonable expectation of continuing, a seasonal pattern of electrical usage approximating that established during the twelve billing periods prior to March 1, 1992; and (iv) had not discontinued taking service under this rate or Rate 27 after March 1, 1992. The term of contract for customers eligible to take service under this paragraph shall be one year and shall continue thereafter until canceled by one month's written notice by the customer.

142

NETL: Combustion Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Duke Power's Dan River Station Unit 3 with APFBC Duke Power's Dan River Station Unit 3 with APFBC FBC Repower APFBC AES Greenidge APFBC Dan River FBC, APFBC Four Corners CHIPPS H.F. Lee Products Summary Sheldon Summary APFBC Sheldon GFBCC Sheldon APFBC L.V. Sutton Contents: APFBC Repowering Project Summary Key Features Site Layout Performance Environmental Characteristics Cost Click on picture to enlarge APFBC Repowering Project Summary Duke Power's Dan River station is located near Eden, North Carolina. The photo is a view of the station looking toward the northeast with the Dan River in the foreground. This river provides cooling for the plant. The proposed APFBC repowering would be placed in the clear level area to the west of the powerhouse, left in the photo, just past the transformers and switchyard at the front of this photo.

143

NETL: Combustion Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

AES Greenidge Units 3 and 4 with APFBC AES Greenidge Units 3 and 4 with APFBC FBC Repower APFBC AES Greenidge APFBC Dan River FBC, APFBC Four Corners CHIPPS H.F. Lee Products Summary Sheldon Summary APFBC Sheldon GFBCC Sheldon APFBC L.V. Sutton Contents: Summary Key Features of Greenidge APFBC Repowering Project Operating Conditions APFBC Repowered AES Greenidge Unit 4 Process Decisions Gas Turbine Environmental and Licensing Click on picture to enlarge Summary Units 3 and 4 are the last steam turbines installed at AES Greenidge steam power plant. These units are the focus of this DOE APFBC repowering evaluation. Information relating to the station and studies includes the following: Space is available to the west, and in the power house. Greenidge Unit 4, on left, is the main focus. It is a 106.3 MW unit built in 1953.

144

NETL: Combustion Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Progress Energy's L.V. Sutton Station Unit 1 and Unit 2 with APFBC Progress Energy's L.V. Sutton Station Unit 1 and Unit 2 with APFBC FBC Repower APFBC AES Greenidge APFBC Dan River FBC, APFBC Four Corners CHIPPS H.F. Lee Products Summary Sheldon Summary APFBC Sheldon GFBCC Sheldon APFBC L.V. Sutton The host site for this DOE APFBC repowering evaluation is Progress Energy's L.V. Sutton steam generating station, shown in Progress Energy's L.V. Sutton steam generating station the photo. This station sits on the Cape Fear River, near Wilmington, North Carolina. Unit 1 (front right) and Unit 2 (center), share the common stack to the right. These are the focus of the APFBC repowering evaluations. The larger Unit 3, in the background, has its own stack, but was not evaluated for APFBC repowering.

145

NETL: Combustion Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Arizona Public Service's Four Corners Station with APFBC Arizona Public Service's Four Corners Station with APFBC FBC Repower APFBC AES Greenidge APFBC Dan River FBC, APFBC Four Corners CHIPPS H.F. Lee Products Summary Sheldon Summary APFBC Sheldon GFBCC Sheldon APFBC L.V. Sutton Contents: Summary Existing Units Considered for Repowering Dresser-Rand Turbomachinery Considered Phased-Construction Approach Plant Layout Performance Environmental Characteristics Cost Click on picture to enlarge The host site for this repowering evaluation is the Arizona Public Service Company's Four Corners steam generating station, shown in the photo to the right. The Four Corners station is a mine-mouth, low-sulfur subbituminous coal-fired electric generating station located near Fruitland, New Mexico, about 15 miles southwest of Farmington, New Mexico.

146

Low-rank coal research: Volume 3, Combustion research: Final report. [Great Plains  

DOE Green Energy (OSTI)

Volume III, Combustion Research, contains articles on fluidized bed combustion, advanced processes for low-rank coal slurry production, low-rank coal slurry combustion, heat engine utilization of low-rank coals, and Great Plains Gasification Plant. These articles have been entered individually into EDB and ERA. (LTN)

Mann, M. D.; Hajicek, D. R.; Zobeck, B. J.; Kalmanovitch, D. P.; Potas, T. A.; Maas, D. J.; Malterer, T. J.; DeWall, R. A.; Miller, B. G.; Johnson, M. D.

1987-04-01T23:59:59.000Z

147

Paper Number 15736-PA Title Reaction Kinetics of Fuel Formation for In-Situ Combustion  

E-Print Network (OSTI)

Paper Number 15736-PA Title Reaction Kinetics of Fuel Formation for In-Situ Combustion Authors Abu believed to cause fuel formation for in-situ combustion have been studied and modeled. A thin, packed bed the approach of a combustion front. Analysis of gases produced from the reaction cell revealed that pyrolysis

Abu-Khamsin, Sidqi

148

NETL: Combustion Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary for the Combustion Program The Combustion Technologies Product promotes the advancement of coal combustion power generation for use in industrial, commercial, and utility...

149

COMBUSTION RESEARCH - FY-1979  

E-Print Network (OSTI)

Optical Measurement of Combustion Products by Zeeman Atomicand T. Hadeishi . . . . . Combustion Sources offrom Pulverized Coal Combustion J. Pennucci, R. Greif, F.

,

2012-01-01T23:59:59.000Z

150

Data:F1764a2e-350a-4fbc-b7bf-b5bc083f6316 | Open Energy Information  

Open Energy Info (EERE)

e-350a-4fbc-b7bf-b5bc083f6316 e-350a-4fbc-b7bf-b5bc083f6316 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Midwest Energy Inc Effective date: 2012/06/29 End date if known: Rate name: LAL- HPS 200 Watt 85 kWh (Existing Pole)- Metered Sector: Lighting Description: Source or reference: http://www.mwenergy.com/elecrate.aspx Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >>

151

Data:57ac94f9-a2bb-4b63-9fbc-b5d98dc20231 | Open Energy Information  

Open Energy Info (EERE)

4f9-a2bb-4b63-9fbc-b5d98dc20231 4f9-a2bb-4b63-9fbc-b5d98dc20231 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Borough of Chambersburg, Pennsylvania (Utility Company) Effective date: 2004/05/03 End date if known: Rate name: Area Lighting Rate- (400W HPS) Sector: Lighting Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >>

152

Data:0149f280-821d-4e6f-bc27-501c18ec12fd | Open Energy Information  

Open Energy Info (EERE)

0-821d-4e6f-bc27-501c18ec12fd 0-821d-4e6f-bc27-501c18ec12fd No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Polk County Rural Pub Pwr Dist Effective date: 2012/01/01 End date if known: Rate name: Residential CYC/Rev1 - Single Phase Sector: Residential Description: Source or reference: Illinois State Binder #10. Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous

153

Data:2a6e86d2-3089-46d6-a0fb-c7804bba67b6 | Open Energy Information  

Open Energy Info (EERE)

d2-3089-46d6-a0fb-c7804bba67b6 d2-3089-46d6-a0fb-c7804bba67b6 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Shelby Energy Co-op, Inc Effective date: 2011/06/01 End date if known: Rate name: 250 Watt Directional Flood and Security and Street Light Sector: Lighting Description: Source or reference: http://www.shelbyenergy.com/yourelectricrate.html Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous

154

Data:11ede5bc-43f0-4f33-8fbc-ad0d55df8e1b | Open Energy Information  

Open Energy Info (EERE)

ede5bc-43f0-4f33-8fbc-ad0d55df8e1b ede5bc-43f0-4f33-8fbc-ad0d55df8e1b No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Columbus, Ohio (Utility Company) Effective date: 2013/06/01 End date if known: Rate name: Commercial Churches and Schools (KW20) Sector: Commercial Description: General commercial rate for commercial customers with monthly demand usage between 10 and 49 KWD or flat rate unmetered commercial accounts. Source or reference: http://publicutilities.columbus.gov/WorkArea/linkit.aspx?LinkIdentifier=id&ItemID=45273 Source Parent: Comments Applicability Demand (kW) Minimum (kW):

155

Data:Beef612f-bc50-4a16-bd8e-1cba244c3480 | Open Energy Information  

Open Energy Info (EERE)

Beef612f-bc50-4a16-bd8e-1cba244c3480 Beef612f-bc50-4a16-bd8e-1cba244c3480 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: East Central Oklahoma Elec Coop Inc Effective date: 1995/12/01 End date if known: Rate name: Security Lighting Service-100W High Pressure Sodium Coop-Owned & Maintained Sector: Lighting Description: Available upon application to all consumers for illumination of outdoor areas at any point on or near the Cooperative's distribution or service lines. Additional Poles (incl. up to 150' of wire) = $2.00/pole/month Transformers or Secondary Line installed for lighting use only = $2.00/transformer/month

156

Data:Dda78296-ecb4-4a4b-b8cc-2417fbc15092 | Open Energy Information  

Open Energy Info (EERE)

8296-ecb4-4a4b-b8cc-2417fbc15092 8296-ecb4-4a4b-b8cc-2417fbc15092 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Bozrah Light & Power Company Effective date: 2013/03/01 End date if known: Rate name: Street and Area Lighting Service Mercury Vapor 250W - Overhead Sector: Lighting Description: For all street lighting fixtures served from, attached to and supported by the Company's existing overhead distribution facilities suitable for supplying the service requested. The Company will furnish, maintain and operate lamps in its standard fixtures. Available only to manufacturers whose Standard Industrial Classification (SIC) codes are between 2000 and 3999 who are exempt from the Connecticut Gross Earnings Tax.

157

Data:93b0e930-5fbc-49de-aa53-01c7b5806252 | Open Energy Information  

Open Energy Info (EERE)

0-5fbc-49de-aa53-01c7b5806252 0-5fbc-49de-aa53-01c7b5806252 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Adams Electric Cooperative Inc Effective date: 2011/01/01 End date if known: Rate name: RHW32 Sector: Commercial Description: Source or reference: http://www.adamsec.com/content/rates Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous 1 2 3 Next >>

158

Data:31b3cfab-0460-45dd-aa6a-59d78a976fbc | Open Energy Information  

Open Energy Info (EERE)

cfab-0460-45dd-aa6a-59d78a976fbc cfab-0460-45dd-aa6a-59d78a976fbc No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Camilla, Georgia (Utility Company) Effective date: 2009/10/01 End date if known: Rate name: Residential Service Sector: Residential Description: For all domestic uses of a residential customer in a separately metered single family or multifamily dwelling unit. Subject to revenue adjustments. Source or reference: Rate Binder#2 Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months):

159

Data:E538bb12-eceb-4db0-8d4f-92181fbc581b | Open Energy Information  

Open Energy Info (EERE)

bb12-eceb-4db0-8d4f-92181fbc581b bb12-eceb-4db0-8d4f-92181fbc581b No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Prairie Land Electric Coop Inc Effective date: 2010/01/14 End date if known: Rate name: Monthly Unmetered Investment Facility(LANTERN 250W HPS-Option E) Sector: Lighting Description: Customer-100% Cooperative-0% Source or reference: http://www.prairielandelectric.com/Rates_PDF/MKEC%20Rates.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V):

160

Data:De848cb8-d9a1-4fbc-8f08-fc3a445bd905 | Open Energy Information  

Open Energy Info (EERE)

cb8-d9a1-4fbc-8f08-fc3a445bd905 cb8-d9a1-4fbc-8f08-fc3a445bd905 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Anaheim, California (Utility Company) Effective date: 2012/09/12 End date if known: Rate name: Lighting- Unmetered- 400W Mercury Vapor Sector: Lighting Description: Applicable to street and highway lighting where customer owns and maintains street lighting equipment. Source or reference: http://www.anaheim.net/utilities/ElectricRules/SCHD-LS2.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh):

Note: This page contains sample records for the topic "bed combustion fbc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Data:Fbf987e1-8f13-4cb4-9fbc-4a07f793de57 | Open Energy Information  

Open Energy Info (EERE)

e1-8f13-4cb4-9fbc-4a07f793de57 e1-8f13-4cb4-9fbc-4a07f793de57 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Wright-Hennepin Coop Elec Assn Effective date: End date if known: Rate name: Commercial Sector: Commercial Description: The Commercial & Industrial Rate is applicable to those customers having an average monthly electric peak of 25 kW or greater, AND have an average monthly energy usage of 5000 kWh or greater. The major components of the rate (billed monthly) are as follows: Source or reference: http://www.whe.org/for-my-business/payment-information/programs-and-rates.html

162

Data:B6e93535-7a8d-462a-9ced-14fbc31495b9 | Open Energy Information  

Open Energy Info (EERE)

35-7a8d-462a-9ced-14fbc31495b9 35-7a8d-462a-9ced-14fbc31495b9 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Eugene, Oregon (Utility Company) Effective date: 2013/05/01 End date if known: Rate name: J-4 (Customer-Owned Street Lighting Service) 1000 Watt High Pressure Sodium Sector: Lighting Description: To governmental agency, lighting district, and water district-owned daily, dusk-to-dawn lighting systems which illuminate streets, alleys, and thoroughfares used primarily for motorized vehicular traffic and which meet EWEB's specifications. Source or reference: http://www.eweb.org/public/documents/policies/electric5.pdf

163

Data:2ae8b341-f88c-4884-b0b8-fbc19490afc0 | Open Energy Information  

Open Energy Info (EERE)

1-f88c-4884-b0b8-fbc19490afc0 1-f88c-4884-b0b8-fbc19490afc0 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Cuming County Public Pwr Dist Effective date: 2011/12/14 End date if known: Rate name: Municipal Discount Rate Single Phase Sector: Commercial Description: Source or reference: Illinois State University Binder #10 Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >>

164

Data:7ac7d978-fbc5-438d-8b09-fcbd1034a5f9 | Open Energy Information  

Open Energy Info (EERE)

d978-fbc5-438d-8b09-fcbd1034a5f9 d978-fbc5-438d-8b09-fcbd1034a5f9 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Southern Public Power District Effective date: 2013/01/01 End date if known: Rate name: VILLAGE AND RESIDENTIAL SERVICE Sector: Residential Description: Available: At points on the District's existing distribution facilities located in villages and to residential customers residing in approved platted subdivisions. Applicable: To single family private dwelling units supplied through one meter for domestic purposes. Character of Service: Alternating current, 60 cycles, single-phase, at nominal voltages of 120 or 120/240 volts.

165

Data:Bbf63378-b754-4fbc-b351-653b8fcfb70d | Open Energy Information  

Open Energy Info (EERE)

Bbf63378-b754-4fbc-b351-653b8fcfb70d Bbf63378-b754-4fbc-b351-653b8fcfb70d No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Anoka, Minnesota (Utility Company) Effective date: 2013/07/01 End date if known: Rate name: Residential Rate Sector: Residential Description: Source or reference: Rate Binder Kelly 3 ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >>

166

Data:B7bfa216-56cc-4f2f-bc45-58dd667b51db | Open Energy Information  

Open Energy Info (EERE)

bfa216-56cc-4f2f-bc45-58dd667b51db bfa216-56cc-4f2f-bc45-58dd667b51db No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Lincoln County Power Dist No 1 Effective date: 2009/07/01 End date if known: Rate name: SMALL COMMERCIAL SERVICE - URBAN SYSTEM Sector: Commercial Description: Applicable to all commercial, industrial, church, and governmental facilities receiving service from the Lincoln County Power District No. 1's facilities, and which are located within the defined Urban System. The Customer interconnected load must be 50 kVA or less. Service shall be subject to the established rules and regulations of the Lincoln County Power District No. 1.

167

Data:E5ce3870-f962-4c32-8fbc-88269e5dc3db | Open Energy Information  

Open Energy Info (EERE)

ce3870-f962-4c32-8fbc-88269e5dc3db ce3870-f962-4c32-8fbc-88269e5dc3db No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: PUD No 1 of Lewis County Effective date: End date if known: Rate name: Security Lighting Service Schedule 5 - 100w Sodium Vapor Sector: Lighting Description: Mercury vapor lighting is available only to present customers at their present locations. General: All fixtures and reflectors shall be approved, supplied and owned by the District. The customer shall notify the District when the security light needs attention. Maintenance by the District shall be on regular service runs to the area.

168

Fluidized bed heat exchanger with water cooled air distributor and dust hopper  

DOE Patents (OSTI)

A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

Jukkola, Walfred W. (Westport, CT); Leon, Albert M. (Mamaroneck, NY); Van Dyk, Jr., Garritt C. (Bethel, CT); McCoy, Daniel E. (Williamsport, PA); Fisher, Barry L. (Montgomery, PA); Saiers, Timothy L. (Williamsport, PA); Karstetter, Marlin E. (Loganton, PA)

1981-11-24T23:59:59.000Z

169

Advanced Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Systems Advanced Combustion Background Conventional coal-fired power plants utilize steam turbines to generate electricity, which operate at efficiencies of 35-37 percent. Operation at higher temperatures and pressures can lead to higher efficiencies, resulting in reduced fuel consumption and lower greenhouse gas emissions. Higher efficiency also reduces CO2 production for the same amount of energy produced, thereby facilitating a reduction in greenhouse gas emissions. When combined, oxy-combustion comes with an efficiency hit, so it will actually increase the amount of CO2 to be captured. But without so much N2 in the flue gas, it will be easier and perhaps more efficient to capture, utilize and sequester. NETL's Advanced Combustion Project and members of the NETL-Regional University

170

NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project  

Science Conference Proceedings (OSTI)

The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

Not Available

1992-02-01T23:59:59.000Z

171

NETL: Oxy-Fired Pressurized Fluidized Bed Combustor (Oxy-PFBC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Fired Pressurized Fluidized Bed Combustor (Oxy-PFBC) Oxy-Fired Pressurized Fluidized Bed Combustor (Oxy-PFBC) Project No.: DE-FE0009448 Oxy-PFBC Layout. Oxy-PFBC Layout. Pratt and Whitney Rocketdyne (PWR) is developing an oxy-fired pressurized fluidized bed combustor (Oxy-PFBC). Pressurized combustion with oxygen enables high efficiency through staged combustion, which results in reduced oxygen use, as well as through recovery of high quality heat from exhaust water vapor. In addition, the process can result in reduced costs for utilization or storage of CO2 because the CO2 is available at increased pressure, reducing compression requirements. Overall, pressurized fluidized bed combustion can result in electricity production from coal with near-zero emissions. PWR will be testing a novel process for pressurized oxy-combustion in a

172

Pulsed atmospheric fluidized bed combustor apparatus and process  

DOE Patents (OSTI)

A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g. organic and medical waste, drying, calcining and the like.

Mansour, Momtaz N. (Columbia, MD)

1992-01-01T23:59:59.000Z

173

Oil shale retorting and combustion system  

DOE Patents (OSTI)

The present invention is directed to the extraction of energy values from l shale containing considerable concentrations of calcium carbonate in an efficient manner. The volatiles are separated from the oil shale in a retorting zone of a fluidized bed where the temperature and the concentration of oxygen are maintained at sufficiently low levels so that the volatiles are extracted from the oil shale with minimal combustion of the volatiles and with minimal calcination of the calcium carbonate. These gaseous volatiles and the calcium carbonate flow from the retorting zone into a freeboard combustion zone where the volatiles are burned in the presence of excess air. In this zone the calcination of the calcium carbonate occurs but at the expense of less BTU's than would be required by the calcination reaction in the event both the retorting and combustion steps took place simultaneously. The heat values in the products of combustion are satisfactorily recovered in a suitable heat exchange system.

Pitrolo, Augustine A. (Fairmont, WV); Mei, Joseph S. (Morgantown, WV); Shang, Jerry Y. (Fairfax, VA)

1983-01-01T23:59:59.000Z

174

Advanced Combustion  

Science Conference Proceedings (OSTI)

The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

Holcomb, Gordon R. [NETL

2013-03-11T23:59:59.000Z

175

Particle withdrawal from fluidized bed systems  

DOE Patents (OSTI)

Method and apparatus for removing ash formed within, and accumulated at the lower portion of, a fluidized bed coal gasification reactor vessel. A supplemental fluidizing gas, at a temperature substantially less than the average fluidized bed combustion operating temperature, is injected into the vessel and upwardly through the ash so as to form a discrete thermal interface region between the fluidized bed and the ash. The elevation of the interface region, which rises with ash accumulation, is monitored by a thermocouple and interrelated with a motor controlled outlet valve. When the interface rises above the temperature indicator, the valve opens to allow removal of some of the ash, and the valve is closed, or positioned at a minimum setting, when the interface drops to an elevation below that of the thermocouple.

Salvador, Louis A. (Greensburg, PA); Andermann, Ronald E. (Arlington Heights, IL); Rath, Lawrence K. (Mt. Pleasant, PA)

1982-01-01T23:59:59.000Z

176

Fluidized bed retorting of eastern oil shale  

SciTech Connect

This topical report summarizes the conceptual design of an integrated oil shale processing plant based on fluidized bed retorting of eastern New Albany oil shale. This is the fourth design study conducted by Foster Wheeler; previous design cases employed the following technologies: Fluidized bed rotating/combustion of Colorado Mahogany zone shale. An FCC concept of fluidized bed retorting/combustion of Colorado Mahogany zone shale. Directly heated moving vertical-bed process using Colorado Mahogany zone shale. The conceptual design encompasses a grassroots facility which processes run-of-mine oil shale into a syncrude oil product and dispose of the spent shale solids. The plant has a nominal capacity of 50,000 barrels per day of syncrude product, produced from oil shale feed having a Fischer Assay of 15 gallons per ton. Design of the processing units was based on non-confidential published information and supplemental data from process licensors. Maximum use of process and cost information developed in the previous Foster Wheeler studies was employed. The integrated plant design is described in terms of the individual process units and plant support systems. The estimated total plant investment is detailed by plant section and estimates of the annual operating requirements and costs are provided. In addition, process design assumptions and uncertainties are documented and recommendations for process alternatives, which could improve the overall plant economics, are discussed. 12 refs., 17 figs., 52 tabs.

Gaire, R.J.; Mazzella, G.

1989-03-01T23:59:59.000Z

177

Simulation of lean premixed turbulent combustion  

E-Print Network (OSTI)

turbulent methane combustion. Proc. Combust. Inst. , 29:in premixed turbulent combustion. Proc. Combust. Inst. ,for zero Mach number combustion. Combust. Sci. Technol. ,

2008-01-01T23:59:59.000Z

178

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Diagram of CERTS Microgrid Test Bed Figure 3. Tecogen PrimeCERTS Microgrid Laboratory Test Bed. (California EnergyFigure 1. CERTS Microgrid Test Bed at American Electric

ETO, J.

2010-01-01T23:59:59.000Z

179

Co-combustion of pellets from Soma lignite and waste dusts of furniture works  

Science Conference Proceedings (OSTI)

In this work, volatiles and char combustion behaviors of the fuel pellets prepared from a low quality lignite and the dusts of furniture works and their various blends were investigated in an experimental fixed bed combustion system through which air flowed by natural convection. Combustion data obtained for varied bed temperatures, mass of pellets, and blend compositions has showed that ignition times of the pellets decreased and volatiles combustion rates tended to increase with the burning temperature. It was concluded that some synergy had existed between lignite and lower ratios of furniture work dusts, which was indicated by a prompt effect on the volatiles combustion rates. Char combustion rates of blend pellets have depended predominantly on the amount of lignite in the blend. The amounts of combustion residues of the pellets were considerably higher than those calculated from individual ash contents of the raw materials and related to lignite ratio in the blends.

Deveci, N.D.; Yilgin, M.; Pehlivan, D. [Firat University, Elazig (Turkey). Faculty of Engineering

2008-07-01T23:59:59.000Z

180

Solid fuel combustion system for gas turbine engine  

DOE Patents (OSTI)

A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustion fbc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Combustion Technologies Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Technologies Group Combustion research generates the fundamental physical and chemical knowledge on the interaction between flame and turbulence. Experimental and...

182

NETL: Combustion Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

with Combustion A number of companies are participating in DOE's evaluation of Combustion Systems products. The list below gives you access to each participant company's home page....

183

Moving Granular Bed Filter Development Program  

SciTech Connect

The granular bed filter was developed through low pressure, high temperature (1600{degrees}F) testing in the late 1970`s and early 1980`s`. Collection efficiencies over 99% were obtained. In 1988, high pressure, high temperature testing was completed at New York University, Westbury, N.Y., utilizing a coal-fired pressurized, fluidized bed combustor. High particulate removal efficiencies were confirmed as it was shown that both New Source Performance Standards and turbine tolerance limits could be met. The early scale-up work of the granular bed filter indicated potential limitations due to size, cost, and mechanical complexity. These limitations were addressed in the present program by utilizing the information gained from the filter development up through the NYU test program to reassess the commercial approach. Two studies were chosen for developing conceptual designs and cost estimates of the commercial sized filters. One is the economic study of the 250 MWe, second generation pressurized fluidized bed combustion plant defined by Foster Wheeler. This plant originally included cross-flow filters for hot gas cleanup. The other plant under study is a 100 MWe, airblown KRW gasifier. A cross-flow inter was utilized for gas stream cleanup in this study also. Granular bed and ceramic candle filters were substituted for the cross-flow filters in both these plants, and the resulting cost of electricity (COE) is compared.

Wilson, K.B.; Haas, J.C.; Eshelman, M.B.

1992-11-01T23:59:59.000Z

184

Moving Granular Bed Filter Development Program  

SciTech Connect

The granular bed filter was developed through low pressure, high temperature (1600[degrees]F) testing in the late 1970's and early 1980's'. Collection efficiencies over 99% were obtained. In 1988, high pressure, high temperature testing was completed at New York University, Westbury, N.Y., utilizing a coal-fired pressurized, fluidized bed combustor. High particulate removal efficiencies were confirmed as it was shown that both New Source Performance Standards and turbine tolerance limits could be met. The early scale-up work of the granular bed filter indicated potential limitations due to size, cost, and mechanical complexity. These limitations were addressed in the present program by utilizing the information gained from the filter development up through the NYU test program to reassess the commercial approach. Two studies were chosen for developing conceptual designs and cost estimates of the commercial sized filters. One is the economic study of the 250 MWe, second generation pressurized fluidized bed combustion plant defined by Foster Wheeler. This plant originally included cross-flow filters for hot gas cleanup. The other plant under study is a 100 MWe, airblown KRW gasifier. A cross-flow inter was utilized for gas stream cleanup in this study also. Granular bed and ceramic candle filters were substituted for the cross-flow filters in both these plants, and the resulting cost of electricity (COE) is compared.

Wilson, K.B.; Haas, J.C.; Eshelman, M.B.

1992-01-01T23:59:59.000Z

185

Economic Evaluation of By-Product Power/Co-Generation Systems for Industrial Plants with Fluidized-Bed Coal Burning Facilities  

E-Print Network (OSTI)

Economic analysis of the construction and operation of by-product electric power and steam/power cogeneration systems in coal fired fluidized-bed steam cycles, located at individual industrial sites analyzed by the author, is being presented. The plants analyzed employ fluidized bed boilers for generation of steam for process and building/heating/cooling demands, in conjunction with electric power co-generation. Results of the analysis are presented, using life cycle costs and investment payback periods, pinpointing the areas, type and magnitude of costs which should be considered in the selection of combustors or systems. Capital and operating costs, and recognized technical and economic barriers are also presented and their effects indicated. Life cycle cost of each of the alternatives analyzed are compared and the expected payback periods for the different size FBC plants and for different annual average production levels are discussed.

Mesko, J. E.

1980-01-01T23:59:59.000Z

186

Data:5272315f-ec76-413e-abf7-2fbc4cc10c2e | Open Energy Information  

Open Energy Info (EERE)

15f-ec76-413e-abf7-2fbc4cc10c2e 15f-ec76-413e-abf7-2fbc4cc10c2e No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Santee Electric Coop, Inc Effective date: 2010/11/01 End date if known: Rate name: Area Lighting Service 175w Mercury Vapor Semi-Enclosed Sector: Lighting Description: This Schedule is available for the leasing of mercury vapor; metal halide and sodium vapor outdoor lighting units to any member/owner served by the Cooperative and subject to established Service Rules and Regulations. Extra charges - Dedicated Poles 30' Wood $2.00 35' Wood $4.00 40' Wood $5.00 45' Wood $6.00 30' to 45' Fiberglass or Metal Pole $16.17

187

Data:9e3fbc0a-49cc-47f0-b4c1-bf8fdef01206 | Open Energy Information  

Open Energy Info (EERE)

fbc0a-49cc-47f0-b4c1-bf8fdef01206 fbc0a-49cc-47f0-b4c1-bf8fdef01206 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Oconomowoc Utilities Effective date: 2007/09/01 End date if known: Rate name: Cp-3 Industrial Power Time-of-Day Service Transformer Ownership Discount Sector: Industrial Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0598 per kilowatt-hour.

188

Data:8e9b6f24-875f-4d92-af8f-f89a55fbc03b | Open Energy Information  

Open Energy Info (EERE)

b6f24-875f-4d92-af8f-f89a55fbc03b b6f24-875f-4d92-af8f-f89a55fbc03b No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Idaho Power Co Effective date: 2012/07/01 End date if known: Rate name: Schedule 41 - SV - 100 watt Sector: Lighting Description: AVAILABILITY Service under this schedule is available throughout the Company's service area within the State of Idaho where street lighting wires and fixtures can be installed on Customer-provided street lighting facilities or installed on the Company's existing distribution facilities. APPLICABILITY Service under this schedule is applicable to service requested or installed by Customers for the lighting of public streets, public alleys, public grounds, and thoroughfares. Street lighting lamps will be energized each night from dusk until dawn.

189

Data:De214bb1-126b-4af8-9a8b-4431fbc3ef87 | Open Energy Information  

Open Energy Info (EERE)

bb1-126b-4af8-9a8b-4431fbc3ef87 bb1-126b-4af8-9a8b-4431fbc3ef87 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Gallatin, Tennessee (Utility Company) Effective date: 2012/08/01 End date if known: Rate name: GSA 2- >50- 1,000 kW or less than 50 kW(energy usage over 15,000 kWh) Sector: Commercial Description: GSA 2- >50- 1,000 kW or less than 50 kW w/energy usage over 15,000 kWh Source or reference: http://www.gallatinelectric.com/gallatin-electric-rates.php Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh):

190

Data:B104a958-fbc5-4294-a23b-8cb2ccf0c8ac | Open Energy Information  

Open Energy Info (EERE)

58-fbc5-4294-a23b-8cb2ccf0c8ac 58-fbc5-4294-a23b-8cb2ccf0c8ac No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Cumberland, Wisconsin (Utility Company) Effective date: 2006/03/15 End date if known: Rate name: Ms-1 Street Lighting Service Ornamental 250 W HPS w/deluxe pole Sector: Lighting Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0294per kilowatt-hour.

191

Data:E163ffef-b9ba-4330-b6c0-1fbc926931d4 | Open Energy Information  

Open Energy Info (EERE)

ffef-b9ba-4330-b6c0-1fbc926931d4 ffef-b9ba-4330-b6c0-1fbc926931d4 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Manitowoc Public Utilities Effective date: 2009/06/01 End date if known: Rate name: Cp-3 Large Power Time-of-Day Service(<6000volts)with Parallel Generation(20kW or less) Sector: Industrial Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0361 per kilowatt-hour.

192

Data:8284631f-09d3-460f-b5fb-c6629e416325 | Open Energy Information  

Open Energy Info (EERE)

1f-09d3-460f-b5fb-c6629e416325 1f-09d3-460f-b5fb-c6629e416325 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Modesto Irrigation District Effective date: 2011/01/01 End date if known: Rate name: Schedule FL Flat Rate Service-In Excess of 50% Load Factor 801 - 1000 Watt Sector: Commercial Description: Applicability This Schedule is applicable to small, constant, non-metered incidental loads for utilities, communication agencies, state agencies, and applicable special districts where the customer owns and maintains the equipment. The customer must supply equipment wattage to the District. Such loads would include: Cathodic Protection Stations Motor Radial Gates Pressure Point Automatic Watering Systems Flashing Beacons Sign Illumination Communication Power Booster Devices Monthly Usage: 591kWh

193

Data:88a88b2d-fbc8-45ea-a9f5-d235ac61d267 | Open Energy Information  

Open Energy Info (EERE)

d-fbc8-45ea-a9f5-d235ac61d267 d-fbc8-45ea-a9f5-d235ac61d267 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Kankakee Valley Rural E M C Effective date: 2012/05/01 End date if known: Rate name: Rate Schedule GS: General Service Non-Demand Electric Rate Schedule Sector: Commercial Description: AVAILABILITY: This schedule is available to any member of the REMC located within the territory served by Kankakee Valley Rural Electric Membership Corporation that utilizes power on a year-round basis. Customers that use power less than nine months out of the year are served under rate schedules SP, SR, CSP, or SPTOU. APPLICATION: This schedule is applicable to all single phase farm and small commercial electric service required for lighting, power and any other purpose for which no other specific rate is applicable. CHARACTER OF SERVICE: Service under this schedule shall be single phase, 60 Hertz, alternating current at the REMC's available standard voltages. All electric service required on the premises by the customer will be supplied through one meter. Standby or resale service is not permitted hereunder.

194

Data:59fe2ff5-d989-4eef-bab0-9040fbc096f0 | Open Energy Information  

Open Energy Info (EERE)

ff5-d989-4eef-bab0-9040fbc096f0 ff5-d989-4eef-bab0-9040fbc096f0 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Town of Reading, Massachusetts (Utility Company) Effective date: 2011/08/01 End date if known: Rate name: 400 WATT HPS Sector: Lighting Description: Fixed Monthly Charge= Annual Rate divided by 12 months. Extra Pole Cost When an extra pole is required, specifically for street lighting, there will be an extra cost based upon pole size, including up to 100 feet of secondary. 30 foot or 35 foot Class 4 pole is $44.00 per year 40 foot Class 4 pole is $48.00 per year. Fuel Adjustment: The bill for service hereunder may be increased or decreased as provided by the Standard fuel Adjustment Clause. The Fuel Adjustment will appear on the bill as the monthly fuel charge multiplied by one twelfth of the Annual kWh shown above for each Fixture Type.

195

Data:1463442e-98c0-46a7-94a1-e36ee6fbc0a2 | Open Energy Information  

Open Energy Info (EERE)

2e-98c0-46a7-94a1-e36ee6fbc0a2 2e-98c0-46a7-94a1-e36ee6fbc0a2 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Joe Wheeler Elec Member Corp Effective date: 2013/05/01 End date if known: Rate name: General Power Rate--Schedule TDGSA Sector: Commercial Description: This rate shall apply to the firm power requirements (where the higher of a customer's onpeak or offpeak contract demand is greater than 1,000 kW but not more than 5,000 kW) for electric service to commercial, industrial, and governmental customers, and to institutional customers including, without limitation, churches, clubs, fraternities, orphanages, nursing homes, rooming or boarding houses, and like customers, provided that the other conditions of this section are met.

196

Data:604550b0-36b1-413f-bc28-94f442a6181c | Open Energy Information  

Open Energy Info (EERE)

50b0-36b1-413f-bc28-94f442a6181c 50b0-36b1-413f-bc28-94f442a6181c No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Oconomowoc Utilities Effective date: 2007/09/01 End date if known: Rate name: Cp-1 Small Power Service with Parallel Generation(20kW or less) Sector: Industrial Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0598 per kilowatt-hour.

197

Data:0fbc9e67-f809-4bde-b10d-1573573dc3ed | Open Energy Information  

Open Energy Info (EERE)

fbc9e67-f809-4bde-b10d-1573573dc3ed fbc9e67-f809-4bde-b10d-1573573dc3ed No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Harriman, Tennessee (Utility Company) Effective date: 2012/08/01 End date if known: Rate name: Security Lights, Mercury Vapor, 400W Sector: Lighting Description: Pole Rentals: 25' Pole $4.53 30' Pole $5.09 Source or reference: http://www.hub-tn.com/pdf/Residential%20rates%200812.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V):

198

Data:530a2fbc-6f2d-484a-9da4-8d3bb4a573ec | Open Energy Information  

Open Energy Info (EERE)

fbc-6f2d-484a-9da4-8d3bb4a573ec fbc-6f2d-484a-9da4-8d3bb4a573ec No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Wake Electric Membership Corp Effective date: 2013/07/01 End date if known: Rate name: LARGE GENERAL COINCIDENT PEAK TIME-OF-USE SERVICE Sector: Industrial Description: AVAILABILITY Available in all territory served by the Cooperative on a voluntary basis, subject to the established Service Rules and Regulations of the Cooperative. The number of accounts may be limited to meter availability. APPLICABILITY This schedule is applicable to all non-residential service where measured demand is in excess of 50 kW. This schedule is not available to seasonal accounts.

199

Data:Dee952e9-3ee0-4624-a0d5-b9f2d2e84fbc | Open Energy Information  

Open Energy Info (EERE)

Dee952e9-3ee0-4624-a0d5-b9f2d2e84fbc Dee952e9-3ee0-4624-a0d5-b9f2d2e84fbc No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Sulphur Springs Valley E C Inc Effective date: 2013/03/18 End date if known: Rate name: 400 Watt MV - Single/Wood Sector: Lighting Description: Cooperative provided Facilities and Cooperative Owned and Maintained Lighting Service. Source or reference: http://www.ssvec.org/wp-content/uploads/downloads/2013/03/SSVEC-Rates-03.18.13.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months):

200

Data:606fbc36-6ef7-45bb-acf4-03f5ba9bd71a | Open Energy Information  

Open Energy Info (EERE)

fbc36-6ef7-45bb-acf4-03f5ba9bd71a fbc36-6ef7-45bb-acf4-03f5ba9bd71a No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Detroit Edison Co Effective date: 2011/12/21 End date if known: Rate name: Alternative Electric Metal Melting < 4.8 kV - 13.2 kV Primary - 0 - 11,500 kWh Sector: Industrial Description: Source or reference: www.dteenergy.com/pdfs/detroitEdisonTariff.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category:

Note: This page contains sample records for the topic "bed combustion fbc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Data:42214d94-f5e8-433d-abdd-2cde8db8fbc9 | Open Energy Information  

Open Energy Info (EERE)

-f5e8-433d-abdd-2cde8db8fbc9 -f5e8-433d-abdd-2cde8db8fbc9 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Blue Grass Energy Coop Corp Effective date: 2011/06/01 End date if known: Rate name: SC- 1 General Service Sector: Description: vailable for general service including single phase non-residential or three-phase commercial and three-phase farm service up to100 kW. Source or reference: Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service

202

Data:57495fbc-0148-4f9a-b380-8964ce35f8c4 | Open Energy Information  

Open Energy Info (EERE)

fbc-0148-4f9a-b380-8964ce35f8c4 fbc-0148-4f9a-b380-8964ce35f8c4 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Red River Valley Rrl Elec Assn Effective date: 2006/04/01 End date if known: Rate name: Outdoor Lighting 100w Sodium Vapor - unmetered Sector: Lighting Description: Available to all customers on or adjacent to the Association's distribution lines, for outdoor lighting. Source or reference: http://www.rrvrea.com/electric_service/RRV%20%20Rate%20and%20Tariff%20Sheets%201-27-09%20_As%20Filed%20with%20OCC_.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):

203

Data:8e14cf36-12ed-4c2f-bc5c-fc72689ed7f6 | Open Energy Information  

Open Energy Info (EERE)

6-12ed-4c2f-bc5c-fc72689ed7f6 6-12ed-4c2f-bc5c-fc72689ed7f6 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: New Hampshire Elec Coop Inc Effective date: 2013/05/01 End date if known: Rate name: LGT08-LU50 Sector: Commercial Description: Sodium LGT08: only available at existing locations with existing fixtures Source or reference: http://www.nhec.com/filerepository/rate_change_sheets_for_2013_may01.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V):

204

Data:03c5148f-bc4f-4fb5-97b7-9b04ef4d5159 | Open Energy Information  

Open Energy Info (EERE)

c5148f-bc4f-4fb5-97b7-9b04ef4d5159 c5148f-bc4f-4fb5-97b7-9b04ef4d5159 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of New Lisbon, Wisconsin (Utility Company) Effective date: 2001/02/16 End date if known: Rate name: Pgs-2 Customer-Owned Generation Systems (Greater than 20kW) Sector: Description: Available for single-phase and three-phase where part or all of the electrical requirements of the customer are supplied by the customer's generating facilities, where such requirements of the customer are supplied by the customer's generating facilities have a total generating capacity of greater than 20kW and less than or equal to 100kW, where such facilities are connected in parallel with the utility. Customers not desiring to sell energy under this rate have the right to negotiate a buy-back rate.

205

Data:098e3cd7-0a2b-4b62-84d8-76ae54e55fbc | Open Energy Information  

Open Energy Info (EERE)

e3cd7-0a2b-4b62-84d8-76ae54e55fbc e3cd7-0a2b-4b62-84d8-76ae54e55fbc No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Jemez Mountains Elec Coop, Inc Effective date: 2005/11/23 End date if known: Rate name: Municipal Service and Small School Service TOU Sector: Commercial Description: See Source. Source or reference: http://www.jemezcoop.org/Energy/rates.cfm Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring:

206

Data:6fbc445b-a637-408d-a130-8a4f60db51ce | Open Energy Information  

Open Energy Info (EERE)

fbc445b-a637-408d-a130-8a4f60db51ce fbc445b-a637-408d-a130-8a4f60db51ce No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: High Plains Power Inc Effective date: 2007/01/01 End date if known: Rate name: STANDBY AND SUPPLEMENTAL SERVICE-Primary Sector: Industrial Description: Applicable to standby service at transmission, substation and primary level service for qualifying cogeneration facilities. Facilities Charge, per kW of facilities demand: $5.75 Wholesale Demand Charge, per kW of billing demand: $19.94 Source or reference: http://psc.state.wy.us/htdocs/tariffs/wy_hig1/0001b.pdf Source Parent:

207

Data:E2e80895-9728-4a8f-bc07-d7c80e83495f | Open Energy Information  

Open Energy Info (EERE)

95-9728-4a8f-bc07-d7c80e83495f 95-9728-4a8f-bc07-d7c80e83495f No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Medford, Wisconsin (Utility Company) Effective date: 1997/06/27 End date if known: Rate name: Cp-3 Industrial Power Time-of-Day Service above 1,000kW Demand 9am-9pm Transformer Ownership Discount with Parallel Generation(20kW or less) Sector: Industrial Description: This rate will be applied to customers for all types of service if their monthly maximum demand is in excess of 1,000kW for 3 months in a consecutive 12-month period. Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0351 per kilowatt-hour.

208

Data:F46173b9-fbc7-4a6b-ba0b-344cc0b1adc6 | Open Energy Information  

Open Energy Info (EERE)

b9-fbc7-4a6b-ba0b-344cc0b1adc6 b9-fbc7-4a6b-ba0b-344cc0b1adc6 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Consumers Energy Co Effective date: 2012/06/08 End date if known: Rate name: Residential Plug-In Electric Vehicle Only Monthly Rate (REV-3) Sector: Residential Description: The Experimental Residential Plug-In Electric Vehicle Charging Program is a voluntary pilot available to Full Service residential customers. Level 2 Charging of an electric vehicle based on a monthly fee up to 300 kWh, through a separate meter. Electric usage for the household will be billed under the RS or RT Rate Schedule. The REV-3 Rate is limited to 250 customers.

209

Data:43d8489f-bc72-42c9-8ef4-9f4574cc99b2 | Open Energy Information  

Open Energy Info (EERE)

89f-bc72-42c9-8ef4-9f4574cc99b2 89f-bc72-42c9-8ef4-9f4574cc99b2 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Town of Reading, Massachusetts (Utility Company) Effective date: End date if known: Rate name: Residential Time-of-Use Schedule A2 Rate - Farm Discount Sector: Residential Description: Additional Info: Applicable to: Individual residential customers for all domestic uses where service is taken through one On-Peak and Off-Peak meter. Incidental commercial use, not exceeding 20% of the total energy used on the same premises is permitted. The following charges/adjustments apply: Energy Conservation Charge: Calculated based on the projected annual energy conservation expenses related to the class of customer, divided by the projected annual sale of kilowatt-hours for the class of customer. Adjustments will be made periodically to account for over and under recovery of energy conservation costs.(ref: http://www.rmld.com/Pages/RMLDMA_Ratestab/ECC)

210

Data:5220c34b-4017-4ef2-b1fb-c8a6b8d2cd4f | Open Energy Information  

Open Energy Info (EERE)

c34b-4017-4ef2-b1fb-c8a6b8d2cd4f c34b-4017-4ef2-b1fb-c8a6b8d2cd4f No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Idaho Power Co Effective date: 2012/06/01 End date if known: Rate name: Schedule 9 - Large General Service - Transmission Sector: Industrial Description: AVAILABILITY Service under this schedule is available at points on the Company's interconnected system within the State of Idaho where existing facilities of adequate capacity and desired phase and voltage are adjacent to the Premises to be served and additional investment by the Company for new transmission, substation, or terminal facilities is not necessary to supply the desired service.

211

Separation of particulate from flue gas of fossil fuel combustion and gasification  

DOE Patents (OSTI)

The gas from combustion or gasification of fossil fuel contains fly ash and other particulates. The fly ash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The fly ash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured fly ash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled. 11 figs.

Yang, W.C.; Newby, R.A.; Lippert, T.E.

1997-08-05T23:59:59.000Z

212

Separation of particulate from flue gas of fossil fuel combustion and gasification  

DOE Patents (OSTI)

The gas from combustion or gasification of fossil fuel contains flyash and other particulate. The flyash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The flyash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured flyash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled.

Yang, Wen-Ching (Murrysville, PA); Newby, Richard A. (Pittsburgh, PA); Lippert, Thomas E. (Murrysville, PA)

1997-01-01T23:59:59.000Z

213

INVESTIGATION OF FUEL CHEMISTRY AND BED PERFORMANCE IN A FLUIDIZED BED BLACK LIQUOR STEAM REFORMER  

DOE Green Energy (OSTI)

The University of Utah project ''Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer'' (DOE award number DE-FC26-02NT41490) was developed in response to a solicitation for projects to provide technical support for black liquor and biomass gasification. The primary focus of the project is to provide support for a DOE-sponsored demonstration of MTCI's black liquor steam reforming technology at Georgia-Pacific's paper mill in Big Island, Virginia. A more overarching goal is to improve the understanding of phenomena that take place during low temperature black liquor gasification. This is achieved through five complementary technical tasks: (1) construction of a fluidized bed black liquor gasification test system, (2) investigation of bed performance, (3) evaluation of product gas quality, (4) black liquor conversion analysis and modeling and (5) computational modeling of the Big Island gasifier. Four experimental devices have been constructed under this project. The largest facility, which is the heart of the experimental effort, is a pressurized fluidized bed gasification test system. The system is designed to be able to reproduce conditions near the black liquor injectors in the Big Island steam reformer, so the behavior of black liquor pyrolysis and char gasification can be quantified in a representative environment. The gasification test system comprises five subsystems: steam generation and superheating, black liquor feed, fluidized bed reactor, afterburner for syngas combustion and a flue gas cooler/condenser. The three-story system is located at University of Utah's Industrial Combustion and Gasification Research Facility, and all resources there are available to support the research.

Kevin Whitty

2003-12-01T23:59:59.000Z

214

Apparatus for dusting off gas by filtration and aspiration cleaning of filter, and application to combustion gases  

SciTech Connect

Method and apparatus for dusting off gases by filtration and cleaning of filter by aspiration and application thereof to combustion gases are disclosed. This invention relates to the filtration of dust loaded gases, and, in particular, combustion gases in the hot state. It consists of passing gases to be dusted off from top to bottom over a bed of pulverulent material, in particular, a sand bed and cleaning the upper layer of said bed by aspiration of dusts deposited thereon. This invention is particularly adapted for dusting off combustion gases from boilers or thermal power stations or gases to be supplied to gas turbines.

Merry, J.

1982-07-06T23:59:59.000Z

215

Development and applications of clean coal fluidized bed technology  

SciTech Connect

Power generation in Europe and elsewhere relies heavily on coal and coal-based fuels as the source of energy. The reliance will increase in the future due to the decreasing stability of price and security of oil supply. In other words, the studies on fluidized bed combustion systems, which is one of the clean coal technologies, will maintain its importance. The main objective of the present study is to introduce the development and the applications of the fluidized bed technology (FBT) and to review the fluidized bed combustion studies conducted in Turkey. The industrial applications of the fluidized bed technology in the country date back to the 1980s. Since then, the number of the fluidized bed boilers has increased. The majority of the installations are in the textile sector. In Turkey, there is also a circulating fluidized bed thermal power plant with a capacity of 2 x 160 MW under construction at Can in Canakkale. It is expected that the FBT has had, or will have, a significant and increasing role in dictating the energy strategies for Turkey.

Eskin, N.; Hepbasli, A. [Ege University, Izmir (Turkey). Faculty of Engineering

2006-09-15T23:59:59.000Z

216

Coal Bed Sequestration of Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

COAL BED SEQUESTRATION OF CARBON DIOXIDE COAL BED SEQUESTRATION OF CARBON DIOXIDE R. Stanton (rstanton@usgs.gov; 703-648-6462) U.S. Geological Survey MS 956 National Center Reston, VA 20192 R. Flores (rflores@usgs.gov; 303-236-7774) U.S. Geological Survey MS 939, Denver Federal Center Denver, CO 80225 P.D. Warwick (pwarwick@usgs.gov; 703-648-6469) H. Gluskoter (halg@usgs.gov; 703-648-6429) U.S. Geological Survey MS 956 National Center Reston, VA 20192 G.D. Stricker (303-236-7763) U.S. Geological Survey MS 939, Denver Federal Center Denver, CO 80225 Introduction Geologic sequestration of CO 2 generated from fossil fuel combustion may be an environmentally attractive method to reduce the amount of greenhouse gas emissions. Of the geologic options, sequestering CO

217

Fluidized bed boiler having a segmented grate  

DOE Patents (OSTI)

A fluidized bed furnace (10) is provided having a perforate grate (9) within a housing which supports a bed of particulate material including some combustibles. The grate is divided into a plurality of segments (E2-E6, SH1-SH5, RH1-RH5), with the airflow to each segment being independently controlled. Some of the segments have evaporating surface imbedded in the particulate material above them, while other segments are below superheater surface or reheater surface. Some of the segments (E1, E7) have no surface above them, and there are ignitor combustors (32, 34) directed to fire into the segments, for fast startup of the furnace without causing damage to any heating surface.

Waryasz, Richard E. (Longmeadow, MA)

1984-01-01T23:59:59.000Z

218

Transport Properties for Combustion Modeling  

E-Print Network (OSTI)

a critical role in combustion processes just as chemicalparameters are essential for combustion modeling; molecularwith Application to Combustion. Transport Theor Stat 2003;

Brown, N.J.

2010-01-01T23:59:59.000Z

219

Vehculos de Clula de Combustible  

NLE Websites -- All DOE Office Websites (Extended Search)

de Clula de Combustible Vehculo de Clula de Combustible Honda Clarity FCX Los vehculos de clula de combustible (FCVs)tambin llamados de pila de combustibletienen el...

220

Combustion 2000  

SciTech Connect

This report is a presentation of work carried out on Phase II of the HIPPS program under DOE contract DE-AC22-95PC95144 from June 1995 to March 2001. The objective of this report is to emphasize the results and achievements of the program and not to archive every detail of the past six years of effort. These details are already available in the twenty-two quarterly reports previously submitted to DOE and in the final report from Phase I. The report is divided into three major foci, indicative of the three operational groupings of the program as it evolved, was restructured, or overtaken by events. In each of these areas, the results exceeded DOE goals and expectations. HIPPS Systems and Cycles (including thermodynamic cycles, power cycle alternatives, baseline plant costs and new opportunities) HITAF Components and Designs (including design of heat exchangers, materials, ash management and combustor design) Testing Program for Radiative and Convective Air Heaters (including the design and construction of the test furnace and the results of the tests) There are several topics that were part of the original program but whose importance was diminished when the contract was significantly modified. The elimination of the subsystem testing and the Phase III demonstration lessened the relevance of subtasks related to these efforts. For example, the cross flow mixing study, the CFD modeling of the convective air heater and the power island analysis are important to a commercial plant design but not to the R&D product contained in this report. These topics are of course, discussed in the quarterly reports under this contract. The DOE goal for the High Performance Power Plant System ( HIPPS ) is high thermodynamic efficiency and significantly reduced emissions. Specifically, the goal is a 300 MWe plant with > 47% (HHV) overall efficiency and {le} 0.1 NSPS emissions. This plant must fire at least 65% coal with the balance being made up by a premium fuel such as natural gas. To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization issues of fabrication and reliability, availability and maintenance. The program that has s

A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

2001-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustion fbc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

An Approach to Incinerator Combustible Pollutant Control WALTER R. NIESSEN  

E-Print Network (OSTI)

that the heat generated by the gasification reactions pro vide the sensible energy of the gasification products at a temperature similar to that of thejet fluid provides the starting point in any review ofjet dynamics. Indeed is proposed to allow quantitative estimation of the generation rate of combustibles along the bed, thus

Columbia University

222

Solution Combustion Synthesis Impregnated Layer Combustion Synthesis is a Novel  

E-Print Network (OSTI)

Solution Combustion Synthesis Impregnated Layer Combustion Synthesis is a Novel Methodology Engineering University of Notre Dame University of Notre Dame #12;Outline: Overview of combustion synthesis Reaction system Combustion front analaysis Theoretical model results Conclusions Acknowledgements #12

Mukasyan, Alexander

223

Fluidized bed calciner apparatus  

DOE Patents (OSTI)

An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

Owen, Thomas J. (West Richland, WA); Klem, Jr., Michael J. (Richland, WA); Cash, Robert J. (Richland, WA)

1988-01-01T23:59:59.000Z

224

Bed Surface Patchiness in Gravel-Bed Rivers  

E-Print Network (OSTI)

this case was a completely armored, immobile bed. Table 2.4that gravel beds are armored because equal mobil- ity

Nelson, Peter August

2010-01-01T23:59:59.000Z

225

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Diagram of CERTS Microgrid Test Bed Figure 3. Tecogen Prime2009 CERTS Microgrid Laboratory Test Bed J. ETO, Lawrenceof the CERTS Microgrid Test Bed project was to enhance the

Eto, Joe

2009-01-01T23:59:59.000Z

226

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Line Diagram of CERTS Microgrid Test Bed Figure 3. TecogenCALGARY 2009 CERTS Microgrid Laboratory Test Bed J. ETO,The objective of the CERTS Microgrid Test Bed project was to

Eto, Joe

2009-01-01T23:59:59.000Z

227

Data:60e95ab9-6ce6-4d7f-bc4f-6f5feb52139d | Open Energy Information  

Open Energy Info (EERE)

Data Data Edit with form History Facebook icon Twitter icon » Data:60e95ab9-6ce6-4d7f-bc4f-6f5feb52139d No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Terrebonne Parish Consol Gov't Effective date: End date if known: Rate name: Large Commercial electric rates - Instrument meter w/ Primary Service Discount (ED 200) Sector: Commercial Description: Flat rate charge = Energy charge + Commodity charge 1. Energy Cost Charge per month is 3.85¢ per KWH 2. Commodity Charge per month is 2.8¢ per KWH The following Demand charge is also applied: Primary Service Discount (ED 200) - $5.25 per KVA

228

Data:02a3e3ae-8868-4da3-a43b-fbc93a58c47f | Open Energy Information  

Open Energy Info (EERE)

Data Data Edit with form History Facebook icon Twitter icon » Data:02a3e3ae-8868-4da3-a43b-fbc93a58c47f No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Jacksonville Electric Authority Effective date: 2012/01/01 End date if known: Rate name: GSXLD-Combined - Transmission Service Discount (69,000 Volts - 230,000 Volts) Sector: Description: *A discount of $1.93 per kW of Billing Demand and 0.25 cent per kWh will be allowed for service taken at 69,000 volts or higher, but less than 230,000 volts, when the customer provides all of the equipment required to take service at JEA's existing transmission lines.

229

Data:75aae5fb-c797-4add-b31e-e74010ca4f9d | Open Energy Information  

Open Energy Info (EERE)

aae5fb-c797-4add-b31e-e74010ca4f9d aae5fb-c797-4add-b31e-e74010ca4f9d No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Connecticut Light & Power Co Effective date: 2013/07/01 End date if known: Rate name: Rate 27 - Small Time-Of-Day General Electric Service (Bundled Service Primary Discount Facilities Ownership) Sector: Commercial Description: AVAILABLE for the entire electrical requirements at a single service location measured through one metering installation where the customer's maximum demand is less than 350 kW. Notwithstanding the applicability provisions of other rates, this rate is also available to fullrequirements customers that (i) prior to March 1, 1992, had a maximum monthly 30-minute demand in excess of 350 kW; (ii) had a maximum monthly 30-minute demand in the twelve billing periods prior to March 1, 1992, that equaled or exceeded twice the average of the customer's maximum monthly 30-minute demands during the same billing periods; (iii) as of March 1, 1992, had established, and had a reasonable expectation of continuing, a seasonal pattern of electrical usage approximating that established during the twelve billing periods prior to March 1, 1992; and (iv) had not discontinued taking service under this rate or Rate 30 after March 1, 1992.

230

Data:97323792-0a3c-4f1f-bc43-9cfdeb8312cc | Open Energy Information  

Open Energy Info (EERE)

23792-0a3c-4f1f-bc43-9cfdeb8312cc 23792-0a3c-4f1f-bc43-9cfdeb8312cc No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Dover, Delaware (Utility Company) Effective date: End date if known: Rate name: Rate C2: Medium Commercial, Single Phase, with Net Energy Metering Sector: Commercial Description: "RATE: The monthly billing shall be as stated in the applicable rate tariff. Under this rider, only the kWh charge for electricity delivered by the Customer is affected. The Customer will pay for all kWh delivered by the City of Dover. If the Customer has delivered electricity to the City's system a credit will be issued equal to the City's current kWh rate for that particular class of customer. This credit will be applied to subsequent billing periods to offset a customer's consumption (City delivered kWh) in those billing periods until all credits are used or until the end of the calendar year. At the end of the calendar year the Customer may request a payment for any excess kWh credit. Any excess kWh credits from the customer shall not reduce any fixed monthly customer charges, taxes or other components of the electric bill imposed by the City."

231

HYDROGEN ASSISTED DIESEL COMBUSTION.  

E-Print Network (OSTI)

??In this study, the effect of hydrogen assisted diesel combustion on conventional and advanced combustion modes was investigated on a DDC/VM Motori 2.5L, 4-cylinder, turbocharged, (more)

Lilik, Gregory

2008-01-01T23:59:59.000Z

232

Oxy-coal Combustion Studies  

SciTech Connect

The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol. To these ends, the project has focused on the following: ? The development of reliable Large Eddy Simulations (LES) of oxy-coal flames using the Direct Quadrature Method of Moments (DQMOM) (Subtask 3.1). The simulations were validated for both non-reacting particle-laden jets and oxy-coal flames. ? The modifications of an existing oxy-coal combustor to allow operation with high levels of input oxygen to enable in-situ laser diagnostic measurements as well as the development of strategies for directed oxygen injection (Subtask 3.2). Flame stability was quantified for various burner configurations. One configuration that was explored was to inject all the oxygen as a pure gas within an annular oxygen lance, with burner aerodynamics controlling the subsequent mixing. ? The development of Particle Image Velocimetry (PIV) for identification of velocity fields in turbulent oxy-coal flames in order to provide high-fidelity data for the validation of oxy-coal simulation models (Subtask 3.3). Initial efforts utilized a laboratory diffusion flame, first using gas-fuel and later a pulverized-coal flame to ensure the methodology was properly implemented and that all necessary data and image-processing techniques were fully developed. Success at this stage of development led to application of the diagnostics in a large-scale oxy-fuel combustor (OFC). ? The impact of oxy-coal-fired vs. air-fired environments on SO{sub x} (SO{sub 2}, SO{sub 3}) emissions during coal combustion in a pilot-scale circulating fluidized-bed (CFB) (Subtask 3.4). Profiles of species concentration and temperature were obtained for both conditions, and profiles of temperature over a wide range of O{sub 2} concentration were studied for oxy-firing conditions. The effect of limestone addition on SO{sub 2} and SO{sub 3} emissions were also examined for both air- and oxy- firing conditions. ? The investigation of O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments on SO{sub 2 emissions during coal combustion in a bench-scale single-particle fluidized-bed reactor (Subtask 3.5). Moreover, the sulfation mechanisms of limestone in O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments were studied, and a generalized gassolid and diffusion-reaction single-particle model was developed to study the effect of major operating variables. ? The investigation of the effect of oxy-coal combustion on ash formation, particle size distributions (PSD), and size-segregated elemental composition in a drop-tube furnace and the 100 kW OFC (Subtask 3.6). In particular, the effect of coal type and flue gas recycle (FGR, OFC only) was investigated.

J. Wendt; E. Eddings; J. Lighty; T. Ring; P. Smith; J. Thornock; Y. Jia, W. Morris; J. Pedel; D. Rezeai; L. Wang; J. Zhang; K. Kelly

2012-01-01T23:59:59.000Z

233

CERTS Microgrid Laboratory Test Bed  

NLE Websites -- All DOE Office Websites (Extended Search)

CERTS Microgrid Laboratory Test Bed Title CERTS Microgrid Laboratory Test Bed Publication Type Report Year of Publication 2010 Authors Lasseter, Robert H., Joseph H. Eto, Ben...

234

Combustion oscillation control  

SciTech Connect

Premixing of fuel and air can avoid high temperatures which produce thermal NOx, but oscillating combustion must be eliminated. Combustion oscillations can also occur in Integrated Gasification Combined Cycle turbines. As an alternative to design or operating modifications, METC is investigating active combustion control (ACC) to eliminate oscillations; ACC uses repeated adjustment of some combustion parameter to control the variation in heat release that drives oscillations.

Richards, G.A.; Janus, M.C.

1996-12-31T23:59:59.000Z

235

Refractory experience in circulating fluidized bed combustors, Task 7  

Science Conference Proceedings (OSTI)

This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

Vincent, R.Q.

1989-11-01T23:59:59.000Z

236

The fluidized bed combustor-heater equipped gas fired CCGT  

Science Conference Proceedings (OSTI)

The combustion of natural gas in an atmospheric fluidized bed combined with heat transfer from the bed to the working fluid is shown to be an attractive means for supplying heat to closed cycle gas turbines. It is demonstrated how this concept can yield high thermal efficiencies without the use of high temperature resistant materials and yield low levels of pollutant emissions. The features of the combustor-heater are established for a 9000 kW closed cycle gas turbine generator and comparisons are made with a conventional open cycle machine.

Fejer, A.

1984-06-01T23:59:59.000Z

237

Fluidized bed combustor-heater equipped gas fired CCGT  

Science Conference Proceedings (OSTI)

The combustion of natural gas in an atmospheric fluidized bed combined with heat transfer from the bed to the working fluid is shown to be an attractive means for supplying heat to closed cycle gas turbines. It is demonstrated how this concept can yield high thermal efficiencies without the use of high temperature resistant materials and yield low levels of pollutant emissions. The features of the combustor-heater are established for a 9000 kW closed cycle gas turbine generator and comparisons are made with a conventional open cycle machine.

Fejer, A.A.

1984-01-01T23:59:59.000Z

238

Proceedings: Coal Combustion Workshop  

Science Conference Proceedings (OSTI)

The primary objective of the 2007 Coal Combustion workshop was to present a holistic view of the various combustion processes required for minimal emissions, peak performance, and maximum reliability in a coal-fired power plant. The workshop also defined needs for future RD in coal combustion technology.

2008-01-09T23:59:59.000Z

239

NO reduction in decoupling combustion of biomass and biomass-coal blend  

SciTech Connect

Biomass is a form of energy that is CO{sub 2}-neutral. However, NOx emissions in biomass combustion are often more than that of coal on equal heating-value basis. In this study, a technology called decoupling combustion was investigated to demonstrate how it reduces NO emissions in biomass and biomass-coal blend combustion. The decoupling combustion refers to a two-step combustion method, in which fuel pyrolysis and the burning of char and pyrolysis gas are separated and the gas burns out during its passage through the burning-char bed. Tests in a quartz dual-bed reactor demonstrated that, in decoupling combustion, NO emissions from biomass and biomass-coal blends were both less than those in traditional combustion and that NO emission from combustion of blends of biomass and coal decreased with increasing biomass percentage in the blend. Co-firing rice husk and coal in a 10 kW stove manufactured according to the decoupling combustion technology further confirmed that the decoupling combustion technology allows for truly low NO emission as well as high efficiency for burning biomass and biomass-coal blends, even in small-scale stoves and boilers. 22 refs., 6 figs., 1 tab.

Li Dong; Shiqiu Gao; Wenli Song; Jinghai Li; Guangwen Xu [Chinese Academy of Sciences, Beijing (China). State Key Laboratory of Multi-Phase Complex Systems

2009-01-15T23:59:59.000Z

240

Combustion, pyrolysis, gasification, and liquefaction of biomass  

DOE Green Energy (OSTI)

All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

Reed, T.B.

1980-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustion fbc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Electron Beam Powder Bed Processes  

Science Conference Proceedings (OSTI)

Advanced Materials, Processes and Applications for Additive Manufacturing : Electron Beam Powder Bed Processes Program Organizers: Andrzej...

242

Comparative results of the combustion of lignin briquettes and black coal  

SciTech Connect

A new type of biofuel - hydrolytic lignin briquettes - was tested as compared with ordinary SS coal from the Kuznetsk Basin in fuel-bed firing in a Universal-6 boiler. It was found that the (total) efficiency of the boiler with the firing of lignin briquettes was 38% higher than that with the use of black coal. Carbon loss in the combustion of briquettes was 1%, whereas it was 48.2% in the combustion of black coal. The emission of harmful gas pollutants into the environment in the combustion of briquettes was lower than that in the combustion of coal by a factor of 4.5.

V.G. Lurii [Institute for Fossil Fuels, Moscow (Russian Federation)

2008-12-15T23:59:59.000Z

243

Effect of bed pressure drop on performance of a CFB boiler  

Science Conference Proceedings (OSTI)

The effect of bed pressure drop and bed inventory on the performances of a circulating fluidized bed (CFB) boiler was studied. By using the state specification design theory, the fluidization state of the gas-solids flow in the furnace of conventional CFB boilers was reconstructed to operate at a much lower bed pressure drop by reducing bed inventory and control bed quality. Through theoretical analysis, it was suggested that there would exist a theoretical optimal value of bed pressure drop, around which the boiler operation can achieve the maximal combustion efficiency and with significant reduction of the wear of the heating surface and fan energy consumption. The analysis was validated by field tests carried out in a 75 t/h CFB boiler. At full boiler load, when bed pressure drop was reduced from 7.3 to 3.2 kPa, the height of the dense zone in the lower furnace decreased, but the solid suspension density profile in the upper furnace and solid flow rate were barely influenced. Consequently, the average heat transfer coefficient in the furnace was kept nearly the same and the furnace temperature increment was less than 17{sup o}C. It was also found that the carbon content in the fly ash decreased first with decreasing bed pressure drop and then increased with further increasing bed pressure drop. The turning point with minimal carbon content was referred to as the point with optimal bed pressure drop. For this boiler, at the optimum point the bed pressure was around 5.7 kPa with the overall excess air ratio of 1.06. When the boiler was operated around this optimal point, not only the combustion efficiency was improved, but also fan energy consumption and wear of heating surface were reduced. 23 refs., 6 figs., 4 tabs.

Hairui Yang; Hai Zhang; Shi Yang; Guangxi Yue; Jun Su; Zhiping Fu [Tsinghua University, Beijing (China). Department of Thermal Engineering

2009-05-15T23:59:59.000Z

244

NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. 1990 Annual report  

Science Conference Proceedings (OSTI)

The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

Not Available

1992-02-01T23:59:59.000Z

245

Inclined fluidized bed system for drying fine coal  

SciTech Connect

Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

Cha, Chang Y. (Golden, CO); Merriam, Norman W. (Laramie, WY); Boysen, John E. (Laramie, WY)

1992-02-11T23:59:59.000Z

246

Apparatus for fixed bed coal gasification  

DOE Patents (OSTI)

An apparatus for fixed-bed coal gasification is described in which coal such as caking coal is continuously pyrolyzed with clump formation inhibited, by combining the coal with a combustible gas and an oxidant, and then continually feeding the pyrolyzed coal under pressure and elevated temperature into the gasification region of a pressure vessel. The materials in the pressure vessel are allowed to react with the gasifying agents in order to allow the carbon contents of the pyrolyzed coal to be completely oxidized. The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

Sadowski, Richard S. (Greenville, SC)

1992-01-01T23:59:59.000Z

247

VOC Destruction by Catalytic Combustion Microturbine  

SciTech Connect

This project concerned the application of a catalytic combustion system that has been married to a micro-turbine device. The catalytic combustion system decomposes the VOC's and transmits these gases to the gas turbine. The turbine has been altered to operate on very low-level BTU fuels equivalent to 1.5% methane in air. The performance of the micro-turbine for VOC elimination has some flexibility with respect to operating conditions, and the system is adaptable to multiple industrial applications. The VOC source that was been chosen for examination was the emissions from coal upgrading operations. The overall goal of the project was to examine the effectiveness of a catalytic combustion based system for elimination of VOCs while simultaneously producing electrical power for local consumption. Project specific objectives included assessment of the feasibility for using a Flex-Microturbine that generates power from natural gas while it consumes VOCs generated from site operations; development of an engineering plan for installation of the Flex-Microturbine system; operation of the micro-turbine through various changes in site and operation conditions; measurement of the VOC destruction quantitatively; and determination of the required improvements for further studies. The micro-turbine with the catalytic bed worked effectively to produce power on levels of fuel much lower than the original turbine design. The ability of the device to add or subtract supplemental fuel to augment the amount of VOC's in the inlet air flow made the device an effective replacement for a traditional flare. Concerns about particulates in the inlet flow and the presence of high sulfur concentrations with the VOC mixtures was identified as a drawback with the current catalytic design. A new microturbine design was developed based on this research that incorporates a thermal oxidizer in place of the catalytic bed for applications where particulates or contamination would limit the lifetime of the catalytic bed.

Tom Barton

2009-03-10T23:59:59.000Z

248

VOC Destruction by Catalytic Combustion Microturbine  

SciTech Connect

This project concerned the application of a catalytic combustion system that has been married to a micro-turbine device. The catalytic combustion system decomposes the VOC's and transmits these gases to the gas turbine. The turbine has been altered to operate on very low-level BTU fuels equivalent to 1.5% methane in air. The performance of the micro-turbine for VOC elimination has some flexibility with respect to operating conditions, and the system is adaptable to multiple industrial applications. The VOC source that was been chosen for examination was the emissions from coal upgrading operations. The overall goal of the project was to examine the effectiveness of a catalytic combustion based system for elimination of VOCs while simultaneously producing electrical power for local consumption. Project specific objectives included assessment of the feasibility for using a Flex-Microturbine that generates power from natural gas while it consumes VOCs generated from site operations; development of an engineering plan for installation of the Flex-Microturbine system; operation of the micro-turbine through various changes in site and operation conditions; measurement of the VOC destruction quantitatively; and determination of the required improvements for further studies. The micro-turbine with the catalytic bed worked effectively to produce power on levels of fuel much lower than the original turbine design. The ability of the device to add or subtract supplemental fuel to augment the amount of VOC's in the inlet air flow made the device an effective replacement for a traditional flare. Concerns about particulates in the inlet flow and the presence of high sulfur concentrations with the VOC mixtures was identified as a drawback with the current catalytic design. A new microturbine design was developed based on this research that incorporates a thermal oxidizer in place of the catalytic bed for applications where particulates or contamination would limit the lifetime of the catalytic bed.

Tom Barton

2009-03-10T23:59:59.000Z

249

Fluidized bed combustor 50 MW thermal power plant, Krabi, Thailand. Feasibility study. Export trade information  

SciTech Connect

The report presents the results of a study prepared by Burns and Roe for the Electricity Generating Authority of Thailand to examine the technical feasibility and economic attractiveness for building a 50 MW Atmospheric Fluidized Bed Combustion lignite fired power plant at Krabi, southern Thailand. The study is divided into seven main sections, plus an executive summary and appendices: (1) Introduction; (2) Atmospheric Fluidized Bed Combustion Technology Overview; (3) Fuel and Limestone Tests; (4) Site Evaluation; (5) Station Design and Arrangements; (6) Environmental Considerations; (7) Economic Analysis.

1993-01-01T23:59:59.000Z

250

Boiler using combustible fluid  

DOE Patents (OSTI)

A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

Baumgartner, H.; Meier, J.G.

1974-07-03T23:59:59.000Z

251

NYU-DOE Pressurized Fluidized Bed Combustor Facility  

Science Conference Proceedings (OSTI)

New York University (NYU), under a Department of Energy (DOE) Contract, has designed and constructed a sub-pilot scale Pressurized Fluidized-Bed Combustor (PFBC) Facility at the Antonio Ferri Laboratories, Westbury, Long Island. The basic feature of this Experimental Research Facility is a well-instrumented, 30-inch diameter coal combustor capable of operating up to 10 atm and provided with a liberal number of ports, making it a versatile unit for study of fundamental in-bed phenomena. Additionally, the overall design features make it a flexible facility for solving a variety of industrial research problems. The main objectives of the facility are two-fold: (1) to perform research in important areas of Pressurized Fluidized-Bed Combustion like low-grade fuel combustion under pressure; and (2) to provide the PFBC community with a experimental research tool for basic and applied research in order to accelerate the commercialization of this technology. New York University will initially test the facility of burning low-grade fuels under pressure. During the test program, emphasis will be placed on burning North Dakota lignite under pressures up to 7 atm. The performance of lignite with regard to its feeding, combustion efficiency, sulfur adsorption and sorbent requirements will be investigated. This report describes the various systems of the PFBC facility and operating procedures, and presents an outline of the test program planned for the facility. Other details are provided in the Equipment and Maintenance Manual, Test Program and Data Acquisition Manual, and Training Manual.

Zakkay, V.; Kolar, A.; Sellakumar, K.; Srinivasaragavan, S.; Miller, G.; Panunzio, S.; Joseph, A.; Sundaresan, C.

1983-01-01T23:59:59.000Z

252

Down-flow moving-bed gasifier with catalyst recycle  

DOE Patents (OSTI)

The gasification of coal and other carbonaceous materials by an endothermic gasification reaction is achieved in the presence of a catalyst in a down-flow, moving-bed gasifier. Catalyst is removed along with ash from the gasifier and is then sufficiently heated in a riser/burner by the combustion of residual carbon in the ash to volatilize the catalyst. This volatilized catalyst is returned to the gasifier where it uniformly contacts and condenses on the carbonaceous material. Also, the hot gaseous combustion products resulting from the combustion of the carbon in the ash along with excess air are introduced into the gasifier for providing heat energy used in the endothermic reaction.

Halow, J.S.

1996-12-31T23:59:59.000Z

253

Down-flow moving-bed gasifier with catalyst recycle  

DOE Patents (OSTI)

The gasification of coal and other carbonaceous materials by an endothermic gasification reaction is achieved in the presence of a catalyst in a down-flow, moving-bed gasifier. Catalyst is removed along with ash from the gasifier and is then sufficiently heated in a riser/burner by the combustion of residual carbon in the ash to volatilize the catalyst. This volatilized catalyst is returned to the gasifier where it uniformly contacts and condenses on the carbonaceous material. Also, the hot gaseous combustion products resulting from the combustion of the carbon in the ash along with excess air are introduced into the gasifier for providing heat energy used in the endothermic reaction.

Halow, John S. (Waynesburg, PA)

1999-01-01T23:59:59.000Z

254

Down-flow moving-bed gasifier with catalyst recycle  

DOE Patents (OSTI)

The gasification of coal and other carbonaceous materials by an endothermic gasification reaction is achieved in the presence of a catalyst in a down-flow, moving-bed gasifier. Catalyst is removed along with ash from the gasifier and is then sufficiently heated in a riser/burner by the combustion of residual carbon in the ash to volatilize the catalyst. This volatilized catalyst is returned to the gasifier where it uniformly contacts and condenses on the carbonaceous material. Also, the hot gaseous combustion products resulting from the combustion of the carbon in the ash along with excess air are introduced into the gasifier for providing heat energy used in the endothermic reaction. 1 fig.

Halow, J.S.

1999-04-20T23:59:59.000Z

255

Data:Acf3f83f-bc7c-400a-94b7-b159cea1e6cc | Open Energy Information  

Open Energy Info (EERE)

Acf3f83f-bc7c-400a-94b7-b159cea1e6cc Acf3f83f-bc7c-400a-94b7-b159cea1e6cc No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Northern Indiana Pub Serv Co Effective date: 2011/12/27 End date if known: Rate name: Renewable Feed-in Tariff - Wind - no greater than 100 kW Sector: Description: TO WHOM AVAILABLE This is an experimental rate that is a voluntary offer available to any Customer that operates within the Company's service territory a Qualifying Renewable Energy Power Production Facility (Facility) subject to the Company's Rules and Regulations and, any terms, conditions and restrictions imposed by any valid and applicable law or regulation. This experimental tariff shall be in effect through December 31, 2013, unless otherwise ordered. The total capacity available under this Rate is limited to 30 MW with (i) no single technology exceeding 50% of the 30 MW cap, (ii) 500 kW of the 30 MW cap specifically allocated and reserved for solar projects of less than 10 kW capacity, and (iii) 500 kW of the 30 MW cap specifically allocated and reserved for wind projects of less than 10 kW capacity. The Qualifying Renewable Energy Power Production Facility shall be a single arrangement of equipment located on a single site of Customer no less than 5 kW and no greater than 5 MW, for the production of electricity through the use of 100% renewable resources or fuels, which shall include "Renewable energy resources" as that term is defined in Ind. Code § 8-1-8.8-10(a)(1) through (a)(5) and Ind. Code § 8-1-8.8-10(a)(8) as of January 1, 2011, and new hydropower facilities with capacities up to 1 MW. The Company may make available this rate to Customers with a Facility less than 5 kW at the Company's discretion. In no event shall any one Customer's, including Customer's affiliates and the combination of Customer's total premises, total capacity subscribed under this rate exceed 5 MW. The Customer shall be solely responsible for compliance with applicable federal laws and regulations.

256

Method of regulating the amount of underfire air for combustion of wood fuels in spreader-stroke boilers  

DOE Patents (OSTI)

A method of metering underfire air for increasing efficiency and reducing particulate emissions from wood-fire, spreader-stoker boilers is disclosed. A portion of the combustion air, approximately one pound of air per pound of wood, is fed through the grate into the fuel bed, while the remainder of the combustion air is distributed above the fuel in the furnace, and the fuel bed is maintained at a depth sufficient to consume all oxygen admitted under fire and to insure a continuous layer of fresh fuel thereover to entrap charred particles inside the fuel bed.

Tuttle, Kenneth L. (Federal Way, WA)

1980-01-01T23:59:59.000Z

257

Precision Combustion, Inc  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing Reliable, Cost Effective Fuel Processors. Abstract: Precision Combustion, Inc. (PCI) is developing ultra-compact Fuel Processing systems for a range of Fuel Cells and...

258

Low NOx combustion  

DOE Patents (OSTI)

Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

Kobayashi, Hisashi (Putnam Valley, NY); Bool, III, Lawrence E. (Aurora, NY)

2008-10-21T23:59:59.000Z

259

Low NOx combustion  

DOE Patents (OSTI)

Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

Kobayashi; Hisashi (Putnam Valley, NY), Bool, III; Lawrence E. (Aurora, NY)

2007-06-05T23:59:59.000Z

260

Fluid bed material transfer method  

DOE Patents (OSTI)

A fluidized bed apparatus comprising a pair of separated fluid bed enclosures, each enclosing a fluid bed carried on an air distributor plate supplied with fluidizing air from below the plate. At least one equalizing duct extending through sidewalls of both fluid bed enclosures and flexibly engaged therewith to communicate the fluid beds with each other. The equalizing duct being surrounded by insulation which is in turn encased by an outer duct having expansion means and being fixed between the sidewalls of the fluid bed enclosures.

Pinske, Jr., Edward E. (Akron, OH)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustion fbc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Apparatus for controlling fluidized beds  

DOE Patents (OSTI)

An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

Rehmat, A.G.; Patel, J.G.

1987-05-12T23:59:59.000Z

262

Apparatus for controlling fluidized beds  

DOE Patents (OSTI)

An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

Rehmat, Amirali G. (Westmont, IL); Patel, Jitendra G. (Bolingbrook, IL)

1987-05-12T23:59:59.000Z

263

Transportation Safeguards & Security Test Bed (TSSTB) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Safeguards and Security Test Bed May 30, 2013 The Transportation Safeguards and Security Test Bed consists of a test-bed vehicle and a monitoringlaboratorytraining...

264

Staged fluidized bed  

DOE Patents (OSTI)

The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

Mallon, R.G.

1983-05-13T23:59:59.000Z

265

Contrle de combustion en transitoires des moteurs combustion interne.  

E-Print Network (OSTI)

??Cette thse traite le problme du contrle de combustion des moteurs automobiles combustion interne. On propose une mthode compltant les stratgies de contrle existantes (more)

Hillion, Mathieu

2009-01-01T23:59:59.000Z

266

COMBUSTION SOURCES OF NITROGEN COMPOUNDS  

E-Print Network (OSTI)

Rasmussen, R.A. (1976). Combustion as a source of nitrousx control for stationary combustion sources. Prog. Energy,CA, March 3-4, 1977 COMBUSTION SOURCES OF NITROGEN COMPOUNDS

Brown, Nancy J.

2011-01-01T23:59:59.000Z

267

Improving Efficiency of a Counter-Current Flow Moving Bed Granular Filter  

DOE Green Energy (OSTI)

The goal of this research is to improve the performance of moving bed granular filters for gas cleaning at high temperatures and pressures. A second goal of the research is to optimize the performances of both solids and gas filtering processes through appropriate use of granular bed materials, particle sizes, feed rates etc. in a factorial study. These goals are directed toward applications of advanced coal-fired power cycles under development by the U.S. Department of Energy including pressurized fluidized bed combustion and integrated gasification/combined cycles based on gas turbines and fuel cells. Only results for particulate gas cleaning are reported here.

Colver, G.M.; Brown, R.C.; Shi, H.; Soo, D.S-C.

2002-09-18T23:59:59.000Z

268

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluid-Bed Gasifier/Modular Gas Cleanup Rig Fluid-Bed Gasifier/Modular Gas Cleanup Rig NETL is developing a technology base for tomorrow's highly efficient, near-zero-emissions power plants including FutureGen. One of the promising technologies NETL is pursuing is advanced fluidized-bed combustion (FBC). Pressurized FBC (PFBC) systems use a mixture of burning coal, a sorbent such as limestone or dolomite, and jets of air to produce a high-pressure gas stream at temperatures that can drive a gas turbine. Steam generated from the heat in the fluidized bed may be sent to a steam turbine, creating a highly efficient combined-cycle system. Removing and recovering particulates and contaminants from the gas and steam are accomplished in treatment vessels once combustion has occurred. PFBC may also play a role in hydrogen fuel production.

269

Coal Combustion Science  

SciTech Connect

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

1991-08-01T23:59:59.000Z

270

Fifteenth combustion research conference  

Science Conference Proceedings (OSTI)

The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers.

NONE

1993-06-01T23:59:59.000Z

271

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Line Diagram of CERTS Microgrid Test Bed Figure 3. TecogenRoy, N. Lewis. 2008. CERTS Microgrid Laboratory Test Bed. (Energy Resources: The MicroGrid Concept. (Lawrence Berkeley

ETO, J.

2010-01-01T23:59:59.000Z

272

Bed expansion crucible tests  

SciTech Connect

The Am/Cm program will vitrify the americium and curium currently stored in F-canyon. A batch flowsheet has been developed (with non-radioactive surrogate feed in place of the F-canyon solution) and tested full-scale in the 5-inch Cylindrical Induction Melter (CIM) facility at TNX. During a normal process run, a small bed expansion occurs when oxygen released from reduction of cerium (IV) oxide to cerium (III) oxide is trapped in highly viscous glass. The bed expansion is characterized by a foamy layer of glass that slowly expands as the oxygen is trapped and then dissipates when the viscosity of the foam becomes low enough to allow the oxygen to escape. Severe bed expansions were noted in the 5-inch CIM when re-heating after an interlock during the calcination phase of the heat cycle, escaping the confines of the melter vessel. In order to better understand the cause of the larger than normal bed expansion and to develop mitigating techniques, a series of three crucible tests were conducted.

Stone, M.E.

2000-04-04T23:59:59.000Z

273

Transport Properties for Combustion Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Properties for Combustion Modeling Title Transport Properties for Combustion Modeling Publication Type Journal Article Year of Publication 2011 Authors Brown, Nancy J.,...

274

Co-combustion feasibility study. Final report  

DOE Green Energy (OSTI)

This report investigates the technical and economic feasibility of co-combusting municipal sewage sludge produced by the Saratoga County Sewer District No. 1 with paper mill sludge produced by the Cottrell Paper Company, Encore Paper Company, International Paper Company, Mohawk Paper Mills, and TAGSONS Papers at the Saratoga County Sewer District No. 1`s secondary wastewater treatment plant and recovering any available energy products. The co-combustion facility would consist of sludge and wood chip storage and conveying systems, belt filter presses, screw presses, fluidized-bed incinerators, venturi scrubbers and tray cooling systems, ash dewatering facilities, heat recovery steam generators, gas-fired steam superheaters, and a back-pressure steam turbine system. Clean waste wood chips would be used as an auxiliary fuel in the fluidized-bed incinerators. It is recommended that the ash produced by the proposed facility be beneficially used, potentially as a raw material in the manufacture of cement and/or as an interim barrier layer in landfills.

Handcock, D.J. [Clough, Harbour and Associates, Albany, NY (United States)

1995-01-01T23:59:59.000Z

275

Demonstration of an advanced circulation fludized bed coal combustor phase 1: Cold model study. Final report  

Science Conference Proceedings (OSTI)

It was found that there was a strong dependence of the density profile on the secondary air injection location and that there was a pronounced solid separation from the conveying gas, due to the swirl motion. Furthermore, the swirl motion generated strong internal circulation patterns and higher slip velocities than in the case of nonswirl motion as in an ordinary circulating fluidized bed. Radial solids flux profiles were measured at different axial locations. The general radial profile in a swirling circulating fluidized bed indicated an increased downward flow of solids near the bed walls, and strong variations in radial profiles along the axial height. For swirl numbers less than 0.9, which is typical for swirling circulating fluidized beds, there is no significant increase in erosion due to swirl motion inside the bed. Pending further investigation of swirl motion with combustion, at least from our cold model studies, no disadvantages due to the introduction of swirl motion were discovered.

Govind, R. [Cincinnati Univ., OH (United States). Dept. of Chemical Engineering

1993-03-20T23:59:59.000Z

276

Nucla circulating atmospheric fluidized bed demonstration project  

Science Conference Proceedings (OSTI)

Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute's decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

Not Available

1991-10-01T23:59:59.000Z

277

National SCADA Test Bed | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Cybersecurity Energy Delivery Systems Cybersecurity National SCADA Test Bed National SCADA Test Bed Electricity Advisory Committee Transmission Planning...

278

Applications of moving granular-bed filters to advanced systems  

SciTech Connect

The contract is arranged as a base contract with three options. The objective of the base contract is to develop conceptual design(s) of moving granular bed filter and ceramic candle filter technology for control of particles from integrated gasification combined cycle (IGCC) systems, pressurized fluidized-bed combustors (PFBC), and direct coal fueled turbine (DCFT) environments. The conceptual design(s) of these filter technologies are compared, primarily from an economic perspective. The granular bed filter was developed through low pressure, high temperature (1600{degree}F) testing in the late 1970`s and early 1980`s. Collection efficiencies over 99% were obtained. In 1988, high pressure, high temperature testing was completed at New York University, Westbury, N.Y., utilizing a two advanced power generating plants were chosen for developing conceptual designs and cost estimates of the commercial sized filters. One is the 450 MWe, second generation pressurized fluidized bed combustion plant defined by Foster Wheeler. This plant originally included cross-flow filters for hot gas cleanup. The other plant under study is a 100 MWe, KRW air blown gasifier. A cross-flow filter was utilized for gas stream cleanup in this study also. Granular bed and ceramic candle filters were substituted for the cross-flow filters in both these plants, and the resulting costs were compared.

Wilson, K.W.; Haas, J.C.; Eshelman, M.B.

1993-09-01T23:59:59.000Z

279

Computation of azimuthal combustion instabilities in an helicopter combustion chamber  

E-Print Network (OSTI)

Computation of azimuthal combustion instabilities in an helicopter combustion chamber C. Sensiau to compute azimuthal combustion instabilities is presented. It requires a thermoacoustic model using a n - formulation for the coupling between acoutics and combustion. The parameters n and are computed from a LES

Nicoud, Franck

280

Theoretical studies on hydrogen ignition and droplet combustion  

E-Print Network (OSTI)

1.2 Droplet Combustion . . . . . . . . . . . . .Combustion . . . . . . . . . . . . . . . . . . . . . . . . . .Lewis, B. and von Elbe, G. Combustion, Flames and Explosions

Del lamo, Gonzalo

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustion fbc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Coal combustion products (CCPs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

combustion products (CCPs) combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. When properly managed, CCPs offer society environmental and economic benefits without harm to public health and safety. Research supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) has made an important contribution in this regard. Fossil Energy Research Benefits Coal Combustion Products Fossil Energy Research Benefits

282

Internal combustion engine  

SciTech Connect

An improvement to an internal combustion engine is disclosed that has a fuel system for feeding a fuel-air mixture to the combustion chambers and an electrical generation system, such as an alternator. An electrolytic cell is attached adjacent to the engine to generate hydrogen and oxygen upon the application of a voltage between the cathode and anode of the electrolytic cell. The gas feed connects the electrolytic cell to the engine fuel system for feeding the hydrogen and oxygen to the engine combustion chambers. Improvements include placing the electrolytic cell under a predetermined pressure to prevent the electrolyte from boiling off, a cooling system for the electrolytic cell and safety features.

Valdespino, J.M.

1981-06-09T23:59:59.000Z

283

Gas turbine combustion instability  

DOE Green Energy (OSTI)

Combustion oscillations are a common problem in development of LPM (lean premix) combustors. Unlike earlier, diffusion style combustors, LPM combustors are especially susceptible to oscillations because acoustic losses are smaller and operation near lean blowoff produces a greater combustion response to disturbances in reactant supply, mixing, etc. In ongoing tests at METC, five instability mechanisms have been identified in subscale and commercial scale nozzle tests. Changes to fuel nozzle geometry showed that it is possible to stabilize combustion by altering the timing of the feedback between acoustic waves and the variation in heat release.

Richards, G.A.; Lee, G.T.

1996-09-01T23:59:59.000Z

284

Photo of Spray Combustion Chamber  

Science Conference Proceedings (OSTI)

NIST Spray Combustion Chamber. NIST, National Institute of Standards and Technology, Material Measurement Laboratory, ...

2013-07-15T23:59:59.000Z

285

Four Lectures on Turbulent Combustion  

E-Print Network (OSTI)

Four Lectures on Turbulent Combustion N. Peters Institut f¨ur Technische Mechanik RWTH Aachen Turbulent Combustion: Introduction and Overview 1 1.1 Moment Methods in Modeling Turbulence with Combustion and Velocity Scales . . . . . . . . . . . 11 1.4 Regimes in Premixed Turbulent Combustion

Peters, Norbert

286

Sandia Combustion Research: Technical review  

SciTech Connect

This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

NONE

1995-07-01T23:59:59.000Z

287

Staged fluidized bed  

DOE Patents (OSTI)

Method and apparatus for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

Mallon, Richard G. (Livermore, CA)

1984-01-01T23:59:59.000Z

288

Rivesville multicell fluidized bed boiler. Annual technical progress report. July 1978-June 1979  

SciTech Connect

Design, construction and test program of a 300,000 lb/hr steam generating capacity multicell fluidized bed boiler (MFB), as a pollution free method of burning high-sulfur or highly corrosive coals, is being carried out. The concept involves burning fuels such as coal, in a fluidized bed of limestone particles that react with the sulfur compounds formed during combustion to reduce air pollution. Nitrogen oxide emissions are also reduced at the lower combustion temperatures. The CaSO/sub 4/ produced in the furnace is discharged with the ash or regenerated to CaO for reuse in the fluidized bed. Information is presented on continued operation of the Rivesville MFB steam generating plant in a commercial mode and for determining performance and emission characteristics; studies and tests on flyash characterization and reinjection, fuel feed eductors and needles, air distributor, corrosion-erosion and sulfur capture; engineering studies to improve MFB performance and reliability.

Not Available

1980-08-01T23:59:59.000Z

289

Characterization of waste tire incineration in a prototype vortexing fluidized bed combustor  

Science Conference Proceedings (OSTI)

To investigate the characteristics of incinerating waste tires in a prototype vortexing fluidized bed combustor, performance tests were conducted with two sizes of waste tire fragments. The results from the combustion experiments showed that increasing the tire particle size caused less of the volatiles to be burned in the freeboard and thus lowered freeboard temperature. Uniform bed temperature could also be achieved by increasing the size of the tire particles. Variations in the secondary and tertiary air rates simultaneously affected the swirling intensity and the axial gas velocity in the freeboard, and thus resulted in the variations in ash elutriation, combustion efficiency, and pollutant emissions for the combustion systems. 21 refs., 17 figs., 1 tab.

Teng, H.; Chyang, C.S.; Shang, S.H.; Ho, J.A. [Chung Yuan Christian Univ., Chung-Li (Taiwan, Province of China)

1997-01-01T23:59:59.000Z

290

Combustion of calcium-exchanged coal. First quarterly report  

SciTech Connect

The work performed during this first period includes equipment modification, development of analytical methods, oxidative pretreatment runs and combustion runs. The coal feeding section of an existing furnace was modified for uninterrupted feeding and better control of residence time. Analytical methods for sulfur and calcium in the coal and ash and for gaseous SO/sub 2/ were standardized. Oxidative pretreatment experiments were conducted in a fluidized bed at temperatures about 200/sup 0/C to evaluate the potential of this method for increasing the ion exchange capacity of coals and determine the accompanying loss of heating value. Combustion experiments were carried out at very high particle temperatures (2000/sup 0/K) at which a large fraction of the calcium additive was vaporized while 50 to 80% of the sulfur evolved as sulfur oxide. Continuing combustion experiments will be conducted at lower particle temperatures.

Gavalas, G.R.; Flagan, R.C.

1984-02-10T23:59:59.000Z

291

Engine Combustion & Efficiency - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Engine Combustion & Efficiency Engine Combustion & Efficiency ORNL currently and historically supports the U.S. DOE on multi-cylinder and vehicle applications of diesel combustion, lean burn gasoline combustion, and low temperature combustion processes, and performs principal research on efficiency enabling technologies including emission controls, thermal energy recovery, and bio-renewable fuels. Research areas span from fundamental concepts to engine/vehicle integration and demonstration with a particular emphasis on the following areas: Thermodynamics for identifying and characterizing efficiency opportunities for engine-systems as well as the development of non-conventional combustion concepts for reducing fundamental combustion losses. Nonlinear sciences for improving the physical understanding and

292

Definition: Combustion | Open Energy Information  

Open Energy Info (EERE)

Combustion Combustion Jump to: navigation, search Dictionary.png Combustion The process of burning; chemical oxidation accompanied by the generation of light and heat.[1][2] View on Wikipedia Wikipedia Definition "Burning" redirects here. For combustion without external ignition, see spontaneous combustion. For the vehicle engine, see internal combustion engine. For other uses, see Burning (disambiguation) and Combustion (disambiguation). Error creating thumbnail: Unable to create destination directory This article's introduction section may not adequately summarize its contents. To comply with Wikipedia's lead section guidelines, please consider modifying the lead to provide an accessible overview of the article's key points in such a way that it can stand on its own as a

293

Spontaneous Human Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Spontaneous Human Combustion Spontaneous Human Combustion Name: S. Phillips. Age: N/A Location: N/A Country: N/A Date: N/A Question: One of our 8th grade students has tried to find information in our library about spontaneous human combustion, but to no avail. Could you tell us where we might locate a simple reference, or provide some in information about this subject for him. Replies: Sorry, but this is definitely "fringe science"...try asking in bookstores. I seem to recall one of those "believe it or not" type of TV shows did an episode on spontaneous human combustion a few years ago in which they reported on some British scientists who investigated this purported phenomenon. Remember that people (back in the Dark Ages, and before) used to believe in "spontaneous generation" of certain plants and animals because they were not aware of the reproduction methods used by those plants and animals.

294

IN SITU COMBUSTION  

NLE Websites -- All DOE Office Websites (Extended Search)

a combustion zone that moves through the formation toward production wells, providing a steam drive and an intense gas drive for the recovery of oil. This process is sometimes...

295

NETL: Combustion Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Technology (June 15-16, 1999) Animal Waste Remediation Roundtable PDF-78KB Advanced Coal-Based Power and Environmental Systems '98 Conference (July 21-23, 1998)...

296

Just the Basics: Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

diesel fuel, transportation- based combustion accounts for the majority of our fossil fuel use in the United States, which has led the U.S. to demand a lot of imported oil....

297

Coal combustion system  

SciTech Connect

In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN); Tramm, Peter C. (Indianapolis, IN)

1988-01-01T23:59:59.000Z

298

Sandia Combustion Research Program  

DOE Green Energy (OSTI)

During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.) [eds.

1988-01-01T23:59:59.000Z

299

Bed drain cover assembly for a fluidized bed  

DOE Patents (OSTI)

A loose fitting movable cover plate (36), suitable for the severe service encountered in a fluidized bed combustor (10), restricts the flow of solids into the combustor drain lines (30) during shutdown of the bed. This cover makes it possible to empty spent solids from the bed drain lines which would otherwise plug the piping between the drain and the downstream metering device. This enables use of multiple drain lines each with a separate metering device for the control of solids flow rate.

Comparato, Joseph R. (Bloomfield, CT); Jacobs, Martin (Hartford, CT)

1982-01-01T23:59:59.000Z

300

Technical and economic assessment of fluidized bed augmented compressed air energy storage system. Volume III. Preconceptual design  

DOE Green Energy (OSTI)

A technical and economic assessment of fluidized bed combustion augmented compressed air energy storage systems is presented. The results of this assessment effort are presented in three volumes. Volume III - Preconceptual Design contains the system analysis which led to the identification of a preferred component configuration for a fluidized bed combustion augmented compressed air energy storage system, the results of the effort which transformed the preferred configuration into preconceptual power plant design, and an introductory evaluation of the performance of the power plant system during part-load operation and while load following.

Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

1981-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustion fbc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

41146_R01_Volume II.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN VOLUME II: BENCH-SCALE FBC TERSTING GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN VOLUME II: BENCH-SCALE FBC TERSTING FIRING IN CIRCULATING FLUIDIZED BED BOLIERS ALSTOM Power Inc. May 15, 2003 GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE 1 - A PRELIMINARY SYSTEMS EVALUATION FINAL REPORT VOLUME I EVALUATION OF ADVANCED COAL COMBUSTION & GASIFICATION POWER PLANTS WITH GREENHOUSE GAS EMISSIONS CONTROL VOLUME II BENCH-SCALE FLUIDIZED BED COMBUSTION TESTING SUBMITTED BY ALSTOM POWER INC. POWER PLANT LABORATORIES 2000 DAY HILL ROAD WINDSOR, CT 06095 (860) 688-1911 PREPARED FOR NETL AAD DOCUMENT CONTROL BLDG. 921 US DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY P.O. BOX 10940 PITTSBURGH, PENNSYLVANIA 15236-0940

302

Coal Combustion Products | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combustion Products Coal Combustion Products Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the...

303

COMBUSTION-GENERATED INDOOR AIR POLLUTION  

E-Print Network (OSTI)

Pollutants from Indoor Combustion Sources: I. Field Measure-Characteristics in Two Stage Combustion, paper presented atInternational) on Combustion, August, 1974, Tokyo, Japan. 8

Hollowell, C.D.

2011-01-01T23:59:59.000Z

304

Building America Expert Meeting: Combustion Safety | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meeting: Combustion Safety Building America Expert Meeting: Combustion Safety This is a meeting overview of "The Best Approach to Combustion Safety in a Direct Vent World, held...

305

Coal Combustion Products | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Combustion Products Coal Combustion Products Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the...

306

Ignition of Combustion Modified Polyurethane Foam  

E-Print Network (OSTI)

Modeling of smoldering combustion propagation," Prog. Energysmoldering to flaming combustion of horizontally orientedThermal decomposition, combustion and fire-retardancy of

Putzeys, Olivier; Fernandez-Pello, Carlos; Urban, Dave L.

2005-01-01T23:59:59.000Z

307

A Generalized Pyrolysis Model for Combustible Solids  

E-Print Network (OSTI)

decomposition fronts in wood, Combustion and Flame 139: 16dynamics modeling of wood combustion, Fire Safety Journalduring the pyrolysis of wood, Combustion and Flame 17: 79

Lautenberger, Chris

2007-01-01T23:59:59.000Z

308

Enlaces de Vehculos de Combustible Fexible  

NLE Websites -- All DOE Office Websites (Extended Search)

combustible flexible provista por el Alternative Fuels & Advanced Vehicles Data Center (AFDC) del DOE Vehculos de Combustible Flexible: Una alternativa de combustible renovable...

309

Coal Bed Methane Primer  

SciTech Connect

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

310

Biparticle fluidized bed reactor  

DOE Patents (OSTI)

A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

Scott, C.D.

1993-12-14T23:59:59.000Z

311

Biparticle fluidized bed reactor  

DOE Patents (OSTI)

A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

Scott, Charles D. (Oak Ridge, TN)

1993-01-01T23:59:59.000Z

312

Biparticle fluidized bed reactor  

DOE Patents (OSTI)

A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.

Scott, Charles D. (Oak Ridge, TN); Marasco, Joseph A. (Kingston, TN)

1996-01-01T23:59:59.000Z

313

Biparticle fluidized bed reactor  

DOE Patents (OSTI)

A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

Scott, Charles D. (Oak Ridge, TN); Marasco, Joseph A. (Kingston, TN)

1995-01-01T23:59:59.000Z

314

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

CERTS Microgrid Laboratory Test Bed R. H. Lasseter, Fellow,play functionality. The tests demonstrated stable behaviorin an autonomous manner. All tests performed as expected and

Lasseter, R. H.

2010-01-01T23:59:59.000Z

315

Mange-infested Dog Bedding  

NLE Websites -- All DOE Office Websites (Extended Search)

NEWTON About NEWTON About Ask A Scientist Education At Argonne Mange-infested Dog Bedding Name: Joan Status: other Grade: 12+ Location: NY Country: USA Date: Summer 2010...

316

Grate assembly for fixed-bed coal gasifier  

DOE Patents (OSTI)

A grate assembly for a coal gasifier of a moving-bed or fixed-bed type is provided for crushing agglomerates of solid material such as clinkers, tailoring the radial distribution of reactant gases entering the gasification reaction zone, and control of the radial distribution of downwardly moving solid velocities in the gasification and combustion zone. The clinker crushing is provided by pinching clinkers between vertically oriented stationary bars and angled bars supported on the upper surface of a rotating conical grate. The distribution of the reactant gases is provided by the selective positioning of horizontally oriented passageways extending through the grate. The radial distribution of the solids is provided by mounting a vertically and generally radially extending scoop mechanism on the upper surface of the grate near the apex thereof.

Notestein, J.E.

1992-12-31T23:59:59.000Z

317

Grate assembly for fixed-bed coal gasifier  

SciTech Connect

A grate assembly for a coal gasifier of a moving-bed or fixed-bed type is provided for crushing agglomerates of solid material such as clinkers, tailoring the radial distribution of reactant gases entering the gasification reaction zone, and control of the radial distribution of downwardly moving solid velocities in the gasification and combustion zone. The clinker crushing is provided by pinching clinkers between vertically oriented stationary bars and angled bars supported on the upper surface of a rotating conical grate. The distribution of the reactant gases is provided by the selective positioning of horizontally oriented passageways extending through the grate. The radial distribution of the solids is provided by mounting a vertically and generally radially extending scoop mechanism on the upper surface of the grate near the apex thereof.

Notestein, John E. (Morgantown, WV)

1993-01-01T23:59:59.000Z

318

Pressurized fluidized bed reactor  

DOE Patents (OSTI)

A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

Isaksson, Juhani (Karhula, FI)

1996-01-01T23:59:59.000Z

319

Pressurized fluidized bed reactor  

DOE Patents (OSTI)

A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

Isaksson, J.

1996-03-19T23:59:59.000Z

320

Experience with atmospheric fluidized bed gasification of switchgrass  

DOE Green Energy (OSTI)

Switchgrass was gasified in a bubbling fluidized bed reactor rated at 800 kW (2.75 MMBtu/hr) thermal input and operating at atmospheric pressure. A combustible gas with higher heating value varying between 4.2--5.9 MJ/Nm{sup 3} (114--160 Btu/scf) was produced. Carbon conversion was approximately 85%. Difficulties in feeding high moisture switchgrass inhibited smooth reactor operation. Several feed systems for switchgrass were tried with varying degrees of success. The results of gasification trials using switchgrass as fuel are described.

Smeenk, J.; Brown, R.C. [Iowa State Univ., Ames, IA (United States). Center for Coal and the Environment

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustion fbc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Combustible structural composites and methods of forming combustible structural composites  

DOE Patents (OSTI)

Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

Daniels, Michael A. (Idaho Falls, ID); Heaps, Ronald J. (Idaho Falls, ID); Steffler, Eric D (Idaho Falls, ID); Swank, William D. (Idaho Falls, ID)

2011-08-30T23:59:59.000Z

322

Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter)  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meat this technical challenge: a baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300[degree]F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1992-10-20T23:59:59.000Z

323

Combustion Safety Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 1-2, 2012 March 1-2, 2012 Building America Stakeholders Meeting Austin, Texas Combustion Safety in the Codes Larry Brand Gas Technology Institute Acknowledgement to Paul Cabot - American Gas Association 2 | Building America Program www.buildingamerica.gov Combustion Safety in the Codes Widely adopted fuel gas codes: * National Fuel Gas Code - ANSI Z223.1/NFPA 54, published by AGA and NFPA (NFGC) * International Fuel Gas Code - published by the International Code Council (IFGC) * Uniform Plumbing Code published by IAPMO (UPC) Safety codes become requirements when adopted by the Authority Having Jurisdiction (governments or fire safety authorities) 3 | Building America Program www.buildingamerica.gov Combustion Safety in the Codes Formal Relationships Between these codes: - The IFGC extracts many safety

324

Internal combustion engine  

DOE Patents (OSTI)

An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

Baker, Quentin A. (P.O. Box 6477, San Antonio, TX 78209); Mecredy, Henry E. (1630-C W. 6th, Austin, TX 78703); O' Neal, Glenn B. (6503 Wagner Way, San Antonio, TX 78256)

1991-01-01T23:59:59.000Z

325

Removal of oxides of nitrogen from gases in multi-stage coal combustion  

DOE Patents (OSTI)

Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.

Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.

1996-12-31T23:59:59.000Z

326

Removal of oxides of nitrogen from gases in multi-stage coal combustion  

SciTech Connect

Polluting NO.sub.x gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO.sub.x gases are removed is directed to introducing NO.sub.x -free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.

Mollot, Darren J. (Morgantown, WV); Bonk, Donald L. (Louisville, OH); Dowdy, Thomas E. (Orlando, FL)

1998-01-01T23:59:59.000Z

327

Removal of oxides of nitrogen from gases in multi-stage coal combustion  

DOE Patents (OSTI)

Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor. 2 figs.

Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.

1998-01-13T23:59:59.000Z

328

Thermal ignition combustion system  

DOE Patents (OSTI)

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

329

Vehicle Technologies Office: Advanced Combustion Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Combustion Advanced Combustion Engines to someone by E-mail Share Vehicle Technologies Office: Advanced Combustion Engines on Facebook Tweet about Vehicle Technologies Office: Advanced Combustion Engines on Twitter Bookmark Vehicle Technologies Office: Advanced Combustion Engines on Google Bookmark Vehicle Technologies Office: Advanced Combustion Engines on Delicious Rank Vehicle Technologies Office: Advanced Combustion Engines on Digg Find More places to share Vehicle Technologies Office: Advanced Combustion Engines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Combustion Engines Emission Control Waste Heat Recovery Fuels & Lubricants Materials Technologies Advanced Combustion Engines

330

Vehicle Technologies Office: Combustion Engine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Engine Combustion Engine Research to someone by E-mail Share Vehicle Technologies Office: Combustion Engine Research on Facebook Tweet about Vehicle Technologies Office: Combustion Engine Research on Twitter Bookmark Vehicle Technologies Office: Combustion Engine Research on Google Bookmark Vehicle Technologies Office: Combustion Engine Research on Delicious Rank Vehicle Technologies Office: Combustion Engine Research on Digg Find More places to share Vehicle Technologies Office: Combustion Engine Research on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Combustion Engines Emission Control Waste Heat Recovery Fuels & Lubricants Materials Technologies Combustion Engine Research

331

Application and Practice of Regenerative Combustion Technology ...  

Science Conference Proceedings (OSTI)

Regenerative Combustion burning alternative to traditional flow control system is ... that regenerative combustion have many advantage in energy conservation...

332

A Generalized Pyrolysis Model for Combustible Solids  

E-Print Network (OSTI)

different stages of combustion, Biomass and Bioenergy 23:biomass pyrolysis, to appear in Progress in Energy and Combustion

Lautenberger, Chris

2007-01-01T23:59:59.000Z

333

Granular Dynamics in Pebble Bed Reactor Cores  

E-Print Network (OSTI)

in a pebble-bed nuclear reactor, Phys. Rev. E, vol. 74, no.cycles of the pebble bed reactor, Nuclear Engineering andoptimization of pebble-bed reactors, Annals of Nuclear

Laufer, Michael Robert

2013-01-01T23:59:59.000Z

334

Topping PCFB combustion plant with supercritical steam pressure  

SciTech Connect

Research is being conducted to develop a new type of coal fired plant for electric power generation. This new type of plant, called a second generation or topping pressurized circulating fluidized bed combustion (topping PCFB) plant, offers the promise of efficiencies greater than 46 percent (HHV), with both emissions and a cost of electricity that are significantly lower than conventional pulverized coal fired plants with scrubbers. The topping PCFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized bed combustor (PCFB), and the combustion of carbonizer fuel gas in a topping combustor to achieve gas turbine inlet temperatures of 2,300 F and higher. After completing pilot plant tests of a carbonizer, a PCFB, and a gas turbine topping combustor, all being developed for this new plant, the authors calculated a higher heating value efficiency of 46.2 percent for the plant. In that analysis, the plant operated with a conventional 2,400 psig steam cycle with 1,000 F superheat and reheat steam and a 2.5 inch mercury condenser back pressure. This paper identifies the efficiency gains that this plant will achieve by using supercritical pressure steam conditions.

Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); White, J. [Parsons Power Group Inc., Reading, PA (United States)

1997-11-01T23:59:59.000Z

335

System issues and tradeoffs associated with syngas production and combustion  

DOE Green Energy (OSTI)

The purpose of this article is to provide an overview of the basic technology of coal gasification for the production of syngas and the utilization of that syngas in power generation. The common gasifier types, fixed/moving bed, fluidized bed, entrained flow, and transport, are described, and accompanying typical product syngas compositions are shown for different coal ranks. Substantial variation in product gas composition is observed with changes in gasifier and coal feed type. Fuel contaminants such as sulfur, nitrogen, ash, as well as heavy metals such as mercury, arsenic, and selenium, can be removed to protect the environment and downstream processes. A variety of methods for syngas utilization for power production are discussed, including both present (gas turbine and internal combustion engines) and future technologies, including oxy-fuel, chemical looping, fuel cells, and hybrids. Goals to improve system efficiencies, further reduce NOx emissions, and provide options for CO2 sequestration require advancements in many aspects of IGCC plants, including the combustion system. Areas for improvements in combustion technology that could minimize these tradeoffs between cost, complexity, and performance are discussed.

Casleton, K.H.; Richards, G.A.; Breault, R.W.

2008-06-01T23:59:59.000Z

336

National SCADA Test Bed | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home National SCADA Test Bed National SCADA Test Bed Supervisory Control and Data Acquisition (SCADA) systems...

337

Distribution plate for recirculating fluidized bed  

DOE Patents (OSTI)

A distribution plate for a recirculating fluidized bed has a centrally disposed opening and a plurality of apertures adjacent the periphery to eliminate dead spots within the bed.

Yang, Wen-ching (Export, PA); Vidt, Edward J. (Pittsburgh, PA); Keairns, Dale L. (Pittsburgh, PA)

1977-01-01T23:59:59.000Z

338

Fragments, Combustion and Earthquakes  

E-Print Network (OSTI)

This paper is devoted to show the advantages of introducing a geometric viewpoint and a non extensive formulation in the description of apparently unrelated phenomena: combustion and earthquakes. Here, it is shown how the introduction of a fragmentation analysis based on that formulation leads to find a common point for description of these phenomena

Oscar Sotolongo-Costa; Antonio Posadas

2005-03-16T23:59:59.000Z

339

The development of a 20-inch indirect fired fluidized bed gasifier  

DOE Green Energy (OSTI)

This report discusses the design, fabrication and operation of a 20'' I.D. fluidized bed gasifier producing medium Btu gas. The reactor is indirectly heated using 30 x 1-inch U-tubes inserted in the inert bed. The U-tubes are heated using flue gases produced from a propane burner system located at the bottom of the reactor. The feed material was dry wood chips fed into the bed with a 6in. auger. The reactor was fed both into the bed and at the top of the bed. The fluidizing medium was superheated steam which was superheated to 1000/degree/F. The gas produced from the reactor was passed through a cyclone for char removal and routed to the flare for combustion and disposal. The parameters measured during the experimental runs were wood feed rate, steam flow rate, steam temperatures, bed temperatures, free board temperatures, product gas temperatures, bed differential pressures, char production, gas production, gas analyses, and tar production. The parameters measured in the laboratory were moisture contents (wood and char), ash contents (wood and char), and tar content. 9 refs., 19 figs., 11 tabs.

Flanigan, V.J.; Sitton, O.C.; Huang, W.E

1988-03-01T23:59:59.000Z

340

Refractory experience in circulating fluidized bed combustors, Task 7. Final report  

Science Conference Proceedings (OSTI)

This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE`s Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

Vincent, R.Q.

1989-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustion fbc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Two-stage fluidized-bed/cyclonic agglomerating incinerator. Technology spotlight report  

Science Conference Proceedings (OSTI)

The two-stage fluidized-bed/cyclonic agglomerating incinerator combines and improves upon the fluidized-bed, agglomeration/ incineration-technology and the cyclonic-combustion technology developed at Institute of Gas Technolgy (IGT) over many years. The result is a unique and extremely flexible incinerator for solid, liquid, and gaseous wastes. The system can operate over a wide range of conditions and has a destruction and removal efficiency (DRE) greater than 99.99%. Solid inorganic contaminants are contained within aglassy matrix, rendering them benign and suitable for disposal in an ordinary landfill.

NONE

1995-08-01T23:59:59.000Z

342

Low emission internal combustion engine  

DOE Patents (OSTI)

A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

Karaba, Albert M. (Muskegon, MI)

1979-01-01T23:59:59.000Z

343

Experiments on chemical looping combustion of coal with a NiO based oxygen carrier  

Science Conference Proceedings (OSTI)

A chemical looping combustion process for coal using interconnected fluidized beds with inherent separation of CO{sub 2} is proposed in this paper. The configuration comprises a high velocity fluidized bed as an air reactor, a cyclone, and a spout-fluid bed as a fuel reactor. The high velocity fluidized bed is directly connected to the spout-fluid bed through the cyclone. Gas composition of both fuel reactor and air reactor, carbon content of fly ash in the fuel reactor, carbon conversion efficiency and CO{sub 2} capture efficiency were investigated experimentally. The results showed that coal gasification was the main factor which controlled the contents of CO and CH{sub 4} concentrations in the flue gas of the fuel reactor, carbon conversion efficiency in the process of chemical looping combustion of coal with NiO-based oxygen carrier in the interconnected fluidized beds. Carbon conversion efficiency reached only 92.8% even when the fuel reactor temperature was high up to 970 C. There was an inherent carbon loss in the process of chemical looping combustion of coal in the interconnected fluidized beds. The inherent carbon loss was due to an easy elutriation of fine char particles from the freeboard of the spout-fluid bed, which was inevitable in this kind of fluidized bed reactor. Further improvement of carbon conversion efficiency could be achieved by means of a circulation of fine particles elutriation into the spout-fluid bed or the high velocity fluidized bed. CO{sub 2} capture efficiency reached to its equilibrium of 80% at the fuel reactor temperature of 960 C. The inherent loss of CO{sub 2} capture efficiency was due to bypassing of gases from the fuel reactor to the air reactor, and the product of residual char burnt with air in the air reactor. Further experiments should be performed for a relatively long-time period to investigate the effects of ash and sulfur in coal on the reactivity of nickel-based oxygen carrier in the continuous CLC reactor. (author)

Shen, Laihong; Wu, Jiahua; Xiao, Jun [Thermoenergy Engineering Research Institute, Southeast University, 2 Sipailou, Nanjing 210096 (China)

2009-03-15T23:59:59.000Z

344

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

1. CERTS Microgrid Test Bed at American Electric Power PhotoCredit: American Electric Power Figure 2. One-Line DiagramVOLKOMMER, American Electric Power, USA E. LINTON AND HECTOR

Eto, Joe

2009-01-01T23:59:59.000Z

345

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Test Bed at American Electric Power Figure 2. One-LineH. VOLKOMMER, American Electric Power, USA E. LINTON AND H.and operated by American Electric Power. The testing fully

ETO, J.

2010-01-01T23:59:59.000Z

346

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

on Power Delivery CERTS Microgrid Laboratory Test Bed R. H.and J. Roy Abstract--. CERTS Microgrid concept captures theas a subsystem or a microgrid. The sources can operate in

Lasseter, R. H.

2010-01-01T23:59:59.000Z

347

NETL: Alstom's Chemical Looping Combustion Technology with CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Combustion CO2 Emissions Control Oxy-Combustion CO2 Emissions Control Commercialization of the Iron Based Coal Direct Chemical Looping Process for Power Production with in situ CO2 Capture Project No.: DE-FE0009761 CDLC Process Concept CDLC Process Concept (click to enlarge) Babcock & Wilcox Power Generation Group (B&W) is developing the coal direct chemical looping (CDCL) process. The CDCL process consists of a unique moving bed reactor - the reducer - where pulverized coal is fully converted using iron-based oxygen carriers. The oxygen carrier is reduced from Fe2O3 to FeO/Fe and the flue gas is a concentrated stream of CO2 that is available for storage or beneficial use. The reduced FeO/Fe is oxidized to Fe2O3 using air in the combustor, liberating heat to produce steam for a

348

Effects of acetic acid injection and operating conditions on NO emission in a vortexing fluidized bed combustor using response surface methodology  

Science Conference Proceedings (OSTI)

The effects of acetic acid injection and operating conditions on NO emission were investigated in a pilot scale vortexing fluidized bed combustor (VFBC), an integration of circular freeboard and a rectangular combustion chamber. Operating conditions, such as the stoichiometric oxygen in the combustion chamber, the bed temperature and the injecting location of acetic acid, were determined by means of response surface methodology (RSM), which enables the examination of parameters with a moderate number of experiments. In RSM, NO emission concentration after acetic acid injection and NO removal percentage at the exit of the VFBC are used as the objective function. The results show that the bed temperature has a more important effect on the NO emission than the injecting location of acetic acid and the stoichiometric oxygen in the combustion chamber. Meanwhile, the injecting location of acetic acid and the stoichiometric oxygen in the combustion chamber have a more important effect on the NO removal percentage than the bed temperature. NO emission can be decreased by injecting the acetic acid into the combustion chamber, and NO emission decreases with the height of the acetic acid injecting location above the distributor. On the other hand, NO removal percentage increases with the height of the acetic acid injecting location, and NO emission increases with the stoichiometric oxygen in the combustion chamber and the bed temperature. NO removal percentage increases with the stoichiometric oxygen, and increases first, then decreases with the bed temperature. Also, a higher NO removal percentage could be obtained at 850{sup o}C. 26 refs., 12 figs., 8 tabs.

Fuping Qian; Chiensong Chyang; Weishen Yen [Anhui University of Technology, Ma'anshan (China). School of Civil Engineering and Architecture

2009-07-15T23:59:59.000Z

349

Internal combustion engine using premixed combustion of stratified charges  

DOE Patents (OSTI)

During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

Marriott, Craig D. (Rochester Hills, MI); Reitz, Rolf D. (Madison, WI

2003-12-30T23:59:59.000Z

350

NETL: Combustion Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Abbreviations & Acronyms Abbreviations & Acronyms Reference Shelf Solicitations & Awards Abbreviations & Acronyms The Combustion Technologies Product uses a number of abbreviations and acronyms. This web page gives you a definition of frequently used terms, as follows: 1½-Generation PFBC -- A PFBC plant where the hot (about 1400ºF) PFBC exhaust gases are used as a vitiated air supply for a natural gas combustor supplying high-temperature gas (above 2000ºF) to a combustion turbine expander (synonym for "PFB-NGT"). 1st-Generation PFBC -- Commercial PFBC technology where an unfired low-temperature (below 1650ºF) ruggedized turbine expander expands PFBC exhaust gases (synonym for "PFB-EGT"). 2nd-Generation PFBC (see synonyms: "APFBC," "PFB-CGT") -- Advanced PFBC where a carbonizer (mild gasifier) provides hot (about 1400ºF) coal-derived synthetic fuel gas to a special topping combustor. The carbonizer char is burned in the PFBC, and the PFBC exhaust is used as a hot (about 1400ºF) vitiated air supply for the topping combustor. The syngas and vitiated air are burned in a topping combustor to provide high-temperature gas (above 1700ºF) to a combustion turbine expander.

351

Combustion Research Facility | A Department of Energy Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy-Duty Heavy-Duty Low-Temperature and Diesel Combustion HCCISCCI Engine Fundamentals Spray Combustion Automotive Low-Temperature Diesel Combustion DISI Combustion...

352

Rapid ignition of fluidized bed boiler  

DOE Patents (OSTI)

A fluidized bed boiler is started up by directing into the static bed of inert and carbonaceous granules a downwardly angled burner so that the hot gases cause spouting. Air is introduced into the bed at a rate insufficient to fluidize the entire bed. Three regions are now formed in the bed, a region of lowest gas resistance, a fluidized region and a static region with a mobile region at the interface of the fluidized and static regions. Particles are transferred by the spouting action to form a conical heap with the carbonaceous granules concentrated at the top. The hot burner gases ignite the carbonaceous matter on the top of the bed which becomes distributed in the bed by the spouting action and bed movement. Thereafter the rate of air introduction is increased to fluidize the entire bed, the spouter/burner is shut off, and the entire fluidized bed is ignited.

Osborn, Liman D. (Alexandria, VA)

1976-12-14T23:59:59.000Z

353

Measurement of spray combustion processes  

SciTech Connect

A free jet configuration was chosen for measuring noncombusting spray fields and hydrocarbon-air spray flames in an effort to develop computational models of the dynamic interaction between droplets and the gas phase and to verify and refine numerical models of the entire spray combustion process. The development of a spray combustion facility is described including techniques for laser measurements in spray combustion environments and methods for data acquisition, processing, displaying, and interpretation.

Peters, C.E.; Arman, E.F.; Hornkohl, J.O.; Farmer, W.M.

1984-04-01T23:59:59.000Z

354

Experiments of Sulfur Removal in 1MW Poly-Generation System with Partial Gasification and Combustion Combined  

Science Conference Proceedings (OSTI)

An experimental study on sulfur release and adsorption during coal partial gasification and combustion is conducted in a 1MW circulating fluidized bed (CFB) poly-generation system. Limestone is added to gasifier as a sorbent of sulfur produced, where ... Keywords: partial gasification, poly-generation, recycled coal gas, limestone, desulfurization

Qin Hong; Wang Qing; Wang Qinhui; Luo Zhongyang

2009-10-01T23:59:59.000Z

355

Municipal Waste Combustion (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

This rule establishes requirements for emissions from, and design and operation of, municipal waste combustion units. "Municipal waste"means all materials and substances discarded from residential...

356

Fluidized Bed Technology - An R&D Success Story | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An R&D Success Story An R&D Success Story Fluidized Bed Technology - An R&D Success Story In the early 1990s, POWER magazine called the development of fluidized bed coal combustors "the commercial success story of the last decade in the power generation business." The success, perhaps the most significant advance in coal-fired boiler technology in a half century, was achieved largely through the technology program of the U.S. Department of Energy's Office of Fossil Energy (and its predecessors). The Interior Department's Office of Coal Research, one of the forerunners of the Energy Department, began studying the fluidized bed combustion concept in the early 1960s. The original goal was to develop a compact "package" coal boiler that could be pre-assembled at the factory and shipped to a plant site (a lower cost

357

Operating Experience of a Coal Fired Fluidized Bed at Georgetown University  

E-Print Network (OSTI)

Operation of the 100,000 lb/hr capacity, coal fired fluidized bed steam generator at Georgetown University began in July 1979. This project, which was co-funded by Georgetown University and the U. S. Department of Energy, involved expansion of the heating and cooling plant with this new coal fired facility. Previously existing units at the University heating and cooling plant normally fire natural gas. The fluidized bed steam generating facility at Georgetown University is the only new coal fired facility to be built in the Washington D. C. area in many years. The purpose of this program is to demonstrate industrial and institutional application of fluidized bed combustion using high sulfur coal in an environmentally acceptable manner in a populated area. The unit has been successfully operated for over 1400 hours and in compliance with the strict emission regulations of Washington, D.C. Operation on automatic control has been achieved and only minor operating difficulties have been experienced.

Lutes, I. G.; Gamble, R. L.

1980-01-01T23:59:59.000Z

358

Process for generating electricity in a pressurized fluidized-bed combustor system  

DOE Patents (OSTI)

A process and apparatus for generating electricity using a gas turbine as part of a pressurized fluidized-bed combustor system wherein coal is fed as a fuel in a slurry in which other constituents, including a sulfur sorbent such as limestone, are added. The coal is combusted with air in a pressurized combustion chamber wherein most of the residual sulfur in the coal is captured by the sulfur sorbent. After particulates are removed from the flue gas, the gas expands in a turbine, thereby generating electric power. The spent flue gas is cooled by heat exchange with system combustion air and/or system liquid streams, and the condensate is returned to the feed slurry.

Kasper, Stanley (Pittsburgh, PA)

1991-01-01T23:59:59.000Z

359

Process and apparatus for generating electricity in a pressurized fluidized-bed combustor system  

DOE Patents (OSTI)

A process and apparatus for generating electricity using a gas turbine as part of a pressurized fluidized-bed combustor system wherein coal is fed as a fuel in a slurry in which other constituents, including a sulfur sorbent such as limestone, are added. The coal is combusted with air in a pressurized combustion chamber wherein most of the residual sulfur in the coal is captured by the sulfur sorbent. After particulates are removed from the flue gas, the gas expands in a turbine, thereby generating electric power. The spent flue gas is cooled by heat exchange with system combustion air and/or system liquid streams, and the condensate is returned to the feed slurry. 1 fig.

Kasper, S.

1990-02-26T23:59:59.000Z

360

COMBUSTION-GENERATED INDOOR AIR POLLUTION  

E-Print Network (OSTI)

x A Emission Characteristics in Two Stage Combustion. PaperInternational) on Combustion, Tokyo (August, 1974). Chang,fll , J I ___F J "J LBL-S9lS COMBUSTION-GENERATED INDOOR AIR

Hollowell, C.D.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustion fbc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Particle Bed Reactor scaling relationships  

DOE Green Energy (OSTI)

Scaling relationships for Particle Bed Reactors (PBRs) are discussed. The particular applications are short duration systems, i.e., for propulsion or burst power. Particle Bed Reactors can use a wide selection of different moderators and reflectors and be designed for such a wide range of power and bed power densities. Additional design considerations include the effect of varying the number of fuel elements, outlet Mach number in hot gas channel, etc. All of these variables and options result in a wide range of reactor weights and performance. Extremely light weight reactors (approximately 1 kg/MW) are possible with the appropriate choice of moderator/reflector and power density. Such systems are very attractive for propulsion systems where parasitic weight has to be minimized.

Slovik, G.; Araj, K.; Horn, F.L.; Ludewig, H.; Benenati, R.

1987-01-01T23:59:59.000Z

362

Apparatus and process for controlling fluidized beds  

DOE Patents (OSTI)

An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

Rehmat, Amirali G. (Westmont, IL); Patel, Jitendra G. (Bolingbrook, IL)

1985-10-01T23:59:59.000Z

363

Fluidised Bed Technology for Gold Ore and Gold Concentrate  

Science Conference Proceedings (OSTI)

Presentation Title, Fluidised Bed Technology for Gold Ore and Gold Concentrate. Author(s) ... such as the circulating fluidised bed and the bubbling fluidized bed.

364

Staged cascade fluidized bed combustor  

DOE Patents (OSTI)

A fluid bed combustor comprising a plurality of fluidized bed stages interconnected by downcomers providing controlled solids transfer from stage to stage. Each stage is formed from a number of heat transfer tubes carried by a multiapertured web which passes fluidizing air to upper stages. The combustor cross section is tapered inwardly from the middle towards the top and bottom ends. Sorbent materials, as well as non-volatile solid fuels, are added to the top stages of the combustor, and volatile solid fuels are added at an intermediate stage.

Cannon, Joseph N. (4103 Farragut St., Hyattsville, MD 20781); De Lucia, David E. (58 Beacon St., Apt. No. 2, Boston, MA 02108); Jackson, William M. (5300 McArthur Blvd., NW., Washington, DC 20016); Porter, James H. (P.O. Box 1131, Daggett Ave., Vineyard Haven, MA 02568)

1984-01-01T23:59:59.000Z

365

Utilization ROLE OF COAL COMBUSTION  

E-Print Network (OSTI)

Center for Products Utilization ROLE OF COAL COMBUSTION PRODUCTS IN SUSTAINABLE CONSTRUCTION and Applied Science THE UNIVERSITY OF WISCONSIN - MILWAUKEE #12;ROLE OF COAL COMBUSTION PRODUCTS, Federal Highway Administration, Washington, DC., U.S.A. SYNOPSIS Over one hundred million tonnes of coal

Wisconsin-Milwaukee, University of

366

Quality Issues in Combustion LES  

Science Conference Proceedings (OSTI)

Combustion LES requires modelling of physics beyond the flow-field only. These additional models lead to further quality issues and an even stronger need to quantify simulation and modelling errors. We illustrate stability problems, the need for consistent ... Keywords: Combustion, Error landscape, LES, Large-Eddy simulation, Quality, Turbulence

A. M. Kempf; B. J. Geurts; T. Ma; M. W. Pettit; O. T. Stein

2011-10-01T23:59:59.000Z

367

Measurement Technology for Benchmark Spray Combustion ...  

Science Conference Proceedings (OSTI)

Benchmark Spray Combustion Database. ... A1, uncertainty budget for the fuel flow rate. A2, uncertainty budget for the combustion air flow rate. ...

2013-07-15T23:59:59.000Z

368

Turbulent Combustion Properties of Premixed Syngases  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbulent Combustion Properties of Premixed Syngases Title Turbulent Combustion Properties of Premixed Syngases Publication Type Journal Article Year of Publication 2009 Authors...

369

Hydrogen engine and combustion control process  

DOE Patents (OSTI)

Hydrogen engine with controlled combustion comprises suction means connected to the crankcase reducing or precluding flow of lubricating oil or associated gases into the combustion chamber.

Swain, Michael R. (Coral Gables, FL); Swain, Matthew N. (Miami, FL)

1997-01-01T23:59:59.000Z

370

Improved Engine Design Through More Efficient Combustion ...  

Improved Engine Design Through More Efficient Combustion Simulations The Multi-Zone Combustion Model (MCM) is a software tool that enables ...

371

Advanced Vehicle Testing Activity: Other Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Internal Combustion Engine Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Other Internal Combustion Engine Vehicles on Facebook Tweet about Advanced...

372

Advanced Computational Methods for Turbulence and Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Computational Methods for Turbulence and Combustion Advanced Computational Methods for Turbulence and Combustion Bell.png Key Challenges: Development and application of...

373

NETL: IEP – Post-Combustion CO2 Emissions Control - Development of  

NLE Websites -- All DOE Office Websites (Extended Search)

- Oxy-Combustion CO2 Emissions Control - Oxy-Combustion CO2 Emissions Control Development of Oxygen-Fired Circulating Fluidized Bed Boilers for Greenhouse Gas Control Project No.: FC26-04NT42205 & FC26-01NT41146 CLICK ON IMAGE TO ENLARGE Alstom's Multi-Use Test Facility (MTF). Alstom Power Inc. will conduct two projects using a circulating fluidized bed (CFB) combustor for economic evaluations of the recovery of carbon dioxide (CO2). The projects will involve preparation of the facility and test equipment, conducting the comprehensive pilot-scale testing and analysis, and application of test results in re-evaluation and refinement of commercial oxygen-fired CFB designs. The project goal is to determine if CO2 can be recovered at an avoided cost of no more than $10 per ton of carbon avoided, using a CFB combustor that burns coal with a mixture of

374

Control methods and valve arrangement for start-up and shutdown of pressurized combustion and gasification systems integrated with a gas turbine  

DOE Patents (OSTI)

A power plant having a system for converting coal to power in a gas turbine comprises a coal fed pressurized circulating bed for converting coal to pressurized gases, a gas turbine having a compressor for pressurizing air for the pressurized circulating bed and expander for receiving and expanding hot combustion gases for powering a generator, a first fast acting valve for controlling the pressurized air, a second fast acting valve means for controlling pressurized gas from the compressor to the expander.

Provol, Steve J. (Carlsbad, CA); Russell, David B. (San Diego, CA); Isaksson, Matti J. (Karhula, FI)

1994-01-01T23:59:59.000Z

375

TOXIC SUBSTANCES FROM COAL COMBUSTION-A COMPREHENSIVE ASSESSMENT  

SciTech Connect

The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the National Energy Technology Laboratory (NETL), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). The work discussed in this report covers the Phase II program. Five coals were studied (three in Phase I and two new ones in Phase II). In this work UK has used XAFS and Moessbauer spectroscopies to characterize elements in project coals. For coals, the principal use was to supply direct information about certain hazardous and other key elements (iron) to complement the more complete indirect investigation of elemental modes of occurrence being carried out by colleagues at USGS. Iterative selective leaching using ammonium acetate, HCl, HF, and HNO3, used in conjunction with mineral identification/quantification, and microanalysis of individual mineral grains, has allowed USGS to delineate modes of occurrence for 44 elements. The Phase II coals show rank-dependent systematic differences in trace-element modes of occurrence. The work at UU focused on the behavior of trace metals in the combustion zone by studying vaporization from single coal particles. The coals were burned at 1700 K under a series of fuel-rich and oxygen-rich conditions. The data collected in this study will be applied to a model that accounts for the full equilibrium between carbon monoxide and carbon dioxide. The model also considers many other reactions taking place in the combustion zone, and involves the diffusion of gases into the particle and combustion products away from the particle. A comprehensive study has been conducted at UA to investigate the post-combustion partitioning of trace elements during large-scale combustion of pulverized coal combustion. For many coals, there are three distinct particle regions developed by three separate mechanisms: (1) a submicron fume, (2) a micron-sized fragmentation region, and (3) a bulk (>3 {micro}m) fly ash region. The controlling partitioning mechanisms for trace elements may be different in each of the three particle regions. A substantial majority of semi-volatile trace elements (e.g., As, Se, Sb, Cd, Zn, Pb) volatilize during combustion. The most common partitioning mechanism for semi-volatile elements is reaction with active fly ash surface sites. Experiments conducted under this program at UC focused on measuring mercury oxidation under cooling rates representative of the convective section of a coal-fired boiler to determine the extent of homogeneous mercury oxidation under these conditions. In fixed bed studies at EERC, five different test series were planned to evaluate the effects of temperature, mercury concentration, mercury species, stoichiometric ratio of combustion air, and ash source. Ash samples generated at UA and collected from full-scale power plants were evaluated. Extensive work was carried out at UK during this program to develop new methods for identification of mercury species in fly ash and sorbents. We demonstrated the usefulness of XAFS spectroscopy for the speciation of mercury captured on low-temperature sorbents from combustion flue gases and dev

C.L. Senior; F. Huggins; G.P. Huffman; N. Shah; N. Yap; J.O.L. Wendt; W. Seames; M.R. Ames; A.F. Sarofim; S. Swenson; J.S. Lighty; A. Kolker; R. Finkelman; C.A. Palmer; S.J. Mroczkowski; J.J. Helble; R. Mamani-Paco; R. Sterling; G. Dunham; S. Miller

2001-06-30T23:59:59.000Z

376

EPRI's Pulverized Coal Post-Combustion CO2 Capture Retrofit Study Summary (Supplemental Project Funders' Issue)  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is currently examining the feasibility of retrofitting post-combustion capture (PCC) of CO2 to existing pulverized coal (PC) and/or circulating fluidized-bed (CFB) power plants for five different "host" participants. Knowledge gained from previous CoalFleet ultra-supercritical (USC) PCC design studies is being applied directly to specific site conditions, plant design, and operating data provided by each host utility participant. This overall project intends t...

2011-03-31T23:59:59.000Z

377

EPRI's Pulverized Coal Post-Combustion CO2 Capture Retrofit Study Summary  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is currently examining the feasibility of retrofitting post-combustion capture (PCC) to existing pulverized coal (PC) and/or circulating fluidized-bed power plants, for five different "host" participants. Knowledge gained from previous ultra supercritical (USC) PCC design studies by CoalFleet is being applied directly to specific site conditions, plant design, and operating data provided by each host utility participant. This overall project aims to highlight ...

2010-12-31T23:59:59.000Z

378

An Engineering and Economic Assessment of Post-Combustion CO2 Capture Retrofit to Intermountain  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is examining the feasibility of retrofitting post-combustion capture (PCC) to existing pulverized coal (PC) and/or circulating fluidized-bed (CFB) power plants for five host participants. Knowledge gained from previous CoalFleet ultrasupercritical (USC) PCC design studies is being applied directly to specific site conditions, plant designs, and operating data provided by each host utility participant. This project highlights the technical and economic issues a...

2011-05-31T23:59:59.000Z

379

Attrition Resistant Catalyst Materials for Fluid Bed ...  

Biomass and Biofuels Attrition Resistant Catalyst Materials for Fluid Bed Applications National Renewable Energy Laboratory. Contact NREL About This ...

380

Accelerated Weathering of Fluidized Bed Steam Reformation ...  

Science Conference Proceedings (OSTI)

Sep 16, 2007 ... Accelerated Weathering of Fluidized Bed Steam Reformation Material Under Hydraulically Unsaturated Conditions by E.M. Pierce...

Note: This page contains sample records for the topic "bed combustion fbc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Combustion in porous media  

DOE Green Energy (OSTI)

A 2.8-liter tube-shaped combustion vessel was constructed to study flame propagation and quenching in porous media. For this experiment, hydrogen-air flames propagating horizontally into abed of 6 mm diameter glass beads were studied. Measurements of pressure and temperature along the length of the tube were used to observe flame propagation of quenching. The critical hydrogen concentration for Hz-air mixtures was found to be 11.5%, corresponding to a critical Peclet number of Pe* = 37. This value is substantially less than the value of Pe* = 65 quoted in the literature, for example Babkin et al. (1991). It is hypothesized that buoyancy and a dependence of Pe on the Lewis number account for the discrepancy between these two results.

Dillon, J. [California Inst. of Technology, CA (US)

1999-09-01T23:59:59.000Z

382

Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 28152820 FINGERING INSTABILITY IN SOLID FUEL COMBUSTION  

E-Print Network (OSTI)

2815 Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 2815­2820 FINGERING INSTABILITY IN SOLID FUEL COMBUSTION: THE CHARACTERISTIC SCALES OF THE DEVELOPED STATE ORY ZIK, Israel We present new results on the fingering instability in solid fuel combustion. The instability

Moses, Elisha

383

Nucla circulating atmospheric fluidized bed demonstration project. Final report  

Science Conference Proceedings (OSTI)

Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute`s decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

Not Available

1991-10-01T23:59:59.000Z

384

Droplet Combustion and Non-Reactive Shear-Coaxial Jets with Transverse Acoustic Excitation  

E-Print Network (OSTI)

Related Works in Droplet Combustion . . . . . . . .of Acoustics on Droplet Combustion . . . . . . . . . . . .Fuel Droplet Combustion . . . . . . . . . . . . . . .

Teshome, Sophonias

2012-01-01T23:59:59.000Z

385

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 8, NO. 2, MARCH 2000 247 A Model of a Bubbling Fluidized Bed Combustor  

E-Print Network (OSTI)

and the capability of using low quality fuel, such as nonpulverized coal, mine residues and waste. Furthermore Prandoni Abstract--Fluidized bed techniques are employed in coal com- bustion power plants, because to produce gypsum). In conventional combustion chambers, the pulverized coal takes less than a second to burn

Campi, Marco

386

COMBUSTION SYNTHESIS OF ADVANCED MATERIALS: PRINCIPLESAND APPLICATIONS  

E-Print Network (OSTI)

COMBUSTION SYNTHESIS OF ADVANCED MATERIALS: PRINCIPLESAND APPLICATIONS Arvind Varma, Alexander S. Gasless Combustion SynthesisFrom Elements B. Combustion Synthesis in Gas-Solid Systems C. Products of Thermite-vpe SHS D. Commercial Aspects IV. Theoretical Considerations A. Combustion Wave Propagation Theory

Mukasyan, Alexander

387

COMBUSTION ISSUES AND APPROACHES FOR CHEMICAL MICROTHRUSTERS  

E-Print Network (OSTI)

1 COMBUSTION ISSUES AND APPROACHES FOR CHEMICAL MICROTHRUSTERS Richard A. Yetter, Vigor Yang, Ming and the effects of downsizing on combustion performance. In particular, combustion of liquid nitromethane in a thruster combustion chamber with a volume of 108 mm3 and diameter of 5 mm was experimentally investigated

Yang, Vigor

388

The Combustion Institute 5001 Baum Boulevard  

E-Print Network (OSTI)

The Combustion Institute 5001 Baum Boulevard Pittsburgh, Pennsylvania, USA 15213-1851 CENTRAL STATES SECTION OF THE COMBUSTION INSTITUTE CALL FOR PAPERS TECHNICAL MEETING - SPRING 2002 COMBUSTION 7-9, 2002 #12;CENTRAL STATES SECTION OF THE COMBUSTION INSTITUTE www.cssci.org CALL FOR PAPERS

Tennessee, University of

389

Residential Wood Residential wood combustion (RWC) is  

E-Print Network (OSTI)

Residential Wood Combustion Residential wood combustion (RWC) is increasing in Europe because PM2.5. Furthermore, other combustion- related sources of OA in Europe may need to be reassessed. Will it affect global OA emission estimates? Combustion of biofuels is globally one of the major OA sources

390

Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Twenty-third quarterly status report, April--June 1993  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge: A baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degrees}F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1993-07-19T23:59:59.000Z

391

Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Twentieth quarterly status report, July--September 1992  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meat this technical challenge: a baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degree}F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1992-10-20T23:59:59.000Z

392

Integrated Low Emissions Cleanup system for direct coal fueled turbines, (moving bed, fluid bed contactor/ceramic filter). Twenty-fourth quarterly status report, July--September 1993  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge: a baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degree}F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1993-12-31T23:59:59.000Z

393

High Efficiency, Clean Combustion  

DOE Green Energy (OSTI)

Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B2

Donald Stanton

2010-03-31T23:59:59.000Z

394

Development of moving bed simulation model for carbon capture from fossil energy systems.  

Science Conference Proceedings (OSTI)

The capture and separation of carbon dioxide (CO2) has been identified as a high-priority topic to cope with global climate change. Fossil fuels currently supply the most of the world's energy needs, and their utilization is the major source of the anthropogenic CO2 emission [1]. Particularly, the existing coal-fired power plants annually emit about 2 billion tons of CO2 which is equivalent to two-thirds of the total emissions from U.S. power sector [2]. Therefore, it is critical to develop the cost-effective technologies to mitigate this problem. There are three options for capture for capturing CO2 from fossil energy system: post-combustion capture, pre-combustion capture, and oxy-combustion. Among them, post-combustion capture has the greatest near-term potential for reducing CO2 emission, because it can be applied to the existing coal-fired power plant with relative ease through a retrofit. The current commercially available solvent-based processes have advantages of fast kinetics and strong reactions, however only at a significant cost and efficiency penalty. Recently, various solid sorbents are being explored for one of promising CO2 capture technology, which are expected to reduce energy requirement and water usage with the approaches of fluidized or moving bed. However, solids are inherently more difficult to work with than liquids and no large scale system has yet been commercialized. In this study, we developed the rigorous 1-D PDE model for moving beds in Aspen Custom Modeler; the entire system consists of adsorbers, regenerators, and auxiliary equipment. The simulation result will be expected to compare with those of other post-combustion processes. We will deal with not only advantages of lower capital costs and power requirements but also problems associated with pressure drop and heat transfer.

Kim, H.; Miller, D.

2011-01-01T23:59:59.000Z

395

Predictive modeling of combustion processes  

E-Print Network (OSTI)

Recently, there has been an increasing interest in improving the efficiency and lowering the emissions from operating combustors, e.g. internal combustion (IC) engines and gas turbines. Different fuels, additives etc. are ...

Sharma, Sandeep, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

396

Combustion modeling in waste tanks  

DOE Green Energy (OSTI)

This paper has two objectives. The first one is to repeat previous simulations of release and combustion of flammable gases in tank SY-101 at the Hanford reservation with the recently developed code GASFLOW-II. The GASFLOW-II results are compared with the results obtained with the HMS/TRAC code and show good agreement, especially for non-combustion cases. For combustion GASFLOW-II predicts a steeper pressure rise than HMS/TRAC. The second objective is to describe a so-called induction parameter model which was developed and implemented into GASFLOW-II and reassess previous calculations of Bureau of Mines experiments for hydrogen-air combustion. The pressure time history improves compared with the one-step model, and the time rate of pressure change is much closer to the experimental data.

Mueller, C.; Unal, C. [Los Alamos National Lab., NM (United States); Travis, J.R. [Los Alamos National Lab., NM (United States)]|[Forschungszentrum Karlsruhe (Germany). Inst. fuer Reaktorsicherheit

1997-08-01T23:59:59.000Z

397

Plum Combustion | Open Energy Information  

Open Energy Info (EERE)

Plum Combustion Plum Combustion Jump to: navigation, search Name Plum Combustion Place Atlanta, Georgia Product Combustion technology, which reduces NOx-emissions. Coordinates 33.748315°, -84.391109° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.748315,"lon":-84.391109,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

Thallium in Coal Combustion Products  

Science Conference Proceedings (OSTI)

Thallium is a naturally occurring trace element that is present in coal and coal combustion products (CCPs). Thallium is of interest because it has a relatively low maximum contaminant level (MCL) in drinking water. This Technical Brief provides EPRI data on thallium in CCPs, along with general information on its occurrence, health effects, and treatment. Most of the information presented is summarized from the 2008 EPRI Technical Report 1016801, Chemical Constituents in Coal Combustion Product Leachate: ..

2013-11-27T23:59:59.000Z

399

Oxy-Combustion Activities Worldwide  

Science Conference Proceedings (OSTI)

This report reviews oxy-combustion development activities throughout the world. The report opens by reviewing carbon dioxide (CO2) capture technologies and their relative advantages and disadvantages before focusing on oxy-combustion concepts and giving details on potential designs. It then delves into each sub-system (air separation, oxy boiler, gas quality control, and CO2 purification) giving the latest updates on technologies and associated development issues, pulling from work reported at the Second...

2012-06-26T23:59:59.000Z

400

CERTS Microgrid Laboratory Test Bed  

NLE Websites -- All DOE Office Websites (Extended Search)

CERTS Microgrid Laboratory Test Bed CERTS Microgrid Laboratory Test Bed Title CERTS Microgrid Laboratory Test Bed Publication Type Journal Article LBNL Report Number LBNL-3553E Year of Publication 2011 Authors Lasseter, Robert H., Joseph H. Eto, Ben Schenkman, John Stevens, Harry T. Volkommer, David Klapp, Ed Linton, Hector Hurtado, and Joyashree Roy Journal IEEE Transactions on Power Delivery Volume 26 Start Page 325 Issue 1 Date Published 01/2011 Keywords distributed energy resources (der) Abstract CERTS Microgrid concept captures the emerging potential of distributed generation using a system approach. CERTS views generation and associated loads as a subsystem or a "microgrid". The sources can operate in parallel to the grid or can operate in island, providing UPS services. The system can disconnect from the utility during large events (i.e. faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid falls below certain standards. CERTS Microgrid concepts were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resynchronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults. Keywords: CHP, UPS, distributed generation, intentional islanding, inverters, microgrid, CERTS, power vs. frequency droop, voltage droop.

Note: This page contains sample records for the topic "bed combustion fbc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Dynometer test bed (fact sheet)  

SciTech Connect

The National Renewable Energy Laboratory's (NREL's) Dynamometer Test Bed is one of a kind. It offers wind industry engineers a unique opportunity to conduct lifetime endurance tests on a wide range of wind turbine drivetrains and gearboxes at various speeds, using low or high torque. By testing full-scale wind turbines, engineers from NREL and industry hope to understand the impact of various wind conditions with the goal of improving hardware design.

O' Dell, K.

2000-04-24T23:59:59.000Z

402

Electrostatic granular bed filter development program. Final report  

SciTech Connect

The application of the electrostatically enhanced granular bed filter (EGB) in a pressurized fluidized bed (PFB) combined cycle power plant is explored in this study. In a PFB combustor power plant, dust particles entrained in the combustion gases must be removed at high temperature (1700/sup 0/F) and pressure (10 atm) in order to protect a gas turbine from erosion. The EFB filter provides a unique design adapted to avoid filter front face plugging which has been the limiting factor in the successful development of granular bed filters for this application. Under the present study, laboratory experiments and analyses were performed to provide the engineering data necessary to design a test module in the actual PFB environment. An analytical model for predicting the performance of an EGB was also developed. The test data and the model were then utilized to establish preferred geometries and operating parameters of the EGB filter system applied in a 663 MWe PFB power plant. Preliminary conceptual designs were established and an economic evaluations performed. The results of the system analysis and economic studies were analyzed to assess the applicability of the EGB filter to utility scale PFB power plants. New power plants must also meet New Source Performance Standards (.03 lb/10/sup 6/ Btu) which necessitates removal of dust in the respirable size range which would otherwise be harmless to the gas turbine. A key technical issue in the PFB application is whether the hot gas cleanup equipment can satisfy the NSPS. The potential of the EGB for achieving NSPS ahead of the gas turbine is demonstrated, and the conceptual design and economics of this application are presented. (LCL)

1981-11-01T23:59:59.000Z

403

The first turbulent combustion  

E-Print Network (OSTI)

The first turbulent combustion arises in a hot big bang cosmological model Gibson (2004) where nonlinear exothermic turbulence permitted by quantum mechanics, general relativity, multidimensional superstring theory, and fluid mechanics cascades from Planck to strong force freeze out scales with gravity balancing turbulent inertial-vortex forces. Interactions between Planck scale spinning and non-spinning black holes produce high Reynolds number turbulence and temperature mixing with huge Reynolds stresses driving the rapid inflation of space. Kolmogorovian turbulent temperature patterns are fossilized as strong-force exponential inflation stretches them beyond the scale of causal connection ct where c is light speed and t is time. Fossil temperature turbulence patterns seed nucleosynthesis, and then hydro-gravitational structure formation in the plasma epoch, Gibson (1996, 2000). Evidence about formation mechanisms is preserved by cosmic microwave background temperature anisotropies. CMB spectra indicate hydro-gravitational fragmentation at supercluster to galaxy masses in the primordial plasma with space stretched by \\~10^50. Bershadskii and Sreenivasan (2002, 2003) CMB multi-scaling coefficients support a strong turbulence origin for the anisotropies prior to the plasma epoch.

Carl H. Gibson

2005-01-19T23:59:59.000Z

404

The corrosive environment in the fluidized-bed heat-exchanger for CCGT service  

Science Conference Proceedings (OSTI)

Corrosion and combustion diagnostic data were gathered in Battelle's 0.6m diameter coal-fired atmospheric fluidized-bed combustor (AFBC). Corrosion probes, constructed from ring specimens of candidate heatexchanger alloys, were exposed to the fluidized-bed environment during three different combustion experiments (50%, 20% and 0% excess air). An in-situ oxygen probe was used to monitor the oxygen partial pressure at the exposure locations. Two different mechanisms of material degradation were identified, i.e., both corrosion and erosion. An adherent deposit of bed material formed on all areas of the corrosion probes. The corrosion behavior of the alloys beneath the deposit, and the corresponding corrosion product morphologies, appeared to correlate well with predictions based on the oxygen partial pressure measurements from the exposure location. The results suggest the oxygen probe may be a useful diagnostic tool for locating regions with high corrosive potentials. However, the upstream faces of the corrosion probes were subjected to enhanced mechanical damage, and this periodic removal of both the deposit and corrosion products resulted in significantly more metal degradation. Also, this corrosion/erosion process may locally deplete the alloy in chromium, leaving it susceptible to severe sulfidation and/or accelerated oxidation. It was suggested that these locations would be the first to experience heat-exchanger tube failure, and the coupled corrosion/erosion process would be the failure mechanism.

Rocazella, M.A.; Holt, C.F.; Wright, I.C.

1983-01-01T23:59:59.000Z

405

Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter)  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge: a baseline ceramic barrier filter nEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300[degrees]F. This document reports the status of a program in the eighteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1992-04-20T23:59:59.000Z

406

Particulate emissions from combustion of biomass in conventional combustion (air) and oxy-combustion conditions.  

E-Print Network (OSTI)

??Oxy-fuel combustion is a viable technology for new and existing coal-fired power plants, as it facilitates carbon capture and thereby, can reduce carbon dioxide emissions. (more)

Ruscio, Amanda

2013-01-01T23:59:59.000Z

407

Using Biofuel Tracers to Study Alternative Combustion Regimes  

E-Print Network (OSTI)

1979. J.B. Heywood, Internal Combustion Engine Fundamentals.Ignition Engine with Optimal Combustion Control. US PatentIntroduction to Internal Combustion Engines (3rd Edition).

Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

2006-01-01T23:59:59.000Z

408

COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER  

E-Print Network (OSTI)

J.M. , liThe F1uidised Combustion of Coal," Sixteenth Sm osium {International} on Combustion, August 1976 (to beof Various Polymers Under Combustion Conditions," Fourteenth

Chin, W.K.

2010-01-01T23:59:59.000Z

409

Pre-Combustion Carbon Capture Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pre-Combustion Carbon Capture Research Pre-combustion capture refers to removing CO2 from fossil fuels before combustion is completed. For example, in gasification processes a...

410

Jet plume injection and combustion system for internal combustion engines  

DOE Patents (OSTI)

An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

Oppenheim, Antoni K. (Kensington, CA); Maxson, James A. (Berkeley, CA); Hensinger, David M. (Albany, CA)

1993-01-01T23:59:59.000Z

411

Jet plume injection and combustion system for internal combustion engines  

DOE Patents (OSTI)

This invention is comprised of an improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

1992-12-31T23:59:59.000Z

412

Jet plume injection and combustion system for internal combustion engines  

DOE Patents (OSTI)

An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

1993-12-21T23:59:59.000Z

413

Ultra Low NOx Catalytic Combustion for IGCC Power Plants  

DOE Green Energy (OSTI)

In order to meet DOE's goals of developing low-emissions coal-based power systems, PCI has further developed and adapted it's Rich-Catalytic Lean-burn (RCL{reg_sign}) catalytic reactor to a combustion system operating on syngas as a fuel. The technology offers ultra-low emissions without the cost of exhaust after-treatment, with high efficiency (avoidance of after-treatment losses and reduced diluent requirements), and with catalytically stabilized combustion which extends the lower Btu limit for syngas operation. Tests were performed in PCI's sub-scale high-pressure (10 atm) test rig, using a two-stage (catalytic then gas-phase) combustion process for syngas fuel. In this process, the first stage consists of a fuel-rich mixture reacting on a catalyst with final and excess combustion air used to cool the catalyst. The second stage is a gas-phase combustor, where the air used for cooling the catalyst mixes with the catalytic reactor effluent to provide for final gas-phase burnout and dilution to fuel-lean combustion products. During testing, operating with a simulated Tampa Electric's Polk Power Station syngas, the NOx emissions program goal of less than 0.03 lbs/MMBtu (6 ppm at 15% O{sub 2}) was met. NOx emissions were generally near 0.01 lbs/MMBtu (2 ppm at 15% O{sub 2}) (PCI's target) over a range on engine firing temperatures. In addition, low emissions were shown for alternative fuels including high hydrogen content refinery fuel gas and low BTU content Blast Furnace Gas (BFG). For the refinery fuel gas increased resistance to combustor flashback was achieved through preferential consumption of hydrogen in the catalytic bed. In the case of BFG, stable combustion for fuels as low as 88 BTU/ft{sup 3} was established and maintained without the need for using co-firing. This was achieved based on the upstream catalytic reaction delivering a hotter (and thus more reactive) product to the flame zone. The PCI catalytic reactor was also shown to be active in ammonia reduction in fuel allowing potential reductions in the burner NOx production. These reductions of NOx emissions and expanded alternative fuel capability make the rich catalytic combustor uniquely situated to provide reductions in capital costs through elimination of requirements for SCR, operating costs through reduction in need for NOx abating dilution, SCR operating costs, and need for co-firing fuels allowing use of lower value but more available fuels, and efficiency of an engine through reduction in dilution flows.

Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

2008-03-31T23:59:59.000Z

414

Turbulent Combustion in SDF Explosions  

Science Conference Proceedings (OSTI)

A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the C-4 booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a an unconfined height-of-burst explosion. Computed pressure histories are compared with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.

Kuhl, A L; Bell, J B; Beckner, V E

2009-11-12T23:59:59.000Z

415

HCCI Combustion: Analysis and Experiments  

DOE Green Energy (OSTI)

Homogeneous charge compression ignition (HCCI) is a new combustion technology that may develop as an alternative to diesel engines with high efficiency and low NOx and particulate matter emissions. This paper describes the HCCI research activities being currently pursued at Lawrence Livermore National Laboratory and at the University of California Berkeley. Current activities include analysis as well as experimental work. On analysis, we have developed two powerful tools: a single zone model and a multi-zone model. The single zone model has proven very successful in predicting start of combustion and providing reasonable estimates for peak cylinder pressure, indicated efficiency and NOX emissions. This model is being applied to develop detailed engine performance maps and control strategies, and to analyze the problem of engine startability. The multi-zone model is capable of very accurate predictions of the combustion process, including HC and CO emissions. The multi-zone model h as applicability to the optimization of combustion chamber geometry and operating conditions to achieve controlled combustion at high efficiency and low emissions. On experimental work, we have done a thorough evaluation of operating conditions in a 4-cylinder Volkswagen TDI engine. The engine has been operated over a wide range of conditions by adjusting the intake temperature and the fuel flow rate. Satisfactory operation has been obtained over a wide range of operating conditions. Cylinder-to-cylinder variations play an important role in limiting maximum power, and should be controlled to achieve satisfactory performance.

Salvador M. Aceves; Daniel L. Flowers; Joel Martinez-Frias; J. Ray Smith; Robert Dibble; Michael Au; James Girard

2001-05-14T23:59:59.000Z

416

Gas distributor for fluidized bed coal gasifier  

DOE Patents (OSTI)

A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

Worley, Arthur C. (Mt. Tabor, NJ); Zboray, James A. (Irvine, CA)

1980-01-01T23:59:59.000Z

417

Battery using a metal particle bed electrode  

DOE Patents (OSTI)

A zinc-air battery in a case is described including a zinc particle bed supported adjacent the current feeder and diaphragm on a porous support plate which holds the particles but passes electrolyte solution. Electrolyte is recycled through a conduit between the support plate and top of the bed by convective forces created by a density of differential caused by a higher concentration of high density discharge products in the interstices of the bed than in the electrolyte recycle conduit. 7 figures.

Evans, J.V.; Savaskan, G.

1991-04-09T23:59:59.000Z

418

Battery using a metal particle bed electrode  

DOE Patents (OSTI)

A zinc-air battery in a case including a zinc particle bed supported adjacent the current feeder and diaphragm on a porous support plate which holds the particles but passes electrolyte solution. Electrolyte is recycled through a conduit between the support plate and top of the bed by convective forces created by a density of differential caused by a higher concentration of high density discharge products in the interstices of the bed than in the electrolyte recycle conduit.

Evans, James V. (Piedmont, CA); Savaskan, Gultekin (Albany, CA)

1991-01-01T23:59:59.000Z

419

Coal bed methane reservoir simulation studies.  

E-Print Network (OSTI)

??The purpose of this study is to perform simulation studies for a specific coal bed methane reservoir. First, the theory and reservoir engineering aspects of (more)

Karimi, Kaveh

2005-01-01T23:59:59.000Z

420

Packed fluidized bed blanket for fusion reactor  

DOE Patents (OSTI)

A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

Chi, John W. H. (Mt. Lebanon, PA)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed combustion fbc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Status of granular bed filter development program  

SciTech Connect

The objective of this project was to design and develop moving bed granular filters and ceramic candle filters for particulate control from combined cycle systems. Results are described.

Wilson, K.B.; Haas, J.C.; Prudhomme, J.

1995-11-01T23:59:59.000Z

422

Liquid flow through a reactive packed bed.  

E-Print Network (OSTI)

??The flow phenomena of liquid iron and slag in the lower zone of an iron making blast furnace influences the permeability of the coke bed, (more)

George, Hazem Labib

2013-01-01T23:59:59.000Z

423

Combustion instability modeling and analysis  

DOE Green Energy (OSTI)

It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors. The present study represents a coordinated effort between industry, government and academia to investigate gas turbine combustion dynamics. Specific study areas include development of advanced diagnostics, definition of controlling phenomena, advancement of analytical and numerical modeling capabilities, and assessment of the current status of our ability to apply these tools to practical gas turbine combustors. The present work involves four tasks which address, respectively, (1) the development of a fiber-optic probe for fuel-air ratio measurements, (2) the study of combustion instability using laser-based diagnostics in a high pressure, high temperature flow reactor, (3) the development of analytical and numerical modeling capabilities for describing combustion instability which will be validated against experimental data, and (4) the preparation of a literature survey and establishment of a data base on practical experience with combustion instability.

Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States); Sheppard, E.J. [Tuskeggee Univ., Tuskegee, AL (United States). Dept. of Aerospace Engineering

1995-12-31T23:59:59.000Z

424

Experimental development of a two-stage fluidized-bed/cyclonic agglomerating incinerator  

SciTech Connect

The Institute of Gas Technology (IGT) is conducting an experimental program to develop and test through pilot-plant scale of operation, IGT's two-stage fluidized-bed/cyclonic agglomerating incinerator (TSI). The TSI is based on combining the fluidized-bed agglomeration/gasification technology and the cyclonic combustion/incineration technology, which have been developed at IGT over many years. The TSI is a unique and extremely flexible combustor that can operate over a wide range of conditions in the fluidized-bed first stage from low temperature (desorption) to high temperature (agglomeration) including gasification of high-Btu wastes. The TSI can easily and efficiently destroy solid, liquid and gaseous organic wastes, while containing solid inorganic contaminants within an essentially non-leachable glassy matrix, suitable for disposal in an ordinary landfill. This paper presents the results of tests conducted in a batch, fluidized-bed bench-scale unit (BSU) with commercially available clean'' top soil and the same soil spiked with lead and chromium compounds. The objectives of these tests were to determine the operating conditions necessary to achieve soil agglomeration and to evaluate the leaching characteristics of the soil agglomerates formed. 7 refs., 7 figs., 6 tabs.

Mensinger, M.C.; Rehmat, A.; Bryan, B.G.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (United States)); Shearer, T.L. (Environmental Protection Agency, Cincinnati, OH (United States)); Duggan, P.A. (Gas Research Inst., Chicago, IL (United States))

1991-01-01T23:59:59.000Z

425

Combustion heater for oil shale  

DOE Patents (OSTI)

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

1983-09-21T23:59:59.000Z

426

Combustion heater for oil shale  

DOE Patents (OSTI)

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA); Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA)

1985-01-01T23:59:59.000Z

427

Engine Combustion Network Experimental Data  

DOE Data Explorer (OSTI)

Maintained by the Engine Combustion Department of Sandia National Laboratories, data currently available on the website includes reacting and non-reacting sprays in a constant-volume chamber at conditions typical of diesel combustion. The data are useful for model development and validation because of the well-defined boundary conditions and the wide range of conditions employed. A search utility displays data based on experimental conditions such as ambient temperature, ambient density, injection pressure, nozzle size, fuel, etc. Experiment-related visualizations are also available. The search utility for experimental data is located at http://public.ca.sandia.gov/ecn/cvdata/frameset.html (Specialized Interface)

428

Transonic Combustion Inc | Open Energy Information  

Open Energy Info (EERE)

Transonic Combustion Inc Transonic Combustion Inc Jump to: navigation, search Name Transonic Combustion, Inc. Place Camarillo, California Zip CA 93012 Sector Efficiency, Renewable Energy Product Transonic Combustion, Inc. is a US based research & development company focused on developing ultra-high efficiency automotive engines that run on gasoline and bio-renewable flex fuels. References Transonic Combustion, Inc.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Transonic Combustion, Inc. is a company located in Camarillo, California . References ↑ "Transonic Combustion, Inc." Retrieved from "http://en.openei.org/w/index.php?title=Transonic_Combustion_Inc&oldid=352376

429

Engine control system for multiple combustion modes  

Science Conference Proceedings (OSTI)

To reduce the emission by Diesel-engine in railway traction, continuous development and innovation in combustion, sensing net, control method and strategies are required to met the legal requirements. Multiple combustion modes by Diesel engines can reduce ...

D. Bonta; V. Tulbure; Cl. Festila

2008-05-01T23:59:59.000Z

430

TURBULENT FRBRNNING MVK130 Turbulent Combustion  

E-Print Network (OSTI)

TURBULENT F?RBR?NNING MVK130 Turbulent Combustion Poäng: 3.0 Betygskala: TH Valfri för: M4 to combustion, McGraw-Hill 1996. #12;

431

Free Energy and Internal Combustion Engine Cycles  

E-Print Network (OSTI)

The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

Harris, William D

2012-01-01T23:59:59.000Z

432

Method for storing radioactive combustible waste  

DOE Patents (OSTI)

A method is described for preventing pressure buildup in sealed containers which contain radioactively contaminated combustible waste material by adding an oxide getter material to the container so as to chemically bind sorbed water and combustion product gases. (Official Gazette)

Godbee, H.W.; Lovelace, R.C.

1973-10-01T23:59:59.000Z

433

Large-Scale Hydrogen Combustion Experiments  

Science Conference Proceedings (OSTI)

Large-scale combustion experiments show that deliberate ignition can limit hydrogen accumulation in reactor containments. The collected data allow accurate evaluation of containment pressures and temperatures associated with hydrogen combustion.

1988-10-18T23:59:59.000Z

434

Theoretical studies on hydrogen ignition and droplet combustion  

E-Print Network (OSTI)

Combustion Theory Second Edition, Addison-Wesley, Red- woodCombustion Theory. Second Edition, Addison-Wesley, Red- wood

Del lamo, Gonzalo

2006-01-01T23:59:59.000Z

435

Combustion Synthesis of Silicon Carbide 389 Combustion Synthesis of Silicon Carbide  

E-Print Network (OSTI)

Combustion Synthesis of Silicon Carbide 389 X Combustion Synthesis of Silicon Carbide Alexander S. Mukasyan University of Notre Dame USA 1. Introduction Combustion synthesis (CS) is an effective technique by which combustion synthesis can occur: self - propagating high-temperature synthesis (SHS) and volume

Mukasyan, Alexander

436

ME 6990 -Combustion Catalog Data: ME 6990: Combustion. Sem. 2. Class 3, Credit 3 (el.).  

E-Print Network (OSTI)

ME 6990 - Combustion Catalog Data: ME 6990: Combustion. Sem. 2. Class 3, Credit 3 (el.). Physical and chemical aspects of basic combustion phenomena. Classification of flames. Measurement of laminar flame. Fuels. Atomization and evaporation of liquid fuels. Theories of ignition, stability and combustion

Panchagnula, Mahesh

437

Supersonic combustion studies using a multivariate quadrature based method for combustion modeling  

E-Print Network (OSTI)

Supersonic combustion studies using a multivariate quadrature based method for combustion modeling function (PDF) of thermochemical variables can be used for accurately computing the combustion source term of predictive models for supersonic combustion is a critical step in design and development of scramjet engines

Raman, Venkat

438

Combustion Synthesis of Doped Calcium Cobaltate Thermoelectric ...  

Science Conference Proceedings (OSTI)

Symposium, Innovative Processing and Synthesis of Ceramics, Glasses and Composites. Presentation Title, Combustion Synthesis of Doped Calcium Cobaltate...

439

Review of Combustion Modification Emerging Technologies  

Science Conference Proceedings (OSTI)

Combustion modification emerging technologies for coal-fired boilers represent new developments in NOx control through changes in the fuel/air mixing of the combustion process. Technologies examined in this report fall into the categories of low-NOX burners (LNB), overfire air (OFA), enriched combustion, and combustion diagnostics. The technology reviews are comprised of the following sections where sufficient information was available: background, NOX reduction principle, performance and experience base...

2008-02-26T23:59:59.000Z

440

Oxy-combustion Boiler Material Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-combustion Boiler Material Oxy-combustion Boiler Material Development Background In an oxy-combustion system, combustion air (79 percent nitrogen, 21 percent oxygen) is replaced by oxygen and recycled flue gas (carbon dioxide [CO 2 ] and water), eliminating nitrogen in the flue gas stream. When applied to an existing boiler, the flue gas recirculation rate is adjusted to enable the boiler to maintain its original air-fired heat absorption performance, eliminating the need to derate the boiler

Note: This page contains sample records for the topic "bed combustion fbc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Technical and economic assessment of fluidized-bed-augmented compressed-air energy-storage system: system load following capability  

DOE Green Energy (OSTI)

The load-following capability of fluidized bed combustion-augmented compressed air energy storage systems was evaluated. The results are presented in two parts. The first part is an Executive Summary which provides a concise overview of all major elements of the study including the conclusions, and, second, a detailed technical report describing the part-load and load following capability of both the pressurized fluid bed combustor and the entire pressurized fluid bed combustor/compressed air energy storage system. The specific tasks in this investigation were to: define the steady-state, part-load operation of the CAES open-bed PFBC; estimate the steady-state, part-load performance of the PFBC/CAES system and evaluate any possible operational constraints; simulate the performance of the PFBC/CAES system during transient operation and assess the load following capability of the system; and establish a start-up procedure for the open-bed PFBC and evaluate the impact of this procedure. The conclusions are encouraging and indicate that the open-bed PFBC/CAES power plant should provide good part-load and transient performance, and should have no major equipment-related constraints, specifically, no major problems associated with the performance or design of either the open-end PFBC or the PFBC/CAES power plant in steady-state, part-load operation are envisioned. The open-bed PFBC/CAES power plant would have a load following capability which would be responsive to electric utility requirements for a peak-load power plant. The open-bed PFBC could be brought to full operating conditions within 15 min after routine shutdown, by employing a hot-start mode of operation. The PFBC/CAES system would be capable of rapid changes in output power (12% of design load per minute) over a wide output power range (25% to 100% of design output). (LCL)

Lessard, R.D.; Blecher, W.A.; Merrick, D.

1981-09-01T23:59:59.000Z

442

Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode  

DOE Patents (OSTI)

This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

2008-10-07T23:59:59.000Z

443

Combustor nozzle for a fuel-flexible combustion system  

DOE Patents (OSTI)

A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

Haynes, Joel Meier (Niskayuna, NY); Mosbacher, David Matthew (Cohoes, NY); Janssen, Jonathan Sebastian (Troy, NY); Iyer, Venkatraman Ananthakrishnan (Mason, OH)

2011-03-22T23:59:59.000Z

444

Fifteen Lectures on Laminar and Turbulent Combustion  

E-Print Network (OSTI)

Fifteen Lectures on Laminar and Turbulent Combustion N. Peters RWTH Aachen Ercoftac Summer School in Combustion Systems 1 Lecture 2: Calculation of Adiabatic Flame Temperatures and Chemical Equilibria 20: Laminar Diffusion Flames: Different Flow Geometries 156 Lecture 11: Turbulent Combustion: Introduction

Peters, Norbert

445

Combustion joining of refractory materials: Carboncarbon composites  

E-Print Network (OSTI)

Combustion joining of refractory materials: Carbon­carbon composites Jeremiah D.E. White Department­carbon composite is achieved by employing self-sustained, oxygen-free, high-temperature combustion reactions to a used "core" to produce a brake that meets the performance specifications. The combustion-joining (CJ

Mukasyan, Alexander

446

Reduced No.sub.x combustion method  

DOE Patents (OSTI)

A combustion method enabling reduced NO.sub.x formation wherein fuel and oxidant are separately injected into a combustion zone in a defined velocity relation, combustion gases are aspirated into the oxidant stream prior to intermixture with the fuel, and the fuel is maintained free from contact with oxygen until the intermixture.

Delano, Mark A. (Briarcliff Manor, NY)

1991-01-01T23:59:59.000Z

447

INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING  

E-Print Network (OSTI)

INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING FOR GAS TURBINE Prepared For: California Energy REPORT (FAR) INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING FOR GAS TURBINE CYCLES EISG AWARDEE University://www.energy.ca.gov/research/index.html. #12;Page 1 Integral Catalytic Combustion/Fuel Reforming for Gas Turbine Cycles EISG Grant # 99

448

CERTS Microgrid Laboratory Test Bed  

Science Conference Proceedings (OSTI)

The objective of the CERTS Microgrid Test Bed project was to enhance the ease of integrating energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of generating sources less than 100kW. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation, islanding the microgrid's load from a disturbance, thereby maintaining a higher level of service, without impacting the integrity of the utility's electrical power grid; 2) an approach to electrical protection within a limited source microgrid that does not depend on high fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications between sources. These techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations,and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults. The results from these tests are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations involving microgrids that involve one or more of the CERTS Microgrid concepts. Future planned microgrid work involves unattended continuous operation of the microgrid for 30 to 60 days to determine how utility faults impact the operation of the microgrid and to gage the power quality and reliability improvements offered by microgrids.

Eto, Joe; Lasseter, Robert; Schenkman, Ben; Stevens, John; Klapp, Dave; Volkommer, Harry; Linton, Ed; Hurtado, Hector; Roy, Jean

2009-06-18T23:59:59.000Z

449

Particle pressures in fluidized beds. Final report  

SciTech Connect

This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major inte